
Quantum Time-Space Tradeoffs for Matrix Problems

Paul Beame*

Computer Science & Engineering
University of Washington

Niels Kornerup†

Computer Science
University of Texas at Austin

January 24, 2024

Abstract

We consider the time and space required for quantum computers to solve a wide variety of
problems involving matrices, many of which have only been analyzed classically in prior work.
Our main results show that for a range of linear algebra problems—including matrix-vector
product, matrix inversion, matrix multiplication and powering—existing classical time-space
tradeoffs, several of which are tight for every space bound, also apply to quantum algorithms
with at most a constant factor loss. For example, for almost all fixed matrices A, including the
discrete Fourier transform (DFT) matrix, we prove that quantum circuits with at most T input
queries and S qubits of memory require T = Ω(n2/S) to compute matrix-vector product Ax for
x ∈ {0, 1}n. We similarly prove that matrix multiplication for n× n binary matrices requires
T = Ω(n3/

√
S). Because many of our lower bounds are matched by deterministic algorithms

with the same time and space complexity, our results show that quantum computers cannot
provide any asymptotic advantage for these problems with any space bound.

We obtain matching lower bounds for the stronger notion of quantum cumulative memory
complexity—the sum of the space per layer of a circuit.

We also consider Boolean (i.e. AND-OR) matrix multiplication and matrix-vector products,
improving the previous quantum time-space tradeoff lower bounds for n× n Boolean matrix
multiplication to T = Ω(n2.5/S1/3) from T = Ω(n2.5/S1/2).

Our improved lower bound for Boolean matrix multiplication is based on a new coloring
argument that extracts more from the strong direct product theorem that was the basis for
prior work. To obtain our tight lower bounds for linear algebra problems, we require much
stronger bounds than strong direct product theorems. We obtain these bounds by adding a new
bucketing method to the quantum recording-query technique of Zhandry that lets us apply
classical arguments to upper bound the success probability of quantum circuits.
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1 Introduction

Matrix computations are among the most fundamental computational problems and are critically
important in areas such as numerical and scientific computing, optimization, and machine learning.
If quantum computers can be shown to have a significant advantage over classical computations
for these types of problems then it would open up a wide range of applications for such devices.

Prior work has shown that non-standard versions of matrix problems may indeed admit
exponential or large polynomial quantum advantage: For any efficiently implementable operator
M, the HHL algorithm of Harrow, Hassidim, and Lloyd [HHL09] (with the improvements of
[CKS15]) can efficiently ϵ-approximate the value of x† Mx for the solution x of a well-conditioned
linear system. However, it is worth noting that this algorithm requires the input to be presented in
an unconventional format.

Many extensions of the HHL algorithm have also been proposed that can be elegantly described
in the quantum singular value transform (qSVT) framework first described in [LC19] and popular-
ized by [GSLW19]. Despite initial hope of exponential speed-up, a series of papers by Tang and
co-authors, and others (e.g. [Tan18, CGL+20a, CGL+20b, GST22, BT23, CCH+22]) has shown that,
by providing classical algorithms a comparable input format to the HHL algorithm, these quantum
algorithms can be replaced by classical ones with only a polynomial blowup in the running time,
although this polynomial is not always small.

This body of work still begs the question: What is the conventional quantum complexity of
standard classical problems like explicitly computing the linear-system solutions, multiplying or
inverting matrices, computing matrix-vector products, and computing the low rank approximation
of a matrix?

By the polynomial method, we know that computing a single inner product (or parity) of
n-bit vectors requires Ω(n) quantum queries [BBC+01] but linear algebra computations generally
involve Ω(n) or Ω(n2) such computations. Sherstov [She12], generalizing results of Klauck, Špalek,
and de Wolf [KŠdW07] for the OR function, gave a strong direct product lower bound for quantum
query complexity proved using the polynomial method, which proves strong lower bounds for
inner products involving many disjoint input vectors. However, the matrix problems in linear
algebra are very far from direct product problems: The vectors involved are highly correlated
with each other, so this prior work does not shed light on the key question of whether quantum
algorithms provide any advantage for general linear algebra.

In this paper, we resolve these questions for quantum computation of a wide array of linear
algebra problems. We prove lower bounds for quantum computation that are asymptotically the
same as the best classical lower bounds. Since many of the problems also have deterministic
algorithms whose resource usage matches the lower bounds, our results show that there is provably
no asymptotic quantum advantage at all in solving these linear algebra problems!

As with the study of classical computation involving super-linear time lower bounds, we
consider quantum algorithms in which we limit the number of qubits of memory and hence
produce quantum time-space tradeoffs. That is, for each fixed bound on the amount of memory
allowed, we derive asymptotically the same time lower bound for the quantum algorithm as one
would get for the time lower bound on classical algorithms with the same number of classical bits.
In many ways, quantum memory is an even more important resource than classical memory since
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it is a measure of the maximum number of qubits that maintain coherence at any time during the
algorithm’s execution. For this reason the first general-purpose fault-tolerant quantum computers
will likely have very limited memory and only be able to execute low depth quantum circuits. As
such, it is crucial to consider both the time and space complexity for quantum algorithms.

We prove our lower bounds for quantum computation in a query model where algorithms
are able to perform arbitrary input-independent unitary transformations on their state between
quantum queries to their input. This is a sufficiently general model that our lower bounds also
apply to any reasonable model of quantum computation—including quantum circuits where the
(classical) input is stored in quantum-readable read only memory (QROM).

The keys to proving our time-space tradeoffs are new results proving much stronger lower
bounds than strong direct product theorems for matrix-vector products and matrix multiplication.
While our bounds have the same form as strong direct product theorems (the success probability
decays exponentially with the number of outputs), they also apply with almost completely over-
lapping sets of inputs, in contrast to the disjoint inputs that are necessary to apply direct product
theorems.

While there is a large body of work proving strong classical time-space tradeoffs (e.g. [Tom78,
BFK+79, Yes84, BC82, Abr90, Abr91, Bea91, MNT93]) and a large body of work analyzing unre-
stricted quantum query algorithms versus their classical randomized counterparts (e.g [DJ92, BV97,
Sim97, BBC+01, Amb02, ŠS05, Špa08, She11]), there are just a few previous papers that analyze
the quantum memory required to make use of these quantum queries. Klauck, Špalek, and de
Wolf [KŠdW07] extended the classical method of Borodin and Cook [BC82] for proving time-space
trade-offs to quantum circuits using a new strong direct product theorem for quantum query
algorithms computing the OR function. They showed that algorithms making T quantum queries
and using S qubits of quantum memory require T = Θ(n1.5/S1/2) to sort lists of length n, and
require T = Ω(n2.5/S1/2) to compute n× n Boolean matrix product. Ambainis, Špalek, and de
Wolf [AŠdW09] extended this direct product approach to 2-sided error algorithms computing
k-threshold functions which allowed them to produce similar trade-off lower bounds for systems
of linear inequalities/equalities (though these have the drawback, unlike the other results, that the
hard function for space S depends on the space bound). This approach, based on an extension of
the adversary method using eigenspace analysis, was very difficult to apply.

As a result, further study of quantum time-space tradeoff lower bounds languished until it was
enabled by an idea of Zhandry [Zha19] who, motivated by understanding quantum algorithms
interacting with random function oracles, developed an approach to understanding quantum
query algorithms using a compressed oracle and Fourier analysis. This views computations in a
recording query basis that allows one to keep track of a quantum query algorithm as a superposition
of basis states that have a natural classical query interpretation. It has been applied to finding
multi-way collisions [LZ18] and to inverting a random permutation [Ros21]. This greatly simplifies
the analysis of quantum query algorithms and can be applied to many lower bound methods that
use randomly chosen inputs rather than being limited to cryptographic applications.

Extending Zhandry’s approach, Hamoudi and Magniez [HM21] applied an even cleaner ex-
pression of the method, using phase oracles with the recording query basis rather than Fourier
analysis, and extended it using biased random inputs to derive query lower bounds in a regime of
exponentially small success probability. They used this to obtain time-space tradeoff lower bounds,
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proving that any quantum algorithm that finds K disjoint collisions in an input of length n with T
quantum queries and S qubits of memory must have T = Ω(KN1/3/S1/3). They also re-derived
the earlier sorting lower bound using this method.

Our linear algebra lower bounds and methods Time-space trade-off lower bounds for linear
algebraic problems were among the first to be studied for classical computation [Yes84] after the first
bounds for sorting. The strongest classical results are due to Abrahamson [Abr91] who developed
a powerful general method based on matrix rigidity. This yields state-of-the-art lower bounds for
computation of Fourier transforms, convolution, matrix-vector products, matrix multiplication,
matrix inversion, matrix powering, and linear system solving. The lack of any analogous results
for quantum computation has been a substantial gap in our understanding 1.

Our results show that all of the linear algebraic time-space tradeoff lower bounds shown by
Abrahamson [Abr91] also apply to quantum computation even when the quantum circuit can
adaptively decide when to produce output based on the observed input. Since many of these
classical lower bounds are tight, our results directly imply that there is no hybrid classical-quantum
algorithms with a polynomial advantage for these problems unlike the query bounds for search
and collision finding in [HLS22]. Using the generic results in [BK23], we also prove asymptotically
equivalent lower bounds on the stronger notion of quantum cumulative memory complexity for
these problems. We include a table of our time-space tradeoff lower bounds in Table 1.

As discussed already, we need a much stronger lower bound method than any derivable
from strong direct product theorems. We do this by the adding new ideas to the compressed
oracle/recording query approach of Zhandry [Zha19] as extended and applied by Magniez and
Hamoudi [HM21]. Thus far, the compressed oracle method has used a two-step pattern: First,
identify a notion of unusual progress of a quantum algorithm towards a solution (i.e., the partial
information so far is more determinative of the answer than one might expect) and show that the
total amplitude of states where this occurs is small, Second, show that the total amplitude of the
quantum states where many outputs are produced without unusual progress can be bounded; this
latter part has used ideas with classical analogues that can be applied by breaking the algorithm’s
final state into mutually orthogonal components, each with small amplitude on the correct answers.

However, in our case with linear algebra problems, there is no form of unusual progress and
also no clear way to break up the problem into mutually orthogonal basis states. Thus, neither part
of the pattern seems to work. Instead, we can use the recording query framework to characterize
how much a quantum circuit can know about its input. We use the triangle inequality to bucket
amplitude from the algorithm’s state into a small number of non-orthogonal components (or
buckets) that share some set of inputs that they know nothing about. We can then apply a classical
argument showing that each component must have small amplitude on the correct answers. By
finding a way to divide the state into a small number of buckets that each have small amplitude
on correct answers, we can obtain tight lower bounds. The properties required of this division
become more subtle as we move to the problem of matrix multiplication, where in order to get
small amplitude, we need to contend with a partition featuring significantly more parts.

1Over a field of > n elements one can reduce n× n Boolean matrix multiplication to ordinary multiplication of 0-1
matrices but the lower bound is inherently too weak because in the Boolean case each output bit is a disjointness function
of its inputs and hence can be computed using only O(

√
n) quantum queries using Grover’s algorithm ([Gro96]).
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Problem Quantum Lower Bound Source

Matrix-Vector Product f (x) = Ax T = Ω(n2 log d /S) Theorem 3.5

Discrete Fourier Transform f (x) = Wx T = Ω(n2 log d /S) Corollary 3.6

Convolution f (u, v) = u ∗ v T = Ω(n2 log d /S) Corollary 3.8

Binary Integer Multiplication T = Ω(n2/(S log2 n)) Corollary 3.9

Matrix Triple Product f (A, B, C) = ABC T = Ω(n4 log d /S) Corollary 3.12

Matrix Cubing f (A) = A3 T = Ω(n4 log d /S) Corollary 3.13

Matrix Inversion f (A) = A−1 T = Ω(n4 log d /S) Corollary 3.14

System of Linear Equations f (A, y) = A−1y T = Ω(n3 log d /S) Corollary 3.15

Matrix Multiplication f (A, B) = AB T = Ω(n3
√

log d /S) Theorem 4.4

Matrix Squaring f (A) = A2 T = Ω(n3
√

log d /S) Corollary 4.5

Boolean Matrix Multiplication f (A, B) = A • B
T = Ω(n2/

√
S) [KŠdW07]

T = Ω(n2/S1/3) Theorem 5.5

Boolean Matrix Squaring f (A) = A • A T = Ω(n2/S1/3) Corollary 5.15

Table 1: Our quantum time space tradeoff lower bounds. Other than Boolean matrix multiplication,
where [KŠdW07] shows a quantum advantage for the problem, all of these lower bounds match
the tightest known classical lower bound. For the linear algebra problems, we assume that input
elements come from some finite subset D of a field and let d = |D|.

Improved bounds for Boolean matrix operations Here we improve the previous lower bound
for quantum algorithms computing Boolean matrix multiplication given in [KŠdW07] from T =

Ω(n2.5/S1/2) to T = Ω(n2.5/S1/3). We do this using a more sophisticated embedding of the k-fold
direct product of OR functions into an arbitrary subset of k outputs of Boolean matrix multiplication.
The embedding hinges on the number of colors needed for a certain kind of coloring of subsets E
of the n× n grid.

