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Abstract

We study the problem of finding multicollisions, that is, the total search problem in which the
input is a function C : [A] → [B] (represented as a circuit) and the goal is to find L ≤ ⌈A/B⌉ distinct
elements x1, . . . , xL ∈ A such that C(x1) = · · · = C(xL). The associated complexity classes Polynomial
Multi-Pigeonhole Principle ((A,B)-PMPPL) consist of all problems that reduce to this problem.

We show close connections between (A,B)-PMPPL and many celebrated upper bounds on the minimum
distance of a code or lattice (and on the list-decoding radius). In particular, we show that the associated
computational problems (i.e., the problem of finding distinct codewords or lattice points that lie in a
certain small ball) are in (A,B)-PMPPL, with a more-or-less smooth tradeoff between the distance and
the parameters A, B, and L. These connections are particularly rich in the case of codes, in which case
we show that multiple incomparable bounds on the minimum distance lie in seemingly incomparable
complexity classes. Surprisingly, we also show that some bounds on the minimum distance are actually
complete for these classes (for codes represented by arbitrary circuits).

We go on to study (A,B)-PMPPL as an interesting family of complexity classes in their own right,
and we uncover a rich structure. We first show that techniques that were recently developed in the
cryptographic literature on multicollision-resistant hash functions can be applied in our setting. Specifically,
we show inclusions of the form (A,B)-PMPPL ⊆ (A′, B′)-PMPPL′

for certain non-trivial parameters,
black-box separations between such classes in different parameter regimes, and a non-black-box proof
that (A,B)-PMPPL ∈ FP if (A′, B′)-PMPPL′

∈ FP for yet another parameter regime. We also show
that (A,B)-PMPPL lies in the recently introduced complexity class Polynomial Long Choice for some
parameters.
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1 Introduction

We are interested in the following computational search problem: given as input a circuit C : [A]→ [B], the
goal is to find L ≥ 2 distinct input values x1, x2, . . . , xL such that C(x1) = C(x2) = · · · = C(xL). Notice that,
by the (generalized) pigeonhole principle, this problem is total if (and only if) the size A of the domain of C
and the size B of its range satisfy L ≤ ⌈A/B⌉. We will focus on the regime in which the problem is total.

In the special case when L = 2 and A = B+1,1 this is the canonical complete problem for the Polynomial
Pigeonhole Principle complexity class (PPP).2 This class was introduced by Papadimitriou in his celebrated
work studying problems in TFNP (i.e., total search problems in FNP) [Pap94]. Since then, the class PPP
has been of great interest because it is known to contain many important computational problems, such
as the problem of breaking a cryptographic collision-resistant hash function, the problem of breaking a
one-way permutation, factoring (under randomized reductions) [Jeř16], the problem of finding a vector in a
lattice within Minkowski’s bound (in the ℓ∞ norm, though see below) [BJP+19], and many more problems of
interest [SZZ18, BFH+23].

Because of its relationship with the pigeonhole principle, we call this problem Pigeon. (Papadimitriou
originally used this name for the special case when L = 2 [Pap94].) In fact, we get a family of problems
(A,B)-PigeonL, parameterized by the input size A, the output size B, and the number of colliding inputs
L ≤ ⌈A/B⌉ that we must find. Accordingly, we define the complexity class (A,B)-PMPPL as the set of all
search problems that have a polynomial-time (Karp) reduction to (A,B)-PigeonL.3

In the complexity-theoretic literature, there is very little work on Pigeon for L > 2 (although we note
Sotikari’s thesis [Sot20, Section 4.5] as foundational work in this direction; and see also Section 1.2). On the
other hand, there is an exciting line of work in the cryptographic literature studying multicollision-resistant
hash functions [Jou04, NS07, YW07, BDRV18, BKP18, KNY18, Sot20, RV22]. From our perspective, one
can think of such works as studying the average-case complexity of the Pigeon problem (under efficiently
sampleable distributions of circuits C). However, even these works have been rather limited, primarily focusing
on the case when L is constant and when logA ≳ 2 logB.

1.1 Our results

In this work, we study the family of complexity classes (A,B)-PMPPL for a wide range of parameters A, B,
and L. We show a number of fundamental results about these classes, which are as follows.

1.1.1 Connections between coding and lattice problems and PMPP

Our first set of results is a number of connections between PMPP and computational search problems related
to error-correcting codes and lattices.4

Coding problems and PMPP. Recall that a q-ary code with messages of length k, block length n, and
distance d is a function C : Fk

q → Fn
q such that

d = min
x1 ̸=x2

∆(C(x1), C(x2)) ,

where ∆ is the Hamming distance, i.e., the number of entries in which two elements in Fn
q differ. For our

purposes, we think of C as an arbitrary circuit with size poly(n, k, log q). (Much of the literature is concerned

1See Section 2 for discussion of what we mean by a circuit with input size A and output size B when A and B are not
necessarily powers of 2.

2When L = 2 and A/B ≥ 1 + 1/poly(n), one obtains the canonical complete problem for Polynomial Weak Pigeonhole
Principle complexity class (PWPP). We will say much more about this distinction later. Here, we are deliberately conflating the
two classes.

3To define PMPP formally, A and B should be functions of some asymptotic parameter n, and L might also be a function of
n. But, we mostly ignore this issue in the introduction for simplicity.

4In fact, the authors were not originally interested in Pigeon or PMPP. Rather, the authors were interested in the complexity
of these coding and lattice problems, and were quite surprised to discover so many links to multicollisions.
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with the special case when C is a linear function, in which case the code is called a linear code. We discuss
our choice of definition more in Section 1.4.)

The most fundamental question in coding theory is to find the largest possible value of d for fixed n, k,
and q. Many beautiful upper bounds on d are known in terms of n, k, and q.

We define the (n, k, d)q-Short Distance Problem ((n, k, d)q-SDP) as the computational search problem
in which the input is a circuit C : Fk

q → Fn
q and the goal is to find x1 ̸= x2 such that ∆(C(x1), C(x2)) ≤ d.5

Notice that (n, k, d)q-SDP is total if and only if all q-ary codes with message length k and block length n
have distance at most d. So, upper bounds on the minimum distance of a code correspond to proofs of
totality of SDP. It is therefore natural to ask about the complexity of (n, k, d)q-SDP for a given upper bound
d = d(n, k, q) on the minimum distance of a q-ary code with block length n and message length k.

We show that many of the celebrated bounds of this form yield versions of SDP that are in different versions
of PMPP, including the Singleton bound [Sin64], the Hamming bound [Ham50], the Plotkin bound [Plo60],
and the Elias-Bassalygo bound [Bas65]. In fact, we show a smooth tradeoff. Specifically, we show that one
can obtain larger values of d by increasing L or decreasing A (while holding B fixed and maintaining totality).
In particular, we show that SDP is in PWPP for distances d above the Hamming bound.

Furthermore, we show that finding any pair of codewords within distance (1/2− ε)n is PWPP-hard for
arbitrary codes. Note that the problem with relative distance larger than 1/2 is trivial, so this hardness
is essentially tight. For codes in systematic form, we show PWPP-hardness for all distances below the
Plotkin bound. (See Section 1.4 for a discussion about the distinction.) Indeed, there is a large overlap in
these parameter regimes, so that in a large range of parameters we show that SDP is PWPP-complete! We
summarize these results for binary codes in Figure 1.

We also show analogous results for the problem of finding many codewords that all lie in a small ball,
which corresponds to bounds on list decoding. Indeed, we show that list-decoding generalizations of the
Hamming bound and the Singleton bound lie in PMPP and are actually hard for this problem as well in
certain parameter regimes. (These results are significantly more subtle than the L = 2 case, since for L > 2,
the complexity of (A,B)-PigeonL seems to vary quite a bit with the parameters, whereas for L = 2, the
parameters A and B matter much less.)

In fact, even for L = 2, our results (shown in Figure 1) are novel. Our completeness results in particular
add SDP with various parameters to the rather short list of problems that are known be hard for PWPP.
(This might even be viewed as resolving a coding-theoretic analogue of the conjecture that Minkowski’s bound
is PPP-complete [BJP+19].)

Lattice problems and PMPP. We next show similar results for computational lattice problems.
Recall that a lattice is the set of all integer linear combinations of n linearly independent basis vectors
B = (b1, . . . , bn) ∈ Zn, i.e.,

L = L(B) = {z1b1 + · · ·+ znbn : zi ∈ Z} .

A fundamental question about lattices asks when there must exist a non-zero lattice point y ∈ L̸=0 such that
∥y∥K ≤ r, where ∥ · ∥K is some norm of interest and r is some bound.

Minkowski’s celebrated theorem [Min10] tells us that such a y is guaranteed to exist when

r ≤ 2 det(L)1/n/ vol(K)1/n ,

where det(L) := |det(B)| is the lattice determinant and K is the unit ball of the norm ∥ · ∥K . The
corresponding computational problem MinkowskiK is the search problem in which the input is a basis B for
a lattice, and the goal is to output a non-zero vector y ∈ L̸=0 such that

∥y∥K ≤ 2 det(L)1/n/ vol(K)1/n .

5The problem of finding x1 ̸= x2 that minimizes ∆(C(x1), C(x2)) for the given input C is called the Minimum Distance
Problem (MDP), and it is known to be NP-hard. One is often interested only in the important special case in which C computes
a linear function over Fq, but we stick to this more general setting because many of our results still apply even for arbitrary
codes.
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Figure 1: Two plots showing the complexity of the problem of finding two codewords within relative distance
δ := d/n in a code with rate R := k/n for binary codes (represented by circuits). The shaded red region
represents PWPP-hardness. (The entire top figure is shaded red.) The shaded blue region represents
containment in PWPP. The region of overlap therefore represents regimes where the problem is PWPP-
complete. The area covered with green dashed diagonal lines represents problems in PMPPL for some L ≥ 2.
The top figure is for arbitrary (binary) codes represented by arbitrary circuits, while the bottom figure is
for (binary) codes in systematic form, for which our hardness results are a bit weaker. (See Section 1.4 for
discussion of systematic form and how we define codes in this context.)
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This problem is quite important in cryptography, particularly in the ℓ2 norm. In the special case of the ℓ∞
norm, it is known that Minkowski∞ ∈ PPP, and Ban, Jain, Papadimitriou, Psomas, and Rubinstein [BJP+19]
conjectured that Minkowski∞ is actually PPP-complete. (This conjecture remains open.)

We study the more general problem of finding y ∈ L̸=0 with

∥y∥p ≤ γ det(L)1/n ,

where
∥y∥p := (|y1|p + · · ·+ |yn|p)1/p

is the ℓp norm. This problem is known as the γ-Hermite Shortest Vector Problem (γ-HSVPp), and it is
very important for cryptography and very well studied in a wide range of parameters γ [LLL82, Sch87,
GN08, MW16, ALS21], particularly for p = 2. The case γ = 2/ vol(Bnp )1/n corresponds to Minkowskip, where
Bnp is the unit ℓp ball. However, Minkowski’s bound is not tight (except in the ℓ∞ norm). For example,
Blichfeldt improved on Minkowski’s celebrated theorem in the ℓ2 norm, proving that γ-HSVP2 is total when
γ ≲
√
2/ vol(Bn2 )1/n [Bli29].6

Perhaps surprisingly, we show that γ-HSVP2 ∈ (A,B)-PMPPL for γ ≈
√
2/ vol(Bn2 )1/n and appropriate

choices of A, B, and L. In fact, we show a smooth tradeoff between the Hermite factor γ and the parameters
A, B, and L, showing that one can obtain shorter vectors by either increasing L or decreasing the ratio
between A and B (while maintaining totality). A similar story holds for ℓp norms more generally. (The result
below makes sense when α and L are constants. Our more general result works for superconstant α and L,
but the statement is rather technical because of the subtle relationship between the dimension n and the
parameters α, B, and L.)

Theorem 1.1 (Informal; see Corollary 4.2). For any constant integer p ≥ 1, γ-HSVPp ∈ (αB,B)-PMPPL

for
γ ≲ dp(L, n)α

1/n · vol(Bnp )−1 ,

where 1 ≤ dp(L, n) ≤ 2 is a particular function that is decreasing in the parameter L.

1.1.2 Containments between different classes

We next study containments between these PMPP classes with different parameters A, B, and L, and other
classes of interest in TFNP.

Recall that the celebrated Merkle-Damg̊ard construction [Mer89, Dam89] shows that the ratio of the input
size A to the output size B of a circuit essentially does not matter in the special case when L = 2, since one
can efficiently reduce from the problem of finding a single collision (i.e., L = 2) in a barely compressing circuit
C : A→ B with A = (1+1/poly(logB))B to the (seemingly much easier) problem of finding a single collision
in a much more compressing circuit C′ : A′ → B with logA′ = log(B)C for any constant C > 1. In our

terminology, ((1 + 1/ poly(logB)), B)-PMPP2 = (2log
C B , B)-PMPP2. This surprising collapse of complexity

classes is known as domain extension, and it has innumerable applications in cryptography and complexity
theory.7

Already in 2004, it was noticed by Joux that Merkle and Damg̊ard’s elegant domain extension technique
does not seem to work for L > 2 [Jou04]. So, it appears that for L > 2, the relationship between A and B

6We note that Blichfeldt proved two distinct relevant theorems in this context, which might easily confuse the reader. So, we
endeavor to clarify here. The theorem commonly referred to as “Blichfeldt’s theorem” says that any measurable set S ⊂ Rn

with vol(S) > det(L) is guaranteed to contain two points x1,x2 ∈ S with x1 ≠ x2 such that x1 − x2 ∈ L. This theorem is
often discussed in the context of total lattice problems because it can be used to prove Minkowski’s theorem. In fact, Sotikari,
Zampetakis, and Zirdelis introduced a related computational problem that they called BLICHFELDT (in which the set S
is represented implicitly by a circuit), and they showed that BLICHFELDT is actually PPP-complete. It is not clear how
BLICHFELDT is related to γ-HSVP for γ ≈

√
2/ vol(Bn

2 )
1/n.

7Admittedly, we are deliberately conflating the distinction between the problem of breaking a cryptographic hash function
(which is what Merkle and Damg̊ard actually studied) and the problem of finding a collision in an arbitrary worst-case circuit.
All of the above statements hold in both cases.
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(i.e., how “compressing” the circuit C is) might matter quite a bit. This suggests a surprising fundamental
difference between the case L = 2 and the case when L > 2.

However, we show two (rather weak) notions of domain extension that still work in the setting of
multicollisions. The first such result follows by analyzing the Merkle-Damg̊ard construction in this setting
and showing that it does achieve something, albeit with a large loss in parameters. The second result shows a
more sophisticated reduction (using Merkle trees together with list-recoverable codes) that is better than the
Merkle-Damg̊ard-based reduction in the regime where A is very large compared to B. The latter result can be
thought of as a translation into our setting of a beautiful result due to Bitanski, Kalai, and Paneth [BKP18]
in the setting of multicollision-resistant hash functions. (In fact, the proof is substantially simpler in our
setting than in that of [BKP18], since we do not have to worry about the many additional issues that arise in
the average-case setting.)

Together, these results show that it is possible to reduce the problem of finding multicollisions in a less
compressing function to the problem of finding multicollisions in a more compressing function, but at the
expense of a large loss in the number of collisions found.

