
On Inapproximability of Reconfiguration Problems:
PSPACE-Hardness and some Tight NP-Hardness Results

Karthik C. S.*
Rutgers University

Pasin Manurangsi†

Google Research

February 15, 2024

Abstract

The field of combinatorial reconfiguration studies search problems with a focus on
transforming one feasible solution into another.

Recently, Ohsaka [STACS’23] put forth the Reconfiguration Inapproximability Hypothesis
(RIH), which roughly asserts that there is some ε > 0 such that given as input a k-CSP
instance (for some constant k) over some constant sized alphabet, and two satisfying as-
signments ψs and ψt, it is PSPACE-hard to find a sequence of assignments starting from ψs
and ending at ψt such that every assignment in the sequence satisfies at least (1− ε) fraction
of the constraints and also that every assignment in the sequence is obtained by changing
its immediately preceding assignment (in the sequence) on exactly one variable. Assuming
RIH, many important reconfiguration problems have been shown to be PSPACE-hard to
approximate by Ohsaka [STACS’23; SODA’24].

In this paper, we prove RIH, thus establishing the first (constant factor) PSPACE-hardness
of approximation results for many reconfiguration problems, resolving an open question
posed by Ito et al. [TCS’11]. Our proof uses known constructions of Probabilistically Check-
able Proofs of Proximity (in a black-box manner) to create the gap. Independent to our
work, Hirahara and Ohsaka [STOC’24] have also proved RIH.

We also prove that the aforementioned k-CSP Reconfiguration problem is NP-hard to
approximate to within a factor of 1/2 + ε (for any ε > 0) when k = 2. We complement
this with a (1/2− ε)-approximation polynomial time algorithm, which improves upon a
(1/4− ε)-approximation algorithm of Ohsaka [2023] (again for any ε > 0).

Finally, we show that Set Cover Reconfiguration is NP-hard to approximate to within a
factor of 2− ε for any constant ε > 0, which matches the simple linear-time 2-approximation
algorithm by Ito et al. [TCS’11].

*Email address: karthik.cs@rutgers.edu. This work was supported by the National Science Foundation under
Grant CCF-2313372 and by the Simons Foundation, Grant Number 825876, Awardee Thu D. Nguyen.

†Email address: pasin@google.com. Part of this work was done while the author was visiting Rutgers Univer-
sity.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 7 (2024)

1 Introduction

Combinatorial reconfiguration is a field of research that investigates the following question: Is
it possible to find a step-by-step transformation between two feasible solutions for a search
problem while preserving their feasibility? The field has received a lot of attention over the
last two decades with applications to various real-world scenarios that are either dynamic or
uncertain (please see the surveys of Nishimura [Nis18] or van den Heuvel [vdH13], or the
thesis of Mouawad [Mou15] for details).

Many of the reconfiguration problems studied in literature are derived from classical
search problems, for example, consider the classical Set Cover problem, where given a col-
lection of subsets of a universe and an integer k, the goal is to find k input subsets whose
union is the universe (such a collection of k subsets is referred to as a set cover). In the
corresponding reconfiguration problem, referred to as the Set Cover Reconfiguration problem
[HD05, IDH+11, HIM+16], we are given as input a collection of subsets of a universe, an inte-
ger k, and two set covers Ts and Tt, both of size k, and the goal is to find a sequence of set covers
starting from Ts and ending at Tt such that every set cover in the sequence has small size and
is obtained from its immediately preceding set cover in the sequence by adding or removing
exactly one subset (see Section 2.2 for a formal definition). In similar spirit, various recon-
figuration analogues of important search problems have been studied in literature, such as
Boolean Satisfiability [GKMP09a, MTY11, MNPR17], Clique [IDH+11], Vertex Cover [Bon16,
BKW14, KMM12, LM19, Wro18], Matching [IDH+11], Coloring [CvdHJ08, BC09, CvdHJ11],
Subset Sum [ID14], and Shortest Path [KMM11, Bon13].

Many of the above mentioned reconfiguration problems are PSPACE-hard, and thus to
address this intractability, Ito et al. [IDH+11] initiated the study of these problems under the
lens of approximation. For many of the above mentioned reconfiguration problems, polynomial
time (non-trivial) approximation algorithms are now known [IDH+11, MO21, Ohs23b]. On
the other hand, using the PCP theorem for NP [AS98, ALM+98, Din07], there are also some
NP-hardness of approximation results for reconfiguration problems, such as for the reconfig-
uration analogs of Boolean satisfiability [IDH+11], Clique [IDH+11], Binary arity Constraint
Satisfaction Problems (hereafter 2-CSP) [Ohs23a, Ohs24], and Set Cover [Ohs24]. However, a
glaring gap in the above results is that we only know of NP-hardness of approximation results
for reconfiguration problems, but their exact versions are known to be PSPACE-hard. Thus,
the authors of [IDH+11] posed the following question,

“Are the problems in Section 4 PSPACE-hard to approximate (not just NP-hard)?”,

while referring to the problems in Section 4 of their paper, for which they had shown NP-
hardness of approximation results.

To address the above question, Ohsaka in [Ohs23a], introduced the Reconfiguration In-
approximability Hypothesis (RIH), a reconfiguration analogue of the PCP theorem for NP, and
assuming which he showed that it is PSPACE-hard to approximate reconfiguration analogs of
2-CSP, Boolean satisfiability, Indepedent set, Clique, and Vertex Cover, to some constant factor
bounded away from 1. These PSPACE-hardness of approximation factors were later improved
(still under RIH) in [Ohs24] for the reconfiguration analog of 2-CSP and the Set Cover Recon-
figuration problem to 0.9942 and 1.0029 respectively.

In order to state RIH, we first define the reconfiguration analog of gap-CSP
(which is the centerpiece problem of the hardness of approximation in NP). In the
(1, 1− ε)-GapMaxMin-k-CSPq problem, we are given as input (i) a k-uniform hypergraph and
every hyperedge of this hypergraph corresponds to a constraint on k variables (which are the

2

k nodes of the hyperedge) over an alphabet set of size q, and (ii) two satisfying assignments
ψs and ψt to the k-CSP instance. For an instance of (1, 1− ε)-GapMaxMin-k-CSPq, a reconfig-
uration assignment sequence is a sequence of assignments starting from ψs and ending at ψt

such that every assignment in the sequence is obtained by changing its immediately preceding
assignment (in the sequence) on exactly one variable. The goal is then to distinguish the com-
pleteness case from the soundness case: in the completeness case, there exists a reconfiguration
assignment sequence such that every assignment in the sequence is a satisfying assignment,
and in the soundness case, in every reconfiguration assignment sequence there is some assign-
ment in the sequence which violates at least ε fraction of the constraints (see Section 2.1 for a
formal definition of (1, 1− ε)-GapMaxMin-k-CSPq). RIH then asserts that there exists universal
constants ε > 0, and q, k ∈N such that (1, 1− ε)-GapMaxMin-k-CSPq is PSPACE-hard1.

Given that RIH implies the aforementioned PSPACE-hardness of approximation results for
many important problems, we naturally have the following fundamental question in the study
of (in)approximability of reconfiguration problems:

Is RIH true?

We remark that Ito et al. [IDH+11] showed that (1, 1− ε)-GapMaxMin-k-CSPq is NP-hard
for q = 2, k = 3, and some2 ε > 0. However, proving RIH (i.e., proving PSPACE-hardness
of (1, 1− ε)-GapMaxMin-k-CSPq) had remained elusive. We further remark here that in a
recent work, Ohsaka [Ohs24] made some progress towards resolving RIH. The strategy of
that paper is to follow Dinur’s (combinatorial) proof [Din07] of the PCP theorem (for NP);
Ohsaka managed to prove that one of the operations required in Dinur’s proof (namely, the
“graph powering”) can be adapted in the reconfiguration setting. Nonetheless, the other two
required operations (“alphabet reduction” and “preprocessing”) are not yet known for the
(1, 1− ε)-GapMaxMin-k-CSPq problem.

1.1 Our Contribution

Our primary contribution is the resolution of RIH (see Section 1.1.1). In addition we also pro-
vide tight results on the NP-hardness of approximating GapMaxMin-2-CSPq and Set Cover
Reconfiguration (see Section 1.1.2).

1.1.1 PSPACE-Hardness of Approximation of Reconfiguration Problems: Resolving RIH

The main result of our work is a resolution to the RIH:

Theorem 1. There exist constants q ∈ N, k ∈ N, ε > 0 such that (1, 1− ε)-GapMaxMin-k-CSPq is
PSPACE-hard.

Interestingly, our proof does not follow Ohsaka’s approach [Ohs24] of adapting Dinur’s
proof. Rather, we give a rather direct (and short) proof of RIH by using efficient constructions
of Probabilistically Checkable Proofs of Proximity (PCPP) in a black-box way (see Section 1.2 for
details).

As a consequence of Ohsaka’s aforementioned reductions [Ohs23a], we immediately get
the following as a corollary. (We do not define all the problems here and refer to [Ohs23a] for
more details.)

1Note that the PCP theorem is equivalent to the following statement (see [Din07]): For some ε > 0, it is NP-hard
to approximate 2-CSPs to (1− ε) factor.

2In fact, they achieve ε = 1/16− o(1).

3

Corollary 2. There exists a constant ε > 0, such that the following are all PSPACE-hard:

• (1− ε)-approximation of 3SAT Reconfiguration,

• (1 + ε)-approximation of Vertex Cover Reconfiguration (and thus Set Cover Reconfiguration),

• (1− ε)-approximation of Independent Set Reconfiguration and Clique Reconfiguration,

• (1, 1− ε)-GapMaxMin-2-CSP3.

We remark here that independent to our work, Hirahara and Ohsaka [HO24] have also
proved RIH. While their proof also uses known constructions of efficient PCPP the proof
approach itself is quite different from ours (see Remark 7 for more details).

1.1.2 Tight NP-Hardness of Approximation Results for GapMaxMin-2-CSPq and Set Cover
Reconfiguration Problems

In addition to the previously mentioned PSPACE-hardness results, we also provide NP-hardness
results that have improved (and nearly tight) inapproximability ratios.

In [Ohs24], the author showed that for every ε > 0 there exists some q ∈ N such that
deciding (1, 3/4 + ε)-GapMaxMin-2-CSPq is NP-hard. We improve this result to the following.

Theorem 3. For any ε > 0 there exists q ∈ N such that deciding (1, 1/2 + ε)-GapMaxMin-2-CSPq

is NP-hard.

The above hardness result is the essentially the best possible result, because in Section 1.1.3,
we will show that for every ε > 0 and every q ∈N, deciding (1, 1/2− ε)-GapMaxMin-2-CSPq

is in P.

Next, we consider the (in)approximability of the Set Cover Reconfiguration problem. Pre-
viously, in [Ohs24], the author showed that approximating the Set Cover Reconfiguration prob-
lem to 1.0029 factor is NP-hard. We improve this result to the following.

Theorem 4. For any ε > 0, it is NP-hard to approximate Set Cover Reconfiguration to within a factor
of (2− ε).

The above hardness result is the essentially the best possible result, because in [IDH+11],
the authors show that approximating Set Cover Reconfiguration to a factor of 2 is in P.

As an intermediate step in the above result for the Set Cover Reconfiguration problem,
we prove the tight inapproximability of the minimization variant of the GapMaxMin-2-CSPq

problem, namely, the (1, s)-GapMinMax-2-CSPq problem, where we are given the same input
as for the GapMaxMin-2-CSPq problem, and the goal is then to distinguish the completeness
case from the soundness case: in the completeness case, there exists a reconfiguration assign-
ment sequence such that every assignment in the sequence is a satisfying assignment, and
in the soundness case, in every reconfiguration satisfying multiassignment sequence3 there is
some multiassignment in the sequence whose average number of labels per variable is more
than s. (See Section 2.1 for a formal definition of (1, s)-GapMinMax-2-CSPq).