Our lower bounds also lead to improving the classical lower bound tradeoff of T = Ω(n3/S)
for circuits shown in [KŠdW07] to T = Ω(n3/S2/3). (In these bounds, T is circuit depth and S is
circuit width.) This is also larger than a classical lower bound of T = Ω(n3/S) for S ≤ n0.5 for
Boolean matrix multiplication on branching programs (a more general model than circuits) due
to Abrahamson [Abr90] that is tight almost surely for input matrices whose entries are 1 with
probability 1/

√
n independently.

Finally, we make a small adjustment to convert the Boolean matrix-vector lower bounds and
lower bounds for systems of inequalities given in [KŠdW07] and [AŠdW09], respectively, so that
the problems that are shown hard for space S do not depend on S.

2 Preliminaries

We start with some basic facts and definitions. We define the binary entropy function H2 : [0, 1]→ R,
by H2(p) = −p log2 p− (1− p) log2(1− p).
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Proposition 2.1 (Shannon). The number of subsets of [k] of size at most αk is at most 2H2(α) k.

Definition 2.2. An m × n matrix is (g, h, c)-rigid iff every k × w submatrix where k ≤ g and
w ≥ n− h has rank at least ck. We call (g, h, 1)-rigid matrices (g, h)-rigid.

Matrix rigidity is a robust notion of rank and is an important property for proving time-space
and cumulative complexity lower bounds for linear algebra. Fortunately, Yesha gives an explicit
example of such a matrix and Abrahamson proved that there are many rigid square matrices.

Proposition 2.3 (Lemma 3.2 in [Yes84]). The n × n Discrete Fourier Transform (DFT) matrix is
(n/4, n/4, 1/2) rigid.

Proposition 2.4 (Lemma 4.3 in [Abr91]). There is a constant γ ∈ (0, 1
2 ) such that at least a 1 −

d−1(2/3)γn fraction of the matrices over Dn×n are (γn, γn)-rigid.

2.1 Quantum circuit models

Throughout this paper, we consider quantum circuits that seek to compute target functions f :
Dn → Rm. Let d = |D| and assume the existence of a bijective map ν : D → { 0, . . . , d− 1 } that
gives us an ordering on the elements of D.

Unitary quantum circuits A T query quantum circuit is specified using unitaries U0, . . . , UT that
are independent of the input to the problem. These unitaries define a sequence of quantum states
|ψX

1 ⟩C , . . . |ψX
T ⟩C that the algorithm enters during its execution on input X. We think of each state

|ψX
t ⟩C as a linear combination of basis vectors |i, p, w⟩ where i ∈ [⌈log2 n⌉], p ∈ [d], and w ∈ {0, 1}∗.

With this decomposition we can define a query operator for input X = x1, . . . , xn as a unitary OX

that performs the following operation:

OX |i, p, w⟩ = ω
pν(xi)
d |i, p, w⟩

Where ωd is a d-th root of unity. Thus we can think of basis state |i, p, w⟩ as being composed of the
index, phase, and work registers respectively. The state |ψX

t ⟩C of the circuit after t queries to the
input X is given by:

|ψX
t ⟩C = UtOX . . .OXU0 |0⟩ .

The output of the quantum circuit on input X is determined by taking |ψX
T ⟩C and measuring the

work register in the standard basis and then applying some input-independent post-processing
function q to interpret the result as output τ ∈ RJ where J ⊆ [m].

Oracle State Similar to [Amb02, Zha19, HM21], instead of hard-coding the input X into oracle
OX, we define a general oracle operatorO that interacts with input registers that start in state |ψ0⟩O.
Given a distribution D over Dn, we can make |ψ0⟩O = ∑X∈Dn

√
PrX′∼D[X = X′] |X⟩ to represent

an input sampled from D. We define our oracle operator O as follows:

O |i, p, w⟩ |X⟩ = (OX |i, p, w⟩) |X⟩
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We can extend the unitaries U0, . . . , UT from our definition of unitary quantum circuits to act as the
identity on the input registers. After doing so, the joint state of the input and quantum circuit at
the end of the computation is given by:

|ψt⟩ = UtO . . .OU0 |0⟩C |ψ0⟩O

Again, the work register of |ψT⟩ is measured and a post-processing function q is used to
determine a partial assignment τ of outputs. The correctness of these outputs is then determined by
measuring the input registers in the standard basis to obtain the input X and evaluating whether τ

is consistent with f (X) which we denote by writing τ|| f (X). In general we can define the projector
Πk such that:

Πk = ∑
i,p,w,x1,...,xn

s.t. q(w)|| f (x1,...,xn)
and |q(w)|≥k

|i, p, w, x1, . . . , xn⟩ ⟨i, p, w, x1, . . . , xn|

The probability that the circuit produces a correct partial assignment of at least k outputs is given
by ∥Πk |ψT⟩∥2. For a given partial assignment q(w) to some outputs, we can define Πq(w) to be the
projection onto the values of |X⟩ where q(w)|| f (X). More specifically we have that:

Πq(w) = ∑
x1,...,xn

s.t. q(w)|| f (x1,...,xn
)

|x1, . . . , xn⟩ ⟨x1, . . . , xn| (1)

By construction when q always produces a partial assignment of at least k elements we have:

Πk = ∑
i,p,w
|i, p, w⟩ ⟨i, p, w| ⊗Πq(w)

Space Bounded Quantum Computation Without loss of generality, we think of quantum circuits
as starting in the all |0⟩ state and cycling between applying input queries O, arbitrary input-
independent computation Ut, and intermediate measurements as in Figure 1. Adopting the
notation of [BK23], we will consider the set of consecutive O, Ut, and measurement gates as layer
Lt. The space of layer Lt is the number of qubits that are passed from layer Lt to Lt+1 and is denoted
St. We define the space of a circuit as the maximum space of any layer, the time as the total number
of layers, and the cumulative memory as the sum over all the St.

Intermediate measurements enable circuits to produce parts of their output early and discard
unnecessary ancillary qubits. Some prior quantum time-space tradeoff lower bounds required
the quantum circuit to declare which outputs are produced at each layer (e.g. sorting, Boolean
matrix multiplication, and systems of linear inequalities [KŠdW07, AŠdW09]); however the recent
collision-finding bounds in [HM21, HLS22] extend the output model for quantum circuits to include
indicator qubits specifying which (if any) outputs are being produced at each layer. This allows
them to prove lower bounds against quantum algorithms that dynamically decide when they want
to produce outputs based on their observed inputs. While our Boolean matrix bounds build on
those in [KŠdW07] and thus require a fixed output order, our linear algebra bounds work with this
dynamic output model.

The time-space tradeoffs we prove in this paper will follow the Borodin-Cook method, and
thus rely on dividing a quantum circuit into blocks that each are unlikely to produce many correct
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Figure 1: The general structure of a quantum circuit with T queries.

outputs. We use the unitary quantum circuits model to prove that these blocks cannot produce many
outputs and then apply the results to our space bounded model using the differed measurement
principle. After the first block, a quantum circuit will have some input-dependent state that can
help it produce more outputs. Fortunately, a result by Aaronson lets us bound how much this
initial state can amplify the success probability.

Proposition 2.5 ([Aar05]). Let C be a quantum circuit, ρ be an S-qubit (possibly mixed) state, and πmix be
the S-qubit maximally mixed state. If C starting in initial state ρ produces some output z with probability p,
then C starting in state πmix will produce z with probability at least p/22S.

We will implicitly use this proposition to limit the power of the initial quantum state in the
following way: Let p be an upper bound on the success probability of a quantum circuit without
any qubits of input-dependent initial state. Assume that there existed a quantum circuit with S bits
of input dependent advice that could succeed with probability q. Then by Proposition 2.5 there is a
quantum circuit without input-dependent initial state that succeeds with probability p that is at
least q/22S. Thus we know that q ≤ p22S. Therefore any quantum circuit with S qubits of initial
state can succeed with probability at most p22S.

2.2 The recording query technique and quantum lower bounds

Here we review the methods developed in [Zha19, HM21] that allow us to analyze what a quantum
circuit learns about its input by making quantum queries. We will assume that the input state starts
in the equal superposition state over all inputs, although [Zha19, HM21] generalize this method to
other input distributions. We can exchange the general query operator O with a recording query
operatorR that we define as follows:

Definition 2.6 (adapted from [HM21]). Let S1 be the unitary operator that maps

S1 :


|⊥⟩ −→ 1√

d ∑y∈D |y⟩
1√
d ∑y∈D |y⟩ −→ |⊥⟩

1√
d ∑y∈D ω

p ν(y)
d |y⟩ −→ 1√

d ∑y∈D ω
p ν(y)
d |y⟩ ∀p ∈ {1, . . . , d− 1}.

Let S = (I)i,p,w ⊗ (S⊗n
1 )x1,...,xn and O be the standard oracle operator that maps the basis state

|i, p, w, x1, . . . , xn⟩ −→ ω
p ν(xi)
d |i, p, w, x1, . . . , xn⟩ .

Then the recording query oracle operatorR is defined as SOS.
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S1 introduces ⊥ as a new value for the input registers. Intuitively, the ⊥ symbol indicates
that the algorithm does not know anything about that register of the oracle. Hence by adding
and correctly manipulating the ⊥ symbols in the oracle’s registers, it is able to record what the
algorithm knows about the input. Since S2 = I, we can exactly characterize how the states of
quantum circuits with oracles O andR relate to one another.

Proposition 2.7 (Theorem 3.3 in [HM21]). Let C be a quantum circuit that for each j ≤ t applies unitary
Uj after the j-th query. Let S be the unitary operation andR be the recording query oracle from Definition 2.6.
Let

|ψt⟩ = UtOUt−1 . . . U1OU0

(
|0⟩i,p,w ⊗

1
dn/2 ∑

x1,...,xn∈D
|x1, . . . , xn⟩x1,...,xn

)
|ϕt⟩ = UtRUt−1 . . . U1RU0

(
|0⟩i,p,w ⊗ |⊥⟩x1,...,xn

)
be the states of C with oracle O orR respectively. Then |ψt⟩ = S |ϕt⟩.

In other words, it is impossible to distinguish the final state |ψT⟩ of a circuit with standard
oracle O from the output with recording oracleR if we apply S to the registers ofR after the final
query. Thus we can conclude that the success probability of a quantum circuit with T queries is
given by ∥Πsucc |ψT⟩∥2 = ∥ΠsuccS |ϕT⟩∥2. Note that while |ϕT⟩ may have inputs in the ⊥ state,
Proposition 2.7 tells us that S |ϕT⟩ will never have an input in the ⊥ state. This means that when
considering recording query oracles, it is safe to keep our current definitions of Πsucc and Πq(w)

which will always project out any basis state where an input is assigned to ⊥. We will leverage
the following property of |ϕT⟩ to bound the success probability of quantum circuits with at most T
queries.

Proposition 2.8 (Fact 3.2 in [HM21]). The state |ϕt⟩ from Proposition 2.7 is a linear combination of basis
states |i, p, w, x1, . . . , xn⟩ where at most t of the xi are different from ⊥.

For the bounds in [HM21] it is essential to bound how the state of |ϕ⟩O can change after
each query. For our use of the recording query technique, this detailed analysis is not necessary.
Nevertheless, we state the following proposition here for completeness.

Proposition 2.9 (Lemma 4.2 in [HM21] fixed). Let d = |D|. If the recording query operatorR is applied
to a basis state |i, p, w, x1, . . . , xn⟩ where p ̸= 0 then the register |xi⟩X is mapped to∑y∈D

ω
py
d√
d
|y⟩ if xi = ⊥

(1− 2
d )ω

pxi
d |xi⟩+ 1

d |xi⟩+
ω

pxi
d√
d
|⊥⟩+ ∑y∈D\{xi}

1−ω
py
d −ω

pxi
d

d |y⟩ otherwise.
(2)

If p = 0 then none of the registers is changed.

3 Quantum matrix vector products

In this section, we consider the task of—for a fixed matrix A ∈ Fm×n—computing the function
f (x) = Ax for inputs x ∈ Dm using a quantum circuit. We note that this is a fundamentally harder
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task than is considered in many quantum machine learning papers (for example [HHL09]) as we
require the circuit to output a classical vector y ∈ Fn rather than either a quantum state encoding the
entries of y in the amplitudes or an estimate of y† My. Also unlike many prior quantum time-space
tradeoffs, including sorting [KŠdW07, HM21, BK23] and boolean matrix multiplication [KŠdW07]
(and our Theorem 5.5), our matrix vector product and matrix multiplication lower bounds apply
to circuits that can adaptively decide when to produce each output based on the observed inputs.
Time-space lower bounds against such quantum circuits were first described in [HM21] for the
multiple disjoint collisions problem, although they were not able to show such a result for sorting.
Similar to [HM21] we are able to lower bound these circuits by identifying a single hard distribution
over the inputs that applies to any set of outputs.

