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Abstract
We solve the derandomized direct product testing question in the low acceptance regime, by constructing

new high dimensional expanders that have no small connected covers. We show that our complexes have
swap cocycle expansion, which allows us to deduce the agreement theorem by relying on previous work.

Derandomized direct product testing, also known as agreement testing, is the following problem. Let
X be a family of k-element subsets of [n] and let {fs : s → Σ | s ∈ X} be an ensemble of local functions,
each defined over a subset s ⊂ [n]. Suppose that we run the following so-called agreement test: choose a
random pair of sets s1, s2 ∈ X that intersect on

√
k elements, and accept if fs1 , fs2 agree on the elements

in s1 ∩ s2. We denote the success probability of this test by Agree({fs}). Given that Agree({fs}) = ε > 0,
is there a global function G : [n] → Σ such that fs = G|s for a non-negligible fraction of s ∈ X ?

We construct a family X of k-subsets of [n] such that |X| = O(n) and such that it satisfies the low
acceptance agreement theorem. Namely,

Agree({fs}) > ε =⇒ ∃G : [n] → Σ, P
s
[fs

0.99
≈ G|s] ⩾ poly(ε).

A key idea is to replace the well-studied LSV complexes by symplectic high dimensional expanders (HDXs).
The family X is just the k-faces of the new symplectic HDXs. The later serve our needs better since their
fundamental group satisfies the congruence subgroup property, which implies that they lack small covers.

1 Introduction
Let X be a family of k-element subsets of [n] and let {fs : s → Σ | s ∈ X} be an ensemble of local functions,
each defined over a subset s ⊂ [n]. Is there a global function G : [n] → Σ such that fs = G|s for all s ∈ X ?
An agreement test is a randomized property tester for this question. The natural two-query test, called the
V-test, is as follows: choose a random pair of sets s1, s2 ∈ X with prescribed intersection size (

√
k in our

case) and accept if fs1 , fs2 agree on the elements in s1 ∩ s2.
Where agreement tests are concerned, there are two important parameters: the number of subsets in

X and the soundness parameter ε. In this paper we are concerned with the most efficient families X, that
have linearly many subsets. This is also called the “derandomized direct product testing question” (since the
first works considered families X consisting of all possible ([n]k ) subsets). As for the soundness parameter,
the “99%” or high acceptance regime has been resolved in [DK17] using high dimensional expanders (and
improved in [DD19]). In this paper we resolve the problem in the “1%” or low acceptance regime. Namely,
we construct linear size complexes X for which, given any ensemble {fs}s∈X ,

Agree({fs}) > ε =⇒ ∃G : [n] → Σ, P
s
[fs

0.99
≈ G|s] ⩾ poly(ε). (1.1)
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In words, we show that ε agreement implies global structure. This has appeared as an open question in
[DK17] and as Conjecture 1.1 in [DD23a].

For a more detailed history of the problem we refer the reader to [DD23a] and the references therein.
Recent works [DD23a; BM23] have realized that high dimensional expansion alone does not suffice for a low
acceptance agreement theorem. In [DD23a] it was shown that any high dimensional expander with no small
covers satisfies (1.1), as long as it is also a swap cocycle expander. A similar result was shown in [BM23].
Then, in [DD23c] swap coboundary expansion was shown for the LSV complexes [LSV05]. This implied that
agreement can be achieved replacing X by a small cover Y of it (see Theorem 1.4 below).

In this work we construct new high dimensional expanders with no small covers, and show that they are
swap cocycle expanders, adapting techniques from [DD23c].

1.1 Results
Our main theorem is as follows,

Theorem 1.1. For every ε > 0 there exists large enough k < g and prime p such that the following holds.
There exists an infinite family of constant degree connected g-dimensional simplicial complexes X that are
finite quotients of the Bruhat-Tits building associated with Sp(2g, Qp), such that the following holds. Let Σ
be a finite alphabet, and let {fs : s → Σ | s ∈ X(k)} be an ensemble of local functions on X(k).

Agree({fs}) > ε =⇒ ∃G : X(0) → Σ, P
s
[fs ≈ G|s] ⩾ poly(ε). (1.2)

In a previous work we showed [DD23a] a similar conclusion under the assumption that X has no small
covers. The novel idea of the current paper is the existence of such complexes without small covers when one
replaces the family of high dimensional expanders coming from buildings associated with SLn(Qp) by those
associated with Sp(2g, Qp).

Theorem 1.2. Let m ⩾ 2 and g ⩾ 100
√

m log(m). Then for every prime p, the following holds. There exists
an infinite family of connected simplicial complexes X that are finite quotients of the Bruhat-Tits building
associated with Sp(2g, Qp), such that every X has no connected m′-covers for any 1 < m′ ⩽ m.

The case of m = 2 follows from [CL23]. The rest of the work is to adapt techniques from [DD23c] showing
swap coboundary expansion (a key requirement for the agreement theorem to hold, see Definition 2.11) for
buildings of symplectic type. This was previously shown for buildings associated with SLn.

Theorem 1.3. Let d be an integer. There is some p0 = p0(d) such that for all primes p > p0 the following
holds. Let S be a quotient of the affine symplectic building associated with Sp(2g, Qp) for g ⩾ d5. Then S is
a (d, exp(−O(

√
d)))-swap cocycle expander.

We rely on the following low soundness agreement theorem from [DD23a]:

Theorem 1.4. Let k ∈ N, and let ε > Ω(1/ log k). Let d > k be sufficiently large and let X be a d-dimensional
high dimensional expander with sufficiently good swap-cosystolic-expansion. Let {fs : s → Σ | s ∈ X(k)} be
an ensemble of local functions on X(k).

Agree({fs}) > ε =⇒ ∃Y
ρ−→→ X, ∃G : Y (0) → Σ, P

s
[fs is explained by G] ⩾ poly(ε).

where ρ : Y → X is a ℓ = poly(1/ε) covering map.

Since we construct in Theorem 1.2 complexes X with no connected m-covers, for m ⩽ poly(1/ε), we
deduce that Y must be a collection of disjoint copies of X and this proves our main result.

We recently learned that an upcoming manuscript by Mitali Bafna, Noam Lifschitz, and Dor Minzer contains
a similar result.
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2 Preliminaries
Most of this section follows definitions used in previous works [DD23a], [DD23b] and [DD23c].

2.1 Local spectral expanders
A pure d-dimensional simplicial complex X is a hypergraph that consists of an arbitrary collection of sets of
size (d + 1) together with all their subsets. The sets of size i + 1 in X are denoted by X(i). The vertices
of X are denoted by X(0) (we identify between a vertex v and its singleton {v}). We will sometimes omit
set brackets and write for example uvw ∈ X(2) instead of {u, v, w} ∈ X(2). As a convention X(−1) = {∅}.
Let X be a d-dimensional simplicial complex. Let k ⩽ d. We denote the set of oriented k-faces in X by
→
X(k) = {(v0, v1, ..., vk) | {v0, v1, ..., vk} ∈ X(k)}.

For k ⩽ d we denote by X⩽k =
⋃k

j=−1 X(j) the k-skeleton of X. When k = 1 we call this complex the
underlying graph of X, since it consists of the vertices and edges in X (as well as the empty face).

A clique complex is a simplicial complex such that if s ⊆ X(0) has that if s is a clique, that is, for every
two vertices v, u ∈ s the edge vu ∈ X(1), then s ∈ X.

For a simplicial complex X we denote by diam(X) the diameter of the underlying graph.

Partite Complexes

A (d + 1)-partite d-dimensional simplicial complex is a generalization of a bipartite graph. It is a complex X
such that one can decompose X(0) = A0 ·∪ A1 ·∪ · · · ·∪ Ad such that for every s ∈ X(d) and i ∈ [d] it holds
that |s ∩ Ai| = 1. The color of a vertex col(v) = i such that v ∈ Ai. More generally, the color of a face s is
c = col(s) = {col(v) | v ∈ s}. We denote by X [c] the set of faces of color c in X, and for a singleton {i} we
sometimes write X [i] instead of X [{i}].

We also denote by Xc, for c ⊂ [d + 1], the complex induced on vertices whose colors are in c.

A join of complexes

Definition 2.1 (Join of complexes). Let S1, S2, . . . , Sk be ℓ1, ℓ2, . . . , ℓk dimensional complexes respectively.
Let n =

∑k
i=1 ℓi − (k − 1). The join S =

∨
Si is the n-dimensional complex whose faces are all the

s1 ·∪ s2 ·∪ . . . sk so that si ∈ Si. The distribution over top-level faces is to (independently) choose si ∼ Si(ℓi)
and output s1 ·∪ s2 ·∪ . . . sk.

Observe that if the Si’s are partite, then so is S. Moreover, if we restrict S to colors I so that every two
colors j1, j2 ∈ I come from different complexes Si, then SI is a complete partite complex.

Probability over simplicial complexes

Let X be a simplicial complex and let Pd : X(d) → (0, 1] be a density function on X(d) (that is,∑
s∈X(d) Pd(s) = 1). This density function induces densities on lower level faces Pk : X(k) → (0, 1]

by Pk(t) =
1

(d+1
k+1)

∑
s∈X(d),s⊃t Pd(s). We can also define a probability over directed faces, where we choose

an ordering uniformly at random. Namely, for s ∈
→
X(k), Pk(s) =

1
(k+1)! Pk(set(s)) (where set(s) is the set

of vertices participating in s). When clear from the context, we omit the level of the faces, and just write
P[T ] or Pt∈X(k) [T ] for a set T ⊆ X(k).

Links and local spectral expansion

Let X be a d-dimensional simplicial complex and let s ∈ X be a face. The link of s is the d′ = d − |s|-
dimensional complex

Xs = {t \ s | t ∈ X, t ⊇ s} .

3



For a simplicial complex X with a measure Pd : X(d) → (0, 1], the induced measure on Pd′,Xs
: Xs(d − |s|) →

(0, 1] is

P
d′,Xs

(t \ s) =
Pd(t)∑

t′⊇s Pd(t′)
.

We denote by λ(Xs) to be the (normalized) second largest eigenvalue of the adjacency operator of the
graph X⩽1

s . We denote by |λ|(Xs) to be the (normalized) second largest eigenvalue of the adjacency operator
of the graph X⩽1

s in absolute norm.

Definition 2.2 (local spectral expander). Let X be a d-dimensional simplicial complex and let λ ∈ (0, 1).
We say that X is a λ-one sided local spectral expander if for every s ∈ X⩽d−2 it holds that λ(Xs) ⩽ λ. We
say that X is a λ-two sided local spectral expander if for every s ∈ X⩽d−2 it holds that |λ|(Xs) ⩽ λ.

We stress that this definition includes s = ∅, which also implies that the graph X⩽1 should have a small
second largest eigenvalue.

Walks on local spectral expanders

Let X be a d-dimensional simplicial complex. Let ℓ ⩽ k ⩽ d. The (k, ℓ)-containment graph Gk,ℓ = Gk,ℓ(X)
is the bipartite graph whose vertices are L = X(k), R = X(ℓ) and whose edges are all (t, s) such that t ⊇ s.
The probability of choosing such an edge is as in the complex X.

Theorem 2.3 ([KO20]). Let X be a d-dimensional λ-one sided local spectral expander. Let ℓ ⩽ k ⩽ d. Then
the second largest eigenvalue of Gk,ℓ(X) is upper bounded by λ(Gk,ℓ(X)) ⩽ ℓ+1

k+1 + O(kλ).

A related walk is the swap walk. Let k, ℓ, d be integers such that ℓ + k ⩽ d − 1. The k, ℓ-swap walk
Sk,ℓ = Sk,ℓ(X) is the bipartite graph whose vertices are L = X(k), R = X(ℓ) and whose edges are all (t, s)
such that t ·∪ s ∈ X. The probability of choosing such an edge is the probability of choosing u ∈ X(k + ℓ+ 1)
and then uniformly at random partitioning it to u = t ·∪ s. This walk has been defined and studied
independently by [DD19] and by [AJT19], who bounded its spectral expansion.

Theorem 2.4 ([DD19; AJT19]). Let X be a λ-two sided local spectral expander. Then the second largest
eigenvalue of Sk,ℓ(X) is upper bounded by λ(Sk,ℓ(X)) ⩽ (k + 1)(ℓ + 1)λ.

For a d-partite complex and two disjoint set of colors J1, J2 ⊆ [d] one can also define the colored swap
walk SJ1,J2 as the bipartite graph whose vertices are LX [J1], R = X [J2]. and whose edges are all (s, t) such
that t ·∪ s ∈ X [J1 ·∪ J2]. The probability of choosing this edge is PX [J1 ·∪J2] [t ·∪ s].

Theorem 2.5 ([DD19]). Let X be a d-partite λ-one sided local spectral expander. Then the second largest
eigenvalue of SJ1,J2(X) is upper bounded by λ(SJ1,J2(X)) ⩽ |J1| · |J2| · λ.

We note that this theorem also make sense even when J1 = {i}, J2 = {i′}, and the walk is between X [i]
and X [i′] that are subsets of the vertices.