Theorem 1.2 (Informal; see Section 5). For m > a > b,

(2a, 2b)-PMPPL′
⊆ (2m, 2b)-PMPPL

for L′ ≈ L(a−b)/(m−b).
For any r ≥ 2, any k ≥ 1, and any L,

(2vr, 2v)-PMPPM ′
⊆ (2vrk, 2v)-PMPPM

under randomized reductions, for

M ′ ≈M log r/(2 log r+log k+log(M)/2) .

We also show that the class PMPP is contained in the complexity class Polynomial Long Choice (PLC),
recently introduced in [PPY23], for choices of the parameters A, B, and L. In fact, we show a reduction
to the Unary Long Choice problem. (This result was recently independently discovered in [JLRX24]. See
Section 1.2.) This strengthens a result of Pasarkar, Yannakakis, and Papadimitriou [PPY23], who showed
that PWPP ⊆ PLC.

Theorem 1.3 (Informal; see Section 5.3). For any L < n,

(2n, 2n−L)-PMPPL ⊆ PLC

1.1.3 Black-box separations (and a non-black-box non-separation)

Our final set of results concerns black-box separations between (A,B)-PMPPL for different values of A,
B, and L, which suggest that it might be hard to prove stronger containments than what we show above.
We note that recent independent work of Jain, Li, Robere, and Xun [JLRX24] showed exciting black-box
separations of this form. While our results are formally incomparable to theirs, we believe that the results of
[JLRX24] are more interesting than our own. (See Section 1.2.)

The starting point for our results is a beautiful idea due to Komargodski, Naor, and Yogev for separating

(2n, 2n/2)-PMPPL from (2n, 2n/2)-PMPPL′
for any constants L ̸= L′ (particularly in the average-case setting

relevant to cryptography). Unfortunately, however, their proof had a subtle bug that does not seem easy to
fix [KY23].

We show two different black-box separations, which can be seen as partial evidence that domain extension
and range compression are not possible when L > 2. However, we note that our black-box separations are
rather weak, since they only rule out rather fine-grained black-box reductions between the classes.

Finally, we show that a very clever non-black-box proof due to Rothblum and Vasudevan [RV22] extends
to our setting. In particular, Rothblum and Vasudevan show, using non-black-box techniques, that the
existence of a certain sufficiently strong multicollision-resistant hash function implies the existence of a
collision-resistant hash function. We prove an analogue of their result in our different (worst-case) setting.

As these results are rather technical, we refer the reader to Sections 6 and 7 for the details.
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1.2 Comparison with Jain, Li, Robere, and Xun

Recent work by Jain, Li, Robere, and Xun [JLRX24] also defines and studies the computational problem
(A,B)-PigeonL and the associated complexity class (A,B)-PMPPL (with slightly different notation). (They
also define additional classes that correspond to the union of (A,B)-PMPPL over different parameters A, B,
and L.) [JLRX24] is concurrent with and independent of this work. Here, we provide a brief comparison of
their work with ours.

Both the present work and [JLRX24] define multi-collision classes and study relationships between them.
At a high level, [JLRX24] has morally stronger (although formally incomparable) results on the structural
complexity of these classes, whereas a large part of the present work focuses on showing containment and
hardness of coding and lattice problems with respect to these classes (which [JLRX24] does not study at all).
Not surprisingly, the two works also have many results with no analogue in the other.

In terms of structural complexity, [JLRX24] contains exciting black-box separation results, which, although
formally incomparable to ours, we think of as stronger. In particular, [JLRX24] are essentially able to black-

box separate (A,B)-PMPPL from (A′, B′)-PMPPL′
for any constants L ̸= L′ and any (reasonable) A, B, A′,

and B′. They also show black-box separations between PMPP and other interesting complexity classes in
TFNP, and in particular show a black-box separation between the Ramsey problem and PMPP. We refer the
reader to [JLRX24] for the technical details.

[JLRX24] also studies the relationship between PLC and PMPP. Indeed, they prove a result that is
essentially identical to our Theorem 1.3, which shows that PMPP ⊆ PLC for certain parameters. (Formally,
our technical result in Theorem 5.8 is more general than the analogous result in [JLRX24], but it is clear
that the proof in [JLRX24] yields the more general result as well.) In addition, they show a containment
in the other direction, that PLC ⊆ PMPP, albeit for different parameters. Finally, [JLRX24] shows that an
interesting problem in TFBQP is in PMPP.

In this work, we study the relationship of PMPP with coding and lattice problems (Sections 3 and 4),
Merkle-Damg̊ard-style reductions between PMPP with different parameters (Section 5), and a non-block-box
non-separation in the style of [RV22] (Section 7). These topics are not studied in [JLRX24].

1.3 Other related work

Our work lies at the intersection of a number of different areas, and there is therefore much related work to
discuss in addition to [JLRX24]. Here, we focus on how this prior work relates to our work.

Literature on multicollisions. There is quite a bit of prior work in the cryptography literature on
multicollision-resistant hash functions. In our terminology, a multicollision-resistant hash function is some
efficiently sampleable distribution of instances of (A,B)-PigeonL (i.e., circuits C : [A]→ [B]) that are actually
hard (i.e., that cannot be solved by polynomial-time algorithms with non-negligible probability). A survey
of this literature is beyond the scope of this work. Broadly speaking, these works have been concerned
with (1) understanding the relationship between collision resistance and multicollision resistance; (2) finding
applications of multicollision-resistant hash functions; and (3) building multicollision-resistant hash functions
from various cryptographic hardness assumptions.

Many of the techniques that we use to understand the relationship between (A,B)-PigeonL in different
parameter regimes are directly inspired by this cryptographic literature. In particular, our inclusion based on
Merkle trees and list-recoverable codes is a direct adaption of Bitanski, Kalai, and Paneth’s construction
from the cryptographic setting to our setting [BKP18]; our black-box separations are inspired by [KNY18];
and our non-black-box non-separation is a direct adaptation of Rothblum and Vasudevan’s proof from the
cryptographic setting to our setting [RV22].

In contrast, there is very little prior work in the worst-case setting. To our knowledge, the only works that
consider the worst-case complexity of finding multicollisions are Komargodski, Naor, and Yogev [KNY18] and
Sotikari [Sot20] (though see Section 1.2). In both of these works, the worst-case complexity of (A,B)-PigeonL

is not the primary focus, but both do define the special cases of the complexity class (A,B)-PMPPL, when
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A = B2 (specifically, A = 22n and B = 2n) and L is a constant. This is a natural setting of parameters, but
we show interesting results in other parameter regimes as well.

Sotikari in particular shows a complete problem for PMPP that is similar to the PPP-complete and PWPP-
complete problems from [SZZ18]. In particular, Sotikari’s PMPP-complete problem bears some resemblance to
certain lattice and coding problems, though the relationship is unclear. We refer the reader to [SZZ18, Sot20]
for more.

Komargodski, Naor, and Yogev claimed a black-box separation between (22n, 2n)-PMPPL and (22n, 2n)-

PMPPL′
for any constants L′ < L, but their elegant proof contained a subtle bug in their proof that has not

been fixed [KY23]. Our black-box separations use similar ideas but are weaker than what they originally
claimed.

Literature on PPP and PWPP. In contrast, there is much literature studying the complexity classes
PPP and PWPP, which correspond to the special case of PMPP when L = 2 (in different parameter regimes).
These classes were introduced by Papadimitriou in his seminal work [Pap94]. Since then, many problems of
interest have been shown to be contained in either PWPP or PPP [Jeř16, BJP+19, SZZ18, BFH+23]. Until
recently, only a small handful of problems are known to be complete for PPP or PWPP. However, Bourneuf,
Folwarczný, Hubáček, Rosen, and Schwartzbach recently showed a number of problems arising from extremal
combinatorics that are complete for either PPP or PWPP [BFH+23].

There has also been some literature concerned with generalizing PPP and PWPP to classes other than
PMPP. In particular, Pasarkar, Papadimitriou, and Yannakakis [PPY23] recently introduced the class
Polynomial Long Choice (PLC), which can be thought of as corresponding to the generalization of the
pigeonhole principle obtained by iterating the pigeonhole principle many times.

The complexity of total lattice problems. The complexity of Minkowski’s bound and HSVP more
generally is quite well studied, particularly in the ℓ∞ norm and the ℓ2 norm. In particular, algorithms for
HSVP2 play a very important role in lattice-based cryptography, and algorithms for HSVP with different
approximation factors are a very active area of research [LLL82, Sch87, GN08, MW16, ALS21]. Some of
these algorithms can be viewed as constructive proofs of classical results about the minimum distance of
a lattice relative to the determinant. (For example, the celebrated LLL algorithm gives a constructive
proof of Hermite’s bound [LLL82], and the slide reduction algorithm gives a constructive proof of Mordell’s
inequality [GN08].)

Finding a vector within Minkowski’s bound in the ℓ∞ norm is considered one of the most important
problems in the complexity class PPP. In particular, Ban, Jain, Papadimitriou, Psomas, and Rubinstein
showed that some of the most important problems in PPP can be reduced to this problem, and they conjectured
that it is PPP-complete [BJP+19]. Sotikari, Zampetakis, and Zirdelis further investigated the relationship
between lattice problems, PPP, and PWPP, showing two problems related to lattices that are PPP-complete
and PWPP-complete respectively [SZZ18].

The complexity of total coding problems. To our knowledge, much less is known about the complexity
of total problems that arise in coding theory. Instead, much work has focused on the γ-approximate Minimum
Distance Problem (γ-MDP), in which the input is a linear code and the goal is to output a pair of distinct
codewords c1, c2 such that the distance between them is within a factor γ of the minimum distance of the
input code (or, since the code is linear, one can equivalently output a non-zero codeword with nearly minimal
Hamming weight). This problem is known to be NP-hard [Var97], even to approximate [DMS03]. In contrast,
we are interested in the problem of finding distinct codewords c1, c2 that are within distance d, where d
depends only on the message length k and block size n of the code (and not on the minimum distance). We
are particularly interested in the total regime, where such problems are unlikely to be NP-hard.

To our knowledge, the only direct work in this area is a beautiful paper by Debris-Alazard, Ducas, and
van Woerden [DDv22], which showed an LLL-like algorithm for linear codes that efficiently finds codewords
within the Griesmer bound [Gri60] (which only applies to linear codes).
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1.4 A note on “codes” represented by circuits, injectivity, and systematic form

The coding theory results in this paper are concerned with the problem of finding close codewords (or many
codewords that lie in a relative small ball) in a “code” represented by an arbitrary circuit C : Fk

q → Fn
q

with size poly(n, k, log q). It is far more common in the literature to consider linear codes represented by a
generator matrix (or, equivalently, an invertible circuit with linear gates). (Sometimes when arbitrary codes
are considered in the literature, the code is simply represented by listing all qk points, while we represent our
codes succinctly.)

Whether one should really think of a generic circuit C : Fk
q → Fn

q as representing a “code” is not so clear.

In particular, such a circuit might not be injective, i.e., there might be distinct “messages” x1,x2 ∈ Fk
q that

map to the same “codeword” C(x1) = C(x2). (And, there is likely no way to efficiently determine whether
such a circuit is injective. Indeed, determining this is coNP-complete.) But, we find the coding-theoretic
perspective to be quite useful. In particular, the notion of the distance of a code still makes sense with this
slightly more general definition, and the bounds on the distance that we discuss in this paper still apply.
Indeed, much of coding theory still makes sense if we treat such degenerate, non-injective codes simply as
“codes with distance 0,” and standard bounds in coding theory, such as the Singleton and Hamming bounds,
still apply. (These coding theory bounds guarantee near collisions in such general circuits C.)

Of course, it is not an issue, and actually a strength that our upper bounds apply to such general “codes.”
Indeed, any upper bound that applies in the more general case when “codes” are represented by arbitrary
circuits certainly applies to the special case of injective circuits or the even more special (and quite important)
case of linear codes.

For our lower bounds, however, this can be viewed as a major flaw in our model. Therefore, we prove our
hardness results in two different settings.

In the first “generic” setting, we show hardness for “codes” represented by arbitrary circuits C : [q]k → [q]n,
which are not necessarily injective. One may argue that these reductions are rather artificial, in that the
reductions produce “codes” C such that ∆(C(xi), C(xj)) is either zero or strictly larger than d, where d is the
bound on the distance needed to solve the associated coding problem. So, these reductions rely quite heavily
on this rather strange definition of a code.

In the “systematic” setting, our codes C : [q]k → [q]n are in systematic form, in the sense that the first k
characters of C(x) are simply x itself. Such circuits are clearly injective, and therefore this setting is much
less artificial. However, in this setting, we achieve weaker parameters. In particular, we show completeness
for a very wide range of parameters in the “generic” setting, but for a more narrow range in the “systematic”
setting. (See Figure 1.)

1.5 Open problems

We leave a number of interesting open problems. Here, we mention some of them.

Complexity of coding and lattice problems. We place the computational problems associated with
a number of fundamental bounds on the minimum distance of a code in PMPP. However, we were unable
to say anything non-trivial about the complexity of Delsarte’s linear programming bound [Del73] and the
closely related MRRW bound(s) [MRRW77], which are the best known bounds in a number of interested
parameter regimes. The associated computational problems are, by definition, in TFNP, but we do not know
any natural subclass of TFNP that contains these problems.

Similarly, the best known bound on the minimum distance in the ℓ2 norm of a lattice relative to the
determinant is the celebrated bound due to Kabatjanskĭı and Levenštĕın [KL78] (which is better than
Blichfeldt’s [Bli29] by a factor of roughly 21/10). The problem of finding a vector within the Kabatjanskĭı and
Levenštĕın is again, by definition, in TFNP, but we do not know any natural subclass of TFNP that contains
this problem.

In a different direction, we show hardness of various total coding problems (and even completeness in
some regimes), but only for codes represented by circuits. It would be very exciting to show hardness results
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of total problems on linear codes (represented, e.g., by generator matrices), since these are the more standard
problems. (The analogous question for lattices was already asked in [BJP+19].)

Better understanding of PMPP across different regimes. The first question that comes to mind
about the complexity classes (A,B)-PMPPL is, of course, “how do these classes relate to each other across
different parameter regimes?” In the case when L = 2, it has long been known that the relationship between
A and B does not matter much, with, e.g.,

((1 + 1/ poly(n)) · 2n, 2n)-PMPP2 = ((2n+poly(n), 2n)-PMPP2 = PWPP .

For L > 2, it seems unlikely that a similar result holds. We instead describe a rich and rather complicated
set of inclusions (and non-black-box relationships) among these classes, as well as black-box separations.

However, we have no evidence that these results are tight. One would ideally like to show black-
box separations and inclusions that are tight with one another. (Or, alternatively, one might hope to

prove non-trivial equalities (A,B)-PMPPL = (A′, B′)-PMPPL′
like what we know in the case of L =

L′ = 2.) The analogous average-case question has been the topic of much research in the cryptography
literature [Jou04, NS07, YW07, BDRV18, BKP18, KNY18, Sot20, RV22], but to the authors’ knowledge the
worst-case setting was barely explored before this work and the (concurrent and independent) work of Jain,
Li, Robere, and Xun [JLRX24].
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2 Preliminaries

We will denote vectors by boldface letters like x,y, z. For an n-coordinate vector x = (x1, . . . , xn) and
1 ≤ i ≤ j ≤ n, we define x[i,j] := (xi, . . . , xj) to denote the restriction of x to its ith coordinate through jth
coordinate. For a positive integer q, we define [q] := {1, . . . , q}.

