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Abstract. In this paper we prove the following two results.
– We show that for any C ∈ {mVF,mVP,mVNP}, C = C. Here,

mVF,mVP, and mVNP are monotone variants of VF,VP, and VNP,
respectively. For an algebraic complexity class C, C denotes the clo-
sure of C. For mVBP a similar result was shown in [4]. Here we
extend their result by adapting their proof.

– We define polynomial families {P(k)n}n≥0, such that {P(0)n}n≥0

equals the Determinant polynomial. We show that {P(k)n}n≥0 is
VBP complete for k = 1 and becomes VNP complete when k ≥ 2. In
particular, {P(k)n} is Det6=k

n (X), a polynomial obtained by summing
over all signed cycle covers that avoid length k cycles. We show that
Det6=1

n (X) is complete for VBP and Det6=k
n (X) is complete for VNP for

all k ≥ 2 over any field F.

1 Introduction

Valiant [19] initiated the study of the complexity of the algebraic computation.
Given a polynomial, how efficiently can we compute it? In order to formalise the
notion of efficiency, Valiant defined many natural models of computation. These
include algebraic circuits, algebraic formulas, and algebraic branching programs.

An algebraic circuit is a directed acyclic graph. The nodes with in-degree
zero are leaf nodes, which are labelled with variables X = {x1, x2, . . . , xn} or
field constants. The other nodes are either + or × operators, which compute
polynomials of their inputs. The + node adds its inputs and × node multiplies
its inputs. There is a designated output node which has out-degree 0. The output
of the circuit is the polynomial computed by this node. An algebraic formula is
a circuit in which the underlying DAG is a tree. The size of the circuit/formula
is the number of nodes in it.

An algebraic branching program (ABP) A is a layered DAG with two special
nodes s and t called as the source node and the sink node, respectively. The edges
are labelled with linear forms

∑n
i=1 cixi + c0, where ci ∈ F. For every directed

path ρ from s to t, we associate a polynomial Pρ which is formed by multiplying
all the labels along the edges in path ρ. The polynomial computed by the ABP
A is equal to

∑
ρ Pρ where the sum is over all s− t paths in A (see Definition 3.1

in [17]). The size of the algebraic branching program A is the number of nodes
in it. We assume that the length of every path from s to t is same.
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A polynomial family fn is called a p-bounded family if both the number of
variables and the degree of fn are polynomially bounded in n. The class of p-
bounded families computed by polynomial sized circuits is called VP. Similarly,
the class of polynomial families computed by formulas of polynomial size is called
VF. Finally, the class of polynomial families computed by ABPs of polynomial
size is called VBP.

Closures of monotone complexity classes. Apart from studying the
complexity of the exact computation of any polynomial, we could also study
the algebraic approximation of a polynomial. A polynomial Q over F(ε)[X] is
said to be an algebraic approximation of a polynomial P over F[X] if there exist
polynomials Q1, Q2, . . . in F[X] such that Q ≡ P +

∑
i≥1 ε

iQi. It is possible that
approximating a polynomial is computationally less expensive than computing
it exactly. More formally, let C be any class of polynomials and C, the closure
of C, be the polynomials approximated by the polynomials in C. One can al-
ways ask the strict containment question: Is C ( C? One of the important and
well-known questions is the VP vs. VP question. Here VP stands for a class of
p-bounded families of polynomials that are approximated by polynomial sized
circuits3. From the definition, it is clear that VP ⊆ VP, but whether the con-
tainment is strict or not is an open question, which has a rich and long history
([3], [2], [14], [9]).

In some cases, strict containment holds. Let
∑[k] ∏∑

denotes the class of
polynomials which can be representated as the sum of product of affine forms,
where k denotes the fan-in of the top-most addition gate in the circuit. Ku-
mar [11] showed that the class of polynomials

∑[3] ∏∑
is strictly contained in∑[3] ∏∑

. Let VPk denotes the class of algebraic branching programs of width
k. Bringmann, Ikenmeyer and Zuiddam [6] looked at the class of polynomials
computed by width-2 algebraic branching programs and showed that for any con-
stant k, VPk ⊆ VP2. This along with a result of Allender and Wang [1] shows
that VP2 ( VP2.

In this work, however, we consider monotone algebraic complexity classes
and for each class C that we consider, we show that C = C. That is, we answer
the strict containment question negatively for monotone algebraic complexity
classes. Recently, Bläser, Ikenmeyer, Mahajan, Pandey and Saurabh [4] showed
that mVBP equals its closure, where mVBP is a class of polynomials computable
by monotone algebraic branching program (formal definition in Section 2). We
extend their result to other monotone algebraic complexity classes. We show
that mVP = mVP, that is, anything that can be approximated by monotone
circuits of polynomial size (computing polynomials of polynomial degree) can
also be computed by them. We also show that mVF, a class of polynomials com-
puted by monotone algebraic formulas, is equal to its closure and that mVNP

3 Formally, VP is defined using topological approximations. However, for reasonably
well-behaved fields F, the two notions of approximation are equivalent. We will focus
on algebraic approximation in this note.
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(formally defined in Section 3), the monotone analogue of VNP4 equals its clo-
sure. Overall, our results imply that approximation does not add extra power to
the monotone algebraic models of computation. Our proof is elementary and a
simple generalisation of the proof of mVBP = mVBP from [4].
Variants of the Determinant. We recall the combinatorial definition of the
determinant polynomial. (See for instance [12]).

Definition 1. Let Gn be the directed complete graph on n vertices, where the
edge label of edge (i, j) is xi,j for i, j ∈ [n]. Let C denotes the set of cycle covers5
of Gn. We define Detn(X) =

∑
C∈C s(C) ·mC , where s(C) = (−1)n+t, where t

is the number of cycles in the cycle cover C and mC is the monomial formed by
multiplying the labels on all the edges in C.

We define a variant Det 6=k
n (X) of the determinant, which sums over all signed

cycle covers that avoid length k cycles. Formally,

Definition 2. Let k be a fixed constant. Let Gn be the directed complete graph
on n vertices, where the edge label of edge (i, j) is xi,j for i, j ∈ [n]. Let C 6=k
denote all those cycle covers of Gn in which all the cycles have length 6= k. We
define

Det6=k
n (X) =

∑
C∈C 6=k

s(C) ·mC

where s(C) = (−1)n+t, where t is the number of cycles in the cycle cover C and
mC is the monomial formed by multiplying the labels on all the edges in C.

We prove the following Lemma.

Lemma 1. Det6=1
n (X) is complete6 for VBP and Det6=k

n (X) is complete for VNP
for all k ≥ 2 over any field F.

Using Valiants criteria ([19]), it is easy to observe that for k ≥ 0, Det6=k
n (X)

is in VNP. We prove VNP hardness in Section 4.
The family Det6=k

n (X) can be viewed as a parametrized family with k as the
parameter such that Det6=1

n (X) is VBP-complete and Det6=k
n (X) for all k ≥ 2 is

VNP-complete over all fields. In previous works by Durand et.al. [8] and Chaugule
et. al. [7], many polynomials were proposed which characterised VP. These were
4 Let fn(x1, x2, . . . , xk(n)) be a p-bounded polynomial family. The polynomial fam-
ily fn is said to be in VNP if there exists a family gn ∈ VP such that fn =∑
y1,y2...,yk′(n)∈{0,1}

gn(x1, x2, . . . , xk(n), y1, y2, . . . , yk′ (n)), where k
′(n) is polynomi-

ally bounded in n.
5 A cycle cover of a directed graph H is a set of vertex disjoint cycles which are
subgraphs of graph H and contains all the vertices of H.

