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Abstract

We introduce the entangled quantum polynomial hierarchy QEPH as the class of problems
that are efficiently verifiable given alternating quantum proofs that may be entangled with each
other. We prove QEPH collapses to its second level. In fact, we show that a polynomial number
of alternations collapses to just two. As a consequence, QEPH = QRG(1), the class of problems
having one-turn quantum refereed games, which is known to be contained in PSPACE. This is
in contrast to the unentangled quantum polynomial hierarchy QPH, which contains QMA(2).

We also introduce a generalization of the quantum-classical polynomial hierarchy QCPH
where the provers send probability distributions over strings (instead of strings) and denote it
by DistributionQCPH. Conceptually, this class is intermediate between QCPH and QPH. We
prove DistributionQCPH = QCPH, suggesting that only quantum superposition (not classical
probability) increases the computational power of these hierarchies. To prove this equality, we
generalize a game-theoretic result of Lipton and Young (1994) which says that the provers can
send distributions that are uniform over a polynomial-size support. We also prove the analogous
result for the polynomial hierarchy, i.e., DistributionPH = PH. These results also rule out certain
approaches for showing QPH collapses.

Finally, we show that PH and QCPH are contained in QPH, resolving an open question of
Gharibian et al. (2022).

1 Introduction

The polynomial hierarchy [MS72, Sto76] is a hierarchy of complexity classes that are known to
equal P if and only if P = NP. The hierarchy, denoted by PH, is a natural generalization of efficient
proof verification and nondeterminism and plays a central role in complexity theory. Given its
significance, it is natural to explore quantum generalizations of PH, yet such generalizations remain
understudied.

Before discussing quantum polynomial hierarchies, let us first informally define PH. Intuitively,
PH is a hierarchy of complexity classes that can solve progressively harder problems, extending
beyond both NP and coNP. One can think of PH as a public debate between Alice and Bob, who
take turns presenting polynomial-sized proofs (bit strings) to a referee. At the end of the debate, the
referee takes the proofs, performs a polynomial-time classical computation, and decides a winner.

More formally, a problem is in the k-th level of the polynomial hierarchy Σp
k if there is a

deterministic polynomial-time verifier M (the referee) that takes proofs y1, . . . , yk and satisfies the
following conditions. On yes-instances, ∃y1∀y2∃y3 . . . such that M(y1, . . . , yk) = 1, and, on no-
instances, ∀y1∃y2∀y3 . . . such that M(y1, . . . , yk) = 0. PH is comprised of every level Σp

k for all
natural numbers k, and it is strongly believed that PH is infinite.
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Gharibian, Santha, Sikora, Sundaram, and Yirka [GSS+22] studied two quantum generalizations
of PH. They generalized the class QCMA to the quantum-classical polynomial hierarchy QCPH,
the class of problems for which a quantum verifier can efficiently verify solutions given a constant
number of classical proofs from competing provers. Note that this is the same as PH except the
verifier can perform a polynomial-time quantum computation. In the same work, they generalized
the class QMA(2) to the unentangled quantum polynomial hierarchy QPH, for which the verifier
is still quantum, but the proofs are quantum mixed states and promised to be unentangled from
each other. Notably, Gharibian et al. did not introduce a hierarchy in which the proofs can be
entangled, and they did not establish a relationship between QPH and QCPH (or even QPH and
PH), leaving it unclear whether or not QPH was at least as powerful as its classical counterpart.1

More generally, if QCPH and QPH are indeed more powerful, it prompts the question of why: is it
quantum verification, quantum proofs, unentanglement, or some nuanced combination?

In this work, we address all of these questions related to quantum generalizations of the poly-
nomial hierarchy. First, we ask (and answer) what problems admit a PH-style protocol where the
provers can send potentially entangled proofs. We show that this new hierarchy—the entangled
quantum polynomial hierarchy (QEPH)—behaves drastically differently from what we believe about
PH, QCPH, and QPH.

Second, we prove that PH ⊆ QCPH ⊆ QPH, confirming the intuitive relationship between these
hierarchies.

Lastly, to understand the power of quantum proofs, we introduce a generalization of QCPH
where the provers send probability distributions over classical proofs and denote the class by
DistributionQCPH. We prove that DistributionQCPH = QCPH, despite the intuition from game
theory that mixed strategies are helpful. Note that the only difference between DistributionQCPH
and QPH is that the proofs in QPH involve quantum superposition. Hence, our result establishes
that the increased computational power of QPH comes only from the quantum superposition in the
proofs.

1.1 Our Results

Our first main result is a characterization of our newly defined hierarchy QEPH (Definition 3.2) via
a collapse to its second level. This collapse is in stark contrast to our belief that PH is infinite.

Theorem 1.1 (Combination of Lemma 4.1 and Theorem 4.2). QEPH collapses to its second level
and equals QRG(1).

This collapse is similar to others known in quantum complexity theory, such as QIP = QIP(3) =
QMAM [KW00, MW05], in which the protocols rely on the prover’s ability to entangle their mes-
sages. We further compare QEPH to other complexity classes involving entangled proofs in Related
and Concurrent Work.

We show that QEPH equals QRG(1), the class of problems having one-turn quantum-refereed
games.2 QRG(1) involves a game between two competing players that each privately sends a quan-
tum state to a referee, who then performs a polynomial-time quantum computation to determine a
winner. In 2009, Jain and Watrous [JW09] proved QRG(1) ⊆ PSPACE. However, it is conjectured
that QRG(1) is strictly less powerful than QRG(2) = PSPACE [GW13, GW23]. Yet despite effort, no

1While these containments are what one might guess to be true, proving them is nontrivial.
2The class QRG(k) and its classical analogue RG(k) have been numbered differently by different authors. We

follow recent conventions where the provers’ and the referee’s messages are counted separately. So, e.g., in QRG(2)
the referee sends one message and then the provers each simultaneously send a message.
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improved upper bounds on QRG(1) have been proven in over a decade. We suggest a new approach
to improving the upper bound on QRG(1) (via the connection to QEPH) in Open Problems.

Our collapse result is stronger than stated above. It is well-known that if one extends PH to
a polynomial number of rounds (rather than a constant number), then the resulting class equals
PSPACE [AB09, Theorem 4.11]. In contrast, we show that extending QEPH to a polynomial number
of rounds does not increase the power of the class.

Theorem 1.2 (Informal version of Corollary 4.3). Even with a polynomial number of rounds, QEPH
collapses to its second level.

One interpretation of our collapse result is that allowing provers to entangle their proofs gives
them too much opportunity to cheat. Hence, receiving a single proof from each prover is just as
useful as receiving many entangled proofs.

Before this work, it was unclear how the quantum polynomial hierarchies compared to one
another, and if QPH even contained PH. In our second result, we establish the following contain-
ments between the quantum and classical hierarchies, resolving an open question of Gharibian et
al. [GSS+22].

Theorem 1.3 (Restatement of Theorem 5.1). PH ⊆ QCPH ⊆ QPH.

We emphasize that even PH ⊆ QPH is not obvious. Placing restrictions on the provers can
sometimes increase computational power, as was the case in, e.g., the recent results showing that
QMA+ = QMA(2)+ = NEXP [JW23, BFM23]. Meanwhile, the permissiveness of QEPH, where we
allow the provers to entangle their proofs, seems to yield a weaker class than QPH.

In our third result, we show that the power of QCPH does not change if the provers are allowed
to send probability distributions (instead of a fixed classical proof).

Theorem 1.4 (Restatement of Corollary 6.5). DistributionQCPH = QCPH.

Our motivation for studying DistributionQCPH is to better understand the power of quantum
proofs. In particular, let pureQPH be the same as QPH except the quantum proofs are pure states
rather than mixed states.3 Then the only difference between pureQPH and DistributionQCPH is
that the former involves proofs that are quantum superpositions over bit strings while the latter
involves proofs that are classical distributions over bit strings. Yet DistributionQCPH = QCPH is
in the counting hierarchy [GSS+22], and pureQPH contains QMA(2) and is contained in EXPPP

[AGKR]. Conceptually, our result says that any increase in computational power only comes from
the quantum superposition in the proofs.

Theorem 1.4 also goes through for PH.

