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Abstract
An elementary proof of quadratic lower bound for determinantal complexity of the permanent in

positive characteristic is stated. This is achieved by constructing a sequence of matrices with zero
permanent, but the rank of Hessian is bounded below by a degree two polynomial.

1 Introduction

The objective of this paper is to prove that dc(Permd) ≥ d(d− 1)/2 over a field of arbitrary characteristic.
The stated objective is achieved by constructing a Hessian whose rank is bounded below by a quadratic
polynomial. In the first section an overview of the paper is given and the results are proved in the second
section.

1.1 Literature Review and Result
The determinantal complexity dc of a polynomial was first defined in [1, Def 1.2]. It can also be found in [2,
Def 1.4],[4, p. 15, Chap. 1] or [6, Def 1.2].

1.1.1 Definition. A polynomial f ∈ k[X1, . . . ,Xn] has determinantal complexity dc(f) = m, if there are
affine linear forms ϕij ∈ k[X1, . . . ,Xn], 1 ≤ i, j ≤ m such that f = detm[ϕij ] and m is the smallest such
integer.

The best known lower bound for determinantal complexity of the permanent is quadratic, as shown in [6]. It
is conjectured that the determinantal complexity of the permanent grows faster than any polynomial. The
reader can find the latest on this in [5].

The main result in [6] is the following.

Theorem A. If char k = 0, then dc(Permd) ≥ d2/2.

The computations of Hessian in [6] cannot be carried to positive characteristic. The case for char p > 0 is
studied in [2] with the main result as the following theorem.

Theorem B. Let p be an odd prime, then

1. If p 6= 23, then for every d > 2 that satisfies p|(d+ 1), there exists a (d+ 1)× (d+ 1) matrix X0 over
finite field Fp such that

Perm(X0) ≡ 0 mod p and rank(H(Perm(X0))) > (d− 2)(d− 3);
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2. If p 6= 3, 5 then for every d > 1 that satisfies p|(d+ 2), there exists a (d+ 1)× (d+ 1) matrix X0 over
finite field Fp such that

Perm(X0) ≡ 0 mod p and rank(H(Perm(X0))) > (d− 2)(d− 3).

The above theorem implies a quadratic lower bound for dc(Permd) over the field Fp, as shown in next section.

Theorem B is reproved in this paper using elementary techniques of row and column reduction. The main
result of the paper is the following.

Theorem 2.2.17. Let k be a field of char 0 or char p where p is an odd prime. Then there exists a d × d
matrix A over k such that Perm(A) = 0 and the rank of Hessian of Perm(A) is at least d2 − d.

In the next section we show the strategy to link rank of hessian of the permanent with determinantal
complexity.

1.2 Determinantal complexity via Hessian
Let us now give a short recap of the proof of Theorem A which relates determinantal complexity to the rank
of the Hessian.

Let Perm(X) = detm[ϕij ] for ϕij affine linear (with m a smallest possible integer) and X a d×d matrix, that
is dc(Permd) = m. Expanding affine linear functions around the matrix A as a sum of a linear homogeneous
functions Lij and a constant matrix say [Yij ] (as in the definition of affine linear form) gives

Perm(X) = det(Lij(X−A) + Yij).

Taking the second derivative, that is the Hessian (denoted by H), and multiplying with suitable matrices
furnishes rank H(Perm(A)) ≤ rank H(det([Yij ])). The infinite sequence of matrices A is chosen such that
Perm(A) = 0 but rank H(Perm(A)) = d2. On the other hand, it is shown that rank H(det([Yij ])) ≤ 2m,
implying the result d2 ≤ 2m. Thus, we have m ≥ d2/2 or dc(Permd) ≥ rank H(Perm(A))/2.

All the work in [6],[2] and this paper is in finding a suitable matrix A such that Perm(A) = 0 and rank
H(Perm(A)) is bounded below by a quadratic polynomial. These matrices are given in the next section.

1.3 Suitable Matrices
The matrix A used in [6] is 

1− d 1 1 . . . 1
1 1 1 . . . 1
1 1 1 . . . 1
...

...
...

. . .
...

1 1 1 . . . 1


d×d

.

