
MetaDORAM: Info-Theoretic Distributed
ORAM with Less Communication

Brett Hemenway Falk1 Daniel Noble⋆2 Rafail Ostrovsky3

1 University of Pennslvania, fbrett@seas.upenn.edu
2 Silence Laboratories, danielnoble@proton.me

3 UCLA, rafail@cs.ucla.edu

Abstract. A Distributed Oblivious RAM is a multi-party protocol that
securely implements a RAM functionality on secret-shared inputs and
outputs. This paper presents two DORAMs in the semi-honest honest-
majority 3-party setting which are information-theoretically secure and
whose communication costs are asymptotic improvements over previous
work. Let n be the number of memory locations and let d be the bit-
length of each location.
The first, MetaDORAM1, is statistically secure, with n−ω(1) leakage. It
has O(logb(n)d+ bω(1) log(n)+ log3(n)/ log(log(n))) bits of communica-
tion per memory access. Here, b ≥ 2 is a free parameter and ω(1) is any
super-constant function (in n). The best prior work was that of Abra-
ham et al (PKC 2017), which has costO(logb(n)d+bω(1) logb(n) log

2(n)).
MetaDORAM1 is an asymptotic improvement over the work of Abraham
et al whenever d = O(log2(n)).
The second protocol, MetaDORAM2, achieves perfect security, albeit
at the cost of a computationally-expensive setup phase. It has com-
munication cost O(logb(n)d + b log(n) + log3(n)/ log(log(n))). The best
prior work of Chan et al (ASIACRYPT 2018) has communication cost
O(log(n)d + log3(n)). When b = log(n), the communication cost of
our protocol is O(log(n)d/ log(log(n)) + log3(n)/ log(log(n))), that is a
Θ(log(log(n))) factor improvement over that of Chan et al. Our work is
the first perfectly secure DORAM with sub-logarithmic communication
overhead. This comes at the cost of a once-off (for any given n) setup
phase which requires exponential (in n) computation.
By a trivial transformation, these can be transformed, respectively, into
statistically and perfectly secure active multi-server ORAM protocols
with the same communication costs. These multi-server ORAM protocols
are likewise asymptotic improvements over the state of the art.

1 Introduction

Secure Multi-Party Computation (MPC) protocols allow a set of parties in a
network, of which some unknown subset are dishonest, to securely simulate a
trusted third party. This holds tremendous promise. It allows statistical analysis

⋆ Work done while at University of Pennsylvania

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 5 (2024)

of sensitive data from different sources without pooling data with any single
party. It allows the creation of secure systems, which do not have a single point of
failure; using diversification these systems can therefore tolerate attacks affecting
particular operating systems, hardware or local networks. In short, it allows
sensitive data to be combined and used without needing to trust any single
entity or device with that data.

MPC use cases to date, though, have mostly been restricted to tailor-made
protocols for specific applications, such as Private Set Intersection [48], Thresh-
old Signature Schemes [18] and Machine Learning [33]. It was shown in the
1980’s that arbitrary circuits could be evaluated securely [56, 25, 7]. However,
many computations cannot be represented efficiently as circuits. Rather, it is
often more natural and efficient to represent a computation in the RAM model.
For instance, RAM is assumed in many classic algorithms and data structures,
such as implementations of dictionaries, pointers, graphs and priority queues.
An efficient implementation of a RAM functionality for MPC would therefore
enable the adoption of generic efficient MPC.

Distributed Oblivious RAM (DORAM) is a functionality that implements
RAM for MPC. It stores n d-bit blocks of data in a secret-shared memory, and
allows accesses to that memory (reads or writes) at secret-shared locations. A
DORAM is secure if the views of the parties can be efficiently simulated without
knowledge of any private values. See section 5 for a complete definition of the
DORAM functionality.

In this work we target the 3-party honest-majority setting. An honest ma-
jority is necessary to achieve information-theoretically secure generic MPC [7]
and even with computational assumptions, honest-majority MPC significantly
out-performs dishonest-majority MPC. The 3-party honest-majority setting in
particular has received particular attention from both academia [19, 2, 22, 31, 3]
and industry [8]. This is both because it is the smallest (and therefore easiest to
set up) instantiation of honest-majority MPC and also because of certain tech-
niques which are extremely efficient in this setting (e.g. [14, 38]) but do not scale
well to larger numbers of parties.

DORAM is closely related to the problem of Oblivious RAM, which solves
the problem of a client outsourcing memory to an untrusted server (or servers).
In particular a w-party DORAM can be converted into an ORAM with w active
(i.e. computation-performing) servers and vice-versa, usually without increase
in the communication cost. See section 2 for more details. Therefore, efficient
DORAM is intrinsically tied to efficient multi-server active ORAM. A primary
metric of this efficiency is the total amount of communication per memory access.
This is often measured as the overhead, that is the number of blocks (of size d)
of communication required per memory access.

Our Contribution: In this work, we present two novel DORAM protocols
for the 3-party semi-honest honest-majority setting. The first, MetaDORAM1,
achieves statistical security. That is, the statistical distance between the adver-
sary’s view and a simulated view is negligible in n. Unlike most statistically
secure DORAMs, our protocol’s security does not deteriorate with the number

2

of accesses to the DORAM; the leakage remains negligible in n even as the num-
ber of accesses tends to infinity. The statistically secure protocol achieves amor-
tized communication cost Θ(logb(n)d+bω(1) log(n)+log3(n)/ log(log(n))). Here
b ≥ 2 is a free parameter. The best prior work is that of Abraham et al (PKC
2017) [1] which has communication cost Θ(logb(n)d + bω(1) logb(n) log

2(n)).
MetaDORAM1 and Abraham et al [1] are asymptotically equivalent when d =
ω(log2+ϵ(n)). However, when d = O(log2(n)), the communication cost of Meta-
DORAM1 is Θ(log3(n)/ log(log(n))) (e.g. by setting b = log(n)/ log(log(n)))
whereas the work of Abraham et al has communication cost Θ(ω(1) log3(n)).

Our second DORAM protocol, MetaDORAM2 achieves perfect security. That
is, the adversary’s view is chosen from an identical distribution as the simu-
lated view. MetaDORAM2 requires communication cost Θ(logb(n)d+ b log(n)+
log3(n)/ log(log(n))). The best prior work by Chan et al. (ASIACRYPT 2018)
[11] has communication cost Θ(log(n)d+ log3(n)). MetaDORAM2 is an asymp-
totic improvement over all parameter ranges. When b = log(n), MetaDORAM2
has communication cost Θ(log(n)d/ log(log(n)) + log3(n)/ log(log(n))), that is
a log(log(n))-factor improvement over Chan et al for all parameter ranges. Ad-
ditionally, the free parameter b allows MetaDORAM2 to have improved per-
formance for large d. Whenever d = Ω(nϵ) for some constant ϵ > 0, setting
b = d/ log(n) yields a protocol with communication cost Θ(d), that is the over-
head is constant. MetaDORAM2 is the first perfectly secure DORAM protocol
with sub-logarithmic overhead over any parameter range.

MetaDORAM2’s perfect security comes at a cost in setup computation.
MetaDORAM2 uses hash functions which should not only allow for a successful
hash table build for some given input, but should allow for a successful hash
table build on all possible inputs (chosen from a universe of size 2n). Using
Θ(log(n)) hash functions that map to disjoint spaces, causes this to occur with
high probability [57]. The problem is that it is difficult to verify that a given
choice of hash functions satisfies this property. As such, MetaDORAM2 achieves
perfect security by first verifying that all subsets (say of size m) of {1, . . . , 2n}
can be successfully built into a hash tables of size Θ(m) using the chosen hash
functions. Each verification takes poly(n) time, but there are

(
2n
m

)
< 2n log(n)

subsets to verify. While this computation need only occur once for any given
value of n, this limits the feasibility of this construction in practice to tiny n.
Nevertheless, it clearly shows that the problem of perfectly-secure DORAM has
sub-logarithmic communication overhead.

Due to the conversion between DORAMs and ORAMs, MetaDORAM1 (resp.
MetaDORAM2) can be converted to a 3-server active ORAMs that is sta-
tistically (resp. perfectly) secure and has communication cost Θ(logb(n)d +
bω(1) log(n)+log3(n)/ log(log(n))) (resp.Θ(logb(n)d+b log(n)+log3(n)/ log(log(n)))).

Note that a passive (non-active) ORAM has a lower bound [26, 36] ofΩ(log(n))
overhead in the number of memory accesses, and therefore communication cost,
even if there are multiple servers [37, 34]. In an active ORAM, the Ω(log(n))
bound applies to the number of memory accesses, but need not apply to the
amount of communication. This work, like [1], achieves sub-logarithmic com-

3

munication overhead in the information-theoretic setting. This result is slightly
surprising: it means that server-side computation is useful at reducing the asymp-
totic communication complexity even without the introduction of computational
assumptions. Our result, taken with [1], shows that the asymptotic bounds on
the DORAM problem are, as of yet, not well understood, and opens up many
interesting questions regarding what lower bounds exist for DORAMs, as well
as for active information-theoretic ORAMs in general (see section 7).

MetaDORAM1 and MetaDORAM2 also have lower communication overhead
than most DORAM protocols that use computational assumptions. See Table
2 in section 2 for more details. MetaDORAM1 and MetaDORAM2 also have
reasonable performance in other metrics. The computation and local memory
access overheads are poly-logarithmic. The persistent memory usage overhead is
logb(n) ≤ log(n). The round complexity per query is O(log(n) log(log(n))). The
constants in all of the asymptotic notation are very small.

Organization: Our paper is organized as follows. Section 2 provides a short
history of prior ORAM and DORAM protocols. Section 3 provides a technical
overview of our results and techniques. Section 4 explains the notation used, in
particular the various types of secret-sharing used and how they are represented.
The formal DORAM functionality is presented in section 5, as well as the func-
tionalities for Secret-Shared Private Information Retrieval (SSPIR) and secure
routing, which are used by our DORAM protocol. Section 6 presents our full
DORAM protocol, and analyzes its security and communication costs. Section 7
concludes by discussing some interesting open questions. The functionalities for
SSPIR and secure routing can be implemented using standard techniques. For
completeness, these are presented explicitly in appendices A and B.

2 Prior Works

Distributed Oblivious RAM is closely related to the problem of Oblivious RAM
(ORAM), which was first formulated by Goldreich in the 1980’s [24]. Imagine
a program which is running in a secure environment with very limited mem-
ory. The program wishes to make use of general memory on a device, but an
adversary may be able to observe access patterns on this device. For instance,
the program may be running in a secure enclave, such as Intel SGX [13], but
needs to hide sensitive information even if the operating system is corrupted.
The program can encrypt the data; this will hide the data’s contents, but will
not hide the memory locations accessed by the program, which might leak sen-
sitive information. An ORAM is an intermediary between the program and the
main memory. It provides a RAM functionality to the program using the device’s
memory in such a way that the access pattern on the device (the physical access
pattern) reveals no information about the memory accesses by the program (the
virtual access pattern), except for the number of accesses.