3A reconfiguration satisfying multiassignment sequence is the same as a reconfiguration assignment sequence
but where we allow each sequence element to be a multiassignment instead of just an assignment and also insist
that every multiassignment in the sequence satisfies all the constraints.

4

Theorem 5. For any ε > 0 there exists q ∈ N such that deciding (1, 2− ε)-GapMinMax-2-CSPq is
NP-hard.

Again, we note that the above hardness result is the best possible, as there is a 2-factor
polynomial time approximation algorithm for the GapMinMax-2-CSPq problem via the same
approach as Ito et al.’s algorithm for Set Cover Reconfiguraiton [IDH+11]. In particular, we
first start from ψs and sequentially include the assignment in ψt to each of the variables, to
eventually obtain the multiassignment ψ̃ where for each variable we have both the assignments
of ψs and ψt to it as part of the multiassignment. Then starting from ψ̃ we sequentially remove
the assignment to each variable in ψs to eventually obtain ψt.

1.1.3 Improved Approximation Algorithm for GapMaxMin-2-CSPq

For GapMaxMin-2-CSPq, the previous best polynomial-time approximation algorithm was due
to Ohsaka [Ohs23b], which yields gives (1/4 − ε)-approximation but only works when the
average degree of the graph is sufficiently large. We improve on this, by giving a (1/2− ε)-
approximation algorithm which works even without the average degree assumption:

Theorem 6. For any constant ε ∈ (0, 1/2] and q ∈ N, there exists a (randomized) polynomial-time
algorithm for (1, 1/2− ε)-GapMaxMin-2-CSPq.

As mentioned earlier, this matches our NP-hardness provided in Theorem 3. We also note
that our algorithm running time is in fact completely independent of the alphabet size q (and
thus can handle arbitrarily large q).

1.2 Proof Overview

In this subsection, we provide the proof overview for all of the main results in this paper.

1.2.1 Resolution of RIH

In order to prove Theorem 1, we need two tools. The first is just a good binary code (see Sec-
tion 2.3 for relevant definitions). We use the notation Enc : {0, 1}k → {0, 1}n to denote an
encoding algorithm for a code of message length k and block length n whose distance is dEnc.
We use a code that has positive constant rate and relative distance.

The second tool we need is an assignment tester (a.k.a. Probabilistically Checkable Proofs of
Proximity) which is simply an algorithm which takes as input a Boolean circuit Φ and outputs
a 2-CSP whose variable set is a superset of the variable set of Φ with the following guarantee.
For every assignment ψ of Φ, and any extension of ψ to a total assignment to the variables of the
2-CSP, we have that the number of unsatisfied constraints in the 2-CSP w.r.t. that assignment is
linearly proportional to the distance to the closest assignment to ψ (under Hamming distance)
which makes Φ evaluate to 1 (see Section 2.4 for a formal definition).

It is known that (1, 1)-GapMaxMin-2-CSPq is PSPACE-hard even for q = 3 [GKMP09b].
Given a (1, 1)-GapMaxMin-2-CSPq instance Π = (G = (V, E), Σ, {Ce}e∈E) with two satisfying
assignments ψs, ψt : V → Σ, we construct a (1, 1− ε)-GapMaxMin-3-CSPq0 instance Π̃ = (G̃ =

(Ṽ, Ẽ), Σ̃, {C̃e}e∈Ẽ) where,

Ṽ := {v∗}]

⊎
i∈[4]

Ṽi

]
⊎

i∈[4]
Ãi

 and Ẽ :=
⊎

i∈[4]
Ẽi

5

where the variables and constraints are defined as follows.

Vertex Set: For every i ∈ [4], let Ṽi denote a set of n fresh variables, where n is the block length
of the code given by Enc whose message length is |V| · dlog qe. We use the notation that
for every i ∈ [4], let ī1, ī2, and ī3 denote the elements of [4] \ {i} and define the Boolean
circuit Φi on variable set Ṽī1] Ṽī2] Ṽī3 which evaluates to 1 if and only if for all `, `′ ∈ [3]
we have the input to Ṽī` is a valid codeword such that it’s decoded message is a satisfying
assignment to the variables of Π, and the decoded input to Ṽī` and the decoded input
to Ṽī`′

differ by at most 1 in Hamming distance. Let Π′i = (G′i = (V ′i , E′i), Σ̃, {Ci
e}e∈E′)

be the 2-CSPq0 instance produced by applying the assignment tester on Φi where V ′i =

Ṽī1] Ṽī2] Ṽī3] Ãi (i.e., for each i ∈ [4], Ãi is the additional set of variables produced by
the assignment tester).

Hyperedge Set and Constraints: For all i ∈ [4], and for each e = (u, v) ∈ E′i , create a hyper-
edge ẽ = (v∗, u, v) in Ẽi with the following constraint:

∀σ̃∗, σ̃u, σ̃v ∈ Σ, Cẽ(σ̃
∗, σ̃u, σ̃v) = 1⇐⇒

((
(σ̃∗ = i) ∧

(
Ci

e(σ̃u, σ̃v) = 1
))

or (σ̃∗ ∈ [4] \ {i})
)

.

See Figure 1 for an illustration of the design of these constraints.

Beginning and End of the Reconfiguration Assignment Sequence: In order to define ψ̃s and
ψ̃t, the starting and terminating satisfying assignments of Π̃, it will be convenient to first
define an additional notion. For every satisfying assignment ψ : V → Σ of Π, we define
an assignment ψEnc : Ṽ → Σ̃ of Π̃ in the following way. First, fix i ∈ [4] and we know
that if the input to Ṽī1 , Ṽī2 , and Ṽī3 are all equal to Enc(ψ) then Φi evaluates to 1 and thus
from the property of the assignment tester, there is some assignment to the variables in
Ãi, say ϕi, such that all constraints of Π′i are satisfied.

Then, we define ψEnc as follows:

ψEnc(v∗) = 4,

ψEnc|Ṽi
= Enc(ψ) ∀i ∈ [4],

ψEnc|Ãi
= ϕi ∀i ∈ [4].

Then, let ψ̃s = (ψs)Enc and ψ̃t = (ψt)Enc and it can be verified that both are satisfying
assignments to Π̃.

This construction is inspired by similar ideas appearing in literature in papers concerning
hardness and lower bounds of fixed point computation (for example see [Rub18, Section 4.1]).

To show the completeness case, we prove that for any two satisfying assignment ψ, ψ′ of
Π we can construct a reconfiguration sequence starting at ψEnc and ending at (ψ′)Enc whose
value is 1.

In order to prove the soundness case, given a reconfiguration sequence for Π̃ of value 1− ε,
we construct a reconfiguration sequence for Π, essentially by a majority decoding argument.
Note that every assignment to Π̃ has 4 potential assignments (not all distinct) to each variable
in V (i.e., Ṽ1, . . . , Ṽ4 each have an assignment to V). For every fixing of i ∈ [4], when we look
at a typical constraint in E′i , then for each v ∈ V, we prove that there must be a clear majority
assignment for v given by the assignments to Ṽī1 , Ṽī2 , and Ṽī3 (this is also why we needed four
copies of Ṽis and not fewer). This along with few other claims finishes the analysis.

6

Ã3

Ã1

Ã4

Ã2

Ṽ3

Ṽ1

Ṽ4

Ṽ2

v∗

Constraints
of E′3

Constraints
of E′4

Constraints
of E′1

Constraints
of E′2

Figure 1: Reducing (1, 1)-GapMaxMin-2-CSPq instance Π = (G = (V, E), Σ, {Ce}e∈E) to a
(1, 1− ε)-GapMaxMin-3-CSPq0 instance Π̃ = (G̃ = (Ṽ, Ẽ), Σ̃, {C̃e}e∈Ẽ).

Remark 7. In a recent work by Hirahara and Ohsaka [HO24], the authors also prove RIH, but their
starting point is the Succinct Graph Reachability problem (that is shown to be PSPACE-complete),
where given as input an efficiently computable circuit S : {0, 1}n → {0, 1}n which is interpreted as
providing the neighbor of a graph whose vertex set is {0, 1}n, the goal is to determine if vertex~1 can be
reached from vertex~0. They interpret RIH, as designing a probabilistic verifier for PSPACE who makes
constant queries, and then using a non-trivial combination of efficient PCPP and Locally Testable
Codes (LTC), they construct such a verifier for the Succinct Graph Reachability problem. Although
our reduction and that in [HO24] use a similar set of tools, there are a number of differences between the
two. Chief among them is perhaps how the variables “in transition” are handled. Hirahara and Ohsaka
create an additional symbol ⊥ to denote the “in transition” state which requires modifications to the
verifier and subtle changes in the analysis; e.g. they need the PCPP to be smooth [Par21]. Meanwhile,
as explained above, we handle the “in transition” state by having multiple copies of the variables and an
extra variable (v∗) to denote which copy is currently “in transition”; this allows us to use any standard
PCPP without extra property.

1.2.2 Proof Overview of the Other Results

Approximation Algorithm for GapMaxMin-2-CSPq (Theorem 6). The idea of the approx-
imation algorithm here is quite simple: We are going to change from the initial assignment
ψs to the final assignment ψt by directly changing the assignment sequentially to each of the

7

variables, one at a time. In other words, we define

ψi(v) =

{
ψs(v) if v ∈ Si,

ψt(v) otherwise,

where V = S0 (S1 (· · · (Sn = ∅. Notice that we never violate the edges inside Si or inside
V \ Si at all. Thus, we may only violate the edges across the cut, i.e., with one endpoint in Si
and the other endpoint not in Si, which we denote by E[Si, V \ Si]. Our main structural result
is the following:

Theorem 8 (Informal version of Theorem 21). For any graph G = (V, E) on m edges, there exists
an efficiently computable downward sequence V = S0) · · ·) Sn = ∅ such that for all i ∈ [n], the
number of edges between Si and V \ Si is at most m ·

(1
2 + o(1)

)
.

The above result immediately yields the desired approximation guarantee. The overall
strategy to prove the above theorem is in fact the same as that of [Ohs23b]; the difference is
that we derive a stronger bound (1/2 + o(1))|E| instead of (1/4 + o(1))|E| as in that work. To
gain the intuition to our improved bound, notice that, if we pick each Si at random, at most
1
2 |E| belong to E[Si, V \ Si] in expectation for each i ∈ [n]. Now, if we were able to achieve a
high probability statement (with perhaps a slightly weaker bound), then we could try to use
the union bound over all i ∈ [n] to derive our desired lemma. This is roughly our strategy
when the max-degree of the graph is small. However, if some vertices in the graph have
large degrees, the standard deviation of |E[Si, V \ Si]| is so large that one cannot hope for a
high probability bound. This brings us to our final approach: we use a simple probabilistic
argument on just the low-degree vertices to obtain the sequence of sets. Then, we use these
low-degree vertices to “vote on” when to remove each high-degree vertex, i.e. removing it
from Si only when at most half of its low-degree neighbor belongs to Si.

NP-Hardness for GapMaxMin-2-CSPq. Again, our hardness reduction approach is not too
different from the previous work of Ohsaka [Ohs24]. Namely, we start from a Gap-2-CSPq

instance Π̃ = (G̃ = (Ṽ, Ẽ), Σ̃, {C̃e}e∈Ẽ) that is NP-hard to approximate (with very large inap-
proximability gap). Then, we introduce two additional special characters (σ∗, 0) and (σ∗, 1) to
the alphabet set; each constraint is then extended such that, if the two special characters ap-
pear together, then it is unsatisfied. Otherwise, if only one of the two occurs, then it is satisfied.
The starting assignment is then set to every variable being assigned (σ∗, 0), while the ending
assignment is then set such that every variable is assigned (σ∗, 1).