2.2 Coboundary and Cosystolic Expansion
In this paper we focus on coboundary and cosystolic expansion on 1-cochains, with respect to non-abelian
coefficients. For a more thorough introduction, we refer the reader to [DD23b].

Let X be a d-dimensional simplicial complex for d ⩾ 2 and let Γ be any group. For i = −1, 0 let
Ci(X, Γ) = {f : X(i) → Γ}. We sometimes identify C−1(X, Γ) � Γ. For i = 1, 2 let

C1(X, Γ) =
{

f :
→
X(1) → Γ

∣∣∣∣ f(u, v) = f(v, u)−1
}

and

C2(X, Γ) =
{

f :
→
X(i) → Γ

∣∣∣∣ ∀π ∈ Sym(3), (v0, v1, v2) ∈
→
X(2) f(vπ(0), vπ(1), vπ(2)) = f(v0, v1, v2)

sign(π)
}

.

be the spaces of so-called asymmetric functions on edges and triangles. For i = −1, 0, 1 we define functions
δi : Ci(X, Γ) → Ci+1(X, Γ) by
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1. δ−1 : C−1(X, Γ) → C0(X, Γ) is δ−1h(v) = h(∅).

2. δ0 : C0(X, Γ) → C1(X, Γ) is δ0h(v, u) = h(v)h(u)−1.

3. δ1 : C1(X, Γ) → C2(X, Γ) is δ1h(v, u, w) = h(v, u)h(u, w)h(w, v).
Let Id = Idi ∈ Ci(X, Γ) be the function that always outputs the identity element. It is easy to check that
δi+1 ◦ δih ≡ Idi+2 for all i = −1, 0 and h ∈ Ci(X, Γ). Thus we denote by

Zi(X, Γ) = ker δi ⊆ Ci(X, Γ),

Bi(X, Γ) = Imδi−1 ⊆ Ci(X, Γ),
and have that Bi(X, Γ) ⊆ Zi(X, Γ).

Henceforth, when the dimension i of the cochain f is clear from the context we denote δif by δf .
Coboundary and cosystolic expansion is a property testing notion so for this we need a notion of distance.

Let f , g ∈ Ci(X, Γ). Then
dist(f , g) = P

s∈
→
X(i)

[f(s) , g(s)] . (2.1)

We also denote the weight of the function wt(f) = dist(f , Id).
We are ready to define coboundary and cosystolic expansion.

Definition 2.6 (Cosystolic expansion). Let X be a d-dimensional simplicial complex for d ⩾ 2. Let β > 0.
We say that X is a β-cosystolic expander if for every group Γ, and every f ∈ C1(X, Γ) there exists some
g ∈ Z1(X, Γ) such that

β dist(f , g) ⩽ wt(δf). (2.2)
In this case we denote h1(X) ⩾ β.
Definition 2.7 (Coboundary expansion). Let X be a d-dimensional simplicial complex for d ⩾ 2. Let β > 0.
We say that X is a β-coboundary expander if it is a β-cosystolic expander and in addition Z1(X, Γ) = B1(X, Γ)
for every group Γ.

Another way of phrasing coboundary expansion is the following. If X is a β-coboundary expander, then
it holds that for every f ∈ C1(X, Γ) there exists a function h ∈ C0(X, Γ) such that

β dist(f , δh) ⩽ wt(δf).

Although this definition of cosystolic and coboundary expansion related to such expansion over every
group Γ, one can also consider cosystolic expansion with respect to a specific group Γ. All the results in this
paper apply to all groups simultaneously, so we do not make this distinction.

Dinur and Meshulam already observed that cosystolic expansion (and coboundary expansion) is closely in
fact equivalent testability of covers, which they call cover stability [DM22].

2.3 Covering maps
In this subsection we give a short introduction to covers and their connection to 1-cohomology. We stress
that everything we state in this subsection is well known. For a more in depth discussion, see [Sur84].
Definition 2.8 (Covering map). Let Y , X be simplicial complexes. We say that a map ρ : Y (0) → X(0) is
a covering map if the following holds.

1. ρ is a surjective homomorphism.

2. For every v ∈ X(0), and (v, i) ∈ ρ−1({v}) it holds that ρ|Y(v,i) : Y(v,i)(0) → Xv(0) is an isomorphism.

We often denote ρ : Y → X. We say that ρ is an ℓ-cover if for every v ∈ X(0) it holds that
∣∣ρ−1({v})

∣∣ = ℓ.
If there exists such a covering map ρ : Y → X we say that Y covers X.

Covers are intimately connected to the fundamental group. We will not define it as we will only be using
the following facts about it. For a thorough definition and discussion see [Sur84].
Fact 2.9. Let X be a connected simplicial complex and locally finite simplicial complex. Let π1(X, v0) be the
fundamental group of X (with v0 ∈ X(0) an arbitrary vertex). Then X has a connected ℓ-cover if and only if
P1(X, v0) has a subgroup of index ℓ.
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2.4 The faces complex
Definition 2.10. Let X be a d-dimensional simplicial complex. Let r ⩽ d. We denote
by FX the simplicial complex whose vertices are FX(0) = X(r) and whose faces are all{

{s0, s1, ..., sj}
∣∣ s0 ·∪ s1 ·∪ · · · ·∪ sj ∈ X((j + 1)(r + 1) − 1)

}
.

It is easy to verify that this complex is
(

⌊d+1
r+1 ⌋ − 1

)
-dimensional and that if X is a clique complex then

so is FX.
Let X be a d-dimensional simplicial complex, and let r < d. The distribution on the top-level faces of FX

is given by the following. Let m =
(

⌊d+1
r+1 ⌋ − 1

)
1. Sample a d-face t = {v0, v1, . . . , vd} ∈ X(d).

2. Sample s0, s1, . . . , sm ⊆ t such that |si| = r + 1, si ∩ sj = ∅ and output {s0, s1, . . . , sm}.

Definition 2.11. A simplicial complex X is said to have (β, r)-swap coboundary (cosystolic) expansion if
FrX is a β coboundary (cosystolic) expander for 1-cochains.

It is convenient to view the faces complex as a subcomplex of the following complex.

Definition 2.12 (Generalized faces complex). Let X be a simplicial complex. The generalized faces complex,
denoted FX, has a vertex for every w ∈ X, and a face s = {w0, . . . , wi} ∈ FX iff ·∪s := w0 ·∪ w1 ·∪ · · · ·∪ wi ∈ X.

This complex is not pure so we do not define a measure over it. One can readily verify that links of the
faces complex correspond to faces complexes of links in the original complex. That is,
Claim 2.13. Let s ∈ FX. Then FXs = F (X∪s) where ∪s =

⋃
t∈s t. The same holds for FrXs = F r(X∪s).

□

We are therefore justified to look at generalized links of the form FX∪s,

Definition 2.14 (Generalized Links). Let w ∈ X. We denote by FXw = F (Xw). We also denote by
FXw = FX ∩ FXw. Note that this is not necessarily a proper link of FX.

2.4.1 Colors of a faces complex

Definition 2.15 (Simplicial homomorphism). Let X, Y be two simplicial complexes. A map φ : X → Y
is called a simplicial homomorphism if φ : X(0) → Y (0) is onto and for every s = {v0, . . . , vi} ∈ X(i),
φ(s) = {φ(v0), . . . , φ(vi)} ∈ Y (i).

Claim 2.16. Let φ : X → Y be a simplicial homomorphism. Then there is a natural homomorphism
φ : FX → FY given by φ({s0, . . . , si}) = {φ(s0), . . . , φ(si)}.

Proof. Suppose s = {s0, . . . , si} ∈ FX(i). By definition this means that ·∪s ∈ X so φ( ·∪s) ∈ Y . But
φ( ·∪s) = φ(s0 ·∪ · · · ·∪ si) = φ(s0) ·∪ · · · ·∪ φ(si) (because for a simplicial homomorphism φ : X → Y whenever
a ·∪ b ∈ X, φ(a ·∪ b) = φ(a) ·∪ φ(b) ∈ Y ). Thus {φ(s0), . . . , φ(si)} ∈ Y . □

Let Y = ∆n be the complete complex on n vertices. Recall the definition of a partite complex and observe
that X is n-partite if and only if there is a homomorphism col : X → ∆n.

We say that a complex is n colorable if its underlying graph is n colorable, namely one can partition the
vertices into n color sets such that every edge crosses between colors.
Claim 2.17. Let X be an n-colorable complex. Then FX is ( n

r+1)-colorable.
We denote the set of colors of FX by C = F∆(0) (supressing n from the notation). This is the set of all

subsets of [n] of size r + 1.
Fix a set J ⊂ ∆n, namely J = {c1, . . . , cm} and cj ⊂ [n] are pairwise disjoint. Let FJX =

{s ∈ FX | col(s) ⊆ J} be the sub-complex of FX whose vertex colors are in J , so FJX(0) =
⋃m

j=1 X [cj ].
We will be particularly interested in the case where J ∈ F∆, namely, J consists of pairwise disjoint subsets. In
this case FJX is |J |-partite and |J | − 1 dimensional. We abuse notation in this section allowing multiple cj ’s
to be empty sets. In this case X [cj ] are copies of {∅}, and every empty set set is in all top level faces of FJX.
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The measure induced on the top level faces of FJX is the one obtained by sampling t ∈ X [∪J ] and
partitioning it to t = s1 ·∪ s2 ·∪ · · · ·∪ sm such that si ∈ X [ci].

Finally, throughout the paper we use the following notation. Let J ′, J ⊆ F∆ We write J ′ ⩽ J , if
J = {c1, c2, . . . , cm} and J ′ = {c′1, . . . , c′m} where c′j ⊆ cj .

2.5 The SLn-spherical and affine building
We denote by A = Ag(Fp) the spherical building associated with SLn(Fp). The vertices of this complex are
all non-trivial subspaces of F

g
p. A face in this complex is all flags, i.e. all {v0, v1, vg−2} such that there exists

an ordering so that v0 ⊆ v1 ⊆ · · · ⊆ vg−2.
Previous work has shown that this complex is both a local spectral expander, and a (swap) coboundary

expander.
Claim 2.18 ([EK16], [DD19] for the color restriction). The spherical building An is a O( 1√

q )-one sided local
spectral expander. Moreover, A⩽k

n is a max{O( 1√
q ),

1
d−k }-two sided local spectral expander. The same holds

for AJ
n for all subsets J ⊆ [d].

We give some additional background on the coboundary expansion of this building and its color restrictions
later in the paper.

2.6 The Symplectic Spherical Building
Let g > 0 be an integer, and let V = F2g. For x, y ∈ F

g
p we denote (x, y) ∈ V the vector whose first

g-coordinates are x and the last g coordinates are y. Let ⟨⟩ : V → Fp be the following skew-symmetric bilnear
form.

⟨(x, y), (z, w)⟩ = x · w − y · z (2.3)

where a · b =
∑g

i=1 aibi is the usual inner product over F
g
p.

A subspace v ⊆ V is called isotropic if for every x1, x2 ∈ v, ⟨x1, x2⟩ = 0. By Witt’s theorem (cf. [Art57,
Theorem 3.10]) all maximal isotropic spaces have the same dimension. For this form, the dimension is g, and
a maximal isotropic subspace is Span({(ei, 0) : i = 1, 2, . . . g}) where ei ∈ F

g
p are the standard basis vectors.

Definition 2.19. The symplectic spherical building of dimension g over Fp denoted C = Cg(Fp) is the
following simplicial complex. Its vertices are all non-trivial isotropic subspaces. Its faces are all flags of
isotropic subspaces. That is {v0, v1, . . . , vk} ∈ C(k) if v0 ⊆ v1 ⊆ . . . vk and every vi is isotropic. By the fact
that all maximal isotropic subspaces have the same dimension, it follows that C is a pure g − 1-dimensional
simplicial complex.

We note that C is g-partite, where C[i] = {v ∈ C | dim(v) = i}.

2.7 Links of the Symplectic Spherical Building
We note that the form above is non-degenerate, that is, that the function x 7→ ⟨x, ·⟩ is an isomorphism
between V and V ∗, linear forms on V . We note the following property on non-degenerate linear forms which
is easy to verify so we omit its proof.
Claim 2.20. Let ⟨·, ·⟩ be a non-degenerate bilinear form. Let v⊥ = {x ∈ V | ∀y ∈ v, ⟨x, y⟩ = 0}. Then
dim(v⊥) = dim(V ) − dim(v). □

Let v be an isotropic subspace. The fact that v is isotropic is the same as saying that v ⊆ v⊥. Let
v′ = v⊥/v be the quotient space. Let us define the following skew-symmetric bilinear form ⟨⟩v′ : v′ → Fp by

⟨[x], [x′]⟩v′ = ⟨x, x′⟩

for any two [x], [x′] ∈ v′.
Claim 2.21. The for ⟨⟩v′ is a well defined skew-symmetric bilinear form. Moreover, it is non-degenerate.
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Proof of Claim 2.21. We need to show that the definition does not depend on choice of representatives.
Namely, for every x1, x2 ∈ [u1] and [u′] it holds that ⟨x1, x′⟩ = ⟨x2, x′⟩ (we need to show it also for
representatives on the right but this just holds from skew-symmetry). Indeed, note that x1 − x2 ∈ v hence
⟨x1 − x2, x′⟩ = 0 as x′ ∈ v⊥.

