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Abstract

Given a non-negative real matrix M of non-negative rank at least r,
can we witness this fact by a small submatrix of M? While Moitra (SIAM
J. Comput. 2013) proved that this cannot be achieved exactly, we show
that such a witnessing is possible approximately: an m×n matrix of non-
negative rank r always contains a submatrix with at most r3 rows and
columns with non-negative rank at least Ω( r

logn logm
). A similar result is

proved for the 1-partition number of a Boolean matrix and, consequently,
also for its two-player deterministic communication complexity. Tightness
of the latter estimate is closely related to the log-rank conjecture of Lovász
and Saks.

1 Introduction

The rank of a matrix is one of the most versatile concepts from linear algebra.
A basic property of matrix rank is the following: if a matrix M has rank at
least r then it contains an r × r submatrix of rank r. Put differently, the fact
that rk(M) ≥ r can be witnessed by a hard r × r submatrix. Can we extend
this witnessing property to other matrix complexity measures? We will consider
two such measures: the non-negative rank of a non-negative real matrix and the
1-partition number of a Boolean matrix.

Given a matrix with non-negative real entries, its non-negative rank is de-
fined similarly to rank, except that we want to express the matrix as a sum
of non-negative rank-one matrices. This quantity has numerous applications
in communication complexity and linear optimization [20], and other fileds (cf.
[15]). In [20], Yannakakis has discovered a geometric interpretation of non-
negative rank in terms of linear projections of polytopes. This connection has
been extended and exploited in many subsequent results, see, e.g., [18, 2, 5],
including the current paper.
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If M is a 0, 1-matrix, its 1-partition number can be defined as the smallest
r such that M can be written as a sum of r rank-one Boolean matrices. This
is an important concept in communication complexity [11, 16]. Interpreting a
0, 1-matrix as the adjacency matrix of a bipartite graph, it is also equivalent to
the biclique partition number (see [3] and references within).

If M has non-negative rank ≥ r, can this fact be witnessed by a small
submatrix? The short answer is no. In [15], Moitra presented an n× n matrix
M of non-negative rank 4 such that every submatrix with less than n/3 columns
has non-negative rank at most 3 – in particular, M contains no constant-size
submatrix of non-negative rank 4. In Section 6.3, we will give a different example
where the gap is more dramatic. Similarly, we will see that the most optimistic
form of witnessing fails for 1-partition number. On the positive side, we will
show that a weaker form of witnessing nevertheless holds: if a matrix has non-
negative rank r then it contains a submatrix of size bounded by a polynomial
in r whose non-negative rank is close to r; similarly for 1-partition number.

The two-player deterministic communication complexity ofM can be charac-
terized by the logarithm of the 1-partition number of M . Hence our witnessing
result for 1-partition number can be restated in the language of communication
complexity: if a Boolean function has a large communication complexity, this
fact can be approximately witnessed by a relatively small set of inputs. It should
be noted that this statement immediately follows from the log-rank conjecture
of Lovász and Saks (presented in [14]). This conjecture relates the communica-
tion complexity of a Boolean matrix with its rank. It implies that for a Boolean
matrix M , the three parameters – rank, 1-partition number, non-negative rank
– are essentially the same, with their logarithm being polynomially related to
the communication complexity of M . This allows to deduce a witnessing prop-
erty for these measures from the witnessing property of matrix rank. Our result
confirms this prediction of the conjecture and it may therefore be interpreted
as a vote in its favor. On the other hand, the log-rank conjecture implies a
stronger form of witnessing than what we actually prove. Hence, in principle,
a counterexample to the conjecture may be given by a matrix for which this
predicted form of witnessing fails (see Section 5 for more details). According to
[6], the witnessing problem for communication complexity has been previously
posed by H. Halemi.

Our witnessing results could be easily converted to non-trivial approximation
algorithms to compute non-negative rank or the 1-partition number. These
algorithms would run in polynomial time whenever the complexity parameter
in question is fixed. Interestingly, exact algorithms of this form were given by
Moitra [15] and Chandran et al. [3]. While there are similarities between these
algorithms and the witnessing perspective, these algorithms ultimately do not
search for a witness.