For convenience, we define a circuit C : [A]→ [B] for A,B ∈ Z+ (i.e., a circuit with domain and range
sizes that are not necessarily powers of two) as a Boolean circuit C′ : {0, 1}a → {0, 1}b with a := ⌈log2(A)⌉
input bits and b := ⌈log2(B)⌉ outputs bits, where inputs x corresponding to integers greater than A and
outputs y corresponding to integers greater than B are ignored. We similarly define circuits with [q]n, Fn

q ,
[A1] × [A2], Fn

q × [A], etc., as their domain or range, noting that in each case there is a simple efficiently
computable bijection between such domains and ranges and sets [A] and [B].

We will need to use the following quantity in many different places.

Definition 2.1. Let e > 0 and N ≥ 2 be an integer and let X = (A,∆) be a metric space on the set A with
metric ∆. We define

dX (e,N) := sup
y,v1,...,vN∈A
∆(y,vi)≤e

min
i ̸=j

∆(vi, vj)

to be the smallest distance d so that any N points in a ball of radius e must contain a pair within distance d.

2.1 Coding basics

We use ∥x∥0 to denote the Hamming weight (i.e., number of non-zeroes) in a vector x, and

Hn
q (y, r) := {x ∈ Fn

q : ∥x∥0 ≤ r}

to denote the Hamming ball in Fn
q of radius r centered at y. We define

V n
q (r) :=

∣∣Hn
q (0, r)

∣∣ = r∑
i=0

(q − 1)i ·
(
n

i

)
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to be the volume (i.e., cardinality) of such a Hamming ball. (The volume of Hamming balls is shift-invariant,
and so does not depend on the center y of the ball.)

We next define list decodability.

Definition 2.2. For k, n, r,N ∈ Z+, a code specified as a circuit C : Fk
q → Fn

q , is (r,N)-list decodable if for

all y ∈ Fn
q ,
∣∣{x : C(x) ∈ Hn

q (y, r)}
∣∣ ≤ N .

That is, a code (r,N)-list decodable if there are at most N code words in C in any radius-r Hamming ball
in Fn

q .

2.2 Computational problems and complexity classes

A search problem is specified by a binary relation P : {0, 1}∗ × {0, 1}∗ → {0, 1}, where P (x,y) = 1 if and
only if “y is a valid output on input x.” A search problem P is total if for every x ∈ {0, 1}∗ there exists
y ∈ {0, 1}∗ such that P (x,y) = 1. An algorithm solves a total search problem P if on input x it (always)
outputs y such that P (x,y) = 1.

We will use the notion of Karp reductions between search problems.

Definition 2.3. A deterministic Karp reduction from a search problem P to a search problem Q is a pair of
deterministic polynomial-time algorithms R,S with the following properties.

1. Given an instance IP of P , R(IP ) outputs an instance of IQ of Q.

2. Given any valid solution sQ to IQ := R(IP ), S(IP , sQ) outputs a valid solution sP for IP .

For convenience, we often describe our Karp reductions simply as algorithms AB for problem P that work
with an oracle for problem Q and make a single oracle call. Notice that this is equivalent, as one can always
define R(IP ) to be the oracle call made by AQ and S(IP , sQ) to be the output of AB when the response of
the oracle is replaced by sQ.

We now define the central computational problem that we study in this paper.

Definition 2.4 (Pigeon). For integers A ≥ B ≥ 1 and L ≥ 2, the problem (A,B)-PigeonL is defined as
follows. The input is a circuit C : [A] → [B]. The goal is to output distinct x1, . . . , xL ∈ [A] such that
C(x1) = · · · = C(xL).

Notice that (A,B)-PigeonL is a total search problem if (and only if) L ≤ ⌈A/B⌉. And, in this work, we
are only interested in this case. The problem PigeonABL is naturally associated with a family of complexity
classes, which we now define.

Definition 2.5 (PMPP). For functions A := A(v), B := B(v), and L := L(v), the complexity class (A,B,L)-
Polynomial Multi-Pigeonhole Principle ((A,B)-PMPPL) is defined as the set of all search problems P such

that there is a Karp reduction from P to (A(v), B(v))-PigeonL(v) for some v.
We often abuse notation by leaving out the parameter v, by writing two of the parameters as functions of

the other (e.g., (A,
√
A)-PMPPlogA), or by using asymptotic notation to implicitly quantify over functions

A(v), B(v), and L(v) (e.g., (poly(B), B)-PMPPpoly(logB)).

The special case of L = 2 is particularly important, and it is well studied. In particular, in [Pap94],
Papadimitriou defined the following two classes.

Definition 2.6 (PWPP and PPP). Polynomial Pigeonhole Principle (PPP) is the set of all search problems
P such that there is a Karp reduction from P to (2v, 2v − 1)-Pigeon2 for some v. Equivalently, PPP =
(2v, 2v − 1)-PMPP2.8

Polynomial Weak Pigeonhole Principle (PWPP) is the set of all search problems P such that there is a
Karp reduction from P to (2v+1, 2v)-Pigeon2 for some v. Equivalently, PWPP = (2v+1, 2v)-PMPP2.

8PPP is typically defined slightly differently. In particular, PPP is typically defined as the class of problems that are reducible
to the problem in which the input is a circuit C : [2v ] → [2v ] and the goal is either to find x ∈ [2v ] such that C(x) = 0, or to find
two distinct elements x1, x2 ∈ [2v ] such that C(x1) = C(x2). However, there are simple Karp reductions between this problem
and (2v , 2v − 1)-Pigeon2. So, this definition is equivalent.
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We note that because of Merkle-Damg̊ard domain extension [Mer89, Dam89], the class PWPP is actually
quite flexible. In particular, we obtain an equivalent definition if we replace A = 2v+1 and B = 2v in the
above definition by any of a wide range of parameters.

Theorem 2.7. For any A := A(B) with (1 + 1/poly(logB)) ·B ≤ A ≤ Bpoly(logB),

(A,B)-PMPP2 = PWPP .

A roughly similar result holds for PPP.

Theorem 2.8. For any A := A(B) with B < A ≤ B + poly(logB),

(A,B)-PMPP2 = PPP .

We will also be interested in the following relatively new total search problems and the associated
complexity class defined in [PPY23]. In particular, [PPY23] shows that this class contains PPP as well as
many important problems related to extremal combinatorics.

Definition 2.9 (LongChoice and UnaryLongChoice). The LongChoice problem is the following: There is
a universe U of 2n objects, represented by 2n n-bit strings. We are given a sequence of n − 1 circuits
P0, . . . , Pn−2, each of poly(n) size, such that Pi has (i + 2)n inputs bits and one output bit; circuit Pi

represents a predicate on i+ 2 objects. We are asked to find a sequence of n+ 1 distinct objects a0, a1, . . . , an
with the following property: for each i in [0, . . . , n− 2], Pi(a0, . . . , ai, aj) is the same for all j > i.

UnaryLongChoice is the the version of LongChoice where every predicate Pi depends only on its last
argument, i.e., Pi(a0, . . . , ai, x) = Pi(x).

Definition 2.10 (PLC). Polynomial Long Choice (PLC) is the set of all search problems P such that there is
a Karp reduction from P to LongChoice.

2.3 Some computational coding problems

We next define the main coding problems that we study, which is to find distinct inputs x1,x2 to a circuit C
such that C(x1,x2) is small (or possibly 0).

Definition 2.11. For n, k, d, q ∈ Z+, the Short Distance Problem (n, k, d)-SDPq is the search problem
defined as follows. The input is a circuit C : [q]k → [q]n. The goal is to output x1,x2 ∈ [q]k such that x1 ̸= x2
and ∆(C(x1), C(x2)) ≤ d.

A central goal in coding theory is to characterize when a code with a given input length (dimension) k,
block length n, and alphabet size q must have distance (at most) d (i.e., a pair of distinct code words at
distance at most d). (In Section 3, we describe many such bounds.) One may alternatively view this goal as
trying to characterize when SDP is total, i.e., for what values of k, n, q, d the problem is guaranteed to have a
solution.

Since the circuit C describing a “code” as defined above might not be injective, we also define the following
special case of SDP in which the code is required to be in systematic form. See Section 1.4.

Definition 2.12. For n, k, d, q ∈ Z+, the systematic Short Distance Problem (n, k, d)-sysSDPq is the search

problem defined as follows. The input is a circuit C : [q]k → [q]n−k. The goal is to output x1,x2 ∈ [q]k such
that x1 ̸= x2 and ∆(x1 ◦ C(x1),x2 ◦ C(x2)) ≤ d.

We will need the following simple reduction from SDP on arbitrary codes to sysSDP.

Lemma 2.13. For all n, k, d, q ∈ Z+, there is a Karp reduction from (n, k, d)-SDPq to
(n+ k, k, d+ 1)-sysSDPq.
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Proof. On input an instance C : [q]k → [q]n of (n, k, d)-SDPq on input C, The reduction simply calls its
(n+ k, k, d+1)-SDPq, receiving as output distinct x1,x2 ∈ [q]k such that ∆((x1, C(x1)), (x2, C(x2))) ≤ d+1.
It then simply outputs x1,x2.

To see that this reduction is correct, it suffices to notice that

d+ 1 ≥ ∆((x1, C(x1)), (x2, C(x2))) = ∆(x1,x2) + ∆(C(x1), C(x2)) ≥ 1 + ∆(C(x1), C(x2)) ,

because x1 ̸= x2. Therefore, ∆(C(x1), C(x2)) ≤ d, as needed.

We will also be interested in the following problem on codes, which we view as an interesting problem in
its own right, and which also interests us because of its relationship with SDP.

Definition 2.14 (DenseBall). For n, k, r, L, q ∈ Z+, (n, k, r)-DenseBallLq is the search problem defined as

follows. The input is a circuit C : [q]k → [q]n. The goal is to find distinct x1, . . . ,xL ∈ [q]k and y ∈ [q]n such
that for all all i ∈ [L], ∆(y, C(xi)) ≤ r.

Similarly, (n, k, r)-sysDenseBallLq is the search problem defined as follows. The input is a circuit C :

[q]k → [q]n−k. The goal is to find distinct x1, . . . ,xL ∈ [q]k and y ∈ [q]n such that for all all i ∈ [L],
∆(y,xi ◦ C(xi)) ≤ r.

As we did above for SDP, we show a simple reduction from DenseBall (on arbitrary codes) to sysDenseBall.

Lemma 2.15. For all n, k, t, q, L ∈ Z+, there is a Karp reduction from (n, k, t)-DenseBallLq to

(n+ k, k, t)-sysDenseBallLq .

Proof. On input an instance C : [q]k → [q]n of (n, k, t)-DenseBallLq the reduction then calls its (n +

k, k, t)-sysDenseBallLq oracle on C, receiving as output distinct x, . . . ,xL ∈ [q]k and a center y = (y′,y′′) ∈
[q]k+n satisfying ∆(y, (xi, C(xi))) ≤ t for all i ∈ [L]. It then outputs x1, . . . ,xL ∈ [q]k and y′′ ∈ [q]n. The re-
duction clearly runs in polynomial time, and correctness follows because ∆(y′′, C(xi)) ≤ ∆(y, (xi, C′(xi))) ≤ t
for all i ∈ [L].

We note that (n, k, 2r)-SDPq efficiently reduces to (n, k, r)-DenseBall2q , and vice-versa. (For the reduction

from (n, k, r)-DenseBall2q to (n, k, 2r)-SDPq, take y to be the midpoint between C(x1) and C(x2), where
x1,x2 are the vectors output by the SDP oracle.)

Lemma 2.16. For n, k, r, L, q ∈ Z+, the problems (n, k, 2r)-SDPq and (n, k, r)-DenseBall2q are Karp-reducible
to each other.

However, we note that SDP is not quite equivalent to the L = 2 case of DenseBall because of the case of
(n, k, d)-SDPq when d is odd.

2.4 Lattices, Minkowski’s theorem, and ℓp norms

A lattice L ⊂ Zn is the set of all integer linear combinations of n linearly independent basis vectors
B := (b1, . . . , bn), i.e.,

L = L(B) = {z1b1 + · · ·+ znbn : zi ∈ Z} .

The determinant of a lattice is
det(L) := |det(B)| ,

and the minimum distance in some norm ∥ · ∥K is

λ
(K)
1 (L) := min

y∈L ̸=0

∥y∥K .

Perhaps the most important theorem in the study of lattices is Minkowski’s theorem.
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Theorem 2.17 (Minkowski’s theorem [Min10]). For any lattice L ⊂ Zn and any norm ∥ · ∥K with unit ball
K,

λ
(K)
1 (L) ≤ 2 vol(K)−1/n det(L)1/n .

We are particularly interested in ℓp norms, which we write as

∥x∥p := (|x1|p + · · ·+ |xn|p)1/p

for x ∈ Rn and 1 ≤ p ≤ ∞ (where we interpret this as max |xi| in the case when p =∞). We write

Bnp (r) := {x ∈ Rn : ∥x∥p ≤ r}

for the ℓp ball with radius r. In the special case when r = 1, we sometimes elide it and simply write Bnp .
For finite p, the volume of the ℓp ball is given by

vol(Bnp (r)) = (2r)n · Γ(1 + 1/p)n

Γ(1 + n/p)
≈
(2e1/pp1/p · Γ(1 + 1/p) · r

n1/p

)n
.

Minkowski’s theorem is easily seen to be tight in the ℓ∞ norm (by, e.g., taking L = Zn). However, in other
norms, one can hope to do better. Particularly relevant to us is the following improvement of Minkowski’s
bound for the ℓ2 norm, due to Blichfeldt.

Theorem 2.18 ([Bli29]). For any lattice L ⊂ Zn,

λ
(ℓ2)
1 (L) ≤

√
2(n/2 + 1)1/n vol(Bn2 )−1/n det(L)1/n .

We are primarily interested in the following closely related computational problem.

Definition 2.19. For any p ≥ 1 and γ := γ(n), γ-HSVPp (the Hermite Shortest Vector Problem) is the
search problem in which the input is a basis B ∈ Zn×n for a lattice L ⊆ Zn, and the goal is to output a vector
y ∈ L with ∥y∥p ≤ γ det(L)1/n.

For technical reasons, we will also need the following variant of HSVPp. Here, we add an additional
parameter that one can think of as effectively bounding the bit length of the input.

Definition 2.20. For any p ≥ 1, ℓ := ℓ(n) and γ := γ(n), (γ, ℓ)-HSVPp (the Hermite Shortest Vector
Problem) is the search problem in which the input is a basis B ∈ Zn×n for a lattice L ⊆ Zn with det(L) ≤ 2ℓ(n),
and the goal is to output a vector y ∈ L with ∥y∥p ≤ γ det(L)1/n.

Lemma 2.21. For any p ≥ 1, ℓ := ℓ(n) ≤ poly(n) and γ := γ(n), there is a Karp reduction from γ′-HSVPp

to (γ, ℓ)-HSVPp, where γ′ := (1 + 2n
3−ℓ/n)γ.

2.5 A list-decoding bound on Reed-Solomon codes

Lemma 2.22 ([Sud97, GRS00]). Let F be a finite field, and let α1, . . . , αL ∈ F be distinct field elements.
Then, for any β1, . . . , βL ∈ F and any degree bound d ≥ 1, there are at most

√
2L/d polynomials pi ∈ F[x]

such that for all i,
|{j : pi(αj) = βj}| ≥

√
2dL .