The Hessian of the permanent of A has rank d2. The entries in the Hessian of the permanent of A consist of
factorials, and thus become zero modulo p. Hence, the approach of [6] fails for char k = p. This defect was
rectified in [2] by considering a different sequence of matrix X0 given as
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
1 0 0 . . . 1
0 1 0 . . . 1
0 0 1 . . . 1
...

...
...

. . .
...

1 1 1 . . . v


(d+1)×(d+1)

and v ∈ {1, 2}.

The permanent of X0 is a positive non zero integer. Thus, additional assumptions such as p|d+ 1 or p|d+ 2
are needed so that the permanent becomes zero modulo p. The rank of the Hessian of the permanent of X0

is a quadratic polynomial in d as stated in Theorem B.

The matrix used in this paper is 
1− d 1 1 . . . 1
1 1 0 . . . 0
1 0 1 . . . 0
...

...
...

. . .
...

1 0 0 . . . 1


d×d

.

The Hessian of the permanent of the above matrix contains a sub matrix of size (d2 − d) × (d2 − d) of full
rank. Thus, implying that the rank of the Hessian of the permanent is at least d2 − d. The sub matrix is
called the truncated Hessian and the following proposition shows it is full rank.

Proposition 2.2.14. The rank of the truncated Hessian is d2 − d.

Although d is a positive integer, it is shown that the entries of the permanent of the truncated Hessian lie in
the set {0, 1,−2}. Furthermore, row and column reduction leads to entries in the set {0, 1,−4}. Thus, the
non-zero entries remain non-zero when reduced modulo p for all odd primes. Therefore, all the work is done
over Z and the results carry over to Fp.

The relationship between the permanent and the determinant is explained in great detail in [7] or [3]. The
origins of permanent versus determinant problem can be found in [9].

1.4 Hessian
Given a polynomial f in n variables X1, . . . ,Xn, there is a corresponding n × n Hessian matrix H(f) :=
(∂2f/∂Xi∂Xj)ij where 1 ≤ i, j ≤ n. For example if f is a function of two variables X,Y then the Hessian is
given by the 2× 2 matrix

(1.4.0.1)

∂2f

∂X2

∂2f

∂X∂Y

∂2f

∂Y∂X

∂2f

∂Y2




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Consider the matrix below with d2 indeterminates X11,X12, . . . ,Xdd

(1.4.0.2) G :=

X11 . . . X1d

...
. . .

...
Xd1 . . . Xdd

 ,

then Perm(G) and det(G) each have d2 variables and thus the corresponding Hessians are each a d2 × d2

matrix. This Hessian matrix is expressed in terms of variables X11, . . . ,Xdd, and thus can be evaluated at
these variables.

1.4.1 Notation. 1. The set {1, . . . , ĵ, . . . n} means that the set has all elements from 1, . . . , n except j,
or more succinctly

{1, . . . , ĵ, . . . n} := {1, . . . , n}\{j}.

2. If M is a d× d matrix, then Mij will denote the matrix obtained by removing row i and column j from
M. Additionally, Mij,i′j′ (or M{ij,i′j′}) will denote the matrix obtained from M by removing two rows
i, i′ and two columns j, j′. Thus, Mij is a (d − 1) × (d − 1) matrix and Mij,i′j′ is a (d − 2) × (d − 2)
matrix.

1.4.2 Remark. Gij,i′j′ in this paper corresponds to G{i,i′},{j,j′} in [6].

1.4.3 Notation. The Hessian in (1.4.0.1) is written as

X Y
X ∗ ∗
Y ∗ ∗

where ∗ means take the partial first with respect to variable in the row and then take partial with respect
to variable in the column.

1.4.4 Hessian of the Permanent Let G be the matrix as given in (1.4.0.2), then the Hessian is a d2× d2

matrix.

(1.4.4.1)

X11 X12 X13 . . . Xi′j′ . . . Xdd

X11 H11,11 H11,12 H11,13 . . . H11,i′j′ . . . H11,dd

...
...

...
Xij Hij,11 Hij,12 Hij,13 . . . Hij,i′j′ . . . Hij,dd

...
...

...
Xdd Hdd,11 Hdd,12 Hdd,13 . . . Hdd,i′j′ . . . Hdd,dd

where

Hij,i′j′ =
∂2Perm(G)

∂Xij∂Xi′j′

Hij,i′j′ can be computed for G via the following rules given in [6] or [2].