There is a clear barrier to obtaining a (1/2+ o(1))-factor hardness of approximation using
this reduction: If the constraint graph G contains a bisection with o(|E|) edges across, then we
can simply run the aforementioned approximation algorithm on each side of the bisection. This
will yield a (3/4− o(1))-approximation. To overcome such an issue, we use a (folklore) result
in NP-hardness of approximation literature that Gap-2-CSPq remains hard to approximate even
when G has very good expansion properties. With this, we arrive at the desired result.

NP-Hardness for GapMinMax-2-CSPq. We use the same reduction as above for proving the
NP-hardness of GapMinMax-2-CSPq. The completeness of the reduction proceeds in a similar
way. The main difference is in the soundness analysis. Roughly speaking, we argue that, in
the reconfiguration sequence, we can find a multi-assignment such that, for each vertex, it is
assigned either (i) more than one character or (ii) a single character from the original alphabet
Σ̃. When restricting to case (ii), this gives us a partial assignment that does not violate any

8

constraint of Π̃. By starting with known NP-hardness of approximation results for Clique, we
know that there can only little order of variables/vertices involved in such a case. Thus, the
size of the multi-assignment must be at least (2− o(1))|V| as desired (where V is the set of
variables of the GapMinMax-2-CSPq instance).

Finally, the Set Cover Reconfiguration hardness follows immediately from applying the
“hypercube gadget” reduction of Feige [Fei98].

2 Preliminaries

Notations. We use the set theoretic notation of] to mean the disjoint union of two sets. For
a graph G = (V, E) and any subset S ⊆ V, we use E[S] to denote the set of edges whose both
endpoints belong to S. Meanwhile, for disjoint S1, S2 ⊆ V, we use E[S1, S2] to denote the set
of edges whose one endpoint belongs to S1 and the other belongs to S2. Also, we denote by
degG(v), the degree of vertex v ∈ V in the graph G.

For any set S, let P(S) denote the power set of S, i.e. the collection of all subsets of
S. Furthermore, for two sets S1, S2, we write S1∆S2 to denote its symmetric difference, i.e.
S1∆S2 = (S1 \ S2) ∪ (S2 \ S1).

Let Σ be any non-empty set. For every d ∈ N and every pair of strings x, y ∈ Σd, we
denote their Hamming distance by ‖x− y‖0 (or equivalently ‖y− x‖0) which is defined as:

‖x− y‖0 = ‖y− x‖0 = |{i ∈ [d] : xi 6= yi}|,

where xi denotes the character in the ith position of x.

2.1 Constraint Satisfaction Problems

In this subsection, we define the variants of Constraint Satisfaction Problems (CSP) relevant to
this paper.

k-CSP. A k-CSPq instance Π = (G = (V, E), Σ, {Ce}e∈E) consists of:

• A k-uniform hypergraph G = (V, E) called constraint graph,

• Alphabet set Σ of size at most q,

• For every hyperedge e = (u1, . . . , uk) ∈ V, a constraint Ce : Σk → {0, 1}.

An assignment ψ is a function from V to Σ. The value of ψ is

valΠ(ψ) := E
e=(u1,...,uk)∼E

[Ce(ψ(u1), . . . , ψ(uk))] .

The value of the instance is val(Π) := max
ψ

valΠ(ψ).

Given two assignments ψ and ψ′, we denote their distance by ‖ψ− ψ′‖0 (or equivalently
‖ψ′ − ψ‖0) and is defined as follows:

‖ψ− ψ′‖0 = ‖ψ′ − ψ‖0 = |{v ∈ V : ψ(v) 6= ψ′(v)}|.

9

MaxMin k-CSP. A reconfiguration assignment sequence ψ is a sequence ψ0, . . . , ψp of assign-
ments such that ‖ψi−1 − ψi‖0 = 1 for all i ∈ [p]. For two assignments ψs and ψt, we write
Ψ(ψs ! ψt) to denote the set of all reconfiguration assignment sequences starting from ψs

and ending at ψt.

For two assignments ψs and ψt, we say that a sequence is a direct reconfiguration assign-
ment sequence from ψs to ψt if it is a sequence ψ ∈ Ψ(ψs ! ψt) such that for every ψ ∈ ψ and
every v ∈ V, we have ψ(v) ∈ {ψs(v), ψt(v)}.

For a reconfiguration assignment sequence ψ, we let valΠ(ψ) = min
ψ∈ψ

valΠ(ψ). Finally, let

valΠ(ψs ! ψt) = max
ψ∈Ψ(ψs!ψt)

valΠ(ψ).

MinLabel 2-CSP. A multi-assignment is a function ψ : V → P(Σ). A multi-assignment ψ is
said to satisfy a 2-CSP instance Π iff, for every e = (u, v) ∈ E, there exist σu ∈ ψ(u), σv ∈ ψ(v)
such that Ce(σu, σv) = 1.

Two multi-assignments ψ1, ψ2 are neighbors iff ∑
v∈V
|ψ1(v)∆ψ2(v)| = 1. A reconfiguration

multi-assignment sequence ψ is a sequence ψ0, . . . , ψp of multi-assignments such that ψi−1 and ψi
are neighbors for all i ∈ [p]. A reconfiguration multi-assignment sequence ψ = (ψ0, . . . , ψp) is
said to satisfy Π iff ψi satisfies Π for all i ∈ {0, . . . , p}. We write ΨSAT(Π)(ψs ! ψt) to denote
the set of all satisfying reconfiguration multi-assignment sequence from ψs to ψt.

The size of a multi-assignment ψ is defined as |ψ| := ∑
v∈V
|ψ(v)|. The size of a reconfigura-

tion multi-assignment sequence ψ is defined as |ψ| := max
ψ∈ψ
|ψ|. Finally, the min-label value of

Π from ψs ! ψt is defined as:

MINLABΠ(ψs ! ψt) := min
ψ∈ΨSAT(Π)(ψs!ψt)

|ψ|.

Partial Assignments. We will also use the concept of partial assignments. A partial assign-
ment is defined as ψ : V → Σ ∪ {⊥} (where ⊥ can be thought of “unassigned”). Its size |ψ|
is defined as |{v ∈ V | ψ(v) 6=⊥}|. We say that a partial assignment satisfies Π iff, for all
e = (u, v) ∈ E such that ψ(u) 6=⊥ and ψ(v) 6=⊥, we have Ce(ψ(u), ψ(v)) = 1.

We define MAXPAR(Π) = max |ψ| where the maximum is over all satisfying partial as-
signments of Π.

Gap Problems. For the purpose of reductions, it will be helpful to work with (promise) gap
problems. For any 0 ≤ s ≤ c ≤ 1, we define the gap problems as follows:

• In the (c, s)-Gap-2-CSPq problem, we are given as input a 2-CSPq instance Π. The goal is
to decide if val(Π) ≥ c or val(Π) < s.

• In the (c, s)-GapMaxMin-k-CSPq problem, we are given as input a k-CSPq instance to-
gether with two assignments ψs and ψt. The goal is to decide if valΠ(ψs ! ψt) ≥ c or
valΠ(ψs ! ψt) < s.

• In the (1, 1/s)-GapMinMax-2-CSPq problem, we are given as input a 2-CSPq instance
Π = (G = (V, E), Σ, {Ce}e∈E) together with two assignments ψs and ψt. The goal is to
decide if4 MINLABΠ(ψs ! ψt) ≤ |V|+ 1 or MINLABΠ(ψs ! ψt) > (|V|+ 1)/s.

4Note that even when valΠ(ψs ! ψt) = 1, we still have MINLAB(ψs ! ψt) = |V|+ 1.

10

2.2 Set Cover

In the set cover reconfiguration problem, we are given as input subsets S1, . . . , Sm ⊆ [n]. A
reconfiguration set cover sequence T is a sequence T0, . . . , Tp such that every Ti is a set of indices
of a set cover, i.e., each Ti is a subset of [m] and

⋃
j∈Ti

Sj = [n], and moreover, for all i ∈ [p], we
have that |Ti∆Ti−1| = 1. We are also given as part of the input to the set cover reconfiguration
problem, two set covers Ts, Tt and the goal is to find a reconfiguration set cover sequence T
that minimizes maxT∈T |T|.

2.3 Error Correcting Codes.

A binary error correcting code (ECC) of message length k and block length n is an encoding al-
gorithm Enc : {0, 1}k → {0, 1}n. Its (absolute) distance dEnc is defined as min

s1 6=s2∈{0,1}k
‖Enc(s1)−

Enc(s2)‖0. The relative distance δEnc is defined as dEnc/n. Finally, the rate is defined as k/n.

It is well known that ECC with constant5 rate and constant relative distance exists.

Theorem 9 ([Gol08, Theorem E.2]). There exists δ, r > 0 such that, for all k ∈ N, there exists an
encoding Enc : {0, 1}k → {0, 1}n that is an ECC of relative distance at least δ and rate at least r.
Furthermore, Enc runs in polynomial time and there is a circuit Dec : {0, 1}n → {0, 1}k ∪ {⊥} of
polynomial size with the following guarantee:

∀x ∈ {0, 1}n, Dec(x) :=

{
y if Enc(y) = x

⊥ otherwise
.

2.4 Assignment Testers a.k.a. Probabilistically Checkable Proofs of Proximity

Assignment testers are the main technical tool used in our resolution of RIH. We remark that as-
signment testers are equivalent to Probabilistically Checkable Proofs of Proximity (PCPP) [BGH+06],
but we use the term assignment tester here to be consistent with [Din07], whose result we use.

Definition 10 (Assignment Tester [DR06]). An assignment tester with alphabet set Σ (where q :=
|Σ|) and rejection probability γ is an algorithm P whose input is a Boolean circuit Φ with input variable
set X, and whose output is a 2-CSPq instance Π = (G = (V, E), Σ, {Ce}e∈E) where V = X] A (for
some non-empty set A) such that the following holds for all assignments ψ : X → {0, 1}:

• (Completeness) If ψ is a satisfying assignment to Φ (i.e., Φ on input ψ evaluates to 1), then there
exists ψ∗A : A→ Σ such that valΠ((ψ, ψ∗A)) = 1.

• (Soundness) Let ψ∗ := argmin
ψ′ :X→{0,1}
ψ′ satisfies Φ

‖ψ − ψ′‖0. Then, for every ψA : A → Σ we have that

valΠ((ψ, ψA)) ≤ 1−
(

γ · ‖ψ−ψ∗‖0
|X|

)
.

We will use the below construction of assignment testers.

Theorem 11 ([Din07, Corollary 9.3]). For some constants q0 ∈N, γ0 > 0, there is a polynomial-time
assignment tester with alphabet size q0 and rejection probability γ0. Furthermore, in the completeness
case, there is a polynomial time algorithm AsgnT which takes as input ψ and outputs ψ∗A (we think of
AsgnT as a function that maps ψ to ψ∗A).

5In fact, our proof (of Theorem 1) requires only ECCs with polynomial rate.

11

3 PSPACE-Hardness of Approximation of Reconfiguration Problems:
Proof of RIH

In this section we prove RIH.

Proof of Theorem 1. It is known that (1, 1)-GapMaxMin-2-CSPq is PSPACE-hard even for q = 3
(by putting together [GKMP09b] and [Ohs23a, Lemma 3.4]). This is the starting point of our
reduction.