Corollary 2.23. Let F be a finite field, and let α1, . . . , αL2
∈ F be distinct field elements. Let pi,j be

polynomials with degree at most d ≤ L2/2 for all 1 ≤ i ≤ L2 and 1 ≤ j ≤ L1 such that pi,j ̸= pi,j′ for any i
and any j ̸= j′, and such that

pi,j(αi) = pi′,j′(αi′)

for all i, j, i′, j′. Then, there are at least

L′ := L1 ·
√

L2/(2d)− L2 +
√
2dL2

distinct polynomials pi,j (i.e., |{pi,j}| ≥ L′).
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Proof. For any i, let Pi := {pi′,j′ : pi′,j′(αi) = pi,1(αi)}. (The choice of the index 1 here is arbitrary because
pi,j(αi) = pi,1(αi) for all j.) Notice that Pi contains pi,j for all j, and in particular, since pi,j ≠ pi,j′ for
j ̸= j′, we have |Pi| ≥ L1. (We stress that Pi is a set of polynomials, not a set of indices. So, it does not
count duplicate polynomials.) We wish to show that P :=

⋃
i Pi is large.

For any polynomial p, let C(p) be the number of distinct values of i such that p ∈ Pi. Let P
∗ be the set

of all polynomials p such that C(p) ≥
√
2dL2. By Lemma 2.22, |P ∗| ≤

√
2L2/d. Therefore, we have

L1L2 ≤
L2∑
i=1

|Pi| =
∑
p∈P

C(p) ≤ L2|P ∗|+
√
2dL2 · |P \ P ∗| = L2|P ∗|+

√
2dL2(|P | − |P ∗|) .

Rearranging, we see that

|P | ≥ L1 ·
√

L2/(2d)− |P ∗| ·
(√

L2/(2d)− 1
)
≥ L1 ·

√
L2/(2d)− L2 +

√
2dL2 = L′ ,

as needed.

3 Coding Problems

3.1 The (list) Singleton and Plotkin bounds

We start by giving a fairly general reduction from SDP (the problem of finding a pair of close codewords)
to PigeonL. On input an instance C of SDP, the reduction works by defining a compressing circuit C′ that
truncates the output of C. It then finds x1, . . . ,xL such that C′(x1) = · · · = C′(xL) using its PigeonL oracle,
and finally outputs a pair xi ̸= xj that minimizes ∆(C(xi), C(xj)).

Theorem 3.1. Let k,m, n, q, L ∈ Z+ be such that m ≤ k ≤ n and 2 ≤ L ≤ qk−m. Then there is a Karp
reduction from (n, k, d)-SDPq to (qk, qm)-PigeonL where d := d[q]n−m,∆(n−m,L).9

Proof. On input a circuit C : [q]k → [q]n, the reduction first constructs C′ : [q]k → [q]m, C′(x) = C(x)[1,m]. It

then calls its (qk, qm)-PigeonL oracle on C′, receiving as output distinct vectors x1, . . . ,xL ∈ [q]k. Finally, the
reduction iterates through all pairs xi,xj with i ̸= j, and outputs a pair that minimizes ∆(C(xi), C(xj)) =
∆(C(xi)[m+1,n], C(xj)[m+1,n]).

The reduction clearly runs in polynomial time, and by construction C′ : [q]k → [q]m is a valid instance of
(qk, qm)-PigeonL. We now show that ∆(C(xi), C(xj)) ≤ d. Indeed,

∆(C(xi), C(xj)) = ∆(C(xi)[1,m], C(xj)[1,m]) + ∆(C(xi)[m+1,n], C(xj)[m+1,n])

= ∆(C′(xi), C′(xj)) + ∆(C(xi)[m+1,n], C(xj)[m+1,n])

= ∆(C(xi)[m+1,n], C(xj)[m+1,n])

≤ d[q]n−m,∆(n−m,L) ,

where the second equality follows from the definition of C′, the third equality follows from the fact that
C′(xi) = C′(xj), and the inequality follows by the behavior of the reduction and applying the definition of
d[q]n−m,∆(n−m,L) to the L vectors C(x1)[m+1,n], . . . , C(xL)[m+1,n] ∈ [q]n−m (see Definition 2.1).

We get useful corollaries from Theorem 3.1 that show how to compute vectors achieving Singleton bound
(the L = 2 case) and the Plotkin bound (for larger L) using a PigeonL oracle.

We start by stating the Singleton bound (see [GRS23, Theorem 4.3.1]).

9Here d[q]n−m,∆(n−m,L) uses Definition 2.1 and corresponds to the maximal value of the minimum distance of a code with

size L in [q]n−m. (More generally, d[q]ℓ,∆(e, L) is the maximal value of the minimum distance of a code in [q]ℓ with L points

that all lie in a Hamming ball of radius e.)

14



Theorem 3.2 (Singleton bound; [Sin64]). Let k, n, d ∈ Z+ and let q be a prime power. Then every (n, k, d)q
code satisfies d ≤ n− k + 1.

We now show that the problem of finding a pair of codewords whose distance is at most the Singleton
bound is in PWPP.

Corollary 3.3 (Singleton bound in PWPP). Let k, n, q ∈ Z+ with k ≤ n. Then there is a Karp reduction
from (n, k, n− k + 1)-SDPq to (qk, qk−1)-Pigeon2. In particular, (n, k, n− k + 1)-SDPq is in PWPP.

Proof. The claim follows from Theorem 3.1 by setting m := k − 1 and noting that, trivially, d[q]n−m,∆(n−
m,L) = d[q]n−k+1,∆(n− k + 1, L) ≤ n− k + 1 for any L ≥ 2.

We now move to the Plotkin bound. We start by stating (the contrapositive of) the Plotkin bound. See
[GRS23, Theorem 4.4.1].

Theorem 3.4 (Plotkin bound; [Plo60]). Let n, k, d, q ∈ Z+ and let C be an (n, k, d)q code. If qk >
qd/(qd− (q − 1)n) then d ≤ (1− 1/q)n.

We now show that the problem of computing a pair of codewords whose distance satisfies the Plotkin
bound is in PMPP.

Corollary 3.5 (Plotkin bound in PMPP). Let k, n, d,m, q, L ∈ Z+ be such that k ≤ n and

qd

qd− (q − 1)(n−m)
< L ≤ qk−m . (1)

Then d ≤ (1−1/q)(n−m) and there is a Karp reduction from (n, k, (1−1/q)(n−m))-SDPq to (qk, qm)-PigeonL.
In particular, any m ≤ n− ⌊qd/(q − 1)⌋+ 1 satisfies Equation (1).

Proof. By combining the lower bound in Equation (1) and Theorem 3.4, d[q]n−m,∆(n−m,L) ≤ (1−1/q)·(n−m).
The claim then follows from Theorem 3.1. One can check the sufficient condition for m to satisfy Equation (1),
which appears in [GRS23, Corollary 4.4.2].10

Next, we give a reduction from DenseBall to Pigeon similar to the reduction from SDP to Pigeon in
Theorem 3.1.

Theorem 3.6. Let k, n,m, q, L ∈ Z+ be such that m < n and 2 ≤ L ≤ qk−m. Then there is a Karp reduction
from (n, k, n−m− ⌊(n−m)/L⌋)-DenseBallLq to (qk, qm)-PigeonL.

Proof. On input a circuit C : [q]k → [q]n, the reduction first computes C′ : [q]k → [q]m such that C′(x) :=
C(x)[1,m]. It then calls its (qk, qm)-PigeonL oracle on C′, receiving as output x1, . . . ,xL such that C′(x1) =
· · · = C′(xL). After that, it computes C(x1), . . . , C(xL), and constructs a center y as follows. It sets
y[1,m] := C′(x1) and sets the remaining n−m coordinates of y so that at least ⌊(n−m)/L⌋ of them agree
with each codeword C(xi) for i ∈ [L]. Finally, it outputs x1, . . . ,xL,y.

It is clear that the reduction runs in polynomial time, and by construction C′ : [q]k → [q]m is a valid
instance of (qk, qm)-PigeonL. Moreover,

∆(y, C(xi)) = ∆(y[m+1,n], C(xi)[m+1,n]) ≤ n−m− ⌊(n−m)/L⌋

for all i ∈ [L], as needed.

Now, we state the list Singleton bound, which was first stated relatively recently in [ST20, Theorem 1.2].11

Theorem 3.7 (List Singleton bound; [ST20]). Let n, k, t, q, L ∈ Z+. Then for every (t, L)-list-decodable code
C : [q]k → [q]n,

qk ≤ Lqn−⌊(L+1)t/L⌋ .
10The parameterization in [GRS23] is different: m here corresponds to n− n′ there.
11The bound is called the “generalized Singleton bound” in [ST20].
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Finally, we show that the problem of computing a set of codewords lying in a ball whose radius almost
satisfies the list Singleton bound is in PMPP.

Corollary 3.8 (List Singleton bound in PMPP). Let n, k, q, L ∈ Z+ with k > ⌊logq(L)⌋, let m := k−⌊logq L⌋,
and let

t := n−m+ ⌊(n−m)/L⌋ = n− k + ⌊logq L⌋ − ⌊(n− k + ⌊logq L⌋)/L⌋ . (2)

Then (n, k, t)-DenseBallLq is in (qk, qm)-PMPPL.

Proof. Apply Theorem 3.6 with m := k − ⌊logq L⌋.

We remark that the radius t in Equation (2) is almost as small the smallest t satisfying Theorem 3.7.
Indeed, one can check that any t satisfying Theorem 3.7 must be such that

t > (1− 1/L) · (n− k + logq(L− 1)) ,

and that the radius t in Equation (2) satisfies

t ≤ (1− 1/L) · (n− k + ⌊logq(L)⌋) + 1 .

3.2 The (list) Hamming and Elias-Bassalygo bounds

3.2.1 The (list) Hamming bound

We will use the following “list Hamming bound,” which is a direct consequence of the pigeonhole principle.
See [Ham50] and see [GRS23, Theorem 8.1.1] for a very similar result.

Theorem 3.9 (List Hamming bound). Let n, k, t, q ∈ Z+ with t ≤ n, and let C : [q]k → [q]n. Then there
exists a center y ∈ [q]n such that

∣∣{x ∈ [q]k : C(x) ∈ Hn
q (y, t)}

∣∣ ≥ ⌈qk · V n
q (t)

qn

⌉
.

In particular, (n, k, t)-DenseBallLq is a total search problem for any L ≤ ⌈qk−n · V n
q (t)⌉.

We now give a reduction from DenseBall to PigeonL, the key to which is the circuit Cn,V,qH giving an
injection from [V ] into a Hamming ball for sufficiently large V defined in Lemma A.9. (In fact, we will use

such circuits Cn,V,qH that are bijective.)

Theorem 3.10. Let n, k, t, L ∈ Z+, and let q be a prime power satisfying

L ≤
⌈qk · V n

q (t)

qn

⌉
.

Then there is a Karp reduction from (n, k, t)-DenseBallLq to (qk · V n
q (t), qn)-PigeonL.

Proof. Let V := V n
q (t). On input an instance C : [q]k → [q]n of (n, k, t)-DenseBallLq , the reduction constructs

a circuit C′ : [q]k × [V ] → [q]n such that C′(x,y) := C(x) + Cn,V,qH (y), where Cn,V,qH : [V ] → Hn
q (0, t) is the

circuit defined in Lemma A.9. It then calls its (qk · V n
q (t), qn)-PigeonL oracle on C′, receiving as output

L pairs (x1, z1), . . . , (xN , zL) ∈ [q]k × [V ]. Finally, it returns the codewords C(x1), . . . , C(xL) and center
y := C′(x1, z1).

Constructing Cn,V,qH (y) requires at most poly(log V, n) = poly(n) time by Lemma A.9, and so the

reduction runs in polynomial time. Moreover, C′ is a valid instance of (qk · V n
q (t), qn)-PigeonL. Furthermore,

C′(x1, z1) = · · · = C′(xL, zL) = y by assumption, and so ∆(y, C(xi)) ≤ t for all i ∈ [L] by definition of C′ and
Cn,V,qH (y). The reduction is therefore correct.
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We now use Theorem 3.10 to show that SDP and DenseBall with parameters corresponding to the (list)
Hamming bound are in (one or more of) PPP, PWPP, and PMPP.

Corollary 3.11 ((List) Hamming bound in PPP, PWPP, and PMPP). Let n, k, t, q, L ∈ Z+ with 2 ≤ q ≤
poly(n) and L ≤ poly(n). Let

L̃ :=
qk · V n

q (t)

qn
.

Then:

1. If L̃ > 1, then (n, k, 2t)-SDPq is in PPP.

2. If L̃ ≥ 1 + 1/ poly(n), then (n, k, 2t)-SDPq is in PWPP.

3. If L̃ ≥ L, then (n, k, t)-DenseBallLq is in (qk · V n
q (t), qn)-PMPPL.

Proof. Items 1 and 2 follow from Theorem 3.10, the respective characterizations of PWPP and PPP in
Theorems 2.7 and 2.8, and the equivalence between (n, k, 2t)-SDPq and (n, k, t)-DenseBall2q in Lemma 2.16.
Item 3 follows from Theorem 3.10 and the definition of PMPP.

3.2.2 E pluribus duo

We now give a simple reduction from SDP to DenseBallL for L ≥ 2. The idea is that a ball of small radius t
containing L ≥ 2 codewords C(x1), . . . , C(xL) must contain a pair of codewords at small distance d. Clearly
such a pair must exist at distance at most 2t, but in fact when L is larger it is possible to get a better upper
bound. So, the reduction simply computes the distance ∆(C(xi), C(xj)) between each pair of codewords
C(xi), C(xj) for i ̸= j, and outputs a pair xi,xj that minimizes ∆(C(xi), C(xj)).

Theorem 3.12. Let n, k, t, q, L ∈ Z+ be such that

L ≤
⌈qk · V n

q (t)

qn

⌉
.

Then there is a poly(n,L, log q)-time Karp reduction from (n, k, d)-SDPq to (n, k, t)-DenseBallLq , where
d := d[q]n,∆(t, L).

Proof. Let C : [q]k → [q]n be the input instance of (n, k, d)-SDPq. The reduction calls its (n, k, t)-DenseBallLq
oracle on C, receiving as output vectors x1, . . . ,xL ∈ [q]k and y ∈ [q]n. It then outputs a pair of vectors
xi,xj that minimizes ∆(C(xi), C(xj)) among all pairs xi,xj with i ̸= j.

It is clear that the reduction runs in poly(n,L, log q) time, and it remains to show correctness. We note
that (n, k, t)-DenseBallLq is total and that C is a valid instance of (n, k, t)-DenseBallLq by assumption and

Theorem 3.9. Therefore, the output vectors x1, . . . ,xL ∈ [q]k and center y must satisfy ∆(y, C(xi)) ≤ t for
all i ∈ [L]. So, it follows by the definition of d[q]n,∆(t, L) (see Definition 2.1) that ∆(C(xi), C(xj)) ≤ d holds
for some i ̸= j, as needed.

3.2.3 The Elias-Bassalygo bound

We start by giving the Johnson bound (see [GRS23, Theorem 7.3.1]).