1. If i 6= i′ and j 6= j′ then Hij,i′j′ = Perm(Gij,i′j′).

2. If i = i′ or j = j′ then Hij,i′j′ = 0.
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1.4.5 Truncated Hessian of Permanent The Hessian given in (1.4.4.1) is a d2 × d2 matrix. Removing
all rows and columns indexed by the variables Xii gives the truncated Hessian, which is a (d2− d)× (d2− d)
matrix. For example if d = 3, then the rows and columns indexed by Xii are deleted (as shown below)
resulting in 32 − 3 = 6 rows and columns in the truncated Hessian.

X11 X12 X13 X21 X22 X23 X31 X32 X33

X11

X12

X13

X21

X22

X23

X31

X32

X33

The symmetry of the deletions ensures that the truncated Hessian is still symmetric.

2 Results

2.1 Matrix A with zero Permanent
2.1.1 Definition. Let A := [aij ]d×d where

aij =



1− d for i = 1 = j

1 for i = 1 and 2 ≤ j ≤ d

1 for j = 1 and 2 ≤ i ≤ d.

1 for i = j and i, j > 1

0 otherwise.

In other words, the matrix A can be expressed as
1− d 1 1 . . . 1
1 1 0 . . . 0
1 0 1 . . . 0
...

...
...

. . .
...

1 0 0 . . . 1

 .

Notice that deleting the first row and first column of A leads to an identity matrix A11 (following notation
1.4.1). The identity submatrix of A will always refer to A11.

2.1.2 Example. If d = 6 the matrix A in Definition 2.1.1 is given as
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
−5 1 1 1 1 1
1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1

 .

2.1.3 Remark. The following two observations will be used repeatedly throughout the paper.

1. Consider the matrix below where we have added a column of all 1’s to the left of an identity matrix.

R :=


1 1 0 . . . 0
1 0 1 . . . 0
...

. . . . . . . . .
...

1 0 0 . . . 1

 .

Let Ri denote the matrix obtained from R by deleting the ith column.

(a) The matrix R1 is just the identity matrix, thus Perm(R1) = 1.

(b) If i > 1, then a column in the identity submatrix has been deleted. Thus, Ri has a row which has
all zeros except the first position which is 1.

Ri =



1 1 0 . . . 0
1 0 1 . . . 0
...

...
...

. . .
...

1 0 0 . . . 0
...

. . . . . . . . .
...

1 0 0 . . . 1


, i > 1.

Expanding from this row gives,

Perm(Ri) = 1 · Perm(identity matrix) = 1.

2. Similarly, consider the matrix where we add a row of all 1’s on top of the identity matrix. This is a
transpose of the matrix R.

Rt :=


1 1 . . . 1
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 .

Deleting row i is denoted by Rt
i and its permanent is 1 just as in the previous case.

2.1.4 Lemma. The permanent of matrix A as defined in 2.1.1 is zero.
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Proof. The permanent of A when expanded from the first row gives

(1− d) · Perm(R1) + 1 ·
∑
i≥2

Perm(Ri)

where Ri is defined Remark 2.1.3, and its permanent is shown to be one. Thus,

(2.1.4.1)
(1− d) · Perm(R1) + 1 · Perm(R2) + · · ·+ 1 · Perm(Rd)

(1− d) + 1 + · · ·+ 1︸ ︷︷ ︸
d−1 times

= 1− d+ d− 1 = 0.

2.2 Computations of Hessian
In this section we explore the implications of our choice of A. The Lemma below is illustrated in the Examples
2.2.5.

2.2.1 Lemma. 1. Deletion of the jth row and jth column from A11 gives an identity matrix.

2. The permanent of the matrix A{ij,ji}, i 6= j lies in the set {1,−2}.
1. Deleting the jth row and jth column from A11 gives an identity matrix of size (d− 2)× (d− 2) whose

permanent is trivially 1.

2. (a) If i = 1, then we are deleting the first row and the first column. The symmetry for deletion of the
jth row and jth column will preserve the identity matrix giving 1 for the value of the permanent.