Bilinearity just follows from the fact that the quotient map is linear.
Finally, let us show that this form is non-degenerate. Let [x] ∈ v′ be so that ∀[x′] ∈ v′ it holds that

⟨[x], [x′]⟩v′ = 0. By definition this implies that ∀x′ ∈ v⊥, ⟨x, x′⟩ = 0. Thus x ∈ (v⊥)⊥. As (W⊥)⊥ = v it
holds that x ∈ v or equivalently [x] = 01. □

With Claim 2.21 we can understand the structure of the subset of isotropic subspaces that contains a
fixed subspace v ∈ C(0). Below we use the notation of Cg = Cg(Fp) supressing the field.
Proposition 2.22. Let t ⩽ g − 1. Let v ∈ Cg [t]. Let ρ : V → v′ be the quotient. Then ρ|v⊥ induces an
isomorphism between isotropic subspaces that contain v with respect to ⟨⟩, to isotropic subspaces in v′ with
respect to ⟨⟩v′ . This isomorphism takes subspaces of dimension t + i to subspaces of dimension i.

As a corollary we get a concrete description of the link of v.
Corollary 2.23. 1. Let t ⩽ g and let v ∈ Cg [t]. Then the link of v is isomorphic to At ∨ Cg−t−1 where

Cg−t−1 is as above and At is the poset of all non-trivial subspaces of Ft
p.

2. Let w = {v0 ⩽ v1 ⩽ . . . ⩽ vi} ∈ C(i). Then the link of w is isomorphic to Aj0 ∨ Aj1 ∨ · · · ∨ Ajt ∨ Cjt+1 .
Here j0 = dim(v0), jt+1 = g − dim(vi) − 1 and for all i = 1, 2, . . . , t, ji = dim(vi) − dim(vi−1).

Proof of Proposition 2.22. The second item follows from the inducting over the first item, so we focus on
proving the first item, using the fact that (Cg)w = ((. . . (Cg)v0)v1) . . . )vi .

It is well known by the correspondence theorem that the poset of subspaces of V containing v and the
subspaces in V /v are isomorphic and that this isomorphism sends subspaces of dimension t + i to subspaces
of dimension t. Thus we need to show that a subspace u ⊆ V that contains v is isotropic if and only if ρ(u)
is isotropic (with respect to the respective inner products).

Indeed u ⊇ v is isotropic if and only if for every x, y ∈ u, ⟨x, y⟩ = 0. In particular this also holds for
every x ∈ v, y ∈ u, so u ⊆ v⊥. So all isotropic subspaces containing v are in v⊥. Moreover, by definition
ρ(u) = {[x] ∈ v′ | x ∈ u} and ⟨[x], [y]⟩v′ = ⟨x, y⟩ so u is isotropic if and only if ρ(u) is. □

Proof of Corollary 2.23. Let I1 = {0, 1, . . . , t − 1}, I2 = {t + 1, t + 2, . . . , g}. We first note that (Cg)v =

(Cg)
I1
v ∨ (Cg)

I2
v since choosing a top level face in the link corresponds to choosing a flag contained in v and

(independently) a flag that contains v and taking the union of the two flags. Clearly any subspace contained
in v is itself isotropic so clearly (Cg)

I1
v � At. Moreover, by Proposition 2.22, (Cg)

I2
v � Cg−t−1. □

2.8 The affine symplectic building
In this section we give the following facts regarding the affine symplectic building. For proofs and a more in
depth discussion see e.g. [AB08].

We denote the affine symplectic building associated with the group Sp(2g, Qp) by C̃ = C̃g(Qp). This is
an infinite simplicial complex which has the following properties.
Fact 2.24. 1. It is pure and g dimensional.

2. It is g + 1-partite.

3. It is connected and simply connected. In fact it is contractible.

4. The group Sp(2g, Qp) acts simplicially and transitively on the top level faces of the building. The action
preserves the colors of the vertices.

Fact 2.25. One can label the parts of the building C̃[0], C̃[1], . . . , C̃[g] such that the link of a vertex v ∈ C̃[i]
is isomorphic to Ci−1(Fp) ∨ Cg−i−1(Fp) i.e. the join of two symplectic spherical buildings of dimensions
i, g − i − 1.2

1We note that (v⊥)⊥ = v follows since v ⊆ (v⊥)⊥ and dim((v⊥)⊥) = dim(V )− dim(v⊥) = dim(V )− (dim(V )− dim(v)) =
dim(v).

2For i = 0 or i = g one of the complexes is empty, i.e. this is a single symplectic spherical building of dimension g− 1.
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Together with Corollary 2.23 this gives a complete description of the links of the affine symplectic building.

Corollary 2.26. Let w ∈ C̃g(Qp)(i). Then the link of w is a join of at most i + 2 complexes that are either
SnL-spherical buildings or symplectic spherical buildings.

The following fact is also important.

Fact 2.27. Let Γ ⩽ Sp(2g, Qp) be a discrete and torsion free subgroup. Then the action of Γ on the vertices
of C̃g(Qp) is free.

2.9 Covers as quotients of simplicial complexes
In this subsection we give a description (and proof sketch) of a general technique of constructing topological
spaces with a certain fundamental group and certain local properties using deck transformations and quotient
maps. For a general and more formal setup the reader can read [Hat02, Section 1.3].

Recall that for an action of a group Γ on a set B we denote by Γ \ B the set of orbits of elements in B.
Below we show that in certain cases we can embed this set with a simplicial complex structure that is covered
by B. We denote by [v] the orbit of a vertex v ∈ B(0).

Let B be a locally finite, connected and simply connected simplicial complex. Let Γ be a group that acts
simplicially on B. We say that the action is proper if for every v ∈ B(0) and γ ∈ Γ \ {Id}, dist(v, γ.v) ⩾ 3.3

The quotient of B by Γ is the following simplicial complex X = Γ \ B.

X = {{[v0], [v1], . . . , [vi]} | {v0, v1, . . . , vi} ∈ B} .

We denote the quotient map ρ : B → X by ρ({v0, v1, . . . , vi}) = {[v0], [v1], . . . , [vi]}. By definition every
s̃ ∈ B maps to a face s ∈ X.

The properties of the action promise that dimension is maintained, that is, that every s̃ ∈ B(i) maps to
a face s ∈ X(i). Indeed, this follows because every v, u ∈ s have distance one so they must be in different
orbits.
Claim 2.28. Let B be as above. Then ρ : B(0) → X(0) is a covering map.

Proof. Fix [v0] ∈ B(0). We need to show that for every v0 ∈ [v0], the restriction of ρ to the link of v0
is a simplicial isomorphism between Bv0 and X[v0]. Fix v0 ∈ [v0] as well. First, we note that indeed
ρ(Bv0) ⊆ X[v0]: for every v1 ∈ Bv0(0), {v0, v1} ∈ B(1) so {[v0], [v1]} ∈ X(1) or equivalently [v1] ∈ X[v0](0).

Next we show that this is a bijection. Surjectivity is because if [v1] ∈ X[v0](0) then v1 is a neighbor of
some γ.v0, and in particular, γ−1.v1 ∈ [v1] ∩ Bv0(0). Injectivity is due to the distance assumption. Two
neighbors v1, v2 of v0 have distance 2 and therefore they belong to different orbits.

Finally we claim that this is a simplicial isomorphism. For this we claim that for every v0 ∈ [v0]
and every {[v0], [v1], . . . , [vi]} ∈ X(i) containing [v0], there exists a set {v0, v1, . . . , vi} ∈ B(i) such that
ρ({v0, v1, . . . , vi}) = {[v0], [v1], . . . , [vi]}. Indeed, if {[v0], [v1], . . . , [vi]} ∈ X(i) there is some v′0 ∈ [v0] and
face {v′0, v′1, . . . , v′i} ∈ B(i). There is also an element γ sending v′0 to v0. Thus by setting vj = γv′j we have
that {v0, v1, . . . , vi} ∈ B(i) has ρ({v0, v1, . . . , vi}) = {[v0], [v1], . . . , [vi]}.

Hence if {v1, v2, . . . , vi} ∈ Bv0(i − 1) if and only if {v0, v1, . . . , vi} ∈ B(i), which implies that
{[v0], [v1], . . . , [vi]} ∈ X(i) if and only if {[v1], . . . , [vi]} ∈ X[v0](i). On the other direction {[v1], . . . , [vi]} ∈
X[v0](i) if and only if {[v0], [v1], . . . , [vi]} ∈ X(i) which by the above implies that there exists {v0, v1, . . . , vi} ∈
B(i) if and only if {v1, v2, . . . , vi} ∈ Bv0(i − 1). □

2.10 On the freeness of actions on complexes and groups
In the paper we construct a family of subgroups that act freely on the affine symplectic building. However in
the above, we assumed something a priori stricter. That is, that the distance between every two elements in
the same orbit is at least 3. In this subsection, we show that this is easily obtained when given a family of
subgroups acting freely on the building.

3To define covers, one can weaken this requirement. For the exact details see [Hat02].
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Claim 2.29. Let B be a simplicial complex, Γ a group acting simplicially on B such that the action is free.
Then for every v ∈ B(0) and S ⊆ B(0), there is at most |S| elements in γ satisfying γ.v ∈ S.

Proof. Assume that there are more elements. This implies that there exists γ1 , γ2 sending v to u = γ1.v =
γ2.v. This implies that γ−1

1 γ2.v = v which contradicts the freeness of the action. □

Recall that a fundamental domain of an action is a set of representations of orbits of elements of B(0).
Claim 2.30. Let B be a simplicial complex, Γ a group acting simplicially on B. Let F ⊆ B(0). Then if for
every v ∈ F , γ ∈ Γ \ {Id}, dist(v, γ.v) > r, then for every v ∈ B(0) and γ ∈ Γ \ {Id}, dist(v, γ.v) > r.

Proof. We prove the contrapositive. Assume there exists some v ∈ B(0) and γ ∈ Γ such that dist(v, γ.v) ⩽ r.
Let γ′ ∈ Γ such that γ′.v ∈ F . As γ′ preserves distances, dist(γ′.v, γ′.γ.v) ⩽ r. We observe that γ′.γ =
γ′.γγ′−1γ′ so with u = γ′.v we have that u ∈ F and for γ′′ = γ′.γγ′−1 , Id, dist(u, γ′′.u) ⩽ r. □

Combining the two claims above we get the following.
Claim 2.31. Let B be a locally finite simplicial complex. Let Γ be a group acting simplicially and freely on B
such that Γ \ B is finite. Let Γ = Γ1 ⩾ Γ2 ⩾ Γ3 . . . be a chain of subgroups such that

⋂∞
i=1 Γi = {Id}. Then

for every r > 0 there exists i0 such that for every i > i0, every γ ∈ Γi \ {Id} and every v ∈ B(0) it holds that
dist(v, γ.v) > r.

Proof. Let F be a fundamental domain of Γ, which is finite by assumption. Thus by Claim 2.30 there is
a finite set S ⊆ Γ such that for all v ∈ F and γ < S dist(v, γ.v) > r. Let i0 be such that for all i > i0,
Γi ∩ S = {Id}. Claim 2.30 implies the claim. □

3 Complexes with no small covers
In this section we will prove the Theorem 1.2.

The Bruhat-Tits building is contractible and Γ acts freely on the building. Thus by [Hat02, Proposition
1.40] the simplicial complex X = Γ \ B has fundamental group Γ.

It is well known that every m-cover of X corresponds to an m-index subgroup in the fundamental group
of X [Sur84]. Thus Theorem 1.2 follows directly from this proposition.

Proposition 3.1 (Main). Let m ⩾ 2 be an integer and let g ⩾ 100
√

m log m. Then for every prime p the
p-adic group G = Sp(2g, Qp) has infinitely many cocompact and torsion free lattices {Γi ⩽ G}∞i=1 satisfying
that for every i, Γi has no proper subgroup of index ⩽ m.

The case for m = 2 was proven in [CL23]. The proof here is based on the same lattices and on similar
arguments.

3.1 Background
3.1.1 Profinite groups

Before we prove Theorem 3.1, let us give some necessary background.

Definition 3.2 (Profinite topology). Let Γ be a finitely generated group. Its profinite topology is defined as
the topology generated by the basis of open sets {γH | γ ∈ Γ, H ⩽ Γ, [Γ : H ] < ∞}.

One can verify that in this topology the multiplication and inverse operations are continuous.

Definition 3.3 (Profinite completion). Let Γ be a finitely generated group. Its profinite completion is the
group Γ̂, which is the topological completion of Γ with respect to the profinite topology.
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An equivalent definition is to say that

Γ̂ = lim
←

{Γ/N | N ⊴ Γ, [Γ : N ] < ∞} .

This means that
Γ̂ ⊆

∏
N⊴Γ,[Γ:N ]<∞

Γ/N

where (γN )N ∈ Γ̂ if for all N1 ⩽ N2, πN1,N2(γN1) = γN2 , where πN1,N2 : Γ/N1 → Γ/N2 is the natural
projection (see e.g. [RZ00]).