In a normal RAM, the cost of retrieving a block of data from memory is
equal to the size of the block, denoted d. Adding obliviousness comes at a
price; the overhead is the multiplicative increase in the number of bits that

4

need to be accessed relative to a normal RAM. Goldreich initially presented
an ORAM that had O(

√
n log(n)) overhead, where n is the number of blocks

of memory [24]. This was improved to O(log3(n)) by Ostrovsky [42], using the
hierarchical approach, which we explain in section 3. A series of improvements re-
duced this first to O(log2(n)) [47, 27], then O(log2(n)/ log(log(n))) [35, 10], then
O(log(n) log(log(n))) [44] and finally O(log(n)) [4, 5]. This final result matches
the proven asymptotic lower bound of Ω(log(n)) [26, 36, 37, 34, 46]. This asymp-
totic lower bound is in the setting where the untrusted memory is passive (i.e.
performs no computation on behalf of the ORAM) and the ORAM only has
enough memory to store Θ(1) blocks (and Θ(1) κ-bit PRF keys).

ORAM protocols have generally followed one of two approaches. The first is
the Hierarchical approach, initially proposed by Ostrovsky [42], in which data is
stored using hash tables. In the ORAM setting the tables are held (encrypted)
by a single server, in the DORAM setting, they can be secret-shared between
multiple servers. The hash tables use pseudorandom hash functions, so that
the physical locations accessed reveal no information about the corresponding
indexes, and are hence called Oblivious Hash Tables (OHTables). An OHTable
does not solve the ORAM problem, however, because an adversary can typically
distinguish repeated queries for the same element into an OHTable from queries
for distinct elements. To solve this, when an item is queried it is cached from
an OHTable into a small sub-ORAM. The sub-ORAM is queried first and if
the item is found there, random locations are accessed in the OHTables; this
is necessary for security since re-querying an item in an OHTable would cause
the same locations to be accessed, compromising security. To ensure the sub-
ORAM remains small, periodically its contents are extracted and built into a new
OHTable. To ensure the number of OHTables remains manageable, periodically
the contents of multiple OHTables are extracted and rebuilt into a single new
OHTable. Typically, the sub-ORAM and OHTables are envisioned as arranged
vertically, with the sub-ORAM at the top and OHTables below it, arranged from
smallest to largest, resulting in a pyramid-shaped hierarchy (hence the name) of
sub-ORAM/OHTable structures.

Shi et al. [50] proposed the alternative Tree approach, which was extended by
many subsequent (D)ORAMs (e.g. [51, 54, 19]). In this solution data is arranged
in a tree, each item is assigned a path from the root to the leaf and the item
must remain on this path until its next access. To query an item, its path is
first obtained. All locations on this path are accessed and the item is removed
from its location. The item is then assigned a new random path and placed in
the root of the tree. The root is typically a small sub-ORAM, whereas each
other node in the tree typically has capacity for a constant number of items. To
prevent the root sub-ORAM from becoming too large, paths from the root to
leaves are periodically accessed and each item in the path moved as far down
(leafward) as it can be moved, subject to its own path restriction and congestion
from other items. Analysing probability distributions shows that the congestion
is unlikely to cause the sub-ORAM at the root to overflow. The assignment of

5

indices to paths, which is called the position map, is stored and updated using
a sub-ORAM, which is implemented recursively.

Both Hierarchical and Tree ORAMs can benefit from “balancing” [35]. In
Hierarchical ORAMs, the number of tables b ≥ 2 that should exist before these
are combined into a single table is a configurable parameter. Similarly, in a Tree
ORAM the number of children of each node is also a free parameter. In both
cases, these parameters can be chosen to balance the cost of accesses and the
cost of table rebuilds (in the Hierarchical setting) or leafward evictions (in the
Tree setting).

With the advancement of networking infrastructure in the 1990’s, ORAM
was quickly recognized as a solution to another challenge: outsourcing memory
in a network. Here, a client with limited memory capacity wishes to store data on
an untrusted server such that the access pattern on the servers’ memory leaks no
information about the actual memory access pattern by the client. The formal-
ism of the original ORAM use-case was immediately applicable, with the client
taking the place of the secure environment and the server replacing the device
memory. However, this new application led to various extensions of the model.
First, the client could feasibly store much more than Θ(d+κ) bits of memory–a
laptop or modern smartphone has gigabytes of memory available. Second, the
server is likely to also have significant computational resources, so may be able
to perform computation to reduce communication overhead, a variant referred
to as active ORAM. Third, the client could easily interact with multiple servers,
which could reasonably be assumed to not collude. This was referred to as multi-
server ORAM. This new application also caused metrics to be re-evaluated. Since
latency is higher in a network, the number of rounds of execution between the
client and server became a very important efficiency metric. Additionally, this
setting often involved much larger blocks: if the communication cost had a term
that did not depend on d, this term could become asymptotically irrelevant for
sufficiently large d. A large number of works arose examining various combina-
tions of these new models of super-constant client memory overhead (e.g. [55,
52, 49, 45, 6]), active servers (e.g. [17, 12]) and multiple servers (e.g. [40, 1, 11]).

At the same time, advances in MPC protocols (e.g. [30, 16, 2]) were dramat-
ically reducing the cost of securely evaluating generic circuits. However, many
computations are not efficiently realizable as circuits. It was well-known that
ORAM techniques could be applied to create efficient MPC protocols in the
RAM model [43, 23, 54]. This is the problem of Distributed Oblivious RAM
(DORAM), accessing secret-shared memory at secret-shared locations without
leaking anything but the number of accesses. Any client-server ORAM can be
transformed into a DORAM by evaluating the client’s circuit inside of a secure
computation and allowing one of the parties to act as a server. There is now no
trusted client, instead there is a “virtual client” that is simulated by a secure
computation.

Some of the extensions to the ORAM model that resulted from the memory
outsourcing application were immediately relevant to DORAMs. Since DORAMs
already had multiple non-colluding parties, they could trivially take advantage

6

of multi-server ORAMs by having the parties simulate different servers. Fur-
thermore, since the parties were already performing computation as part of the
MPC protocol, they could naturally perform the computation needed by servers
in an active ORAM. On the other hand, like in the secure program use-case, the
DORAM’s virtual client needed to have very limited memory in order for it to
have an efficient circuit representation. Furthermore, in an ORAM, the trusted
client can perform local computation essentially for free, including cryptographic
operations such as PRF evaluations. In the DORAM setting, every computation
performed by the virtual client needs to be evaluated inside of a MPC circuit,
which can require significant communication between the parties. On the per-
formance metric side, since the MPC protocol occurs in a network, the number
of communication rounds again becomes significant, as with memory outsourc-
ing. However, like the application of secure program evaluation, the size of data
blocks is often small (say a single variable), so any terms that do not depend on
d are once again significant.

In general, a s-server active ORAM tolerating t corrupt parties can be trans-
formed into a (w, t)-secure DORAM protocol for any w ≥ s by simulating the
client in a (w, t)-secure MPC and having each server’s role taken by a distinct
party. This transformation could, potentially, increase the communication cost,
depending on the circuit complexity of the virtual client. Going the other way,
any (w, t)-secure DORAM can also be converted to a (w, t)-secure multi-server
active ORAM by each server acting as one party, and by the client initially
secret-sharing their query to the servers, and the servers sending the client the
shares to reconstruct the result. This will not lead to any increases in asymptotic
communication costs.

Through this client simulation, efficient DORAMs could be produced from
ORAMs. If a client can be represented as a Boolean circuit with q AND gates,
it is possible to simulate this client in a secure computation using only Θ(q)
communication [7, 2]. However, achieving statistical security for generic MPC
requires an honest majority, so simulating the client without introducing cryp-
tographic assumptions requires the use of at least 3 parties, even if the ORAM
only uses 1 or 2 servers. Below we discuss the two most efficient prior multi-server
ORAMs which offer statistical and perfect security respectively; Table 1 presents
a summary of these works, as well as the DORAMs presented in this work. Both
protocols have simple clients, so can be converted to 3-party honest-majority
DORAMs without increasing the amortized asymptotic communication cost.

Abraham et al. created an efficient 2-server ORAM using PIR [1]. Their
ORAM is Tree-based, in which the number of children of each vertex is a con-
figurable parameter, b ≥ 2. This protocol achieved a communication cost of
Θ(logb(n)d + bω(1) logb(n) log

2(n)). The parameter b should be set to reduce
the amortized cost. For d ≥ 2ω(1) log2(n) the cost is minimized by setting

b = d
ω(1) log2(n)

, which results in a cost log(n)
log(d) d. For smaller d, the cost is minimal

when b = 2.

Chan et al. [11] created an efficient 3-server passive ORAM scheme with
perfect security. Their DORAM is Hierarchical, but unlike most Hierarchical

7

ORAMs which use PRFs, Chan et al. store items using truly random position
labels. These are stored in a position label ORAM, which is implemented recur-
sively. The communication cost is Θ(log(n)d+ log3(n)).

Protocol Amortized Communication Cost (bits) Security

Abraham et al. [1] Θ(logb(n)d+ bω(1) logb(n) log
2(n)) Statistical

Chan et al. [11] Θ(log(n)d+ log3(n)) Perfect

MetaDORAM1 (this work) Θ
(
logb(n)d+ bω(1) log(n) + log3(n)

log(log(n))

)
Statistical

MetaDORAM2 (this work) Θ
(
logb(n)d+ b log(n) + log3(n)

log(log(n))

)
Perfect

Table 1. Communication complexity of selected info-theoretic ORAM protocols that
can be converted to efficient DORAMs. Note that while the ORAM of Abraham et al.
requires only 2 servers, converting it to an info-theoretic DORAM requires an honest-
majority MPC protocol, therefore necessitating at least 3 parties. For statistically se-
cure protocols, the statistical distance between the adversary’s views in the real and
ideal executions is 2−ω(log(n)).

Several works also investigated building Distributed Oblivious RAMs directly
without simulating a client-server ORAM. While these works generally did not
achieve the same asymptotic efficiency as [1] and [11], many had good concrete
efficiency. They took advantage of the existence of multiple non-colluding servers
by using Distributed Point Functions [9, 53], secret-shared PIR (SSPIR) [31]
and secure shuffles/routing [21]. See Table 2 for details. There has also been
work to create DORAMs that are secure against malicious adversaries [20, 29].
These works all depended on computational assumptions. In comparison, the
MetaDORAM protocols are information theoretically secure. They also have
strictly better communication cost than these protocols over all parameter ranges
with one exception: [21] can have a lower asymptotic communication cost, and
that only when κ+ d = o(log2(n)/ log(log(n))).

DORAM Protocol Amortized Communication Cost (bits) Security

Faber et al. [19] O
(
ω(1) log2(n)d+ κω(1) log4(n)

)
Computational

Jarecki and Wei [31] O
(
log(n)d+ κ log3(n)

)
Computational

Bunn et al. [9] O ((d+ κ)
√
n) Computational

Falk et al. [21] O (log(n)d+ κ log(n)) Computational

DuORAM [53] O (κ · d · logn) Computational

MetaDORAM1 (this work) Θ
(
logb(n)d+ bω(1) log(n) + log3(n)

log(log(n))

)
Statistical

MetaDORAM2 (this work) Θ
(
logb(n)d+ b log(n) + log3(n)

log(log(n))

)
Perfect

Table 2. Complexity of select DORAM protocols. κ = ω(log(n)) is a cryptographic
security parameter. ω(1) is any super-constant function in n and the statistical leakage
is O(2ω(1) log(n)).

8

3 Technical Overview

In this section we provide a broad overview of how the MetaDORAM1 and
MetaDORAM2 protocols work. These protocols are, in fact, almost identical
and only differ in how hash functions are chosen. Therefore, in this overview, we
only discuss the common framework of the solution, which we refer to simply as
MetaDORAM. Section 6 later presents MetaDORAM1 and MetaDORAM2 in
full detail, including the different approaches used to select hash functions.