Theorem 3.13 (Johnson bound; [Joh62]). Let n, k, d, q ∈ Z+ and q ≥ 2, and let

Jq(δ) :=
(
1− 1

q

)
·
(
1−

(
1− qδ

q − 1

)1/2)
. (3)

If C is a (n, k, d)q code and t < Jq(d/n) · n, then C is a (t, qdn)-list decodable code.
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We now state the Elias-Bassalygo bound. See [GRS23, Theorem 8.1.1] and its proof.12

Theorem 3.14 (Elias-Bassalygo bound; [Bas65]). Let n, k, d ∈ Z+, let q be a prime power. Then every
(n, k, d)q code satisfies

qk ≤ qn+1dn

V n
q (t)

,

where t := ⌊Jq(d/n) · n⌋ − 1.

We are now ready to show that the problem of computing a pair of codewords satisfying the Elias-Bassalygo
bound is in PMPP.

Corollary 3.15 (Elias-Bassalygo bound in PMPP). Let n, k, d, t, q ∈ Z+ with t < Jq(d/n) ·n, let L := qnd+1,
and suppose that

L ≤
⌈qk · V n

q (t)

qn

⌉
.

Then there is a poly(n, q)-time Karp reduction from (n, k, d − 1)-SDPq to (qk · V n
q (t), qn)-PigeonL. In

particular, (n, k, d− 1)-SDPq is in (qk · V n
q (t), qn)-PMPPL.

Proof. The reduction first reduces (n, k, d − 1)-SDPq to (n, k, t)-DenseBallLq using Theorem 3.12, which
applies because d[q]n,∆(t, L) < d by the contrapositive of the Johnson bound (Theorem 3.13). It then reduces

(n, k, t)-DenseBallLq to (qk · V n
q (t), qn)-PigeonL using Theorem 3.10.

3.3 Hardness of SDP and DenseBall

3.3.1 PWPP-hardness of SDP

We now turn to proving hardness results for SDP and DenseBall. In each of our hardness reductions we
first assume that a gadget code, specified by a circuit CA, is given to the reduction as auxiliary input. We
then instantiate the gadget code CA with an explicit efficiently computable code CA to obtain a true Karp
reduction.

Theorem 3.16. Let k,m, n, d, d′ ∈ Z+ be such that m < k and d < d′. Let q be a prime power. Then there
is a Karp reduction from (qk, qm)-Pigeon2 to (n, k, d)-SDPq that takes a circuit CA : Fm

q → Fn
q defining an

(n,m, d′)q code as auxiliary input.

Proof. On input an instance C : Fk
q → Fm

q of (qk, qm)-Pigeon2, the reduction first computes a circuit
C′(x) := CA(C(x)). It then calls its (n, k, d)-SDPq oracle on C′, receiving as output x1,x2 ∈ Fn

q , x1 ̸= x2

such that C′(x1) = C′(x2). Finally, it outputs x1,x2.
It is clear that the reduction runs in polynomial time (recall that CA is given as auxiliary input), and it

remains to show correctness. Because C is compressing, there exist x′
1 ̸= x′

2 such that C′(x′
1) = C′(x′

2), i.e.,
C′ has distance 0. It is therefore a valid instance of (n, k, d)-SDPq. Moreover, by the construction of C′ and
the guarantee of the (n, k, d)-SDPq oracle, we have that ∆(CA(C(x1)), CA(C(x2))) ≤ d. But, because CA has
distance d′ > d, this implies that C(x1) = C(x2), as needed.

We will instantiate the reduction in Theorem 3.16 with codes CA meeting the Zyablov bound, which can
be computed in polynomial time (see [GRS23, Theorem 10.2.1]). In fact, what we state is the special case of
the (effective) Zyablov bound with sub-constant rate.13

12The non-asymptotic version of Elias-Bassalygo bound that we state appears in the proof of [GRS23, Theorem 8.1.1].
13We note that the premise of [GRS23, Theorem 10.2.1] is stated with the requirement δ < 1/2. While δ < 1/2 is necessary

for the q = 2 case, for general constant q, the result holds for δ < 1− 1/q, as in Theorem 3.17. It is also evident from the proof
of the Zyablov bound that the result extends to superconstant q as well—i.e., that for any prime power q that is an unbounded
function of n and any k = o(n), there is an efficiently computable family of codes C : Fk

q → Fn
q with relative distance 1− ε.
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Theorem 3.17 (Zyablov bound [Zya71]). For any (efficiently computable) k = k(n) = o(n), constant prime
power q, and constant ε > 0, there is a poly(n)-time algorithm that takes as input n and computes (a circuit
representing) a code CZybq : Fk

q → Fn
q with relative distance δ ≥ 1− 1/q − ε for sufficiently large n.

We now show that SDP is PWPP-hard on q-ary codes of relative distance δ := d/n less than 1− 1/q and
any constant rate. This hardness corresponds to the red shaded region in the top plot in Figure 1. We remark
that (n, k, δn)-SDPq is easy for δ ≥ 1− 1/q. In particular, for such any such δ, this problem can be solved by
choosing any collection of polynomially many codewords and outputting the closest pair among them. So,
Corollary 3.18 shows essentially tight hardness of SDP in terms of δ.

Corollary 3.18 (PWPP-hardness of SDP). Let q be a fixed prime power and let ε, ε′ > 0 be constants. Then
for all sufficiently large n, k, d ∈ Z+ with k ≤ n ≤ poly(k) and d ≤ (1− 1/q − ε′)n, there is a Karp reduction

from (qk, qk
1−ε

)-Pigeon2 to (n, k, d)-SDPq.
In particular, (n,Rn, δn)-SDPq is PWPP-hard for any constant rate for any constant rate R ∈ (0, 1] and

constant relative distance δ ∈ (0, 1− 1/q).

Proof. Apply Theorem 3.16 with the circuits CA = CZybq constructed in Theorem 3.17.

Remark 3.19. We remark that the assumption k ≤ n (equivalently, R ≤ 1) in Corollary 3.18 is not necessary,
except to ensure that the instance C′ of SDP output by the reduction meets the definition of a code used
there. In fact, modifying Corollary 3.18 slightly shows PWPP-hardness of “(n, k, d)-SDPq” for any n ≥ Ω(kε)
for constant ε > 0 (and any constant relative distance less than). This is because the hard instances C′ of
SDP constructed in Corollary 3.18 are such that either C′(x) = C′(y) or ∆(C′(x), C′(y)) is large for x ̸= y.

We also extend Corollary 3.18 to codes in systematic form (and in particular to codes with distance d ≥ 1,
which are represented by injective circuits; see Section 1.4). This hardness corresponds to the red shaded
region in the bottom plot in Figure 1.

Corollary 3.20 (PWPP-hardness of sysSDP). Let q be a fixed prime power and let ε, ε′ > 0 be constants.
Then for all sufficiently large n, k, d ∈ Z+ with k ≤ n− k ≤ poly(k) and d ≤ (1− 1/q − ε′)(n− k), there is a

Karp reduction from (qk, q(n−k)1−ε

)-Pigeon2 to (n, k, d)-sysSDPq.
In particular, (n,Rn, δn)-sysSDPq is PWPP-hard for any constant rate R ∈ (0, 1) and constant relative

distance δ ∈ (0, (1− 1/q) · (1−R)).

Proof. Combine Corollary 3.18 and Lemma 2.13 with block length n− k.

3.3.2 PMPP-hardness of DenseBall

We next show a reduction from PigeonL for L ≥ 2 to DenseBall analogous to Theorem 3.16.

Theorem 3.21. Let k,m, n, t, L, LA, L
′ ∈ Z+ and let q be a prime power. Suppose that L′ ≤ min{poly(n), qn−k}

and L ≤ min{⌈L′/LA⌉, qk−m}. Then there is a Karp reduction from (qk, qm)-PigeonL to (n, k, t)-DenseBallL
′

q

that takes a circuit CA : Fm
q → Fn

q defining a (t, LA)-list decodable-code with minimum distance at least 1 (i.e.,
CA is injective) as auxiliary input.

Proof. Let C : Fk
q → Fm

q be the input instance of (qk, qm)-PigeonL. The reduction first computes C′ : Fk
q → Fn

q ,

C′(x) := CA(C(x)). It then calls its (n, k, t)-DenseBallL
′

q oracle on C′, receiving as output x1, . . . ,xL′ ∈ Fn
q

and y ∈ Fk
q . Next, it computes z1 := C′(x1), . . . ,zL′ := C′(xL′), and computes an index i∗ that maximizes

|Xi|, where Xi := {xj : j ∈ [L′], C′(xj) = zi}. Finally, it outputs the vectors in Xi∗ .
The reduction runs in polynomial time (recall that CA is given as auxiliary input), and it remains to show

correctness. Because C : Fk
q → Fn

q and L′ ≤ qn−k, there exist x′
1, . . . ,x

′
L′ ∈ Fn

q such that C′(x′
1) = · · · = C′(x′

L′)

by the construction of C′. It follows that C′ is a valid instance of (n, k, t)-DenseBallL
′

q . Moreover, by the

guarantee of the (n, k, t)-DenseBallL
′

q oracle, it holds that ∆(y, zi) ≤ r for all i ∈ [L′]. On the other hand,
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because CA is (t, LA)-list decodable |{zi : i ∈ [L′]}| ≤ LA. Therefore, C′ must map at least ⌈L′/LA⌉ vectors
x1, . . . ,xL′ to zi∗ , i.e.,

|Xi∗ | ≥ ⌈L′/LA⌉ ≥ L .

Furthermore, because CA is injective, the fact that C′(x) = CA(C(x)) = zi∗ for all x ∈ Xi∗ implies that
C(x) = C(y) for all x,y ∈ Xi∗ , as needed.

We now state a result on explicit codes that nearly achieve list decoding capacity [GR08] (see also [GRS23,
Theorem 17.3.8]). We note in passing that these codes are folded Reed-Solomon codes, but we will only use
them in a black-box way as our gadget codes CA in Theorem 3.21.

Theorem 3.22 ([GR08], [GRS23, Theorem 17.3.8]). For any constant rate R∗ ∈ (0, 1), any sufficiently small
constant ε > 0, and all sufficiently large n ∈ Z+, there exist linear q-ary ((1−R∗ − ε)n,LA)-list-decodable
codes CFRSq of dimension R∗ · n and sufficiently large block length n, for some

LA ≤
(n
ε

)O(1/ε)

, q ≤
(n
ε

)O(1/ε2)

.

Furthermore, there is a poly(n)-time algorithm for computing (a circuit representing) such codes CFRSq .

Finally, we use Theorem 3.22 to prove PMPP-hardness of DenseBall.

Corollary 3.23 (PMPP-hardness of DenseBall). For any constants R, ρ ∈ (0, 1) and positive integers
m := m(n) < o(n) and L := L(n) ≤ poly(n), there exists a prime power q := q(n) ≤ poly(n) and a list size

L′ := L′(n) ≤ poly(n) such that there is a Karp reduction from (qk, qm)-PigeonL to (n, k, ρn)-DenseBallL
′

q ,
where k := k(n) = ⌊Rn⌋.

In particular, for these parameters, (n, k, ρn)-DenseBallL
′

q is (qk, qm)-PMPPL-hard.

Proof. Let R∗ := (1− ρ)/2 > 0 and ε := (1− ρ)/2 > 0, so that ρ = 1−R∗− ε. By Theorem 3.22, there exists
an efficiently computable (ρn, LA)-list-decodable code CFRS : FR∗n

q → Fn
q with

LA ≤ (n/ε)O(1/ε) ≤ poly(n) ,

and
q ≤ (n/ε)O(1/ε2) ≤ poly(n) .

Furthermore, since m = o(n) and R∗ is a constant, it follows that for sufficiently large n, R∗ · n < m.
Therefore, by trivially truncating the input of CFRS, we obtain a (ρn, LA)-list-decodable code CA : Fm

q → Fn
q .

The result then follows from Theorem 3.21.

As with SDP, we also show hardness of DenseBall for codes in systematic form. (See Section 1.4.)

Corollary 3.24 (PMPP-hardness of sysDenseBall). For any constants R ∈ (0, 1) and 0 < ρ < 1 − R and
positive integers m := m(n) < o(n) and L := L(n) ≤ poly(n), there exists a prime power q = q(n) ≤
poly(n) and a list size L′ = L′(n) ≤ poly(n) such that there is a Karp reduction from (qk, qm)-PigeonL to

(n, k, ρn)-sysDenseBallL
′

q , where k := k(n) = ⌊Rn⌋.
In particular, for these parameters, (n, k, ρn)-sysDenseBallL

′

q is (qk, qm)-PMPPL-hard

Proof. Combine Corollary 3.23 and Lemma 2.15 with block length n− k.
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4 Finding short lattice vectors is in PMPP

In this section, we show that the problem of finding suitably short non-zero lattice vectors (in ℓp norms)

can be placed in (A,B)-PMPPL, with a smooth tradeoff between the length of the vector obtained and L
and B. In particular, when L = 2 and A ≈ B, we find vectors whose length is at most the bound given
by Minkowski’s celebrated theorem [Min10] (up to a factor of 1 + 1/nC for an arbitrarily large constant
C > 0), and when L = poly(n) and A ≈ LB, we find shorter vectors, corresponding to a stronger bound due
to Blichfeldt [Bli29]. (Blichfeldt proved his bound in the ℓ2 norm, but we generalize it. Again, we match
Blichfeldt’s bound up to a factor of 1 + 1/nC for an arbitrarily large constant C > 0.)

To that end, we first prove the following technical proposition. We the derive the above results as
corollaries.

Proposition 4.1. There is an algorithm that takes as input an integer p ≥ 1, radius r ≥ 1, an integer q ≥ 1,
integers A > B ≥ 1, and a basis B ∈ Zn×n for a lattice L(B), makes a single query to a (A,B)-PigeonL, and
outputs a lattice vector y ∈ L(B) with the following behavior. If, L ≤ ⌈A/B⌉, q ≥ 100pn/r and

qn det(L) ≤ B < A ≤
(
1− 20n

rq

)
· qn · vol(Bnp (r)) ,

then 0 < ∥y∥p ≤ dℓnp (r, L). Furthermore, the algorithm runs in time poly(n,L, logA, log r, log ∥B∥).

Proof. On input p ≥ 1, r ≥ 1, q ≥ 1, and a basis B ∈ Zn×n for a lattice L ⊆ Zn, the algorithm
behaves as follows. The algorithm first uses the procedure from Corollary A.7 to construct the circuit
Cp : [A]→ (Zn/q ∩ Bn

p ), which gives an injective mapping from [A] to (Zn/q ∩ Bn
p ). (Notice in particular that

the upper bound on A is sufficient to apply Corollary A.7.) The algorithm also constructs the injective circuit
CL : (P(L) ∩ Zn/q) → [qn det(L)] where P(B) := {Bz : z ∈ [0, 1)n}, as described in [BJP+19]. Finally,
let C : [A] → [B] be the circuit defined by C(x) := CL(Cp(x) mod L). (Since B ≥ qn det(L), this circuit is

well defined.) The algorithm then calls its (A,B)-PigeonL oracle on input C, receiving as output distinct
x1, . . . , xL ∈ [A] such that C(xi) = C(xj) for all i, j. It then outputs Cp(xi)− Cp(xj) where i ̸= j is chosen to
minimize ∥Cp(xi)− Cp(xj)∥p.

Clearly the reduction runs in the claimed time. We first observe that the reduction does in fact output
a non-zero lattice vector. Indeed, since C(xi) = C(xj), we see that CL(Cp(xi) mod L) = CL(Cp(xj) mod L).
Since CL is injective, Cp(xi) mod L = Cp(xj) mod L, i.e., Cp(xi) − Cp(xj) is a lattice vector. Furthermore,
since xi ̸= xj and Cp is injective, Cp(xi) ̸= Cp(xj). Therefore Cp(xi)− Cp(xj) is a non-zero lattice vector, as
claimed.