6 A family fn(X) is said to be a p-projection of gn(Y ) (denoted as fn(X) ≤p gn(Y ))
if there exists a polynomially bounded function t : N −→ N such that fn(X) can be
computed from gt(n)(Y ) by setting its variables to one of the variables of fn(X) or
to field constants. A p-bounded family fn is said to be hard for a complexity class C
if for any gn ∈ C, gn ≤p fn. A p-bounded family fn is complete for a class C if it is
in C and is hard for C.
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defined using homomorphism polynomials. It would be interesting to come up
with a parametrized polynomial family which characterizes not just VBP and
VNP, but all natural complexity classes, namely VF,VBP,VP, and VNP.

2 Preliminaries

2.1 Border complexity

Analogous to algebraic complexity classes VP, VF, VBP, we define the border
complexity variants of these classes. We denote the corresponding complexity
classes as VP, VF, and VBP respectively.

Definition 3. A polynomial family hn ∈ F[X] is said to be in class VP (VF, or
VBP respectively) if and only if there exist a function t : N −→ N and polynomi-
als hn,i ∈ F[X] such that the polynomial gn(x) = hn(x) + εhn,1(x) + ε2hn,2(x) +
. . . + εt(n)hn,t(n)(x) can be computed by an algebraic circuit C ∈ F(ε)[X] (al-
gebraic formula F ∈ F(ε)[X] or an algebraic branching program A ∈ F(ε)[X],
respectively) of size polynomial in n, where ε is a new indeterminate.

2.2 Monotone complexity

Hereafter when we discuss results related to monotone complexity classes, we
will work only with the field of real numbers or the field of rational numbers.
For the sake of ease of representation, we set, F = R.

An algebraic circuit (algebraic formula and algebraic branching programs,
respectively) is said to be a monotone algebraic circuit (monotone algebraic
formula and monotone algebraic branching programs, respectively) if all the
input constants (from R) are positive. Note that subtractions are not allowed in
the above stated models of computation.

Definition 4. The class of p-bounded families computed by polynomial sized
monotone circuits (monotone formula/ABPs) is called mVP (mVF, mVBP, re-
spectively).

2.3 Monotone border complexity

Analagous to our complexity classes mVP, mVF, mVBP, we now define the
border complexity variants of these classes. We denote the corresponding
complexity classes as mVP, mVF, mVBP respectively.

Let R+[ε, ε
−1] denote the ring of Laurent polynomials that are non-negative

for all sufficiently small ε > 0. In other words, the monotonicity condition means
that for each α ∈ R+[ε, ε

−1], there is a β > 0 such that for all ε ∈ (0, β], α(ε) ≥ 0.
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Definition 5. A polynomial family hn ∈ F[X] is said to be in class mVP
(mVF,mVBP) if and only if there exist a function t : N −→ N and polynomials
hn,i ∈ F[X] such that the polynomial gn(x) = hn(x) + εhn,1(x) + ε2hn,2(x) +
. . .+ εthn,t(n)(x) can be computed by an algebraic circuit C (algebraic formula,
branching program, resp.) of size polynomial in n where the input are either
labelled by variables or polynomials from R+[ε, ε

−1].

The definition of mVNP is slightly involved. We define it in Section 3.3.

3 Closures of monotone algebraic classes

The first result we prove in this section is about algebraic closure of mVP.

Theorem 1. mVP = mVP

In [4], Bläser, Ikenmeyer, Mahajan, Pandey, and Saurabh proved that
“mVBP = mVBP”. Our proof has an analogous proof outline. It consists of the
following three steps.

1. Let Cn be a monotone algebraic circuit of size s = poly (n) computing the
polynomial Q = ε0f0 +

∑k
i=1 ε

ifi. We convert the circuit Cn into another
monotone circuit C′n of size poly (s), such that the circuit C′n computes the
polynomial εtQ for some positive integer t, and no input gate in C′n has a
label with negative exponent of ε as its input (Section 3.1).

2. We give a general procedure to convert a monotone circuit computing the
polynomial εtQ to εt−1Q (This new circuit has edge labels and the con-
struction works even if the circuit we start with has edge labels. The formal
definition of a circuit with edge labels is stated in Section 3.2). Moreover,
we ensure that no input gate or edge in the converted circuit has a negative
exponent of ε as its label. (Section 3.2)

3. We repeatedly apply step 2 and after t steps construct a monotone circuit
which computes the polynomial ε0Q. By finally substituting ε to 0, the result
follows.

Although, the overall proof idea is very similar to the proof idea from [4], the
details in Step 1 and Step 2 are slightly different. Informally, we use the struc-
tural properties of the universal circuit to get Step 1, whereas we exploit the
monotonicity property of the given circuit to achieve Step 2.

3.1 Step 1 of Theorem 1

Before going into the details of the proof this step of Theorem 1, we recall the
following definitions.

Definition 6 ([15], [18]). A family of circuits {Un}n∈N is called a universal
circuit family if for every polynomial fn(x1, x2, . . . , xn) of degree d(n) which is
computed by a circuit of size s(n), there exists another circuit Ψ which computes
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fn such that the underlying Directed Acyclic Graph (DAG) of Ψ is the same as
that of Um for some m ∈ poly(n, s, d). We assume that both s(n) and d(n) are
polynomially bounded in n.

A universal circuit Cn is said to be in a normal form if it satisfies the fol-
lowing properties.

– The circuit Cn is a semi-bounded circuit, i.e., the indegree of × gate is 2,
whereas the indegree of + gates is unbounded.

– The circuit Cn is a multiplicatively disjoint circuit.
– The circuit Cn is a layered circuit where layers are alternately labelled with

+ and × gates. We assume that the root node is a × gate. Also, the distance
between the root node to every leaf node of circuit Cn is the same.

– The degree of the circuit Cn is n. The depth of the circuit Cn = 2cdlog ne,
for some constant c.

– The number of variables v(n) and the size s(n) of the circuit Cn are both
polynomially bounded in n.

It is known that a universal circuit can be assumed to be in a normal form.

We recall the definition of a parse tree of an algebraic circuit.

Definition 7 ([13]). The set of parse trees of a circuit C, T (C) is defined
inductively on the size of circuit C

– If the size of C is 1, then the circuit C is its own parse tree.
– If the circuit size is greater than 1, then the output gate is either a multipli-

cation gate or an addition gate
1. Let the output gate t be an addition gate. Then the parse trees of circuit

C are formed by taking a parse tree of any one of its children, say t′
along with the edge (t′, t).

2. Let the output gate t be a multiplication gate. Let t1 and t2 be the children
gates of t. Let Ct1 and Ct2 be the subcircuits rooted at gates t1 and t2
in circuit C. The parse trees of C are formed by taking a node disjoint
copy of a parse tree of subcircuit Ct1 and a parse tree of subcircuit Ct2
along with the edges (t1, t) and (t2, t).