3.1 Success probability of small depth quantum circuits

We prove the following key lemma, which lets us bound the number of correct outputs produced
by a shallow quantum circuit.

Lemma 3.1. Let A be any (k, h, c)-rigid m× n matrix over a finite field F and let f : Dn → Fm for D ⊆ F

be defined by f (x) = Ax. Then for α > 0 and for input x sampled uniformly from Dn and any quantum
circuit C with at most αh queries to x, the probability that C produces k correct output values of f (x) is at
most ⌈h/(ck)⌉ (2H2(α)/|D|1−α)ck.

Note: For α ≤ 0.1717 we have 1 − α − H2(α) > 1/6 and hence the bound is at most
⌈h/(ck)⌉|D|−ck/6 for d ≥ 2.

Proof. Let d = |D|. For simplicity we will assume that q(w)—the output as a function of the
measured value of the work register—always produces k outputs.2 Let A be a (k, h, c)-rigid matrix.
By Proposition 2.8 after t ≤ αh queries in the recording query oracle model, we can write the state
as:

|ϕt⟩ = ∑
i,p,w

I⊆[n], |I|≤t
y∈DI

αi,p,w,I,y |i, p, w⟩ |y⟩I |⊥⟩[n]\I (3)

for some αi,p,w,I,y with ∑i,p,w,I,y |αi,p,w,I,y|2 = 1. Thus by Proposition 2.7, the final state of the
algorithm in the non-recording query oracle setting is given by:

|ψt⟩ = S |ϕt⟩ = S ∑
i,p,w

I⊆[n], |I|≤t
y∈DI

αi,p,w,I,y |i, p, w⟩ |y⟩I |⊥⟩[n]\I

Since S behaves as the identity on |ψ⟩C and the |i, p, w⟩ are orthogonal basis states, we can rewrite
this as:

∑
i,p,w

βi,p,w |i, p, w⟩ ⊗
[
S⊗n

1 ∑
I⊆[n], |I|≤t

y∈DI

β
i,p,w
I,y |y⟩I |⊥⟩[n]\I

]

2If in general q(w) produces more than k outputs, we only consider its first k outputs.

9



for some βi,p,w and β
i,p,w
I,y such that αi,p,w,I,y = βi,p,w β

i,p,w
I,y , ∑i,p,w |βi,p,w|2 = 1 and for each i, p, w,

∑I,y |β
i,p,w
I,y |2 = 1. With this decomposition, the success probability is given by:

∥∥ΠkS |ϕt⟩
∥∥2

=

∥∥∥∥Πk ∑
i,p,w

βi,p,w |i, p, w⟩ ⊗
[
S⊗n

1 ∑
I⊆[n], |I|≤t

y∈DI

β
i,p,w
I,y |y⟩I |⊥⟩[n]\I

]∥∥∥∥2

=

∥∥∥∥∑
i,p,w

βi,p,w |i, p, w⟩ ⊗
[

Πq(w)S⊗n
1 ∑

I⊆[n], |I|≤t
y∈DI

β
i,p,w
I,y |y⟩I |⊥⟩[n]\I

]∥∥∥∥2

where Πq(w) is defined as in Equation (1) and is the projection of Πk onto fixed values of q(w). Since
the basis states |i, p, w⟩ are orthogonal and ∑i,p,w |βi,p,w|2 = 1, we have

∥∥ΠkS |ϕt⟩
∥∥2 ≤ max

i,p,w

∥∥∥∥Πq(w)S⊗n
1 ∑

I⊆[n], |I|≤t
y∈DI

β
i,p,w
I,y |y⟩I |⊥⟩[n]\I

∥∥∥∥2

(4)

We now fix i, p, w and let Aq(w) be the submatrix of A restricted to the rows defined by the set of
the k output values U associated with q(w). We can describe Πq(w) as a projection onto basis states
|x1, . . . , xn⟩ such that:

Aq(w)


x1
...

xn

 = q(w).

Since the basis states |y⟩I |⊥⟩[n]\I for distinct I are orthogonal in the recording query basis, they
remain orthogonal in the standard basis after the S operator is applied. However, the subsequent
application of the Πq(w) projector makes these vectors no longer orthogonal.

To handle this, we bucket the sets I ⊆ [n] with |I| ≤ t into a small number of buckets, B1, . . ., so
that for each bucket Bℓ we can bound:

µℓ =

∥∥∥∥Πq(w)S⊗n
1 ∑

I∈Bℓ,y∈DI

β
i,p,w
I,y |y⟩I |⊥⟩[n]\I

∥∥∥∥2

and then we can use Cauchy-Schwarz to bound the success probability as a sum of the µℓ.
In particular, our key observation is that if a bucket of recording query basis states completely

misses querying a fixed set of input variables that could completely scramble the value of a set of r
output values, then one cannot do better than randomly guess those output values. More precisely,
we show that the contribution to success from that bucket of basis states has amplitude at most 1√

dr .

Lemma 3.2. Let U ⊆ [m] be a set of output indices and V ⊆ [n] be a set of input indices with |V| = |U| = r
such that the submatrix AU,V is full rank. Fix q ∈ FU and define Πq to be the projection map onto the span
of the set of basis states |x1, . . . , xn⟩ with x1 . . . xn ∈ Dn such that AUx = q. Then for any collection B of
sets I ⊆ [n] \V and any quantum state ∑I∈B, y∈DI γI,y |y⟩I |⊥⟩[n]\I we have∥∥∥∥ΠqS⊗n

1 ∑
I∈B, y∈DI

γI,y |y⟩I |⊥⟩[n]\I

∥∥∥∥2

≤ 1
dr .
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Proof. By definition each I ∈ B satisfies I ∩V = ∅, so

ΠqS⊗n
1 ∑

I∈B, y∈DI

γI,y |y⟩I |⊥⟩[n]\I

= ΠqS⊗n
1 (|⊥⟩V ⊗ ∑

I∈B, y∈DI

γI,y |y⟩I |⊥⟩[n]\(I∪V)

= Πq(S
⊗j
1 |⊥⟩V ⊗ S

⊗(n−j)
1 ∑

I∈B, y∈DI

γI,y |y⟩I |⊥⟩[n]\(I∪V))

= Πq( ∑
y′∈DV

1√
dr
|y′⟩V ⊗ S

⊗(n−j)
1 ∑

I∈B, y∈DI

γI,y |y⟩I |⊥⟩[n]\(I∪V))

since S1(|⊥⟩) = ∑y′∈D
1√
d
|y′⟩. Now

S⊗(n−j)
1 ∑

I∈B, y∈DI

γI,y |y⟩I |⊥⟩[n]\(I∪V) = ∑
z∈(D∪{⊥})[n]\V

δz |z⟩n\V

for some δz amplitudes satisfying ∑z∈(D∪{⊥})[n]\V |δz|2 = 1.
For each value of z ∈ D[n]\V , since the sub-matrix AU,V is invertible, there is a unique value

yz ∈ DV such that AU(yz ∪ z) = q so we get that∥∥∥∥ΠqS⊗n
1 ∑

I∈B, y∈DI

γI,y |y⟩I |⊥⟩[n]\I

∥∥∥∥2

=

∥∥∥∥Πq

[
∑

y′∈DV

1√
dr
|y′⟩V ⊗ ∑

z∈(D∪{⊥})n−j

δz |z⟩[n]\V
]∥∥∥∥2

=

∥∥∥∥ 1√
dr
·Πq

[
∑

y′∈DV

|y′⟩V ∑
z∈Dn−j

δz |z⟩n\V
]∥∥∥∥2

=

∥∥∥∥ 1√
dr
·Πq ∑

z∈D[n]\V

δz ∑
y′∈DV

|y′⟩V |z⟩n\V)
∥∥∥∥2

=

∥∥∥∥ 1√
dr ∑

z∈D[n]\V

δz |yz⟩V |z⟩n\V)
∥∥∥∥2

≤ 1
dr

since ∑z∈D[n]\V |δz|2 ≤ 1.

Next we decompose the set of all I with |I| ≤ t into buckets so that we can apply the above.

Lemma 3.3. Let A be a (k, h, c)-rigid matrix and let k′ = ⌈ck⌉. Then for every subset U of k rows of A,
there is a collection of disjoint k′-subsets of columns from [n], V1, . . . , Vℓ for ℓ = ⌈h/k′⌉ ≤ ⌈h/(ck)⌉ and
corresponding sets of rows U1, . . . , Uℓ ⊆ U such that for each j ∈ [ℓ], the k′ × k′ submatrix AUj,Vj is full
rank. (In particular the union, W, of the sets Vj has size at least h.) If c = 1 then all Uj = U.
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Proof. Fix U ∈ [m] with |U| = k. The following procedure constructs such a collection, one set at a
time. We maintain a subset of W columns that is the union of the Vj constructed so far. Suppose
that |W| < h. Then, by the (k, h, c)-rigidity of A, the submatrix AU,[n]\W has rank at least k′. Hence
there is a k′ × k′ submatrix AUj,Vj of AU,[n]\W that has full rank k′. We now add Vj to the collection
of k′-sets of columns, record its corresponding row set Uj, and set W ← W ∪ Vj. This produces
exactly ⌈h/k′⌉ subsets.

Fix the collection of sets V1, . . . , Vℓ given by Lemma 3.3. Let k′′ = ⌊αk′⌋. Suppose that Vj =

{i1, . . . , ik′} ⊆ [n] with i1 ≤ · · · ≤ ik′ . For each λ ∈ ([k
′]

k′′ ), define the set Vλ
j to be the subset of

Vj that has the k′′ elements of Vj indexed by λ removed. (That is, ij′ /∈ Vλ
j iff j′ ∈ λ.) Then

|Vλ
j | = k′ − k′′ ≥ c(1− α)k. There are a total of ( k′

k′′) ≤ 2H2(α) k′ possible values of λ and hence

⌈h/k′⌉ · 2H2(α) k′ sets of the form Vλ
j . These sets have two useful properties: first any subset of [n]

with size at most αh must miss some Vλ
j and second if the entries of x corresponding to some Vλ

j
are uniformly random, then for any set of k indices in Ax, at least c(1− α)k of these values are also
uniformly random.

Lemma 3.4. For t ≤ αh and every I ⊆ [n] with |I| ≤ t, there is some j ≤ ⌈h/k′⌉ and λ ∈ ([k
′]

k′′ ) such that
I ⊆ [n] \Vλ

j .

Proof. Fix such a set I with |I| ≤ t. Since t ≤ αh, |⋃j∈[ℓ] Vj| ≥ h, and the sets Vj are disjoint, by
averaging there is some set Vj that has at most an α fraction of its elements in I. Hence Vj has at
most k′′ ≤ αk′ elements of I. Choose a set λ ∈ ([k

′]
k′′ ) that contains the indices within Vj of all of the

elements of Vj ∩ I. Then by construction I ∩Vλ
j = ∅.

By applying Lemma 3.4 we can associate each I ⊆ [n] with |I| ≤ t with a pair (j, λ) such that
I ∈ [n] \Vλ

j and define bucket Bλ
j to consist of all such sets I associated with pair (j, λ).3 Further,

define a set Uλ
j ⊆ Uj ⊆ [m] of the rows of Aq(w) with |Uλ

j | = k′ − k′′ such that the submatrix
AUλ

j ,Vλ
j

is full rank. Such a subset of rows must exist since AUj,Vλ
j

is a full rank matrix. Then let

qλ
j = q(w)|Uλ

j
be the portion of the assignment q(w) on the rows of Uλ

j .
We are now ready to provide an upper bound on the success probability from Equation (4).∥∥∥∥Πq(w)S⊗n

1 ∑
I⊆[n], |I|≤t

y∈DI

β
i,p,w
I,y |y⟩I |⊥⟩[n]\I

∥∥∥∥2

=

∥∥∥∥Πq(w)S⊗n
1 ∑

j∈[ℓ]
∑

λ∈([k
′ ]

k′′ )

∑
I∈Bλ

j , y∈DI

β
i,p,w
I,y |y⟩I |⊥⟩[n]\I

∥∥∥∥2

≤
∥∥∥∥∑

j∈[ℓ]
∑

λ∈([k
′ ]

k′′ )

Πqλ
j
S⊗n

1 ∑
I∈Bλ

j , y∈DI

β
i,p,w
I,y |y⟩I |⊥⟩[n]\I

∥∥∥∥2

. (5)

3Note that while some sets I could be associated with multiple pairs (j, λ), we will pick only one such pair for each I.
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Applying Lemma 3.2 with r = k′ − k′′, q = qλ
j , U = Uλ

j , V = Vλ
j , and B = Bλ

j , we have that

∥∥∥∥Πqλ
j
S⊗n

1 ∑
I∈Bλ

j , y∈DI

β
i,p,w
I,y |y⟩I |⊥⟩[n]\I

∥∥∥∥2

≤ 1/dk′−k′′ ≤ 1/d(1−α) k′ .

and hence using Equation (5) we obtain that

∥∥ΠkS |ϕt⟩
∥∥2 ≤ ℓ

(
k′

k′′

)
/d(1−α) k′ ≤ ⌈h/k′⌉ 2H2(α) k′/d(1−α) k′ = ⌈h/k′⌉ (2H2(α)/d(1−α))k′ .