On a more abstract level, the witnessing problem can be posed with respect
to any complexity measure whatsoever. A related result in Boolean circuit com-
plexity are “anticheckers” of Lipton and Young [13]. In their work, it is shown
that if a Boolean function f requires a Boolean circuit of size s then there is
a subset of inputs of size roughly s such that f restricted to this subset still
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requires circuit size roughly s. A related topic are “hard-core predicates” of Im-
pagliazzo [10]. Recently, Göös et al. [6] studied deterministic query complexity
from this perspective. An example from the opposite side of the spectrum is
the chromatic number of a graph. It is known that a large chromatic number
imposes almost no local structure on a graph and cannot be witnessed by a
small subgraph [4, 17].

2 Main results

Given an m×n matrix M with real non-negative entries, its non-negative rank,
rk+(M), is the smallest s such that M can be written as

M = LR ,

where L and R are non-negative matrices of dimensions m × s and s × n, re-
spectively.

We will show that everyM with large non-negative rank contains a relatively
small submatrix of large non-negative rank.

Theorem 1. Let M be an m×n non-negative real matrix with n ≥ 2. Then for
every k ≤ n, M contains an m × k submatrix of k columns with non-negative

rank Ω(R), where R := min
(
( k
logn )

1
3 , rk+(M)

logn

)
.

A remarkable consequence is the following:

• M contains an s1× s2 submatrix with s1, s2 ≤ rk+(M)3 and non-negative

rank Ω( rk+(M)
logn logm ). Moreover, If M is a square matrix then so is the

submatrix.

In some cases, a stronger conclusion is possible. For example, if rk+(M) = n
then every m×k submatrix of M has non-negative rank k. Theorem 1 becomes
interesting if log n ≪ rk+(M) ≪ n. For example, if M is n × n with rk+(M)
roughly nϵ, we obtain an n3ϵ × n3ϵ submatrix of non-negative rank roughly nϵ,
and also an nϵ ×nϵ submatrix of non-negative rank roughly nϵ/3. How far from
truth is the estimate from Theorem 1 is an interesting question. In Section 6.3,
we will see that the result gives a qualitatively correct picture: the exponent
1/3 can be replaced by 1/2 at best.

Given a Boolean matrix M ∈ {0, 1}m×n, let us define its 1-partition number,
χ1(M), as the smallest s such that M can be written as

M = LR , with L ∈ {0, 1}m×s , R ∈ {0, 1}s×m ,

where the operations are over R. The definition emphasizes the analogy with
rk+, and χ1 is also sometimes referred to as binary rank. On the other hand, the
phrase “partition number” comes from communication complexity. The name
is justified: it is easy to see that χ1(M) equals the smallest s such that the
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1-entries of M can be partitioned into s 1-monochromatic rectangles (i.e., rank-
one Boolean matrices). Finally, when M is viewed as the adjacency matrix of a
bipartite graph, χ1(M) also appears under the name biclique partition number
[3].

In the case of χ1, we obtain a similar but simpler result:

Theorem 2. Let M be an m × n Boolean matrix with n ≥ 2. Then for every
k ≤ n, M contains an m × k submatrix of k columns with 1-partition number

Ω(min(
√
k, χ1(M)

logn )).

One consequence is the following (cf. Corollary 6):

• if χ1(M) = p then M contains a p× p submatrix with 1-partition number
Ω(p1/4).

The results on 1-partition number imply similar statements in communication
complexity; they will be presented in Section 5. Whether these witnessing
results can be significantly improved is an intriguing question. It is intimately
related to the log-rank conjecture; this connection is discussed in Section 5.

Theorems 1 and 2 are proved in Sections 6.2 and 4, respectively. The proof of
Theorem 2 is self-contained. Theorem 1 uses geometrical interpretation of non-
negative rank in terms of extended formulations of polytopes and also employs
known bounds on complexity of quantifier elimination.