Remark 1. Given an algebraic circuit C computing a polynomial f . Let T (C)
denote the set of all parse trees of circuit C. Let mon(T ) be the monomial
associated with T ∈ T (C), where mon(T ) is equal to the product of the labels
of the leaves of T . It is known that f is equal to

∑
T∈T (C))mon(T ) (see [13]]).

Remark 2. Note that the shape of every parse tree T of the universal circuit (in
normal form) Cn is the same. Moreover, the number of leaf nodes in any parse
tree T of Cn is equal to 2cdlogne = nc.

The following Lemma gives the details for the first step.
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Lemma 2. Consider a family of monotone algebraic circuit Cn of size s =
poly(n) computing a polynomial Q = ε0f0 +

∑k
i=1 ε

ifi (that is, circuit Cn com-
putes the polynomial f0 in the border sense), then there exists another monotone
circuit C′n (in normal form) of size poly(s) such that the circuit C′n computes the
polynomial εtQ, for some positive integer t. Moreover, no input gate in circuit
C′n has a label with a negative exponent of ε as its input. And the underlying
DAG structure of C′n is the same as that of Cn.

Proof. Consider a circuit Cn which computes the polynomial Q and say it has
size s. We know that there exists a universal circuit in normal form Um, where
m = poly (s) such that the circuit Um also computes Q. Moreover, it is known
that the monotonicity of circuit Cn can be preserved in circuit Um. Let j be
the largest negative exponent in any of the input gates of Cn. We multiply the
label of every input gate of circuit Um by εj . We call this new circuit C′n. Since,
the circuit Cn is in the normal form, the shape of every parse tree of circuit Cn
is the same and the number of leaf nodes in any parse tree is equal to nc (see
Remark 1 and Remark 2). Therefore, the polynomial computed by circuit C′n
is equal to a scaled version of polynomial computed by circuit Cn, that is, the
polynomial computed by C′n is equal to εtQ, where t = j×nc. We did not change
the underlying graph structure of Cn to obtain C′n. �

3.2 Step 2 of Theorem 1

We now present the details regarding the second step of our main proof.
Here we will use algebraic circuits with edge labels. A circuit C with edge

labels over a field F and variable set X = {x1, x2, . . . , xn} is exactly similar
to the algebraic circuit we have been considering, except for the edge function
w : E −→ X ∪ F. Here E denotes the edge set of C. The polynomial computed
at any input gate u is equal to the label of u. Let Pu denote the polynomial
computed at the node u in the circuit C. The polynomial computed at any
computation gate u with operation op, with u` and ur as its children nodes is
equal to the (w((u, u`)) × Pu`

)op(w((u, ur)) × Pur
). The polynomial computed

by the circuit C is the polynomial computed by the output gate of circuit C.
The size of the algebraic circuit C is the number of nodes in it.

Definition 8. A node u in any monotone circuit over R+[ε
−1, ε] is called a good

node, if the polynomial fu computed at node u is divisible by ε.

Lemma 3. Consider any monotone circuit family Dn of size s with edge label
function w : E −→ {εi|i ∈ Z≥0}, where E is the set of edges of Dn. Suppose it
computes a polynomial εbQ for some b ≥ 1 where Q = f0 +

∑b
i=1 ε

ifi and the
circuit Dn satisfies the following properties:
- No input gate has a label with a negative exponent of ε.
- The underlying graph structure of Dn is the same as the graph structure of a
universal circuit as in Definition 6.

Then there exists a circuit D′n of size s such that D′n computes εb−1Q.
Moreover, no input gate (or an edge label) in D′n is labelled with a negative
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exponent of ε. Also, the underlying graph structure of the circuit D′n is same as
that of Dn, upto the relabelling of the input gates and edge labels of the circuit Dn.

Let G denote the set of all good nodes of circuit Dn. In order to prove Lemma 3,
we need to describe the circuit D′n. The circuit D′n is exactly similar to the circuit
Dn, with labels of some input nodes L′ ⊆ G scaled by 1/ε, and an updated edge
function w′. Moreover, the new function w′ also satisfies the property that no
edge has a label with a negative exponent of ε.

Instead of L′, we construct a larger set S such that L′ ⊆ S ⊆ G and the root
node r ∈ S. Let fu denote the polynomial computed at node u in circuit Dn.
Let f̂u denote the polynomial computed at node u in circuit D′n. It suffices to
prove the following lemma.

Lemma 4. In the circuit D′n, for every node u ∈ S, f̂u = 1
εfu.

Since, the root node r ∈ S, the proof of Lemma 3 immediately follows (see
Section 3.2 for proof details).

Identifying the set S and the edge label function ŵ The main idea is
to mark some of the good nodes of circuit Dn which will form the set S. First
of all, we will mark the root node of circuit Dn. The main goal is to scale the
polynomial computed at the marked root node by 1/ε. We will propagate this
effect from the root node layer to the layer immediately after it and so on till
we reach to the layer of the leaf nodes. In this process, we may also change the
labels of the edges thereby changing the old w function to the new updated w′
function. Upon reaching the last layer, we scale all the marked leaf nodes of Dn
by 1/ε (by relabelling). We now discuss the procedure in detail.

Let us number the layers of Dn from 1 to m such that the layer containing
the root node is numbered as 1 and so on till the layer containing the leaf nodes
is numbered m.
Marking the root node: We mark the root node of circuit Dn. Note that by
our assumption of circuit Dn, the root node is always a good node.
Marking the nodes at layer i+ 1i+ 1i+ 1 : Given the marking of nodes upto layer
numbered i, we give a procedure to mark the nodes in layer numbered i+1. We
break this case into two parts depending on whether i+ 1 is even or odd.
Case 1: i+ 1i+ 1i+ 1 is odd and i+ 1 ≤ mi+ 1 ≤ mi+ 1 ≤ m : We know that the layer numbered i
consists of the + gates.. Let u1, u2, . . . , ut be the marked nodes of layer i. In-
ductively, we know that u1, u2, . . . , ut are all good nodes. For each j ∈ [t], let
uj,1, uj,2, . . . , uj,f(j) be children of node uj . Note that, for all j ∈ [t], the nodes
uj,1, uj,2, . . . , uj,f(j) are in layer numbered i+ 1. For each k ∈ [f(j)], the condi-
tion of the monotonicity of Dn (along with the property that uj is a good node
and is an addition gate) guarantees that

1a. either uj,k is a good node,
1b. or the edge (uj,k, uj) is labelled by εβ for some β ≥ 1.



On the closures of monotone algebraic classes 9

We now describe a procedure which essentially scales the polynomials computed
via uj,1, uj,2, . . . , uj,f(j) by 1/ε, which in turn implies that the polynomial
computed at uj is also scaled by 1/ε. This scaling is done either immediately
by reducing the exponent of ε along the edge between the child node and the +
gate or is postponed to the next layer by marking the child node. We now state
it in Algorithm 1 below.

for j = 1 to t do
for k = 1 upto f(j) do

if the node uj,k is already marked then
we do nothing;

end
else if Case 1a holds then

we mark the node uj,k;
end
else if Case 1b holds then

we relabel the edge (uj,k, uj) initially labelled by εβ to εβ−1;
end

end
end

Algorithm 1: Procedure to mark nodes on layer i+1 when i+1 is odd.