Without loss of generality in our desired bound we can assume that 2H2(α)/d(1−α) < 1. Therefore
the bound still applies when we replace k′ by the potentially smaller ck which is what we needed
to show.

3.2 Matrix-vector product time-space tradeoffs and related lower bounds

Theorem 3.5. Let m be nO(1). Let A be an m× n matrix over a field F that is (g(m), h(n), c)-rigid for
c ∈ (0, 1/2]. Then any quantum circuit using time T and space S that computes a function f : Dn → Fm

for D ⊆ F with d = |D| given by f (x) = Ax with success probability larger than 2−S requires that T is
Ω(g(m) h(n) log(d) /S); more precisely, T must be Ω(min{g(m) n log d, m h(n) log d}/S).

Proof. First observe that since S ≥ log2 n and T ≥ n we know that T · S is Ω(n log n) which is
Ω(g(m) n log |D|) if g(m) < (12/c) logd n. Therefore we can assume without loss of generality that
g(m) ≥ (12/c) logd n.

Let C be a quantum circuit with T queries and space S, write h = h(n), g = g(m), and let
α = 0.1717. We partition C into ⌈T/(αh)⌉ sub-circuits that each have at most αh queries. By
combining Proposition 2.5 and Lemma 3.1, we know that each sub-circuit can produce k ≤ g correct
outputs with probability at most 22S ⌈h/(ck)⌉ d−ck/6 ≤ h 22Sd−ck/6.

Now suppose that h 22Sd−cg/6 > 2−S/T. Then T23S > dcg/6/h ≥ dcg/6/n ≥ dcg/12 by the
assumption on g. Since S ≥ log2 n and T is at most polynomial in n (or the bound applies already),
T23S is at most 2c′S for some constant c′ > 0. This implies that S is Ω(g(m) log d) and since T ≥ n,
we get that T · S is Ω(g(m) n log |D|) as claimed.

Otherwise set k ≤ g to be the smallest integer such that h 22Sd−ck/6 ≤ 2−S/T. Then
the probability that a sub-circuit produces k correct outputs is at most 2−S/T. This gives
k = ⌈[6 log2(hT) + 18S]/(c log2 d)⌉, which is at most c∗S/ log2 d for some constant c∗ > 0 since S
is Ω(log n) which is Ω(log(hT)).

Taking a union bound over the sub-circuits, the probability that any of them produces k correct
outputs is at most 2−S. Since f has m outputs, this means that

⌈T/(αh)⌉ (k− 1) ≥ m

Since T ≥ n ≥ αh, we have
2Tk ≥ αmh.
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Plugging in our upper bound on k we have that

2c∗TS/ log2 d ≥ αmh

and hence T · S is Ω(mh log d) which is Ω(m h(n) log |D|) as claimed.

Following the same arguments as for classical computation [Abr91], we obtain a collection
of time-space lower bounds for problems that are closely related to matrix vector products. Our
proofs are identical to their classical counterparts proven in[Abr91, Sections 5-6] and are duplicated
here for completeness.

Corollary 3.6. Let F be a field and D ⊆ F such that d = |D|. Any quantum circuit that computes the
discrete Fourier transform (DFT) of vectors in Dn in time T and space S with probability at least 2−S requires
T to be Ω(n2 log(d) /S).

Proof. Applying Theorem 3.5 with the rigidity of the DFT from Proposition 2.3 directly gives us the
lower bound.

Proposition 3.7 ([Abr91]). There is a constant γ ∈ (0, 1/2) such that at least a 1− |D|−1(2/3)γn fraction
of the Toeplitz (diagonal constant) matrices over Dn×n are (γn, γn)-rigid.

Corollary 3.8. Let F be a field and D ⊆ F such that d = |D|. Computing the convolution of two vectors in
Dn in time T and space S with probability at least 2−S requires T to be Ω(n2 log(d) /S)

Proof. For simplicity assume that n is even. Let

U =



un un−1 . . . u2 u1

u1 un . . . u3 u2
...

...
. . .

...
...

un−2 un−3 . . . un un−1

un−1 un−2 . . . u1 un


=

[
A B

C D

]

Where A, B, C and D are n/2× n/2 submatrices. Then Uv is the convolution between vectors
u and v. Observe that U is a Toeplitz matrix and by picking u to be a uniform vector over D,
Proposition 3.7 tells us that for sufficiently large n, there is a constant γ ∈ (0, 1/2) such that both
A and B are (γn, γn/2)-rigid with probability at least 1/2. This lets us restrict our input to such
choices for u and observe that the matrix U′ =

[
A B

]
is (γn, γn/2)-rigid, so Theorem 3.5 gives us

that computing U′ requires T that is Ω(n2 log(d) /S). Since U′ is a subfunction of U, convolution
also requires T that is Ω(n2 log(d) /S).

Corollary 3.9. A quantum circuit that multiplies two n bit binary numbers in time T and space S with
probability at least 2−S requires T to be Ω(n2/(S log2 n)).

Proof. Let u, v be arbitrary vectors over F2. Define the binary number

u′ = 0⌈log2 n⌉−1un . . . 0⌈log2 n⌉−1u10⌈log2 n⌉−1un . . . 0⌈log2 n⌉−1u1

and similarly define v′. Then observe that the product u′ · v′ contains all entries of the convolution
between u and v encoded in blocks of ⌈log2 n⌉ bits each. By Corollary 3.8 this requires T to be
Ω(n2/(S log2 n)).
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Proposition 3.10 ([Abr91]). Let A, B, C ∈ Dn×n and Y (and Y) be the vectors in Dn2
formed by stacking

the transposes of the rows of B (and Y) into a column vector. If D is a commutative ring, then the following
conditions are equivalent:

Y = ABC

Y = (A⊗ CT)B

Where ⊗ is the standard tensor (Kronecker) product.

Proposition 3.11 ([Abr91]). Let γ ∈ (0, 1/2). If A and B are (γn, γn)-rigid, then A⊗ B is (γ2n2, γ2n2, γ2)-
rigid.

Corollary 3.12. Let F be a field and D ⊆ F such that d = |D|. Any quantum circuit that computes the
product ABC on inputs A, B, C ∈ Dn×n in time T and space S with probability at least 2−S requires T that
is Ω(n4 log(d) /S).

Proof. We use Proposition 3.10 to view this as a matrix-vector product problem where B is the input
and Y is the output. By Proposition 2.4 there is a constant γ ∈ (0, 1/2) such that both A and C are
γ rigid with constant probability, so we can assume such without increasing the expected cost by
more than a constant factor. Then Proposition 3.11 gives us that A⊗ C is (γ2n2, γ2n2, γ2)-rigid and
we can apply Theorem 3.5 to get that T must be Ω(n4 log(d) /S) as desired.

Corollary 3.13. Let F be a field and D ⊆ F such that d = |D|. Any quantum circuit that computes A3 on
inputs in Dn×n in time T and space S with probability at least 2−S requires T that is Ω(n4 log(d) /S).

Proof. Let A, B, C ∈ Dn×n. Then construct the 4n× 4n matrix:

M =


0 A 0 0

0 0 B 0

0 0 0 C

0 0 0 0


Observe that the top right n× n sub-matrix of M3 is equal to the product ABC. Thus we get a
reduction to matrix-matrix-matrix product and can apply Corollary 3.12 to get our lower bound.

Corollary 3.14. Let F be a field and D ⊆ F such that d = |D|. Any quantum circuit that computes A−1

on inputs in Dn×n in time T and space S with probability at least 2−S requires T that is Ω(n4 log(d)/S).

Proof. Let A, B, C ∈ Dn×n. Then construct the 4n× 4n matrix:

M =


I −A 0 0

0 I −B 0

0 0 I −C

0 0 0 I


Where I is the n× n identity submatrix. Then observe that M−1 has the product ABC as its top
right n× n submatrix. We can again use Theorem 3.5 to get our lower bound.
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Corollary 3.15. Let F be a field and D ⊆ F such that d = |D|. Any quantum circuit that solves any n× n
system of linear equations over D in time T and space S with probability at least 2−S requires T that is
Ω(n3 log(d) /S)

Proof. It is possible to invert a matrix by solving n systems of n linear equations. By a reduction
Corollary 3.14 gives us that solving these equations requires T that is Ω(n4 log(d) /S). Thus least
one of these equations must require T that is Ω(n3 log(d) /S) to solve.

In [BK23] the authors showed that the kinds of quantum time-space product lower bounds we
proved in this section can be extended to asymptotically equivalent lower bounds on the stronger
notion of cumulative memory complexity. We restate a simplified version of their main theorem for
quantum circuits here.

Proposition 3.16 ([BK23]). Let f : Dn → Rm be a function such that there exists constant C, functions
m′(n) ∈ ω(log n), h(k, n) = k∆h1(n), K(n), and a distribution µ over Dn where when x ∼ µ the
probability that - for any k ≤ m′(n) - any quantum circuit with at most h(k, n) queries to x produces k
correct outputs of f (x) with probability at most C · K(n)−k. Then for any constant c > 0, any quantum
circuit that computes f with T queries and error ϵ ≤ (1− 1/(2Tc)) must have cumulative memory that is:

Ω
(

min
(
[(mh1(n))1/(1−∆) log K(n)]/T∆/(1−∆), m′(n)1+∆h1(n) log K(n)

))
(6)

Using the above result, we can extend the quantum time-space product lower bound for matrix
vector products to a matching quantum cumulative memory lower bound.

Theorem 3.17. Let γ > 0 and c ∈ (0, 1/2] be fixed. If A is a (γn, γn, c)-rigid n× n matrix over a field F

then any quantum circuit using time T and space S that computes the function f : Dn → Fn for D ⊆ F

with d = |D| given by f (x) = Ax with success probability larger than 1/T requires cumulative memory
that is Ω(n2 log d).

Proof. By Lemma 3.1 we can apply Proposition 3.16 where C = ⌈1/c⌉, m′(n) = γn, ∆ = 0,
h1(n) = αn, K(n) = d1/6, and µ is the uniform distribution. This give us that any quantum circuit
computing f with T queries and error at most 1− 1/(2T) requires cumulative memory Ω(n2 log d)
as desired.

Directly applying this in place of Theorem 5.5 gives us matching cumulative (CM) memory
lower bounds for Corollary 3.6 through Corollary 3.15.

Corollary 3.18. Let F be a field and D ⊆ F such that d = |D|. Any quantum circuit with inputs
over D that computes the DFT or vector convolution requires CM that is Ω(n2 log d). Any quantum
circuit that computes the product of three matrices, matrix cubing, or matrix inversion requires CM that
is Ω(n4 log d). Any quantum circuit that solves n× n systems of linear equations requires CM that is
Ω(n3 log d). Additionally any quantum circuit that multiplies two n bit binary numbers requires CM that
is Ω(n2/ log2 n).

16



4 Quantum matrix multiplication

While many of the applications so far, including the matrix triple product lower bound discussed
in the previous section, are derived from the matrix-vector product lower bound, our matrix
multiplication lower bound requires a separate argument using ideas from the classical lower
bound for the problem in [Abr91]. Implementing this requires a much more subtle way of applying
our bucketing method for states that allows us to concentrate on just a subset of the buckets
containing most of the total amplitude and ignore the others. As in Section 3, our lower bounds in
this section apply to a more general model of quantum circuits that can decide which outputs they
want to produce in a given layer based on the inputs that they have queried.

4.1 The success probability of small depth quantum circuits

Lemma 4.1. Let γ ∈ (0, 1/2) and f : Dn2 × Dn2 → Fn2
for D ⊆ F with |D| = d be defined by

f (A, B) = AB. Then for any constant β > 0 and quantum circuit C with at most h = βγn
√

k/2 queries
to input matrices A, B sampled uniformly from Dn2

, the probability that A and B are (γn, γn)-rigid and C
produces k correct output values of f (A, B) is at most 16 min(k, n)

√
k/2(2H2(4β)/d1−4β)k/4

Note that for β ≤ 0.0429 we have 1 − 4β − H2(4β) > 1/6 so the bound is at most
16 min(k, n)

√
k/2d−k/24.