Notation All logarithms are in base 2 and [n] := {1, . . . , n}.

3 A combinatorial lemma

Both Theorems 1 and 2 rely on a simple combinatorial lemma.

Lemma 3. Let A ⊆ 2[n] be a family of subsets of [n]. Assume that 1 ≤ k ≤ n is
such that every k-element subset of [n] is contained in some A ∈ A. Then there

exists a subfamily A′ ⊆ A of size |A′| ≤ O(|A| 1k log(n/k)) with
⋃
A′ = [n]. In

particular, if |A| ≤ 2k then |A′| ≤ O(log n).

Proof. Assume that |A| ≤ ak. Let t be the size of a largest set in A. Then we
have (

n

k

)
≤ ak

(
t

k

)
.

Hence t ≥ n
ea , using the estimates (nk )

k ≤
(
n
k

)
,
(
t
k

)
≤ ( etk )

k. Take some A0 ∈ A
of size t. Let

A1 := {A \A0 : A ∈ A} .

Then every subset of U1 := [n] \ A0 of size at most k is contained in some
member of A1. The size of U1 is at most n(1 − 1

ea ). Similarly, take a largest
set A1 from A1 and obtain a new family A2 ⊆ 2U2 on U2 := U1 \ A1. After
s steps, the size of Us is at most n(1 − 1

ea )
s and after s ≤ O(a log(n/k)) steps
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we have |Us| ≤ k. This guarantees that the largest set in As is Us itself and
[n] =

⋃s
i=0 As. By construction, every Ai is contained in some element of the

original family A.

For some range of parameters, the lemma can be also proved from the Min
Max Theorem of Lipton and Young in [13] which would also give an approximate
version of it.

An application (which will not be explicitly used) is the following. A sub-
additive measure on [n] is a function µ : 2[n] → R such that µ(A1 ∪ A2) ≤
µ(A1) + µ(A2) holds for every A1, A2 ⊆ [n].

Corollary 4. Let µ be a subadditive measure on [n]. Assume 1 ≤ k ≤ n and that
every k-element subset of [n] has measure at most s. Let N be the number of ⊆-

maximal subsets of [n] of measure at most s. Then µ([n]) ≤ O(sN
1
k log(n/k))).

4 1-Partition number

In this section, we prove Theorem 2.
Let M be an m × n matrix with rows indexed by [n] = {1, . . . , n}. Given

A ⊆ [n], MA denotes the submatrix obtained by removing the rows outside of
A from M . Observe that1

χ1(MA1∪A2
) ≤ χ1(MA1

) + χ1(MA2
) , (1)

and so χ1(MA) can be viewed as a subadditive measure on [n] whenever M is
fixed.

If a matrix M has rank r, its rows are a linear combination of a subset of r
rows of M . This means that every column of M is determined by a fixed subset
of r coordinates. If M is Boolean, this leads to the following useful fact:

• if M has distinct columns then n ≤ 2rk(M) (similarly for rows).

Lemma 5. Let M be an m× n Boolean matrix of rank r. Given s ∈ [n], let A
be the collection of maximal subsets A ⊆ [n] with χ1(MA) ≤ s (i.e., χ1(MA) ≤ s

and χ1(MA′) > s for every A′ ⊋ A). Then |A| ≤ 2(r+s)2 .

Proof. Let v1, . . . , vn ∈ Rm be the columns of M . Given L ∈ {0, 1}m×s, let

L∗ := {i ∈ [n] : ∃y ∈ {0, 1}s vi = Ly} .

Let L := {L∗ : L ∈ {0, 1}m×s}.
We claim that A ⊆ L. If χ1(MA) ≤ s, we can write MA = LR with

L ∈ {0, 1}m×s and R ∈ {0, 1}s×|A|. This means that every vi, i ∈ A, is a
Boolean linear combination of the columns of L and A ⊆ L∗. Furthermore, if
A is maximal, we must have A = L∗.