We say that a group K is profinite if it is a profinite completion of some group Γ.
There is a homomorphism p : Γ → Γ̂ where p(γ) = (γN)N . This homomorphism is injective exactly when

Γ is residually finite (because then for every γ , γ′ there is a normal subgroup N such that γN , γ′N). We
will only work with residually finite groups so we hence assume that Γ ⊆ Γ̂ (and the inclusion is via this
homomorphism).

Proposition 3.4 ([LD81]). Let Γ be a finitely generated, residually finite group. Then there is a bijection
between the finite index subgroups of Γ, and the open subgroups in Γ̂. This bijection preserves indexes. It is

H ⩽ Γ 7→ H

and in the inverse direction by
H ′ ⩽ Γ̂ 7→ H ′ ∩ Γ.

Moreover, we note that in this case for every finite index subgroup H ⩽ Γ, H = Ĥ.

3.1.2 Preliminary observations

The following observations are elementary but we prove them here for concreteness.
Claim 3.5. 1. A group Γ has no proper subgroup of index ⩽ m if and only if the only homomorphism from

Γ to Sym(m) is the trivial one.

2. A profinite group K has no proper open subgroup of index ⩽ m if and only if the only continuous
homomorphism from K to Sym(m). (equipped with the discreet topology) is the trivial one.

Proof. Let us prove the contrapositive. I.e., that there is a proper subgroup of index ⩽ m if and only if there is
a non-trivial homomorphism ϕ : Γ → Sym(m). For the first item, observe that if H ⩽ Γ is of index ⩽ m, then
Γ acts transitively on the cosets of H. This action gives rise to a non-trivial homomorphism to Sym(Γ/H)
which is (isomorphic to) a subgroup of Sym(m). In the other direction, suppose there is a non-trivial
homomorphism to Sym(m). Then there is an element i ∈ [m] such that Orb(i) = {ϕ(γ).i | γ ∈ Γ} , {i}. It
is easy to see that the stabilizer of i, i.e. H = {γ ∈ Γ | ϕ(γ).i = i} is indeed a subgroup, and its index is the
size of the orbit. In particular, this is a proper subgroup of index ⩽ m.

Let us move on to the second item. Note that if H ⩽ K is an open subgroup, then the homomorphism
above is a continuous one. To show continuity we need to show that for any σ ∈ Sym(m), ϕ−1(σ) is closed.
ϕ−1(σ) is a coset of the kernel, hence it is equivalent to show that ker(ϕ) = ϕ−1(Id) is closed. It can be
verified that ker(ϕ) =

⋂
g∈G g−1Hg. Let us explain why this is closed. As this is an intersection, it is enough

to show that every g−1Hg is closed. Multiplication is continuous, if H is closed then every g−1Hg is also
closed, so it suffices to show that H is closed. But indeed, if H is open, then its complement is a union of
cosets, which are also open - thus H is closed.

For the other direction, let ϕ be the homomorphism. The ⩽ m-index subgroup H constructed above
contains ker(ϕ), which is open (from continuity of ϕ). Thus H is a union of cosets of an open subgroup,
which implies it is open. □

Claim 3.6. Let {Ki}i∈I be profinite groups and let K =
∏

i∈I Ki. The group K has a non-trivial continuous
homomorphism to Sym(m) if and only if there exists j ∈ I such that Kj has a non-trivial continuous
homomorphism to Sym(m).
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Proof. For the first direction, observe that we can embed every Kj in K where every k ∈ Kj corresponds to
k̃ ∈ K where

k̃i =

{
k i = j

Id i , j
.

Let T = ⟨Kj⟩j∈I ⊆ K. It is easy to see that T consists of all elements that are not the identity on a finite
number of components. We note that T is dense inside K. Thus every continuous homomorphism of Sym(m)
that is non-trivial, must also be non-trivial on T . This implies that it must be non-trivial on one of the sets
generating T , i.e. that there exists a j such that ϕ|Kj

is non-trivial.
The other direction is simple. If ϕ : Kj → Sym(m) is a non-trivial homomorphism, then ϕ ◦ pj :

K → Sym(m) is also a continuous and non trivial homomorphism, where pj is the projection to the j-th
coordinate. □

An immediate corollary from the two claims is:

Corollary 3.7. Let {Ki}i∈I be profinite groups and let K =
∏

i∈I Ki. Then K has a proper open subgroup
of index ⩽ m if and only if there exists Kj that has a proper open subgroup of index ⩽ m.

Finally, we also need the notion of Frattini subgroups.

Definition 3.8 (Frattini subgroup). Let K be a profinite group. Its Frattini subgroup Φ(K), is the
intersection of all maximal open subgroups M ⩽ K.

The subgroup Φ(K) is a normal subgroup since every conjugate of a maximal open group is also a
maximal open subgroup. It is also closed, since it is an intersection of closed sets (recall that every open
subgroup is also closed since its complement is a union of cosets, which are themselves open).

This is the main observation we need about Frattini subgroups.
Observation 3.9. Let K be a profinite group. Then K has a proper subgroup of index ⩽ m if and only if
K/Φ(K) has a proper subgroup of index ⩽ m.

Proof. Let L ⩽ K be a proper subgroup of index ⩽ m. It is contained in a maximal proper subgroup M with
index ⩽ m. By definition Φ(K) ⩽M ⩽ K and by the correspondence theorem M/Φ(K) has the same index
in K/Φ(K). The other direction follows from the same argument, reversed. □

3.1.3 Quaternion Algebras

In this subsection we present without proof some classical material from the theory of quaternion algebras
and arithmetic groups. For more on this and complete references see [PRR23] or [Mor01].

Definition 3.10 (Quaternion Algebra). Let F be a field and let a, b ∈ F∗. The Quaternion algebra is the
F-algebra

Ha,b(F) =
〈

1, i, j, k
∣∣∣i2 = a, j2 = b, ij = −ji = k

〉
.

When a = b = −1 and F = R this is the Hamilton’s Quaternion algebra. If F ⊆ L are two fields and
a, b ∈ F∗ then Ha,b(F) ⩽ Ha,b(L).

We will use the following facts about the Quaternion algebras.

Fact 3.11. Let ℓ be a prime. There exists a, b ∈ Q∗ such that:

1. For every p , ℓ, Ha,b(Qp) �M2(Qp) (in which case we say the algebra splits over Qp).

2. Ha,b(Qℓ), Ha,b(R) are division algebras (in which case we say the algebra ramifies in Qℓ, R).

We denote this algebra by Hℓ.
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For α = w + xi + yj + zk we define the involution α = w + xi + yj + zk = w − xi − yj − zk. For every
F ⊇ Q we also denote the sesquilinear4 form

⟨, ⟩ : Hℓ(F)g × Hℓ(F)g → Hℓ(F); ⟨α, β⟩ =
g∑

t=1
αtβt.

With this form in mind we denote by SUg(Hℓ(F)), i.e.

SUg(Hℓ(F)) =
{

A ∈ Mg×g(H
ℓ(F))

∣∣∣ det(A) = 1 and ∀x, y ∈ Hℓ(F)g, ⟨Ax, Ay⟩ = ⟨x, y⟩
}

.

When ℓ and g are clear from context we just write G(F).
Remark 3.12. We note that Hℓ is not commutative so it is not a priori clear how the determinant in the
definition of SUg(Hℓ(F)) should be defined. For a general definition one should use the reduced norm, see
[PRR23]. In the cases that are relevant for us, Hℓ �M2(F) and thus Mg×g(Hℓ) �M2g×2g(F). Therefore,
the definition of the reduced norm coincides with the definition of the determinant of the 2g × 2g matrix.
Fact 3.13. Let ℓ be a prime. Then

1. For every prime p , ℓ, SUg(Hℓ(Qp)) � Sp(2g, Qp).

2. The group SUg(Hℓ(Qℓ)) (respectfully SUg(Hℓ(R))) is a compact Qℓ-Lie group (respectfully R-Lie
group).

3. The group SUg(Hℓ(Qp)) is ℓ-adic Lie group, is virtually pro-ℓ, i.e. it has an open subgroup H1 such
that every index of an open subgroup in H1 is a power of ℓ.

4. There is an infinite sequence of open (and finite index) subgroups inside H0 = SUg(ℓ, Qℓ), which we
denote by H1 ⩾ H2 ⩾ . . . such that [Hi : Hi+1] = ℓ. Moreover, the intersection

⋂∞
i=1 Hi = {Id}.

Let us fix g ⩾ 1 and two primes p , ℓ. Let Γ0 = Gg(ℓ, Qp) ∩ M2g×2g(Z[ 1
p ]), then the following is known:

Fact 3.14.
1. The group Γ0 is a discrete cocompact lattice of SUg(ℓ, Qp) � Sp(2g, Qp).

2. The profinite completion Γ̂0 � H1 ×
∏

q,ℓ,p Sp(2g, Zq). Here Zq are the q-adic integers.
The second item follows from the strong approximation theorem and the congruent subgroup property of

Γ0.

3.2 Proof of Theorem 3.1
Proof. Fix some two primes p, ℓ such that ℓ > m. Let Γ0 be as above.

Let H̃i � Hi ×
∏

q,ℓ,p Sp(2g, Zq) be open subgroups Γ̂0, where Hi are the subgroups from Fact 3.13. Let
Γi = Γ ∩ H̃i. By Proposition 3.4, Γi ⊆ Γ0 is a finite index subgroup of Γ0. In particular, by Fact 3.14 it is a
discrete cocompact lattice of Sp(2g, Qp). In addition, by Proposition 3.4, H̃i � Γ̂i, so instead of showing that
Γi has no subgroups of index ⩽ m, we will show that H̃i has no open subgroups of index ⩽ m.

Let us fix i. As above, Γ̂i is an infinite product of profinite groups. By the congruence subgroup property
these subgroups are torsion free. By Corollary 3.7 showing that H̃i has no open subgroup of index ⩽ m is
equivalent to showing that none of the groups in the product have open subgroups of index ⩽ m.

The group Hi is a pro ℓ-group so all subgroups must have index at least ℓ > m. Let us consider Sp(2g, Zq).
Fix some q , p, ℓ. Assume towards contradiction that K = Sp(2g, Zq) has a subgroup of index at most m.
By Observation 3.9, K/Φ(K) also has a subgroup of index at most m. By [Wei96]

K/Φ(K) � PSp(2g, Fq).

It is well known that PSp(2g, Fq) is a simple group. By Claim 3.5, if it has a non-trivial homomorphism
to Sym(m). The kernel of this homomorphism is a proper normal subgroup of index at most m!. But the
only proper normal subgroup in PSp(2g, Fq) is the trivial subgroup, which has index larger than m!, since
the order of PSp(2g, Fq) is |PSp(2g, Fq)| > |PSp(2g, F2)| ⩾ 2g2−g−1 > m! for g ⩾ 100

√
m log m. □

4Hermitian form with respect to the involution α.
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4 Expansion Properties of the Symplectic Building
We say that a complex is symplectic like if it is isomorphic to a link of a vertex in the affine building associated
with Sp(2g, Qp). In this section we show that symplectic like complexes have local spectral expansion and
swap cocycle expansion (proving Theorem 1.3).

4.1 Local spectral expansion
In this subsection we fix g and denote by S the spherical building associated with Sp(2g, Fp). We prove that
this building is a local spectral expander.

Theorem 4.1. There exists C > 0 such that the following holds for every integer g and prime power p. Let
S be the spherical building Sp(2g, Fp). Let w ∈ S(i) for i ⩽ g − 2. Then the graph between every two parts
Sw[j], Sw[k] is an O( 1√

p )-one sided spectral expander. In particular, S is an O( 1√
p )-one sided local spectral

expander.

One observes that by the trickle down theorem [Opp18], this implies that quotients of the affine building
are also O( 1√

p )-one sided local spectral expanders, since for every vertex, its link is either a spherical building
associated with one of Sp(2g, Fp),SLg(Fp), or a join of two such buildings.

The main proposition we need is the following one.

Proposition 4.2. Let j < ℓ, then S [j], S [ℓ] is a Cℓ−j
√

pℓ−j )-spectral expander where C > 1 is some universal
constant independent of p. In particular this is a O( 1√

p )-spectral expander.

The theorem follows quite easy from Proposition 4.2.

Proof of Theorem 4.1. Let w ∈ S and we consider Sw[j], Sw[ℓ]. As we saw in Section 2.9, Sw is a join of
lower dimensional spherical buildings. If Sw[j], Sw[ℓ] belong to different complexes with respect to the join,
then the graph between the two sides is a complete bipartite graph which is a 0-one sided spectral expander.
If Sw[j], Sw[ℓ] belong to a lower dimensional spherical building associated with SLm(Fp), then the vertices of
Sw[j] are (isomorphic to) subspaces of dimension j′ in Fm

p , the vertices of Sw[ℓ] are subspaces of dimension
ℓ′ in Fm

p . There is an edge between u1 and u2 if and only if u1 ⊆ u2. It was shown by e.g. [Dik+18] that this
graph is an O( 1√

p )-expander (where the constant is independent of p).
The remaining case is when Sw[j], Sw[ℓ] belong to a part in the join which is itself isomorphic to a

spherical building associated with Sp(2m, Fp) for some m ⩽ g. In this case the graph is a O( 1√
p )-one sided

spectral expander by Proposition 4.2.
The in particular part follows from the following standard claim. For a proof see e.g. [Dik22].