Proof. Let C = AB, Πrigid(A) (Πrigid(B)) be the projection onto inputs where A (B) is a (γn, γn)-rigid
matrix, and define Πrigid = Πrigid AΠrigid B. Assume that q(w)—the output as a function of the
measured value of the work register—produces exactly k outputs; we ignore anything it produces
after the first k. We will use [A] to denote the set of indices of elements in A and likewise for [B] and
[C]. By Proposition 2.8, after t ≤ h queries in the recording query basis, our state can be written as:

|ϕt⟩ = ∑
i,p,w

E⊆[A],F⊆[B]
|E|+|F|≤t

x∈DE,y∈DF

αi,p,w,E,F,x,y |i, p, w⟩ |x⟩E |⊥⟩[A]\E |y⟩F |⊥⟩[B]\F

for some αi,p,w,E,F,x,y with ∑i,p,w,E,F,x,y |αi,p,w,E,F,x,y|2 = 1. We first apply analogous series observations
and decompositions to those that allowed us to derive (4) from (3) in the case of matrix-vector
product. By Proposition 2.7, we note that the final state of the algorithm in the standard oracle
setting is given by:

|ψt⟩ = S |ϕt⟩ = ∑
i,p,w

E⊆[A],F⊆[B]
|E|+|F|≤t

x∈DE,y∈DF

αi,p,w,E,F,x,y |i, p, w⟩ |x⟩E |⊥⟩[A]\E |y⟩F |⊥⟩[B]\F

Because S behaves as the identity on |ψ⟩C and each distinct choice of |i, p, w⟩ gives an orthogonal
basis state, this equals:

∑
i,p,w

βi,p,w |i, p, w⟩ ⊗
[

S⊗2n2

1 ∑
E⊆[A],F⊆[B]
|E|+|F|≤t

x∈DE,y∈DF

β
i,p,w
E,F,x,y |x⟩E |⊥⟩[A]\E |y⟩F |⊥⟩[B]\F

]
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for some βi,p,w and β
i,p,w
E,F,x,y such that ∑i,p,w |βi,p,w|2 = 1 and ∑E,F,x,y |β

i,p,w
E,F,x,y|2 = 1 for each i, p, w.

Now the probability over the choices of the input matrices and the result of the quantum algorithm
making t queries that the matrices A and B are both (γn, γn)-rigid and the algorithm produces k
correct output values from C = AB is at most:∥∥ΠkΠrigidS |ϕt⟩

∥∥2

=

∥∥∥∥ΠkΠrigid ∑
i,p,w

βi,p,w |i, p, w⟩ ⊗
[

S⊗2n2

1 ∑
E⊆[A],F⊆[B]
|E|+|F|≤t

x∈DE,y∈DF

β
i,p,w
E,F,x,y |x⟩E |⊥⟩[A]\E |y⟩F |⊥⟩[B]\F

]∥∥∥∥2

=

∥∥∥∥∑
i,p,w

βi,p,w |i, p, w⟩ ⊗
[

Πq(w)ΠrigidS⊗2n2

1 ∑
E⊆[A],F⊆[B]
|E|+|F|≤t

x∈DE,y∈DF

β
i,p,w
E,F,x,y |x⟩E |⊥⟩[A]\E |y⟩F |⊥⟩[B]\F

]∥∥∥∥2

= ∑
i,p,w
|βi,p,w|2

∥∥∥∥[Πq(w)ΠrigidS⊗2n2

1 ∑
E⊆[A],F⊆[B]
|E|+|F|≤t

x∈DE,y∈DF

β
i,p,w
E,F,x,y |x⟩E |⊥⟩[A]\E |y⟩F |⊥⟩[B]\F

]∥∥∥∥2

≤ max
i,p,w

∥∥∥∥Πq(w)ΠrigidS⊗2n2

1 ∑
E⊆[A],F⊆[B]
|E|+|F|≤t

x∈DE,y∈DF

β
i,p,w
E,F,x,y |x⟩E |⊥⟩[A]\E |y⟩F |⊥⟩[B]\F

∥∥∥∥2

. (7)

For the rest of the proof we fix an i, p, w to achieve the maximum value in Equation (7) and prove
a upper bound on the resulting probability. This fixes the output values q(w); we write G ⊆ [C]
with |G| = k for the set of indices of the outputs given by q(w). To keep notations simpler in the
remainder of the proof we observe that Equation (7) is upper bounded by the maximum of∥∥∥∥Πq(G)ΠrigidS⊗2n2

1 ∑
E⊆[A],F⊆[B]
|E|,|F|≤t

x∈DE,y∈DF

βE,F,x,y |x⟩E |⊥⟩[A]\E |y⟩F |⊥⟩[B]\F
∥∥∥∥2

. (8)

over all βE,F,x,y with ∑E,F,x,y |βE,F,x,y|2 = 1, all sets G ⊆ [C] with |G| = k and all assignments q(G)

to G.
We will split the sum in Equation (8) over the different sets E and F of queried input indices

depending on how they relate to the set of output indices given by G. Let r(G) be the set of rows
containing elements of G and c(G) be the set of columns containing elements of G.

We define a light row of E to be an element of r(G) that contains at most βγn elements of E
and define a light column of F to be an element of c(G) that contains at most βγn elements of
F. Since |E|, |F| ≤ t ≤ βγn

√
k/2 we have ≤

√
k/2 rows of E in r(G) and ≤

√
k/2 columns

of F in c(G) that are not light. We define L(E) ⊆ r(G), to be any set of |r(G)| −
⌊√

k/2
⌋

light
rows of E and L′(F) ⊆ c(G) to be any set of c(G) −

⌊√
k/2

⌋
light columns of F. Therefore

|{(i′, j′) ∈ G | i′ /∈ L(E), j′ /∈ L′(F)}| ≤ k/2 so at least k/2 elements of G are in light rows
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of E or in light columns of F. Therefore for every pair (E, F) at least one of the sets of outputs
Gr
L(E) = {(i

′, j′) ∈ G | i′ ∈ L(E)} or Gc
L(F) = {(i

′, j′) ∈ G | j′ ∈ L′(F)} has size ≥ k/4.
Let E be the set of all E ⊆ [A] with |E| ≤ t such that G has many outputs in light rows,

|Gr
L(E)| ≥ k/4, and F be the set of all F ⊆ [B] with |F| ≤ t such that G has many outputs in light

columns, |Gc
L′(F)| ≥ k/4. We separately bound the contribution to Equation (8) from pairs (E, F)

with E ∈ E and F ∈ F . The analyses of the two cases are completely symmetric up to matrix
transposition. It will be convenient to focus on the case F ∈ F that there are many outputs of G in
light columns and compute an upper bound on∥∥∥∥Πq(G)ΠrigidS⊗2n2

1 ∑
E⊆[A]
|E|≤t
x∈DE

∑
F∈F
y∈DF

βE,F,x,y |x⟩E |⊥⟩[A]\E |y⟩F |⊥⟩[B]\F
∥∥∥∥2

. (9)

The case that E ∈ E has exactly the same upper bound as Equation (9) by applying the argument
to the transposed product BT AT and corresponding transposed sets FT, ET, and GT. Hence, the
quantity in Equation (8) is at most 4 times that of Equation (9).

To upper bound Equation (9), we first remove the projection operator Πrigid B from Πq(G)Πrigid =

Πq(G)Πrigid AΠrigid B to get Πq(G)Πrigid A. We then rewrite this combined projection operator as
Πq(G)Πrigid A = ∑A (γn,γn)-rigid ΠA ⊗ΠA

q(G) where ΠA is the projection onto the specific matrix A
and for each A, ΠA

q(G) is the projection onto the choices for matrix B such that C = AB agrees with
q(w). We therefore obtain that Equation (9) is at most∥∥∥∥ ∑

A (γn,γn)-rigid
(ΠA ⊗ΠA

q(G))S
⊗2n2

1 ∑
E⊆[A]
|E|≤t
x∈DE

∑
F∈F
y∈DF

βE,F,x,y |x⟩E |⊥⟩[A]\E |y⟩F |⊥⟩[B]\F
∥∥∥∥2

=

∥∥∥∥ ∑
A (γn,γn)-rigid

(ΠA ⊗ΠA
q(G)S

⊗n2

1 ) ∑
A′∈(D∪{⊥})[A]

∑
F∈F
y∈DF

βA′β
A′
F,y |A′⟩[A] |y⟩F |⊥⟩[B]\F

∥∥∥∥2

=

∥∥∥∥ ∑
A (γn,γn)-rigid

βA |A⟩[A] ⊗ [ΠA
q(G)S

⊗n2

1 ∑
F∈F
|F|≤t
y∈DF

βA
F,y |y⟩F |⊥⟩[B]\F]

∥∥∥∥2

(10)

for some βA and βA
F,y such that ∑A∈(D∪{⊥})n2 |βA|2 = 1 and ∑F∈F ,y∈DF0 |βA

F,y|2 = 1 for each A. Since
Πq(G)A only projects onto the [B] input registers, each distinct choice of |A⟩[A] gives orthogonal
states so Equation (10) equals

∑
A (γn,γn)-rigid

|βA|2
∥∥∥∥ΠA

q(G)S
⊗n2

1 ∑
F∈F
|F|≤t
y∈DF

βA
F,y |y⟩F |⊥⟩[B]\F

∥∥∥∥2

≤ max
A (γn,γn)-rigid

∥∥∥∥ΠA
q(G)S

⊗n2

1 ∑
F∈F
y∈DF

βA
F,y |y⟩F |⊥⟩[B]\F

∥∥∥∥2

(11)
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We fix a (γn, γn)-rigid matrix A that maximizes (11). We now partition the set F based on the
set L′(F) which contains all but precisely

⌊√
k/2

⌋
columns in c(G). Therefore we can rewrite (11)

as

∥∥∥∥ ∑
H∈( c(G)

⌊√k/2⌋)

ΠA
q(G)S

⊗n2

1 ∑
F∈F

L′(F)=c(G)\H
y∈DF

βA
F,y |y⟩F |⊥⟩[B]\F

∥∥∥∥2

. (12)

Since the different choices of F, and hence different choices of H, correspond to orthogonal
basis states, we can upper bound (12) by( |c(G)|⌊√

k/2
⌋) · max

H∈( c(G)

⌊√k/2⌋)

∥∥∥∥ΠA
q(G)S

⊗n2

1 ∑
F∈F

L′(F)=c(G)\H
y∈DF

βA
F,y |y⟩F |⊥⟩[B]\F

∥∥∥∥2

. (13)

We fix the set H achieving the maximum value in Equation (13) which fixes the value of L′(F) =
c(G) \ H. This fixes the set Gc

L′(F) of elements in G that are in light columns of F (equivalently,
not in H) which, since F ∈ F , contains at least k/4 elements of G. Let G′ be a fixed subset of
k/4 of the elements of Gc

L′(F). By construction we have c(G′) ⊆ L′(F). By only requiring that the
outputs in G′ are correct and using the fact that |c(G)| ≤ min(k, n), we therefore can upper bound∥∥ΠkΠrigidS |ϕt⟩

∥∥2 by the maximum value of

4 ·min(k, n)
√

k/2
∥∥∥∥ΠA

q(G′)S
⊗n2

1 ∑
F⊆[B]

c(G′) ⊆ L′(F)
y∈DF

β′F,y |y⟩F |⊥⟩[B]\F
∥∥∥∥2

. (14)

over all G′ ⊆ [C] with |G′| = k/4 and β′F,y with ∑F,y |β′F,y|2 = 1.
For each j ∈ c(G′), let k j be the number of elements of G′ in column j. Our overall strategy is

to consider the j ∈ c(G′) one by one, and show that the total amplitude on states where these k j

outputs are correct conditioned on the success for previous values of j is of the form d−δk j for some
fixed constant δ > 0. These are k j outputs of the matrix-vector product Ayj where yj is the j-th
column of B and that fact that c(G′) ⊆ L′(F) implies that F has made at most βγn queries to y(j).
This is very similar to the situation with the matrix-vector problem from Lemma 3.1. In analogy
with the Lemma 3.1, we define U j to be the set of k j rows containing outputs of G′ in column j.

Applying Lemma 3.3 with c = 1, for each j ∈ q(G′) there is a collection V j
1 , . . . , V j

ℓj
of ℓj =⌈

γn/k j
⌉

k j-subsets of [n] such that the k j × k j sub-matrix AU jV j
i

has full rank.
Using the ideas of Lemma 3.1 we could bucket the possible quantum states into one bucket

for each tuple (V j
i )j∈q(G′) using Lemmas 3.2 and 3.3 and bound each bucket separately. However,

unlike Lemma 3.1, the value of many of the k j can be very small, as low as 1, in which case the
upper bounds using Lemmas 3.2 and 3.3 would yield a probability bound larger than 1.

Instead, we need a stronger argument to show that, except for an exponentially small amount
in k, all of the amplitude can be allocated to a very small number of buckets. The following lemma
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gives the inductive step that allows us to define those buckets. Rather than thinking about each
column j ∈ c(G′) as separate matrix-vector problems, it works by considering all of the answers in
G′ at once.

Lemma 4.2. Let G′ ⊆ [C] with |G′| = k/4 and F ′ be a set of F ⊆ [B] such that c(G′) ⊆ L′(F). Suppose
further that ∑F∈F ′,y∈DF |δF,y|2 = 1 for some δF,y. Let C′ ≥ 2 be a constant and define α = C′β. Then there
is a F ′′ ⊆ F ′ and δ′F,y such that ∑F∈F ′′,y∈DF |δ′F,y|2 = 1 and

∥∥ΠA
q(G′)S

⊗n2

1 ∑
F∈F ′
y∈DF

δF,y |y⟩F |⊥⟩[B]\F
∥∥2 ≤ 21+H2(α) k/4

d(1−α) k/4
+

2
C′
∥∥ΠA

q(G′)S
⊗n2

1 ∑
F∈F ′′
y∈DF

δ′F,y |y⟩F |⊥⟩[B]\F
∥∥2.