1If A1, A2 are disjoint, this is quite obvious. Otherwise consider A1, A2 \A1.

5



We now want to estimate the size of L. The set L∗ consists of indices i ∈ [n]
so that there exists x ∈ Rn, y ∈ Rs satisfying

Mx− Ly = 0 (2)

such that y ∈ {0, 1}s and x is the i-th unit vector. Since M has rank r and L has
rank at most s, the system (2) is equivalent to a subsystem of t := min((s+r),m)
equations. These correspond to rows of the matrix (M,L). Hence, in order to
determine L∗, it is sufficient to specify a t-element subset of [m] together with
the t× s submatrix of L. This gives the estimate

|L| ≤
(
m

t

)
2ts ≤ 2t(s+logm) .

Finally, we can assume that M has distinct rows and so logm ≤ r, obtaining
the bound 2(r+s)2 .

Theorem 2 (restated). Let M be an m× n Boolean matrix with n ≥ 2. Then
for every k ≤ n, M contains an m× k submatrix of k columns with 1-partition

number Ω(min(
√
k, χ1(M)

logn )).

Proof. Let r be the rank of M . We will assume r ≤ k1/2

2 . Otherwise, observe
that M contains a full rank r× r submatrix, χ1 is lower-bounded by rank, and
the conclusion of the theorem follows.

Let s be the maximum χ1(MA) over all A ⊆ [n] of size k. Let A be the

family from the previous lemma. If |A| ≥ 2k, we have 2k ≤ 2(s+r)2 and therefore

s ≥ k1/2

2 from the assumption on r.
Assume |A| ≤ 2k. By Lemma 3, there exists a subfamily A′ ⊆ A of size

O(log n) which covers [n]. Using (1), this implies χ1(M) ≤ O(s log n) and so
s ≥ Ω(χ1(M)/ log n).

Corollary 6. Let M be as above with χ1(M) = p. Then M contains

(i). a submatrix of at most p2 columns with partition number Ω(p/ log n),

(ii). a submatrix with at most p2 rows and columns with partition number
Ω(p/(log n logm)). If M is a square matrix then so is the submatrix.

(iii). a submatrix with p columns with partition number Ω(p
1
2 )

(iv). a p× p submatrix with partition number Ω(p
1
4 ).

Proof. Part (i). If n ≤ p2, M itself satisfies the statement. Otherwise apply the
theorem with k = p2.

Part (ii). Apply (i) again to the transpose of the submatrix obtained in (i).
If m = n, we can enlarge the submatrix to a square matrix.

Part (iii). Without loss of generality, we can assume that the columns of
M are distinct. This implies that M has rank at least log n. If

√
p ≤ p/ log n,
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apply the theorem to obtain the desired matrix. Otherwise, we have p ≥ log2 n.
M contains a submatrix of p columns of rank at least min(p, log n) ≥ √

p.
Part (iv) follows by taking the submatrix from (iii), and applying (iii) to

its transpose.

Remark 7. The conclusion of Theorem 2 can be slightly improved to give

Ω(
√
k log(1 + χ1(M)

k1/2 logn
)), as long as k1/2 ≤ χ1(M)/ log n. For example, if

k = χ1(M)/ log n, we obtain a submatrix of k columns with 1-partition number
Ω(

√
k log k).

Furthermore,M always contains a submatrixM ′ of k columns with χ1(M
′) ≥

χ1(M) ·
⌈
n
k

⌉−1
, which gives better parameters if χ1(M) is close to n.

4.1 A somewhat non-trivial example

We now give a finite example which shows that the most optimistic form of
witnessing fails for χ1.

Theorem 8. There exists a 5× 6 Boolean matrix M with χ1(M) = 5 such that
every 5× 5 submatrix of M has 1-partition number at most 4.

Proof. Let

M :=


1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0
0 0 0 1 1 1
1 1 1 1 1 1

 .