Theorem 1.5 (Restatement of Theorem 6.1). DistributionPH = PH.

An easy consequence of our result is that DistributionPH collapses if and only if PH collapses.4

Therefore, any attempts to collapse QCPH, QPH, or pureQPH must not collapse DistributionPH,
and so Theorem 1.5 rules out some approaches to collapsing these hierarchies. In particular, one
line of attack to showing QMA(2) = NEXP is to show that the ∀ quantifier in QΣ3 does not add
any computational power, because QMA(2) ⊆ QΣ3 ⊆ NEXP [GSS+22]. Theorems 1.4 and 1.5 are

3It is easy to see that QPH ⊆ pureQPH since the provers can send purifications of their mixed proofs.
4DistributionC is not to be confused with the notation DistC, which has been used in average-case complexity

theory, e.g. DistNP and DistPH. Also, similar names like Stochastic SAT or Probabilistic QBF have appeared
in the study of randomized quantifiers. These are more similar to the Arthur-Merlin (AM) hierarchy.
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evidence that this line of attack won’t work, since showing the analogous result for DistributionPH
would collapse the polynomial hierarchy.

We give a graphical description of our results and the quantum polynomial hierarchy landscape
in Fig. 1.
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Figure 1: (Color) The quantum polynomial hierarchy landscape in light of our work. The con-
tainments and complexity classes shown in grey were previously known, and the containments and
complexity classes in red are contributions of this work.

1.2 Main Ideas

Let us begin by explaining QEPH on an intuitive level (see Definition 3.2 for a formal definition).
QEPH can be thought of as a constant-round non-interactive game between two competing provers,
Alice and Bob, who take turns sending quantum registers, i.e., collections of qubits, to a verifier.
Alice and Bob are allowed to entangle their own quantum registers across turns. The verifier
then performs a polynomial-time quantum computation, measures a fixed output qubit in the
computational basis, and, if the verifier sees 1, they accept (Alice wins), and reject otherwise (Bob
wins). QEPH contains the decision problems for which Alice always wins with high probability on
yes-instances and Bob always wins with high probability on no-instances. We note that in this
game the moves are public, which means that Alice knows the state of the quantum registers sent
by Bob and vice versa. See Remark 3.4 for further discussion of public vs. private moves in a
quantum world.

To highlight the key technique in our proof that QEPH collapses (Lemma 4.1), we explain how
to simulate the third level of QEPH, denoted by QEΣ3, inside of the second level QEΣ2. The proof
for higher levels proceeds by induction. As we will explain formally in Section 3, a QEΣi protocol
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can be written as an optimization problem with a value equal to the probability the verifier accepts
when both players use optimal strategies. In particular, Alice selects proofs that maximize the
probability of the verifier accepting, while Bob selects proofs to minimize that probability. For
QEΣ3, given a problem instance in which the verifier’s action is encoded by an observable R, the
corresponding optimization problem is

max
ρ1∈D(X1)

min
σ∈D(Y)

max
ρ2∈A

tr (R (ρ2 ⊗ σ)) ,

where D(H) denotes the set of density operators on the Hilbert space H and A := {ρ ∈ D(X1⊗X2) |
trX2(ρ) = ρ1}. The restriction of the second maximization to the set A is to enforce that Alice’s
second move is consistent with her first.

A straightforward analysis shows that when focusing on the inner two operators, a min-max
theorem applies, allowing us to swap the ordering of the inner minimization and maximization.
Then, because we allow entangled states, we can combine the two sequential maximization operators
into one, leaving an optimization problem corresponding to a two-round protocol. Notably, both
the three-round and two-round protocols are over the same input and verifier, so the reduction does
not increase the problem size or change the error parameters.

It is natural to ask why our technique does not also collapse PH. In short, the above approach
fails immediately, since, for one, our collapse theorem relies on the fact that Alice and Bob are
choosing quantum proofs from compact and convex sets (see Facts 2.3 and 2.4). In contrast, the
set of classical strings is neither compact nor convex.

To show that QEPH = QRG(1), we build on a previous characterization of Gharibian et al.
[GSS+22] where they showed that the second level of the unentangled quantum polynomial, denoted
by QΣ2, equals QRG(1). We extend their result in Proposition 3.3 to show that QEΣ2 = QΣ2 =
QRG(1), which yields our characterization that QEPH = QEΣ2 = QRG(1). QEΣ2 = QΣ2 because,
after two turns, each prover has only sent a single proof, so there’s no distinction yet to be made
between the entangled versus entangled hierarchies.

We now turn to the containment QCPH ⊆ QPH, which are both defined formally in Section 2.3.
In QCPH, the verifier receives classical proofs, whereas the proofs in QPH are unentangled quantum
mixed states. One näıve approach to simulating QCPH inside of QPH—which does not work—is
for the verifier to immediately measure the quantum proofs to get classical strings and then run
the QCPH verification protocol. The reason this fails is that the dishonest prover (i.e., the player
without a winning strategy) can cheat by sending a quantum state, rather than a classical proof.
In more detail, while the honest prover has perfect knowledge of the quantum states sent by the
dishonest prover, they do not know which particular classical strings the verifier will observe upon
measurement, making it unclear what their response should be. The definition of QCPH guarantees
the correct player has an effective response conditioned on any particular proof sent from the other
player, but this does not generally guarantee the correct player can succeed against a mixture of
potential moves. Unfortunately, the equilibrium point of a zero-sum game which allows for such
mixed moves will generally be mixed, rather than pure.

To overcome this, we simulate the i-th level of QCPH in the 2ki-th level of QPH, for some
constant k. We ask the provers to send k copies of each of the proofs they would send in the QCPH
protocol, which increases the number of turns by a factor of 2k. Using the groups of k proofs, we
give a simple test to ensure that no player cheats, which works as follows. Measure each of the k
proofs in the standard basis. If the outcomes are all equal, then the test passes, and, otherwise,
the test fails. We prove that this is enough to force the provers to send computational basis states
with high probability.
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We remark that this bears some similarity to other protocols involving unentanglement. Har-
row and Montanaro [HM13] used unentanglement to force Merlin to send k-partite states, and,
recently, Jeronimo and Wu [JW23] use unentanglement to force Merlin to send many copies of
(approximately) the same quantum state. Both of these results fundamentally rely on the swap
test, which tests for equality between two quantum states [BCWdW01]. In a similar fashion, we
use unentanglement to force the provers to send standard basis states, i.e., classical strings. With
that, we design a simulation of any QCPH protocol inside of QPH.

Finally, we discuss our proof that DistributionQCPH = QCPH (the same techniques will also
show DistributionPH = PH). In DistributionQCPH, the provers send probability distributions over
polynomial-length classical proofs. For classical proofs of length m, these distributions can have
a support of size exponential in m. The key lemma for this result says that the provers can send
much simpler distributions without changing the acceptance probability of the verifier too much. In
particular, we prove that the distributions sent by the provers can be uniform over poly(m) many
classical proofs and, even with this simplification, the acceptance probability of the verifier will
change by at most a small constant. This simplification lemma (Lemma 6.4) generalizes a result
due to Lipton and Young [LY94] and Althöfer [Alt94], where they showed that such a simplification
works in the special case of a one-turn two-player game. Our contribution is to generalize their
result to the case where the two players alternate sending distributions any constant number of
times.

With the simplification lemma, one can prove DistributionQCPH ⊆ QCPH as follows. To send
a distribution in QCPH, the provers send every classical string that is in the support of their
distribution. By our simplification lemma, there are only a polynomial number of such strings, so all
of them can be sent in a polynomially-sized classical proof. Then, since the simplified distributions
are uniform, the verifier can randomly sample one of the strings uniformly at random. The other
direction DistributionQCPH ⊇ QCPH follows from the same techniques that prove QCPH ⊆ QPH.

1.3 Related and Concurrent Work

Early efforts to define quantum hierarchies include [Yam02, GK12].
We choose to use alternating ∃ and ∀ quantifiers to define QEPH (as was the case for QCPH

and QPH in [GSS+22]). In addition to a quantifier definition, PH can be equivalently defined in the

oracle model via constant-height towers of the form NPNPNP...