(b) If i 6= 1, then we are keeping the first row and the first column. The symmetry for deletion of the
jth row and jth column will preserve the identity matrix within A11. Now expanding from the
first row will give

(1− d) + 1 + · · ·+ 1︸ ︷︷ ︸
1−d−2 times

= −2.

Note that deleting distinct i and j columns (and rows) has decreased the number of 1’s by 2 which
is reflected in the above sum.

- The possible choices for i, j are in the set {2, 3, . . . , d} or
(
d−1
2

)
for the entries above the

diagonal. For the matrix the total number of values are 2 ·
(
d−1
2

)
= (d − 1)(d − 2). A row

or column will contain only one entry of −2 which lies at the intersection of row indexed Xij

and column indexed Xji.

2.2.2 Preserving Symmetry for only one row/column If A is a d×d matrix, then deleting row j and
column j where j > 1 again gives A but now it is (d− 1)× (d− 1) matrix. Next, delete row i and column k
to obtain A{jk,ij} (or A{ij,jk}) such that i 6= k.

1. If i = 1, then A{jk,1j} = Rk which has permanent 1 by Remark 2.1.3

2. If k = 1, then A{j1,ij} = Rt
i which has permanent 1 by Remark 2.1.3

3. If i > 1, k > 1, i 6= k, then deletion of row i and column k will lead to a row of all zeros in the identity
submatrix with 1 on the left and a column of all zeros in the identity submatrix with 1 on the top (see
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Example 2.2.3). Expanding first by the row of zeros with 1 on the left followed by expanding from
column with 1 on the top and zeros below it will lead to an identity matrix giving 1 as the permanent.

1− d 1 . . . 1 1 1
1 1 0 0 0 0
...

...
...

...
...

...
1 0 0 1 0 0
1 0 . . . 0 1 0
1 0 . . . 0 0 1




2.2.3 Example. For example deleting row 4 and column 5 will lead to a row of zeros and a column of zeros
in the identity submatrix, also highlighted in color below. First expand via the row which contains all zeros
for the identity submatrix, then expand from the column which has all zeros in the identity submatrix. This
yields the identity matrix which has permanent 1.

-5 1 1 1 1 1
1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1




→ 1 · Perm


1 1 1 1
1 0 0 0
0 1 0 0
0 0 0 1

→ 1 · Perm

1 0 0
0 1 0
0 0 1

 = 1

2.2.4 Breaking Symmetry leads to zero First recall that many of the zero entries in the Hessian come
from the second rule of computation of Hessian given in Section 1.4.4. We now consider other cases which
lead to a zero entry. This section is complementary to the section 2.2.2.

(2.2.4.a) Case 1 The first row and first column are deleted, followed by deletion of the ith row and the
jth column (i 6= j). In other words we have the matrix A{11,ij} which has a row of zeros. Expanding from
the row of zeros gives a zero permanent. Since, the order of deletion of the rows or columns does not matter
the permanent of A{1j,i1} (lying at the intersection of row X1j and column Xi1) is also zero. Similarly for
A{j1,1i}.

(2.2.4.b) Case 2 All indices i, i′, j, j′ are distinct.

1. The first row and first column are not deleted. Two distinct rows and columns are deleted from
A11. After deletion there are two rows (and two columns) of all zeros coming from the identity sub
matrix A11. These two rows of zeros are padded with non-zero entries on the left from column 1 of A.
Expanding from one such row gives

1× Perm(sub matrix of A11) + 0 . . .+ 0.

Since the sub matrix of A11 has a row of zeros the above value is zero.
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2. Either the first row or first column is deleted. Suppose, first column is deleted now deleting two distinct
row and column will lead to a row of zeros which gives zero permanent. The same holds if we start by
deleting a row.

2.2.5 Example. The above results can be illustrated via some examples.

1. The permanent of the matrix below is −5 + 1 + 1 + 1 = −2, when expanded from the first row.

-5 1 1 1 1 1
1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1




2. Deleting the 2nd row and the 3rd column from A11 leads to a row and a column of zeros in the sub

matrix A11.

Case 1 If row 1 and column 1 are deleted, then expanding from the row of zeros gives zeros.