Given a (1, 1)-GapMaxMin-2-CSPq instance Π = (G = (V, E), Σ, {Ce}e∈E) with two sat-
isfying assignments ψs, ψt : V → Σ, let Enc : {0, 1}k → {0, 1}n denote the ECC as guar-
anteed by Theorem 9 of relative distance δ (along with Dec : {0, 1}n → {0, 1}k ∪ {⊥}) and
where k = |V| · dlog qe. Let q0, γ0 be as in Theorem 11; we assume w.l.o.g. that q0 ≥ 4.
Moreover, let π : Σ → {0, 1}dlog qe be some canonical injective map. Then, for every x :=
(x1, . . . , x|V|) ∈ {0, 1}k, where for all i ∈ |V|, we have xi ∈ {0, 1}dlog qe, if we have that
π−1(xi) exists for all i ∈ |V|, then we denote by ψx : V → Σ an assignment to Π, where
(ψx(v))v∈V := (π−1(x1), . . . , π−1(x|V|)).

For the rest of this proof, for every i ∈ [4], let ī1, ī2, and ī3 denote the elements of [4] \ {i}.
Let ε = γ0δ/50. We reduce Π to an instance of (1, 1− ε)-GapMaxMin-3-CSPq0 , namely, Π̃ =

(G̃ = (Ṽ, Ẽ), Σ̃, {C̃e}e∈Ẽ) where,

Ṽ := {v∗}]

⊎
i∈[4]

Ṽi

]
⊎

i∈[4]
Ãi

and

Ẽ :=
⊎

i∈[4]
Ẽi

where the variables and constraints are defined as follows.

Vertex Set: First, for all i ∈ [4], let Ṽi denote a set of n fresh variables. Next, for all i ∈ [4]:

• We define a Boolean circuit Φi on variable set Ṽī1] Ṽī2] Ṽī3 by specifying exactly
which assignments evaluate it to 1. An assignment ϕi : Ṽī1] Ṽī2] Ṽī3 → {0, 1}
makes Φi evaluate to 1 if and only if all of the following holds:

Encoding of a Satisfying Assignment Check: For all ` ∈ [3], we have Dec(ϕi|Ṽī`
) 6=⊥

where ϕi|Ṽī`
is the assignment ϕi restricted to the variables in Ṽī` . Moreover, let

x := Dec(ϕi|Ṽī`
). Then ψx satisfies all constraints in Π.

Reconfiguration Assignment Sequence Membership Check: For all `, `′ ∈ [3] let
x := Dec(ϕi|Ṽī`

) and x′ := Dec(ϕi|Ṽī
`′
). Then, we have that ‖ψx − ψx′‖0 ≤ 1.

Note that Φi is efficiently computable.

• Let Π′i = (G′i = (V ′i , E′i), Σ̃, {Ci
e}e∈E′) be the 2-CSPq0 instance produced by applying

Theorem 11 on Φi where V ′i = Ṽī1] Ṽī2] Ṽī3] Ãi.

Hyperedge Set and Constraints: For all i ∈ [4], and for each e = (u, v) ∈ E′i , create a hyper-
edge ẽ = (v∗, u, v) in Ẽi with the following constraint:

∀σ̃∗, σ̃u, σ̃v ∈ Σ̃, C̃ẽ(σ̃
∗, σ̃u, σ̃v) = 1⇐⇒

((
(σ̃∗ = i) ∧

(
Ci

e(σ̃u, σ̃v) = 1
))

or (σ̃∗ ∈ [4] \ {i})
)

.

12

Beginning and End of the Reconfiguration Assignment Sequence: In order to define ψ̃s and
ψ̃t, it will be convenient to first define an additional notion. For every satisfying assign-
ment ψ : V → Σ of Π, we define an assignment ψEnc : Ṽ → Σ̃ of Π̃ in the follow-
ing way. We use the shorthand notation, Enc(ψ) := Enc((π(ψ(v)))v∈V) throughout the
proof. First, fix i ∈ [4] and we will build an assignment ϕi to Φi which evaluates it to 1 in
the following way:

∀` ∈ [3], ϕi|Ṽī`
:= Enc(ψ).

From the construction of ϕi and the assumption that ψ is a satisfying assignment to Π, it
is easy to verify that ϕi evaluates to 1 on Φi. Let ϕ∗

Ãi
: Ãi → Σ̃ be the output of AsgnT on

input ϕi (as guaranteed in the completeness case of Theorem 11).

Then, we define ψEnc as follows:

ψEnc(v∗) = 4,

ψEnc|Ṽi
= Enc(ψ) ∀i ∈ [4],

ψEnc|Ãi
= AsgnT(ϕi) = ϕ∗Ãi

∀i ∈ [4].

Then, let ψ̃s = (ψs)Enc and ψ̃t = (ψt)Enc and it can be verified that both are satisfying
assignments to Π̃.

It is easy to note that the total reduction runs in polynomial time. The rest of the proof is
dedicated to showing the completeness and soundness of the reduction.

Completeness Analysis. Suppose that valΠ(ψs ! ψt) = 1. That is, there exists a reconfigu-
ration assignment sequence ψ0, . . . , ψp (w.r.t. Π) such that ψ0 = ψs, ψp = ψt and valΠ(ψi) = 1
for all i ∈ {0, . . . , p}. We will show that valΠ̃(ψ̃s ! ψ̃t) = 1. To do so, it suffices to show
that, for any two satisfying assignments ψ, ψ′ of Π that differ on a single coordinate, we have
that valΠ̃((ψ)

Enc ! (ψ′)Enc) = 1. (After which, we can just concatenate the configuration
sequences from (ψ0)Enc to (ψ1)

Enc and then from (ψ1)
Enc to (ψ2)Enc and so on.)

Suppose that ψ and ψ′ are two satisfying assignments of Π such that ‖ψ− ψ′‖0 = 1. We
now make an important remark. Let A ⊆ {0, 1}n × {0, 1}n × {0, 1}n be defined as follows:

(a1, a2, a3) ∈ A ⇐⇒ ∀ ι ∈ [3], we have aι ∈ {Enc(ψ),Enc(ψ′)}.

Note that A is of size 8. For every a ∈ A and for every i ∈ [4], we have that Φi evaluates to 1 on
a because, ‖ψ−ψ′‖0 = 1 (thus passing the Reconfiguration Assignment Sequence Membership
Check) and both ψ and ψ′ are satisfying assignments of Π (thus passing the Encoding of a
Satisfying Assignment Check). Thus, we can run AsgnT on a.

We think of an assignment to Π̃ now as a string in:

Σ̃1+(∑i∈[n] |Ṽ|i)+(∑i∈[n] |Ã|i) = Σ̃× Σ̃|Ṽ1| × Σ̃|Ṽ2| × Σ̃|Ṽ3| × Σ̃|Ṽ4| × Σ̃|Ã1| × Σ̃|Ã2| × Σ̃|Ã3| × Σ̃|Ã4|.

Then, we consider a sequence of assignments ψ̂ (which is not a reconfiguration assignment
sequence) of Π̃ given as follows:

ψ̂ := 〈ψ̂0, . . . , ψ̂8〉,

where we have:

ψ̂0 = ψEnc = (4, ψEnc|Ṽ1
, ψEnc|Ṽ2

, ψEnc|Ṽ3
, ψEnc|Ṽ4

, ψEnc|Ã1
, ψEnc|Ã2

, ψEnc|Ã3
, ψEnc|Ã4

),

13

ψ̂1 = (1 , ψEnc|Ṽ1
, ψEnc|Ṽ2

, ψEnc|Ṽ3
, ψEnc|Ṽ4

, ψEnc|Ã1
, ψEnc|Ã2

, ψEnc|Ã3
, ψEnc|Ã4

),

ψ̂2 =
(

1, (ψ′)Enc|Ṽ1
, ψEnc|Ṽ2

, ψEnc|Ṽ3
, ψEnc|Ṽ4

, ψEnc|Ã1
, AsgnT((ψ′)Enc|Ṽ1

, ψEnc|Ṽ3
, ψEnc|Ṽ4

) ,

AsgnT((ψ′)Enc|Ṽ1
, ψEnc|Ṽ2

, ψEnc|Ṽ4
) , AsgnT((ψ′)Enc|Ṽ1

, ψEnc|Ṽ2
, ψEnc|Ṽ3

)
)

,

ψ̂3 =
(

2 , (ψ′)Enc|Ṽ1
, ψEnc|Ṽ2

, ψEnc|Ṽ3
, ψEnc|Ṽ4

, ψEnc|Ã1
,AsgnT((ψ′)Enc|Ṽ1

, ψEnc|Ṽ3
, ψEnc|Ṽ4

),

AsgnT((ψ′)Enc|Ṽ1
, ψEnc|Ṽ2

, ψEnc|Ṽ4
),AsgnT((ψ′)Enc|Ṽ1

, ψEnc|Ṽ2
, ψEnc|Ṽ3

)
)

,

ψ̂4 =
(

2, (ψ′)Enc|Ṽ1
, (ψ′)Enc|Ṽ2

, ψEnc|Ṽ3
, ψEnc|Ṽ4

,

AsgnT((ψ′)Enc|Ṽ2
, ψEnc|Ṽ3

, ψEnc|Ṽ4
) ,AsgnT((ψ′)Enc|Ṽ1

, ψEnc|Ṽ3
, ψEnc|Ṽ4

),

AsgnT((ψ′)Enc|Ṽ1
, (ψ′)Enc|Ṽ2

, ψEnc|Ṽ4
) , AsgnT((ψ′)Enc|Ṽ1

, (ψ′)Enc|Ṽ2
, ψEnc|Ṽ3

)
)

,

ψ̂5 =
(

3 , (ψ′)Enc|Ṽ1
, (ψ′)Enc|Ṽ2

, ψEnc|Ṽ3
, ψEnc|Ṽ4

,

AsgnT((ψ′)Enc|Ṽ2
, ψEnc|Ṽ3

, ψEnc|Ṽ4
),AsgnT((ψ′)Enc|Ṽ1

, ψEnc|Ṽ3
, ψEnc|Ṽ4

),

AsgnT((ψ′)Enc|Ṽ1
, (ψ′)Enc|Ṽ2

, ψEnc|Ṽ4
),AsgnT((ψ′)Enc|Ṽ1

, (ψ′)Enc|Ṽ2
, ψEnc|Ṽ3

)
)

,

ψ̂6

(
3, (ψ′)Enc|Ṽ1

, (ψ′)Enc|Ṽ2
, (ψ′)Enc|Ṽ3

, ψEnc|Ṽ4
,

AsgnT((ψ′)Enc|Ṽ2
, (ψ′)Enc|Ṽ3

, ψEnc|Ṽ4
) , AsgnT((ψ′)Enc|Ṽ1

, (ψ′)Enc|Ṽ3
, ψEnc|Ṽ4

) ,

AsgnT((ψ′)Enc|Ṽ1
, (ψ′)Enc|Ṽ2

, ψEnc|Ṽ4
), AsgnT((ψ′)Enc|Ṽ1

, (ψ′)Enc|Ṽ2
, (ψ′)Enc|Ṽ3

)
)

,

ψ̂7 =
(

4 , (ψ′)Enc|Ṽ1
, (ψ′)Enc|Ṽ2

, (ψ′)Enc|Ṽ3
, ψEnc|Ṽ4

,

AsgnT((ψ′)Enc|Ṽ2
, (ψ′)Enc|Ṽ3

, ψEnc|Ṽ4
),AsgnT((ψ′)Enc|Ṽ1

, (ψ′)Enc|Ṽ3
, ψEnc|Ṽ4

),

AsgnT((ψ′)Enc|Ṽ1
, (ψ′)Enc|Ṽ2

, ψEnc|Ṽ4
),AsgnT((ψ′)Enc|Ṽ1

, (ψ′)Enc|Ṽ2
, (ψ′)Enc|Ṽ3

)
)

,

ψ̂8 =
(

4, (ψ′)Enc|Ṽ1
, (ψ′)Enc|Ṽ2

, (ψ′)Enc|Ṽ3
, (ψ′)Enc|Ṽ4

,

AsgnT((ψ′)Enc|Ṽ2
, (ψ′)Enc|Ṽ3

, (ψ′)Enc|Ṽ4
) , AsgnT((ψ′)Enc|Ṽ1

, (ψ′)Enc|Ṽ3
, (ψ′)Enc|Ṽ4

) ,

AsgnT((ψ′)Enc|Ṽ1
, (ψ′)Enc|Ṽ2

, (ψ′)Enc|Ṽ4
) ,AsgnT((ψ′)Enc|Ṽ1

, (ψ′)Enc|Ṽ2
, (ψ′)Enc|Ṽ3

)
)

= (ψ′)Enc,

where we have highlighted in pink color the entries which have changed from the immedi-
ate predecessor in the sequence. It is easy to verify that each assignment in ψ̂ is a satisfying
assignment to Π̃.