It remains to show that there exists an i ≠ j such that ∥Cp(xi)− Cp(xj)∥p ≤ dℓnp (r, L). To see this, notice
that by definition Cp(x1), . . . , Cp(xL) ∈ Bnp (r). Then, by the definition of dℓnp (r, L), there must exist i ̸= j
such that

∥C(xi)− C(xj)∥p ≤ dℓnp (r, L) ,

as needed.

Recall that we are interested in γ-HSVPp for γ ≈ vol(Bnp (1))−1/n.

Corollary 4.2. For any sufficiently large polynomial s(n), efficiently computable non-decreasing functions
α := α(B) > 1 and L := L(B) ≤ ⌈α⌉ with L ≤ polylog(B), γ-HSVPp ∈ (αB,B)-PMPPL where

γ ≤ (1 + o(1)) · vol(Bnp (1))−1/n · (α∗)1/n · dℓnp (1, L
∗) ,

where α∗ := α(2s(n)) and L∗ := L(2s(n)).
In particular, γM := 2 vol(Bnp (1))−1/n corresponds to Minkowski’s bound, and we have (1 + o(1))γM -

HSVPp ∈ PWPP. Blichfeldt’s bound for the ℓ2 norm corresponds to γB := (1 + o(1)) ·
√
2 vol(Bn2 (1))−1/n,

and we see that, e.g., (1 + o(1))γB-HSVP ∈ (2LB,B)-PMPPL for any L = poly(logB).
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Proof. By Lemma 2.21, it suffices to solve (γ, s(n)/(10n))-HSVPp, where recall that (γ, ℓ)-HSVPp is the
special case of HSVPp in which the input lattice has determinant at most 2ℓ. On input a basis B ∈ Zn×n for
a lattice L ⊆ Zn, the reduction does the following. Let q := 2n and B := qn det(L) ≤ 2s(n). The reduction
computes an r ≥ 100pn/q such that(

1− 20n

rq

)
· qn · vol(Bnp (r)) = A(B) .

(Notice that such an r exists because the function on the left is continuous, unbounded, and can be less than
A(B) > B ≥ qn for r ≥ 100pn/q.) The reduction then runs the procedure from Proposition 4.1 on input p, r,
q, A(B), B, and B, and outputs the resulting non-zero lattice vector y ∈ L.

The reduction is clearly efficient. Notice that the conditions necessary to apply Proposition 4.1 are
satisfied, so y is a non-zero lattice vector with

∥y∥p ≤ dℓnp (r, L(B)) = rdℓnp (1, L(B)) ≤ rdℓnp (1, L
∗) .

And, notice that r satisfies

rn ≤ (1 + o(1)) · qnA(B)/ vol(Bnp (1)) = α(B) · det(L)/ vol(Bnp (1)) .

Since α(B) is non-decreasing and B ≤ 2s(n),

rn ≤ (1 + o(1)) · α∗ · det(L)/ vol(Bnp (1)) ,

and the result follows.

5 Inclusions

We have defined a hierarchy of complexity classes (A(n), B(n))L(n)-PMPP and we now consider inclusions
between these classes. Recall that due to the Merkle–Damg̊ard construction, (2n, 2n−1)-PMPP2 is equal
to (2p(n), 2n)-PMPP2 for any polynomial p(n). We now consider what inclusions the Merkle–Damg̊ard
construction and the Merkle tree construction imply when L ̸= 2.

5.1 Merkle–Damg̊ard construction for multicollisions

We now examine the trade-off between the size of a multicollision and the compression of a function for the
Merkle–Damg̊ard construction. (We note that if one is slightly more careful with floors and ceilings, then one
can get a slightly better dependence of L′ on L, and in particular, one can achieve a strict generalization of
the case L′ = L = 2 mentioned above. However, this makes the notation quite unwieldy, so we resist the urge
to do this.)

Theorem 5.1. For L′ := L⌈(m−b)/(a−b)⌉, there is a Karp reduction from (qa, qb)-PigeonL to (qm, qb)-PigeonL
′

that runs in poly(|C|, L′) time where |C| is the size of the input.

Proof. We assume without loss of generality that ℓ := (m− a)/(a− b) = (m− b)/(a− b)− 1 is an integer.
On input a circuit C : [q]a → [q]b, the reduction behaves as follows. Define Ci : [q]b+i(a−b) → [q]b as follows.
C1 := C, and for i > 1, Ci(x, y1, . . . , yi) := C(Ci−1(x, y1, . . . , yi−1), yi) for x ∈ [q]b and yj ∈ [q](a−b).

The reduction calls its (qm, qb)-PigeonL
′
oracle on Cℓ+1 : [q]m → [q]b, receiving as output distinct

z1, . . . , zL′ ∈ [q]m such that Cℓ+1(z1) = · · · = Cℓ+1(zL′). Let zj := (x1,j , y1,j , . . . , yℓ,j) where x1,j ∈ [q]a and
yi,j ∈ [q]a−b. Finally, the reduction computes for all 1 ≤ j ≤ L′ and 1 ≤ i ≤ ℓ, xi+1,j := C(xi,j , yi,j), and it
outputs any collection of distinct strings (xi,j1 , yi,j1), . . . , (xi,jL , yi,jL) ∈ [q]a such that C(xi,j1 , yi,j1) = · · · =
C(xi,jL , yi,jL).

This reduction clearly runs in time poly(|C|, L′). To show correctness, we must show that a collection of
distinct colliding stings (xi,j1 , yi,j1), . . . , (xi,jL , yi,jL) actually exists.
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We prove by induction on i that if there exist distinct

(x1,j1 , y1,j1 , . . . , yi,j1), , . . . , (x1,jLi , y1,j1 , . . . , yi,jLi ) ∈ [q]a+i(a−b)

such that
Ci(x1,j1 , y1,j1 , . . . , yi,j1) = · · · = Ci(x1,jLi , y1,jLi , . . . , yi,jLi ) ,

then there exist distinct
(xi,j1 , yi,j1), . . . , (xi,jL , yi,jL) ∈ [q]a

such that
C(xi,j1 ◦ yi,j1) = · · · = C(xi,jL ◦ yi,jL) .

I.e., if there exists an Li-wise collision in Ci, then there exists an L-wise collision in C.
The base case when i = 0 is trivial. So, we assume that the result is true for i− 1, and suppose that there

exist distinct strings

(x1,j1 , y1,j1 , . . . , yi,j1), , . . . , (x1,jLi , y1,j1 , . . . , yi,jLi ) ∈ [q]a+i(a−b)

such that
Ci(x1,j1 , y1,j1 , . . . , yi,j1) = · · · = Ci(x1,j1 , y1,jLi , . . . , yi,jLi ) .

Let g be the number of distinct values taken by the

(xi,jk , yi,jk) := (Ci−1(x1,jk , y1,jk , . . . , yi−1,jk), yi,jk)

for different choices of k. If g ≥ L, then we are done, since C(xi,j′1
, yi,j′1) = · · · = C(xi,j′g

, yi,j′g) forms
a g-wise collision for L ≥ g of distinct elements under C. If g < L, then by the pigeonhole principle
there must exist some subset of the (x1, jk, y1,jk , . . . , yi−1,jk , yi,jk) that form an Li−1-wise collision under
Ci−1. Since by assumption all of these have the same value of yi,jk , these must all have distinct values for
(x1, jk, y1,jk , . . . , yi−1,jk). So, we get a collision of Li−1 distinct elements under Ci−1, and the result follows
from the induction hypothesis. Either way, the result follows.

In particular, we see that the reduction succeeds because L′ = L(m−b)/(a−b) = Lℓ+1.

5.2 A reduction using Merkle trees and list-recoverable codes

We now show how to show a non-trivial relationship between PMPP with different parameters, using Merkle
trees and list-recoverable codes.

Definition 5.2. For a circuit C : [N ]r → [N ], we define the r-ary, depth-d Merkle tree built from C as the

circuit Cd : [N ]r
d → [N ] defined recursively as follows. C1 = C, and for all i ≥ 2 we define Ci : [N ]r

i → [N ] as

Ci
(
x1, . . . , xri) = Ci−1(C(x1, x2, . . . , xr), C(xr+1, . . . , x2r), . . . , C(xri−r+1, . . . , xri)

)
.

Lemma 5.3. There is an efficient algorithm that takes as input a circuit C : [N ]r → [N ] and x1 =

(x1,1, . . . , x1,rd), . . . , xL = (xL,1, . . . , xL,rd) ∈ [N ]r
d

such that Cd(xi) = Cd(xj) for all i, j and outputs distinct
w1, . . . , wL′ ∈ [N ]r such that C(wi) = C(wj) for all i, j. Furthermore, if there exists some 1 ≤ j ≤ rd−1 such
that {(xi,2j−1, xi,2j)} contains at least ℓ distinct elements, then L′ ≥ ⌈ℓ1/d⌉

Proof. The algorithm behaves as follows. Let x0
i,j := xi,j . For 1 ≤ k ≤ d and 1 ≤ j ≤ rd−k, the

algorithm computes xk
i,j := C(xk−1

i,r(j−1)+1, . . . , x
k−1
i,rj ). The algorithm simply outputs the set Si∗,j∗,k∗ :=

{(xk
i,(r−1)j+1, . . . , x

k
i,rj) : C(xk

i,(r−1)j+1, . . . , x
k
i,rj) = xk∗

i∗,j∗} with largest size.
Clearly the algorithm is efficient. Furthermore, by definition the output w1, . . . , wL′ of the algorithm

satisfies C(wi) = C(wj) for all i, j,.
Notice that xd

i,1 = C(xi). For each 0 ≤ k ≤ d − 1, let ℓk := maxj |{(xk
i,(r−1)j+1, x

k
i,rj)}|. We also define

ℓd = 1. Notice that ℓ0 ≥ ℓ by assumption. Therefore, there exists some 1 ≤ k ≤ d such that ℓk−1/ℓk ≥ ℓ1/d.
After parsing definitions, we see that for this choice of k, there must exist a set Si,j,k with size at least ℓ1/d.
And, since this set has integer size, the size must actually be at least ⌈ℓ1/d⌉, as needed.)
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We now define list-recoverable codes. Our definition is actually a special case of a more general definition.
In the more general definition, each codeword only needs to be close (in Hamming distance) to a codeword
whose characters σi come from the sets Ti.

Definition 5.4. A circuit C : [A]→ [N ]n defines a (ℓ, L)-list-recoverable code if C is injective and for every
collection of sets T1, . . . , Tn ⊆ [N ] with |Ti| ≤ ℓ,

|Image(C) ∩ (T1 × · · · × Tn)| ≤ L

We use the following theorem from [GLS+22]. (We write the special case that applies to our special case
definition of list-recoverable codes. In [GLS+22], this corresponds to the case when ε = 1.)

Theorem 5.5 (Special case of [GLS+22, Theorem 5.1]). There exists a (ℓ, L)-list-recoverable code C : [qk]→
[q]n provided that q ≥ 2C(L+n logL) is a prime power and

n/k ≥ C
√
ℓ · L

L− ℓ
· (log(L/(L− ℓ)) + 1) ,

where C > 0 is some absolute constant. Furthermore, a circuit representing this code can be constructed in
randomized time poly(log q, n)

We now show the main result of this section, which closely follows [BKP18].

Theorem 5.6. Suppose that there exists an efficiently computable (ℓ− 1, L− 1)-list-recoverable code CLR :

[A] → [Nr]r
d−1

. Then, there is an efficient Karp reduction from (Nr, N)-PigeonL
′
to (A,N)-PigeonL for

L′ := ⌈ℓ1/d⌉.

Proof. On input a circuit C : [Nr] → [N ], the reduction constructs C∗ : [A] → [N ] defined by C∗(w) :=
Cd(CLR(w)), where Cd is the depth-d Merkle tree defined above. The reduction then uses its Pigeon oracle
to compute distinct z1, . . . , zL ∈ [A] such that C∗(zi) = C∗(zj) for all i, j. Let xi := CLR(zi). Finally, the
reduction uses the procedure from Lemma 5.3 on input C and x1, . . . , xL to output distinct w1, . . . , wL′ such
that C(wi) = C(wj) for all i, j.

Clearly the reduction is efficient. By Lemma 5.3, in order to prove correctness, it suffices to prove that
there exists some j such that {(xi,(r−1)j+1, . . . , xi,rj)} contains at least ℓ distinct elements. Indeed, since CLR
is injective and the zi are distinct, the x1, . . . , xL must all be distinct as well. The result then follows from
the list recoverability of CLR.

Corollary 5.7. For any integers r := r(v) ≥ 2, k := k(v) ≥ 1, and L := L(v) ≥ 2, (2vr, 2v)-PMPPL′
reduces

to (2vrk, 2v)-PMPPL under randomized reductions, where

L′ ≥ Ω
(
Llog r/(2 log r+log k+log(L)/2)

)
.

Proof. Take q := 2vr, A := qk, ℓ := L/2, and

n :=
⌈
C
√
ℓ · 2 · (log(2) + 1) · k

⌉
= O(

√
Lk) .

Let d := ⌈logr n⌉+ 1 ≤ logr n+ 2 so that rd−1 ≥ n. By Theorem 5.5, there is a (ℓ− 1, L− 1)-list-recoverable

code C : [qk] → [q]r
d−1

that can be constructed in randomized polynomial time. Combining this with

Theorem 5.6 gives a reduction from (2vr, 2v)-PigeonL
′
to (2vrk, 2v)-PigeonL for L′ ≥ ℓ1/d. The result follows

by noting that

log(L′) ≥ log ℓ

d
≥ log r log ℓ

log n+ 2 log r
≥ log r logL− log r

log(L)/2 + log k + 2 log r
−O(1) ≥ logL log r

log k + logL/2 + 2 log r
−O(1) ,

as needed.
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5.3 Polynomial Long Choice

Finally, we show that PMPP is contained in the recently defined complexity class PLC [PPY23] for certain
parameters. Essentially the same result was recently proven independently by [JLRX24]. ([JLRX24] also
proved that PMPP contains PLC, though for different parameters.)

Theorem 5.8. For any L < n, there exists a Karp reduction from (2n, 2n−L)-PigeonL+1 to UnaryLongChoice
that runs in polynomial time.

Proof. This proof can be seen as a generalization of the proof that PWPP reduces to UnaryLongChoice. Let
C : {0, 1}n → {0, 1}n−L be the circuit in which we wish to find a L+1-wise collision. We let Pi(a0, . . . , ai, x) be
the (i+1)th bit of C(x) if i+1 ≤ n−L. Otherwise, we let Pi(a0, . . . , ai, x) = 0. We then feed P0, P1, . . . , Pn−2

to the PLC oracle to get back distinct a0, a1, . . . , an. The reduction then outputs an−L, an−L+1, . . . , an. The
reduction clearly runs in polynomial time. Correctness follows from the fact that an−L, an−L+1, . . . , an are
distinct, and by construction, C(ai) = C(aj) if i, j ≥ n − L. Therefore, C(an−L) = C(an−L+1) = · · · =
C(an).

Corollary 5.9. For any constant k, (22n, 2n)-PMPPk ⊆ PLC.

By Corollary 5.9, for all parametersA,B,L for which (A,B)-PMPPL has been studied to date, (A,B)-PMPPL ⊆
PLC. However, it remains unclear how exactly PMPP is related to PLC for the full range of choices for
A,B,L.