At a very high level, MetaDORAM uses Secret-Shared Private Information
Retrieval to access items, and always writes the accessed item (whether modified
or not) to a pre-determined new location. It uses an oblivious ‘metadata map’
that maintains a mapping from indices to their locations. This is accessed in
order to obtain shares of the location to input to the Secret-Shared PIR.

A simple way to instantiate this is to simply store the original secret-shared
array in memory, and to always write new items to the next free location in
memory. However, this would require performing SSPIR over an array of size
Ω(n). To avoid this, we instead store items in oblivious hash tables, each with
h ∈ Ω(log(n)) hash functions. As before, items are written to the next free
location in memory, but when there are c such items, these too are built into an
oblivious hash table. To limit the number of oblivious hash tables, when there
are b tables of a given size, the contents of these tables are extracted and rebuilt
into a single table. Furthermore, every n accesses, the contents of all tables are
extracted and rebuilt into a single oblivious hash table. As a result, there are
only ever at most O(logb(n)b) tables, so the SSPIR need only be performed over
arrays of size O(c+ b logb(n)h) = poly(log(n)).

There are however several challenges with this approach. First, the exact lo-
cation of an item is now no longer dependent solely on the item’s index or the
time the item was last accessed, but is also dependent on the hash functions and
which hash function was used to store the item in a given table. Second, evalu-
ating the hash function inside of a secure computation would be very expensive.
Third, we need an efficient way to construct the oblivious hash tables.

In order to address these challenges we create intermediatary temporary iden-
tifiers for each item, which we refer to as runes (Random Unique NamEs). The
metadata map will maintain the mapping between indices and runes, and an
index will only be assigned a new rune when the index is accessed. We then
separate the roles of the parties into a Builder (P0) and two Holders (P1 and
P2). The Builder selects a new rune for an item when it is accessed. It there-
fore knows, for each location in physical memory which rune is assigned to the
item that is stored in that location. The oblivious hash tables are built based
on the evaluation of the hash functions on the runes (not the indexes), which
allows the Builder to evaluate the hash functions locally (rather than it being
evaluated inside of a secure computation). When building smaller tables into a
new large table, the Builder knows for each item its location before the build
and its rune (even though it does not know the index of the item). The Builder
can also calculate the new locations for all item in the new table, based (only)
on their runes. The Builder can therefore locally calculate how memory needs

9

to be permuted to combine the tables, without ever needing to learn the indexes
associated with each item. This allows oblivious hash tables to be constructed
very efficiently, using a secure routing protocol.

How then do we perform Secret-Shared PIR over only O(c+logb(n)bh) loca-
tions to access the item? Firstly, the tables must only be stored by the Holders,
so the Builder will not learn which locations were accessed. To allow the hash
functions to be computed efficiently during an access, the current rune of the
queried index is revealed to the Holders, allowing them to compute the hash func-
tions locally. An additional challenge is that SSPIR assumes that the 2 Holders
have identical copies of the tables (rather than a secret-sharing of the tables).
To provide privacy from the Holders, we therefore mask each item in each table
with a rune-dependent information-theoretic mask (one-time pad). The masks
are stored in the metadata map.

One final challenge remains. Each time a new table is rebuilt, the items in
that table must be assigned a new location, and also remasked with a new mask.
This could be solved by updating the metadata data-structure for each index
each time the index is rebuilt into a new table, but this would be prohibitively
expensive. Instead, we observe that since the Builder can choose the assigned
runes for each access, it can pre-determine which runes will be assigned at which
point in time. This also pre-determines which runes will occur in each table,
allowing the Builder to pre-calculate the assignments of runes to table locations,
for say the first n accesses at the beginning of the protocol. The Builder can
therefore pre-generate the schedule of runes to table positions at the start of the
protocol, and can efficiently secret-share this data structure with the Holders.
Likewise, the Builder can pre-determine the mask schedule for each rune, and
secret-share this at the start of the protocol. Every n accesses, the full DORAM
is refreshed, and the Builder then generates new rune, position and schedules
for the subsequent n accesses.

The metadata mapping therefore consists of mappings from indices to runes,
from runes to a position schedule and from runes to a mask schedule. The posi-
tion schedule and mask schedule are simply secret-shared arrays (with the runes
public and the schedules secret-shared). The mapping from indices to runes is
implemented using a sub-DORAM, which is implemented recursively.

Novel contributions: In addition to providing the communication-efficient
DORAM with information-theoretic security, our paper introduces a number
of new techniques. Specifically, we use time-stamping and novel data structures
to obtain the precise location of data blocks, we make asymmetric use of the
participating compute servers to allow efficient and oblivious construction and
querying of these data structures, we use as a subroutine tiny-size PIR protocols
where the “databases” are constructed on the fly during query execution, and
we show a novel strategy for DORAM that bridges techniques from different
ORAM strategies in conjunction with ideas explained above.

10

4 Preliminaries

We use lower-case Latin characters to represent parameters in the protocol. n is
the size of the RAM, d is the bit-length of each item. h represents the number
of hash functions used by the hash tables. For an explicit integer or integral
parameter, a, [1, a] denotes the set of integers {1, . . . , a}. We use upper-case Latin
characters to represent arrays and matrices, which are indexed using standard
subscript notation. lg represents the base-2 log. For asymptotic annotation, any
constant base is equivalent, in which case log represents some arbitrary constant-
base log.

We denote the 3 parties as P0, P1 and P2. P0 is the Builder. P1 and P2 are
the Holders. The Adversary A, is able to corrupt at most one of the parties. The
corruption is semi-honest (passive), that is the corrupted party will still follow
the protocol, but A is able to view all data visible to the corrupted party. The
corruption is static, that is A cannot change which party is corrupted during
the protocol. Our protocols are information-theoretically secure, that is A may
perform an arbitrarily large amount of computation.

We utilize hash functions. Our hash functions are fixed and public. We assume
that the hash functions are 2n-wise independent and independent of each other.
The hash functions implicitly map to ranges of different sizes (depending on the
size of the OHTable). In this cases, the hash functions are calculated modulo the
required range. It is assumed that the output of the hash function has sufficient
entropy such that even when it is reduced modulo these ranges, the distribution
is still essentially uniform.

Sharing type Notation
Party Share

Construction
P0 P1 P2

3RSS (Replicated) [x] (x0, x1) (x1, x2) (x2, x0) x0 ⊕ x1 ⊕ x2 = x

2XORS (2-Party XOR) [x]1,2 ∅ x0 x1 x0 ⊕ x1 = x

1-2XORS (1-and-2 Party XOR) [x]0,(1,2) x0 x1 x1 x0 ⊕ x1 = x

2-Priv (2-Party Private) [x](1,2) ∅ x x

1-Priv (1-Party Private) [x]0 x ∅ ∅
Public x x x x

Table 3. Types of Secret-Sharing with Notation

We use several kinds of secret-sharing, all of which are bit-wise (Boolean)
secret-sharings. These are summarized in Table 3. Since all of these sharings are
linear, they can easily be converted between each other. A sharing of an l-bit
variable can be converted to a fresh sharing of any other l-bit variable by each
party creating a fresh sharing of their share in the new sharing and XORing the
resulting shares. (If 2 parties hold the same share, only one of them need send a
sharing.) This requires only Θ(l) communication.

The most common sharing we use is a 3-party replicated secret sharing
(3RSS) [2]. Here, x ∈ {0, 1}ℓ is secret-shared by having x0, x1, x2 ∈ {0, 1}ℓ that

11

are uniformly random subject to x1 ⊕ x2 ⊕ x3 = x. Pi holds xi and x(i+1) mod 3.
When variable x is held using this secret-sharing, it is represented as [x].

We also use a 2-party XOR secret-sharing (2XORS), where 2 parties hold the
secret-sharing and the third party is not involved. If P1 and P2 hold a 2-party
XOR secret-sharing of variable x, this is denoted as [x]1,2. Here P1 holds x0 and
P2 holds x1 where x0 and x1 are randomly chosen subject to x0⊕x1 = x. We also
use a variant of XOR secret-sharing in which 2 parties hold one of the shares,
and the third party holds the other. For instance, when P0 holds one share, and
P1 and P2 hold the other share, this is denoted [x]0,(1,2), that is P0 holds x0 and

P1 and P2 both hold x1 where x0, x1 ← {0, 1}ℓ subject to x0 ⊕ x1 = x.
Sometimes a variable is held privately. If x is held privately by one party

(1-Priv), for instance, by P0, we denote this as [x]0. Sometimes a variable is
known to 2 parties but not the third (2-Priv). If x is known to P1 and P2, but
not P0, this is denoted [x](1,2).

For conciseness, conversions between types of secret-sharing are typically im-
plicit in our pseudocode, indicated by the sharing-type of the result. For instance,
[Cj](1,2) = [vnew] ⊕ [e] means that [vnew] and [e], both stored using 3RSS, are
first XORed to create a result that is shared using 3RSS. This result is then
revealed to P1 and P2 (but not P0), who store the result and label it Cj .

We use the Arithmetic Black Box (ABB) model [15] to formalize the guar-
antees provided by secret-sharing and operations on secret-shares. This treats
3RSS, 2XORS and 1-2XORS secret-shared values as stored in a reactive func-
tionality FABB . FABB can also perform operations on secret-shares (e.g. AND,
XOR) with the result again being stored by FABB . Only when a FABB-stored
value is converted to a private (2-Priv or 1-Priv) or public value (corresponding
to share reconstruction) is that value released by FABB to the appropriate par-
ties. The protocol of Araki et al. [2] securely implements FABB for any Boolean
operation (AND, OR, NOT, XOR) over 3RSS-shared values. Locally XORing
shares securely implements FABB for the XOR operation over 2XORS and 1-
2XORS sharings.

5 Functionality

We wish to implement the following DORAM functionality:

Functionality FDORAM

I ← Init(n, d, [A]): Store array A containing n items of size d.
[v] ← I.ReadWrite([x], [y], f): Given an index x ∈ [1, n], set v to Ax. Set
Ax = f([v], [y]).
[A] ← I.Extract(): Return the current state of the memory, A, as an array of
secret-shares.

Our definition of a DORAM combines the Read and Write functionalities,
allowing for reads, writes, or more complex functionalities. This is done by set-
ting the public function f appropriately. For a read, define f(v, y) = v. For a

12

write, define f(v, y) = y. Allowing the written value to be a function of the in-
put provides additional flexibility, such as writing to only particular bits of the
data-value or applying a bit-mask to the memory value. Implicitly, f must be
representable using a Boolean circuit containing Θ(d) AND gates.

Security is defined using the simulation paradigm, which is standard for prov-
ing the security of MPC protocols [39]. A simulator, given only a party’s inputs
and outputs from a protocol must generate a view consistent with the real view
of a corrupted party during an execution. The DORAM is perfectly secure if the
simulated view is from the same distribution as the real view. It is statistically
secure4 if the distance between the distributions of the views is negligible in n. A
protocol has information-theoretic security if it has either perfect or statistical
security. It is computationally secure if a computationally-bounded adversary
has a negligible advantage in distinguishing views in the simulated and real exe-
cutions. All of our protocols have information-theoretic security. We present two
DORAMs, one that is statistically secure and another that is perfectly secure.
The only difference between the two protocols is the choice of hash functions: the
perfectly secure protocol selects hash functions which allow for the construction
of oblivious hash tables on all possible inputs, whereas the statistically secure
protocol picks random hash functions which allow for the construction of obliv-
ious hash tables on all possible inputs except with negligible probability. This is
the only type of leakage in the statistically secure protocol. Apart from this all
components of both protocols are perfectly secure.