Claim 4.3. Let G be a weighted multipartite graph between parts V1, V2, . . . , Vm. Assume that the in-
duced subgraph between every two parts is a λ-one sided spectral expander, and that for every i , j,
Pe∈E [e ∈ E(Vi, Vj)] =

1
(m

2 )
. Then G is a λ-one sided spectral expander. □

□

The proof of Proposition 4.2 follows from the theory developed in [Dik+18] regarding expanding posets.
We give a brief discussion of the parts of the theory we need.

4.1.1 Sub posets of the Grassmann

The (n, p, d)-Grassmann poset is the poset

Gr(n, p, d) = {u ⊆ pn | dim(u) ⩽ d} ,

where the order is by containment.
A simplicial sub-poset of Gr(n, p, d) is a subset P ⊆ Gr(n, p, d) such that for every v ∈ P and u ⊆ v. We

denote the i-dimensional subspaces in P by P (i). A simplicial sub-poset is pure if for every u ∈ P there
exists some v ∈ P (d) such that u ⊆ v.
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The measure on flags in P is via sampling a uniform vd ∈ P (d) and then a uniform flag {v0, v1, . . . , vd}
where vi ∈ P (i).

For every i < j we consider the containment graph C(P , i, j) between P (i) and P (j) where the probability
of an edge {vi, vj} is the probability of sampling a flag containing {vi, vj}.

Fix i. We denote the bipartite graph operator of the containment graph between P (i) and P (i + 1) by
Ui. That is, for every f : P (i) → R, Uif : P (i + 1) → R is given by Uif(v) = Eu∈P (i),u⊆v [f(u)]. Denote its
adjoint by Di+1.

The bipartite graph operator of the containment graph between P (i) and P (j) is the composition
Uj−1 ◦ . . . Ui+1 ◦ Ui. Therefore

λ2(C(P , i, j)) ⩽
j−1∏
t=i

λ2(C(P , t, t + 1)). (4.1)

There are two natural two-step walks on P (i) using these containment graphs.

1. The upper walk that chooses a pair v, v′ ∈ P (i) by choosing u ∈ P (i + 1) and then two v, v′ ⊆ u. The
graph operator for this walk is Di+1Ui. We also denote its non-lazy version by Mi (i.e. the walk that
samples v, v′ conditioned on v , v′). It holds that Di+1Ui =

p−1
pi+1−1I +

(
1 − p−1

pi+1−1

)
Mi.

2. The lower walk is the one that chooses a pair v, v′ ∈ P (i) by choosing u ∈ P (i − 1) and then two
v, v′ ⊇ u. The graph operator for this walk is UiDi.

The following notion generalizes graph expansion to posets.

Definition 4.4 (eposet). Let γ = (γ0, γ1, . . . ) be a vector of non-negative numbers. A sub-poset of the
Grassmann is a γ-eposet if for every i = 1, . . . , d − 1

∥Mi − UiDi∥ ⩽ γi.

The following theorem is by [Dik+18].

Theorem 4.5 (Theorem 8.23 in [Dik+18]). Let P be a pure d-dimensional sub-poset of the (n, p, d)-Grassmann.
Then if P is a γ-eposet then.

λ(Di+1Ui) ⩽
i∑

t=1

1
pt

+
i∑

t=0
γt.

Work in [Dik+18] also proposes a criterion for showing γ-eposetness.
Let w ∈ P (i − 1). Its link graph Pw is the graph whose vertices are all Pw(0) = {w′ ∈ P (i) | w′ ⊇ w}.

The edges are sampled by sampling some u ∈ P (i+ 1), u ⊇ w and then sampling w ⊆ w′, w′′ ⊆ u conditioned
on w′ , w′′. We say that a poset P is a γ-expander if for every i = 0, 1, . . . , d and every w ∈ P (i) λ(Pw) ⩽ γi.

Theorem 4.6 (Theorem 8.21 in [Dik+18]). Let P be a γ-link expander. Then P is a γ-eposet.

4.1.2 Proof of Proposition 4.2

Recall that the graph between the two parts is the containment graph between istropic spaces of dimension
j, ℓ respectively, inside some 2g-dimensional space V . Hence the poset P we consider is the poset of isotropic
subspaces, with respect to some non-degenerate skew symmetric bilinear form.

We observe that P is a pure n-dimensional sub-poset of the (2n, q, n)-Grassmann poset.

Proof of Proposition 4.2. With the notation Uℓ in Section 4.1.1. To prove the proposition it suffices to show
that there exists a universal constant C > 1 such that λ(Uℓ) ⩽

C√
p . If we show that P is a γ̄-eposet for

γℓ =
C′

pn−ℓ then this follows from Theorem 4.5. To prove this we will show that X is a γ̄-link expander and
invoke Theorem 4.6.

Fix w ∈ X(ℓ − 1). By Proposition 2.22 the link graph is isomorphic to the link of {0} in the spherical
building associated with Sp(2(n − ℓ + 1), Fp). That is, the vertices are all 1-dimensional subspaces inside a

15



2(n − ℓ + 1)-space (which are all subspaces since the bilinear form is skew-symmetric), and we connect two
subspaces via traversing through a 2-dimensional isotropic subspace - i.e. two subspaces are connected if and
only if their sub is an isotropic subspace. If v ⊕ u is isotropic we write v⊥u. Recall we denote the adjacency
operator of this graph by M0. It will be more convenient to analyze this graph once we add a self loop to
every vertex, i.e. add laziness. This corresponds the graph whose matrix is M ′

0 = 1
D I + D−1

D M0 where D is
the regularity of the graph. As we will see shortly, in this case D = Ω(pn−ℓ), so ∥M ′

0 − M0∥ = O( 1
pn−ℓ ) and

we can analyze M ′
0 instead of M0. We note that this is not D0U0, since the amount of laziness we add is

much smaller. It corresponds to the number of neighbors a one-dimensional space has, and not the number of
one-dimensional spaces are contained in a two-dimensional space.

Let us consider the double cover of M ′
0, i.e. the bipartite graph whose vertices are all V × {0, 1} and there

is an edge between (v, i) and (u, j) if v⊥u and i , j. This graph is isomorphic to the containment graph of
the Grassmann between subspaces of dimension 1 and 2(n − i + 1) − 1, and v ∼ u if and only if v ⊆ u⊥. The
isomorphism is given by (v, 0) 7→ v and (u, 1) 7→ u⊥ = {x ∈ V | ∀y ∈ u, ⟨x, y⟩ = 0}. It is well known that
this graph is an O(1/

√
p2(n−ℓ)) = O(1/pn−ℓ) = γi one-sided spectral expander (see e.g. [Dik+18]).

As for the degree of every vertex, one observes from the double cover that the degree D of a subspace v (in
either M ′

0 or the double cover), is the number of co-dimension 1 subspaces that contain v, i.e. D = Ω(pn−ℓ). □

4.2 Coboundary and Swap coboundary expansion
In this section we prove that the symplectic spherical building is a Ω(1)-coboundary expander and use this
to show that quotients of the affine symplectic building are (d, exp(−O(

√
d)))-swap cocycle expanders.

4.2.1 Coboundary expansion machinery

We start by mentioning some machinery we need to prove coboundary expansion. Most of which is from
previous works. For showing coboundary expansion of the symplectic building, we follow a similar strategy as
in [DD23b]: we first prove coboundary expansion of color restrictions of the symplectic building, and then
“patch them up” to show coboundary expansion of the whole complex using the following theorem.

Theorem 4.7 ([DD23b, Theorem 1.3]). Let ℓ, d be integers so that 3 ⩽ ℓ ⩽ d and let β, p, λ ∈ (0, 1]. Let Γ be
some group. Let X be a d-partite simplicial complex so that

P
F∈([d]ℓ )

[
XF is a β-coboundary expander and ∀s ∈ X(0) XF

s is a λ-spectral expander
]
⩾ p.

Then X is a coboundary expander with h1(X) ⩾ p(1−λ)β
6e . Here e ≈ 2.71 is Euler’s number.

We note that Theorem 4.7 is proven in [DD23b] assuming that the spectral expansion of the graph is
1 − β. This assumption is not needed in the proof; following the same steps with a separate parameter λ

gives us a bound of h1(X) ⩾ p(1−λ)β
6e .

To show coboundary expansion of the color restrictions, our workhorse is the cone method. This method
was first observed by [Gro10], later formalized by [LMM16] and further developed by [KM19; KO21] . Its
generalization to non-abelian coefficients is done in [DD23c]:

Lemma 4.8 (Cones). Let X be a simplicial complex such that Aut(X) is transitive on k-faces. Suppose that
there exists a cone C with diameter R. Then X is a 1

(k+1
3 )·R

-coboundary expander.

The tools mentioned above are enough for proving constant coboundary expansion of the symplectic
spherical building. However, we will need some additional tools to show swap cocycle expansion.

The following theorem is a local-to-global theorem that deduces cocycle expansion of a complex from
coboundary expansion of the links. The first to show such a theorem were [KKL14] (for 1-cochains) and
[EK16] (for arbitrary i-cochains). The following version by [DD23b] gives a quantitatively better bound.
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Theorem 4.9 ([DD23b, Theorem 1.2]). Let β, λ > 0 and let k > 0 be an integer. Let X be a d-dimensional
simplicial complex for d ⩾ k + 2 and assume that X is a λ-one-sided local spectral expander. Let Γ be any
group. Assume that for every vertex v ∈ X(0), Xv is a coboundary expander and that h1(Xv) ⩾ β. Then

h1(X) ⩾
(1 − λ)β

24 − eλ.

Here e ≈ 2.71 is Euler’s number.

The following lemma follows from the trickle-down theorem.

Lemma 4.10 ([DD23c]). Let X be a exp(−O(i))-high dimensional expander so that every link in X is
simply connected. Then

h1(XJ ) ⩾ exp(−O(i)) · min
s∈X(i)

h1(XJ
s ).

We also use the following three general claims on coboundary expansion from [DD23c].
Claim 4.11. Let X be a k-partite simplicial complex, for k ⩾ 5. Assume that for every s ∈ X [{0, 1, . . . , k − 2}]
and every v ∈ X [k − 1], s ·∪ {v} ∈ X(k − 1). Then h1(X) = Ω(1).
Claim 4.12 (Color Swap). For every ℓ ⩾ 4 there is a universal constant cℓ > 0 so that the following holds. Let
I, I ∈ F∆(ℓ − 1) be two sets of size ℓ such that their symmetric difference I∆I ′ = {i, i′} where i ∈ I, i′ ∈ I ′.
Let X be a n-partite λ-local spectral expander for λ < 1

100 . h1(XI ) ⩾ cℓh
1(XI′

)minv∈X [i′] h
1(XI

v ).
We denote by Kn1,n2,...,nm the complete partite complex with ni vertices on every side.

Claim 4.13. Let m ⩾ 5. Let X be a m-partite simplicial complex, such that h1(X) ⩾ β. Assume that the
colored swap walk between vertices to triangles is an η-spectral expander. Then Y = X ⊗ Kn1,n2,...,nm is a
coboundary expander and h1(Y ) ⩾ (1 − O(η)) exp(−O(ℓ))β where ℓ = |{i ∈ [m] | ni > 1}|.

The following claim is proven in the end of this subsection.
Claim 4.14. Let Z = A1 ∨ A2 be a join of two complexes A1, A2 of dimensions d1, d2 respectively. Assume
that there is a group that act on Z so that the action on Z(d1 + d2 + 1) is transitive. Then there exists a
constant β = β(d1, d2) such that h1(Z) ⩾ β

diam(A1)
.

Finally, we need these two claims on the Sl spherical building.
Claim 4.15. Let S be the Sl-spherical building. Let I ⊆ [n], |I| ⩾ 2. Then diam(SI

w) = O( max I
max I−min I ).

Lemma 4.16. Let I = {i0 < i1 < i2 < i3} such that i3 > 21 and such that ij − ij−1 ⩾ 3. Let S be an
Sl-spherical building. Then

h1(SI ) ⩾ exp
(

−O

(
log
(

i3
i1 − i0

)
· log

(
i3
i1

)))
.

Moving on to swap coboundary expansion, there is a theorem similar to Theorem 4.7 in faces complexes
by [DD23c].

Lemma 4.17 (Color restriction for faces complex). Let X be an n-partite complex for n ⩾ d5
1. Let

m ∈ [3, n0.5/d1] and let J ⊆ F∆(m) be set of relative size p. Assume that for every J ∈ J , h1(FXJ) ⩾ β
then h1(Fd1X) ⩾ ω(βp2).

The following two propositions show give a direct bound on swap cocycle expansion in terms of coboundary
expansion in links. These bounds are not strong enough for using directly but are still used as a main
component in showing swap cocycle expansion.