. The oracular definition gives rise to
natural definitions of quantum polynomial hierarchies, some of which have been studied recently.
Vinkhuijzen [Vin18] and Aaronson, Ingram, and Kretschmer [AIK22] study the “QMA hierarchy”,

QMAH, which consists of constant-depth towers of the form QMAQMAQMA...

.5 [Vin18, Theorem 5]
shows that QMAH is contained in the counting hierarchy CH, while the best upperbounds for the
quantifier-based hierarchies, QEPH and QPH, are PSPACE and EXPPP, respectively.

The method of showing equivalence between the quantifier-based and oracle-based definitions of
PH does not appear to carry over to QEPH, QPH, or even QCPH. This seems related to the inability
to “pull quantumness out of a quantum algorithm” as we can for randomness from randomized
algorithms [AIK22] as well as a lack of study of quantum oracle machines. We further discuss
questions regarding QMAH vs. QEPH in Open Problems.

There are several quantum complexity classes that involve provers sending possibly entangled
proofs to a quantum polynomial-time verifier. We do not attempt to survey them here, but,

5Vinkhuijzen only allows recursive queries to QMA, whereas Aaronson, Ingram, and Kretschmer allow recursive
queries to PromiseQMA.
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for convenience, we summarize quantum complexity classes involving entangled proofs (and their
classical counterparts) in Table 1.

Our work on DistributionPH builds on previous game-theoretic characterizations in complexity
theory (see e.g., [FKS95]). PH-style classes involve a debate with public communication (perfect
information), and a non-interacting, passive referee. RG-style classes involve private communication
(imperfect information) with provers sending particular strings to the referee (perfect recall). A
consequence of imperfect information is that the players must model their competitor’s moves as
probability distributions (mixed strategies) because they are never sure which move is made. Our
class DistributionPH fits into this framework in a nuanced way. Specifically, the distributions sent
are public (similar to PH); they represent a mixture of pure moves (similar to RG); but, uniquely,
the provers don’t know which string will be sampled by the referee (reminiscent of imperfect recall).
This is a novel game-theoretic model, and as we discuss further in Section 6, it is naturally motivated
by a game of quantum mixed states sent to a non-interacting referee.

Finally, the concurrent and independent work of Agarwal, Gharibian, Koppula, and Rudolph
[AGKR] also studies generalizations of the polynomial hierarchy. They prove QCPH ⊆ pureQPH,
which is similar to our Theorem 5.1 that QCPH ⊆ QPH. Since QPH ⊆ pureQPH is straightforward
(the provers send purifications of their proofs), our Theorem 5.1 implies QCPH ⊆ pureQPH. In this
sense, our containment is stronger. However, their containment has the nice (and nontrivial) feature
that the k-th level of QCPH is contained in the k-th level of pureQPH, whereas our containment
requires blowing up to the ck-th level of QPH for a constant integer c. Besides this, Agarwal et
al. contribute several more results including a theorem that if QCΣi = QCΠi then QCPH collapses
(see also [FGN23]); a Karp-Lipton style result that QCMA ⊆ BQP/mpoly implies QCPH collapses;
a new upper bound QPH ⊆ pureQPH ⊆ EXPPP, improving on the previous upper bound of EXPH;
and a method for one-sided error-reduction of pureQPH.

Table 1: Complexity classes characterizing proof verification that are related to QEPH. “C” means
classical and “Q” means quantum. For every class below, multiple provers are always competing,
and, for multi-round quantum protocols, the quantum proofs can be entangled across rounds.
Public means that the provers have full knowledge of their opponent’s previous turns.

# of # of Interaction Public or
Class Rounds Provers Proofs Verifier from referee? Private Equals

NP 1 1 C C no N/A
QMA 1 1 Q Q no N/A
IP poly 1 C C yes N/A PSPACE [Sha92]
QIP(3) 3 1 Q Q yes N/A PSPACE [JJUW11]

PH const 2 C C no pub.
QEPH const 2 Q Q no pub. QRG(1) [This Work]
RG(1) 1 2 C C no priv. S2P[Alt94, LY94]
RG(2) 2 2 C C yes priv. PSPACE [FK97]
RG poly 2 C C yes priv. EXP [FK97]
RG(pub) poly 2 C C yes pub. PSPACE [FK97]
QRG(1) 1 2 Q Q no priv.
QRG(2) 2 2 Q Q yes priv. PSPACE [GW13]
QRG poly 2 Q Q yes priv. EXP [GW07]
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2 Preliminaries

We introduce notation, definitions, and background that are central to our results. For the most
part, we assume familiarity with common concepts and classes in quantum and classical complexity
theory as well as quantum computing and quantum information. For a thorough discussion of these
topics, see [AB09, Wat18, KSV02, NC10].

We will need the following version of Hoeffding’s inequality.

Fact 2.1 (Hoeffding’s inequality). Let X1, . . . , Xn be independent random variables subject to ai ≤
Xi ≤ bi for all i. Let X =

∑n
i=1Xi and let µ = E[X]. Then it holds that

Pr[X − µ ≥ t] ≤ exp

(
− 2t2∑n

i=1(bi − ai)2

)
and

Pr[X − µ ≤ −t] ≤ exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

2.1 Quantum Information

A quantum register refers to a collection of qubits. Associated with each register is a complex Hilbert
space, and the state of a quantum register is described by a Hermitian, positive semi-definite matrix
with trace one called a density matrix. We denote the set of n-qubit density matrices by D(n),
and the sets of linear operators and density matrices on a complex Hilbert space H by L(H) and
D(H), respectively.

For two quantum registers (X,Y) with Hilbert spaces X and Y, the combined space is the tensor
product space X ⊗ Y. The partial trace trY : L(X ⊗ Y) → L(X ) is the unique linear map that
satisfies trY(A⊗ B) = tr(A)B for all A ∈ L(X ) and B ∈ L(Y). If the compound register (X,Y) is
in the state ρ ∈ D(X ⊗ Y), then the state of register X is trY(ρ) ∈ D(X ). That is, operationally
speaking, the partial trace is the act of ignoring (or discarding) a quantum register. We note that
the partial trace trX can be defined similarly, and, in general, the context in which the partial trace
is used should clarify which spaces are being “traced out”.

A quantum measurement of a quantum register is described by a finite collection of Hermitian,
positive semi-definite matrices that sum to identity. Let X be a quantum register with Hilbert space
X whose state is described by ρ. Let M = {Ei | i ∈ Σ} be a quantum measurement, where Σ is a
finite alphabet. Upon measuring X with M, we observe i ∈ Σ with probability tr(Eiρ).

2.2 A Min-Max Theorem

To prove our collapse theorem, we use a weaker version of Sion’s min-max theorem.

Theorem 2.2 (A weaker version of Sion’s min-max theorem [Sio58]). Let X and Y be complex
Euclidean spaces, let A ⊆ X and B ⊆ Y be convex and compact subsets, and let f : A× B → R be
a bilinear function. Then

max
a∈A

min
b∈B

f(a, b) = min
b∈B

max
a∈A

f(a, b).

It is a well-known fact that the space of density matrices is compact and convex.

Fact 2.3 ([Wat18, Chapter 1]). Let D(H) be the set of density matrices on a complex Hilbert space
H. D(H) is compact and convex.
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It is critical for us that, even if we impose partial trace constraints on the set of density matrices,
the set remains compact and convex. We include a proof for completeness.

Fact 2.4. Let X,Y be two quantum registers with Hilbert spaces X and Y, respectively, and let
D(X ⊗ Y) be the corresponding set of density operators. Let ρ′ ∈ D(X ) be some fixed density
matrix. Then the set

S = {ρ ∈ D(X ⊗ Y) | trY(ρ) = ρ′}

is compact and convex.

Proof. Let ρ1, ρ2 ∈ S, and define σ := θρ1 + (1− θ)ρ2 for for θ ∈ [0, 1]. Then

trY(σ) = trY(θρ1 + (1− θ)ρ2)

= θ trY(ρ1) + (1− θ) trY(ρ2) (By the linearity of the partial trace.)

= θρ′ + (1− θ)ρ′ (Because ρ1, ρ2 ∈ S.)