Case 2: i+ 1i+ 1i+ 1 is even and i+ 1 ≤ mi+ 1 ≤ mi+ 1 ≤ m : We know that the layer numbered i
consists of × gates. Let u1, u2, . . . , ut be the marked nodes of layer i. Inductively,
we know that u1, u2, . . . , ut are all good nodes. For each j ∈ [t], let uj,` and uj,r
be the left child and the right child of node uj , respectively. Note that, for all
j ∈ [t], the nodes uj,` and uj,r are in layer numbered i+1. Since the circuit Dn is
multiplicatively disjoint, for each j ∈ [t], nodes uj,` and uj,r are always distinct.
The property of monotonicity of Dn (along with the property that uj is a good
node and is a multiplication gate) guarantees that one of the following two cases
holds.

2a. If both uj,` and uj,r are not good nodes then there exist at least one edge
from {(uj,`, uj), (uj,r, uj)} which is labelled by εγ for some γ ≥ 1. Let us call
that edge e′.

2b. Either uj,` or uj,r is a good node. (If both are good we arbitrarily fix one
and call it as z)

The main idea of the following procedure is to scale either the polynomial
fed via uj,` or the polynomial fed via uj,r by 1/ε, which in turn scales the
polynomial computed at uj by 1/ε. This scaling is done either immediately by
reducing/increasing the exponent of ε appropriately along the edge between the
child node and the × gate and/or is postponed to the next layer by marking the
child node. We now state the procedure in Algorithm 2 below.
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Set E = φ
for j = 1 to t do
if exactly one of the nodes from uj,` and uj,r is marked then

we do nothing
end
else if both the nodes uj,` and uj,r are marked then

we arbitrarily pick one of the edges from {(uj,`, uj), (uj,r, uj)}. Let us
call that edge e. we increase the exponent of ε on edge e by 1.

end
else if Case 2a holds then

we reduce the exponent of ε on edge e′ by 1, that is, we relabel the
edge e′ by εγ−1.

end
else if Case 2b holds then

we mark the node z. Let K ⊆ E such that each node a ∈ K is a parent
of z.
for each a ∈ K do

the exponent of the ε on edge (z, a) is increased by 1.
end

end
Update E = E ∪ {uj}.

end

Algorithm 2: Procedure to mark nodes on layer i+1 when i+1 is even.

We know that S consists of all the marked nodes of Dn. Let `1, `2, . . . , `t′ be
the marked leaf nodes of Dn. By the construction, we know that these nodes are
good nodes. Therefore, their labels have the exponent of ε at least 1. We reduce
the exponent of ε in each of these marked leaves by 1. We call the new circuit
D′n where w′ denotes the edge label function of D′n.

Proof of Lemma 4 We prove by using induction on the layer numbers of the
nodes in S in the circuit D′n.
Base Case: Consider the layer m of D′n. This layer consists of the leaf nodes of
circuit D′n. By our construction, it is easy to note that the base case holds.
Inductive case: We assume that the inductive hypothesis holds for layer num-
bered i+ 1 and show that it holds for layer i. We break this case into two parts
depending on whether i is even or odd.
iii is even: We know that the layer numbered i consists of the addition
gates. Let u1, u2, . . . , ut be the marked nodes of layer i. For each j ∈ [t], let
uj,1, uj,2, . . . , uj,f(j) be children of node uj . For each j ∈ [t] we know that
fuj

=
∑f(j)
k=1 w(uj,k, uj) × fuj,k

and therefore, f̂uj
=

∑f(j)
k=1 w

′(uj,k, uj) × f̂uj,k
.

By our construction, for all k ∈ [f(j)], either uj,k is a marked node or
the edge label function w′ updates the weight on edge (uj,k, uj) as follows :
w′(uj,k, uj) =

1
εw(uj,k, uj). LetM⊆ [f(j)] is such that for each a ∈ M, uj,a is
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a marked node. Inductively, we know that f̂uj,a
= 1

εfuj,a
. Therefore,

f̂uj
=

f(j)∑
k=1

w′(uj,k, uj)× f̂uj,k
(1)

=
∑
a∈M

w′(uj,a, uj)× f̂uj,a
+

∑
b∈M

w′(uj,b, uj)× f̂uj,b
(2)

=
∑
a∈M

w(uj,a, ua)×
1

ε
fuj,a +

∑
b∈M

1

ε
w(uj,b, uj)× fuj,b

=
1

ε
fuj (3)

iii is odd : We know that the layer numbered i consists of the multiplication
gates. Let u1, u2, . . . , ut be the marked nodes of layer i. For each j ∈ [t], let uj,`
and uj,r be the left child and the right child of node uj repectively. For each
j ∈ [t] we know that fuj

= w(uj,`, uj)× fuj,`
×w(uj,r, uj)× fuj,r

and therefore,
f̂uj

= w′(uj,`, uj)× f̂uj,`
× w′(uj,r, uj)× f̂uj,r

.
By the given procedure, the set of nodes uj can always be partitioned

into three sets, say, M1, M2 and M3. Let M1 be the set such that for all
a ∈ M1, exactly one of the child nodes from ua,` and ua,r is a marked node.
Let M2 be the set such that for all b ∈ M2, both the child nodes ub,` and
ub,r are not marked and either w′(ub,`, ub) is set to be equal to 1

εw(ub,`, ub)
or w′(ub,r, ub) is set to be equal to 1

εw(ub,r, ub). Let M3 be the set such that
for all c ∈ M3, both the child nodes are marked and either w′(uc,`, uc) is set
to be equal to (ε×w(uc,`, uc)) or w′(uc,r, uc) is set to be equal to (ε×w(ub,r, ub)).

For any a ∈M1, we either have

f̂ua = w′(ua,`, ua)× f̂ua,`
× w′(ua,r, ua)× f̂ua,r (4)

= w(ua,`, ua)×
1

ε
fua,`

× w(ua,r, ua)× fua,r
=

1

ε
fua

(5)

or

f̂ua
= w′(ua,`, ua)× f̂ua,`

× w′(ua,r, ua)× f̂ua,r
(6)

= w(ua,`, ua)× fua,`
× w(ua,r, ua)×

1

ε
fua,r

=
1

ε
fua

(7)

For any b ∈M2, we either have

f̂ub
= w′(ub,`, ub)× f̂ub,`

× w′(ub,r, ub)× f̂ub,r
(8)

=
1

ε
w(ub,`, ub)× fub,`

× w(ub,r, ub)× fub,r
=

1

ε
fub

(9)

or

f̂ub
= w′(ub,`, ub)× f̂ub,`

× w′(ub,r, ub)× f̂ub,r
(10)

= w(ub,`, ub)× fub,`
× 1

ε
w(ub,r, ub)× fub,r

=
1

ε
fub

(11)
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For any c ∈M3, we either have

f̂uc = w′(uc,`, uc)× f̂uc,`
× w′(uc,r, uc)× f̂uc,r (12)

= w(uc,`, uc)×
1

ε
fuc,`

× (ε× w(uc,r, uc))×
1

ε
fuc,r =

1

ε
fuc (13)

or

f̂uc = w′(uc,`, uc)× f̂uc,`
× w′(uc,r, uc)× f̂uc,r (14)

= (ε× w(uc,`, uc))×
1

ε
fuc,`

× w(uc,r, uc)×
1

ε
fuc,r

=
1

ε
fuc

(15)

This finishes the proof.
By repeatedly applying the step 2, we obtain a circuit C′n which computes

the polynomial ε0Q. This finishes the proof of Theorem 1.