We first argue that χ1(M) > 4, which implies χ1(M) = 5 since M has 5 rows.
Suppose that χ1(M) ≤ 4. Then there exists a set of Boolean row-vectors

V = {v1, . . . , v4} such that every row of M is their Boolean linear combination;
i.e., of the form

∑
i∈A vi for some A ⊆ {1, . . . , 4}. Note that in this expression,

the non-zero coordinates of vi, i ∈ A, are a subset of the non-zero coordinates
of the given row. Using this observation, it is easy to see that V must consist
of the first 4 rows of M . If χ1(M) ≤ 4 this means that the last row of M is a
Boolean combination of the first four rows, which is clearly impossible.

We now show that every submatrix obtained by removing a column from M
has χ1 at most 4.

First, assume that M ′ has been obtained by removing the third column. The
resulting matrix, together with a partition into four 1-monochromatic rectangles
a, b, c, d, is as follows:

M ′ =


1 0 0 1 1
0 1 1 0 1
0 0 1 1 0
0 0 1 1 1
1 1 1 1 1

 ,


a 0 0 a b
0 c c 0 b
0 0 d d 0
0 0 d d b
a c c a b

 .
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Second, assume that M ′′ has been obtained by removing the last column.
The resulting matrix, together with its partition, is the following:

M ′′ =


1 0 0 0 1
0 1 0 1 0
0 0 1 1 1
0 0 0 1 1
1 1 1 1 1

 ,


a 0 0 0 a
0 b 0 b 0
0 0 c d d
0 0 0 d d
a b c b a

 .

Finally, note that if we remove from M the first or the second column, we
obtain M ′ (up to a permutation of rows and columns). And, if we remove the
fourth or fifth column, we obtain M ′′. Hence indeed, every 5× 5 submatrix has
χ1 at most 4

By placing n copies of the matrix from Theorem 8 on diagonal, we obtain:

Corollary 9. For every n, there exists a 5n × 6n Boolean matrix M with
χ1(M) = 5n such that every submatrix obtained by removing a column of M
has 1-partition number strictly less than 5n.

5 Communication complexity, and a compari-
son with the log-rank conjecture

Given an m × n Boolean matrix M , consider the following two-player game:
Alice knows i ∈ [m], Bob knows j ∈ [n], and they are supposed to compute the
value of Mi,j . Denote by cc(M) the deterministic communication complexity of
this game. For details about the communication model, see for example [11, 16].

In order to relate communication complexity with χ1, we need the following
classical fact (the first inequality is due to Yao, the second is due to Yannakakis
[20]): if M is non-constant then

log(χ1(M) + 1) ≤ cc(M) ≤ O(log2 χ1(M)) . (3)

Proposition 10. Let M be a Boolean matrix with communication complexity c.
Then there exist k ≥ Ω(

√
c) and a 2k × 2k submatrix of M with communication

complexity at least k/4−O(1).

Proof. From (3), there exists k ≥ Ω(
√
c) with χ1(M) ≥ 2k. Corollary 6, part

(iv), gives 2k × 2k submatrix M ′ with χ1(M
′) ≥ Ω(2k/4). By (3), we have

cc(M ′) ≥ k/4−O(1).

It is worthwhile to compare this with what is predicted by the log-rank
conjecture [14] of Lovász and Saks.

Log-rank conjecture. There is a constant α such that cc(M) ≤ O(logα(rk(M)))
for any non-zero Boolean matrix M .
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Proposition 11. Assume the log-rank conjecture. Then every Boolean ma-
trix with communication complexity c contains a 2k × 2k submatrix M ′ with
χ1(M

′) = 2k, communication complexity k + 1, and k ≥ Ω(c1/α).

Proof. If M has communication complexity c then, by the log-rank conjecture,
M has rank at least 2k with k ≥ Ω(c1/α). Hence M contains a full-rank 2k × 2k

submatrix M ′. Since χ1(M
′) ≥ rk(M ′), we have χ1(M

′) = 2k. If c is sufficiently
large, so that k ≥ 1, then M ′ is non-constant and we obtain cc(M ′) ≥ k + 1 by
(3).