-5 1 1 1 1 1
1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1




Case 2 If row 1 and column 1 are not deleted, then expand from the row of zeros in A11. There are
two rows (and columns) consisting of all zeros in a submatrix of A11. Expanding from the third row
gives

-5 1 1 1 1 1
1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1




→ 1 · Perm

1 1 1
0 1 0
0 0 0

 = 0

If column 1 is deleted, then we can expand from the row of zeros in sub matrix A11 to get a zero

9



permanent.

-5 1 1 1 1 1
1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1




2.2.6 Example. Let us now illustrate the results obtained until now by filling up the entries in the Hessian
for d = 4. The non-zero entries lie at the cross section of row Xij and column Xji.

1. The entries shaded in red come from the second rule of computing the Hessian.

2. The entries shaded in gray come from Case 1 of Section 2.2.4.

3. The entries shaded in blue come from Case 2 of Section 2.2.4, i.e. all indices are distinct.

(2.2.6.1)

X12 X13 X14 X21 X23 X24 X31 X32 X34 X41 X42 X43

X12 0 0 0 1 0 0 0 0 0 0
X13 0 0 0 0 0 0 1 0 0 0
X14 0 0 0 0 0 0 0 0 0 1
X21 1 0 0 0 0 0 0 0 0 0
X23 0 0 0 0 0 -2 0 0
X24 0 0 0 0 0 0 0 -2
X31 0 1 0 0 0 0 0 0 0 0
X32 0 0 -2 0 0 0 0 0
X34 0 0 0 0 0 0 0 -2
X41 0 0 1 0 0 0 0 0 0 0
X42 0 0 -2 0 0 0 0 0
X43 0 0 0 0 -2 0 0 0

The missing entries in the truncated Hessian above are all 1 as we now show.

2.2.7 Lemma. 1. The permanent of A{1j,jk} is 1 if j > 1, k ∈ {1, . . . , ĵ, . . . , d}.

2. The permanent of A{j1,kj} is 1 if j > 1, k ∈ {1, . . . , ĵ, . . . , d}.

Proof. The condition j > 1 ensures that j 6= 1.

1. Removing row one and a column j and row j leads to the first case of Remark 2.1.3. Now removing
any column gives then value of permanent as 1.

2. The symmetry of the Hessian gives the result. Alternatively, removing column one and a column j and
row j leads to the second case of Remark 2.1.3. Now removing any row gives the permanent as 1.
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2.2.8 Remark. The Lemma 2.2.7 gives the non-zero entries in rows X1j or columns Xj1. The row
corresponding to X1j has d − 1 consecutive 1’s corresponding to consecutive columns Xjk. Since, j ∈
{1, . . . , ĵ, . . . , d} there are a total of d− 1 such rows. The same story is repeated for the first d− 1 columns
since the truncated Hessian is symmetric. All other entries in rows X1j or columns Xj1 are zero (shown in
Section 2.2.4).

(2.2.8.2) Xj1 . . . Xjk . . . Xjd

X1j 1 . . . 1 . . . 1
where k ∈ {1, . . . , ĵ, . . . d}.

Interchanging the indices also gives other rows with j > 1 but with second index 1.

(2.2.8.3) X1j . . . Xkj . . . Xdj

Xj1 1 . . . 1 . . . 1
where k ∈ {1, . . . , ĵ, . . . d}.

Note that the 1’s in (2.2.8.2) are consecutive but it is not so in (2.2.8.3). Compare the rows labelled X12

and X21 in (2.2.13.1).

Transposing the above also gives columns.

X1j Xj1

Xj1 1 X1j 1
...

...
...

...
Xjk 1 Xkj 1
...

...
...

...
Xjd 1 Xdj 1

Compare the columns labelled X12 and X21 in (2.2.13.1).

The above observation is extremely important since it will allow us to carry out elementary row and column
operations later.

2.2.9 Proposition. The entries of the truncated Hessian lie in the set {0, 1,−2}.
Proof The truncated Hessian is symmetric, thus the arguments for row vectors carry over to column vectors.
Entry −2 This comes from the permanent of A{ij,ji}, j 6= i and j, i ∈ {2, . . . , d} as proved in lemma 2.2.1.
Entry 1 There are two separate cases.