Our DORAM implementation makes use of the following functionalities.
These can be implemented with perfect security using standard techniques. We
present explicit instantiations of the SSPIR and routing functionalities in ap-
pendices A and B respectively.

Functionality FSSPIR

[v] ←SSPIR(m, d, q, [A](1,2), [x]): Given an array A held (duplicated) by P1 and
P2, containing m elements of size d, and a share of x ∈ [1,m], return a fresh
secret-sharing of Ax. q ∈ {1, . . .m} is a free parameter for efficiency optimization.

Functionality FRoute

[B] ← Route([A], [Q]0): Given a secret-sharing of array A, of length m, and an
injective mapping Q, held by P0, of length q ≥ m, create a fresh secret-sharing
B such that BQ(i) = Ai for all i ∈ [1,m] and Bj is distributed uniformally at
random for all j /∈ {Q(i)}i∈[1,m].

4 Some works specify a security parameter, say σ, such that the statistical distance
should be 2−Θ(σ). We choose instead for the distance negligible in n, which is equiv-
alent to saying we set σ = ω(log(n)).

13

6 DORAM Protocol

6.1 Overview

This section presents MetaDORAM1 and MetaDORAM2 in full and analyzes
their security and communication costs. Since MetaDORAM1 and MetaDO-
RAM2 have only minor differences, we first present the generic protocol, which
we refer to as MetaDORAM, which does not specify how hash functions are
chosen. We then show how the hash functions can be chosen to either provide
statistical security or perfect security. For reference, the reader can also refer to
the high-level technical overview of the MetaDORAM protocol from section 3.

The MetaDORAM protocol is presented in detail in sections 6.2 and 6.3.
Section 6.4 then shows how a statistically secure DORAM (MetaDORAM1) and
a perfectly secure DORAM (MetaDORAM2) can be instantiated depending on
how the hash functions are chosen, and proves that these protocols achieves the
desired security properties. Finally section 6.5 analyzes the complexity of these
protocols. We assume the existence of functionalities for secret-shared PIR and
secure routing, implementations of which are presented in appendices A and B
respectively.

6.2 Writes and Rebuilds

We first show how the data-structure storing the blocks is written to and rebuilt.
Initially, all blocks are stored in a single, large, OHTable. When an index is
queried, it is assigned a new rune, which is picked by the Builder, and the sub-
DORAM is updated with this information. A new block is then created which
holds the new value for that index. This block is placed in an area called the
cache. The cache is filled sequentially. The cache is of size c. When the cache
becomes full, its contents are extracted and built into an OHTable.

We implement the OHTable using cuckoo hashing with many (h = Ω(log(n)))
hash functions. The block may be stored in locations corresponding to the output
of the hash functions on the block’s rune. Since the Builder knows the runes of
every block, the Builder is able to locally compute an assignment from runes to
locations. It can then collaborate with the Holders to securely route the blocks
to their correct locations. It is important for the Holders not to be able to tell
how the blocks were permuted. It is therefore necessary to re-mask them. All
masks are achieved information-theoretically using one-time pads (OTPs). The
Builder picks the random OTPs each time a block is masked.

We periodically combine multiple OHTables into a single OHTable. Once
there are b OHTables of a given size, the contents of all of these OHTables
are extracted and then are built into a single new OHTable. We refer to the
OHTables as being arranged in levels. The first, or top, level, L0, contains the
cache. The next level, L1, contains OHTables that were built by extracting the
contents of the cache. We label these tables T1,1, . . . , T1,b. Since the cache is of
capacity c, each OHTable in L1 will also be of capacity c. L1 will contain at
most b such OHTables; when there are b such tables, they will be combined into

14

an OHTable of size bc which will be placed in L2, and so on. Note that, once
the bth OHTable in a level is built, it is immediately combined with all other
OHTables in that level to construct an OHTable in the next level. Therefore,
during queries there are only at most b− 1 tables at any level. Since each level’s
capacity is b times larger than that of the level before it, a total of Θ(logb(n/c))
levels will be needed to store the blocks created by n queries. After n queries,
the refresh occurs, the contents of all OHTables and the cache are extracted,
and the active blocks are rebuilt into a single, large OHTable of size n, as at the
start of the protocol. The Rebuild protocol is presented in Figure 1, together
with the overall DORAM ReadWrite function and the Write function.

6.3 Reads and Refreshes

The question remains as to how the function Read([x]) can be implemented
efficiently. Firstly, we reveal the rune of x to the Holders, let it be called r. This
greatly simplifies the problem. It is known that the block is stored either in the
cache, or in location Hk(r) of some table Ti,j , for some i ∈ [1, ℓ], j ∈ [1, b−1], k ∈
[1, h]. This reduces the number of possible locations to c+ ℓ(b− 1)h.

These locations constitute the array for the SSPIR; the protocol now needs
to obtain secret-shares of the desired item’s location in this array. P0 knows, for
each rune and each time, the location at which each item is stored. However,
r cannot be revealed to P0 during a read, since P0 knows when the index with
rune r was last accessed, which would allow P0 to link access times of indices.
In short, the Builder knows the location of each rune, but there seems no way
to make use of this without leaking information about the current rune being
queried.

Recall that in the description of the DORAM write protocol, P0 gets to pick
the rune. P0 should pick the runes such that each rune is unique, but apart from
this runes are chosen uniformly at random from [1, 2n]. Therefore, the choice of
runes does not depend on any other activity in the protocol. Hence, P0 is able
to pick all of the runes at the beginning of the protocol. In other words, P0 can
pre-choose the runes that it will assign at each point in time, and during the
protocol can assign runes consistently with this original assignment.

Observe, further, that P0 builds the OHTables based solely on the hash func-
tions and the runes. Since these are both known at the start of the protocol, P0

can also pre-calculate all assignments in all hash tables at the beginning of the
protocol. This allows P0 to locally create a position schedule, that is a data-
structure storing exactly where each rune will be located at each point in time.

This allows us to sidestep the conundrum described above. The Builder can
secret-share the position schedule containing all information about the locations
of all of the runes, once, at the start of the protocol. The Holders can then access
the relevant parts of the position schedule dynamically as they learn the rune
of each queried block. Note that this location is the location among all of the
possible locations that the block may have been located based on the rune (up
to c cache locations, and up to ℓ(b− 1)h table locations).

15

16 Brett Hemenway Falk Daniel Noble Rafail Ostrovsky

DORAM: ReadWrite Write Rebuild

Parameters:

– Cache size: c = b · h
– Tables per level: b (Configurable parameter)
– Number of levels: ℓ = ⌈logb(n/c)⌉
– Number of hash functions: h (Configurable parameter)
– Hash functions: H1, . . . , Hh

DORAM.ReadWrite([x], [y], f):

1. [v] =Read([x]) (Defined in Figure 4)
2. [vnew] = f([v], [y])
3. Write([x], [vnew])
4. Rebuild() (Performs rebuilds, if needed)
5. t = t+ 1 (Counter indicating the number of queries)
6. Return [v]

Write([x], [vnew]):

1. P0 picks a new, unused, rune r from [1, 2n]
2. j = t mod c
3. P0 picks a OTP, e from {0, 1}d, to mask the block.
4. [Cj](1,2) = [vnew]⊕ [e]
5. For future rebuilds and refreshes, the secret-shared vnew, r and x are stored

in a matrix:
[V0,j] = [vnew]
[R0,j]0 = [r]
[X0,j] = [x]

Rebuild():

1. for i ∈ [0, ℓ− 1]:
(a) if t = 0 mod bic (i.e. Li is full):

i. u = (t/(bic)) mod bi+1c (the number of tables in Li+1).
ii. for j ∈ [1, bic]:

A. [Ri+1,ubic+j]0 = [Ri,j]0
B. [Vi+1,ubic+j] = [Vi,j]
C. [Xi+1,ubic+j] = [Xi,j]
D. Delete [Ri,j]0, [Vi,j] and [Xi,j].
E. P0 picks a new OTP, Ei+1,ubic+j from {0, 1}d.
F. [Zi+1,ubic+j] = [Vi+1,ubic+j]⊕ [Ei+1,ubic+j]

iii. P0 locally builds an OHTable using Ri,1...bic, and hash functions
H1, . . . , Hk. Let [Q]0 be the injective mapping from [bic] to [2(1+ϵ)bic]
that maps Ri,1...bic to satisfying locations with these hash functions.

iv. Use this mapping to build an OHTable containing the newly masked
blocks:
[Ti+1,u](1,2) = FRoute([Zi+1,ubic+1...(u+1)bic], [Q]0)

(b) if (t = n) Refresh()

Fig. 1. DORAM protocol overview, write function and rebuild function

Given secret-shares of the location of the block, the protocol now engages in
a secret-shared PIR (SSPIR) to obtain a secret-sharing of the block. SSPIR can
be implemented using a simple modification of any 2-party PIR protocol. The
SSPIR protocols we use are explained in more detail in appendix A.

This allows us to obtain secret-sharings of the masked value, but how can
this be unmasked? P0 knows which rune is masked using which OTP, but this
information somehow needs to be accessed without revealing to P0 which rune
is being queried. This is the same problem we had with the location mapping,
and it can be solved using the same solution! Since the Builder gets to pick the
OTPs, he can pre-determine, at the initialization of the protocol, which OTPs
it will use. He can then secret-share the OTPs that will be used for all runes
at all points in time. Recall that each time a block is moved, it will be masked
using a new OTP. Therefore, P0 will secret-share a mask schedule, analogous to
the position schedule, that contains the OTP used to mask each block at each
point in time, and which can be accessed dynamically during reads to unmask
blocks. This allows us to obtain a secret-sharing of the queried value, performing
a read. The read protocol is presented formally in Figure 4.

Although we say above that the Builder will pre-determine all runes, lo-
cations and masks at the initialization of the protocol, in fact they will only
pre-determine these for the first n queries so that the position schedule and
mask schedule are not too large. The protocol will therefore have 2n runes (n
initial index runes, and n which are assigned during the queries). The Builder
only predetermines the assignment of runes and movement of blocks, for the
next n queries, and therefore only creates and shares schedules for locations and
masks over n points in time. After n queries, the DORAM is refreshed and the
Builder generates new runes, position schedules and mask schedules for the next
n queries. We stress that the Builder pre-determines the mapping from runes
to access times and does not pre-determine the mapping from runes to indices.
The mapping from access times to indices (and therefore runes to indices) is only
determined during the execution of the DORAM as queries occur.

We now describe the method for refreshing in more detail. The refresh can be
divided into two parts. First, the contents of the up-to-date memory is extracted.
This is achieved by randomly permuting all blocks and revealing their runes to
the Holders. The Holders know which runes have been queried, so can identify
these blocks as obsolete, leaving only the blocks which contain the most recently
written value for each index. The extract protocol returns a secret-shared array
of the current memory; that is using the same format as that provided for the
Init function. The refresh protocol then simply call the Init function using this
secret-shared array to create all of the data-structures necessary for a further n
queries. The Extract functionality is useful in its own right, and may be called
by the environment at an arbitrary time (i.e. when there have been fewer than n
queries since the last refresh). The Refresh and Extract protocols are presented
formally in Figure 3, while the Init protocol is presented in Figure 2.