Proof. We first recall the definitions in our discussion preceding the lemma statement. For each
j ∈ c(G′), define U j to be the set of row indices of G′ in column j and let k j = |Uj|; let ℓj =

⌈
γn/k j

⌉
and V j

1 , . . . , V j
ℓj

be the collection of disjoint subsets of [n] of size k j given by Lemma 3.3 such that
each k j × k j sub-matrix AU jV j

i
has full rank.

For each F ∈ F ′ and i ∈ c(G′), define Fj to be the set of row indices of elements of F in column
j; since c(G′) ⊆ L′(F), we have |Fj| ≤ βγn. For each i ∈ [ℓj] define

mj
i = ∑

F∈F ′, y∈DF

|δF,y|2 · |Fj ∩V j
i |.

Since ∑F,y |δF,y|2 = 1, mj
i can be viewed as the expected size of the overlap between the recorded

queries in the j-th column of the matrix B and each V j
i . Since for each j, the sets V j

i are disjoint and
|Fj| ≤ βγn we have ∑i∈[ℓj] mj

i ≤ βγn. Therefore, for each j, we have some index ij ∈ [ℓj] such that

mj
ij
≤ βγn/ℓj ≤ βk j.
Since ∑j∈c(G′) k j = |G′| = k/4, the expected total overlap between the recorded queries in the

columns of G and the chosen sets V j
ij

for those columns is ∑j mj
ij
≤ ∑j βk j = βk/4. Define F ′′ to be

the set of F ∈ F ′ such that ∑j |Fj ∩V j
ij
| ≥ αk/4 = C′βk/4. By Markov’s inequality we have

∑
F∈F ′′, y∈DF

|δF,y|2 ≤
∑j mj

ij

C′βk/4
≤ 1/C′.

We split our analysis for F ′ into two parts due to sets F in F ′′ and F ′ \F ′′, respectively.
We begin with F ∈ F ′′. Write κ = ∑F∈F ′′, y∈DF |δF,y|2 ≤ 1/C′. For F ∈ F ′′, define δ′F,y = 1√

κ
δF,y.

Then ∑F∈F ′′,y∈DF |δ′F,y|2 = 1 and∥∥∥∥ΠA
q(G′)S

⊗n2

1 ∑
F∈F ′′
y∈DF

δF,y |y⟩F |⊥⟩[B]\F
∥∥∥∥2

= κ

∥∥∥∥ΠA
q(G′)S

⊗n2

1 ∑
F∈F ′′
y∈DF

δ′F,y |y⟩F |⊥⟩[B]\F
∥∥∥∥2

≤ 1
C′

∥∥∥∥ΠA
q(G′)S

⊗n2

1 ∑
F∈F ′′
y∈DF

δ′F,y |y⟩F |⊥⟩[B]\F
∥∥∥∥2

. (15)
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We now consider F ′ \ F ′′. By definition, for F ∈ F ′ \ F ′′, we have ∑j |Fj ∩ V j
ij
| < αk/4. By

definition we have ∑j |V
j

ij
| = ∑j k j = k/4 so F must miss more than (1− α)k/4 elements of the set

V =
⋃

j(V
j

ij
× { j }) of size k/4. For each subset V ′ of V of size k/4− ⌊αk/4⌋ we define a bucket BV′

that contains sets F that must the elements of V ′ and assign each F ∈ F ′ \F ′′ to a unique bucket in
an arbitrary fixed way. There are at most 2H2(α)k/4 such buckets. Then∥∥∥∥ΠA

q(G′)S
⊗n2

1 ∑
F∈F ′\F ′′

y∈DF

δF,y |y⟩F |⊥⟩[B]\F
∥∥∥∥2

≤
(

∑
V′⊆V

|V′|=k/4−⌊αk/4⌋

∥∥∥∥ΠA
q(G′)S

⊗n2

1 ∑
F∈BV′
y∈DF

δF,y |y⟩F |⊥⟩[B]\F
∥∥∥∥)2

≤ 2H2(α) k/4 · ∑
V′⊆V

|V′|=k/4−⌊αk/4⌋

∥∥∥∥ΠA
q(G′)S

⊗n2

1 ∑
F∈BV′
y∈DF

δF,y |y⟩F |⊥⟩[B]\F
∥∥∥∥2

= 2H2(α) k/4 · ∑
V′⊆V

|V′|=k/4−⌊αk/4⌋

∥∥∥∥ΠA
q(G′)S

⊗n2

1 |⊥⟩V′ ∑
F∈BV′
y∈DF

δF,y |y⟩F |⊥⟩[B]\(F∪V′)

∥∥∥∥2

(16)

where we first used the triangle inequality followed by Jensen’s inequality.
Now, applying the S⊗n2

1 operator in (16) will convert the |⊥⟩V′ to a uniform superposition
of all |y′⟩V′ for all y′ ∈ DV′ and convert ∑F∈BV′

y∈DF

δF,y |y⟩F |⊥⟩[B]\(F∪V′) to some superposition of

|y′′⟩ ∈ D[B]\V′ with amplitudes some δV′,y′′ such that ∑y′′ |δV′,y′′ |2 = ∑F∈BV′ ,y∈DF |δF,y|2. Therefore,
we can rewrite (16) as

2H2(α) k/4 · ∑
V′⊆V

|V′|=k/4−⌊αk/4⌋

∥∥∥∥ΠA
q(G′)

[
∑

y′∈DV′

1√
d|V′|

|y′⟩V′
]
⊗ ∑

y′′∈D[n]\V′
δV′,y |y⟩[B]\V′

∥∥∥∥2

. (17)

We now consider the application of ΠA
q(G′). Let V ′j ⊆ V j

ij
be the set of row indices in column j

of V ′ ⊆ [B] and consider the corresponding set of columns in A. Since AU jV j
ij

has full rank, there

is a subset U j
0 ⊆ U j with |U j

0| = |V ′j | so that AU j
0V′j

also has full rank. Now define G′0 ⊆ G′ to be⋃
j∈c(G)(Uj × { j }) which has size |V ′|.

For each j, the outputs in Uj × { j } ⊂ [C] can be expressed as the matrix-vector product

AU j
0V′j

yj
V′j
+ M for some |V ′j | × |V ′j |matrix M defined by the product of the U j

0× ([n] \V ′j ) submatrix

of the fixed matrix A and yj
[n]\V′j

. Since AU j
0V′j

is full rank, for each value of M given by yj
[n]\V′j

, there

is precisely one value of yj
V′j

that will yield the output values q(Uj × { j }). Therefore, putting the

properties for the columns of c(G′) together, there is precisely one value y′ ∈ DV′ that will yield the
output values q(G′0). Therefore, (17) is at most
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2H2(α) k/4 · ∑
V′⊆V

|V′|=k/4−⌊αk/4⌋

∥∥∥∥ΠA
q(G′0)

[
∑

y′∈DV′

1√
d|V′|

|y′⟩V′
]
⊗ ∑

y′′∈D[n]\V′
δV′,y |y⟩[B]\V′

∥∥∥∥2

= 2H2(α) k/4 · ∑
V′⊆V

|V′|=k/4−⌊αk/4⌋

∥∥∥∥ 1√
d|V′|

∑
y′′∈D[n]\V′

δV′,y |y⟩[B]\V′
∥∥∥∥2

= 2H2(α) k/4 · ∑
V′⊆V

|V′|=k/4−⌊αk/4⌋

1
d|V′| ∑

y′′∈D[n]\V′
|δV′,y|2

= 2H2(α) k/4 · ∑
V′⊆V

|V′|=k/4−⌊αk/4⌋

1
d|V′| ∑

F∈BV′ ,y∈DF

|δF,y|2

= 2H2(α) k/4 · 1
d|V′| ∑

F∈F ′\F ′′,y∈DF

|δF,y|2

≤ 2H2(α) k/4/d(1−α) k/4 (18)

where the last equality follows since the buckets BV′ partition F ′ \F ′′.
We now combine the contributions from F ′′ and F ′ \F ′′. Applying Jensen’s inequality together

with the bounds in (15) and (18) we obtain that∥∥ΠA
q(G′)S

⊗n2

1 ∑
F∈F ′
y∈DF

δF,y |y⟩F |⊥⟩[B]\F
∥∥2

≤ 2
[∥∥ΠA

q(G′)S
⊗n2

1 ∑
F∈F ′\F ′′

y∈DF

δF,y |y⟩F |⊥⟩[B]\F
∥∥2

+
∥∥ΠA

q(G′)S
⊗n2

1 ∑
F∈F ′′
y∈DF

δF,y |y⟩F |⊥⟩[B]\F
∥∥2
]

≤ 21+H2(α) k/4

d(1−α) k/4
+

2
C′
∥∥ΠA

q(G′)S
⊗n2

1 ∑
F∈F ′′
y∈DF

δ′F,y |y⟩F |⊥⟩[B]\F
∥∥2

as required.

Corollary 4.3. Let G′ ⊆ [C] with |G′| = k/4, F ′ be a set of F ⊆ [B] such that c(G′) ⊆ L′(F), and
∑F∈F ′,y∈DF |δF,y|2 = 1 for some δF,y. Then∥∥ΠA

q(G′)S
⊗n2

1 ∑
F∈F ′
y∈DF

δF,y |y⟩F |⊥⟩[B]\F
∥∥2 ≤ 22+H2(4β) k/4/d(1−4β) k/4.

Proof. Let M be the maximum value of
∥∥ΠA

q(G′)S
⊗n2

1 ∑F∈F ′
y∈DF

δF,y |y⟩F |⊥⟩[B]\F
∥∥2 over all choices of

F ′ and δF,y with the required properties. This corollary follows from Lemma 4.2 with C′ = 4
by observing that the term multiplied by 2/C′ is also upper bounded by M and hence M ≤
21+H2(4β) k/4/d(1−4β) k/4 + M/2.
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Finally, plugging the bound from Corollary 4.3 into (14), we obtain that the probability that A
and B are both (γn, γn)-rigid and C produces k correct output values for C = AB,

∥∥ΠkΠrigidS |ϕt⟩
∥∥2,

is at most

16 min(k, n)
√

k/2

(
2H2(4β)

d(1−4β)

)k/4

as desired.

4.2 Matrix multiplication time-space tradeoff lower bounds

Here we consider the matrix multiplication problem f (A, B) = AB where both A and B are
considered input. If we could fix a choice of A, we would be able to make our proof somewhat
simpler. However, as Abrahamson pointed out in [Abr91], there is a classical algorithm that can
compute the function f (B) = AB for any fixed matrix A in O(n2) time and O(n log d) space. Thus
our lower bound requires both A and B to be inputs to the function.

Theorem 4.4. Let F be a field and D ⊆ F with d = |D|. Then any quantum circuit C that uses time T and
space S and computes the function f : D2n2 → Fn2

given by f (A, B) = AB with success probability larger
than 1/T must have T that is Ω(n3

√
log d /S).

Proof. Let γ ∈ (0, 1/2) be the constant given by Proposition 2.4. By that proposition, the probability
that either of two matrices A and B chosen uniformly randomly from Dn2

is not (γn, γn)-rigid is at
most 2d−1(2/3)γn. Let C be a quantum circuit with T queries and space S. Let β = 0.0429, d = |D|,
and set k = ⌈48(5S + 5)/ log2 d⌉ . We partition C into

⌈
T/(βγn

√
k/2)

⌉
sub-circuits that each have

at most βγn
√

k/2 queries. Without loss of generalities there are at most n2 such sub-circuits. By
combining Proposition 2.5 with Lemma 4.1, we know that for a uniformly random input, the
probability that A and B are (γn, γn)-rigid matrices and a fixed sub-circuit can produce k outputs
is at most 16k

√
k/222Sd−k/24. Therefore the probability that A and B are (γn, γn)-rigid matrices

and one of the sub-circuits produces k correct outputs is at most 16k
√

k/222Sd−k/24n2. Combining
this with the probability that one of A or B is not (γn, γn)-rigid, the probability that there is a
sub-circuit that produces k correct outputs is at most

16k
√

k/222Sd−k/24n2 + 2d−1(2/3)2γn.

Since we can assume without loss of generality that T ≤ n3, for sufficiently large n, 2d−1(2/3)2γn ≤
1/(2T) and k

√
k/2 ≤ 2k/48 ≤ dk/48. Plugging in our value of k and the fact that S ≥ log2 n without

loss of generality gives a probability of at most

16k
√

k/222Sd−k/24n2 + 2d−1(2/3)2γn ≤ 1622Sd−k/48n2 + 1/(2T)

≤ 1/(2T) + 1/(2T) = 1/T.

Since C must be correct with probability larger than 1/T, this implies that

(k− 1)
⌈

T/(βγn
√

k/2)
⌉
≥ n2.
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Plugging in our value of k gives us that

T is Ω(n3
√

log d/
√

S + log T).

Since S ≥ log2 n and our bound trivially holds when T is ω(n3
√

log d) there is a constant c > 0
such that cS ≥ log2 T. This implies that T is Ω(n3

√
log d/S) as desired.