Proposition 4.18. Let X be a n-partite complex that is a λ-local spectral expander for λ ⩽ 1
2r2 . Let ℓ ⩾ 5

and let J = {c1, c2, . . . , cℓ} be a set of mutually disjoint colors cj ⊆ [n], |cj | ⩽ r. Denote by R =
∑ℓ

j=1 |cj |.
Let β > 0 and assume that for every I = {i1, i2, . . . , iℓ} such that ij ∈ cj and every w ∈ X∪J\I , h1(XI

w) ⩾ β.
Then h1(FJX) ⩾ βR

1 for β1 = Ωℓ(β).
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Let q ⩽ R be an integer. Jq = Jq(J) be all the J ′ = {c′1, c′2, . . . , c′ℓ} ⩽ J such that d(J ′) = q. Let

Tq(X, J) = min
(J ′,Xw),J ′∈Jq ,w∈X [∪J\∪J ′]

(
max

i1,i2,...,iℓ s.t. ij∈c′
j

(
h1(X

{i1,i2,...,iℓ}
w )

))
.

To state this explicitly, this is the largest Tq such that Player 1 is guaranteed to get when at a node
(J ′, Xw) where J ′ ∈ Jq(J).

Proposition 4.19. Let X be a partite λ-one sided local spectral expander for λ ⩽ 1
2r2 . Let J = {c1, c2, . . . , cℓ}

and let R =
∑ℓ

j=1 |cj |. Then h1(FJX) ⩾
∏R

q=1 Ωℓ(Tq(X, J)).

4.2.2 Well Spread colors

Let I be an ordered set. Let c = {i1 < i2 < · · · < im} ⊆ I be any subset. A c-bin is one of the following sets

B0 = {i ∈ I | i < i1} , Bm = {i ∈ I | i > im}

or
∀j = 1, 2, . . . , m − 1 Bj =

{
i ∈ I

∣∣ ij < i < ij+1
}

.

Fix c∗ as above and let J = {c1, c2, . . . , cm} be mutually disjoint and disjoint from c∗. We say that a c-bin
Bj is J-crowded if there are two distinct cℓ1 , cℓ2 ∈ J such that Bj ∩ cℓ1 , BJ ∩ cℓ2 , ∅. If there is only a single
cℓ ∈ J such that Bj ∩ cℓ , ∅ we say that Bj is J-lonely. Otherwise, if for all cℓ ∈ J , Bj ∩ cℓ = ∅ we say that
Bj is J-empty.

We define a well-spread color to have good pseudo-random properties, that is, all indices are roughly
equally spaced, and interlaced with one another so that many colors will be isolated. This will facilitate the
lower bounds in the next sections.

Let J ⊆ C. Recall that ·∪J =
⋃

c∈J c.

Definition 4.20 (Well-spread subsets of colors). Let J be a set of m colors in C. We say that J is well-spread
if the following properties hold.

1. Every c1, c2 ∈ J are disjoint.

2. Renaming the colors 0, 1, . . . , n (with the usual order), for every ℓ1, ℓ2 ∈ (∪J) ∪ {0, n} it holds that
|ℓ1 − ℓ2| ⩾ n

(m(d1+1))3 .

3. For every J ′ ⊆ J of size |J ′| = 5 and J ′ = J \ J ′:

(a) Every ∪J ′ bin has size at most 100n log(d1+1)
(d1+1)m .

(b) For every c ∈ J ′, the number of colors i ∈ c that are in J ′-crowded ∪J ′-bins is at most
100(d1+1) log(d1+1)

m log m .

(c) For every c ∈ J ′ and every J ′-bin B, it holds that |B ∩ c| ⩽ 20 log(d1+1)
log m .

We denote by J ⊂ Fd1∆ the set of well-spread color sets.

Proposition 4.21. Let d be an integer. Let 6 ⩽ m ⩽ (d1 + 1). The probability that m uniformly chosen
colors out of n colors are well-spread tends to 1 as d, n → ∞ so long as d5 ⩽ n.

4.2.3 Coboundary expansion of a join

Proof of Claim 4.14. By Lemma 4.8 it is enough to show that there is a cone whose diameter in O(diam(A1)).
We construct the cone as follows. Fix v∗1 ∈ A1 and v∗2 ∈ A2. Our base of the cone is v∗1 . For every u ∈ A2 we
take the path Pu = (v1, u), for every u ∈ A1 we take the path Pu = (v1, v2, u).

Now we consider an edge u1u2 ∈ Z. If u1u2 ∈ A2 then the cycle C0 = Cu1u2 = Pu1 ◦ (u1, u2) ◦ P−1
u2 =

(v1, u1, u2, v1) is a triangle in Z so we can contract it in one step to C1 = (v1, u1, v1) which contracts to
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Figure 1: Contraction of the interesting case
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the trivial loop using only backtrack relations. Similarly, if u1u2 ∈ A1 then the loop we need to contract is
C0 = Cu1u2 = (v1, v2, u1, u2, v2, v1) which can also be contracted using a single triangle v2u1u2 ∈ Z only.

The interesting case is if (say) u1 ∈ A1 and u2 ∈ A2 so C0 = (v1, u2, u1, v2, v1). In this case we take some
shortest path in A1 from v1 to u1, which we denote Q = (v1 = x1, x2, x3, . . . , xm = u1), where m ⩽ diam(A1).
From here we recommend to view Figure 1 that illustrates the contraction.We define for i = 1, 2, . . . m − 1
Ci = (v1, x2, x3, . . . , xi, u2, u1, v2, v1), where we go from Ci to Ci+1 via the triangle xixi+1u2 ∈ Z(2). And
similarly we define Cm = (v1, x2, . . . , xm, v2, v1) (where again we use xm−1u2xm ∈ Z(2)). Similarly, we define
Cm+1, Cm+2, . . . , C2m where Cm+i = (v1, x2, x3, . . . , xm−i, v2, v1) where we use the triangle xm−i+1v2xmi

to go from Cm+i to Cm+i+1. We end up with C2m = (v1, v2, v1) which contracts to the trivial loop with a
backtracking relation. Finally, note that we use 2m ⩽ 2diam(A1) so the claim follows. □

4.3 Coboundary expansion of the symplectic spherical building
In this subsection we show that the spherical symplectic building is a Ω(1)-coboundary expander for 1-
cochains. As in the previous subsection, in this subsection we write S for the spherical building associated
with Sp(2g, Fq).

Theorem 4.22. h1(S) = Ω(1).

We note that [LMM16] already gave a bound that depends on the rank g (for coefficients in F2, but the
same technique applies for all coefficients). So without loss of generality we may assume that g is sufficiently
large.

Proof of Theorem 4.22. We use Theorem 4.7. The colors we restrict ourselves are

C = {{i0, i1, i2} | i1 ⩾ 2i0, i2 ⩾ 3i1, 17i1 ⩽ 2g} .

We will prove below the following lemma.

Lemma 4.23. Let I ∈ C. Then h1(SI ) ⩾ Ω(1).

Ordering the colors of C by their size, we have that

C ⊇ {{i0, i1, i2} | i0 ∈ [0, 0.01g], i1 ∈ [0.02n, 0.1g], i2 ∈ [0.3g, g]}

so |C| = Ω
(
(n

3)
)
, or equivalently p = |C|

(n
3)

= Ω(1). Thus by Theorem 4.7 h1(S) = Ω(1). □

Our main effort will be proving Lemma 4.23. We will do so using non-abelian cones. For constructing
them we will need the following claim, that will imply that the diameter of SI is constant.
Claim 4.24. Let i < j, and let G be the bipartite containment graph between S [i] and S [j]. Let H be the
bipartite containment graph between S ′[i] and S ′[j] where S ′[x] = {u ⊆ V | dim(u) = x} (i.e. all subspaces,
not just isotropic subspaces). Then for every v1, v2 ∈ S[i] it holds that distG(v1, v2) ⩽ 2 distH(v1, v2). In
particular, diam(G) ⩽ 2diam(H).

Proof of Claim 4.24. The claim will follow if we show that for every v1, v2 ∈ S [i] that are of distance 2 in H
have distance at most 4 in G. Indeed, let A = {a1, a2, . . . , aℓ} be a basis for v1 ∩ v2. Let B1, B2 be such that
A ·∪ Bi is a basis for vi. It follows that A ·∪ B1 ·∪ B2 is a basis for v1 + v2 that is of dimension ⩽ j.

Let u1 ∈ S[j] be such that u1 ⊇ v1, and let C be such that (A ∪ B1) ·∪ C is a basis for u1. Finally let
w = span(A ∪ B1 ∪ B2 ∪ C).
Claim 4.25. There exists a j-dimensional isotropic subspace u2 ⊆ w such that u2 ⊇ v2.

This claim is an easy corollary from Witt’s theorem, but we prove it in the end of this subsection.
Given this u2 one can write a basis to it by A ·∪ B2 ·∪ D where every element di ∈ D is a linear combination

of elements in B1 ∪ C. We note that A ·∪ D have more than i elements, since. In particular we can find some
v3 ∈ S [i] whose basis is A ·∪ D′ (for some D′ ⊆ D. As we can see, v3 is a neighbor of v1 (through u1) and a
neighbor of v2 (through u2). Thus distH(v1, v2) ⩽ 4. □
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Figure 2: The contraction

Proof of Lemma 4.23. The symplectic group induces a transitive action on the triangles of SI (for every
I ∈ C), therefore by Lemma 4.8, if we find a constant sized cone for SI we conclude that h1(SI ) = Ω(1).

We define the following cones. Fix v0 ∈ S [i0] as a base point.
The distance from v0 to any other u ∈ S [i0] is 4 from Claim 4.24. Moreover, this also implies that there

exists a 5-path from v0 to any u ∈ SI so that for any u′ , u in this path it holds that u′ < S [i2] (we do so by
going from u to some i0-dimensional subspace of u′ and then traversing from that subspace to v0 in four
steps).

Hence, for every u , v0 we fix an arbitrary shortest path Pu from v0 to u so that for every vertex u′ , u
in the path, u′ ∈ S [i0] ∪ S [i1].

Now for every {w1, w2} ∈ SI (1) we need to define a contraction of C = Pw1 ◦ (w1, w2) ◦ P−1
w2 to the trivial

loop around v0.
We begin by showing how to contract C assuming that w1, w2 ∈ S [i0] ∪ S [i1] and then we show how to

reduce from the general case to this case.
Indeed, C is a cycle of length ⩽ 11 with at most 5 subspaces of dimension i1 (and these contain all

subspaces of dimension i0).
Claim 4.26. There exists an isotropic subspace u⊥ of dimension 6i1 such that for every x ∈

⊕
v∈C v and

y ∈ u∗, ⟨x, y⟩ = 0.
In particular, we can find an isotropic subspace u∗ ⊆ u⊥ of dimension i1 that intersects all subspaces

in C trivially. Choose some (arbitrary) i0-subspace u∗∗ ⊆ u∗. Let us relabel C = (v0, v1, v2, v3, . . . , vm, v0)
for m ⩽ 11, where v2j ∈ S [i0] and v2j+1 ∈ S [i1]. We note that for any v2j , there exists some isotropic
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space u2j ∈ S [i1] so that v2j , u∗∗ ⊆ u2j : we start from u∗∗ ⊕ v2j which is isotropic since u∗∗, v2j are both
isotropic and perpendicular to one another, and then we add independent vectors to it from u∗ until getting
an i1-dimensional subspace u2j .

We denote by

C ′ :=(v0, u0, u∗∗, u0, v0, v1, (4.2)
v2, u2, u∗∗, u2, v2, v3 (4.3)
v4, u4, u∗∗, u4, v4, v5, (4.4)
. . . (4.5)
vm, v0), (4.6)

i.e. from every v2j ∈ C we add (v2j , u2j , u∗∗, u2j , v2j) before going to v2j+1. and note that C
(BT )∼ C ′ so we

can contract C ′ instead of C. However, we note that C ′ (shifted to start and end at w0) is composed from a
constant number of loops of the form Dj = (u∗∗, u2j , v2j , v2j+1, v2j+2, u2j+2, u∗∗). Thus if we can contract
any such loop to the trivial loop with a constant number of steps, then we can find a contraction of all C
with a constant number of steps.

Indeed, fix Dj , and note that by construction v2j+1 ⊕ u∗ ⊃
⊕

u∈Dj
u. This is because v2j , v2j+2 ⊆ v2j+1

and by construction, the vectors in u2j , u2j+2 and u∗∗ all lie in v2j+1 ⊕ u∗ as well. We note that u∗⊕ v2j+1 is
isotropic since both subspaces are isotropic and perpendicular to one another. Thus there is an i2-dimensional
subspace xj that contains all subspaces in Dj (there is an n-dimensional maximal isotropic space that contains
v2j+1 ⊕ u∗ so we take an i2-subspace of it containing this subspace as well). Hence for every edge (a, b) in
Dj the triangle {a, b, xj} ∈ SI (2).We have shown that with a constant number of triangles Dj could be
contracted to

(w0, xj , u2j , xj , v2j , xj , v2j+1, xj , v2j+2, xj , u2j+2, xj , w0)

which is equivalent to the trivial loop around w0 by a sequence of (BT ) relations.

