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Abstract

Proving super-polynomial lower bounds on the size of proofs of unsatisfiability of Boolean formu-
las using resolution over parities is an outstanding problem that has received a lot of attention after
its introduction by Raz and Tzamaret [13]. Very recently, Efremenko, Garĺık and Itsykson [6] proved
the first exponential lower bounds on the size of ResLin proofs that were additionally restricted to be
bottom-regular. We show that there are formulas for which such regular ResLin proofs of unsatisfia-
bility continue to have exponential size even though there exist short proofs of their unsatisfiability
in ordinary, non-regular resolution. This is the first super-polynomial separation between the power
of general ResLin and and that of regular ResLin for any natural notion of regularity.

Our argument, while building upon the work of Efremenko et al., uses additional ideas from the
literature on lifting theorems.

1 Introduction

One of the most basic and well studied proof systems in propositional proof complexity is resolution.
Its weakness by now is reasonably well understood after years of research. Yet, this understanding
is quite fragile as natural and simple strengthenings of resolution quickly pose challenges that remain
outstanding. One such system is resolution over parities, introduced by Raz and Tzameret [13], which
has been abbreviated as ResLin. More precisely, a linear clause is a disjunction of affine equations,
generalizing the notion of ordinary clauses. If A and B are two such linear disjunctions and ℓ is a linear
form, then the inference rule of ResLin derives the linear clause A ∨ B from clauses A ∨ (ℓ = 1) and
B ∨ (ℓ = 0). To appreciate the power of this system, let us recall that a linear clause, unlike an ordinary
clause, can be expressed using many different bases. Indeed, no super-polynomial lower bounds on the
size of general proofs in this system is currently known for any explicit unsatisfiable Boolean formula.

Progress was first made in the work of Itsykson and Sokolov [10] when they proved exponential lower
bounds on the size of tree-like ResLin proofs for central tautologies including the Pigeonhole Principle
and Tseitin formulas over expanding graphs. Proving such lower bounds was systematized, only recently,
in the independent works of Chattopadhyay, Mande, Sanyal and Sherif [4] and that of Beame and Koroth
[2]. These works could be used to conclude that tree-like ResLin proofs are exponentially weaker than
general ResLin proofs.

In the world of ordinary resolution, it is known that there is an intermediate proof system, known
as regular resolution, whose power strictly lies in between tree-like and general proofs. In the graph of
a regular resolution proof, no derivation path from an axiom clause to the final empty clause resolves
a variable of the formula more than once. In the dual view of searching for a falsified clause, this
corresponds precisely to read-once branching programs, where no source to sink path queries a variable
more than once. Taking cue from this, Gryaznov, Pudlák and Talebanfard [9] introduced models of read-
once linear branching programs (ROLBP), to capture notions of regularity in ResLin. They identified
two such notions that extend the notion of regularity in ordinary resolution, or the read-once property
of branching programs. Consider a node v of an ROLBP. Let Pre(v) denote the vector space spanned
by all the linear queries that appear in some path from the source node to v. Similarly, let Post(v)
denote the space spanned by all linear queries that lie in some path from v to a sink node. In the most
restrictive notion, called strongly regular proofs or strongly read-once linear branching programs, Pre(v)
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and Post(v) have no non-trivial intersection for every v. In a more relaxed notion, called weak regularity
or weakly ROLBP, the linear query made at node v is not contained in Pre(v). Gryaznov et al. [9] were
able to prove an exponential lower bound on the size of strongly ROLBP for computing a function, using
the notion of directional affine dispersers. However, their argument is not known to work for search
problems for even strongly ROLBP.

There is another natural notion of weakly read-once linear branching programs (dually, weakly regular
ResLin ) that complements the notion defined in [9]. In this notion, we forbid the linear query made at
a node v of the branching program to lie in an affine space Post(u), for each u that is a child of v. We
will call this notion bottom-read-once (bottom-regular proofs) and the former notion of Gryaznov et al
as top-read-once (top-regular proofs). Both are generalizations of strongly read-once linear branching
programs (strongly regular ResLin proofs). Very recently, Efremenko, Garlik and Itsykson [6] proved
the first exponential lower bounds on the size of bottom-regular ResLin proofs. The tautology they used
was the Binary Pigeonhole Principle (BPHP). It is plausible that the BPHP remains hard for general
ResLin proofs. One way to prove such a bound would be to show that every general ResLin proof could
be converted to a bottom-regular ResLin proof with a (quasi-)polynomial blow up.