Corollary 4.5. Let F be a field and D ⊆ F with d = |D|. If C is a quantum circuit that computes the
function f : Dn2 → Fn2

where f (A) = A2 on all upper triangular inputs in time T and space S with
success probability at least 1/T, then T must be Ω(n3

√
log d /S).

Proof. Let A, B ∈ Dn2
and construct the 3n× 3n matrix:

M =


0 A 0

0 0 B

0 0 0


Since the top right n× n sub-matrix of M2 is equal to the product AB, we get a reduction from
matrix multiplication and can apply Theorem 4.4 to derive the lower bound.

Using Proposition 3.16 we can also bound the cumulative memory complexity for these prob-
lems.

Corollary 4.6. Let F be a field and D ⊆ F with d = |D|. If C is a quantum circuit that computes the
function f : D2n2 → Fn2

given by f (A, B) = AB or the function g : Dn2 → Fn2
given by f (A) = A2,

then C must have cumulative memory complexity Ω(n3
√

log d /S).

Proof. For f , we apply Proposition 3.16 with Lemma 4.1 where m′ is Θ(n2), ∆ is 1/2, h1(n) is Θ(n),
K(n) = d−1/48, C = 16. This gives us that the cumulative memory complexity is Ω(n6 log(d) /T).
Using the same reduction as in Corollary 4.5, this same lower bound applies to computing g.

5 Quantum Tradeoffs for Boolean Matrix Operations

In this section we focus on Boolean matrix operations, which use (∨,∧) inner product of vectors
rather than the usual (+,×) inner product. We denote this Boolean inner product of vectors u
and v by u • v and extend this notation to Boolean matrix-vector product and Boolean matrix
multiplication. For u, v ∈ { 0, 1 }n, u • v = 1 if and only if the subsets of [n] encoded by u and v
intersect, so the problems of computing Boolean matrix multiplication and Boolean matrix-vector
product can be seen as computing many correlated copies of the set disjointness problem.

5.1 Tradeoffs for Boolean matrix multiplication

Unlike what we have shown for algebraic problems, quantum algorithms for Boolean matrix
multiplication have better time-space tradeoff properties than their classical counterparts.

Proposition 5.1. For any c > 0, there are quantum circuits computing n× n Boolean matrix multiplication
A • B with error at most n−c using space O(log n) and a number of queries T that is O(n2.5 log n).
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Proof. Fix c > 0. Each of the n2 entries in the product is a disjointness function of length n that
can be computed with error at most n−c−2 and space O(log n) using Grover’s algorithm in time
O(
√

n log n) for error at most n−c overall.

This is in contrast to the following result of Abrahamson which shows that classical algorithms
as fast as this quantum algorithm require space Ω̃(n0.5) rather than O(log n).

Proposition 5.2 ([Abr90]). There is a probability distribution on input matrices and constants 0 < c1 < c2

under which the best classical algorithms (branching programs) for Boolean matrix multiplication A • B

using time T and space S require T · S that is

{
Θ(n3.5) for T ≤ c1n2.5

Θ(n3) for T ≥ c2n2.5.

For quantum circuits, Klauck, Špalek, and de Wolf [KŠdW07] proved the following time-space
tradeoff lower bound which proves that the quantum algorithm in Proposition 5.1 is nearly optimal
when the space S is O(log n).

Proposition 5.3 (Theorem 25 in [KŠdW07]). Any bounded error quantum circuit that computes the n× n
Boolean matrix multiplication A • B with T queries and space S requires T2S to be Ω(n5), or equivalently
that T is Ω(n2.5/S0.5).

A key difference between the methods used in Abrahamson’s bounds and those in this proof is
that for quantum (and classical) circuits, unlike the case for branching programs, it is reasonable to
assume that the set of output values produced in each part of the computation is fixed independent
of the input. Such an assumption was essential for the time-space lower bounds in [KŠdW07,
AŠdW09], although the bound for multiple disjoint collision pairs in [HM21] and our results in
Sections 3 and 4 apply to quantum circuits without such a restriction on output production. Fixing
the output values produced in each part of the computation allows one to go beyond using a single
hard distribution on inputs, and instead choose hard distributions for each part of the computation
depending on the target outputs. To give a sense of how this works we sketch the lower bound
method of [KŠdW07] for boolean matrix multiplication, which relies on a strong direct product
lemma for the function ORk

n:

Proposition 5.4 (Strong Direct Product Theorem for ORk
n [KŠdW07]). There are positive constants ε

and γ such that the following hold:

(a) Any randomized algorithm making at most εkn queries has success probability at most 2−γk in computing
ORk

n.

(b) Any quantum algorithm making at most εk
√

n queries has success probability at most 2−γk in computing
ORk

n.

Proof Sketch for Proposition 5.3. Without loss of generality S is o(n) since the number of queries must
be Ω(n2) in the worst case.4 The circuit is sliced into layers of height α

√
Sn which is o(n). The

claim is that such a slice can produce k = O(S) outputs with probability only exponentially small

4Note that this is not completely obvious since quantum algorithms for some problems may have a sublinear numbers
of queries.
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in k: The idea is simply to partition [n] into k blocks of size n/k and associate each output position
(i, j) in the product with one of those blocks. For each i, matrix A will have 1’s in block (i, j) of row
i for each j such that (i, j) is an output in the slice and will be 0 elsewhere. For each j, matrix B will
be 0 in column j for all blocks (i′, j′) that are not associated with some block (i, j) for some i ∈ [n].
The k outputs (i, j) will then be the result of k disjoint OR computations on n/k-bit blocks of B. By
the strong direct product theorem for OR Proposition 5.4 for ε a sufficiently small constant, any
circuit of height at most εk

√
n/k = ε

√
kn is correct with probability at most 2−γk for some constant

γ > 0. There are n2 outputs in total, so for k = Θ(S) there must be Ω(n2/S) slices, each of Ω(
√

Sn)
queries so the total time is Ω(n2

√
n/S) and hence T2S is Ω(n5).

Our improved lower bound

Theorem 5.5. Any quantum circuit computing n× n Boolean matrix multiplication A • B with T queries
and space S and success probability more than 2−S must have T that is Ω(n2.5/S1/3).

This theorem follows from the following key lemma which improves on the corresponding
bound in [KŠdW07] by a factor of Θ(k1/6).

Lemma 5.6. There are constants c, c′ > 0 such that the following holds. Let k ≤ (n/
√

3/2)3/2/4 be an
integer. For any quantum circuit C with at most c′k2/3n1/2 queries to x, the probability that C produces k
correct output values of n× n Boolean matrix multiplication A • B is at most 2−c′k.

The main idea behind the proof of this key lemma is an improved method for embedding the
direct product of OR functions into outputs of the Boolean matrix multiplication problem. This is
based on the following definition of an L-coloring of subsets of [n]× [n].

Definition 5.7. For E ⊆ [n]× [n] an L-coloring of E is a map χ : E→ [L] such that

• within each color class either all rows are distinct or all columns are distinct, and

• for every (i, j) ∈ E, and every color ℓ, there do not exist i′ ̸= i and j′ ̸= j such that both (i, j′)
and (i′, j) have color ℓ.

The second condition is equivalent to saying that for each color class ℓ there is a rectangle given
by sets Rℓ ⊆ [n] of rows and Cℓ ⊆ [n] of columns such that all points in E ∩ (Rℓ × Cℓ) have color ℓ.
(Note that these rectangles may overlap, but their overlap must not contain any points in E.)

The motivation for this definition is given by the following lemma.

Lemma 5.8. Let E ⊆ [n]× [n] with |E| = k and L ≤ n be an integer with L ≤ n/2. If E has an L-coloring
then ORk

⌊n/L⌋ is a sub-function of the function that produces the k outputs of A • B indexed by E for n× n
Boolean matrices A and B.

Proof. Write E =
⋃̇L

ℓ=1Eℓ where Eℓ is the set of (i, j) in E in color class ℓ. We now divide [n] into L
disjoint blocks b1, . . . , bL of at least ⌊n/L⌋ ≥ 2 elements each. Given the coloring and division into
blocks, we define a partial assignment to the matrices A and B as follows:
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• If color class ℓ consists of pairs (i, j) that do not share a column, for each i such that (i, j) ∈ Eℓ,
we set row i of matrix A to be 1 in all entries in bℓ and leave the entries of Bbℓ,j to be unset for
every j for which there is some element in Eℓ with column j.

• If color class ℓ consists of pairs (i, j) that do not share a row, for each j such that (i, j) ∈ Eℓ, we
set column j of matrix B to be 1 in all entries in bℓ and leave the entries of Ai,bℓ to be unset for
every i for which there is some element in Eℓ with row i.

• All entries of A and B that are not defined by the above two cases are set to 0.

In particular, this means that if Eℓ does not contain any element of the form (i, ·) then the
submatrix Ai,bℓ is all 0 and if Eℓ does not contain any element of the form (·, j) then the submatrix
Bbℓ,j is all 0.

It remains to show that the outputs in E of this matrix product are k disjoint ORs on at least
⌊n/L⌋ bits each. Observe that for (i, j) ∈ E, the (i, j) entry of the product A • B will be 0 unless row
i and column j both contain elements of some color class ℓ. There can only one such color ℓ, namely
the color of (i, j), since the second condition for the coloring rules out any other color class.

If color class ℓ has elements that don’t share a column then, by construction, the output for each
is the OR of the n/L unrestricted elements of Bbℓ,j. Since the elements of Eℓ don’t share a column,
given ℓ and j there is a unique i such that (i, j) ∈ Eℓ. Therefore the vectors Bbℓ,j for all color classes ℓ
of this type and all j with some (·, j) ∈ Eℓ are disjoint. The analogous properties apply to the color
classes ℓ that don’t share rows. In that case, each output (i, j) ∈ Eℓ is the OR of the ⌊n/L⌋ elements
in some unrestricted vector Ai,bℓ and the vectors Ai,bℓ are disjoint from each other.

The net result is that the k outputs in E are k disjoint ORs on at least ⌊n/L⌋ unrestricted bits
each as required.

The lower bound of [KŠdW07] is derived by showing that ORk
⌊n/k⌋ can be embedded into any

set E of k outputs of A • B. Their argument corresponds to the trivial k-coloring that assigns each
element of E to its own color class.

Definition 5.9. For integer k > 0 define L(k) to be the minimum number of colors L such that for
all subsets E ⊆ [n]× [n] with |E| ≤ k, there is an L-coloring of E.

Lemma 5.10. There are constants c, c′ > 0 such that the following holds. Let k be an integer such that
L(k) ≤ n/2. For any quantum circuit C with at most ckn1/2/L(k)1/2 queries to x, the probability that C
produces k correct output values of n× n Boolean matrix product A • B is at most 2−c′k.

Proof. Let E be any fixed set of k output positions in A • B. States with different choices of E are
orthogonal to each other so we show that for each fixed value of E the probability that the algorithm
is correct has the given probability bound. Let L ≤ L(k) be such that there is an L-coloring of E.
By Lemma 5.8, ORk

⌊n/L⌋ is a sub-function of the k outputs indexed by the set E. Since L ≤ n/2,

⌊n/L⌋ ≥ 2n/(3L) and
√
⌊n/L⌋ ≥ 4

√
n/L/5. Choose c = 4ε/5 and c′ = γ for ε and γ given

in Proposition 5.4. By that proposition, the probability that C produces these k outputs correctly is
at most 2−γk = 2−c′k.

Then Lemma 5.6 is an immediate corollary of Lemma 5.10 and the following bound on L(k).
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Lemma 5.11.
√

2k ≤ L(k) ≤
√

3/2 k2/3.

Proof. The lower bound follows from the case that E consists of the diagonal and the upper-
triangular portion of a grid with side L which contains k = L(L + 1)/2 points which has two trivial
L-colorings consisting of either the rows and the columns. The second condition for a coloring
ensures that the diagonal must all be in different classes since they cannot share a row or column,
so those trivial colorings are optimal.

To prove the upper bound we use the following definition: We say that i is a row of E iff E
contains (i, j) for some j; similarly, we say that j is a column of E iff E contains (i, j) for some i. We
say that two rows of E ⊆ [n]× [n] indexed by i and i′ intersect iff there is some column j such that
(i, j) and (i′, j) are both in E. The definition is analogous for intersecting columns.
Claim: If there is an E ⊆ [n]× [n] that requires at least L colors, then there is an E′ requiring L
colors with |E′| = |E| such that every pair of rows and columns of E intersect.

Proof of Claim. Suppose that rows i and i′ of E do not intersect. Define E′ to be the same as E except
that we replace every (i′, j) ∈ E in E′ with (i, j). Any coloring of E′ can be converted to a coloring
of E by coloring (i′, j) ∈ E with the color given to (i, j) in E′. Any row-oriented color set will
have the same set of columns, any column-oriented color set in E′ containing (i, j) will remain
column-oriented with row i replaced by row i′. Finally, if the last condition is violated for the
coloring of E then it would have been violated for the coloring of E′. The analogous property holds
for columns of E that do not intersect.