This is almost what has been proved in Proposition 10. One difference is
that the constant α in Proposition 11 is unconditionally set to 2 in Proposition
10. However, there is a more important qualitative difference. The submatrix
presented in Proposition 11 has highest possible communication complexity: the
protocol in which Alice sends her input to Bob and Bob sends back the answer
(or vice versa), is optimal. Any other protocol cannot save even one bit of
communication. In contrast, Proposition 10 presents a submatrix with only a
very high communication complexity. To summarize, Proposition 10 confirms
a prediction of the log-rank conjecture. But with worse parameters than what
the conjecture predicts: consequently the bound in the proposition is far from
from tight, or the conjecture is false.

Another consequence is:

Remark 12. In order to solve the log-rank conjecture, it is sufficient to focus
on 2k × 2k matrices with communication complexity at least k/4−O(1).

6 Non-negative rank

6.1 Extended formulations and separation complexity

Let us first make a short detour into extended formulations of convex polyhedra.
A polyhedron P ⊆ Rr is a (possibly unbounded) set defined by a finite num-

ber of linear constraints. Following [20, 18, 2], define the extension complexity
of P , xc(P ), as the smallest s such that P is a linear projection of a polyhe-
dron Q ⊆ Rm where Q can be defined using s inequalities (and any number of
equalities). Observe that P with extension complexity s can be expressed in
the standard form

x ∈ P iff ∃y∈Rs Cx+Dy = b, y ≥ 0 ,

where C ∈ Rt×r, D ∈ Rt×s and b ∈ Rt for some t.
Let V be a finite subset of Rr. Given A ⊆ V , its separation complexity,

sepV (A), is the minimum xc(P ) over all polyhedra P ⊆ Rr with2

P ∩ V = A ;

2If no such polyhedron exists, which may happen if V is not convexly independent, we set
sepV (A) := ∞.
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such a P is called a separating polyhedron for A. In other words, sepV (A) is
the smallest s so that we can distinguish points in A from points in V \ A by
means of a linear program with s inequalities. Moreover, such a program can
be rewritten as

x ∈ A iff (x ∈ V and ∃y∈Rs Cx+Dy = b, y ≥ 0 ) .

The notion of separation complexity has been studied in [7, 8, 9] in the case
when V = {0, 1}n is the Boolean cube. The following theorem is of independent
interest and can be seen as an extension of similar results in [7, 9]. The proof
is a considerable simplification of the previous ones.

Theorem 13. Let V be a non-empty finite subset of Rr. Given a parameter
s ≥ 1, let A be the collection of subsets A of V with sepV (A) ≤ s. Then

|A| ≤ 2O(s(r+s)2 log |V |) .

The proof is delegated to the appendix.
An immediate consequence of Theorem 13 is a theorem from [9]:

• if V = {0, 1}n then there exists A ⊆ V with sepV (A) ≥ 2n
1
3
(1−o(1))

.

6.2 Submatrices of large non-negative rank

In order to apply Theorem 13, we also need a connection between extension
complexity and non-negative rank. This is provided by the notion of slack
matrix introduced in [20]. Following [20, 2], we now define what it is. Let V be a
sequence v1, . . . , vm1

of points in Rr and L(x) a system ℓ1(x) ≥ b1, . . . , ℓm2
(x) ≥

bm2 of inequalities in Rr. The slack matrix with respect to V and L(x) is the
m2 ×m1 matrix S such that

Si,j = ℓi(vj)− bi .

Let P0 := conv(V ) be the convex hull of V and P1 := {x ∈ Rr : L(x) holds}.
If P0 ⊆ P1 then S is non-negative. In [2], we can find:

Lemma 14 ([2]). Let P0 ⊆ P1 and S be as above. Define xc(P0, P1) as the
minimum xc(P ) over all polyhedra with P0 ⊆ P ⊆ P1. Then

rk+S − 1 ≤ xc(P0, P1) ≤ rk+S .