= ρ′,

so S is convex.
To show that S is compact, we must show that it is closed and bounded. Without loss of

generality, let X be an n-qubit register and Y be an m-qubit register. Then we can identify S with
the vector space C4n+m

and observe that all entries are bounded in magnitude by 1. Therefore,
S is bounded. To see that S is closed, we need the following definitions. For x ∈ C, define
fx : C4n+m → C as fx(A) = ⟨x,Ax⟩, which is continuous because the inner product is continuous;
define g : C4n+m → C4n+m

as g(A) = A−A†, which is a polynomial and therefore continuous; and,
finally, define h : C4n+m → C4n as h(A) = trY(A), which is a linear map on a finite-dimensional
vector space and therefore continuous. Then

S =
⋂
x∈C

f−1
x ([0,∞)) ∩ g−1({0}) ∩ h−1({ρ′}) ∩ tr−1({1}).

The preimage of a continuous function on a closed set is closed, and the intersection of closed sets
is closed. Therefore, S is closed.

2.3 Previously Studied Hierarchies

Here, we give formal definitions of the polynomial hierarchy PH, the quantum-classical polynomial
hierarchy QCPH, and the unentangled quantum polynomial hierarchy QPH, the latter two of which
were both introduced by Gharibian et al. [GSS+22]. These classes will appear again in Section 5
when we prove QCPH ⊆ QPH and in Section 6 when we prove DistributionQCPH = QCPH. We defer
definitions of our new classes until later, with QEPH studied in Section 4 and DistributionQCPH in
Section 6.

Definition 2.5 (Σp
i ). A language L is in the i-th level of the polynomial hierarchy Σp

i if there
exists a polynomial-time deterministic Turing Machine M such that for any n-bit input x,

x ∈ L ⇐⇒ ∃y1∀y2∃y3 . . . Qiyi such that M(x, y1, . . . , yi) = 1,

x ̸∈ L ⇐⇒ ∀y1∃y2∀y3 . . . Qiyi such that M(x, y1, . . . , yi) = 0,

where Qi denotes ∃ if i is odd and ∀ otherwise, Qi denotes the complement of Qi, and |yi| ≤ p(n)
for some fixed polynomial p for all i.
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Definition 2.6 (The polynomial hierarchy (PH) [Sto76]). The Polynomial-time Hierarchy is defined
as

PH :=
∞⋃
i=0

Σp
i .

Note the union which defines PH is over values of i which are constant, independent of a
problem’s input size. Observe also that for all i, Σp

i ⊆ Σp
i+1. Additionally, PH is closed under

complement, in particular because Σ
p
i ⊆ Σp

i+1 ⊆ PH. The complement of Σ
p
i is defined to be Πp

i ,
and for all i we have Σp

i ⊆ Πp
i+1 ⊆ Πp

i+2.
The definition of PH is particularly robust. The class can be defined equivalently by Σp

i+1 =

NPΣp
i , giving a constant-height tower of NP oracles. The model of alternating nondeterministic

Turing Machines also can be used to define each level of the hierarchy. In another direction, the
Sipser–Lautemann theorem shows BPP ⊆ Σp

2 ∩Πp
2 ⊆ PH [Sip83, Lau83]. So, natural bounded-error

or probabilistic definitions of PH collapse to the standard, deterministic definition given above.
This is also true for oracle definitions, where we know MAMA...

= PH.
Even a partial survey of results regarding PH would be impossible to fit here. We finally note

that Σp
i = Σp

i+1 or Σ
p
i = Πp

i would both “collapse” the hierarchy so that PH = Σp
i . These two events

are analogous to P = NP or NP = coNP. Conversely, if PH collapses to any finite level, it implies
analogs of P = NP and NP = coNP must be true for some degree of nondeterminism, at some level
of the hierarchy. So, the strongly-believed conjecture that PH is not equal to any Σp

i for fixed i is
a generalization of those other strongly-believed conjectures.

The uniform circuit model is standard for quantum complexity classes, so we give the definition
below.

Definition 2.7 (Polynomial-time uniform family of quantum circuits). A polynomial-time uniform
family of quantum circuits is a family {Vn}n∈N such that there exists a polynomial bounded function
t : N → N and a deterministic Turing machine M acting as follows. For every n-bit input x, M
outputs in time t(n) a description of a quantum circuit Vn, which has a designated output qubit.
We say Vn accepts when we observe a 1 upon measuring the designated output qubit in the standard
basis.

We generally leave the subscript implicit and just write V . Additionally, we often consider
a single problem instance defined by an input x for the full length of an analysis. So instead of
writing V (x, y) for input x and proof y, we simply refer to V (y).

As with most quantum complexity classes, we will be working with promise problems. Briefly, a
promise problem A is a pair of non-intersecting subsets (Ayes, Ano) of {0, 1}∗. A decision problem,
or language, is a promise problem where Ayes ∪Ano = {0, 1}∗.

We are now ready to define QCPH.

Definition 2.8 (QCΣi [GSS+22]). A promise problem L = (Lyes, Lno) is in i-th level of the
quantum-classical polynomial hierarchy QCΣi(c, s) for polynomial-time computable functions c, s :
N → [0, 1] if there exists a polynomial-time uniform family of quantum circuits {Vn}n∈N such that

for every n-bit input x, Vn takes in proofs y1, . . . , yi ⊆ {0, 1}m(n) for fixed polynomial m and
measures a fixed output qubit to decide to accept or reject, such that

• Completeness: x ∈ Lyes ⇒ ∃y1∀y2∃y3 . . . Qiyi such that Pr [V (y1, . . . , yi) accepts] ≥ c,

• Soundness: x ∈ Lno ⇒ ∀y1∃y2∀y3 . . . Qiyi such that Pr [V (y1, . . . , yi) accepts] ≤ s,
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where Qi denotes ∃ if i is odd and ∀ otherwise, Qi denotes the complement of Qi, and, for all i,
|yi| ≤ p(n) for a fixed polynomially bounded function p. When the completeness and soundness
parameters c, s are not specified, define

QCΣi :=
⋃

c−s∈Ω(1/ poly(n))

QCΣi(c, s).

Definition 2.9 (The quantum-classical polynomial hierarchy (QCPH) [GSS+22]). The quantum-
classical polynomial hierarchy is defined as

QCPH :=
∞⋃
i=0

QCΣi.

Observe that QCΣ0 = BQP and QCΣ1 = QCMA. Gharibian et al. [GSS+22] proved that QCPH

is contained in PPPPP
, the second level of the counting hierarchy CH.

The definition of QCΣi to generically include QCΣi(c, s) for all c− s ≥ 1/ poly(n) is justified in
part by the result of [GSS+22] that for any such c and s, we may reduce the error such that for
any polynomially bounded function r, we have QCΣi(c, s) = QCΣi(1− 2−r, 2−r).

The unentangled quantum polynomial hierarchy QPH is defined similarly. The only difference
is that the classical proofs are replaced by unentangled quantum proofs.

Definition 2.10 (QΣi [GSS+22]). A promise problem L = (Lyes, Lno) is in the i-th level of the
unentangled quantum polynomial hierarchy QΣi(c, s) for polynomial-time computable functions
c, s : N → [0, 1] if there exists a polynomial-time uniform family of quantum circuits {Vn}n∈N such
that for every n-bit input x, Vn takes in quantum proofs ρ1, . . . , ρi and measures a fixed output
qubit to decide to accept or reject, such that

• Completeness: x ∈ Lyes ⇒ ∃ρ1∀ρ2∃ρ3 . . . Qiρi such that Pr [V (ρ1, . . . , ρi) accepts] ≥ c,

• Soundness: x ∈ Lno ⇒ ∀ρ1∃ρ2∀ρ3 . . . Qiρi such that Pr [V (ρ1, . . . , ρi) accepts] ≤ s,

where Qi denotes ∃ if i is odd and ∀ otherwise, Qi denotes the complement of Qi, and, for all i,
ρi is a p(n)-qubit state for a fixed polynomially bounded function p. When the completeness and
soundness parameters c, s are not specified, define

QΣi :=
⋃

c−s∈Ω(1)

QΣi(c, s).

Definition 2.11 (QPH [GSS+22]). The unentangled quantum polynomial hierarchy is defined as

QPH :=
∞⋃
i=0

QΣi.