Next, an important observation is that for all j ∈ [8], let ψ̂j, be the direct reconfiguration
assignment sequence from ψ̂j−1 to ψ̂j obtained by changing ψ̂j−1 to ψ̂j in some canonical short-
est way possible. Then, for every intermediate assignment ψ̂j−1,j ∈ ψ̂j (i.e., ‖ψ̂j−1,j − ψ̂j−1‖0 +

‖ψ̂j−1,j − ψ̂j‖0 = ‖ψ̂j−1 − ψ̂j‖0), we have that ψ̂j−1,j is also a satisfying assignment. This is be-
cause, if j is even then the variables whose assignment is modified in ψ̂j−1,j (compared to ψ̂j−1)
is not in Π′i, where i is the first coordinate of ψ̂j−1,j, and if j is odd then note that for all j′ ∈ [9],
we have by construction of the assignment that in ψ̂j′−1 if we change the assignment of v∗ to
any arbitrary value in [4], the modified assignment continues to satisfy all constraints of Π̃.

Thus, our reconfiguration assignment sequence ψ from (ψ)Enc to (ψ′)Enc is as follows. Set

14

j = 0, and while j < 8, first include ψ̂j to ψ, and then sequentially introduce the assignments in
the the direct reconfiguration assignment sequence ψ̂j+1 which ends with the assignment ψ̂j+1.

It is simple to verify that the above construction gives a valid reconfiguration assignment
sequence from (ψ)Enc to (ψ′)Enc such that every assignment is satisfying all constraints in Π̃.

Soundness Analysis. Suppose contrapositively that valΠ̃(ψ̃s ! ψ̃t) ≥ 1− ε. We will show
that valΠ(ψs ! ψt) = 1.

Since valΠ̃(ψ̃s ! ψ̃t) ≥ 1− ε, there exists a reconfiguration assignment sequence ψ̃0, . . . , ψ̃p

(w.r.t. Π̃) such that ψ̃0 = ψ̃s, ψ̃p = ψ̃t and valΠ̃(ψ̃j) ≥ 1− ε for all j ∈ {0, . . . , p}. We further as-
sume that for all j ∈ {0, . . . , p}, we have ψ̃j(v∗) ∈ [4], as otherwise we have all the constraints
are violated in Π̃.

For every j ∈ {0, . . . , p}, we construct an assignment ψj to Π as follows:

• Let ij := ψ̃j(v∗).

• For each ` ∈ [4] \ {ij}, let ψ`
j := argmin

ψ:V→Σ
‖Enc(ψ)− ψ̃j|Ṽ`

‖0.

• For every v ∈ V, let ψj(v) be the most frequent element in {ψ`
j (v)}`∈[4]\{ij} (ties broken

arbitrarily).

Our main observation is the following claim:

Claim 12. For every j ∈ {0, . . . , p} the following holds.

1. For every ` ∈ [4] \ {ij}, we have ‖Enc(ψ`
j)− ψ̃j|Ṽ`

‖0 < δn
4 .

2. For every ` ∈ [4] \ {ij}, we have ψ`
j is a satisfying assignment of Π.

3. For every `, `′ ∈ [4] \ {ij}, we have ‖ψ`
j − ψ`′

j ‖0 ≤ 1.

Before we prove Claim 12, let us first see how the above claim helps us finish the sound-
ness analysis.

Note that, for all j ∈ {0, . . . , p}, due to the third item in Claim 12, at least two of the three
assignments among ψ`

j s (for ` ∈ [4] \ {ij}) are identical. Since ψj will be equal to this, the
second item of Claim 12 implies that valΠ(ψj) = 1.

Fix some j ∈ [p]. We claim that ‖ψj − ψj−1‖0 ≤ 1. To see this consider two cases:

Case I: ψ̃j−1(v∗) = ψ̃j(v∗). In this case, from the first item of Claim 12 we can deduce ψ`
j−1 =

ψ`
j , for all ` ∈ [4] \ {ij}. This is because, for any fixing of ` ∈ [4] \ {ij} we have from

triangle inequality:∥∥∥Enc(ψ`
j)− Enc(ψ`

j−1)
∥∥∥

0

≤
∥∥∥Enc(ψ`

j−1)− ψ̃j−1|Ṽ`

∥∥∥
0
+
∥∥∥Enc(ψ`

j)− ψ̃j|Ṽ`

∥∥∥
0
+
∥∥∥ψ̃j|Ṽ`

− ψ̃j−1|Ṽ`

∥∥∥
0

≤ δn
2

+ 1.

Since dEnc ≥ δn, this implies that for all v ∈ V, we have π(ψ`
j (v)) = π(ψ`

j−1(v)), which
further implies that ψ`

j = ψ`
j−1 (as π is injective). Since this last equality holds for all

` ∈ [4] \ {ij}, we thus have ψj−1 = ψj.

15

Case II: ψ̃j−1(v∗) 6= ψ̃j(v∗). Let ī1 and ī2 denote the elements in [4] \ {ψ̃j−1(v∗), ψ̃j(v∗)}. From

the construction of ψj−1 and ψj, we have that ψj−1 ∈ {ψī1
j−1, ψī2

j−1} and ψj ∈ {ψī1
j , ψī2

j }.
However, since ‖ψ̃j−1 − ψ̃j‖0 = 1 we have that ψ̃j−1|Ṽ\{v∗} = ψ̃j|Ṽ\{v∗}. This implies that

ψī1
j−1 = ψī1

j and ψī2
j−1 = ψī2

j . Thus, ψj−1 ∈ {ψī1
j , ψī2

j }. But we know from Item 3 in Claim 12

that ‖ψī1
j − ψī2

j ‖0 ≤ 1. Thus, we conclude that ‖ψj − ψj−1‖0 ≤ 1.

Now, consider the sequence of assignments, 〈ψ0, . . . , ψp〉. We remove all contiguous du-
plicates, i.e., for all j ∈ [p], if ψj = ψj−1, then we remove ψj from the sequence. Let the resulting
sequence be ψ. It is easy to see that ψ is a valid reconfiguration assignment sequence. This
completes the proof.

Proof of Claim 12. Fix j ∈ {0, . . . , p}. For ease of notation, we will use the shorthand i for ij in
this proof. Since valΠ̃(ψ̃j) ≥ 1− ε we have that at most 4ε · |Ẽi| many constraints are violated
by ψ̃j in {C̃ẽ}ẽ∈Ẽi

, which in turn implies that ψ̃j|V′i violates at most 4ε · |E′i | many constraints in
Π′i. Let V̂i := Ṽī1] Ṽī2] Ṽī3 . Let ψ∗ : V̂i → {0, 1} be defined as follows:

ψ∗ := argmin
ψ′ :V̂i→{0,1}
ψ′ satisfies Φi

‖ψ̃j|V̂i
− ψ′‖0.

From the soundness guarantee of Definition 10 we have:

1− 4ε ≤ valΠ′i
(ψ̃j|V′i) ≤ 1−

γ0 ·
∥∥∥ψ̃j|V̂i

− ψ∗
∥∥∥

0
3n

=⇒
∥∥∥ψ̃j|V̂i

− ψ∗
∥∥∥

0
≤ 12εn

γ0
<

δ

4
· n

Fix ` ∈ [4] \ {i}. We then have:∥∥∥ψ̃j|Ṽ`
− ψ∗|Ṽ`

∥∥∥
0
≤
∥∥∥ψ̃j|V̂i

− ψ∗
∥∥∥

0
<

δ

4
· n.

Since ψ∗ satisfies Φi we have that Dec(ψ∗|Ṽ`
) 6=⊥. Let x` := Dec(ψ∗|Ṽ`

). We also have that
Enc(ψx`) = ψ∗|Ṽ`

. From the definition of ψ`
j we have that:

∥∥∥Enc(ψ`
j)− ψ̃j|Ṽ`

∥∥∥
0
≤
∥∥∥Enc(ψx`)− ψ̃j|Ṽ`

∥∥∥
0
=
∥∥∥ψ̃j|Ṽ`

− ψ∗|Ṽ`

∥∥∥
0
<

δ

4
· n

Thus we proved Item 1 of the claim statement. Next to prove Item 2, observe that from
triangle inequality we have:∥∥∥Enc(ψ`

j)− Enc(ψx`)
∥∥∥

0

≤
∥∥∥Enc(ψ`

j)− ψ̃j|Ṽ`

∥∥∥
0
+
∥∥∥ψ̃j|Ṽ`

− Enc(ψx`)
∥∥∥

0

<
δ

2
· n.

Since dEnc ≥ δn, this implies that for all v ∈ V, we have π(ψ`
j (v)) = π(ψx`(v)), which further

implies that ψ`
j = ψx` (as π is injective). Since, ψx` satisfies all the constraints in Π (because ψ∗

satisfies Φi and thus passed the Encoding of a Satisfying Assingment Check), we have that ψ`
j

satisfies all the constraints in Π.

16

Finally, to prove Item 3 of the claim statement, fix some `′ ∈ [4] \ {i}. Let x`
′

:= Dec(ψ∗|Ṽ`′
)

and Enc(ψx`′) = ψ∗|Ṽ`′
. Then, since ψ∗ passed the Reconfiguration Assignment Sequence Mem-

bership Check in Φi, we have 1 ≥ ‖ψx` − ψx`′ ‖0 = ‖ψ`
j − ψ`′

j ‖0 as desired.

4 NP-Hardness of Approximation with Tight Ratios

In this section we prove Theorems 3, 4, and 5, i.e., our tight NP-hardness results.

4.1 NP-Hardness of GapMaxMin-2-CSPq

In this subsection, we will prove our (nearly) tight NP-hardness of approximation of
GapMaxMin-2-CSPq (Theorem 3).

We will reduce from the NP-hardness of Gap-2-CSPq problem with “balanced” edges.

Definition 13. We say that a graph G = (V, E) is δ-balanced if and only if for any partition V =

V1 ∪ V2 such that |V1|, |V2| ≤ d|V|/2e, we have |E[V1]|+ |E[V2]| ≤ (1 + δ)|E|/2. We say that a
2-CSP instance is δ-balanced if and only if it’s constraint graph is δ-balanced.

For δ-balanced 2-CSPs, i.e., instances of Gap-2-CSPq whose constraint graph is δ-balanced
(for some δ > 0), it is not hard to show the following result:

Theorem 14. For every constant δ > 0, there exists q ∈ N such that (1, δ)-Gap-2-CSPq is NP-hard
even on δ-balanced instances.

The proof of the above theorem is deferred to Section 4.1.2.