Theorem 1 (restated). Let M be an m×n non-negative real matrix with n ≥ 2.
Then for every k ≤ n, M contains an m× k submatrix of k columns with non-

negative rank Ω(R), where R := min
(
( k
logn )

1
3 , rk+(M)

logn

)
.

Proof. Let r be the rank of M . We can write M = LR where L ∈ Rm×r,
R ∈ Rr×n. Let V ⊆ Rr be the set of columns v1, . . . vn of R. (Without
loss of generality, the columns of M are distinct). Given A ⊆ [n], let MA
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be the submatrix obtained by deleting columns outside of A from M . Also let
VA := {vi : i ∈ A}. Then MA can be interpreted as the slack matrix of the
polytope PA = conv(VA) and the polyhedron Q = {x ∈ Rd : Lx ≥ 0}.

Suppose that for every A of size k, rk+(MA) ≤ s. Then for every such
A, there is a polyhedron QA with VA ⊆ QA ⊆ Q with xc(QA) ≤ s. Let
A∗ := V ∩QA. Then QA is a separating polyhedron for A∗ ⊇ A. Let A be the
collection of A∗ over all A of size k. Theorem 13 implies

|A| ≤ 2c logn(s+r)3 ,

where c is an absolute constant.
We will assume r ≤ ( k

2c logn )
1/3. Otherwise M contains a full rank r × r

submatrix, rk+ is lower-bounded by rank, and the conclusion of the theorem
follows.

If |A| ≥ 2k, we obtain c log n(s + r)3 ≥ k and hence s ≥ Ω((k/ log n)1/3)
from the assumption on r.

Assume |A| ≤ 2k. By Lemma 3, there exists a subfamily A′ ⊆ A of size
O(log n) which covers [n]. This implies (note that (1) holds also for non-negative
rank) rk+(M) ≤ O(s log n) and s ≥ Ω(rk+(M)/ log n).

The following is proved similarly to Corollary 6:

Corollary 15. Let M be a non-negative m×n matrix with rk+(M) = p. Then
M contains

(i). an s1×s2 submatrix with s1, s2 ≤ p3 with non-negative rank Ω( p
logn logm ).

If m = n, we can assume s1 = s2.

(ii). a p× p submatrix with non-negative rank Ω( p
1
3

log
1
3 n logm

).

6.3 Tightness

In [15], Moitra has constructed a non-negative matrix M with the following
properties:

• M is 3rn × 3rn, rk+(M) ≥ 4r, any submatrix with < n columns has
non-negative rank at most 3r.

Observe that in order to witness the non-negative rank of this M exactly,
one needs a constant fraction of the columns of M . On the other hand, the gap
between the non-negative rank of M and that of its submatrices is quite mild.

We now give a different example which is of a similar flavor as the bound
from Theorem 1. It also shows that the constant 1

3 in the theorem can be
replaced by 1

2 at best. The example follows from very non-trivial results of
Kwan et al. [12]. A similar bound would follow from the more general result of
Shitov [19].

Theorem 16. For every n, there exists an n×n matrix with non-negative rank
Ω(

√
n) such that every n× k submatrix has non-negative rank O(

√
k).
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Proof. From [12], there exists an n-vertex polygon P ⊆ R2 with vertices lying on
the unit circle with extension complexity Ω(

√
n). Let M be its slack matrix with

columns corresponding to vertices v1, . . . , vn of P . From Lemma 14, we have
rk+(M) ≥ Ω(

√
n). Given an n×k submatrixM ′ with columns i1, . . . , ik, Lemma

14 shows that rk+(M
′) is at most the extension complexity of conv(vi1 , . . . , vik)

(plus 1). Using another result from [12], every k-gon with vertices on the unit
circle has extension complexity at most O(

√
k).

7 Open problems

Our first two open problems are concerned with tightness of the bounds in
Theorems 1 and 2.

Open problem 1. Let M be m × n non-negative matrix. Does M contain a
submatrix of at most rk+(M)2 columns with non-negative rank Ω(rk+(M))?