17

DORAM: Init

Init(n, d, [V]):

1. P0 creates a random permutation which determines the assignment of runes,
[M]0 : [1, 2n]→ [1, 2n]

2. Assign the first n of these to be the original runes for the indices. Initialize
a new sub-DORAM containing these runes (with adjacent pairs appended
together into a single entry).
(a) for i ∈ [1, n], [Ri]0 = [Mi]0
(b) for i ∈ [1, n/2], [Bi] = [M2i−1]0||[M2i]0
(c) subDORAM = FDORAM .Init(n

2
, 2(lg(n) + 1), [B])

3. P0 locally builds all the OHTables for the next n queries, based on its knowl-
edge of the runes involved, and the hash functions.
If there is no satisfying assignment for one of the OHTables, P0 tells P1 and
P2 to abort the protocol.
Otherwise, P0 can determine where each rune’s block will be when, and it
creates the position schedule which consists of these three matrices:
– [Si,r]0 contains the time rune r’s block starts to be in its ith position.
– [Fi,r]0 contains the time rune r’s block finishes to be its ith position.
– [Pi,r]0 contains the ith position of rune r’s block.

4. P0 creates a mask-schedule. Note that the times will be the same as the posi-
tion schedule. Therefore all that is needed is one addition matrix containing
the OTPs:
[Ei,r]0 contains the OTP used to mask rune r’s block when it is in its ith

position.
5. P0 XOR secret-shares the position schedule and mask schedule between P1

and P2: [S]1,2, [F]1,2, [P]1,2, [E]1,2.
6. P0 provides the masks to the blocks, based on his previous selection: [Ei]0 =

[E0,r]0 for Mi = r.
7. Based on the Builder’s previous assignment of the initial locations of the

initial runes, he sets [Q]0 to be the injection from [1, n] to [1, 2(1 + ϵ)n] that
builds the initial table.

8. The parties create the OHTable containing the initial items, and P1 and P2

store the masked blocks:
[Tℓ+1](1,2) ← FRoute([V]⊕ [E]0, [Q]0)

9. The runes, values and indices of the initial items are stored for future reference.
That is, for i ∈ [1, n]: [Rℓ+1,i]0 = [Ri]0
[Vℓ+1,i] = [Vi]
[Xℓ+1,i] = [i]

10. Initialize the query counter: t = 1.

Fig. 2. DORAM: Init functionality

18

DORAM: Extract and Refresh

[V]← Extract():

1. Concatenate all (non-deleted) R, V and X into a single secret-shared array.
This will contain all runes that have been used thus far, the index they cor-
responded to, and the value that was assigned to that index at the time that
the rune was assigned:
[R] = [R0]0||[R1]0 . . . ||[Rℓ+1]0, [V] = [V0]||[V1] . . . [Vℓ+1], [X] =
[X0]||[X1] . . . [Xℓ+1]

2. Let m (where n ≤ m ≤ 2n) be the length of these arrays.
3. P1 picks a random permutation S : [1,m] → [1,m]. Let all items be securely

routed according to [S]1:
[R] = FRoute([R], [S]1), [V] = FRoute([V], [S]1), [X] = FRoute([X], [S]1)

4. P2 similarly picks a random permutation, U : [1,m]→ [1,m] which is used to
permute all items:
[R] = FRoute([R], [U]2), [V] = FRoute([V], [U]2), [X] = FRoute([X], [U]2)

5. The values R are revealed to P1 and P2. Note that R will contain a random
subset of m items from [1, 2n]: [R](1,2) ← [R].

6. P1 and P2 identify all runes which have already been revealed to them. The
locations of these items in the permuted arrays are made public, and the items
are deleted:
For i ∈ [1,m], Ii = 0 if [Ri](1,2) ∈ [D](1,2), else 1
If Ii = 0, delete [Xi] and [Vi] (and re-assign indices).

7. Reveal [X] to all parties. (This will contain all indices in [1, n] in a random
order.) Sort [V] locally according to [X].

8. Return [V].
9. Delete all variables and the subDORAM.

Refresh():

1. [V]← Extract()
2. Init(n, d, [V])

Fig. 3. Extract and Refresh functionalities

19

DORAM: Read

Read([x]):

1. Access the subDORAM to learn the rune of x. Note that indices are stored in
the subDORAM in pairs, so the subDORAM will return a share of both x’s
rune and a share of x’s neighbor’s rune. The protocol reveals (only) x’s rune
to P1 and P2. Also, in order to access the subDORAM only once per query,
the protocol takes the opportunity to use this access to also write the new
rune that is being assigned to x.
(a) Let [xln(n)] be the least significant bit of [x] (i.e. if x is odd it is 1, otherwise

0).
(b) Set [xsig] to be the lg(n)−1 most significant bits of [x], (i.e. drop the last

bit).
(c) P0 supplies the new rune [rnew]0 which will be assigned to x when it is

re-written.
(d) We define f to overwrite x with its new rune, while leaving x’s neigh-

bor as is. Formally f(v, y), v ∈ {0, 1}2(lgn+1), y ∈ {0, 1}lg(n)+2 is
defined such that if y0 = 0 (which will happen when x is even)
f(v, y) = v1,...,lg(n)+1||y1,...,lg(n)+1 (the second half of the value is over-
written with the remaining bits of y) and if y0 = 1 (x is odd), f(v, y) =
y1,...,lg(n)+1||vlg(n)+2,...,2 lg(n)+1 (the first half is overwritten).

(e) [v]← subDORAM.ReadWrite([xsig], [xln(n)]||[rnew], f).
(f) If [y0] = 1, securely set [rold] to be the first half of [v], otherwise securely

set it to be the second half of [v].
(g) Reveal x’s (old) rune to P1 and P2: [r](1,2) ← [rold].
(h) Append [r](1,2) to [D](1,2), the set of runes which P1 and P2 have already

observed.
2. P1 and P2 create an array Y containing all of the (masked) blocks which may

hold rune r’s block:
(a) [Y1,...,c](1,2) contains the blocks from the cache. These are padded to

length c with empty blocks if the cache is not full.
(b) For i ∈ [1, ℓ+ 1], u ∈ [1, b− 1], k ∈ [1, h], set [Yc+(i−1)bh+(u−1)h+k](1,2) ←

[Ti,u,Hk([r](1,2))
](1,2). This is, the Hk([r])

th location in table Ti,u. If table
Ti,u does not exist, set location to an empty block.

3. Securely determine which time-slot is being used. That is, for j ∈ [0, ℓ+ 1]:
(a) Set [Sj]← [Sj,[r](1,2)

]1,2 ≥ t

(b) Set [Fj]← [Fj,[r](1,2)
]1,2 < t

(c) Set [Jj]1,2 ← [Sj] ∧ [Fj]
4. Securely select the correct location and OTP from the position and mask

schedules:
(a) For j ∈ [0, ℓ+ 1], [Pj]← [Pj,[r](1,2)

]1,2
(b) For j ∈ [0, ℓ+ 1], [Ej]← [Ej,[r](1,2)

]1,2
(c) For j ∈ [0, ℓ+ 1], securely set [p] to [Pj] if [Jj] = 1
(d) For j ∈ [0, ℓ+ 1], securely set [e] to [Ej] if [Jj] = 1

5. [v]← FBalancedSSPIR(c+ ℓ(b− 1)h, d, [Y](1,2), [p])⊕ [e]
6. Return [v]

Fig. 4. DORAM read protocol

20

6.4 Security Analysis

In this section, we show how to instantiate the MetaDORAM protocol so as
to achieve statistical security (MetaDORAM1) and perfect security (MetaDO-
RAM2). Our main result is the following:

Theorem 1. Let H1, . . . ,Hh satisfy the property that for all i ∈ [0, l], for m =
cbi and for all subsets M of size m of [1, 2n], there exists an assignment a1, . . . , am ∈
[1, h]m such that Hai

(Mi) mod 2(1+ ϵ)m are distinct. In this case, the MetaDO-
RAM protocol, as presented in Figures 1, 2, 3 and 4 is perfectly secure in the
FABB, FSSPIR, FRoute-hybrid model.

Proof. All steps of the protocol are one of three cases. Either:

– A secure functionality is being accessed, that only outputs secret-shared
results. This can either be a basic ABB functionality, like ⊕, or a more
sophisticated functionality like SSPIR.

– The operations are on public, predetermined values (e.g. t, u).
– Some value is revealed to some party, or subset of the parties.

We need to examine all revealed values and examine whether they can be
simulated without knowledge of the private inputs.
Init: No information is revealed to P0, rather all private variables it holds are
the result of its own random choices (the runes and OTPs) and public parame-
ters (the hash functions).

In the case that H1, . . . ,Hh have satisfying assignments for all subsets of size
m of [1, 2n], then P0 will never abort. Therefore, the only information P1 and P2

learn during the Init function are the values Tℓ+1. All of these blocks have been
masked by fresh OTPs, so this is simulatable by generating a uniformly random
string.
Read: No information is revealed to P0.
P1 and P2 learn the rune queried. The runes are distributed uniformly at random
from [1, 2n], subject to the fact that they are each unique
Write: No information is revealed to P0.
P1 and P2 learn Cj . This has been masked using a fresh OTP, so can be simulated
by generating a random string.
Rebuild: No information is revealed to P0.
P1 and P2 learn Ti,u. This contains blocks which have been masked under fresh
OTPs, so can be simulated by generating random strings.
Extract: P0 learns X. This will contain the items [1, n] in a randomly permuted
order. This can be seen by induction. The protocol maintains the invariant that
at each point in time, each index x has a single rune assigned to it which has
not been observed by P1 and P2. In other words, there is a single rune Ri,j ,
such that Xi,j = x and Ri,j /∈ D. Therefore, when the indices corresponding to
viewed runes are deleted, a single instance of each index will remain. They will be
in a random order because they have been shuffled according to a permutation

21

known to no parties.
P0 also learns I. This contains n 1s and m − n 0s in a random order, for the
reasons explained above.
P1 and P2 additionally learn R. This contains a subset of m runes from [1, 2n]. It
will necessarily include all m− n runes from D, since these runes are definitely
stored in the system. The other n runes are distributed uniformly at random
from the set of the remaining 2n− (m− n) runes, so are efficiently simulatable.
The ordering must be consistent with I, that is the m − n previously observed
runes must have Ii = 0.

Therefore, the views of all parties are perfectly simulatable, so the protocol
is secure in the semi-honest setting against an adversary that corrupts any one
of the parties.

In the case that H1, . . . ,Hh are such that there is no satisfying assignment
for some subset of [1, 2n] of some size m = cbi, then there is some small leakage.
In the case that this subset is chosen, this leads to an abort, so does not leak
any information. However, if such a subset is not chosen, P1 and P2 learn that
such a subset was not chosen. Since P1 and P2 learn the rune of items when
they are accessed, they can therefore conclude that certain access patterns were
impossible, as they would have led to tables that were unconstructable. Note that
this type of leakage can occur even if the probability of P0 actually choosing a
rune assignment that would lead to an abort is negligible: P1 and P2 could learn
of some access pattern which for certain did not occur.

We present two solutions to this problem. MetaDORAM1 selects ω(1) log(n)
hash functions at random, for any super-constant function ω(1). We show that,
except with negligible probability in n, this results in a choice of hash functions
which have a satisfying assignment for all subsets of size m of [1, 2n], for all
m = cbi. This results in a protocol which has a negligible probability of any
leakage, and is therefore statistically secure.