Our main result is a strong refutation of that possibility. We show that bottom-regular ResLin proofs
require exponential size blow-up to simulate non-regular proofs even in the ordinary resolution system.
The formulas we use are twists of certain formulas used by Alekhnovich, Johannsen, Pitassi and Urquhart
[1] for providing separation between regular and general resolution. Alekhnovich et al. provided two
formulas for proving such a separation. In the second one, the starting point is a pebbling formula on
pyramid graphs. It turns out that they are easy for regular resolution. To get around that, they consider
stone formula for pyramid graphs, that they prove is hard for regular resolution while remaining easy
for general resolution. We further obfuscate such stone formulas using another idea of Alekhnovich et
al. that appears in the construction of their first formula. Finally, we lift these formulas by logarithmic
size Inner-product (IP) gadgets.

This lifted formula presents fresh difficulties to be overcome to carry out the implicit technique of
Efremenko et al. We overcome them by exploitng two properties of the Inner-product. First, we exploit
the property that IP has low discrepancy, invoking a result of Chattopadhyay, Filmus, Koroth, Meir and
Pitassi [3]. Second, we use the fact that IP has the stifling property, inspired by the recent work of
Chattopadhyay, Mande, Sanyal and Sherif [4].

Our unsatisfiable formula that yields a separation of resolution and bottom-regular ResLin is a stone
formula for a pyramid graph Gn of n levels lifted by an inner-product gadget IP : {0, 1}b → {0, 1}. We
denote this formula as SPn ◦ IP and it is defined over M := 2N2 · b variables, where b = Θ(log n) and
N = n(n+ 1)/2 is the number of vertices of the pyramid graph Gn. For exact definition of SPn ◦ IP, see
Section 2.

Theorem 1. The formula SPn ◦ IP admits a resolution refutation of length that is polynomial in M but

any bottom-regular ResLin refutation of it must have length at least 2Ω(M1/12/ log1+ε M) for ε = 1/12.

Comparision with Efremenko et al. [6]: Our work builds upon the very recent work of Efremenko,
Garĺık and Itsykson, who proved an exponential lower bound for the regular linear resolution complexity
of the formula Binary-PHPn+1

n . A crucial property of this formula that they use is that if we sample an
assignment to the variables from the uniform distribution, with high probability one needs to make at
least nΩ(1) bit-queries to locate a falsified clause. Later, they use the following simple property of the
uniform distribution: let A be an affine subspace of co-dimension r. Then, the probability mass of A
under uniform distribution is very small (inverse-exponential in r). Call this property (*).

Our goal is to show an exponential lower bound on the regular linear resolution complexity of a
formula that has a small resolution refutation. A candidate formula would be a CNF which exhibits
exponential separation between resolution and regular resolution. Some such formulas are MGTn,ρ and
stone formulas with auxiliary variables to keep width of clauses short (both defined in Alekhnovich et al.
[1]). However, all such formulas have constant width – and therefore, a uniformly random assignment
falsifies a constant fraction of clauses. It follows that for both these formulas there is a query algorithm
making only constantly many queries which finds a falsified clause with high probability under the
uniform distribution. Thus, directly adapting the argument of Efremenko et al. would not work for
these formulas.

Our main observation is that property (*) continues to hold for a much larger class of distributions
than the uniform distribution when the base formula is lifted with an appropriate gadget. More precisely,
if we take any distribution µ on the assignments of the base formula and let µ′ be its uniform lift, property
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(*) holds for µ′. We are now free to choose any distribution on the assignments of the base formula for
which locating a falsifying axiom requires many queries on average (this is just a sketch; we actually
need something slightly stronger). This gives us enough freedom to construct appropriate distributions.
Some more ingredients are required to make this idea work; we explain them in the subsequent sections.

Some Other Related Work: Following up on the work by Alekhnovich et al [1], Urquhart [17] proved
a stronger separation between the length of regular and general resolution proofs. Much more recently,
Vinyals, Elffer, Johannsen and Nordström [18], designed a different formula for showing an even stronger
separation between regular and general resolutions. The constructions of Urquhart [17] as well as that
of Vinyals et al [18] are somewhat related to the hard formulas that we construct in this paper. We talk
about them more at the end of Section 2 after describing our construction in detail. In another direction,
the model of read-once linear branching programs, introduced by Gryaznov, Pudlák and Talebanfard
[9], spawned research in directional affine extractors and pseudo-randomness first by Chattopadhyay
and Liao [5], and then further by Li and Zhong [11]. These work on extractors, while independently
interesting, are not known to have consequences for ResLin.