4.1.1 From Balanced Instances of Gap-2-CSPq to GapMaxMin-2-CSPq: Proof of Theorem 3

Before we prove Theorem 14, let us show how to use it to prove Theorem 3. We note here that
our reduction below is slightly different from the one presented in Section 1.2. Specifically, we
do not add two new characters to the alphabet set, but instead we introduce a new character
σ∗ and then for each character σ̃ ∈ Σ̃∪ {σ∗}, we make two copies of it (σ̃, 0) and (σ̃, 1), and we
set the constraint so that (σ∗, i) is not compatible with (σ̃, 1− i). This change helps avoid some
strategy, such as changing a fraction of assignments to some character from Σ̃ before using
the approximation algorithm on the remaining assignments, that can prevent the reduction in
Section 1.2 from showing 1/2 + o(1) factor hardness of approximation.

Proof of Theorem 3. Let δ = ε/2. For any two bits a, b ∈ {0, 1}, we define the indicator function
1[a, b] to evaluate to 1 if a = b and to evaluate to 0 otherwise.

Given an instance Π̃ = (G̃ = (Ṽ, Ẽ), Σ̃, {C̃e}e∈Ẽ) of δ-balanced 2-CSP from Theorem 14.
We create an GapMaxMin-2-CSPq instance (Π = (G = (V, E), Σ, {Ce}e∈E), ψs, ψt) as follows:

• Let G = G̃.

• Let Σ = (Σ̃ ∪ {σ∗}) × {0, 1} where σ∗ is a new character and Σ denote two copies of
(Σ̃ ∪ {σ∗}), indexed by the second coordinate. Moreover, for any σ = (σ̃, a) ∈ Σ where
σ̃ ∈ Σ̃ ∪ {σ∗} and a ∈ {0, 1}, we denote by σ1 := σ̃ and σ2 := a.

17

• For e = (u, v) ∈ E, we define Ce : Σ× Σ→ {0, 1} as follows:

∀(σu, σv) ∈ Σ× Σ, Ce(σ
u, σv) :=

{
C̃e(σu

1 , σv
1) if (σu

1 , σv
1) ∈ Σ̃× Σ̃,

1[σu
2 , σv

2] otherwise.

• Finally, for all v ∈ V, we define ψs(v) := (σ∗, 0) and ψt(v) := (σ∗, 1).

Completeness. Suppose that val(Π̃) = 1. That is, there exists an assignment ψ̃∗ that satisfies
all constraints in Π̃. Let ψ∗0 and ψ∗1 be defined by ψ∗0(v) := (ψ̃∗(v), 0) and ψ∗1(v) := (ψ̃∗(v), 1)
for all v ∈ V. Let ψ be a concatenation of any direct sequence from ψs to ψ∗0 , from ψ∗0 to ψ∗1 and
from ψ∗1 to ψt. It is simple to see that valΠ(ψ) = 1 as desired.

Soundness. Suppose that val(Π̃) < δ. Consider any ψ = (ψ0 = ψs, . . . , ψp = ψt) ∈ Ψ(ψs !
ψt) for some p ∈ N. Let ni = |{v ∈ V | ψi(v)2 = 0}| for all i = 0, . . . , p. Since n1 = 0, np = n
and |ni − ni−1| ≤ 1, there must be i∗ such that ni∗ = dn/2e. Consider ψi∗ . Let ψ̃ : Ṽ → Σ̃ be
such that, for all v ∈ V, ψ̃(v) = ψi∗(v)1 if ψi∗(v)1 ∈ Σ̃ and ψ̃(v) can be set arbitrarily otherwise.
Furthermore, let V0 := {v ∈ V | ψi∗(v)2 = 0} and V1 := {v ∈ V | ψi∗(v)2 = 1}. We have

valΠ(ψ) ≤ valΠ(ψi∗) = E
e=(u,v)∼E

[Ce(ψi∗(u), ψi∗(v))]

≤ E
e=(u,v)∼E

[
C̃e(ψ̃(u), ψ̃(v)) + 1[σu

2 , σv
2]
]

≤ valΠ̃(ψ̃) +
|E[V0] + E[V1]|

|E|
< δ + (1/2 + δ) = 1/2 + ε,

where the last inequality follows from val(Π̃) < δ and that Π̃ is δ-balanced.

4.1.2 Hardness of Balanced Gap-2-CSPq

In this subsubsection, we provide a short proof of Theorem 14. We note that this result seems
to be folklore in literature. However, since we are not aware of the result stated exactly in this
form, we show how to derive it from an explicitly stated result in [Mos14] for completeness.

Additional Preliminaries. To state this result, we some additional definitions.

For a distribution P and a possible outcome x, we write P(x) to denote the probability
that the outcome is x. For a set S, we write P(S) to denote ∑x∈S P(S). The total variation
(TV) distance between two distributions P, Q is defined as dTV(P, Q) := 1

2 ∑x |P(x)− Q(x)| =
maxS P(S)− Q(S). The min-entropy P is defined to be H∞(P) := minx log(1/P(x)). We write
US to denote the uniform distribution on a set S.

For a bipartite graph G = (X] Y, E) and a distribution PX on X, let G ◦ PX denote the
distribution of sampling x ∼ PX and then picking a uniformly random neighbor y of x in G.

An (δ, ε)-extractor graph is a bi-regular bipartite graph G = (X]Y, E) that satisfies the fol-
lowing: For any distribution PX over X with H∞(P) ≥ log(δ|X|), we have dTV(G ◦ PX, UY) ≤ ε,
where UY is the uniform distribution over Y.

Moshkovitz [Mos14] gave a transformation from any 2-CSP instance on arbitrary bi-regular
graphs to one which is a good extractor, while preserving the value of the instance. This gives

18

the following hardness of 2-CSPs on extractor graphs.

Theorem 15 ([Mos14]). For any constants γ, δ > 0, there exists q ∈N such that (1, δ)-Gap-2-CSPq

is NP-hard even when the constraint graph is an (γ, γ2)-extractor graph.

From Extractor to Balancedness. Given Theorem 15, it suffices for us to show that a good
extractor graph also satisfies balancedness (Definition 13). Before we show this, it will be
helpful to state the following lemma, which is analogous to the “expander mixing lemma” but
for extractors.

Lemma 16. Let G = (X, Y, E) be any (γ, ε)-extractor graph. Then, for any X′ ⊆ X, Y′ ⊆ Y, we have∣∣∣∣ |E[X′, Y′]|
|E| − |X

′||Y′|
|X||Y|

∣∣∣∣ ≤ γ + ε

In fact, an almost identical lemma was already shown in [Vad12], as stated below. The
only difference is this version requires the size of X′ to be sufficiently large6.

Lemma 17 ([Vad12, Proposition 6.21]). Let G = (X, Y, E) be any (γ, ε)-extractor graph. Then, for
any X′ ⊆ X, Y′ ⊆ Y such that |X′| ≥ γ|X|, we have∣∣∣∣ |E[X′, Y′]|

|E| − |X
′||Y′|
|X||Y|

∣∣∣∣ ≤ ε

Our version of the lemma follows almost trivially from the one above, as stated below.

Proof of Lemma 16. Consider two cases based on the size of X′. If |X′| ≥ γ|X|, then this follows
directly from Lemma 17. Otherwise, if |X′| < γ|X|, we have both |X

′||Y′|
|X||Y| < γ and |E[X′,Y′]|

|E| ≤
|E[X′,Y]|
|E| < γ (where the latter is from bi-regularity). Thus, we have

∣∣∣ |E[X′,Y′]||E| − |X
′||Y′|
|X||Y|

∣∣∣ < γ.

From the above, we can conclude that any good extractor satisfies balancedness:

Lemma 18. Any (γ, ε)-extractor graph is 4(γ + ε)-balanced.

Proof. Consider any partition of V = X] Y into two balanced parts V1, V2 (i.e. such that
||V1| − |V2|| ≤ 1. Let X1 := V1 ∩X, X2 := V2 ∩X, Y1 := V1 ∩Y and Y2 := V2 ∩Y. Now, we have

|E[V1]|+ |E[V2]|
|E| =

|E[X1, Y1]|
|E| +

|E[X2, Y2]|
|E|

≤ 2(γ + ε) +
|X1||Y1|+ |X2||Y2|

|X||Y| (Lemma 16)

= 2(γ + ε) +
1
2
+

1
2
· (|X1| − |X2|)(|Y1| − |Y2|)

|X||Y|

≤ 2(γ + ε) +
1
2

,

where the last inequality follows from the fact that ||V1| − |V2|| ≤ 1 (which implies that |X1| −
|X2|, |Y1| − |Y2| cannot be both positive).

Proof of Theorem 14 is now complete by just combining the above results.

6In fact, Vadhan [Vad12] proves “if and only if” statement but for |X′| = γ|X|. However, it is clear that the
forward direction holds for any |X′| ≥ γ|X|

19

Proof of Theorem 14. This follows immediately from Theorem 15 with γ = δ/8 since Lemma 18
asserts that any (γ, γ2)-extractor graph is δ-balanced.

We end this subsection by noting that, when the constraint graph is the complete bi-
partite graph, then the instance is 0-balanced. This corresponds to the so-called free games,
which admits a PTAS for constant alphabet size q but becomes hard to approximate when q
is large [AIM14, MR17]. Such a hardness result is weaker than Theorem 14 in two ways: q
has to be super constant and the hardness is only under the Exponential Time Hypothesis
(ETH) [IP01, IPZ01].

4.2 NP-Hardness of GapMinMax-2-CSPq

In this subsection, we will prove our (nearly) tight NP-hardness of approximation of GapMinMax-
2-CSPq (Theorem 5).

To do so, we will need the following hardness of Gap-2-CSPq in terms of partial assign-
ment. Note that this can be easily derived from taking any PCP that reads Oδ(1)-bits with
δ-soundness and plug it into the FGLSS reduction [FGL+96]. (This is usually stated in terms
of the hardness of Maximum Clique problem, but it can be stated in the form below.)

Theorem 19 ([ALM+98, FGL+96]). For any δ > 0, there exists q ∈ N such that, it is NP-hard,
given a Gap-2-CSPq instance Π = (G = (V, E), Σ, {Ce}e∈E), to distinguish between val(Π) = 1 or
MAXPAR(Π) < δ · |V|.

We can now give a reduction from the hard Gap-2-CSPq instance above to prove Theo-
rem 5 in a similar (but slightly simpler) manner as in the proof of Theorem 3.

Proof of Theorem 5. Given an instance Π̃ = (G̃ = (Ṽ, Ẽ), Σ̃, {C̃e}e∈Ẽ) of 2-CSP from Theorem 19.

We assume w.l.o.g. that G̃ is a complete graph, i.e. Ẽ = (Ṽ
2), as we can add trivial constraints

over the non-edges in Ẽ without changing the MINLAB value. We create an 2-CSP Reconfigu-
ration instance (Π = (G = (V, E), Σ, {Ce}e∈E), ψs, ψt) exactly as in the proof of Theorem 3.

Completeness. Suppose that val(Π̃) = 1. As shown in the proof of Theorem 3, there exists a
reconfiguration assignment sequence ψ = (ψ0 = ψs, . . . , ψp = ψt) such that valΠ(ψi) = 1 for
all i ∈ [p]. We create a reconfiguration multi-assignment sequence ψ′ = (ψ0, ψ′1, ψ1, . . . , ψ′p, ψp)

where we let ψ′i(v) = {ψi−1(v), ψi(v)} for all v ∈ V and i ∈ [p]. It is clear that this is a satisfying
sequence and that |ψ′| = |V|+ 1 as desired.