(2.2.9.c) If the initial matrix is A1j , (that is the first row and column j is deleted) then the permanent of
A{1j,jk} is 1 if k ∈ {1, . . . , ĵ, . . . , d}. This is shown in Lemma 2.2.7 and Remark 2.2.8. The symmetry ensures
that the above is true for A{j1,kj}. This finishes the case for the first d− 1 rows and d− 1 columns.

(2.2.9.d) Now Consider Aij , i > 1, j > 1, in other words we are skipping d − 1 rows and d − 1 columns
which have been covered above. Then, Section 2.2.2 implies the following.

1. By the symmetry for j the permanent A{ij,jk} is 1 for k ∈ {1, . . . , î, ĵ, . . . , d}.

2. By the symmetry for i the permanent A{ij,`i} is 1 for ` ∈ {1, . . . , î, ĵ, . . . , d}.
Entry 0: All other entries will be zero in the truncated Hessian. This follows from the following

1. The second rule for computation of the Hessian (as in section 1.4.4).
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2. The breaking of symmetry as explained in Section 2.2.4.

2.2.10 Table The above result can be packaged into a table given below. The first column gives the row
and column intersection.

Row/Column Value Reference
Xi∗/Xi∗ or X∗j/X∗j 0 End of Section 1.4.4.
Xij/Xji, i, j > 1, i 6= j −2 Lemma 2.2.1.
Xjk/X1j or Xkj/Xj1 or Xj1/Xkj or X1j/Xjk, j 6= k 1 Lemma 2.2.7.
Xjk/Xij or Xij/Xjk, i > 1, k > 1, i 6= k 1 Remark 2.2.2.
Xij/Xk` all indices distinct 0 Section 2.2.4.
X1j/Xk1 or Xj1/X1k, j 6= k 0 Section 2.2.4.

2.2.11 Example. Let us illustrate (2.2.9.d) for d = 6 for a 5 × 5 block. Fix i = 2, j = 6 and thus k ∈
{1, 3, 4, 5} = {1, 2̂, 3, 4, 5, 6̂}. The shaded row gives the entries corresponding to A{ij,jk} (except −2).

(2.2.11.1)

X61 X62 X63 X64 X65

X21 0 1 0 0 0
X23 0 1 0 0 0
X24 0 1 0 0 0
X25 0 1 0 0 0
X26 1 −2 1 1 1

The entries corresponding to A{ij,`i} for i = 2, j = 6 and thus ` ∈ {1, 3, 4, 5} are given as

X12 X32 X42 X52

X26 1 1 1 1

Interchanging row and column indices above gives the non-zero column in (2.2.11.1).

X62

X21 1
X23 1
X24 1
X25 1

2.2.12 Vicinity of −2 In the proof of Lemma 2.2.1 it is shown that −2 lies at the intersection of row Xij

and column Xji for i, j > 1. The row given below will be called the row vicinity of −2.
It is obtained from the permanent A{ij,jk} in (2.2.9.d).

Xj1 . . . Xji . . . Xjd

Xij 1 . . . −2 . . . 1
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Similarly, the column vicinity of −2 is given by

Xij

Xj1 1
...

...
Xji −2
...

...
Xjd 1

2.2.13 Entries of the truncated Hessian In this section non-zero entries for (2.2.6.1) are filled based
upon the results obtained above.

1. The Lemma 2.2.7 shows the sequence of 1’s in the first d− 1 rows and d− 1 columns, shaded in gray.

2. If i 6= j and i, j > 1, the non-zero entries of the truncated Hessian below come from the vicinity of −2
which is shaded in blue.

(2.2.13.1)

X12 X13 X14 X21 X23 X24 X31 X32 X34 X41 X42 X43

X12 0 0 0 1 1 1 0 0 0 0 0 0
X13 0 0 0 0 0 0 1 1 1 0 0 0
X14 0 0 0 0 0 0 0 0 0 1 1 1
X21 1 0 0 0 0 0 0 1 0 0 1 0
X23 1 0 0 0 0 0 1 -2 1 0 1 0
X24 1 0 0 0 0 0 0 1 0 1 -2 1
X31 0 1 0 0 1 0 0 0 0 0 0 1
X32 0 1 0 1 -2 1 0 0 0 0 0 1
X34 0 1 0 0 1 0 0 0 0 1 1 -2
X41 0 0 1 0 0 1 0 0 1 0 0 0
X42 0 0 1 1 1 -2 0 0 1 0 0 0
X43 0 0 1 0 0 1 1 1 -2 0 0 0