Organization of the Paper: We present our hard formula in the next section and briefly compare
it with constructions done in earlier work. In Section 3, we define ResLin refutation system and its
regular and tree-like restrictions. Further, we present the connection between resolution proof systems
and branching programs. In Section 4, we present some results from linear algebra which we use in our
proofs. In Section 5, we sketch the outline and main ideas of the proof of our main result, Theorem 1.
Then in Section 6, we prove the upper bound part of Theorem 1, i.e., our hard formula has short resolution
refutation. We finish our proof in Section 7 where we prove the lower bound part of Theorem 1, i.e.,
any bottom-regular ResLin refutation of our hard formula must have exponential length. Finally, in
Section 8, we conclude with some of the many open problems that our work raises.

2 A Formula Hard For Just Regular ResLin

Let us first recall the stone formula that was used by Alekhnovich et al. [1] for separating the powers of
regular and general resolution. The formula that we shall use is a lift of this formula by an appropriate
gadget. Let G = (V,E) be a directed acyclic graph such that it has exactly one root (vertex with indegree
0), r, and every vertex of G has outdegree either 0 or 2. Call the vertices with outdegree 0 the sinks of
G. Let |V | = N . We describe the stone formula on G twisted with ρ, Stone(G, ρ) below. In words, the
contradiction we are about to describe states the following:

• There are |V | stones. Each stone has a color: red or blue.

• At least one stone must be placed on each vertex.

• All stones placed on sinks must be red.

• All stones placed on the root must be blue.

• Let v be a node with out-neighbors u,w. If a red stone j is placed on u and a red stone k is placed
on w, then all stones placed on v must be red.

We shall twist this formula with an obfuscation map ρ to make it hard for regular resolution. We formally
define the formula below. We introduce the following set of variables.

Vertex variables: For all v ∈ V, 1 ≤ j ≤ N : Pv,j .
Semantic interpretation: Pv,j is set to 1 iff stone j is placed on vertex v.

Stone variables: For all 1 ≤ j ≤ N : Rj .
Semantic interpretation: Rj is set to 1 if stone j is colored red, otherwise it is set to 0.

Auxiliary variables: For all v ∈ V, 1 ≤ j ≤ N − 1 : Zv,j .
Semantic interpretation: These are auxiliary variables used to encode the fact that at least one
stone is placed on vertex v, with a bunch of constant-width clauses.

Let V denote the set of all variables mentioned above and ρ : [N ]3 → V be an arbitrary mapping that
we call an obfuscation map. Let S be the set of sinks of G. We define Stone(G, ρ) to be the formula
comprising the following set of clauses:
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Root clauses: For all 1 ≤ j ≤ N : ¬Pr,j ∨ ¬Rj

Semantic interpretation: All stones placed on the root r of G must be coloured blue.

Sink clauses: For all 1 ≤ j ≤ N, s ∈ S: ¬Ps,j ∨Rj

Semantic interpretation: Each stone placed on a sink of G must be coloured red.

Induction clauses: For all v ∈ V (G) with out-neighbors u,w and for each i, j, k ∈ [N ]:

¬Pu,i ∨ ¬Ri ∨ ¬Pw,j ∨ ¬Rj ∨ ¬Pv,k ∨Rk ∨ ρ(i, j, k)

¬Pu,i ∨ ¬Ri ∨ ¬Pw,j ∨ ¬Rj ∨ ¬Pv,k ∨Rk ∨ ¬ρ(i, j, k)

Semantic interpretation: after resolving out the variable ρ(i, j, k), the clause says that if the stones
placed on u and w are colored red, the stone placed at v must also be colored red, i.e., the
implication

(Pu,i ∧Ri ∧ Pw,j ∧Rj ∧ Pv,k) =⇒ Rk.

Stone-placement clauses: For all v ∈ V (G):

Pv,1 ∨ ¬Zv,1

Zv,1 ∨ Pv,2 ∨ ¬Zv,2

. . .

Zv,N−2 ∨ Pv,N−1 ∨ ¬Zv,N−1

Zv,N−1 ∨ Pv,N

Semantic interpretation: Together, the clauses are equivalent to

Pv,1 ∨ Pv,2 ∨ · · · ∨ Pv,N

i.e., at least one stone is placed on the vertex v.