Interestingly, QMA(2) ⊆ QΣ3, since the verifier can simply ignore the second proof.
Here, we let QΣi = QΣi(c, s) for c − s ≥ Ω(1), rather than 1/ poly(n), because we do not

currently have an error reduction result for QPH similar to the one known for QCPH (although,
[AGKR] recently made progress in this direction).
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3 The Entangled Quantum Polynomial Hierarchy

We formally define the entangled quantum polynomial hierarchy. The definition appears more
technical than for QCPH and QPH, but this is mostly just an issue of notation.

Definition 3.1 (i-th level of the entangled quantum polynomial hierarchy (QEΣi)). A promise
problem L = (Lyes, Lno) is in QEΣi(c, s) for polynomial-time computable functions c, s : N → [0, 1]
if there exists a polynomial-time uniform family of quantum circuits {Vn}n∈N such that for every
n-bit input x, Vn takes quantum proofs, measures a fixed output qubit to decide to accept or reject,
and satisfies

• Completeness: x ∈ Lyes ⇒ ∃ρ1∀ρ2∃ρ3 . . . Qiρi such that Pr [V (ρi−1, ρi) accepts] ≥ c,

• Soundness: x ∈ Lno ⇒ ∀ρ1∃ρ2∀ρ3 . . . Qiρi such that Pr [V (ρi−1, ρi) accepts] ≤ s,

where each ρj is chosen from the set

Aj :=

{ {
ρ ∈ D (X1 ⊗X3 ⊗ · · · ⊗ Xj) | if j > 1, trXj (ρ) = ρj−2

}
if j is odd

{ρ ∈ D (X2 ⊗X4 ⊗ · · · ⊗ Xj) | if j > 2, trXi (ρ) = ρj−2} if j is even
.

Here, Qi denotes ∃ if i is odd and ∀ otherwise, and Qi denotes the complement of Qi. For all i, the
corresponding Hilbert space Xi is a space of at most p(n) qubits for a fixed polynomial p. When
the completeness/soundness parameters are not specified, define

QEΣi :=
⋃

c−s∈Ω(1/ poly(n))

QEΣi(c, s).

Definition 3.2 (The entangled quantum polynomial hierarchy (QEPH)). The entangled quantum
polynomial hierarchy is defined as

QEPH =
∞⋃
i=0

QEΣi.

When introducing a complexity class, perhaps the first question one should ask is whether or
not the choice of completeness and soundness parameters actually matter. In [GSS+22, Theorem
2.6], it was shown that QCPH is robust to the choice of error parameters, but no such result is
known for QPH. In Section 4, we show that the choice of parameters does not matter for any level
of QEPH, i.e., for c, s such that c − s ≥ 1/ poly(n), QEΣi(c, s) = QEΣi(

2
3 ,

1
3) for all i ∈ N (see

Theorem 4.4).
Let us also make several remarks on our definition. As for PH, the indices i in the definition of

QEPH are constants, independent of a problem’s input size, and, as one should expect, BQP = QEΣ0

and QMA = QEΣ1. One can also define QEΠi := Σ
qe
i and QE∆i := QEΣi ∩ QEΠi. The players also

have no incentive to entangle their moves with their opponent because QEΣi can be modeled as a
zero-sum game. Therefore, we may assume the even and odd indexed states are unentangled.

Informally, QEΣi can be thought of as the following game, where we assume i is even to simplify
the exposition. Alice has (possibly entangled) quantum registers (A1, . . . ,Ai/2), and Bob has (pos-
sibly entangled) quantum registers (B1, . . . ,Bi/2), where each register is a number of qubits that
is polynomial in the input size. The game commences as follows. In the first round, Alice reveals
the state ρ1 of A1, and then Bob reveals the state σ1 of B1. In the second round, Alice reveals
the state ρ2 of (A1,A2), and Bob reveals the state σ2 of (B1,B2). To ensure Alice and Bob do
not change their “moves” from previous rounds, we demand that trA2(ρ2) = ρ1 and trB2(σ2) = σ1.
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That is, Alice and Bob cannot modify the state of subsystems that have been revealed in previous
rounds. In general, for the i-th round, it must be that trAi

(ρi) = ρi−1 and trAi
(σi) = σi−1. The

game continues like this until the global states of (A1, . . . ,Ai/2) and (B1, . . . ,Bi/2) are known to
both players and the referee.

At this point, the referee must accept or reject. The referee’s action is determined by a
polynomial-time quantum circuit and a single-qubit measurement. This action can be equiva-
lently expressed as a two-outcome quantum measurement {R, I − R}, where the first observable
corresponds to accepting. Then, the probability the referee accepts is equal to tr

(
R
(
ρi/2 ⊗ σi/2

))
.

We emphasize that we do not intend to actually write the observable R corresponding to some
verification circuit V . Rather, the observable R is a convenient way to express the action of the
referee.

Alice’s goal is to maximize the acceptance probability, and Bob’s goal is to minimize the accep-
tance probability. Therefore, given an instance of an QEΣi problem with corresponding observable
R, we can express the acceptance probability achieved by both players playing optimal strategies
as

υ = max
ρ1∈A1

min
σ1∈B1

. . . max
ρi/2∈Ai/2

min
σ1∈Bi/2

tr
(
R
(
ρi/2 ⊗ σi/2

))
, (1)

whereAi and Bi are defined as in Definition 3.1, and each alternating max/min operator corresponds
to an alternation of quantifiers in Definition 3.1. In this work, we intend to use Eq. (1) as a tool
for proving the equality of one game/problem instance to another.

Finally, as an application of Eq. (1), we observe that the second levels of both QEPH and QPH
are equal to QRG(1), which is known to be contained in PSPACE.

Proposition 3.3 (Extension of [GSS+22, Corollary 1.9]).

QEΣ2 = QEΠ2 = QΣ2 = QΠ2 = QRG(1) ⊆ PSPACE.

Proof. In [GSS+22], it was observed that QΣ2 = QRG(1). Here, we use the same reasoning to
conclude

QEΣ2 = QEΠ2 = QΣ2 = QΠ2 = QRG(1).

The equivalence is clear given that the value of a QRG(1) protocol is described by an expression
identical to Eq. (1) when i = 2, which corresponds to QEΣ2 (see [JW09] for a formal definition of
QRG(1)). Then, note that QRG(1) is closed under complement, by a min-max theorem, implying
QEΣ2 = QEΠ2. Second, because entanglement is not a concern until one of the players makes
multiple moves, the second levels of the entangled and unentangled hierarchies are equal (similarly,
the first levels are equal to each other, as are the zeroeth levels). Finally, the containment of
QRG(1) in PSPACE is due to [JW09, Proposition 4].

The fact that QEΣ2 = QEΠ2 = QΣ2 = QΠ2 is somewhat striking, since such an equality in the
classical setting would imply a collapse of PH [AB09, Theorem 5.6].6

Remark 3.4 (Public vs. private quantum proofs). While the quantum polynomial hierarchies
are well-defined, some may object that the classes are unphysical because the provers have full
knowledge of each other’s density matrices, even though the verifier only receives a single copy of
each proof. The quantum no-cloning theorem also begs the question of how exactly the information
is communicated between the provers. This is not an issue for PH because it’s trivial to learn
classical proofs given a single copy, and, for QRG, this is not an issue because communication is

6This phenomenon of the second levels being equal is also true for TFPH, the hierarchy generalizing the class
TFNP [KKMP21].
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private. In every quantum complexity class that we are aware of, the provers are “all-powerful” yet
still bound by the laws of quantum mechanics.

Despite being unphysical, we are content with the definition for two reasons. First, it is a well-
defined, useful theoretical tool for studying quantum information. Second, in the case of QEPH,
we show that it collapses to QEΣ2, where it is known, by a min-max theorem, that public vs.
private communication is irrelevant. So, despite starting with an unphysical definition, we show
equivalence with a class that adheres entirely to the laws of quantum mechanics.

4 The Entangled Quantum Polynomial Hierarchy Collapses

We prove several results about the entangled quantum polynomial hierarchy. Specifically, we prove
that QEPH collapses to its second level, is equal to QRG(1), and that every level of QEPH is robust
to the choice of completeness and soundness parameters (i.e., for c, s such that c− s ≥ 1/poly(n),
QEΣi(c, s) = QEΣi(

2
3 ,

1
3) for all i ∈ N). We begin by proving that the hierarchy collapses.