6 Black-box separations

We now present two black-box separation results between Pigeon with different parameters. (We note that
the recent independent work of Jain, Li, Robere, and Xun [JLRX24] contains exciting black-box separations.
Their results are formally incomparable to ours, but we feel that the results in [JLRX24] are more interesting
than our own black-box separations.)

The first result shows that there is no fine-grained black-box reduction in certain parameter regimes.
The second proof result rules out deterministic Karp black-box reductions (e.g., reductions in the style of
Merkle-Damg̊ard that make a single oracle call to a collision-finding oracle) in certain parameter regimes.

Definition 6.1. A black box reduction from (2b, 2a)-PigeonL to (2s, 2r)-PigeonL
′
is an oracle algorithm

Af,Colfinderf such that for any oracles f : {0, 1}b → {0, 1}a and Colfinderf that finds L′-wise collisions in oracle
circuits Cf : {0, 1}s → {0, 1}r, A succeeds in finding an L-wise collision in f .

We call such a reduction a black-box Karp reduction if it makes at most one query to the Colfinderf oracle.

We assume without loss of generality that A never queries the same value to f twice, that x1, x2, . . . , xL

that form the L-wise collision in f were all queried to f by A at some point, when Colfinder returns
w1, w2, . . . , wL′ on input Cf , the reduction computes Cf (w1), C

f (w2), . . . , C
f (wL′) (and makes the necessary

queries to f to do so).

6.1 Simulation approach

Lemma 6.2 ([STKT06]). Let 2 ≤ L ≤ q, α < 1, and q = αN (L−1)/L. If the random variables X1, X2, . . . , Xq

are uniformly distributed on [N ], then,

Pr[∃i1 < · · · < iL, Xi1 = · · · = XiL ] ≤ 1/L! .

Lemma 6.3 ([STKT06]). Let eN = (1 − 1
N )−N , 2 ≤ L ≤ q, and q = (L!)1/LN (L−1)/L + L < N . If the

random variables X1, X2, . . . , Xq are uniformly distributed on [N ], then

Pr[∃i1 < · · · < iL, Xi1 = · · · = XiL ] ≥
1

2
− (

L!

N
)1/L ln(eN ) .
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Lemma 6.4 ([Ber80]). Let X1, X2, . . . , Xq be i.i.d random variables with support on at most N values and
Y1, Y2, . . . , Yq be uniformly distributed on [N ], then for any L

Pr[∃i1 < · · · < iL, Xi1 = · · · = XiL ] ≥ Pr[∃i1 < · · · < iL, Yi1 = · · · = YiL ]

Theorem 6.5. For any integers L,L′ ≥ 2 and positive integers b > a and s > r, there is no black-box reduction

Af,Colfinderf from (2b, 2a)-PigeonL to (2s, 2r)-PigeonL
′
that makes qf queries to f and qCF to Colfinderf if

qCF

(
T 2

2s+1
+

1

2
+ 2eL′2−r/L′

)10 log(qCF)

≤ 1

2
,

T < 2r, and

10qfqCF log(qCF)T + qf < 2a
L−1
L −1 ,

where T := L′2r
L′−1
L′ + L′.

Corollary 6.6. Let L′ ≥ 2 be a constant and L > L′. For every function p(n) = poly(n), there exists n0

such that for all n > n0, there is no black-box reduction from (22n, 2n)-PigeonL to (2b, 2n)-PigeonL
′
which

runs in time p(n) for any b > n.

Proof of Theorem 6.5. Say for the sake of contradiction that there exists a reduction Af,Colfinder that makes
at most qf queries to f and at most qCF queries to Colfinder and succeeds in finding a L-wise collision in f for
every f,Colfinder pair. Let f : {0, 1}b → {0, 1}a be a random function. We will use A to create an algorithm
M which finds a L-wise collision in a random function with probability close to 1 but makes relatively few
queries to the random function f , which contradicts Lemma 6.2.

We first create an algorithm Mf that will do exactly what A does, except it will simulate Colfinder

using the birthday paradox. Let T ′ = 10 log(qCF)((L
′!)1/L

′
2r

L′−1
L′ + L′). M will then simulate the ith call to

Colfinder as follows: Mf will sample T ′ values xi
1, x

i
2, . . . , x

i
T ′ uniformly at random from {0, 1}s and look for

j1 < j2 < · · · < jL′ such that the xji are distinct and Cf
i (xj1) = Cf

i (xj2) = · · · = Cf
i (xjL′ ). The simulation

then outputs xj1 , xj2 , . . . , xjL′ .
Let us now analyze the probability thatM succeeds in finding a L-wise collision for any fixed f with high

probability. For the analysis let us group all xj
i into 10 log(qCF) groups of size T = (L′!)1/L

′
2r

L′−1
L′ + L′. We

say the event RepeatInGk occurs if not all elements in Gk are distinct. We say the event NoColk occurs if Gk

does not contain a1 < a2 < · · · < aL′ such that Cf
i (a1) = Cf (a2) = · · · = Cf (aL′). We say that the event

SimFaili occurs if simulation i fails to find a L′-wise collision in Cf
i . We say the eventMFail occurs if any of
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the qCF simulation steps fails.

Pr
xi
j

[MFail] = Pr
xi
j

 ⋃
i∈[qCF]

SimFaili


≤
∑

i∈[qCF]

Pr
xi
j

[SimFaili]

≤
∑

i∈[qCF]

Pr
xi
j

 ⋂
k∈10 log(q)

(RepeatInGk ∪ NoColk)


≤ qCF

(
Pr
x1
j

[(RepeatInG1 ∪ NoCol1)]

)10 log(qCF)

≤ qCF

(
Pr
x1
j

[RepeatInG1] + Pr
x1
j

[NoCol1]

)10 log(qCF)

≤ qCF

(
Pr
x1
j

[RepeatInG1] +
1

2
+ (

L′!

2r
)1/L

′
ln(e2r )

)10 log(qCF)

The final inequality follows from treating each Cf (x1
j) as a random variable on {0, 1}r and combining

Lemma 6.4 with Lemma 6.3. We also know that the probability we sample the same x1
j twice is≤

T (T−1)
2·2s ≤ T 2

2·2s
by a well known bound on the birthday paradox.

≤ qCF

(
T 2

2s+1
+

1

2
+ (

L′!

2r
)1/L

′
ln(e2r )

)10 log(qCF)

≤
(

T 2

2s+1
+

1

2
+ 2eL′2−r/L′

)10 log(qCF)

≤ 1

2

So with probability greater 1
2 ,M succeeds in finding a collision in a random f . Since each evaluation of

Cf requires at most qf queries,M makes at most qfqCFT + qf queries to f . This is a contradiction since by

Lemma 6.2 2a
L−1
L −1 queries are required to have a 1

L! chance of finding a collision in a random function with
an a bit output.

6.2 KNY approach

Theorem 6.7. Let L = L(n), L′ = L′(n), a = a(n), s = s(n), r = r(n) and ensure s− r = Ω(n), L(n) =
poly(n), L′(n) = poly(n) and

s ≤ a(L− 1)− (L− 1) · ω(log(n))
L′ − 1

.

For every p(n) = poly(n), there exists n0 such that for every n > n0, there is no deterministic black-box Karp

reduction from (22n, 2a(n))-PigeonL(n) to (2s(n), 2r(n))-PigeonL
′(n) that runs in time p(n).

The oracle Γ we will use to show that no black box construction exists is as follows (it is the natural
generalization of the oracle given in [KNY18]).

Construction 6.8. The oracle Γ consists of a tuple (f,Colfinderf )

1. The function f = {f}n∈N: For every n, the function f is a uniformly chosen function from 2n bits to
a(n) bits.

2. The function Colfinderf : This function consists of an infinite set of permutations, where for every
n ∈ N, and every circuit Cf : {0, 1}s(n) → {0, 1}r(n), there are L′ uniformly and independently
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chosen permutations π1
Cf

, π2
Cf

, . . . , πL′

Cf
over {0, 1}s(n). When given an input Cf , Colfinderf sets x1 =

π1
Cf (0

s(n)), and xi = πi
Cf (ti) where ti is the lexicographically smallest ti such that Cf (x1) = Cf (xi)

(for 1 < i ≤ q). It then outputs (x1, x2, . . . , xL′(n)).

Lemma 6.9. There exists a polynomial time, oracle-aided algorithm A such that for any function f :
{0, 1}2n → {0, 1}a(n), and any oracle aided circuit Cf : {0, 1}s(n) → {0, 1}r(n), it holds that

Pr
Colfinder

[
x1, x2, . . . , xL′ are distinct

Cf (x1) = Cf (x2) = · · · = Cf (xL′)
: (x1, x2, . . . , xL′)← A(f,Colfinderf )(1n, Cf )

]
≥ 1− 1/ poly(n)

Proof. Fix n and f . The algorithm on input Cf , sends Cf to Colfinderf and outputs the result (x1, x2, . . . , xL′).
It holds by definition that Cf (x1) = Cf (x2) = · · · = Cf (xL′). All that is left to show is that x1, x2, . . . , xL′

are all distinct.
Notice there for any u(n), there are at most u(n) · 2r(n) values for x such that |(Cf )

−1
(Cf (x))| ≤ u(n).

The proof for this is fairly simple. Group each input according to its output, there are 2s(n) inputs, and at
most 2r(n) groups. If we count the number of elements in the groups with less than u(n) elements, we will
clearly end up with ≤ 2r(n) · u(n) elements. Thus, there at at least 2s(n) − 2r(n)u(n) x for which there are

|d| > u(n). Let u(n) = n2L′(n)
2
. We thus have that

Pr
xi

[
|(Cf )

−1
(Cf (x))| > L′(n)2n2

]
≥ 2s(n) − L′(n)2n22r(n)

2s(n)
≥ 1− L′(n)2n2

2s(n)−r(n)
= 1− L′(n)2n2

2−Ω(n)
= 1−negl(n) .

Let us now consider the probability that our proposed algorithm does not output distinct xi. Assume

we pick x1 such that |(Cf )
−1

(Cf (x))| > n2L′(n)2, then if we pick L′ − 1 elements independently from

(Cf )
−1

(Cf (x)) (which is what Colfinder does), then by the birthday paradox, we will have probability

≥ 1 − L′2

n2L′2 = 1 − 1/n2 that x1, x2, . . . , xL′ are distinct. Therefore, the probability that we succeed is
(1− negl(n))(1− 1/n2) = 1− 1/ poly(n), as claimed.

Theorem 6.7 then follows from the following lemma.

Lemma 6.10. For any collision-finding oracle Colfinderf and any polynomial-time deterministic black-box

Karp reduction A(f,Colfinderf ) ,

Pr
f

[
x1, x2, . . . , xL are distinct

f(x1) = f(x2) = · · · = f(xL)
: (x1, x2, . . . , xL)← A(f,Colfinderf )(1n)

]
< o(1) .

Proof. We may assume without loss of generality that (1) A(f,Colfinder) never queries f on the same input
twice; (2) A(f,Colfinder) always queries all of the elements x1, . . . , xL that it outputs; A(f,Colfinder) always makes
a query to Colfinder; and (3) when Colfinder outputs some collision w1, . . . , wL′ in some circuit Cf , A(f,Colfinder)

proceeds to compute Cf (w1), . . . , Cf (wL′), making all necessary new queries to f along the way to do so.
Notice also that because Colfinderf is fixed, the first element w1 output by Colfinderf on input some circuit
Cf is fixed and independent of f for fixed Cf .

Let F ⊆ {f : {0, 1}2n → {0, 1}a(n)} be the set of all functions f for which A(f,Colfinder) succeeds, i.e.,

for which (x1, . . . , xL) ← A(f,Colfinderf (1n) is in fact a valid L-wise collision in f . We will show that for
every f ∈ F , there is an encoding bit string Ef such that f can be completely recovered from Ef and

|Ef | < a(n)22n − ω(1). This implies that |F| < o(2a(n)2
2n

), which is equivalent to the result.
To that end, fix some f for which A(f,Colfinder) finds distinct elements x1, . . . , xL ∈ {0, 1}2n such that

f(x1) = · · · = f(xL). Let z1, . . . , zq be all queries made by A(f,Colfinder) to f . By assumption, there exist
indices i1, . . . , iL ∈ [q] such that zij = xj for all j. Furthermore, the algorithm A(f,Colfinder) makes precisely

one query to Colfinder, receiving as output w1, . . . , wL′ ∈ {0, 1}s(n).
Our encoding Ef will be the following. Let Y be the list of all f(zi) (in order) except for when i = ij for

some j. Let Y ∗ be the list of all f(z) where z ̸= zi for any i (in some canonical order—say the lexicographic
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order on such z). Notice that Y and Y ∗ together contain all values of f except for its value on the points
zi1 , . . . , ziL . Therefore |Y |+ |Y ∗| = a(n)(22n − L) Then,

Ef = i1 ◦ · · · ◦ iL ◦ f(x1) ◦ w2 · · · ◦ wL′ ◦ Y ∗ ◦ Y ,

where the ij are written in binary. Notice that

|Ef | = ⌈log q⌉ ·L+a(n)+(L′−1) ·s(n)+a(n)(22n−L) = a(n)22
n

+O(log n) ·L+(L′−1) ·s(n)−a(n)(L−1) .

By our assumption on the parameters a, s, L, L′, we have a(n)(L − 1) > ω(log n)L + (L′ − 1)s(n). So,
|Ef | < a(n)22n − ω(1) as needed.

It remains to show that Ef can be used to recover f . To see this, first notice that Ef contains enough
information to list all responses to all f queries made by A(f,Colfinder). In particular, for all queries to f
except the ijth query for any j, we can simply use Y to respond to the queries. For the ijth query, we can
respond with f(x1), which is included in Ef . Using these responses, the fixed value of w1, and the w2, . . . , wL′

included in Ef , we can all queries and responses made by A(f,Colfinder), therefore recovering the values of
f(z1), . . . , f(zq). The remaining values of f(z) can be read off of Y ∗. The result follows.

7 A non-black-box non-separation

In this section, we use non-black-box techniques to prove non-trivial relationships between versions of Pigeon
with different parameters L. To do so, we use beautiful ideas due to Rothblum and Vasudevan [RV22], who
showed an analogous result for collision-resistant hash functions.

Theorem 7.1. Let k := k(n) ≥ 2, m := m(n) ≥ 2, L1 := L1(n) ≥ 2, and L2 := L2(n) ≥ 2 be efficiently
computable polynomially bounded integers that satisfy L1 ≤ 2(k−1)n−m, L2 ≤ 2n−m, k − 1 ≤ L2/2, and

L1 > (L2 + 1) ·
√
2(k − 1)/L2 − 2(k − 1) .

Suppose that there exist efficient deterministic algorithm that solves (2kn, 2m+n)-PigeonL1 and an efficiently
deterministic algorithm that solves (2n, 2m)-PigeonL2 . Then, there is also an efficient deterministic algorithm

algorithm that solves (2kn, 2m)-PigeonL
′
, where

L′ :=
⌈
L1 ·

√
L2/(2(k − 1))− L2 +

√
2(k − 1)L2

⌉
.

Proof. Suppose that AL1
is an efficient deterministic algorithm that solves (2kn, 2m+n)-PigeonL1 and

AL2
is an efficient algorithm that solves (2n,m)-PigeonL2 . We construct an algorithm AL′ that solves

(2kn, 2m)-PigeonL
′
.