Repeat the above procedure until there are no pairs of non-intersecting rows or columns.

We now prove the coloring bound. Assume without loss of generality by the claim that every
pair of rows and columns of E is intersecting. Define R to be the number of rows of E and assume
without loss of generality that R >

√
3/2 k2/3; otherwise we are done.

This means that if we have a row or column with at least r ≥ (3/2)k1/3 elements of E then we
can include a set for that row or column and apply induction to color the remaining k′ = k− r
elements of E′. By induction there will be at most

√
3/2 (k′)2/3 =

√
3/2 (k− r)2/3 colors needed to

color E′. Now

(k− r)2 ≤ (k− (3/2)k1/3)2 = k2 − 3k4/3 + (9/4)k2/3

≤ k2 − 3k4/3 + 3k2/3 − 1 since (3/4)k2/3 ≥ 1 for k ≥ 2

= (k2/3 − 1)3.

Therefore, at most
√

3/2(k2/3− 1) <
√

3/2 k2/3− 1 colors are needed to color E′ and hence at most√
3/2 k2/3 colors needed to color E.

Since R >
√

3/2 k2/3 and there are only k elements of E in total, there must be some row with
c < k1/3/

√
2/3 elements of E. Since R >

√
3/2 k2/3, the c columns of these elements must be used

to intersect each of the R− 1 other rows and hence there must be one of these columns that is in at
least (R− 1)/c >

√
3/2 k2/3

k1/3/
√

3/2
− 1 = (3/2)k1/3 − 1 other rows. In other words, it has length at least

(3/2)k1/3 and hence we can apply induction to finish the proof.
Therefore we have shown that the number of colors L(k) is at most

√
3/2 k2/3.

Theorem 5.5 is a immediate corollary of the above bound on L(k) and the following theorem.
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Theorem 5.12. Any quantum circuit computing n× n Boolean matrix multiplication A • B with T queries
and space S and success probability more than 2−S must have T that is Ω(n2.5/L(S)0.5).

Proof. Since there are n2 outputs we trivially have T ≥ n2 so we can assume that L(S) < αn for
some arbitrarily small constant α > 0 without loss of generality. Let ε and γ be the constants from
Lemma 5.10. Let c = 3/(2γ) and define k = cS. Since the function L is bounded by concave
functions we have L(k) ≤ c L(S) and hence we can assume that L(k) = L(cS) ≤ 3n/4. By
Lemma 5.10, since L(k) ≤ 3n/4 any quantum query algorithm with at most εk

√
n/L(k) queries has

success probability at most 2−γk = 2−3S of producing k correct outputs. If T ≤ εn2
√

n/L(S)/
√

c ≤
εn2
√

n/L(k), when we divide C into layers with at most εk
√

n/L(k) quantum queries, there are at
most n2/k layers. Since there are a total of n2 outputs there must be some layer i during which at
least k outputs are produced. Let E be the set of the first k outputs produced in layer i. Since the
space is at most S, by Proposition 2.5 the probability that these k outputs are correct given S qubits
of input dependent initial state is at most 2−S, which proves the lower bound.

We also obtain a general classical lower bound from these arguments.

Theorem 5.13. Any classical circuit computing n× n Boolean matrix-multiplication with T queries and
space S with success probability more than 2−S must have T that is Ω(n3/L(S)).

Proof. Again since there are n2 outputs which is a trivial time lower bound we can assume that L(S)
is at most αn for some arbitrarily small constant α > 0. Let c = 2/γ for γ given by Proposition 5.4
and let k = cS. Again we can assume that L(k) = L(cS) ≤ n/2 The main difference in parameters
from the quantum case is that by applying Lemma 5.8 and Proposition 5.4, classical circuits of width
S such that L(k) ≤ n/2 and depth 2εkn/(3L(k)) computing k disjoint ORs of size ⌊n/L(k)⌋ ≥
n/(2 L(k)) have success probability at most 2−γk = 2−2S probability of computing k correct outputs.
There are at most 2S choices of the values of the gates at a layer boundary and hence the probability
that a layer of height εkn/L(k) correctly produces k correct outputs is at most 2−S. Since there are
n2 outputs, any circuit of depth T at most εn3/L(k) must have some layer of depth εkn/L(k) during
which at most k outputs are produce and each must be correct, so the overall success probability is
at most 2−S.

Using our upper bound on L(k) we obtain the following bound.

Corollary 5.14. Any classical circuit computing n× n Boolean matrix-multiplication with T queries and
space S with success probability more than 2−S must have T that is Ω(n3/S2/3).

Note that this bound is larger than the bound of Abrahamson [Abr90] when S is ω(1) and
o(n0.5) since in that case Abrahamson’s query lower bound is Ω(n3/S). Of course Abrahamson’s
lower bound is for the branching program model which allows for output orders that depend
on the input. (The classical lower bound of [KŠdW07] for circuits is exactly the same as that of
Abrahamson in this range of space bounds.) Note also that S = Θ(n3/2) is the precise point at
which both this bound and Abrahamson’s bound on the number of queries become the trivial
Θ(n2) and, in particular, this is tight for the distribution used in Abrahamson’s paper.

Using the same proof idea as in Corollary 4.5, the bounds in Theorem 5.5 and Corollary 5.14
immediately imply lower bounds for boolean matrix squaring.
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Corollary 5.15. Any quantum circuit computing n× n Boolean matrix squaring on all inputs with T
queries, space S, and success probability more than 2−S must have T that is Ω(n2.5/S1/3). Any such
classical circuit must have T that is Ω(n3/S2/3).

5.2 Boolean matrix-vector product

Though [Abr90] does not contain an explicit theorem statement on time-space tradeoffs for Boolean
matrix-vector products that is the analog of the linear algebra bound in [Abr91] or our Theorem 3.5,
[Abr90] contains the claim that analogous results do indeed hold for this problem using the same
ideas. (The bound would be a factor n smaller lower bound.)

For quantum circuits, Klauck, Špalek, and de Wolf [KŠdW07] prove the following results for
computing Boolean matrix-vector products. (They prove a similar result for the case of classical
circuits also, though that does not apply to branching programs, which can vary the output order
depending on the input values.)

Proposition 5.16 (Theorem 23 in [KŠdW07]). For every S in o(n/ log n), there is an n× n Boolean
matrix A(S) such that every bounded-error quantum circuit with space at most S that computes Boolean
matrix-vector product A(S) • x in T queries requires that T is Ω(

√
n3/S) = Ω(n1.5/S0.5).

This result is weaker than a standard time-space tradeoff since the function involved is not
independent of the circuits that might compute it. In particular, [KŠdW07] does not find a single
function that is hard for all space bounds, as the matrix A(S) that they use changes depending on
the value of S.

For S = o(n/ log n), the matrix A(S) is produced via the probabilistic method using the follow-
ing distribution: Choose k to be a sufficiently large constant multiple of S. This distribution chooses
matrices A ⊆ {0, 1}n×n by selecting a uniformly random subset of n/(2k) positions in each row
to set to 1, with the remainder of the entries in each row being 0. They show that with positive
probability over the choice of A, for all sets I ⊆ [n] of size k, at least k/2 of the rows of AI contain
at least N/(6k) 1’s that are unique in their column of AI ; that is, those columns are 0 in all of the
k− 1 other rows of AI . A(S) is then some fixed matrix for which this property is true.

More precisely, when we fix a row j ∈ I and the n/(2k) columns where it is 1, the expected
number of the (k− 1)n/(2k) < n/2 1’s among the rows in I \ {j} that land in those n/(2k) columns
is less than n/(4k). By a Hoeffding bound, the number of those 1’s is at most n/(3k) except with
probability exponentially small in n/k, which is n−ω(1) since k = O(S) = o(n/ log n). Hence,
except with probability n−ω(1), a row j ∈ I is good for I in that at least n/(2k)− n/(3k) = n/(6k)
of the 1’s in row j are unique in their respective columns in AI . For a fixed I, the probability that
there is no J ⊆ I of size k/2 all of whose rows are good for I is less than the probability that there
are k/2 rows of I that are not good for I. This happens with probability at most n−ω(k) since are
at most ( k

k/2) such subsets of rows of size k/2, each of which is not good for I with probability
n−ω(k) (and the probabilities are negatively associated). Since there are only (n

k) choices of I, the
total probability that A does not have desired properties is only n−ω(k).

The proof of Proposition 5.16 follows from the usual time-space lower bound methodology and
the following lemma:
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Lemma 5.17. There is an α > 0 such for every quantum circuit C that makes at most α
√

kn queries to
x ∈ {0, 1}n, the probability that C produces at least k correct outputs of A(S) • x is at most 2−Ω(k).

Proof. Let I ⊆ [n] be the set of indices of the first k outputs of A(S) • x produced by C. Let J ⊆ I
be the set of size k/2 rows that are good for I guaranteed by the properties of A(S). We show that
the probability that C produces all outputs even for the rows in J is exponentially small in k: For
each row j ∈ J there is a set Cj of n/(6k) columns of A(S)

I where the unique 1 is in row j. Consider
the restriction to input vectors x ∈ {0, 1}n that are 0 outside of

⋃
j∈J Cj. Then the outputs for j ∈ J

are a direct product of k/2 OR functions of size n/(6k) on the bits of
⋃

j∈J Cj. By a strong direct
product theorem for OR (Theorem 14 of [KŠdW07]), for ε a sufficiently small constant, any circuit
of height at most ε(k/2)

√
n/(6k) = ε

√
kn/24 is correct with probability at most 2−γk for some

constant γ > 0.

On the algorithmic side, we have the following:

Proposition 5.18. For every c > 0 and every Boolean matrix A ∈ {0, 1}m×n there is a quantum circuit us-
ing space O(log n) and time O(mn1/2 log m) that computes Boolean matrix-vector product A • x with error
at most m−c. More precisely, the algorithm runs in time O(|A|1/2 log m) where |A|1/2 = ∑m

i=1

√
|Ai|1.

Proof. For each row in turn, run Grover’s algorithm to compute the OR of the bits indexed by the
1’s of Ai, the i-th row of A with probability of error at most m−c−1 per row for a total error of at
most m−c.

We note that for the fixed matrix A(S), each row has Θ(n/S) 1’s so |A(S)|1/2 = Θ(n3/2/S1/2).
This is an odd situation in that the matrix A(S) designed to require large time for space S algorithms
can be solved in nearly the same time bound by space O(log n) algorithms.

On the other hand, consider the following space S algorithm that works for all inputs x with
Hamming weight |x|1 ≤ S/ log n: Run Grover’s algorithm O(S) times to find and record the
locations of all O(S/ log n) 1’s in input string x. This takes O(

√
Sn/ log n) queries. Then compute

the m entries of A • x, one after another, which doesn’t require any additional queries. Note that
this is always more efficient than m

√
n/S queries.

Systems of linear inequalities The same space dependent matrix A(S) in Proposition 5.16
was also used in [AŠdW09] for systems of inequalities.

Proposition 5.19 (Theorem 11 in [AŠdW09]). Let t⃗ be the length n all-t vector. For every S in
min(O(n/t), o(n/ log n)) there exists an n× n Boolean matrix AS such that every bounded error quantum
circuit with space at most S that decides the system Ax ≥ t⃗ of n inequalities requires that T is Ω(

√
tn3/S).

Similar to [KŠdW07] this matrix is used so that any quantum circuit that computes Ax ≥ t⃗ can
be broken down into slices that solve independent instances of the t-threshold function.

Our results

Using Proposition 5.16, we can obtain a time-space tradeoff lower bound for quantum computation
of Boolean matrix-vector product that has a only slightly lower weaker bound in terms of the
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matrix dimensions but, unlike the previous bound, defines a fixed computational problem whose
definition is independent of the space bound allowed.

Theorem 5.20. There is a fixed m× n Boolean matrix A with m ≤ n log2 n such that for every S that is
o(n/ log n) every bounded-error quantum circuit with space at most S that computes Boolean matrix-vector
product A • x in T queries requires that T is Ω(

√
n3/S).

Proof. The matrix A consists of a stacked version of the matrices A(Si) from Proposition 5.16 for each
choice of Si = 2i log2 n and 0 ≤ i ≤ log2 n− 2 log2 log2 n−ω(1). Any quantum circuit computing
A • x using space S must compute A(Si) • x for some Si where Si ≤ S is within factor of 2 of S. It is
easy to see that the construction of A(S) for Proposition 5.16 is flexible in terms of the constant factor
by which k exceeds S and hence computing matrix A(Si) • x also requires time T that is Ω(

√
n3/S)

as required.

Systems of linear inequalities This same matrix A can be substituted into Proposition 5.19 to
obtain a time-space tradeoff for systems of inequalities.

Corollary 5.21. Let t⃗ be the length n all-t vector. There is a fixed m× n Boolean matrix A with m ≤ n log2 n
such that for every S in min(O(n/t), o(n/ log n)) every bounded error quantum circuit with space at most
S that decides the system Ax ≥ t⃗ requires T that is Ω(

√
tn3/S).
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