For the general case we can do the following contraction to a path that contains only subspaces from
i0, i1 as above (we also recommend looking at Figure 3). For the case where {w1, w2} is such that w2 ∈ S [i2]
and w1 ∈ S [i0] we denote by w′ the other neighbor of w2 and note that w′ ∈ S [i0]. Thus we can find an
i1-dimensional (isotropic) subspace w′2 ⊆ w2 such that w′2 ⊇ w1 + w′ (by assumption that i1 ⩾ 2i0). Thus
using the triangles {w1, w2, w′2}, {w′, w2, w′2} ∈ SI (2) we can contract (w1, w2, w′) to (w1, w′2, w′) removing
the subspace w2 resulting in the previous case (using 2 triangles). Moreover, if w1 ∈ S [i1], w2 ∈ S [i2] then
we denote by w′′ ∈ S [i0] the other neighbor of w1. By containment we have that {w′′, w1, w2} ∈ SI (2) so
we can contract (w′′, w1, w2) to (w′′, w2) using a single triangle. We then do the same contraction as above
(using 2 triangles) to remove w2 and get to a cycle of the same length with vertices only from i0, i1. □

Proof of Claim 4.25. A corollary from Witt’s theorem [Art57, Theorem 3.10] says that every maximal isotropic
subspace has the same dimension. We will use this corollary on the bilinear for restricted to w. In particular,
u1 ⊆ w is an isotropic subspace in w of dimension j, so a maximal isotropic subspace inside w has dimension
⩾ j. Thus there is also an isotropic subspace v2 ⊆ u2 ⊆ w of dimension j (that in contained in a maximal
isotropic subspace that contains v2. □

Proof of Claim 4.26. We find a basis for u⊥ one vector at a time as follows. Let B0 = ∅, and for j =
1, 2, . . . 6i1 the set Bj will denote the basis vectors that we found thus far and tj = span(Bj) ⊕

⊕
v∈C v.

We note that dim(tj) ⩽ j + dim(t0). Moreover, t0 =
⊕

v∈C v =
⊕

v∈C :v∈S[i1]
v since every subspace in this

path is contained in an i1-dimensional subspace. As we saw, there are at most 5 such spaces, therefore
dim(tj) ⩽ j + 5i1 ⩽ 11i1.

In particular, the subspace perpendicular to tj always contains at least 2n − 11i1 independent vectors.
This is greater or equal 6i1 from the assumption that 17i1 ⩽ 2n. Thus given Bj we take Bj+1 = Bj ·∪ {xj+1}
where xj+1 is perpendicular to tj and independent from Bj . We note that by construction the vectors of Bi

are perpendicular to one another, so u⊥ = span(B6i1) is indeed an isotropic subspace of dimension i1. □
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Figure 3: The case where w1 ∈ S [i0] is on the left. The case where w1 ∈ S [i1] is on the right.

4.3.1 Other color restrictions

Towards proving swap cocycle expansion we show that other color restrictions also have coboundary expansion.
Our goal is to prove the following lemma which we will use later on in Section 4.4. Here we conitinue with
the convention that S is the spherical symplectic building associated with Sp(2g, Fq).

Lemma 4.27. Let I = {i0, i1, i2, i3} such that i0 < i1 − 79 and i3 ⩾ 80. Then

h1(SI ) ⩾ exp
(

−O

(
log
(

i3
i1 − i0

)
min

(
log( i3 − i0

i1 − i0
) log( i1 − i0

i0
)

)))
.

Our starting point is triples of colors as in Lemma 4.23, i.e. colors such that i1 ⩾ 2i0, i2 ⩾ 3i1 and
17i1 ⩽ 2g. Then we will gradually relax the requirements from the the colors until we reach Lemma 4.27. For
technical reasons, we will need to introduce a fourth color but Theorem 4.7 implies that this can be done
with an expense of a constant multiple decrease only.

We start by removing the requirements from i1.
Claim 4.28. Let I = {i0, i1, i2} be such that 80i0 ⩽ i2 then

h1(SI ) ⩾ Ω
(

min{ i1 − i0
i0

, i1
i2

}
)

.

Proof of Claim 4.28. Let I ′ = {i0, i′1 = 2i0, , i2}. By Claim 4.12, h1(SI ) = Ω(h1(SI′
)) · minv∈S[i′

1]
h1(SI

v ).
By Lemma 4.23, h1(SI′

) = Ω(1) (if i′1 = 2i0 ⩽ 40i2 then in particular 17i′1 ⩽ 2g so the lemma applies in this
case). As for SI

v , note that this is join of the complex whose vertices are subspaces that are contained in
v, and isotropic subspaces that contain v. If i′1 < i1 then by Claim 4.24 and Claim 4.15 the complex that
has isotropic spaces that contain v has diameter O(

i2−i′
1

i2−i1
) = O( i2

i1
). Otherwise, the complex that has (all)

subspaces contained in v has diameter O( i0
i1−i0

): Indeed, this complex contains all subspaces of dimensions
i0, i1 inside a space of dimension i′1 = 2i0. This is isomorphic to the graph of subspaces of dimensions
2i0 − i1, 2i0 − i0 inside a space of dimension 2i0, the isomorphism goes from a subspace of dimension ij to its
annahilator with respect to the standard bilinear form. Thus its diameter is O( i0

i1−i0
).

In both cases the diameter is at most the maximum between the two expressions. By Claim 4.14,
h1(SI

v ) = Ω(min{ i0
i1−i0

, i1
i2

}). The claim follows. □

Using Theorem 4.7 the following corollary is immediate.

Corollary 4.29. Let I = {i0, i1, i2, i3} be such that 80i0 ⩽ i3 then

h1(SI ) ⩾ Ω
(

min{ i1 − i0
i0

, i1
i3

}
)

.
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Our main effort in going from Corollary 4.29 to Lemma 4.23 is to relax the inequality on i0. To do so we
will apply Claim 4.12 multiple times to go from i0 to i′0, to i′′0 etc. until finally we reach a complex that we
can use Corollary 4.29 on. Given i0, we would like the i′0 we choose to use Claim 4.12 on to be as small as
possible. It will be apparent in the proof of Lemma 4.23 that the following function T (x) will give us the
smallest possible index.

Let T (x) = Ti3(x) = max{1,
⌈

80x−i3
79

⌉
}. We denote by T m(x) the composition of T m times (and

T 0(x) = x).
We record the following claim that bounds the number T ’s needed to apply on i0 so that it reaches 1. We

prove it after proving the lemma.

Claim 4.30. Let n = n(I) = log
(

i3
i3−i0

)
. Then T n

i3
(i0) = 1.

Proof of Lemma 4.27. Let n(I) = log
(

i3
i3−i0

)
. By Claim 4.30, T

n(I)
i3

(i0) = 1 ⩽ 80i3. In every iteration we
will show the following guarantee below.

Proposition 4.31. Let c = Ω(min{ i1−i0
i0

, i1−i0
i3−i0

}). Then for every m ⩾ 0,

h1(S{T m(i0),i1,i2,i3}) ⩾ c · h1(S{T m+1(i0),i1,i2,i3}).

By using Proposition 4.31 n(I) times we have that

h1(SI ) ⩾ cn(I)h1(S1,i1,i2,i3) ⩾
i1
i3

· cn(I) ⩾

(
−O

(
log
(

i3
i1 − i0

)
min

(
log( i3 − i0

i1 − i0
) log( i1 − i0

i0
)

)))
.

Proof of Proposition 4.31. Fix m ⩾ 0. and let Im = {T m(i0), i1, i2, i3}, Im+1 = {T m+1(i0), i1, i2, i3}. The
complex SIm is a high dimensional expander so by Claim 4.12

h1(SIm) ⩾ h1(SIm+1)Ω( min
v∈S[T m+1(i0)]

h1(SIm
v ))

so it remains to show that for every v ∈ S [T m+1(i0)], h1(SIm
v ) = Ω(min{ i1−i0

i0
, i1−i0

i3−i0
}).

Fix v ∈ S [T m+1(i0)] and denote by J = {j0, j1, j2, j3} where j0 = T m(I0) − T m+1(i0) and for t = 1, 2, 3,
jt = it − T m+1(i0). We have seen in Proposition 2.22 that SIm+1

v � (S ′)J where S ′ is the spherical building
associated with Sp(2(n − T m+1(i0)), Fq). By definition of T ,

79T m+1(i0) = 79T (T m(i0)) ⩾ 80T m(i0) − i3

or equivalently,
80j0 = 80

(
T m(i0) − T m+1(i0)

)
⩽ i3 − T m+1(i0) = j3.

Thus 80j0 ⩽ j3 and by Corollary 4.29 h1(SI
v ) = Ω(min{ j1−j0

j0
, j1

j3
}) = Ω(min{ i1−i0

i0
, i1−i0

i3−i0
}). □

□

It remains to prove Claim 4.30.

Proof of Claim 4.30. Let T̃ (x) = 80x−i3
79 + 1. We note that both T and T̃ are monotone and that for every n,

if T (x) > 1 then T̃ n(x) ⩾ T m(x). Hence it is enough to show that after n = log i3
i3−i0

steps T̃ n(x) ⩽ 1. Indeed,
solving a recursion relation yields T̃ m(i0) = (i0 + 79 − i3)

(80
79
)m

+ (i3 − 79). The term i0 + 79 − i3 < 0 by
the assumption on i0. Thus we have that

T̃ m(i0) ⩽ 1 ⇔ m ⩾ log 80
79

i3 − 80
i3 − i0 + 79 .

The constant n ⩾ log 80
79

i3−80
i3−i0+79 so we are done. □
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4.4 Coboundary expansion of the of the links of the affine symplectic building
In this section we modify the proof in [DD23c] to show that the finite quotients of the affine symplectic
building’s faces complex is a (exp(−O(

√
r)), r)-swap coboundary expander. The proof follows the same

lines as [DD23c], where the main difference is that in some cases we need to use Lemma 4.27 instead of
Lemma 4.16.

As we saw in Section Section 2, the link of every j-face in a quotient of an affine building is a join of
j′ ⩽ j + 2 spherical buildings (as in the definition of a join in Section 2). If the building is symplectic then
these buildings are either symplectic or special linear. The following theorem deals with swap coboundary
expansion of such complexes.

Theorem 4.32. Let d be an integer. There is some p0 = p0(d). Let p > p0 be any prime power. Let k ⩾ 1
and let {Si}k

i=1 be so that for every i = 1, 2, . . . , k, Si are either SLℓi
(Fp) or Sp(2ℓi, Fp) spherical buildings.

Assume that
∑k

i=1 ℓi = n ⩾ d5. S =
∨k

i=1 Si. Let X = FdS be its faces complex. Then X is a coboundary
expander and h1(X) ⩾ exp(−O(

√
d)).

From this theorem we immediately derive swap cocycle expansion of the quotients of the affine symplectic
building.

Theorem (Restatement of Theorem 1.3). Let d be an integer. There is some p0 = p0(d) such that for
all primes p > p0 the following holds. Let S be a quotient of the affine symplectic building associated with
Sp(2g, Qp) for g ⩾ d5. Then S is a (d, exp(−O(

√
d)))-swap cocycle expander.

Proof of Theorem 1.3 from Theorem 4.32. Let X = FdS. For every s ∈ X(0), Xs, being itself a faces complex
of Ss, is a faces complex of a complex that satisfies the conditions of Theorem 4.32 so it is a exp(−O(

√
d))-

coboundary expander. In addition, for p0 large enough X is a sufficiently good spectral high dimensional
expander, so by Theorem 4.9, it holds that h1(X) ⩾ exp(−Ω(

√
d)) (as a cosystolic expander). □

4.4.1 Notation for this section

We denote by X = FdS and X̃ = FS.
As all Si’s are partite, they come with colors which are associated with the dimension of the subspace.
For a vertex v ∈ S(0), we denote its color by col(v) = colS(v), which is a tuple (i, j) such that v ∈ Si is

a subspace of dimension j (i.e. colSi
(v)). We order the colors lexicographically, that is (i, j) ⩽ (i′, j) if i ⩽ i′

or i = i′ and j ⩽ j′.

Proof of the main theorem

Fix d, n ∈ N so that d5 ⩽ n. Fix m =
√

d + 1.
We let S be as in the theorem statement. We denote X = FdS and X̃ = FS ⊃ X. We let C = ( C0

d+1) be
the set of possible colors of vertices of X where C0 = {(i, j) | i ∈ [k], j ∈ [ℓi]} are the possible colors of S.

We use u, v to denote vertices of S, and w to denote vertices of X, which are faces of S. Faces of X are
denoted by s. We denote subsets of colors of FS that are mutually disjoint by the letters J , I (so J , I ∈ F∆).