In MetaDORAM2, the protocol instead selects Θ(log(n)) hash functions at
random and manually verifies that this choice of hash functions result in a satisfy-
ing assignment for all subsets of size m of [1, 2n], for all m = cbi. The verification
stage requires an exponential time setup phase (which need only be done once
for any value n). This allows for a perfectly secure protocol.

We prove both protocols secure by making use of Yeo’s analysis of Robust
Cuckoo Hashing [57]. Yeo was concerned with an adversary that could pick the
indices of items in a hash table, and attempted to pick these such that would
cause a build failure, given the predetermined hash functions. His analysis works
in general for determining the probability that, given a large set of elements there
exists some subset of these that would result in a build failure. Specifically, from
his proof of Lemma 3 we can derive the following:

Lemma 1 (Derived from proof of [57] Lemma 3). For some m ≤ 2n,
let C be a disjoint-table cuckoo hash table with αm locations (α ≥ 1), and h
hash random hash functions H1, . . . ,Hh. Furthermore, each location in C is of
capacity l = 1 and C does not have a stash (s = 0). Then all subsets of [1, 2n]

22

of size m can be successfully built by C, except with probability:

ϵ ≤
(

2n

2h−3

)h+1

Note that this probability does not depend on m, except for requiring that
m ≤ 2n. For h = lg(n) + 5, this simplifies to(

1

2

)lg(n)+6

=
1

64n

For any h = ω(log(n)) this is negligible in n.

MetaDORAM1 For MetaDORAM1, we set h = lg1.5(n)/ lg(lg(n)) = ω(log(n)).
We select h independent random hash functions. By Lemma 1, this means that
the failure probability is negligible in n. Note that this gives the failure probabil-
ity for a given m, but as there are fewer than n such values of m to consider (even
given the recursive implementation of the sub-ORAM) the probability that there
is anym for which a subset of sizem could not have a satisying assignment is also
negligible. Therefore MetaDORAM1 is perfectly secure, except in the case of an
event (poorly chosen hash functions) which occurs with probability negligible in
n. This leads to our desired result:

Corollary 1. MetaDORAM1 is a statistically secure implementation of func-
tionality FDORAM in the FABB, FSSPIR, FRoute-hybrid model.

Note that the subDORAMs, even though they have smaller sizes, they should
use the same parameter h as the top level, so that the failure probability remains
negligible in the size of the top DORAM, n.

MetaDORAM2 For MetaDORAM2, we set h = lg(n) + 5. This means that
the choice of hash functions satisfies all subsets of a given size m with probability
1

64n . Therefore, it also satisfies all subsets for all m ≤ n except with probability
at most 1

64 . The protocol selects a random H1, . . . ,Hh and then attempts to
build the hash tables using all subsets of [1, 2n] of size m, for all h ≤ m ≤ n. If
any subset does not have a satisfying assignment, new random hash functions are
selected and the process is repeated. If all subsets have a satisfying assignment,
these hash functions are used for the protocol.

Unfortunately, iterating over all subsets of [1, 2n] of sizem requires
(
2n
m

)
itera-

tions. Further iterating over all m ∈ [h, n] results in nearly 22n−1 iterations. This
exponential-time setup phase makes the protocol infeasible for practical appli-
cations. Nevertheless, it does not affect the communication cost of the protocol,
nor does it undermine its perfect security.

By thus choosing the hash functions, the condition of Theorem 1 is satisfied:

Corollary 2. MetaDORAM2 is a perfectly secure implementation of function-
ality FDORAM in the FABB, FSSPIR, FRoute-hybrid model.

23

6.5 Complexity Analysis

In this section, we analyze the amortized communication complexity per access
of MetaDORAM1 and MetaDORAM2.

Theorem 2. The amortized per access communication complexity of MetaDO-
RAM1 is Θ(logb(n)d+ bω(1) log(n)+ log3(n)/ log(log(n))), where b ≥ 2 is a free
parameter and ω(1) is any super-constant function.

Theorem 3. The amortized per access communication complexit of MetaDO-
RAM2 is Θ(logb(n)d+ bω(1) log(n)+ log3(n)/ log(log(n))), where b ≥ 2 is a free
parameter.

Proof. The only place in which the communication costs of MetaDORAM1 and
MetaDORAM2 differ is in the SSPIR. Since MetaDORAM1 uses slightly more
hash functions, the size of the array for the SSPIR is larger, resulting in a slightly
higher communication cost. In general the complexity analysis will be common
to both protocols; in the places these differ we state so clearly.

We assume that the cost of FBalancedSSPIR is Θ(m/q+qd) for any q ∈ [1,m]
and the cost of FRoute is Θ(q(d + lg(q)) as instantiated in appendices A and B
respectively. We make the standard assumption that d = Ω(log(n)), that is each
item contains at least the number of bits required to store its index.

First we analyze the parts of the protocol that have the same cost per-
access: reads and writes. We initially analyze only the first level of the recursion.
We analyze the number of bits of communication by section, using the same
enumeration as the protocols.
Read:

1. The rune of the index is accessed and a new rune written. Apart from the
call to the subDORAM, which will be analyzed later, this involves only
operations on runes, each of which requires at most Θ(log(n)) AND gates,
or revealing Θ(log(n)) bits, so Θ(log(n)) communication.

2. The Holders arrange the blocks which may hold the rune’s block. This re-
quires only local operations and no communication.

3. The time slot is obtained. This requires Θ(ℓ) = Θ(logb(n)) comparisons of
Θ(log(n))-bit values, which requires Θ(log(n) logb(n)) communication.

4. The correct position and mask is obtained. This requires Θ(ℓ) = Θ(logb(n))
secure if-then-else statements on Θ(log(n))-bit and Θ(d)-bit values for the
positions and masks respectively. The total is thereforeΘ((log(n)+d) logb(n)) =
Θ(logb(n)d) communication.

5. Finally the SSPIR is executed. The number of locations is c + ℓ(b − 1)h,
where l = logb(n) and c = bh. For MetaDORAM1, we set h = ω(1) log(n),
so the total number of locations is Θ(logb(n)bω(1) log(n)) for some arbi-
trary super-constant function ω(1). We choose parameter q = logb(n) as the
SSPIR balancing parameter, resulting in a cost of Θ(bω(1) log(n)+logb(n)d).
For MetaDORAM2, h = log(n), so the total number of locations isΘ(logb(n)b log(n)).
Again we choose q = logb(n) as the SSPIR balancing parameter, which re-
sults in a cost of Θ(b log(n) + logb(n)d).

24

Therefore the total communication cost of a read, excluding the call to the
subDORAM, is Θ(logb(n)d+ bω(1) log(n)) for MetaDORAM1 and Θ(logb(n)d+
b log(n)) for MetaDORAM2.
Write:

1. The first 3 steps are either local to P0, or on public values, so require no
communication

2. The masked block is created, which requires Θ(d) communication
3. The final steps consist only of re-labelling variables and operations on public

values, so require no communication.

Therefore the communication cost of the write is Θ(d).
We next analyze the communication cost of the Rebuild function (excluding

the refresh function). The communication cost of this function is variable, so we
calculate the average cost per access.
Rebuild:
A level of capacity m is rebuilt every m accesses. Most steps are simply rela-
belling of variables, which require no communication. The steps that require
communication are:

– The Builder secret-shares the new OTP for each item, which costs Θ(md).
– The Routing protocol, which requires Θ(m(d+ log(n)) = Θ(md) communi-

cation.

Therefore, the amortized cost per access per level is Θ(d). Since there are
Θ(logb(n)) levels, the total communication cost per access is Θ(logb(n)d).
Extract:

1. Concatenating the arrays requires only local relabelling of variables, except
for the runes which are reshared from P0 to being shared by all parties, at
communication cost Θ(n lg(n)).

2. Setting m is a local operation.
3. m = Θ(n) elements are routed, each of size Θ(log(n) + d) = Θ(d) resulting

in Θ(nd) communication.
4. The same occurs again, resulting in Θ(nd) communication.
5. Revealing all runes to Holders requires Θ(n log(n)) communication.
6. Holders reveal m = Θ(n) bits, hence Θ(n) communication.
7. Revealing all (permuted) indices requires Θ(n log(n)) communication.
8. The last 2 steps are local operations.

Since this occurs every n accesses, the cost is Θ(d) communication per access.
Init:

1. The rune assignment is local, so has no communication.
2. The cost of initializing the subDORAM will be evaluated as part of the cost

of recursion.
3. Creating the position schedule is a local operation
4. Creating the mask schedule is a local operation

25

5. The position schedule has Θ(n) columns (for the runes), Θ(ℓ) = Θ(logb(n))
rows (for the levels) and has O(log(n)) bits per cell, for both the timestamp
representations and the position representations. Each cell of the mask sched-
ule is Θ(d) bits. Therefore the total cost of secret-sharing the position and
mask schedules is Θ((log n+ d)n logb(n)) = Θ(logb(n)dn) communication.

6. Selecting the pre-chosen OTPs is a local operation.

7. Assigning the mapping to build the OHTable is a local operation.

8. Secret-sharing the mask, and routing the blocks requires a total ofΘ((log(n)+
d)n) = Θ(nd) communication.

9. The last step is a local relabelling.

Therefore, the total cost of Init, excluding the cost of initializing the subDORAM
is Θ(logb(n)dn), which amortizes to Θ(logb(n)d) per access.

Summing these up, we obtain that the cost at the first level of the recursion
is Θ(logb(n)d+bω(1) log(n)) for MetaDORAM1 and is Θ(logb(n)d+b log(n)) for
MetaDORAM2. In the first level of the recursion, the block size d can be arbi-
trary. However, for the recursively implemented subDORAM, the block size is al-
ways Θ(log(n)). Therefore, each level of the recursion has cost O(logb(n) log(n)+
bω(1) log(n)) (in both MetaDORAM1 and MetaDORAM2). Setting b = log0.5(n)
and setting ω(1) = log0.5(n)/ log(log(n)) we obtain that the cost per level is
Θ(log2(n)/ log(log(n))) (again in both MetaDORAMs). Since there are lg(n) re-
cursions necessary to implement the subDORAM, the total communication cost
per access of the subDORAM is Θ(log3(n)/ log(log(n))).

This completes the proof of theorems 2 and 3.

Other Performance Metrics. While our focus is amortized total communi-
cation per query, for completeness we also provide below the performance of
our protocol by other metrics. The total memory required by the protocol is
Θ(logb(n)dn): this is dominated by the size of the mask matrix which must be
held in memory by P1 and P2. The round-complexity is dominated by the cost
of evaluating inequality tests (in step 3 of Read) which uses a circuit with
AND-depth Θ(log(log(n))) and therefore needs Θ(log(log(n))) rounds. This is
done sequentially in all Θ(log(n)) recursions of the subDORAM, leading to a
total round complexity per query of Θ(log(n) log(log(n))). The computation
cost depends on the hash function implementation, and in most cases would
be dominated by the evaluation of ℓh = Θ(log2.5(n)/ log2(log(n))) hash func-
tions per recursion level, or a total of Θ(log3.5(n)/ log2(log(n))) hash function
evaluations per query. The computation cost of the setup phase for MetaDO-
RAM2 in theory amortizes to o(1) after sufficiently many memory accesses, but
in practice would become the bottleneck except for tiny n. The protocols access
c+ℓ(b−1)h = O(logb(n)bω(1) log(n)) memory locations of size d in the top level,
and Θ(log3(n)/ log2(log(n)) memory locations of size Θ(log(n)) in each of the
recursive levels, resulting in a total of O(logb(n)bω(1)d + log5(n)/ log2(log(n)))
bits of memory accessed per query.