2.2.14 Proposition. The rank of the truncated Hessian is d2 − d.

Proof :

1. Fix i ≥ 2 and subtract column Xi1 from columns Xij , j > 1 in the truncated Hessian.

(a) Then (2.2.9.c) ensures that the row i− 1 will have an elementary basis vector (0, 0, . . . , 1, 0 . . . , 0)
with 1 in position Xi1. Thus, we have an elementary basis for the first d− 1 rows.

(b) The above operation ensures that all 1’s in the row vicinity of −2 get converted to zero (except
of course the corresponding entry in Xi1) and −2 becomes −2− 1 = −3.

(c) Since the basis vector (0, 0, . . . , 1, 0 . . . , 0) with 1 in position Xi1 can be subtracted from each row,
set the entries for the column corresponding to Xi1, i > d− 1 to be zero.

2. Fix i ≥ 2 and subtract row Xi1 from rows Xij , j > 1 and repeat the same procedure as above. The
column vicinity will make −3 above as −3− 1 = −4.
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The above operations give the span of the row space of the truncated Hessian with elementary basis vectors
of the form (0, . . . , 0, c, 0, . . . , 0), c 6= 0.

For the row indexed by Xij the unique non-zero entry in the row will lie in the column indexed Xji.

1. If i = 1 or j = 1 the non-zero entry is 1.

2. If i 6= 1 or j 6= 1 the non-zero entry is −4.
Since, 1 and −4 are non zero modulo p for all odd primes, we have obtained a linearly independent basis
implying full rank.

2.2.15 Example. For d = 4 we obtain the following truncated Hessian. Notice that the basis elements lie at
the cross-section of row Xij and column Xji.

X12 X13 X14 X21 X23 X24 X31 X32 X34 X41 X42 X43

X12 0 0 0 1 0 0 0 0 0 0 0 0
X13 0 0 0 0 0 0 1 0 0 0 0 0
X14 0 0 0 0 0 0 0 0 0 1 0 0
X21 1 0 0 0 0 0 0 0 0 0 0 0
X23 0 0 0 0 0 0 0 −4 0 0 0 0
X24 0 0 0 0 0 0 0 0 0 0 −4 0
X31 0 1 0 0 0 0 0 0 0 0 0 0
X32 0 0 0 0 −4 0 0 0 0 0 0 0
X34 0 0 0 0 0 0 0 0 0 0 0 −4
X41 0 0 1 0 0 0 0 0 0 0 0 0
X42 0 0 0 0 0 −4 0 0 0 0 0 0
X43 0 0 0 0 0 0 0 0 −4 0 0 0

2.2.16 Proof Overview The first d− 1 rows and d− 1 columns give rise to a basis of 2(d− 1) rows. The
non-zero entries of these rows and columns are shown in Lemma 2.2.7.

In the proof of Lemma 2.2.1 it is shown that there are a total of (d − 1)(d − 2) number of −2’s. These
−2’s become −4’s after the elementary row column operations and give the basis for (d − 1)(d − 2) rows.
Therefore, the total of non-zero entries is

2(d− 1) + (d− 1)(d− 2) = (d− 1)(d− 2 + 2) = d2 − d.

Python code to reproduce truncated Hessian for any d, with a visualization of reduction to basis elements is
given in [8].

2.2.17 Theorem. Let k be a field of char 0 or char p where p is an odd prime. Then there exists a d × d
matrix A over k such that Perm(A) = 0 and the rank of the Hessian of Perm(A) is at least d2 − d.

Proof. The matrix A is defined in Section 2.1 and in Lemma 2.1.4 it is shown that Perm(A) = 0. Proposition
2.2.14 gives the rank of the truncated Hessian. The theorem follows from the observation that the rank of
the Hessian ≥ rank of the truncated Hessian.

2.2.18 Remark. Numerical analysis of the rank of the full Hessian comes out to be d2− d+2 for all tested
3 ≤ d ≤ 25.
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