Before doing so, we will need a number of definitions. For a circuit C : {0, 1}kn → {0, 1}m and α ∈ {0, 1}n,
we define the circuit Cα : {0, 1}kn → {0, 1}m+n as Cα(x) := (C(x), gα(x)), where gα : {0, 1}kn → {0, 1}n
is defined as follows. To compute gα, we first interpret α ∈ {0, 1}n as an element in the finite field
F2n . We similarly interpret x ∈ {0, 1}kn as a list of k field elements, x0, . . . , xk−1 ∈ F2n . Then, gα(x) =
x0 + x1α+ · · ·+ xk−1α

k−1. In other words, gα(x) interprets x as the coefficients of a polynomial with degree
at most k − 1 and evaluates that polynomial at α.

Then, we define the function fC : {0, 1}n → {0, 1}m as follows. To compute fC(α), we first run AL1
on

input Cα, receiving as output (distinct) x1, . . . , xL1
∈ {0, 1}kn such that Cα(x1) = · · · = Cα(xL1

). Then,
fC(α) := C(x1) (or, equivalently fC(α) = C(xi) for any i, since Cα(xi) = Cα(x1) and C(xi) is a substring of
Cα(xi)). In other words, fC(α) is “the image under C corresponding to the L1-wise collision found by AL1

in
Cα.” (Notice that fC is defined in terms of AL1 . This is what makes our proof non-black-box.)

We are now ready to describe AL′ . The algorithm takes as input a description of a circuit C : {0, 1}kn →
{0, 1}m and behaves as follows. It first constructs a circuit C∗ : {0, 1}n → {0, 1}m such that C∗(α) = fC(α)
with fC as described above. The algorithm then runs AL2

on input C∗, receiving as output distinct
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α1, . . . , αL2 ∈ {0, 1}n such that fC(α1) = · · · = fC(αL2). Then for i = 1, . . . , L2, the algorithm computes
(xi,1, . . . , xi,L2)← AL1(Cαi), where Cαi is defined as above. Finally, the algorithm outputs any subset of L′

distinct elements among the xi,j . (We will argue below that such a subset must exist.)
First, notice that this is actually an efficient algorithm. In particular, the fact that AL1

is an efficient
deterministic algorithm means that we can efficiently compute the circuit C∗ (which uses AL1

as a subroutine)
and in particular that C∗ has description length that is polynomially bounded in the description length of C.

Next, we claim that the algorithm is correct. In particular, we claim that C(xi,j) = C(xi′,j′) for all i, j, i
′, j′

and that there exist at least L′ distinct elements among the xi,j .
Showing that C(xi,j) = C(xi′,j′) amounts to carefully parsing the (admittedly rather complicated)

definitions of Cα and fC . We actually show something slightly stronger, namely that Cαi
(xi,j) = Cαi′ (xi′,j′).

(This is in fact a stronger statement, since C(xi,j) is a substring of Cαi
(xi,j). By the fact that AL1

is
deterministic and the definition of fC, we must have that C(xi,1) = fC(αi) for all i. By the correctness
of AL2 , we must have that fC(αi) = fC(α1) for all i. And, by the correctness of AL1 , we must have that
Cαi(xi,j) = Cαi(xi,1) for all i, j, as needed.

It remains to show that there must be at least L′ distinct values of xi,j . This is where we use our
careful choice of gα. Indeed, since gαi

(xi,j) is a substring of Cαi
(xi,j), it follows from the above that

gαi
(xi,j) = gαi′ (xi′,j′) for any i, j, i′, j′.
Recall that gαi(xi,j) is a polynomial pi,j with degree at most k − 1 in αi, where the polynomial pi,j

itself depends only on xi,j . These polynomials have the property that pi,j(αi) = pi′,j′(αi′) for all i, j, i
′, j′.

Therefore, applying Corollary 2.23, we see that there are at least L′ distinct polynomials pi,j . In other words,
there are at least L′ distinct values xi,j , as needed.
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PPP-completeness and extremal combinatorics. In ITCS, 2023. 1, 7

[BJP+19] Frank Ban, Kamal Jain, Christos H. Papadimitriou, Christos-Alexandros Psomas, and Aviad
Rubinstein. Reductions in PPP. Information Processing Letters, 145:48–52, 2019. 1, 2, 4, 7, 9, 21

[BKP18] Nir Bitansky, Yael Tauman Kalai, and Omer Paneth. Multi-collision resistance: A paradigm for
keyless hash functions. In STOC, 2018. 1, 5, 6, 9, 24

[Bli29] H. F. Blichfeldt. The minimum value of quadratic forms, and the closest packing of spheres.
Mathematische Annalen, 101(1):605–608, 1929. 4, 8, 13, 21

[Dam89] Ivan Bjerre Damg̊ard. A design principle for hash functions. In CRYPTO, 1989. 4, 11
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A On efficient injections from [N ] to sets of size roughly N

Definition A.1. For a family of sets S := {Sn,k}n≥1,k≥0 with Sn,k ⊆ [−k, k]n, j : N2 × Z→ N is an index
of S if for all n and k,

k⋃
i=−k

{i} × Sn−1,j(n,k,i) = Sn,k

with j(n, k, i) ≤ k. We say that j is efficiently computable if there is a deterministic algorithm that computes
j(n, k, i) in time poly(n, log k, log i).

Lemma A.2. If a family of sets S := {Sn,k}n≥1,k≥0 has an efficiently computable index and if membership in
S1,k can be computed in deterministic poly(k) time, then there is a deterministic algorithm that takes as input
n, k, and a ≤ |Sn,k| and outputs the ath element in Sn,k in the lexicographic order in time poly(n, k, log a).

The above lemma is useful when k is small. But, we will be interested in cases when k is quite large. In
that case, we might not be able to quite find an algorithm that yields an efficient injection from [|Sn,k|] to
Sn,k, but the ideas below let us come quite close in some important special cases.

Definition A.3. For a family of sets S := {Sn,k}n≥1,k≥0 and a function L(n, k), we say that there is an
efficient L-sized injection to S if there is a deterministic poly(n, log k, log a)-time algorithm A that takes as
input integers n ≥ 1, k ≥ 0, and a ≥ 1 and outputs s ∈ Sn,k such that if a1, a2 ≤ L(n, k) and a1 ̸= a2, then
A(n, k, a1) ̸= A(n, k, 2).

Definition A.4. For a family of sets S := {Sn,k}n≥1,k≥0 with index j, we say that a function L : N2×Z→ N
is a lower bound for S consistent with j if for all n ≥ 1, k ≥ 0, and −k ≤ t ≤ k,

1. L(1, k, t) = |S1,k ∩ [−k, t]|;

2. L(n, k,−k − 1) = 0;

3. L(n, k, t)− L(n, k, t− 1) ≥ 0 (i.e., L is a non-decreasing function of t); and

4. L(n+ 1, k, t)− L(n+ 1, k, t− 1) ≤ L(n, j(n+ 1, k, t), j(n+ 1, k, t)).

We say that such L and j are efficiently computable if L(n, k, t) and j(n, k, t) can be computed determin-
istically in time poly(n, log k, log t). And, we write L(n, k) := L(n, k, k)

This definition might seem rather strange. But, notice, for example, that these conditions imply that if L
is a lower bound that is consistent with some index j, then L(n, k) ≤ |Sn,k|, and more generally that

L(n, k, t) ≤
t∑

i=−k

|Sn,j(n,k,i)| ,

so we at least have some justification for the terminology “lower bound.”
A very nice example is to take Sn,k := {z ∈ Zn : ∥z∥1 = k}. Then, a nice index function is simply

j(n, k, i) = k− |i|. And, the sets {i}×Sn−1,j(n,k,i) simply correspond to the slices of the ℓ− 1 sphere. In this
example, one can then take L(n, k, t) to be precisely equal |{z ∈ Zn : ∥z∥ = k, z1 ≤ t}| since this happens to
be efficiently computable. But, one can also use a volume-based estimate of this, estimating

∑t
i=−k Sn−1,i by

L(n, k, t) := vol{x ∈ Rn : ∥x∥1 = k − δ and x1 ≤ t}. For an appropriately chosen slack factor δ = δ(n, k),
this will satisfy the conditions outlined above.

The following shows that the existence of such an L and j is actually enough to imply an efficient L-sized
injective mapping to S for L that is related to L.

Lemma A.5. Suppose that S := {Sn,k} with Sn,k ⊆ [−k, k] is a doubly indexed family of sets with an
efficiently computable index j and efficiently computable lower bound L for S consistent with j. Then, there
is an efficient L-sized injective mapping to S.
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Proof. We describe our algorithm A(n, k, a) recursively as follows. The algorithm first uses binary search to
find the minimal value of t ∈ [−k, k] such that L(n, k, t) ≥ a. If n = 1, it simply outputs t. Otherwise, it
outputs (t,A(n− 1, j(n, k, t), a− L(n, k, t− 1)).

First, notice that when a ≤ L(n, k), there does always exist a minimal value of t ∈ [−k, k] such that
L(n, k, t) ≥ a, and this will in fact be found by binary search because of the fact that L(n, k, t) is non-decreasing.
Notice as well that the running time of the algorithm is in fact poly(n, log k, log a). In particular, the running
time of the algorithm satisfies the recurrence TA(n, k, a) ≤ TA(n− 1, k − t, a− L(n, k, t)) + polylog(n, k, a)
with base case TA(0, k, a) ≤ poly(log k), and a simple argument shows that this is polynomially bounded.

Furthermore, notice that the fact that j is an index implies that the output of the algorithm is in fact
an element in Sn,k. So, the algorithm does at least output an element of Sn,k and does have the claimed
running time.

It remains to prove that the algorithm is an L-sized injection, which we do by induction on n. In the
base case when n = 1, a simple argument using Item 1 above shows that A(1, k, a) outputs precisely the ath
element in the set S1,k ⊆ [−k, k]. So, in particular, it is injective as a function of a for n = 1.

Now, let n ≥ 2. We assume for induction that the algorithm is injective on input (n− 1, k′, a′) for any k′

and any a′ ≤ L(n− 1, k′). Now, for a1 ̸= a2 with a1, a2 ≤ L(n, k), let ti be minimal such that ai ≤ L(n, k, ti).
Notice that if t1 ≠ t2, then clearly A(n, k, a1) ̸= A(n, k, a2) (since the first coordinates in the two outputs are
t1 and t2 respectively). So, we may assume that t1 = t2 = t.

Let k′ := j(n, k, t) and a′i := ai − L(n, k, t− 1). It suffices to show that A(n− 1, k′, a′1) ̸= A(n− 1, k′, a′2).
By the induction hypothesis, it suffices to show that 0 < a′i ≤ L(n− 1, k′). Indeed, by the definition of t, we
have that L(n, k, t − 1) < ai ≤ L(n, k, t), so that 0 < a′i ≤ L(n, k, t) − L(n, k, t − 1). And, by Item 4, this
implies that a′i ≤ L(n− 1, k′) as needed.

A.1 Injections into ℓp balls

Lemma A.6. For any integer p ≥ 1, let S := {Sn,k} where Sn,k := {z ∈ Zn : ∥z∥pp ≤ k}. Then,
j(n, k, i) := k − |i|p is an efficiently computable index of S and

L(n, k, t) := voln
(
{x ∈ Rn : ∥x∥pp ≤ k − pk1−1/p(n− 1), x1 ≤ t}

)
+ 1

is an efficiently computable lower bound for S that is consistent with j, where we interpret this expression as
0 if the set is empty. Furthermore, for k ≥ (10pn)p,

vol(Bnp (k1/p))
L(n, k)

≤ 1 + 10n/k1/p .

Proof. It is immediate that j is an efficiently computable index of S. And, it is immediate that L is efficiently
computable (ignoring issues of precision) and that L satisfies all properties needed to be a lower bound for S
except for Item 4. So, we only need to prove that L satisfies Item 4.

In other words, we must prove that

voln+1

(
{x ∈ Rn : ∥x∥pp ≤ k−pk1−1/pn, t−1 ≤ x1 ≤ t}

)
≤ voln

(
{x ∈ Rn : ∥x∥pp ≤ k−|t|p−pk1−1/p(n−1)}

)
.

Notice that the left-hand side is zero if, e.g., |t| ≥ k1/p, so we may assume that |t| ≤ k1/p. Furthermore, if
t = 0, a quick check shows that the inequality holds. So, we may assume that 1 ≤ |t| ≤ k1/p. Then,

vol
(
{x ∈ Rn+1 : ∥x∥pp ≤ k − pk1−1/pn, t− 1 ≤ x1 ≤ t}

)
=

∫ t

t−1

voln
(
{x ∈ Rn : ∥x∥pp ≤ k − |r|p − pk1−1/p(n+ 1)}

)
dr

≤ voln
(
{x ∈ Rn : ∥x∥pp ≤ k − (|t| − 1)p − pk1−1/p(n+ 1)}

)
≤ voln

(
{x ∈ Rn : ∥x∥pp ≤ k − |t|p + p|t|p−1 − pk1−1/p(n+ 1)}

)
≤ voln

(
{x ∈ Rn : ∥x∥pp ≤ k − |t|p − k1−1/pn}

)
,
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as needed.
The “furthermore” follows by recalling that voln(Bnp (r)) = rn · voln(Bnp (1)).

Corollary A.7. For any constant integer p ≥ 1 and q := q(n), let S := {Sn,k} where Sn,k := {z ∈ Zn/q(n) :
∥z∥pp ≤ k}. Then, there is a poly(n, log q)-time computable L-sized injection into S with

L(n, k) ≥ (1− 20n/(qk1/p)) · qn · vol(Bnp (k1/p))

for all k ≥ (100pn/q)p.

Proof. Notice that it suffices to consider the case q = 1 after rescaling appropriately. Then, combine
Lemma A.6 with Lemma A.5.

A.2 An injection into the Hamming ball

We will use the following result from Knuth [Knu05].

Lemma A.8 ([Knu05]). The combinatorial number system defines a bijective function fm,k : [
(
m
k

)
]→

(
[m]
k

)
,

which can be computed in time poly(m).

Algorithm 1 An injective map from [A] into the Hamming ball

Require: x ∈ [A]
t = max{t′ : V n

q (t′) ≤ x} // x encodes a point in hamming sphere of radius t
u← x− V n

q (t− 1)− 1 // For convenience, we let V n
q (−1) be 0

v ← ⌊u/(q − 1)t⌋ // Note that u ∈ [0, 1, . . . , V n
q (t− 1)− 1]

(i1, i2, . . . , it)← fn,t(v + 1)
Let a1, a2, . . . , at ∈ {0, . . . , q − 2} be the digits of (u mod (q − 1)t) when written in base q − 1.
(y1, y2, . . . , yn)← (0, 0, . . . , 0)
for j ∈ {i1, i2, . . . , it} do

yj = aj + 1
end for
return (y1, y2, . . . , yn)

Lemma A.9. There is an algorithm that runs in time poly(log(A), n), which on inputs A,n outputs a circuit

Cn,A,q
H : [A] → Fn

q that is an injective map from [A] into V n
q (r), where r is the smallest integer such that

V (Bnq (0, r)) ≥ A. In particular if A = V n
q (r) for some r, then Cn,A,q

H is bijective.

Proof. It suffices to show an algorithm with running time poly(log(A), n) that maps an integer x ∈ [A] to
Bnq (0, r). Key to our translation will be the combinatorial number system from Lemma A.8. See Algorithm 1
for details.
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