3.3 mVNP and mVF

We state the definition of the monotone variant of VNP.

Definition 9. Let fn(x1, x2, . . . , xk(n)) be a p-bounded polynomial family. We
say that fn is in mVNP if there exists a family gn ∈ mVP such that fn =∑
y1,y2...,yk′(n)∈{0,1}

gn(x1, x2, . . . , xk, y1, y2, . . . , yk′ (n)), where k
′(n) is polynomi-

ally bounded in n.

We now recall the definition of VNP from [10].

Definition 10 ([10]). Let fn(x1, x2, . . . , xk(n)) be a p-bounded polynomial fam-
ily. We say that fn is in VNP if there exists a p-bounded family f̂n ∈ VNP over
the field F(ε) and a function t : N −→ N such that f̂n(x) = fn(x) + εfn,1(x) +
εfn,2(x) + . . .+ εt(n)fn,t(n)(x) for some fn,1, fn,2, . . . , fn,t(n) defined over F.

We can now define the class mVNP.

Definition 11. Let fn(x1, x2, . . . , xk(n)) be a p-bounded polynomial family. We
say that fn is in mVNP if there exist a p-bounded family f̂n ∈ mVNP over
R+[ε, ε

−1] and a function t : N −→ N such that f̂n(x) = fn(x) + εfn,1(x) +
εfn,2(x) + . . .+ εt(n)fn,t(n)(x) for some fn,1, fn,2, . . . , fn,t(n) defined over R.

Lemma 5. mVNP = mVNP

Proof. Let fn(x1, x2, . . . , xk(n)) ∈ mVNP. By the definition of mVNP, we know
that there exists a p-family f̂n ∈ mVNP (over the field F(ε)) such that f̂n(x) =
fn(x) + εfn,1(x) + εfn,2(x) + . . . + εt(n)fn,t(n)(x) for some fn,1, fn,2, . . . , fn,t(n)
∈ R[X]. We know that f̂n =

∑
y1,y2...,yk′(n)∈{0,1}

gn(X,Y ), where k′(n) is
polynomially bounded in n and gn(X,Y ) ∈ mVP (over the field F(ε)). Let
gn(X, a1, a2, . . . , ak′(n)) denote the evaluation of the polynomial gn(X,Y ) at
y1 = a1, y2 = a2, . . . , yk = ak′(n). Since the polynomial f̂n is monotone and it
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converges, each of the summand in f̂n =
∑
y1,y2...,yk′(n)∈{0,1}

gn(X,Y ) must also
necessarily converge. That is, for any boolean setting of variables y1 = a2, y2 =
a2, . . . , yk′(n) = ak′(n), the polynomial gn(X, a1, a2, . . . , ak′(n)) must converge.
Therefore, gn(X,Y ) must also converge. By Theorem 1, there exists a circuit
Cgn which computes gn(X,Y ) such that there are no negative exponents of ε in
any of its labels. Let gn(X,Y )ε=0 denote the polynomial obtained after substitut-
ing ε = 0 in gn(X,Y ). We know that fn(x) =

∑
y1,y2...,yk′(n)∈{0,1}

gn(X,Y )ε=0.
By the definition of mVNP, the result follows. �

We now state the final lemma of this section. We use the proof of mVBP =
mVBP from [4] to prove Lemma 6.

Lemma 6. mVF = mVF

Proof. Consider a monotone formula Fn of size s = poly(n) which computes
a polynomial Q = ε0f0 +

∑k
i=1 ε

ifi. We convert Fn into an algebraic branch-
ing program BFn

of size poly(s) such that the polynomial computed by BFn
is

Q. It is easy to observe that the monotonicity of Fn is preserved in BFn
and

the underlying graph of BFn is a series-parallel graph (see [5] for details about
series-parallel graphs). Since, “mVBP = mVBP”, there exists another monotone
algebraic branching program B̂Fn

of size poly(s) which exactly computes f0. It is
easy to observe (from the proof of “mVBP = mVBP” in [4]) that the underlying
graphs of both the algebraic branching programs BFn

and B̂Fn
are isomorphic

to each other (where the source and sink of BFn
maps with the source and

sink of B̂Fn respectively) and therefore, the underlying graph of B̂Fn is also a
series-parallel graph of size poly(s). It is easy to note that an algebraic branch-
ing program B̂Fn

of size poly(s) computing polynomial f0 with an underlying
series-parallel graph can always be associated with a series-parallel tree. We can
inductively construct the monotone algebraic formula F̂n computing f0 (of size
s) back from the series-parallel tree .

4 Complexity of Det6=k
n (X)

It is not very hard to see that Det6=k
n (X) is VBP complete for k = 1. The proof

idea is similar to the proof which shows that Detn(X) is VBP complete.

Lemma 7. Det6=1
n (X) is complete for VBP (under p-projections) for all fields F.

Proof. It is easy to note that Det6=1
n (X) is a projection of Detn(X) where for all

1 ≤ i ≤ n, xi,i is set to 0. Therefore, it immediately follows that Det6=1
n (X) is

in VBP. We show that Det6=1
n (X) is hard for VBP under p-projections. Let fm

be a polynomial computed by a layered algebraic branching program Am of size
poly(m). It is sufficient to show that fm can be computed as a projection of
Det6=1

n (X) where n is poly(m). Let s and t be the source and sink vertices of
Am, respectively. We describe a graph gadget G. Let V (G) = {v1, v2, v3} and
E(G) = {(v1, v2), (v2, v3), (v3, v2), (v3, v1)}. Every edge in G has weight 1. We
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say that gadget G is identified with any vertex u of Am iff vertex v1 of G is
merged/identified with u. We will convert Am to another graph Gn such that
under our projection, Det6=1

n (X) is fm and n = poly(m). We will now give the
steps to convert Am to Gn.

1. We add an extra vertex α and add a directed edge from t to α and another
directed edge from α to s.

2. We identify every vertex of Am (except the vertex α) with distinct copies of
G.

Note that n = poly (m) and the graph Gn does not have any self-loops. There-
fore, it is sufficient to show that the determinant of Gn is fm. Since α does not
have a self-loop on it, the only way to cover α in any cycle cover of Gn is by
some cycle C which uses the edges (α, s) and then a directed path PC from s to
t followed by the edge, (t, α). It is easy to see that all the vertices of Gn which
are not covered by cycle C are all gadget vertices of some copy of G. It is easy
to observe that there exists a unique way to cover all the remaining vertices of
Gn which are not used in C. Note that the total number of cycles in any cycle
cover of Gn is the same; therefore, the sign is the same for all the cycle covers.
This finishes the proof �

Lemma 8. Det6=k
n (X) is complete (under p-projections) for VNP for all k ≥ 2

for all fields F.