Let Gn be the pyramid graph on n levels. The vertex set is V = {(i, j)|1 ≤ i ≤ n, 1 ≤ j ≤ i}. The
level of a vertex (i, j) is defined to be its first coordinate i. The edge set is E = {(i, j) → (i+ 1, j)|1 ≤
i < n, 1 ≤ j ≤ i} ∪ {(i, j) → (i + 1, j + 1)|1 ≤ i < n, 1 ≤ j ≤ i}. See Figure 1, for an example of the
pyramid graph. The sinks of Gn are the vertices at layer n, i.e., (n, i) for 1 ≤ i ≤ n. The root is (1, 1).
We have |V | = N = 1

2n(n+ 1).

Figure 1: An example of the pyramid graph with n = 5 levels.

We instantiate the stone formula with G = Gn. Let SPn,ρ = Stone(Gn, ρ). We denote the number of
variables of SPn,ρ by m, i.e. |V| = m = N2 +N +N(N − 1) = 2N2. In order to prove our lower bound
against regular ResLin, it turns out to be convenient working with a formula that is obtained by lifting
SPn,ρ. Let g : {0, 1}b → {0, 1} be a Boolean function, called gadget. For a ∈ {0, 1}, we denote the set of
all pre-images of a by g−1(a), i.e., g−1(a) :=

{
x ∈ {0, 1}b | g(x) = a

}
.

Let c1, c2, · · · , ck ∈ {0, 1}. Let C = [X1 = c1]∨ · · · ∨ [Xk = ck] be a clause over variables X1, . . . , Xk.
Here [Xi = ci] denotes a literal, i.e. Xi if ci = 1, and ¬Xi otherwise. To lift Clause C we introduce
b variables Y i

1 , . . . , Y
i
b for each variable Xi of C. The lift of C, C ◦ g, is a set of clauses which, in

conjunction, are semantically equivalent to [g(Y 1
1 , · · · , Y 1

b ) = c1] ∨ · · · ∨ [g(Y k
1 , · · · , Y k

b ) = ck], i.e., the
following:
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C ◦ g :=

 ∨
1≤i≤k,1≤j≤b

[Y i
j = 1− dij ]

∣∣∣ d1 ∈ g−1(1− c1), . . . , d
k ∈ g−1(1− ck)

 ,

where each di is a b-bit string and dij is its j-th bit.

Observation 1. An assignment (Y i
j )1≤i≤k,1≤j≤b satisfies every clause in C ◦ g if and only the lifted

assignment (x1, x2, · · · , xk) given by

x1 = g(Y 1
1 , · · · , Y 1

b ), · · · , xk = g(Y k
1 , · · · , Y k

b )

satisfies the clause C.

For a technical reason, we shall also need the following simple observation:

Observation 2. Let ψ be any clause of C ◦ g. Suppose, one of the variables Y i
j appears in ψ. Then, for

all k ∈ [b], the variable Y i
k also appears in ψ.

For a set of clauses Φ (a CNF formula), we define its lift as Φ ◦ g := ∪C∈Φ(C ◦ g). We have the
following corollary of Observation 1.

Corollary 1. The set of clauses Φ is unsatisfiable if and only if the set of clauses Φ ◦ g is unsatisfiable.

We remark that if the base set Φ contains only clauses of width at most k, then Φ◦g contains clauses
of width at most kb and |Φ◦g| ≤ 2bk · |Φ|. In particular, a constant-width, poly-size unsatisfiable formula,
when lifted by an O(log n) size gadget, yields an O(log n)-width, poly-size unsatisfiable formula. Our hard
formula will be the stone formula lifted by an inner product gadget SPn,ρ ◦ IP, where IP : {0, 1}b → {0, 1}
is the inner-product function, i.e. for each x, y ∈ {0, 1}b/2, set IP(x, y) = x1y1 + · · · + xb/2yb/2 (mod 2)
where b = O(log n) is an even integer.