Open problem 2. Find a Boolean matrix M with χ1(M) = p such that every
p× p submatrix has 1-partitition number much smaller than p.

As far as we can see, the bound from Problem 1 is consistent with what we
know about non-negative rank, and would be optimal. The task is to improve
Corollary 15 (i) in two different ways: first, to reduce the dependence on rk+(M)
from cubic to quadratic and, second, to eliminate the logarithmic dependence
on the size of M altogether. For Problem 2, Theorem 8 gives an M with
submatrices of χ1 strictly less than p; there should exist a construction with a
larger gap.

As discussed in Section 5, in order to solve the log-rank conjecture, it is
enough to focus on matrices with large 1-partition number. The following is the
extreme case of this question:

Open problem 3. Suppose M is n×n Boolean matrix with χ1(M) = n. How
small can the rank of M be?
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A Proof of Theorem 13

The proof uses known results on quantifier elimination which we first outline.
We follow the monograph of Basu, Pollack and Roy [1]. Theorem 13 requires
an elimination of only a single block of existential quantifiers, so we focus on
this case only.

For b ∈ R, let

sgn(b) :=


1 , b > 0 ,

0 , b = 0 ,

−1 , b < 0 .

Given b = ⟨b1, . . . , bm⟩ ∈ Rm, let sgn(b) := ⟨sgn(b1), . . . , sgn(bm)⟩ ∈ {−1, 0, 1}m.
Let F = F (z, y) be a sequence of m polynomials f1, . . . , fm ∈ R[z, y] in variables
z = {z1, . . . , zk1

} and y = {y1, . . . , yk2
}. Given a ∈ Rk1 , define SGN1(F, a) ⊆

{−1, 0, 1}m
SGN1(F, a) := {sgn(F (a, b)) : b ∈ Rk2} .

Let
SGN(F ) := {SGN1(F, a) : a ∈ Rk1} .

Theorem 14.16 from [1] provides the following bound on the size of SGN:

Theorem ([1]). If every polynomial in F has degree at most d then

|SGN(F )| ≤ m(k1+1)(k2+1)dO(k1)O(k2) . (4)

We now apply this result to the case of Theorem 13. Let V, s,A be as in
the assumption. Every A ∈ A can be described by a linear system with s
inequalities. Namely, for every x ∈ V ,

x ∈ A iff ∃y∈Rs Cx+Dy = b, y ≥ 0 , (5)

where C ∈ Rt×r, D ∈ Rt×s and b ∈ Rt. Since Cx + Dy = b is a system of
equations in r + s variables x, y, we can also assume t = r + s.

Let us view the parameters C,D, b in (5) as variables. Let z be the set of
these variables, of size k1 = (r + s)(r + s+ 1). Given v ∈ V , let Fv(z, y) be the
sequence of (r + s) polynomials

Cv +Dy − b

in variables z and y = {y1, . . . , ys}. Let F (z, y) be the union of Fv(z, y) over
all v ∈ V , together with the polynomials y1, . . . , ys. Hence F consists of m =
s+ |V |(r + s) polynomials of degree at most two.

F (z, y) is set up so that

|A| ≤ |SGN(F )| .

To see this, observe that whenever the parameters z are fixed, the set A ⊆ V
given by (5) is uniquely determined by SGN1(F (z, y)). Since every A ∈ A is ob-
tained by some fixing of the parameters, we indeed obtain |A| ≤ |SGN(F (z, y))|.
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Finally, we can apply (4) to estimate |SGN(F )| with m = s + |V |(r + s),
k1 = (r + s)(r + s + 1), k2 = s, and d = 2. To simplify the expression, we can
assume s+ r ≤ |V |; otherwise the upper bound asserted in Theorem 13 exceeds
the trivial bound |A| ≤ 2|V |. This means that m ≤ 2|V |2. If we loosen the
bound (4) as |SGN(F )| ≤ (dm)O(k1)O(k2), we obtain (recall that s ≥ 1)

|SGN(F )| ≤ 2O(s(s+r)2 log |V |) ,

as required.
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