Lemma 4.1. For all constants i ≥ 2, QEΣ2 = QEΣi.

Proof. Note that for all i, QEΣi−1 is trivially contained in QEΣi. We will show that for all i > 2,
QEΣi ⊆ QEΣi−1 by an induction argument, beginning with QEΣ3 ⊆ QEΣ2.

Recall from Eq. (1) in Section 3 that the value of an QEΣ3 protocol is equal to

υ̂ = max
ρ1∈D(X1)

min
σ1∈D(Y1)

max
ρ2∈A

tr (R (ρ2 ⊗ σ1)) ,

where R is the observable corresponding to the verifier accepting, X1, Y1, and X2 are the Hilbert
spaces containing the three proofs, and A = {ρ ∈ D(X1 ⊗ X2) | trA2(ρ) = ρ1}, which enforces that
Alice’s second proof is consistent with her first.

For any choice of ρ1 ∈ D(X1), define

υ(ρ1) = min
σ1∈D(Y1)

max
ρ2∈A

tr (R (ρ2 ⊗ σ1)) ,

so that υ̂ = maxρ1∈D(X1) υ(ρ1). Consider that D(Y1) and A are compact and convex by Facts 2.3
and 2.4. Additionally, the function tr (R (ρ2 ⊗ σ1)) is a composition of bilinear functions and so
itself is bilinear in σ1 and ρ1. Therefore, by Theorem 2.2, a min-max theorem applies and

υ(ρ1) = max
ρ2∈A

min
σ1∈D(Y1)

tr (R (ρ2 ⊗ σ1)) = min
σ1∈D(Y1)

max
ρ2∈A

tr (R (ρ2 ⊗ σ1)) ,

changing the optimization problem without changing the value.
Substituting this back into υ̂, we find

υ̂ = max
ρ1∈D(X1)

υ(ρ1)

= max
ρ1∈D(X1)

max
ρ2∈A

min
σ1∈D(Y1)

tr (R (ρ2 ⊗ σ1))

= max
ρ2∈D(X1⊗X2)

min
σ1∈D(Y1)

tr (R (ρ2 ⊗ σ1)) , (2)

where the final equality is clear given the definition of A.
We observe that Eq. (2) matches the characterization of an QEΣ2 protocol given in Eq. (1).

Therefore, we have shown the value υ̂ of an arbitrary QEΣ3 protocol is equivalent to the value of an
QEΣ2 protocol. Given an instance of an QEΣ3 problem verified by some polynomial-time uniform
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circuit V—corresponding to the observable R above—whether V is satisfiable by an QEΣ3 protocol
is equivalent to whether V is satisfiable by an QEΣ2 protocol, i.e. QEΣ3 ⊆ QEΣ2 and indeed they
are equal.

By way of induction, assume QEΣ2 = QEΣi for some constant i > 2. By the same min-max
argument as just before, we may show the equivalence of the value of any QEΣi+1 protocol to the
value of a QEΣi protocol, thus showing the equivalence of the classes. Therefore, the hierarchy
QEPH collapses to QEΣ2.

The equality between QEPH and QRG(1) is a straightforward consequence of the collapse lemma.

Theorem 4.2. QRG(1) = QEPH = QEΣ2.

Proof. Combining the results QRG(1) = QEΣ2 from Proposition 3.3 and QEΣ2 = QEPH from
Lemma 4.1 proves the equality.

Next, we note that our collapse theorem can be strengthened to QEΣi = QEΣ2 for any poly-
nomially bounded i, rather than just constant. Like classical PH, we define QEPH as the union of
QEΣi for any constant i. This is a natural way of defining PH as it is key to proving that if P = NP,
then PH collapses. However, in contrast to collapse techniques for classical PH, our reduction of
QEΣi to QEΣ2 does not increase the problem size. In our proof of Lemma 4.1, the QEΣ2 problem
in Eq. (2) optimizes over the same quantity as the original QEΣi problem. Therefore, our proof
applies even to a super-constant number of rounds. The reduction is valid up to a polynomial
number of rounds, after which the concatenation of the proof registers would lead to a proof too
large for the polynomial-time verifier to accept.

Corollary 4.3. QEΣi = QEΣ2 for any polynomially-bounded i.

Finally, our results also prove that QEΣi is robust to the choice of error parameters.

Theorem 4.4. For any choice of c, s such that c − s ≥ 1/ poly(n), it holds that QEΣi (c, s) =
QEΣi

(
2
3 ,

1
3

)
.

Proof. The reverse containment is trivial, so we focus on proving the forward direction, reducing
QEΣi (c, s) to QEΣi

(
2
3 ,

1
3

)
. Again appealing to the fact that our proof of Lemma 4.1 shows that

an QEΣ3 problem is equivalent to an QEΣ2 problem with the same game value, we observe that
our proof implies QEΣ2(c, s) = QEΣi(c, s). Then, because the equality of QRG(1) and QEΣ2

(Theorem 4.2) is also based on the optimization definition from Eq. (1), the acceptance probability
remains preserved and QEΣ2(c, s) = QRG(1)(c, s). We may then appeal to the result of [GW05]
that a parallel repetition theorem holds for QRG(1), so that QRG(1)(c, s) = QRG(1)

(
2
3 ,

1
3

)
. By the

same reasoning as a moment ago, this last class equals QEΣ2

(
2
3 ,

1
3

)
. Contracting this sequence of

equalities, we conclude that QEΣi

(
2
3 ,

1
3

)
equals our original class QEΣi(c, s).

5 PH and QCPH Are Contained in QPH

We prove that QCPH ⊆ QPH. While this result is what one might expect, proving this containment
was left as an option question by Gharibian et al. [GSS+22]. It is trivial to see that PH ⊆ QCPH,
and, combining these two containments, we have PH ⊆ QCPH ⊆ QPH, establishing that quantifying
over unentangled quantum proofs is at least as powerful as quantifying over classical proofs.

The central challenge in proving that QCPH ⊆ QPH is that the proofs in QPH are allowed to
be quantum states, which, upon measurement, give rise to a distribution over classical strings. A
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flawed idea is to simply measure the quantum proofs to get classical proofs, and then run the QCPH
verification protocol with no modifications. Suppose, however, that Alice has a winning strategy
in the QCPH protocol, so she always has a winning response to any classical proof that Bob sends.
When simulating this in QPH, Bob can instead send a quantum state—a superposition over many
classical proofs—preventing Alice from sending an optimal response. In particular, Alice may not
know which response to send, since she doesn’t know which classical proof the verifier will observe
upon measurement.

We prevent this potential cheating by requiring each player to send multiple copies of each of
their proofs. We prove that this is enough to force both players to send classical strings with high
probability.

Theorem 5.1. PH ⊆ QCPH ⊆ QPH.

The exact error parameters for Theorem 5.1 are stated in Eq. (3) below. In particular, the
reduction is only capable of producing a QPH instance with a constant promise gap. However, the
containment does hold for any QCPH instance with at least an inverse-polynomial promise gap,
due to known error reduction for QCPH [GSS+22].

Proof. Consider any level QCΣi of QCPH. We show that for any integer k ≥ 1,

QCΣi(c, s) ⊆ QΣ2ki

(
c
(
1− 2−k

)
, s+ 2−k (1− s)

)
. (3)

We simulate any QCΣi protocol in QΣ2ki as follows. After the first 2k turns, the verifier has k
proofs from Alice and k proofs from Bob, and the verifier discards all k proofs from Bob. For the
next 2k turns, the verifier repeats this process, except they keep Bob’s proofs rather than Alice’s,
which we denote by σ1,1, . . . , σ1,k. This is repeated i times in total until all 2ki turns are over. At
the end of the game, the verifier has kept the following ki proofs:

ρ1,1, . . . , ρ1,k, σ1,1, . . . , σ1,k, ρ2,1, . . . , ρ2,k, . . . .

For each chunk of k proofs, the verifier measures each quantum state in the standard basis to
get k classical strings. If all k classical strings are equal, we say that the player passed the check,
and failed otherwise. If a player fails any check, then the other player is declared the winner. If
both players pass all checks, then the verifier keeps one copy of each classical proof from each chunk
and runs the QCPH verification procedure to determine the winner.