Comparison with related formulas from previous work: We briefly mention some formulas that
were used in the past, that are related to Stone(Gn, ρ). First, the formula sans obfuscation Stone(Gn)
was one of the formulas used by Alekhnovich et al. [1] to yield the first exponential separation between
regular and general resolution. This separation was further strengthened by Urquhart [17] in a follow-up
work, using the following more involved formula. Fix a bijective placement of stones to the vertices
of Gn. This reduces Stone(Gn) to a plain pebbling formula on pyramid graph, denoted by Peb(Gn).
This reduces the number of clauses to linear in N . Urquhart considers the 2-bit XOR lift of such a
formula, i.e. Peb(Gn) ◦ ⊕. This formula blows up the number of clauses, but still keeps the number of
variables to O(N). Finally, he shows that for a suitable ρ, the obfuscation of Peb(Gn)◦⊕ by ρ, just as we
obfuscate Stone(Gn) by Stone(Gn, ρ), yields a separation between regular and general resolution that is
stronger than the one by Alekhnovich et al. [1]. More recently, Vinyals et al. [18] worked with a different
sparsification of Stone(Gn). This comes about naturally by considering Stone(Gn) as a densification of
Peb(Gn) by using a complete bi-partite graph with N vertices on each side. Roughly speaking, Vinyals
et al. used a constant degree bi-partite expander gadget with Peb(Gn), inspired by the earlier work
of Razborov [15]. This results in more modular and optimal arguments. However, the lift by a stifled
gadget of a base stone formula, like we do as in Stone(Gn, ρ) ◦ IP, seems not to have been considered
earlier.

3 Resolution Proof Systems and Branching Programs

A proof in a propositional proof system starts from a set of clauses Φ, called axioms, that is purportedly
unsatisfiable. It generates a proof by deriving the empty clause from the axioms, using inference rules.
The main inference rule in the standard resolution, called the resolution rule, derives a clause A∨B from
clauses A ∨ x and B ∨ ¬x (i.e., we resolve the variable x). If we can derive the empty clause from the
original set Φ then it proves the set Φ is unsatisfiable. We will need the following basic and well known
fact that states resolution is complete without being too inefficient.

Lemma 1. Let C be any clause, and Φ be any CNF formula over n Boolean variables and of polynomial
size, that semantically implies C. Then, C can be derived from Φ by a resolution proof of size at most
2O(n).
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Linear resolution, aka ResLin and introduced by Raz and Tzamaret [13], is a generalization of stan-
dard resolution, using linear clauses (disjunction of linear equations over F2) to express lines of a proof.
It consists of two rules:

Resolution Rule: From linear clauses A ∨ (ℓ = 0) and B ∨ (ℓ = 1) derive a linear clause A ∨B.

Weakening Rule: From a linear clause A derive a linear clause B that is semantically implied by A
(i.e., any assignment satisfying A also satisfies B).

The length of a resolution (or ResLin) refutation of a formula Φ is the number of applications of the rules
above in order to refute the formula Φ. The width of a resolution (or ResLin) refutation is the maximum
width of any (linear) clause that is used in the resolution proof.

It is known that a resolution proof and a linear resolution proof, for an unsatisfiable set of clauses Φ,
correspond to a branching program and a linear branching program, respectively, for a search problem
Search(Φ) (see for example Garg et al [7], who credit it to earlier work of Razborov [14] that was simplified
by Pudlák [12] and Sokolov[16]) that is defined as follows. For a given assignment α of the n variables of
Φ, one needs to find a clause in Φ that is unsatisfied by α (at least one exists as the set Φ is unsatisfiable).
A linear branching program computing a search problem P ⊆ Fn

2 ×O is defined as follows.

• There is a directed acyclic graph P of one source and some sinks. Each non-sink node has out-
degree at most two. For an inner node v the two out-neighbors u and w (i.e., there are edges (v, u)
and (v, w) in P) are called children of v.

• Each node v of P is labeled by an affine space Av ⊆ Fn
2 .

• The source is labeled by Fn
2 .

• Let v be a node of out-degree 2 and u and w be children of v. Then, Au = A0
v and Aw = A1

v, where
Ac

v = {x ∈ Av | ⟨fv, x⟩ = c} for a linear query fv = Fn
2 and c ∈ {0, 1}. We call such v a query node.

• Let v be a node of out-degree 1 and u be the child of v. Then, Av ⊆ Au. We call such v a forget
node.

• Each sink v of P has an assigned output ov ∈ O such that Av is ov-monochromatic according to
P, i.e., α ∈ Av =⇒ (α, ov) ∈ P.

A standard/ordinary branching program is defined analogously but its nodes are labeled by cubes
instead of affine spaces. Consequently, variables instead of arbitrary linear functions are queried at its
query nodes.