Soundness. Let δ = ε/2. We may assume w.l.o.g. that |V| ≥ 4/ε. Suppose that MAXPAR(Π) <

δ · |V|. Consider any ψ = (ψ0 = ψs, . . . , ψp = ψt) ∈ ΨSAT(Π)(ψs ! ψt). Let i ∈ [p] be the
smallest index7 for which ψi(v) 6= {(σ∗, 0)} for all v ∈ V. Consider ψi−1; there must exist
vs such that ψi−1(vs) = {(σ∗, 0)}. Due to the definition of C(vs,u) and since ψi−1 satisfies Π,
it must be the case that ψi−1(u) 6= {(σ∗, 1)} for all u ∈ V. As a result, we also have that
ψi(u) 6= {(σ∗, 1)}.

Now, consider V1 := {v | |ψi(v)| = 1}. For each v ∈ V1, let σv denote the only element of
ψ(v). From the above paragraph, we must have (σv)1 ∈ Σ̃ for all v ∈ V1. Thus, we may define

7Such an index always exists since ψt satisfies this condition.

20

the ψ′ : V → Σ ∪ {⊥} by

ψ′(v) =

{
(σv)1 if v ∈ V1,

⊥ otherwise.

Since ψ satisfies Π, ψ′ is a satisfying partial assignment to Π̃. From our assumption that
MAXPAR(Π) < δ · |V|, we must have |V1| < δ · |V|. As a result, we have

|ψi| ≥ 2 · |V \V1|+ |V1| = 2 · |V| − |V1| > (2− δ) · |V| ≥ (2− ε) · (|V|+ 1).

This implies that |ψ| > (2− ε) · (|V|+ 1) as claimed.

4.3 MinMax Set Cover Reconfiguration

In this subsection, we will prove our (nearly) tight NP-hardness of approximation of the Set
Cover Reconfiguration problem (Theorem 4).

It turns out that the classic reduction from Gap-2-CSPq to Set Cover of Lund and Yan-
nakakis [LY94] also yields a gap preserving reduction from the GapMinMax-2-CSPq problem
to the Set Cover Reconfiguration problem. This reduction was also used by Ohsaka [Ohs24].
We summarize the properties of the reduction below.8

Theorem 20 ([LY94, Ohs24]). There is a reduction that takes in as input a Gap-2-CSPq instance
Π = (G = (V, E), Σ, {Ce}e∈E) and produces a Set Cover instance (Sv,σ)v∈V,σ∈Σ such that

• a multi-assignment ψ : V → P(Σ) satisfies Π if and only if {Sv,σ}v∈V,σ∈ψ(v) is a set cover , and,

• m = |V| and |Si| ≤ |E| · 2q for all i ∈ [m].

Moreover, the algorithm runs in polynomial time in (|V|+ |E|) · 2q.

Notice that the first property implies that each set cover reconfiguration sequence from
Ts := {Sv,σ}v∈V,σ∈ψs(v) to Tt := {Sv,σ}v∈V,σ∈ψt(v) in the set cover instance has a one-to-one
correspondence with a satisfying reconfiguration multi-assignment sequence from ψs to ψt in
Π where the size is preserved. As a result, plugging the above into Theorem 5, we immediately
arrive at Theorem 4.

5 Approximate Algorithm for GapMaxMin-2-CSPq

In this section, we give the approximation algorithm for GapMaxMin-2-CSPq (Theorem 6). Our
main result is actually a structural theorem showing that, in any graph, we can find sequence
of downward subsets of the vertices such that at most roughly half edges are cut by these sets:

Theorem 21. For any graph G = (V, E) with m edges, there exists a downward sequence V = S0)
· · ·) Sn = ∅ such that max

i∈[n]
|E[Si, V \ Si]| ≤ m/2 + 7m4/5. Furthermore, such a sequence can be

computed in (randomized) polynomial time.

8Note that a different “hypercube gadget” reduction of Feige [Fei98] also have similar properties. See
e.g. [CCK+20, KLM19] for description of this reduction in the non-reconfiguration setting in the MinLabel ter-
minology.

21

Note that it is not clear if the Θ(m4/5) additive factor is tight. The best known lower bound
we are aware of is m/2 + Θ(

√
m) which happens when we take an n-clique such that n is odd.

We also note that Theorem 21 is an improvement on a similar theorem in [Ohs24] where
m/2 is replaced with 3m/4 (and different lower order term). Using a similar strategy, we can
immediately get an approximation algorithm for GapMaxMin-2-CSPq, as formalized below.

Proof of Theorem 6. Let (Π = (G = (V, E), Σ, {Ce}e∈E), ψs, ψt) be the input instance of GapMaxMin-
2-CSPq. If m ≤ 106/ε, then use the exponential-time exact algorithm to solve the problem.
Otherwise, use Theorem 21 to first find a sequence V = S0) · · ·) Sn = ∅ such that
max
i∈[n]

|E[Si, V \ Si]| ≤ m/2 + 7m4/5. We define the direct reconfiguration assignment sequence

ψ0, . . . , ψn by

ψi(v) =

{
ψs(v) if v ∈ Si,

ψt(v) otherwise.

It is simple to see that for all i ∈ [n], we have valΠ(ψi) ≥ 1
|E| · (|E| − |E[Si, V \ Si]|) ≥ 1/2−

7/m1/5 ≥ 1/2− ε. This completes the proof.

The rest of this section is dedicated to the proof of Theorem 21.

5.1 Low-Degree Case

At a high-level, it seems plausible that a random sequence satisfies this property with 1− o(1)
probability. However, this is not true: if our graph is a star, then, with probability 1 − γ,
the maximum cut size maxi∈[n] |E[Si, V \ Si]| is at least 1/2 + Ω(γ) of the entire graph. The
challenge in this setting is the high-degree vertex. Due to this, we start by assuming that the
max-degree of the graph is bounded and prove the following:

Lemma 22. For any graph G = (V, E) with m edges such that each vertex has degree at most ∆,
there exists a downward sequence V = S0) · · ·) Sn = ∅ such that max

i∈[n]
|E[Si, V \ Si]| ≤ m/2 +

√
m∆ + ∆. Furthermore, such a sequence can be computed in (randomized) polynomial time.

To prove Lemma 22, we start by showing that the following lemma on graph partitioning,
that roughly balances the degree and cuts half the edges.

Lemma 23. For any graph G = (V, E) with m edges such that each vertex has degree at most ∆, there
exists a partition of V into V1]V2 such that

|E[V1, V2]| ≤ m/2 +
√

m (1)

∑
v∈V1

degG(v) ≤ m + 2
√

m∆, ∑
v∈V2

degG(v) ≤ m + 2
√

m∆. (2)

Furthermore, such a partition can be computed in (randomized) polynomial time.

Proof. We will show that a random partition V1, V2 (where, for each v ∈ V, we pick i(v) uni-
formly at random from {1, 2} and let v be in Vi(v)) satisfies the desired condition with proba-
bility9 1/4. First, observe that E[|E[V1, V2]|] ≥ m/2. Meanwhile, we have

E[|E[V1, V2]|2] = ∑
(u,v)∈E,(u′,v′)∈E

Pr[{i(u), i(v)} = {1, 2}, {i(u′), i(v′)} = {1, 2}].

9We can repeat this process to make the failure probability arbitrarily small.

22

Notice that

Pr[{i(u), i(v)} = {1, 2}, {i(u′), i(v′)} = {1, 2}] =
{

1/4 if {u, v} 6= {u′, v′},
1/2 if {u, v} = {u′, v′}.

Plugging this into the above, we have E[|E[V1, V2]|2] = m2/4+m/4. This means that Var(|E[V1, V2]|) ≤
m/4 and, thus, by Chebyshev’s inequality, we have

Pr[|E[V1, V2]| > m/2 +
√

m] < 1/4. (3)

Meanwhile, we also have E[∑v∈V1
degG(v)] = m and

Var

(
∑

v∈V1

degG(v)

)
= Var

(
∑

v∈V
degG(v) · 1[i(v) = 1]

)
= ∑

v∈V
Var

(
degG(v) · 1[i(v) = 1]

)
≤ ∑

v∈V
degG(v)

2

≤ 2m∆,

where the last inequality is due to the assumption that the maximum degree is at most ∆.

Again, by Chebyshev’s inequality, we have

Pr

[∣∣∣∣∣ ∑
v∈V1

degG(v)−m

∣∣∣∣∣ > 2
√

m∆

]
< 1/2. (4)

Combining (3) and (4), we can conclude that a random partition satisfies the two condition
with probability at least 1/4 at desired.

Lemma 22 can now be proved using the vertex set partitioning guaranteed by the above
lemma and then building the sequence (to the left and to the right) using a “greedy” strategy.

Proof of Lemma 22. First, apply Lemma 23 to obtain a partition V = V1]V2 that satisfies (1) and
(2). Let n1 = |V1| and Sn1 = V2. We then define the remaining Sts using a “greedy” approach
as follows.

• For t = n1 − 1, . . . , 0, pick vt := argmin
v∈V\St+1

|E[St+1 ∪ {v}, V \ (St+1 ∪ {v})]|. Then, let St =

St+1 ∪ {vt}.

• For t = n1 + 1, . . . , n, pick vt := argmin
v∈St−1

|E[St−1 \ {v}, V \ (St−1 \ {v})]|. Then, let St =

St−1 \ {vt}.

Suppose for the sake of contradiction that max
t∈[n]

|E[St, V \ St]| > m/2 +
√

m∆ + ∆. Let t∗ =

argmax
t∈[n]

|E[St, V \ St]|. Note that (1) implies that t∗ 6= n1. Thus, we must have that either

t∗ < n1 or t∗ > n1. Since the two cases are symmetric, we assume w.l.o.g. that t∗ < n1.

Since the degree of every vertex is at most ∆, we also have that |E[St∗+1, V \ St∗+1]| >
m/2+

√
m∆. Note that (V \St∗+1) ⊆ (V \Sn1) = V1. Thus, (2) implies that ∑v∈(V\St∗+1)

degG(v) ≤
m + 2

√
m∆ < 2 · |E[St∗+1, V \ St∗+1]|. This means that there exists v′ ∈ (V \ St∗+1) such that

23

v has more edges to St∗+1 than that within (V \ St∗+1). In other words, |E[St∗+1 ∪ {v′}, V \
(St∗+1 ∪ {v′})]| < |E[St∗+1, V \ St∗+1]|. By the algorithm’s greedy choice of vt∗ , we must also
have |E[St∗ , V \ St∗]| < |E[St∗+1, V \ St∗+1]|. However, this contradicts with our choice of t∗.

5.2 Handling High-Degree Vertices

We now prove Theorem 21. At a high level, this is done by applying the previous subsection’s
result on the low-degree vertices to get a sequence of sets on those. We then interleave the
high-degree vertices using a “greedy” strategy where we move a high-degree vertex out of the
set only when it decreases the cut size w.r.t. edges to the low-degree vertices. We formalize
and analyze this strategy below.

Proof of Theorem 21. Let ∆ := 2m3/5. We partition V into V>∆ and V≤∆. In V>∆ (resp. V≤∆) we
have those vertices with degree more than ∆ (resp. vertices with degree at most ∆). For brevity,
let E1 := E[V≤∆], E2 := E[V>∆, V≤∆], E3 = E[V>∆] and m1 = |E1|, m2 = |E2|, m3 = |E3|. Note
that E1] E2] E3 is a partition of E.