26

7 Future Work

It is well established that a passive ORAM must incur a Ω(log(n)) overhead
in the amount of memory accessed [26, 36, 34], even when there are multiple
servers [37, 34]. Abraham et al [1] previously showed that statistically-secure
DORAMs and multi-server active ORAMs were possible with sub-logarithmic
communication overhead. In this work we show that this is also true in the case
of perfect security. This therefore begs the question: What are the communica-
tion lower bounds in general for active multi-server ORAMs and DORAMs with
information-theoretic security? Note that Abraham et al also presented a lower
bound of Ω(loga(n)) PIR operations to a multi-server ORAM when the model
allows for PIR (reads and writes) on arrays of size a. By using standard PIR
protocols, this allows for active multi-server ORAMs with sub-lograthmic com-
munication overhead. However, there may be techniques other than PIR that
can make use of server computation to reduce communication overhead.

Another open question pertains to deamortization. The communication costs
of the MetaDORAM protocols are amortized. In particular, the cost of rebuilding
the OHTables, and refreshing the namespace is amortized across multiple queries.
There are existing techniques for deamortizing the cost of building OHTables [43,
5], but it seems more challenging to deamortize the cost of refreshing, in partic-
ular the cost of refreshing the namespace for runes by reassigning runes to all
indices. Do DORAMs exist with worst-case communication costs that are equal
to the amortized communication cost as MetaDORAM1 and MetaDORAM2?

The expensive setup phase of MetaDORAM2 is a barrier to practical usage.
However, this does not seem inherent. The problem of finding suitable hash func-
tions is identical to that of constructing a highly unbalanced bipartite expander
(see for instance [28, 32]). Specifically, the protocol needs a bipartite expander
containing 2n left vertices, Θ(m) right vertices and left-degree Θ(log(n)), which
has expansion of 1 for all sets of size m. While we can generate a random graph
that satisfies this property with high probability [57], perfect security requires
an efficient explicit construction. Is there an efficient explicit construction of
(2n,Θ(m), Θ(log(n))- bipartite graphs that have (m, 1) expansion?

Every DORAM can be used to implement a multi-server active ORAM:
the client in the multi-server ORAM can simply secret-share the query be-
tween the servers. So our construction implies that Θ(logb(n)d + b log(n) +
log3(n)/ log(log(n))) communication can be achieved, without computational as-
sumptions. An interesting final open question raised by this work is whether this
is possible for a single-server active ORAM. Due to existing lower bounds, such
an ORAM would need to access at least a logarithmic overhead in memory and
therefore perform a logarithmic overhead of computation, but this computation
could, perhaps, avoid the introduction of computational assumptions. Is it possi-
ble to have a single-server active ORAM that has sub-logarithmic communication
overhead, but is information-theoretically secure?

27

Acknowledgements

This research was supported in part by DARPA under Cooperative Agreement
HR0011-20-2-0025, the Algorand Centers of Excellence programme managed
by Algorand Foundation, NSF grants CNS-2246355, CCF-2220450 and CNS-
2001096, US-Israel BSF grant 2022370, Amazon Faculty Award, Cisco Research
Award, Sunday Group, ONR grant (N00014-15-1-2750) “SynCrypt: Automated
Synthesis of Cryptographic Constructions” and a gift from Ripple Labs, Inc.
Daniel Noble would also like to acknowledge God for supporting him in this re-
search. Any views, opinions, findings, conclusions or recommendations contained
herein are those of the author(s) and should not be interpreted as necessarily
representing the official policies, either expressed or implied, of DARPA, the
Department of Defense, the Algorand Foundation, or the U.S. Government. The
U.S. Government is authorized to reproduce and distribute reprints for govern-
mental purposes, notwithstanding any copyright annotation therein.

References

1. Abraham, I., Fletcher, C.W., Nayak, K., Pinkas, B., Ren, L.: Asymptotically tight
bounds for composing ORAM with PIR. In: IACR International Workshop on
Public Key Cryptography. pp. 91–120. Springer (2017)

2. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-
honest secure three-party computation with an honest majority. In: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security.
pp. 805–817 (2016)

3. Araki, T., Furukawa, J., Ohara, K., Pinkas, B., Rosemarin, H., Tsuchida, H.: Secure
graph analysis at scale. In: Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security. pp. 610–629 (2021)

4. Asharov, G., Komargodski, I., Lin, W.K., Nayak, K., Peserico, E., Shi, E.: Op-
tORAMa: optimal oblivious RAM. In: Advances in Cryptology–EUROCRYPT
2020: 39th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Zagreb, Croatia, May 10–14, 2020, Proceedings, Part
II 30. pp. 403–432. Springer (2020)

5. Asharov, G., Komargodski, I., Lin, W.K., Shi, E.: Oblivious ram with worst-case
logarithmic overhead. Journal of Cryptology 36(2), 7 (2023)

6. Asharov, G., Komargodski, I., Michelson, Y.: Futorama: A concretely efficient hi-
erarchical oblivious ram. In: Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security. pp. 3313–3327 (2023)

7. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for noncrypto-
graphic fault-tolerant distributed computations. In: Proceedings of the 20th Annual
Symposium on the Theory of Computing (STOC’88). pp. 1–10 (1988)

8. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A framework for fast privacy-
preserving computations. In: Computer Security-ESORICS 2008: 13th European
Symposium on Research in Computer Security, Málaga, Spain, October 6-8, 2008.
Proceedings 13. pp. 192–206. Springer (2008)

9. Bunn, P., Katz, J., Kushilevitz, E., Ostrovsky, R.: Efficient 3-party distributed
ORAM. In: Security and Cryptography for Networks: 12th International Confer-
ence, SCN 2020, Amalfi, Italy, September 14–16, 2020, Proceedings 12. pp. 215–232.
Springer (2020)

28

10. Chan, T.H.H., Guo, Y., Lin, W.K., Shi, E.: Oblivious hashing revisited, and
applications to asymptotically efficient ORAM and OPRAM. In: Advances in
Cryptology–ASIACRYPT 2017: 23rd International Conference on the Theory and
Applications of Cryptology and Information Security, Hong Kong, China, Decem-
ber 3-7, 2017, Proceedings, Part I 23. pp. 660–690. Springer (2017)

11. Chan, T.H.H., Katz, J., Nayak, K., Polychroniadou, A., Shi, E.: More is less:
Perfectly secure oblivious algorithms in the multi-server setting. In: Advances in
Cryptology–ASIACRYPT 2018: 24th International Conference on the Theory and
Application of Cryptology and Information Security, Brisbane, QLD, Australia,
December 2–6, 2018, Proceedings, Part III 24. pp. 158–188. Springer (2018)

12. Chen, H., Chillotti, I., Ren, L.: Onion ring oram: Efficient constant bandwidth
oblivious ram from (leveled) tfhe. In: Proceedings of the 2019 ACM SIGSAC Con-
ference on Computer and Communications Security. pp. 345–360 (2019)

13. Costan, V., Devadas, S.: Intel SGX explained. Cryptology ePrint Archive (2016)
14. Cramer, R., Damg̊ard, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing

and applications to secure computation. In: Theory of Cryptography: Second The-
ory of Cryptography Conference, TCC 2005, Cambridge, MA, USA, February 10-
12, 2005. Proceedings 2. pp. 342–362. Springer (2005)

15. Damg̊ard, I., Nielsen, J.B.: Universally composable efficient multiparty computa-
tion from threshold homomorphic encryption. In: Annual international cryptology
conference. pp. 247–264. Springer (2003)

16. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Annual Cryptology Conference. pp. 643–
662. Springer (2012)

17. Devadas, S., van Dijk, M., Fletcher, C.W., Ren, L., Shi, E., Wichs, D.: Onion
oram: A constant bandwidth blowup oblivious ram. In: Theory of Cryptography:
13th International Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016,
Proceedings, Part II 13. pp. 145–174. Springer (2016)

18. Doerner, J., Kondi, Y., Lee, E., shelat, A.: Threshold ecdsa from ecdsa assumptions:
The multiparty case. In: 2019 IEEE Symposium on Security and Privacy (SP). pp.
1051–1066. IEEE (2019)

19. Faber, S., Jarecki, S., Kentros, S., Wei, B.: Three-party ORAM for secure compu-
tation. In: International Conference on the Theory and Application of Cryptology
and Information Security. pp. 360–385. Springer (2015)

20. Falk, B., Noble, D., Ostrovsky, R., Shtepel, M., Zhang, J.: Doram revisited: Mali-
ciously secure ram-mpc with logarithmic overhead. In: TCC (2023)

21. Falk, B.H., Noble, D., Ostrovsky, R.: 3-party distributed ORAM from oblivious
set membership. In: International Conference on Security and Cryptography for
Networks. pp. 437–461. Springer (2022)

22. Furukawa, J., Lindell, Y., Nof, A., Weinstein, O.: High-throughput secure three-
party computation for malicious adversaries and an honest majority. In: Annual in-
ternational conference on the theory and applications of cryptographic techniques.
pp. 225–255. Springer (2017)

23. Gentry, C., Goldman, K.A., Halevi, S., Julta, C., Raykova, M., Wichs, D.: Optimiz-
ing ORAM and using it efficiently for secure computation. In: Privacy Enhancing
Technologies: 13th International Symposium, PETS 2013, Bloomington, IN, USA,
July 10-12, 2013. Proceedings 13. pp. 1–18. Springer (2013)

24. Goldreich, O.: Towards a theory of software protection and simulation by oblivious
RAMs. In: Proceedings of the nineteenth annual ACM symposium on Theory of
computing. pp. 182–194 (1987)

29

25. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game, or a
completeness theorem for protocols with honest majority. In: Providing Sound
Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali,
pp. 307–328 (2019)

26. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. Journal of the ACM (JACM) 43(3), 431–473 (1996)

27. Goodrich, M.T., Mitzenmacher, M.: Privacy-preserving access of outsourced data
via oblivious RAM simulation. In: International Colloquium on Automata, Lan-
guages, and Programming. pp. 576–587. Springer (2011)

28. Guruswami, V., Umans, C., Vadhan, S.: Unbalanced expanders and randomness
extractors from parvaresh–vardy codes. Journal of the ACM (JACM) 56(4), 1–34
(2009)

29. Ichikawa, A., Komargodski, I., Hamada, K., Kikuchi, R., Ikarashi, D.: 3-party
secure computation for rams: Optimal and concretely efficient (2023)

30. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Annual International Cryptology Conference. pp. 145–161. Springer
(2003)

31. Jarecki, S., Wei, B.: 3PC ORAM with low latency, low bandwidth, and fast batch
retrieval. In: Applied Cryptography and Network Security: 16th International Con-
ference, ACNS 2018, Leuven, Belgium, July 2-4, 2018, Proceedings 16. pp. 360–378.
Springer (2018)

32. Kalev, I., Ta-Shma, A.: Unbalanced expanders from multiplicity codes. In: Ap-
proximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques (APPROX/RANDOM 2022). Schloss Dagstuhl–Leibniz-Zentrum für
Informatik (2022)

33. Knott, B., Venkataraman, S., Hannun, A., Sengupta, S., Ibrahim, M., van der
Maaten, L.: Crypten: Secure multi-party computation meets machine learning.
Advances in Neural Information Processing Systems 34, 4961–4973 (2021)