Proof Idea: Before going into the details of the complexity of Det6=k
n (X) (k ≥ 2),

we will look at the various ingredients required to show that Det6=k
n (X) (k ≥ 2) is

VNP-complete. In Section 4.1, we discuss the gadget construction of Hk and its
properties. In Section 4.2, we discuss rosette construction and its properties. For
any fn(X) ∈ VNP, we use the gadgets Hk and rosettes to construct the graph
Tm such that Det6=k

n (X) defined over Tm computes fn(X).

4.1 Gadget Construction Hk and its properties

Gadget HkHkHk. For every k > 1, we construct a partial iff gadget Hk.

– Let V (Hk) = {ai|1 ≤ i ≤ 2k − 1}.
– Let E(Hk) = {(at, at+1)|1 ≤ t ≤ 2k − 2)} ∪
{(a1, ak+1), (ak+1, a2), (a2k−1, a1)} ∪ {(am, am)|3 ≤ m ≤ 2k − 1}. We
call the edges in E(Hk) as the gadget edges.

– The weights of (a1, a2) and the self-loop on ak+1 are −1. All the other edge
weights are 1.

Consider a directed graph G with two distinct edges (u, v) and (u′, v′).
We say that the gadget Hk is placed between the edges (u, v) and (u′, v′),
if we delete both the edges (u, v) and (u′, v′) in G and we add the following
directed edges, {(u, a1), (a1, v), (u′, a2), (a2, v′)}. We set w(u, a1) = w(u, v) and
w(u′, a2) = w(u′, v′). We set w(a1, v) = w(a2, v

′) = 1 (see Figure 1).
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Before getting into the details of the properties of the gadget Hk, we first
define perceived sign and perceived monomial of a cycle cover.

Let G be a directed graph with edge labelling function Φ : E(G) → X ∪ F,
where X = {xi|1 ≤ i ≤ n}. Let C = {C1, . . . , Ck} be a cycle cover of G. Let
{e1, . . . , et} be the edges in C. The sign of the cycle cover, which we denote as
s(C) is defined as (−1)n+k. The monomial of C, denoted as mC , is defined as the
product of the labels of edges in C, i.e.

∏t
i=1 Φ(ei).

Note that the coefficient of this monomial can be either positive or negative
based on the number of negatively signed edge labels in C. We denote this sign
by s(mC). Based on this, we define perceived sign ŝ(C) and perceived monomial
m̂C as follows.

Let ŝ(C) be (−1)n+k · s(mC). And let m̂C = mC · s(mC). Note that

s(C) ·mC = ŝ(C) · m̂C . (16)

Properties of HkHkHk. We now state some important properties of Hk. Consider
a directed graph G = (V,E) with two distinct edges (u, v) and (u′, v′). Let G′
be the graph obtained by placing the gadget Hk between the edges (u, v) and
(u′, v′) in G. Let C 6=k be a cycle cover (without any cycle of length k) with
perceived sign ŝ which uses either both or none of the edges (u, v) and (u′, v′) in
G, then there exists another cycle cover C′6=k with perceived sign ŝ′ in graph G′
such that the perceived monomial associated with both C 6=k and C′6=k are same
and ŝ = ŝ′. We also show that if there exists a cycle cover C 6=k in G such that
it uses exactly one of the edges from (u, v) and (u′, v′), then such a cycle cover
does not survive in G′.

1. If C 6=k does not use any of the edges (u, v) and (u′, v′) then the C′6=k consists
of all the cycles in C 6=k and the gadget vertices are covered within themselves
by a single cycle (a1, a2, . . . , a2k−1, a1). The total number of cycles in cycle
cover C′6=k is one more than the number of cycles in cycle cover C′6=k, but
since the weight of edge (a1, a2) is −1, the perceived sign of cycle cover C′6=k
is same as the perceived sign of cycle cover C 6=k.

2. If C 6=k uses both the edges (u, v) and (u′, v′) then C′6=k has all the cycles in
C 6=k except that the edges (u, v) and (u′, v′) are now replaced by directed
path (u, a1, v) and (u′, a2, v

′) respectively. The vertices a3, a4, . . . , a2k−1 are
covered by self-loops (of weight 1) in C′6=k. Since the total number of cycles
covered by self-loops in the gadget is always odd and the self-loop on the
vertex ak+1 has weight −1, the perceived sign is preserved.

3. If C 6=k uses the edge (u, v) but the not the edge (u′, v′) then there is only one
way to cover the vertices a2, a3, . . . , ak+1 with a cycle (a2, a3, . . . , ak+1, a2)
of length k, which is not a valid cycle cover.

4. If C 6=k uses the edge (u′, v′) but not the edge (u, v) then there is
only one way to cover the vertices ak+1, ak+2, . . . , a2k−1 with a cycle
(ak+1, ak+2, . . . , a2k−1, ak+1) of length k, which is not a valid cycle cover.

5. Note that after placing the gadget Hk, there could be new cycle covers that
arise in the graph G′ which were not present in graph G. There are only two
possible cases. Out of these two cases, in one of the cases, the contribution
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of all such cycle covers in the overall sum is 0 whereas in the other case, the
contribution is not 0. We explain both the cases in detail below.
(a) Let C 6=k be a cycle cover consisting of a cycle, say C1 starting with ver-

tex u followed by the edge (u, a1) and then the edge path P1 = (a1, a2)
followed by an edge (a2, v

′). Since there are two paths from a1 and a2
(within the gadget vertices), there exists another cycle cover C′ 6=k con-
sisting of a cycle C′1 starting with vertex u followed by the edge (u, a1)
and then the path P ′1 = (a1−ak+1−a2) followed by an edge (a2, v′) such
that the perceived monomials of both C 6=k and C′ 6=k are same. Moreover,
since the number of cycles in cycle cover C′ 6=k is one less than the number
of cycles in cycle cover C 6=k, their perceived signs are different. In other
words, there exists a bijection Ψ between the set of cycle covers using
P1 in one of its cycles and the set of cycle covers using P ′1 in one of its
cycles such that for any C, Ψ(C) and C have same perceived monomials
but with opposite perceived signs. Therefore, the contribution of such
cycle covers to the overall sum is 0.

(b) Let C 6=k be a cycle cover consisting of a cycle, say C1 with a path P1 in
it starting with vertex u′ followed by the edge (u′, a2) and then a path
from vertex a2 to vertex a1 (within the gadget Hk) followed by an edge
(a1, v). There are no cancellations possible in this case and therefore,
such cycle covers survives.

Remark 3. Unlike the Valiant’s iff gadget, in this gadget, we do not guarantee
that the contribution of cycle covers (which may arise due to the placing of this
gadget) is 0 (see Point 5(b) above). Therefore, we call Hk partial iff gadget. For
the proof to work, we exploit the property of the graph on which these gadgets
are placed such that the contribution of such new cycle covers is 0.