Proof of Theorem 4.32(weaker version). To bound h1(X) we follow the steps of the decomposition. Let J
be the set of well-spread J ’s per Definition 4.20. By Proposition 4.21, at least half of the sets J are in J .
Therefore, by Lemma 4.17,

h1(X) ⩾ Ω(1) · min
J∈J

h1(XJ ) (4.7)

Fix J ∈ J . We note that every link of the faces complex is simply connected by Claim 4.35. By Lemma 4.10

h1(XJ ) ⩾ exp(−O(m)) · min
s∈XJ (m−6)

h1(XJ
s ) (4.8)

Fix any s ∈ XJ (m − 6). By Corollary 4.33

h1(XJ
s ) ⩾ const · h1(X̃ J̃

s ). (4.9)
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Recall that X̃ J̃
s � FJ̃S∪s and that J̃ are the indexes that are in J \ col(s)-crowded bins as in the definition in

Section 4.2.2.
Next, denote by β = minw,I h1(SI

∪s ·∪w) where the minimum is taken over sets I consisting of five singletons
such that I ∪ col(s) ⩽ J , and w ∈ S∪s such that col(w) ⊆ ∪J and col(w) ∩ I = ∅.

By Proposition 4.18,
h1(X̃ J̃

s ) ⩾ const · (β1)
R (4.10)

where β1 = Ω(β) and R =
∑

j |c̃j |. By item 3(c) of Definition 4.20, for every c̃j , the number of indices in
crowded bins is at most O

(
d log d

m log m

)
, so in total R = O

(
d log d

m log m

)
.

Finally, by Lemma 4.34,
β = min

w,I
h1(SI

∪s ·∪w) ⩾ exp(−O(log2 d)) (4.11)

We now plug in each equation into the previous one, to get the desired bound,

h1(X) ⩾ const · exp
(

−O

(
m +

d poly log d

m log m

))
= exp(−O(

√
d log2 d)).

□

Proof of Theorem 4.32(full version). Our starting point is (4.9) in the proof above, namely that

h1(X) ⩾ . . . ⩾ exp(−O(m)) min
J∈J ,s∈XJ (m−6)

h1(X̃ J̃
s ).

Fixing J ∈ J and s, we bound h1(X̃ J̃
s ). As we have seen X̃ J̃

s � FJ̃S∪s. We wish to use Proposition 4.19.
Towards this, recall the definition of Tq(S∪s, J̃) as in Section 4.2. Tq(S∪s, J̃) is the largest constant such
that for every choice of J ′ = {c′1, c′2, . . . , c′5} such that c′j ⊆ c̃j and

∑5
j=1 |c′j | = q there are indexes ij ∈ c′j ,

such that the coboundary expansion of h1(Si1,i2,...,i5
∪s ·∪w ) ⩾ Tq(S∪s, J̃) for every face w ∈ S∪s[J̃ \ ∪J ′]. By

Proposition 4.19

h1(FJ̃S∪s) ⩾ exp(−O(R)) ·
R∏

q=1
Tq(S∪s, J̃)

where R =
∑5

j=1 |c̃j |. As we saw in the weaker version’s proof, R = O( d log d
m log m ). By the definition,

Tq(S∪s, J̃) ⩾ min
w,I

h1(SI
∪s ·∪w)

so by Lemma 4.34, Tq(S∪s, J̃) ⩾ exp(−O(log2 d)).
However, by Claim 4.36 we can obtain a tighter bound on Tq(S∪s, J̃). Let

q0 = max
B,c

|c ∩ B|

where B is a col(∪s)-bin and c ∈ J̃ . By Definition 4.20 q0 = O
(

log d
log m

)
and by Claim 4.36 for every q > 10q0,

Tq(S∪s, J̃) = Ω(1). Thus

FJ̃S∪s ⩾ exp(−O(R)) · exp(−O(log2 d))10q0 · exp(−O(R − 10q0)).

Plugging in m =
√

d we have that q0 = O(1) so this is at least exp(−O(R + log2 d)) = exp(−O(
√

d)). In
conclusion, we have that h1(X) = exp(−O(

√
d)). □
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4.4.2 Links of the complex

We can write the link of v as

Sv =
k∨

t=1,t,i

St ∨ (Si)v [[j − 1]] ∨ (Si)v [[ℓi] \ [j]]).

The reason is that (Si)v [[j − 1]] is the subspaces contained in v, and (Si)v [[ℓi] \ [j]] are the (possibly isotropic)
subspaces that contain v - and containment is transitive.

Let us understand how this generalizes to links of arbitrary faces. Let c = {(i0, j0), (i1, j1), . . . , (ir, jr)}
be a set of colors. A c-bin is one of the following sets

B0 = {(i, j) | (i, j) < (i0, j0)} ,

∀ℓ = 1, 2, . . . , r Bℓ = {(i, j) | (iℓ−1, jℓ−1) < (i, j) < (iℓ, jℓ)}

and
Br+1 = {(i, j) | (i, j) > (ir, jr)} .

For a general face w = {v0, v1, · · · , vr} ∈ S so that col(v0) < col(v1) < . . . col(vr), we can write the link
Sw as

Sw =
r∨

ℓ=0
SBℓ

w (4.12)

where the Bℓ’s are col(w)-bins as above (and it is possible that SBℓ
w is itself also a join of complexes).

4.4.3 A tensor decomposition of the faces complex of a join

Let w ∈ S(r), and let SBℓ
w be the components of the decomposition of Sw as in (4.12). Let J = {c1, c2, . . . , cm}

be subsets of mutually disjoint colors in X so that are disjoint from col(w). We denote by ct
ℓ = cℓ ∩ Bt, and

let Jt = {ct
1, ct

2, . . . , ct
m} be the corresponding subsets of mutually disjoint colors in SBt

w (technically this
should be a multiset but only the empty set can appear more than once). Then

XJ
w =

r⊗
t=0

SJt
w . (4.13)

We can refine this decomposition using crowded bins. Recall that a col(w)-bin Bt is J-crowded if there are
two distinct cℓ1 , cℓ2 ∈ J such that ct

ℓ1
, ct

ℓ2
, ∅. If there is exactly one ct

ℓ , ∅ then we say that Bt is J-lonely
and if all ct

ℓ = ∅ we say that Bt is J-empty. Let

I1 = {t ∈ [r] | Bt is J-crowded }

and let I2 = [r] \ I1. We can write (4.13) as

XJ
w =

⊗
t∈I1

SJt
w

⊗

⊗
i∈I2

SJt
w

 .

For every t ∈ I2, Jt has at most one non-empty set of colors, so SJt
w is a complete partite complex. Therefore,⊗

i∈I2
SJi

w is also a complete partite complex. By Claim 4.13, we have that

Corollary 4.33. There is some constant β = βm > 0 such that

h1(X̃J
w) ⩾ β · (h1(X̃ J̃

w))

Where J̃ = {c̃1, c̃′2, . . . , c̃ℓ} and c̃j =
{

i ∈ cj

∣∣ i is not in a lonely or empty bin
}

. □
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Proof. By (4.13)

XJ
w =

⊗
t∈I1

SJt
w

⊗

⊗
i∈I2

SJt
w

 .

The second component is a complete partite complex so by Claim 4.13 there exists β = βm so that
h1(XJ

w) ⩾ β
(⊗

i∈I1
SJt

w

)
. As

(⊗
i∈I1

SJt
w

)
= X̃ J̃ we are done. □

4.4.4 Expansion of colored spherical buildings

Recall Definition 4.20 of the set J of well-spread color sets, and let J = {c1, . . . , cm} ∈ J and recall that we
write J ′ ⩽ J , if J ′ = {c′1, . . . , c′m} where c′j ⊆ cj . In this subsection we prove the following lemma.

Lemma 4.34. Let I = {{(i1, j1)}, . . . , {(i1, j1)}}, and let s ∈ X be such that |s| = m − 5 and there is a
well-spread set of colors J ∈ J such that I ∪ col(s) ⩽ J . Let w′ ∈ S∪J

∪s be such that col(w′) ∩ I = ∅. Then
h1(SI

∪s ·∪w′) ⩾ exp(−O(log2(d))).

Proof of Lemma 4.34. Let us denote by w = ∪s ·∪ w′. Fix some I as above, and let I ′ = {(i1, j1) < (i2, j2) <

(i3, j3) < (i4, j4)} be any four indexes inside I. By Theorem 4.7, if we show that SI′
w is a β-coboundary

expander, then it holds that h1(SI′
w ) ⩾ Ω(β). So from now on we let I = {i0 < i1 < i2 < i3}. The coboundary

expansion h1(SI
w) depends on I and w. We address first the easier “direct” cases, and then move to the

general case which is gradually reduced to the easier cases, via decomposition steps.
If SI

w is a join of three complexes (or more), i.e. we can write SI
w = A1 ∨ (A2 ∨ A3) then the diameter

of (A2 ∨ A3) so by Claim 4.14 h1(SI
w) ⩾ Ω( 1

diam(A2∨A2)
) = Ω(1). If SI

w is a join of exactly two complexes
then one of the complexes is a color restriction of a spherical building. Without loss of generality let us
assume that (i1, j1), (i2, j2) belong to the same complex (i.e. i1 = i2) and let us assume that the complex
has dimension t. By Claim 4.15 and Claim 4.24 the diameter of this complex is O( j2

j2−j1
). By Definition 4.20

the dimension of the complex t is bounded from above by the maximal distance of two consecutive colors of
∪s have length 100n log d

dm (and the link of w can only split to more complexes of lower dimension). Therefore
j2 ⩽ t ⩽ 100n log d

dm . On the other hand by item 2 in Definition 4.20 j2 − j1 ⩾
n

(md)3 so the diameter is bounded
by O(poly(d)). By Claim 4.14 in this case h1(SI

w) = exp(−O(log(d))).
If SI

w is a color restriction of an SLn spherical building then by Lemma 4.16

h1(SI ) ⩾ exp
(

−O

(
log
(

j3
j1 − j0

)
· log

(
j3
j1

)))
.

Similarly, if SI
w is a color restriction of a spherical building then by Lemma 4.27

h1(SI
w) ⩾ exp

(
−O

(
log
(

j3
j1 − j0

)
min

(
log( j3 − j0

j1 − j0
) log( j1 − j0

j0
)

)))
.

As before, the quantities j3
j1

, j3
j1−j0

, j3−j0
j1−j0

and j1−j0
j0

are poly(d) from well spreadness, so in both cases
h1(SI

w) ⩾ exp(−O(log2(d))). □

4.4.5 Simple connectivity of the links

Claim 4.35. Let J be a set of well spread colors. For every i ⩽ d and w ∈ XJ (i), XJ
w(i) is simply connected.

Proof of Claim 4.35. Showing simple connectivity is equivalent to showing that the complex is a coboundary
expander with some positive constant. We do so using Proposition 4.18 on XJ

w = F J (X∪w). By Lemma 4.34,
for every I = {i1, i2, i3, i4, i5} such that ij ∈ cj and w′ ∈ X

∪J\I
∪w , we have h1(Xw′∪(∪w)) > β. In addition, for

large enough q, X∪w is a 1
2d2 -local spectral expander and hence F JX∪w is a coboundary expander with some

h1(F J (X∪w)) > 0. □
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4.4.6 An improved bound for large sets of colors

The following claim is proven exactly as in [DD23c]. We prove it here as well for staying self contained.
Claim 4.36. Let J ⊆ F∆(4). Let w ∈ S be such that col(w) ∩ (∪J) = ∅. Let

q0 = max
B,c

|c ∩ B|

where B is a col(w)-bin and c ∈ J . Then for all q > 10q0, Tq(Sw, J) = Ω(1).
Note that when J is well spread, and w = ∪s for s ∈ ZJ (m − 6), then q0 = O(1).

Proof. To bound Tq(Sw, J) we need to show that there for every J ′ = {c′1, c′2, . . . , c′5} ∈ Jq and for all w′ ∈ Sw

whose color is disjoint from I we can find 5 colors I = {i1, i2, i3, i4, i5} such that ij ∈ c′j and such that
h1(SI

w ·∪w′) = Ω(1).
Fix q > 10q0 and J ′ = {c′1, c′2, . . . , c′5} ∈ Jq. Let us prove that there exists some set I = {i1, i2, . . . , i5}

as above with the property that there exists a col(s)-bin B with |B ∩ I| = 1. The reason we use such a
set is because in this case SI

w ·∪w′ is a complex as in Claim 4.11. That is, if B ∩ I = {i5}, then for any
w′′ ∈ Sw ·∪w′ [{i1, i2, i3, i4}] and any v ∈ S∪s ·∪w[i5], w′′ ·∪ {v} ∈ SI

w ·∪w′ (i5 sits in a different bin so the space v
which is compatible with w ·∪ w′ should also be compatible with the flag w′′ that is contained in different
bins). By Claim 4.11 this implies that h1(SI

w ·∪w′) = Ω(1).
By assumption q > 10q0 so there exists a color c′j such that |c′j | > 2q0. Without loss of generality let us

assume this is c′5. We begin by choosing I ′ = {i1, i2, i3, i4} arbitrarily. If there are three bins B1, B2, B3 so
that Bi ∩ I ′ , ∅, then at least two bins have that |Bi ∩ I ′| = 1. In this case no matter how we complete I ′ to
I = I ′ ·∪ {i5}, there will still be a bin Bi such that |Bi ∩ I ′| = 1. There are at most two bins B1, B2 with
Bi ∩ I ′ , ∅. By the definition of q0 |c5 ∩ Bi| ⩽ q0 but |c5| > 2q0 so there exists i5 ∈ c5 \ (B1 ∪ B2) which we
can choose. □
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