First, we invoke Lemma 22 to get a sequence V≤∆ = S̃0) · · ·) S̃n1 = ∅ such that for
all t̃ ∈ {0, . . . , n1} we have |E[S̃t̃, V≤∆ \ S̃t̃]| ≤ m1/2 +

√
m1∆ + ∆. For the next step, it will

be convenient to define ṽt̃ as the only vertex in S̃t̃ \ S̃t̃+1 for all t̃ ∈ {0, . . . , n1 − 1}. Then, we
construct the full set sequence through the following procedure:

1. Let j = 0 and define Sj := V.

2. For i = 0, . . . , n1 − 1:

2.1. Low-Degree Move: Define Sj+1 := Sj \ {ṽi}. (Note that we have |Sj+1 ∩ V≤∆| =
S̃i+1) Then, increase j by one.

2.2. High-Degree Correction: Next, while there exists v ∈ V>∆ ∩ Sj such that |E[v, S̃i]| ≤
|E[v, V \ S̃i]|:

• Define Sj+1 := Sj \ {v}. Then, increase j by one.

Note that, since ∆ ≥ 2
√

m, we have |V>∆| < 2m/∆ ≤ ∆/2. This means that every high-degree
vertex v ∈ V>∆ has at least as many edges to V≤∆ as it has within V>∆. This implies that, after
the last low-degree move (i.e. i = n1− 1), the high-degree correction will move all vertices out
of S as desired.

Next, we will argue that max
t∈[n]

|E[St, V \ St] ∩ (E1 ∪ E2)| ≤ m/2 +
√

m∆ + 2∆. Before we

do so, note that since m3 ≤ |V>∆|2/2 < 2(m/∆)2. This implies that max
t∈[n]

|E[St, V \ St]| ≤

m/2 + 2(m/∆)2 +
√

m∆ + 2∆, which is at most m/2 + 7m4/5 as claimed.

To bound max
t∈[n]

|E[St, V \ St] ∩ (E1 ∪ E2)|, first observe that high-degree correction never

increases |E[St, V \ St] ∩ (E1 ∪ E2)|. Thus, it suffices to argue that |E[St, V \ St] ∩ (E1 ∪ E2)| ≤
m/2 +

√
m∆ + 2∆ immediately after a low-degree move. Since this is a low-degree move, we

have

|E[St, V \ St] ∩ (E1 ∪ E2)| ≤ |E[St−1, V \ St−1] ∩ (E1 ∪ E2)|+ ∆.

Moreover, since St−1 is a result after all possible high-degree corrections, for every v ∈ V>∆, at
most half of its edges to V≤∆ belong to the cut. As a result,

|E[St−1, V \ St−1] ∩ E2| ≤ m2/2.

24

Meanwhile, from our choice of S̃0, . . . , S̃n1 , the number of edges in E1 that are cut is at most
m1/2 +

√
m1∆ + ∆, i.e.,

|E[St−1, V \ St−1] ∩ E1| ≤ m1/2 +
√

m1∆ + ∆.

Combining these three inequalities, we have

|E[St, V \ St]|+ m2/2 + m1/2 +
√

m1∆ + ∆ + ∆ ≤ m/2 +
√

m/∆ + 2∆,

which concludes our proof.

6 Conclusion and Open Questions

In this work, we positively resolved the Reconfiguration Inapproximability Hypothe-
sis (RIH) [Ohs23a], which in turn shows that a host of reconfiguration problems are PSPACE-
hard even to approximate to within some constant factor. Meanwhile, we prove tight NP-
hardness of approximation results for GapMaxMin-2-CSPq and Set Cover Reconfiguration.
The main open question is clear: Can we prove tight PSPACE-hardness of approximation results
for GapMaxMin-2-CSPq and Set Cover Reconfiguration? A negative answer, by showing that the
gap problem is in some complexity class that is believed to be strict subset of PSPACE (e.g. ΣP

2),
might also be as interesting as (if not more than) a positive one.

Apart from the aforementioned question, there are also several other more technical and
specific problems. For example, what are the best ε in terms of n (and q) that we can get in our
NP-hardness results? Specifically, Theorem 3 requires the alphabet size q to grow as ε → 0.
Can we get rid of such a dependency (or show–by giving an approximation algorithm–that
this is not possible)?

References

[AIM14] Scott Aaronson, Russell Impagliazzo, and Dana Moshkovitz. AM with multiple
merlins. In CCC, pages 44–55, 2014.

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario
Szegedy. Proof verification and the hardness of approximation problems. J. ACM,
45(3):501–555, 1998.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new charac-
terization of NP. J. ACM, 45(1):70–122, 1998.

[BC09] Paul Bonsma and Luis Cereceda. Finding paths between graph colourings:
PSPACE-completeness and superpolynomial distances. Theor. Comput. Sci.,
410(50):5215–5226, 2009.

[BGH+06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P.
Vadhan. Robust pcps of proximity, shorter pcps, and applications to coding.
SIAM J. Comput., 36(4):889–974, 2006.

[BKW14] Paul Bonsma, Marcin Kamiński, and Marcin Wrochna. Reconfiguring indepen-
dent sets in claw-free graphs. In SWAT, volume 8503, pages 86–97, 2014.

25

[Bon13] Paul Bonsma. The complexity of rerouting shortest paths. Theor. Comput. Sci.,
510:1–12, 2013.

[Bon16] Paul Bonsma. Independent set reconfiguration in cographs and their generaliza-
tions. J. Graph Theory, 83(2):164–195, 2016.

[CCK+20] Parinya Chalermsook, Marek Cygan, Guy Kortsarz, Bundit Laekhanukit, Pasin
Manurangsi, Danupon Nanongkai, and Luca Trevisan. From gap-exponential
time hypothesis to fixed parameter tractable inapproximability: Clique, dominat-
ing set, and more. SIAM J. Comput., 49(4):772–810, 2020.

[CvdHJ08] Luis Cereceda, Jan van den Heuvel, and Matthew Johnson. Connectedness of the
graph of vertex-colourings. Discrete Math., 308(5-6):913–919, 2008.

[CvdHJ11] Luis Cereceda, Jan van den Heuvel, and Matthew Johnson. Finding paths be-
tween 3-colorings. J. Graph Theory, 67(1):69–82, 2011.

[Din07] Irit Dinur. The PCP theorem by gap amplification. J. ACM, 54(3):12, 2007.

[DR06] Irit Dinur and Omer Reingold. Assignment testers: Towards a combinatorial
proof of the PCP theorem. SIAM J. Comput., 36(4):975–1024, 2006.

[Fei98] Uriel Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–
652, 1998.

[FGL+96] Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario Szegedy.
Interactive proofs and the hardness of approximating cliques. J. ACM, 43(2):268–
292, 1996.

[GKMP09a] Parikshit Gopalan, Phokion G. Kolaitis, Elitza Maneva, and Christos H. Papadim-
itriou. The connectivity of Boolean satisfiability: Computational and structural
dichotomies. SIAM J. Comput., 38(6):2330–2355, 2009.

[GKMP09b] Parikshit Gopalan, Phokion G. Kolaitis, Elitza N. Maneva, and Christos H. Pa-
padimitriou. The connectivity of boolean satisfiability: Computational and struc-
tural dichotomies. SIAM J. Comput., 38(6):2330–2355, 2009.

[Gol08] Oded Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge
University Press, New York, NY, USA, 1 edition, 2008.

[HD05] Robert A. Hearn and Erik D. Demaine. PSPACE-completeness of sliding-block
puzzles and other problems through the nondeterministic constraint logic model
of computation. Theor. Comput. Sci., 343(1-2):72–96, 2005.

[HIM+16] Arash Haddadan, Takehiro Ito, Amer E. Mouawad, Naomi Nishimura, Hirotaka
Ono, Akira Suzuki, and Youcef Tebbal. The complexity of dominating set recon-
figuration. Theor. Comput. Sci., 651:37–49, 2016.

[HO24] Shuichi Hirahara and Naoto Ohsaka. Probabilistically checkable reconfiguration
proofs and inapproximability of reconfiguration problems. In STOC, 2024. To
appear.

[ID14] Takehiro Ito and Erik D. Demaine. Approximability of the subset sum reconfigu-
ration problem. J. Comb. Optim., 28(3):639–654, 2014.

26

[IDH+11] Takehiro Ito, Erik D. Demaine, Nicholas J. A. Harvey, Christos H. Papadimitriou,
Martha Sideri, Ryuhei Uehara, and Yushi Uno. On the complexity of reconfigu-
ration problems. Theor. Comput. Sci., 412(12-14):1054–1065, 2011.

[IP01] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J.
Comput. Syst. Sci., 62(2):367–375, 2001.

[IPZ01] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems
have strongly exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

[KLM19] Karthik C. S., Bundit Laekhanukit, and Pasin Manurangsi. On the parameterized
complexity of approximating dominating set. J. ACM, 66(5):33:1–33:38, 2019.

[KMM11] Marcin Kamiński, Paul Medvedev, and Martin Milanič. Shortest paths between
shortest paths. Theor. Comput. Sci., 412(39):5205–5210, 2011.

[KMM12] Marcin Kamiński, Paul Medvedev, and Martin Milanič. Complexity of indepen-
dent set reconfigurability problems. Theor. Comput. Sci., 439:9–15, 2012.

[LM19] Daniel Lokshtanov and Amer E. Mouawad. The complexity of independent set
reconfiguration on bipartite graphs. ACM Trans. Algorithms, 15(1):7:1–7:19, 2019.

[LY94] Carsten Lund and Mihalis Yannakakis. On the hardness of approximating mini-
mization problems. J. ACM, 41(5):960–981, 1994.

[MNPR17] Amer E. Mouawad, Naomi Nishimura, Vinayak Pathak, and Venkatesh Raman.
Shortest reconfiguration paths in the solution space of Boolean formulas. SIAM J.
Discret. Math., 31(3):2185–2200, 2017.

[MO21] Tatsuya Matsuoka and Naoto Ohsaka. Spanning tree constrained determinantal
point processes are hard to (approximately) evaluate. Oper. Res. Lett., 49(3):304–
309, 2021.

[Mos14] Dana Moshkovitz. Parallel repetition from fortification. In FOCS, pages 414–423,
2014.

[Mou15] Amer Mouawad. On Reconfiguration Problems: Structure and Tractability. PhD
thesis, University of Waterloo, 2015.

[MR17] Pasin Manurangsi and Prasad Raghavendra. A birthday repetition theorem and
complexity of approximating dense csps. In ICALP, pages 78:1–78:15, 2017.

[MTY11] Kazuhisa Makino, Suguru Tamaki, and Masaki Yamamoto. An exact algorithm
for the Boolean connectivity problem for k-CNF. Theor. Comput. Sci., 412(35):4613–
4618, 2011.

[Nis18] Naomi Nishimura. Introduction to reconfiguration. Algorithms, 11(4):52, 2018.

[Ohs23a] Naoto Ohsaka. Gap preserving reductions between reconfiguration problems. In
STACS, pages 49:1–49:18, 2023.

[Ohs23b] Naoto Ohsaka. On approximate reconfigurability of label cover. CoRR,
abs/2304.08746, 2023.

[Ohs24] Naoto Ohsaka. Gap amplification for reconfiguration problems. In SODA, 2024.

27

[Par21] Orr Paradise. Smooth and strong pcps. Comput. Complex., 30(1):1, 2021.

[Rub18] Aviad Rubinstein. Inapproximability of nash equilibrium. SIAM Journal on Com-
puting, 47(3):917–959, 2018.

[Vad12] Salil P. Vadhan. Pseudorandomness. Foundations and Trends® in Theoretical Com-
puter Science, 7(1–3):1–336, 2012.

[vdH13] Jan van den Heuvel. The complexity of change. In Surveys in Combinatorics 2013,
volume 409, pages 127–160. Cambridge University Press, 2013.

[Wro18] Marcin Wrochna. Reconfiguration in bounded bandwidth and treedepth. J. Com-
put. Syst. Sci., 93:1–10, 2018.

28
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