4.2 Rosette Construction R(`,I)

In this section, we describe the rosette construction R(`, I) for every ` > k and
I ⊆ [`]. The construction of R(`, I) is very similar to the construction of R(`)
as stated in [16], except for some modifications to incorporate the restriction
about the length of the cycle in the cycle cover. Formally, we consider a directed
cycle C of length ` with vertex set |V (C)| = {u1, u2, . . . , u`} and E(C) = {ei =
(ui, ui+1)|1 ≤ i ≤ ` − 1} ∪ {e` = (u`, u1)}. We call the edges in |E(C)| as
connector edges and the vertices in |V (C)| as connector vertices. Consider a set
S(I) = {ei|i ∈ I}. For every edge (ui, uj) in S(I), we add a new vertex ti,j and
add edges (ui, ti,j) and (ti,j , uj). We call the edges in set S(I) as participating
edges. We add self-loops on all the vertices of our graph. We arbitrarily pick
one of the connector vertices and set the weight of the self-loop on it to 1,
whereas the weights of all the other self-loops are set to −1. The weights of all
the edges in rosette R(`, I) (except the self-loops) are set to 1. This completes
the construction of R(`, I) (see Figure 2). It is easy to observe that every R(`, I)
contains a unique longest cycle. We denote this cycle by Z. The rosette R(`, I)
satisfies the following four properties.
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Fig. 1. Partial iff gadget H2 (left) and Partial iff gadget H4 (right).

1. There is no cycle cover in R(`, I) that contains a cycle of length k.
2. For any subset φ 6= X ⊆ S(I), there exists exactly one cycle cover of R(`, I)

which, among the participating edges, contains exactly the edges in X. Such
a cycle cover always contains a single cycle which is not a loop and all other
remaining vertices are covered with self loops.

3. There are only two cycle covers of R(`, I) which contain no participating
edges. The first cycle cover consist of only self-loops on each of the vertices
in R(`, I). The other cycle cover consists of the unique longest cycle Z.

4. There are no other cycle covers in R(`, I).

Note that for any cycle cover C of rosette R(`, I), the perceived sign is −1
and the perceived monomial is 1.

4.3 Construction of graph Tm from fn(X) ∈ VNP

Let fn(X) ∈ VNP. From the definition of VNP we know that fn(X) =∑
y1,y2,...,yp(n)∈{0,1} g

′
n(X,Y ), where p : N −→ N is polynomially bounded func-

tion in n and g′n(X,Y ) is in VP. Moreover, for any fn(X) ∈ VNP, fn(X) =∑
y1,y2,...,yp(n)∈{0,1} gn(X,Y ), where gn(X,Y ) is in VF [13].

1. Since, gn(X,Y ) ∈ VF and VF ⊆ VBP, there exists an algebraic branching
program of size s = poly(n) to compute gn(X,Y ), say Bn. Let s0 and t0 be
the source and sink of Bn, respectively. Without loss of generality assume
that the length of the longest path from s0 to t0 in Bn is at least k. We add
a special vertex α and add directed edges from α to s0 and from t to α. We
set the weights of both the edges (α, s0) and (t0, α) to 1. We add self-loops
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Fig. 2. R(4, I), where S(I) = {e1, e2, e3, e4} (left) and R(4, I), where S(I) = {e1, e3}
(right). Dashed edges are participating edges.

on all the vertices in our constructed graph except α. We set the weight of
all self-loops to be 1. We call this graph B̂n.

2. We know that Y = {yi|1 ≤ i ≤ p(n)}. Let occ(i) denote the total number of
edges in B̂n which are labelled with variable yi. Let Y1 = {yi|yi ∈ Y, occ(i) >
k} and Y2 = {yi|yi ∈ Y, occ(i) ≤ k}. Cleary, Y = Y1 ∪ Y2. For every yi ∈ Y1,
we consider a rosette R(occ(i), I = [occ(i)]). Similary, for every yj ∈ Y2, we
consider a rosette R(occ(j) + k, I ⊂ [occ(j)] + k), where the set |S(I)| =
occ(j). We call the graph constructed so far as the partial graph denoted by
T̃m.

3. For any yi ∈ Y1, let cyi,1, cyi,2, . . . , cyi,occ(i) be the connector edges in
R(occ(i), I = [occ(i)]). Let eyi,1, eyi,2, . . . , eyi,occ(i) be the distinct edges in
B̂n which are labelled with variable yi. We place Hk between the edges cyi,t
and eyi,t for all 1 ≤ t ≤ occ(i).

4. For any yj ∈ Y2, let cyj ,1, cyj ,2, . . . , cyj ,occ(j), . . . , cyj ,occ(j)+k be the connector
edges in R(occ(j) + k, I ⊂ [occ(j) + k]). Without loss of generality, let us
assume that S(I) = {cyj ,1, cyj ,2, . . . , cyj ,occ(j)}. Let eyj ,1, eyj ,2, . . . , eyj ,occ(j)
be the distinct edges in B̂n which are labelled with variable yj . We place
“partial iff gadget” Hk between the edges cyj ,t and eyj ,t for all 1 ≤ t ≤ occ(j).

This completes the construction of graph Tm. It is easy to note thatm = poly(n).
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4.4 Cycle covers of graph B̂n

In this section, we study the cycle covers of graph B̂n. Recall that the construc-
tion of graph B̂n is stated in the first point of Section 4.3.

Lemma 9. Let Bn be the algebraic branching program of size s = poly(n) com-
puting gn(X,Y ). Let P = {Pi|1 ≤ i ≤ µ} be the set of all s− t paths in Bn. Let
mi be the monomial associated with path Pi, formed by multiplying the labels on
all the edges of Bn participating in path Pi.
– For each i ∈ [µ], there exists a unique cycle cover C in B̂n, such that the

monomial associated with C is mi. Moreover, there are no other cycle covers
in Bn.

– The number of cycles in any cycle cover of graph B̂n is same.

Proof. Since, the vertex α is not covered by a self-loop, the only way to cover
vertex α in B̂n is by a cycle starting form the vertex α followed by the edge
(α, s), followed by some directed path in B̂n followed by the edge (t, α). Let Cj
be a cycle cover of graph B̂n. Let Cj consists of a cycle Cj1 which starts at vertex
α and traverses the edge (α, s), followed by a s− t directed path Pj (in algebraic
branching program Bn) in the graph B̂n followed by the edge (t, α). Note that
all the remaining vertices in B̂n must get covered by self-loops in cycle cover C.
Note that the weight of all the self-loops along with edges (s, α) and (t, α) is
set to 1 and by the the construction of graph B̂n, it is easy to follow that the
monomial associated with Pj is mj . It is easy to observe that there are no other
cycle covers in graph B̂n. It is easy to note that the total number of cycles in
any cycle cover of graph B̂n is same. �

4.5 Surviving cycle covers of graph T̃m in graph Tm

In this section, we study the surviving cycle covers of graph T̃m in graph Tm.
Recall that the construction of graph T̃m is stated in the second point of Sec-
tion 4.3.

We know that T̃m denotes the partial graph which is the disjoint union of
Bn and p(n) disjoint copies of rosette for each yi ∈ Y . The cycle cover C of T̃m
is called a surviving cycle cover if it survives in Tm. We now carefully analyze
the surviving cycle cover of T̃m. Consider the partial graph T̃m. It is easy to
note that any cycle cover C of graph T̃m is the union of the cycle cover of each
of its components. Let Cj be a cycle cover of graph B̂m. Let Cj consist of a
cycle Cj1 which starts at vertex α and traverses the edge (α, s0), followed by a
s0 − t0 directed path Pj (in the algebraic branching program Bn) in the graph
B̂n followed by the edge (t0, α). Note that all the remaining vertices in B̂n must
get covered by self-loops in cycle cover C. By Lemma 9, let mj be the monomial
associated with C formed by multiplying all the labels of edges participating in
C.