Let A = (Ayes, Ano) be a promise problem in QCΣi(c, s), and let x be some fixed input. If
x ∈ Ayes, then Alice has no incentive to cheat and so we refer to her as the honest prover, while if
x ∈ Ano then we consider Bob the honest prover. We will define a strategy for the honest prover
and show that no matter the strategy of the dishonest prover, the honest prover will win high
probability. In particular, the honest prover’s strategy will be to always send classical proofs, and
when replying to a dishonest provers proof ρ =

∑
j pj |j⟩⟨j|, the honest prover will respond as if

only the string ȷ̂ with the maximum probability pȷ̂ was sent (we arbitrarily choose to break ties by
lexicographic order).

If the dishonest prover fails any check, they lose, so we assume now that the dishonest prover
passes every check. Then, since both provers pass every check, the verifier has the i classical proofs
y1, . . . , yi, where the proofs with odd indices are from Alice and the others are from Bob. In
one case, suppose that each of the dishonest prover’s moves turns out to be as the honest prover
expected. Then the situation is identical to the original QCPH instance, and so the honest prover
wins with the probability of the original protocol.
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In the second case, at least one chunk of k proofs (sampled independently from k distributions)
are equal to each other but not to the proof ȷ̂ expected by the honest prover. Any string besides ȷ̂
has pj ≤ 1/2, so the probability of this case occurring, with all k samples matching, is at most 2−k.

Therefore, in the QPH protocol, if x ∈ Ayes, Alice wins with probability at least c
(
1− 2−k

)
. If

x ∈ Ano, then Bob wins with probability at least (1− s)
(
1− 2−k

)
, so Alice wins with probability

at most
1− (1− s)

(
1− 2−k

)
= s+ 2−k(1− s).

To summarize, the dishonest prover is unable to affect the outcome of the game with more than a
small probability. We conclude that QCΣi ⊆ QΣ2ki, and therefore QCPH ⊆ QPH.

6 Distribution Hierarchies

We introduce another generalization of the polynomial hierarchy where the provers send prob-
ability distributions over bit strings. This gives rise to two new hierarchies: the distributional
polynomial hierarchy DistributionPH and its quantum analogue DistributionQCPH, which is the
same as DistributionPH but with a quantum verifier. We will focus primarily on DistributionPH
since the techniques used to analyze DistributionPH will work for DistributionQCPH as well.

DistributionPH is similar to all of the hierarchies studied in this work. In DistributionPH, the
distributions are public (the provers have full knowledge of the distributions that have been sent),
but none of the distributions are sampled until every distribution has been sent. One can think
of this as a non-interactive game, where the players use public, mixed strategies. Importantly, the
distributions are not correlated across rounds.

While DistributionPH is a classical complexity class, our motivation for studying it is to further
understand the quantum polynomial hierarchies. In particular, DistributionPH involves proofs that
are classical mixtures of bit strings. This complements pureQPH, where the proofs are quantum
superpositions of bit strings, and QPH, where the proofs are both (classical mixtures of quantum
superpositions). Does the computational power of the polynomial hierarchy increase when the
proofs only involve classical probability distributions? Or does the increased computational power
come only from the quantum superposition allowed in QPH and pureQPH? In this section, we
resolve these questions.

Theorem 6.1. DistributionPH = PH.

That is, if the proofs are distributions over classical proofs, PH does not increase in power. The
proof of Theorem 6.1 relies on a technical lemma that says the distributions sent in DistributionPH
can be sparse and uniform. This lemma generalizes a result due to Lipton and Young [LY94] and
Althöfer [Alt94].

In the remainder of this section, we will formally define DistributionPH, prove the techni-
cal lemma, and prove Theorem 6.1. Finally, we will discuss DistributionQCPH (the same as
DistributionPH but with a quantum verifier) and the power of classical versus quantum proofs.

We begin by formally defining DistributionPH. Let Dm denote the set of all probability distribu-
tions over {0, 1}m. For a computation M which takes length-m strings as input and a distribution
ρ ∈ Dm, let M(ρ) implicitly refer to M(y) for y ∼ ρ.

Definition 6.2 (i-th level of the distribution polynomial hierarchy (DistributionΣi)). A promise
problem L = (Lyes, Lno) is in DistributionΣi(c, s) for polynomial-time computable functions c, s :
N → [0, 1] if there exists a classical polynomial-time randomized Turing Machine M such that

• Completeness: x ∈ Lyes ⇒ ∃ρ1∀ρ2∃ρ3 . . . Qiρi such that Pr [M(ρ1, . . . , ρi) = 1] ≥ c,
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• Soundness: x ∈ Lno ⇒ ∀ρ1∃ρ2∀ρ3 . . . Qiρi such that Pr [M(ρ1, . . . , ρi) = 1] ≤ s,

where each ρk is a distribution in Dm for some polynomially-bounded m, and each ρk is indepen-
dent. Qi is ∃ if i is odd and ∀ otherwise, and Qi is the complement of Qi. When the complete-
ness/soundness parameters are not specified, define

DistributionΣi :=
⋃

c−s∈Ω(1)

DistributionΣi(c, s).

Definition 6.3 (The distribution polynomial hierarchy (DistributionPH)). The distribution poly-
nomial hierarchy is defined as

DistributionPH =

∞⋃
i=0

DistributionΣi.

We make a few comments on our definition of DistributionPH. If we defined DistributionPH
without the bounded-error condition (i.e., no error probability), then it would be equal to PH. We
will also generally leave the input x implicit. Finally, if one prefers, they can equivalently think
of the provers sending quantum mixed states that are immediately measured in the computational
basis (instead of probability distributions that are immediately sampled). This is why we choose
to denote the probability distributions as ρi in our definition.

As we discussed in Section 3 for QEPH, one can think of DistributionPH as a game, where two
competing provers take turns sending distributions over bit strings to a verifier. Then the verifier
M draws one sample from each distribution and runs a polynomial-time randomized algorithm to
determine a winner. Additionally, just like with QEPH, we can express the acceptance probability
of the verifier as the following optimization problem:

Pr[M accepts] = max
ρ1∈Dm

min
ρ2∈Dm

. . . Qi

ρi∈Dm

E[M(ρ1, . . . , ρi)],

where Qi denotes max if i is odd and min otherwise. The expectation is over the randomness
in the distributions ρ1, . . . , ρi. Note that since M(ρ1, . . . , ρi) is a Bernoulli random variable,
E[M(ρ1, . . . , ρi)] = Pr[M(ρ1, . . . , ρi) = 1].

The distributions sent in DistributionPH are over {0, 1}m for some polynomially-bounded m, so,
in general, the support can be exponentially large in m. We will prove a technical lemma that says
the provers can send uniform distributions over poly(m) bit strings without changing the outcome
of the game too much.

Lemma 6.4. For any constant k ∈ N and any classical randomized Turing Machine M accepting
k length-m inputs, if

max
ρ1∈Dm

min
ρ2∈Dm

max
ρ3∈Dm

. . . Qk

ρk∈Dm

Pr [M(ρ1, . . . , ρk) = 1] = v,

then for any constant ϵ > 0,

max
ρ1∈Utk

min
ρ2∈Utk−1

max
ρ3∈Utk−2

. . . Qk

ρk∈Ut1

Pr [M(ρ1, . . . , ρk) = 1] ∈ [v − kϵ, v + kϵ],

where ti := ⌈m2i/2ϵ2⌉, Ut denotes the set of uniform distributions over multi-sets of size at most t
of strings in {0, 1}m, and Qk denotes max if k is odd and min otherwise. The complement of this
result also holds (i.e., when the sequence starts with min instead of max).
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Proof. We will prove the claim by induction. The base case k = 2 is precisely [LY94, Theorem 2]
(see also [Alt94]). Our contribution is to generalize their result to larger k.

By way of induction, suppose the claim holds for k−1, and consider an instance with k rounds:

v := max
ρ1∈Dm

min
ρ2∈Dm

max
ρ3∈Dm

. . . Qk

ρk∈Dm

Pr [M(ρ1, . . . , ρk) = 1] .

Since the complement of this result (where a min is first instead of a max) follows in the same way,
we omit the details.