34. Komargodski, I., Lin, W.K.: A logarithmic lower bound for oblivious ram (for
all parameters). In: Advances in Cryptology–CRYPTO 2021: 41st Annual Interna-
tional Cryptology Conference, CRYPTO 2021, Virtual Event, August 16–20, 2021,
Proceedings, Part IV 41. pp. 579–609. Springer (2021)

35. Kushilevitz, E., Lu, S., Ostrovsky, R.: On the (in) security of hash-based oblivious
RAM and a new balancing scheme. In: SODA (2012)

36. Larsen, K.G., Nielsen, J.B.: Yes, there is an oblivious RAM lower bound! In: Annual
International Cryptology Conference. pp. 523–542. Springer (2018)

37. Larsen, K.G., Simkin, M., Yeo, K.: Lower bounds for multi-server oblivious RAMs.
In: Theory of Cryptography: 18th International Conference, TCC 2020, Durham,
NC, USA, November 16–19, 2020, Proceedings, Part I 18. pp. 486–503. Springer
(2020)

38. Laur, S., Willemson, J., Zhang, B.: Round-efficient oblivious database manipu-
lation. In: Information Security: 14th International Conference, ISC 2011, Xi’an,
China, October 26-29, 2011. Proceedings 14. pp. 262–277. Springer (2011)

39. Lindell, Y.: How to simulate it–a tutorial on the simulation proof technique. Tutori-
als on the Foundations of Cryptography: Dedicated to Oded Goldreich pp. 277–346
(2017)

40. Lu, S., Ostrovsky, R.: Distributed oblivious RAM for secure two-party computa-
tion. In: Theory of Cryptography Conference. pp. 377–396. Springer (2013)

41. Mohassel, P., Rindal, P., Rosulek, M.: Fast database joins and psi for secret shared
data. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security. pp. 1271–1287 (2020)

30

42. Ostrovsky, R.: Efficient computation on oblivious RAMs. In: Proceedings of the
twenty-second annual ACM symposium on Theory of computing. pp. 514–523
(1990)

43. Ostrovsky, R., Shoup, V.: Private information storage (extended abstract). In:
Leighton, F.T., Shor, P.W. (eds.) Proceedings of the Twenty-Ninth Annual
ACM Symposium on the Theory of Computing, El Paso, Texas, USA, May
4-6, 1997. pp. 294–303. ACM (1997). https://doi.org/10.1145/258533.258606,
https://doi.org/10.1145/258533.258606

44. Patel, S., Persiano, G., Raykova, M., Yeo, K.: PanORAMa: Oblivious RAM with
logarithmic overhead. In: 2018 IEEE 59th Annual Symposium on Foundations of
Computer Science (FOCS). pp. 871–882. IEEE (2018)

45. Patel, S., Persiano, G., Yeo, K.: Recursive orams with practical constructions.
Cryptology ePrint Archive (2017)

46. Persiano, G., Yeo, K.: Limits of breach-resistant and snapshot-oblivious rams. In:
Annual International Cryptology Conference. pp. 161–196. Springer (2023)

47. Pinkas, B., Reinman, T.: Oblivious RAM revisited. In: Advances in Cryptology–
CRYPTO 2010: 30th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 15-19, 2010. Proceedings 30. pp. 502–519. Springer (2010)

48. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: Spot-light: lightweight private set
intersection from sparse ot extension. In: Advances in Cryptology–CRYPTO 2019:
39th Annual International Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 18–22, 2019, Proceedings, Part III 39. pp. 401–431. Springer (2019)

49. Ren, L., Fletcher, C.W., Kwon, A., Stefanov, E., Shi, E., van Dijk, M., Devadas,
S.: Ring oram: Closing the gap between small and large client storage oblivious
ram. IACR Cryptol. ePrint Arch. 2014, 997 (2014)

50. Shi, E., Chan, T.H.H., Stefanov, E., Li, M.: Oblivious RAM with o((logn)3) worst-
case cost. In: Advances in Cryptology–ASIACRYPT 2011: 17th International Con-
ference on the Theory and Application of Cryptology and Information Security,
Seoul, South Korea, December 4-8, 2011. Proceedings 17. pp. 197–214. Springer
(2011)

51. Stefanov, E., van Dijk, M., Shi, E., Chan, T.H.H., Fletcher, C., Ren, L., Yu, X.,
Devadas, S.: Path ORAM: an extremely simple oblivious RAM protocol. Journal
of the ACM (JACM) 65(4), 1–26 (2018)

52. Stefanov, E., Shi, E., Song, D.: Towards practical oblivious ram. arXiv preprint
arXiv:1106.3652 (2011)

53. Vadapalli, A., Henry, R., Goldberg, I.: DuORAM: A bandwidth-efficient dis-
tributed ORAM for 2-and 3-party computation. In: 32nd USENIX Security Sym-
posium (2023)

54. Wang, X., Chan, H., Shi, E.: Circuit ORAM: On tightness of the Goldreich-
Ostrovsky lower bound. In: Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security. pp. 850–861 (2015)

55. Williams, P., Sion, R.: Single round access privacy on outsourced storage. In: Pro-
ceedings of the 2012 ACM conference on Computer and communications security.
pp. 293–304 (2012)

56. Yao, A.: Protocols for secure computations (extended abstract). In: FOCS (1982).
https://doi.org/10.1109/SFCS.1982.88, http://dx.doi.org/10.1109/SFCS.1982.88

57. Yeo, K.: Cuckoo hashing in cryptography: Optimal parameters, robustness and
applications. arXiv preprint arXiv:2306.11220 (2023)

31

Appendix

A Secret-Shared Private Information Retrieval

This section presents a simple protocol for secret-shared Private Information
Retrieval that is suitable for our use-case.

In general Private Information Retrieval protocols are designed for the case
that a single bit is to be retrieved. However in our protocols we need to retrieve
d bits, which all occur in a single location in memory. We therefore use the
following “näıve” PIR protocol. Let x be the secret location, and m the length
of the memory, that is 1 ≤ x ≤ m. The secret location is represented using a
m-bit array, which is 0 everywhere except for the xth bit, which is 1. This array is
secret-shared between the two parties, who can locally compute a dot-product of
this string with their memory, to obtain a secret-sharing of the desired element.
While this PIR protocol has a query of length m, a single query can be used
regardless of the bit-length d. That is the same query string is used for all d bits
of the data. The cost is therefore Θ(m+ d).

The above protocol assumes that there is a PIR client who can safely learn
the location x. It is possible to apply a transformation to obtain a secret-shared
PIR protocol. This technique was used, for instance, in the “Data-Rotations”
of [19]. The PIR servers (P1 and P2) are given a location mask x2, and locally
permute their array according to this mask, such that each item is moved from
location i to location i ⊕ x2. The PIR client (P0) then searches for a location
x1 = x⊕x2. This will clearly hold the index that was at location x. The security
of the PIR protocol hides the query from the PIR servers. The client only receives
x1 which is a uniform random value.

The protocol is presented in full in figure 5.

32

SSPIR

UnbalancedSSPIR(m, d, [A](1,2), [x])

1. Convert [x] to a XOR sharing in which P0 holds one share and P1 and P2

both hold the other share:
[x]0,(1,2) = (⟨x1⟩0, ⟨x2⟩1, ⟨x2⟩2)← [x]

2. P0 creates a bit-array, Q, of length m such that Qi = 1 for i = x1 and is 0
elsewhere.

3. P0 XOR-shares this array between P1 and P2: [Q]1,2 ← [Q]0
4. P1 and P2 permute this array according to x2, that is they create an array

[W]1,2 such that Wi = Qi⊕x2 .
5. P1 and P2 compute [v]1,2 = ⊕m

i=1[Ai](1,2)[Wi]1,2. Note that the Ai are public
to P1 and P2, so the multiplication is simply multiplication of a secret by a
public value, which is a local operation.

6. Return [v]

BalancedSSPIR(m, d, q, [A](1,2), [x])

1. Modify the memory from containing m blocks of length d bits, to containing
m/q blocks of length dq. Let [B](1,2) be the updated memory, that is Bi =
Aqi|| . . . ||Aqi+q−1

2. Let [x] be split into its upper-order lg(m) − lg(q) bits, labelled [y] and its
lowest-order ln(q) bits, labelled [z].

3. Call the main SSPIR protocol to obtain the secret-shared yth large block:
[u]← UnbalancedSSPIR(m/q, dq, [B](1,2), [y]).

4. Inside of a secure computation, access the zth small block in this big block:
for i ∈ [1, q] if i = [z], [v] = [uid...id+i−1].

5. Return [v].

Fig. 5. Implementation of SSPIR

The SSPIR protocol (figure 5) is secure. P0 receives only x0 which is a uniform
random value. P1 and P2 receive only shares of Q, which are uniform random
bit arrays. The protocol is deterministic and secure.

The protocol presented above has communication cost Θ(m + d). For some
situations this is sufficient. However, when m = ω(d) it is possible to increase
the size of data-blocks to achieve improved complexity, effectively “balancing”
the m and d terms. We do this by increasing the block size from d to qd, for
some balancing factor q > 1, where q is a power of 2.

We present the balanced PIR protocol in the second part of figure 5. All
operations are inside of a secure computation, so the protocol is secure. The
cost of the call to the main SSPIR protocol is Θ(m/q + dq). Additionally, there
is a cost of Θ(qd) to securely select the relevant small block. The total cost is
therefore Θ(m/q + dq).

33

B Secure Routing

We here present an implementation of a secure 3-party routing protocol. That
is, there is some secret-shared array A of length m and one party knows an
injective mapping Q from [1,m] to [1, q], (where q ≥ m). The items are moved
to a new secret-shared array B such that Ai is moved to some location Bj where
j = Q(i). See section 5 for a formal definition of the functionality. Variants of
this protocol have occurred before, for instance as the protocol ΠSWITCH in
[41]. We include the protocol here for clarity and completeness. The protocol is
presented in figure 6, and is analyzed below.

Security: P0, knowing a desired permutation, secret-shares this permutation
between P1 and P2, providing them permutation shares R and S respectively.
Each of these permutation-shares is distributed as a uniformly random permuta-
tion, and leaks no information about the true permutation Q. Apart from that,
parties only receive secret-shares, which are distributed uniformly at random.

Complexity: Communicating the permutations requires Θ(q lg(q)) commu-
nication. There are a constant number of resharings of arrays, each of which
contains q elements of size d bits, resulting in Θ(qd) communication. The total
communication cost is therefore Θ((d+ log(q))q).

Routing

Route([A], [Q]0, d):

1. Pad [A] to length q (if q > m) with random values: for i ∈ [1,m], [Bi] = [Ai]
for i ∈ [m+ 1, q], [Bi]← {0, 1}d.

2. P0 picks permutations R and S which are chosen uniformly at random subject
to R · S = Q (over domain [1,m] and is an arbitrary permutation elsewhere).
P0 sends S to P1 and sends R to P2:
[S](0,1) ← [S]0
[R](0,2) ← [R]0

3. Reshare B to P0 and P1: [B]0,1 ← [B]
4. P0 and P1 locally permute [B]0,1 according to [S](0,1) to obtain [C]0,1.
5. Reshare C to P0 and P2: [C]0,2 ← [C]0,1
6. P0 and P2 locally permute [C]0,2 according to [R](0,2) to obtain [D](0,2)
7. Return [D]

Fig. 6. Secure Routing protocol

34

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