Let Tj ⊆ Y be the set of variables whose degree is at least 1 in mj . Let
R1, . . . Rp(n) be the rosettes associated with variables y1, . . . yp(n), respec-
tively in graph T̃m. Without loss of generality, let Tj = {y1, y2, y3}, where
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the degrees of y1, y2, y3 in mj are given by degy1 , degy2 , degy3 , respectively. Let
ey1,1, ey1,2, . . . , ey1,degy1 be the distinct edges labelled with y1 in path Pj . Simi-
larly, let ey2,1, ey2,2, . . . , ey2,degy2 be the distinct edges labelled with y2 in path Pj .
Also, let ey3,1, ey3,2, . . . , ey3,degy3 be the distinct edges labelled with y3 in path
Pj . Let R1, . . . Rp(n) be the cycle covers in the rosettes R1, . . . Rp(n), respec-
tively. Let us assume that the cycle covers R1, . . . Rp(n) satisfies the following
properties:

1. For each k ∈ [3], the cycle cover Rk in rosette Rk uses the participating
edges
cyk,1, cyk,2, . . . , cyk,degyk and no other participating edges in Rk.

2. For each k ∈ [p(n)]\[3], the cycle cover Rk does not use any participating
edges of Rk.

For k ∈ [p(n)], we know that there exists a “partial if and only if gadget”
between eyk,i and cyk,i for all 1 ≤ i ≤ occ(k) in Tm. By the property of the
“partial if and only if” gadget, the cycle covers described in the above case will
survive in graph Tm, whereas all the other cycle covers will not survive in graph
Tm.

4.6 Proof of VNP completeness

In this section, we state our main proof.
Let fn(X) ∈ VNP. Let T̃m and Tm denote the graphs constructed from fn(X)
as stated in Section 4.3. We express gn(X,Y ) as the sum of monomials.
We know that there exists an algebraic branching program Bn which computes
the polynomial gn(X,Y ). Let the set P consist of all the s − t path in Bn. Let
P = {Pi|1 ≤ i ≤ µ}. Let cimi denotes the monomial associated with path Pi in
Bn, where ci ∈ F is the coefficient of mi. Therefore, gn(X,Y ) = c1m1 + c2m2 +
. . .+ cµmµ,

We have, fn(X) =
∑
y1,y2,...,yp(n)∈{0,1} c1m1 + c2m2 + . . .+ cµmµ

=
∑
y1,y2,...,yp(n)∈{0,1} c1m1 +

∑
y1,y2,...,yp(n)∈{0,1} c2m2 + . . . +∑

y1,y2,...,yp(n)∈{0,1} cµmµ.

Let Jj denotes the polynomial
∑
y1,y2,...,yp(n)

cjmj . Therefore,
fn(X) =

∑µ
j=1 Jj .

We know that mj is a monomial over the variable set X ∪ Y . Therefore,
mj can be represented as the product of two monomials m(X)

j and m(Y )
j , where

m
(X)
j is over the variable set X and m(Y )

j is over the variable set Y .
That is,

gn(X,Y ) = c1m
(X)
1 m

(Y )
1 + c2m

(X)
2 m

(Y )
2 + . . .+ cµm

(X)
µ m

(Y )
µ .
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Consider a monomial mj = cjm
(X)
j m

(Y )
j , let Tj ⊆ Y is the set of variables

whose degree is at least 1 in m(Y )
j . Let mj(a1, a2, . . . , ap(n)) be the evaluation of

monomial mj at point y1 = a1, y2 = a2, . . . , yn = an. For example, let us assume
that Tj = {y1, y2}. (The case when Tj has higher cardinality is very similar.)
An evaluation of monomial mj at any point where at least one variable from
Tj ⊆ Y is set to 0 vanishes. The evaluations where the monomial mj survives
is only at the points of the form y1 = 1, y2 = 1, y3 = ∗, . . . , yp(n) = ∗, where
∗ ∈ {0, 1}. That is, the coefficient of cjm

(X)
j is equal to the 2p(n)−|Tj | in Jj .

This is true for every monomial cjmj , for all 1 ≤ j ≤ µ.

We consider two cases in this proof. In the first case, we show that for
every monomial cjmj evaluated at y1 = a1, y2 = a2, y3 = a3, . . . , yp(n) = ap(n)
(as nonzero), there exists a unique cycle cover C (without any cycles
of length k) in graph Tm such that the product of perceived mono-
mial and perceived sign associated with C is equal to cjmj evaluated at
y1 = a1, y2 = a2, y3 = a3, . . . , yp(n) = ap(n). In the second case, we show that
there are no other cycle covers in graph Tm.

Before going into the details of the cases, we define a partial cycle cover and
an extension of a cycle cover.

Definition 12. Let G = (V,E) be a directed graph. A partial cycle cover C′ of
G over vertex set V ′ ⊂ V is a set of subgraphs of G which are cycle graphs such
that every vertex v′ ∈ V ′ participates in exactly one of the cycles in C′. We say
that a cycle cover C (of graph G) is an extension of a partial cycle cover (of
graph G) C′ if and only if C′ ⊂ C.

Case 1: Fix j. Let C = Cj be the partial cycle cover of graph T̃m, where Cj
is a cycle cover of graph B̂m. Let mj be the monomial associated with Cj . Let
Tj ⊆ {y1, y2, y3} is the set of variables whose degree is at least 1 in mj .

As stated in Section 4.5, for any extension of cycle cover C in graph T̃m to
survive, the cycle covers of rosettes R1, R2, . . . , Rp(n) must satisfy the following
properties:

1. For each k ∈ [3], the cycle cover Rk in rosette Rk uses the participating
edges
cyk,1, cyk,2, . . . , cyk,degyk and no other participating edges in Rk. By property
1 of the rosettes, this can be done in only one way.

2. For each k ∈ [p(n)]\[3], the cycle cover Rk does not use any participating
edges of Rk. By property 2, this can be done in two ways.

Therefore, there are exactly 2p(n)−3 extensions possible to the cycle cover C. In
general there are exactly 2p(n)−|Tj | extensions possible to the cycle cover C. This
is true for every 1 ≤ j ≤ µ. Note that there are no other cycle covers possible
in T̃m. .
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Case 2: Recall that there could be new cycle covers which arise in our graph Tm
after placing the gadgets as described in point 5(b) of the properties of gadget
Hk. We exploit the properties of graph T̃m on which the gadgets are placed and
show that the contribution of such cycle covers is also 0. Consider the graph
Tm. Let us assume that there exists a cycle cover C′ which is not of the form
discussed in case 1. Let us assume that C′ is a cycle cover consisting of a cycle
C1 which hits a vertex a2 in some copy of the "partial if and only if gadget" Hk
and uses the gadget edges hereafter to reach vertex a1 of the same gadget. Such
a cycle (C1 in this case) will always have a path which goes from vertex a1 to a2
of some other copy of gadget Hk.Note that there are exactly two distinct paths
in the “partial if and only if gadget” Hk to reach from a1 to a2. Therefore, for
such a cycle cover C′, there always exists another cycle cover Ĉ, such that the
perceived monomials associated with both cycle covers C′ and Ĉ are same but
with opposite perceived signs.
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