Fix ρ1 to a distribution that maximizes the acceptance probability (and think of ρ1 as hardcoded
into the input). Consider the inner k − 1 distributions ρ2, . . . , ρk. By the inductive hypothesis, we
can simplify these distributions to

min
ρ2∈Utk−1

max
ρ3∈Utk−2

. . . Qk

ρk∈Ut1

Pr [M(ρ1, . . . , ρk) = 1] ,

while only changing the acceptance probability v by ±(k − 1)ϵ. In particular, we have that

v′ := max
ρ1∈Dm

min
ρ2∈Utk−1

max
ρ3∈Utk−2

. . . Qk

ρk∈Ut1

Pr [M(ρ1, . . . , ρk) = 1] ∈ [v − (k − 1)ϵ, v + (k − 1)ϵ].

We want to show that we can simplify the first distribution ρ1 in a similar fashion. Specifically, we
want to show

v′′ := max
ρ1∈Utk

min
ρ2∈Utk−1

max
ρ3∈Utk−2

. . . Qk

ρk∈Ut1

Pr [M(ρ1, . . . , ρk) = 1] ∈ [v − kϵ, v + kϵ].

Observe that choosing ρ1 from Utk instead of Dm can only hurt the maximizing player. That
is, the probability that M accepts can only decrease, so v′′ ≤ v′ + ϵ ≤ v + kϵ is trivial. All that
remains is to show that v′′ ≥ v − kϵ. To prove this, it suffices to show that v′′ ≥ v′ − ϵ.

Let ρ∗1 ∈ Dm be a distribution that maximizes the acceptance probability of M . Form a multi-
set S by drawing tk independent samples from ρ∗1. Consider a string y ∈ S. This gives rise to a
random variable on the interval [0, 1]:

E
ρ2,...,ρk

[M(y, ρ2, . . . , ρk)],

where we are taking the expectation over optimal choices of ρ2, . . . , ρk. In expectation over ρ∗1, we
have

E
y∼ρ∗1

[
E

ρ2,...,ρk
[M(y, ρ2, . . . , ρk]

]
= v′.

Therefore, by Hoeffding’s inequality (Fact 2.1),

Pr

 1

|S|
∑
y∈S

E
ρ2,...,ρk

[M(y, ρ2, . . . , ρk)] ≤ v′ − ϵ

 ≤ exp
(
−2tkϵ

2
)
.

To complete the proof, we must count the number of sequences of distributions the minimizing
player can send. The minimizing player sends at most k/2 of the distributions ρ2, . . . , ρk, each of
which is a uniform distribution over at most tk−1-sized subsets of {0, 1}m. Therefore, in total, there
are at most tk−1∑

i=1

(
2m

i

)k/2

≤

tk−1∑
i=1

2im

k/2

≤
(
tk−12

mtk−1
)k/2

= t
k/2
k−12

kmtk−1/2
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possible sequences. We want to choose tk so that

exp
(
−2tkϵ

2
)
<

1

t
k/2
k−12

kmtk−1/2
, (4)

which would imply that strictly less than 1 of the minimizing player’s sequences of distributions
can decrease v′ by more than ϵ. Or, more directly, it would imply that there are no sequences the
minimizing player can send to decrease v′ by more than ϵ. We will show that choosing tk = m2k/2ϵ2

suffices. By plugging in the definitions of tk and tk−1, Eq. (4) becomes

exp
(
−m2k

)
<

ϵk

mk(k−1)
2

k
2
− km2k−1

4ϵ2 ⇐⇒ exp
(
−m2k

) mk(k−1)

ϵk
2

km2k−1

4ϵ2
− k

2 < 1. (5)

We show that the inequality in Eq. (5) holds, which proves that our setting of tk is correct.

exp
(
−m2k

) mk(k−1)

ϵk
2

km2k−1

4ϵ2
− k

2 < exp
(
−m2k

)
mk22

km2k−1

4ϵ2
− k

2

< mk22
km2k−1

4ϵ2
− k

2
−m2k

= mk22
m2k−1

(
k

4ϵ2
− k

2m2k−1−m
)

< mk22−m2k−1

< 1.

The first inequality holds because mk > ϵ−k for constant ϵ > 0. The second-to-last inequality holds
because

(
k
4ϵ2

− k
2m2k−1 −m

)
< −1 for constant ϵ > 0.

We conclude that v′′ ≥ v′ − ϵ ≥ v − kϵ, which completes the proof.

We can now prove that DistributionPH = PH.

Proof of Theorem 6.1. PH ⊆ DistributionPH follows from the proof that PH ⊆ QPH. This only
achieves containment in DistributionPH with constant promise gap, and it puts the k-th level of PH
in some higher level of DistributionPH (see Theorem 5.1 for more detail).

To show DistributionPH ⊆ PH, we use Lemma 6.4. Set ϵ < 1
12k . For DistributionΣk, Lemma 6.4

implies that

max
ρ1∈Utk

min
ρ2∈Utk−1

max
ρ3∈Utk−3

. . . Qk

ρk∈Ut1

Pr [M(ρ1, . . . , ρk)] ∈ [v − kϵ, v + kϵ] ⊆
[
v − 1

12
, v +

1

12

]
.

Given the DistributionΣk promise gap of 2
3 ,

1
3 , this modified game has a promise gap of 7

12 ,
5
12 .

We simulate this in PH as follows. To send the distribution ρi, the prover sends every string
in the support of ρi, which is only poly(n) many bits by Lemma 6.4. The verifier can then take
the list of strings and sample one uniformly at random. This completes the proof since PH can
simulate randomness [Sip83, Lau83].

One can also define DistributionQCPH in the same way, and it follows from Theorem 6.1 that
this class is equal to QCPH.

Corollary 6.5. DistributionQCPH = QCPH.
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The only difference between DistributionQCPH and pureQPH is that the former involves proofs
that are classical distributions over bit strings and the latter involves proofs that are quantum
superpositions over bit strings. DistributionQCPH = QCPH is in the counting hierarchy [GSS+22],
while the best known upper bound for pureQPH is EXPPP [AGKR] and it contains QMA(2) and
QPH. The conceptual takeaway is that it is only the quantum superposition in the proofs that
gives the quantum hierarchies more computational power.

We also remark that if one allows the distributions in DistributionPH and DistributionQCPH to
be correlated, then the techniques in Lemma 4.1 can be used to collapse the resulting hierarchies to
the second level. The correlated version of DistributionPH collapses to S2P. The correlated version
of DistributionQCPH collapses to a quantum-classical version of QRG(1), which, to our knowledge,
has never been studied.

7 Open Problems

It is well-known that PH can equivalently be defined via oracle Turing machines. This suggests
oracular definitions of quantum polynomial hierarchies, such as QMAH discussed in Section 1.3.

One could similarly define QCMAH as QCMAQCMAQCMA...

and QMA(2)H as QMA(2)QMA(2)QMA(2)...

.
We ask how these oracular hierarchies compare to the quantifier-based ones.

Question 7.1. Does QEPH = QMAH? QPH = QMA(2)H? QCPH = QCMAH?

It is unclear if these hierarchies are equal, as in the classical world, or if one version would be
stronger than the other. One immediate obstacle is the fact that QEPH and QPH are quantifying
over quantum states, so perhaps it is easier to begin with QCPH, which still quantifies over classical
bits. Alas, it is still unclear if an oracle machine definition of QCPH would be equal to a quantifier
definition, since, in the oracular case, queries can be made in superposition.

Answering Question 7.1 could yield progress towards characterizing QRG(1). Jain and Watrous
showed that QRG(1) ⊆ PSPACE in 2009 [JW09], and, since then, no improved upper bounds have
been proven despite effort [GW23]. Our work shows that QRG(1) = QEPH, and, if one can show
QEPH ⊆ QMAH, then that would imply QRG(1) ⊆ CH, since [Vin18] showed that QMAH ⊆ CH.

More broadly, proving better upper or lower bounds on the quantum polynomial hierarchies and
finding more connections to other parts of complexity theory are important directions for future
work. For example, does any level of QPH contain PSPACE? Can one improve the containment
QPH ⊆ EXPPP? Or, how can these hierarchies be used to better understand the relationships
between QCMA, QMA, and QMA(2)?
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