The correspondence between a branching program computing Search(Φ) and a (linear) resolution
proof refuting Φ is roughly the following. We can represent the resolution proof as a directed acyclic
graph where nodes are labeled by (linear) clauses. The sources are labeled by clauses of Φ and there is
exactly one sink that is labeled by an empty clause. Each node that is not a source has at most two
parents and it corresponds to an application of the (linear) resolution rule (if the node has 2 parents),
or the weakening rule (if the nodes has 1 parent). To get a (linear) branching program for Search(Φ)
we just flip the direction of the edges in the resolution graph and negate the clauses that are used for
node labeling. Thus, each node is labeled by a cube or an affine space, the query nodes correspond to
applications of the resolution rule, and the forget nodes correspond to applications of the weakening rule.
It is clear the size of a branching program P (number of nodes of P) is exactly the same as length of the
corresponding resolution refutation.

Regular resolution is a subsystem of the resolution system, such that in any path of the resolution
proof graph each variable can be resolved at most once. A read-once branching program corresponds to
a regular resolution proof, i.e., on each directed path from the source to a sink each variable is queried
at most once. There is interest in two generalizations of regular resolution to linear regular resolution –
top-regular linear resolution [9] and bottom-regular linear resolution [6] (in both papers called as regular
linear resolution). We will define both of them by their corresponding linear branching programs.

Definition 1 ([9]). Let v be a node of a linear branching program P. Let Pre(v) be the space spanned
by all linear functions queried on any path from the source of P to v. Let Post(v) be the space spanned
by all linear functions queried on any path from v to any sink of P.
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A linear branching program is top-read-once1 [9] if for each query node v, we have fv ̸∈ Pre(v).
A linear branching program is bottom-read-once [6] if for each edge (v, u) such that v is a query node
holds that fv ̸∈ Post(u). A linear resolution proof is top-regular, or bottom-regular if the corresponding
branching program is top-read-once, or bottom-read-once, respectively. We use both notion of branching
program and resolution to state and prove our result, whichever is more suitable for the presentation
at hand. Our separation is only for bottom-regular ResLin, i.e., for bottom-read-once linear branching
program, which we abbreviate to BROLBP.

Lemma 2 (Lemma 2.6 [6] stated for branching programs). Let P be a BROLBP computing a search
problem P ⊆ {0, 1}n ×O. Let v be a node of P such that there is a path of length t from the source of P
to v. Then, dim(Post(v)) ≤ n− t.

Lemma 3 (Lemma 2.3 [6] stated for branching programs). Let P be a linear branching program com-
puting a search problem P ⊆ {0, 1}n × O. Let u and v be nodes of P such that there is a directed path
p from u to v. Let (M |c) be the system of linear equations given by queries along the path p and A be
the affine space of solution of (M |c), i.e., A = {α ∈ {0, 1}n |Mα = c}. Then, for Au and Av the affine
spaces associated with u, and v, respectively, holds that Au ∩A ⊆ Av.

Even more restrictive subsystems, are tree-like resolution, and tree-like ResLin. These subsystems
correspond to decision trees and parity decision trees. A parity decision tree (PDT) is a linear branching
program such that its underlying graph is a tree, and a decision tree (DT) is a restriction where we query
only bits of the input, instead of linear functions. It is clear that tree-like resolution is a subsystem of
regular resolution. Analogously, tree-like ResLin is a subsystem of both bottom-regular and top-regular
ResLin.

It is easy to see that strongly read-once linear branching programs are both top-read-once and bottom-
read-once. Chattopadhyay and Liao [5] showed that strongly read-once linear branching programs can
simulate parity decision trees. A super-polynomial separation between tree-like ResLin and bottom-
regular ResLin follows from the lifting theorems in Chattopadhay et al [3] as well as in Beame and
Koroth [2]. We have the following containments:

Tree-Like Resolution

Tree-Like Linear Resolution

Strongly Regular Linear Resolution

Bottom-Regular Linear Resolution Top-Regular Linear Resolution

General Linear Resolution

In this paper we show the existence of a CNF formula with a polynomial sized resolution refutation
for which any bottom-regular linear resolution refutation requires exponential size. Thus, we show that
the containment bottom-regular linear resolution ⊆ general ResLin is strict.

3.1 ROLBP Computing Boolean Function

In the context of computing Boolean functions, branching programs are defined, usually, in a more relaxed
fashion in a certain sense. For instance, ordinary branching programs are defined without placing the
restriction that the set of inputs reaching a node can be contained in a non-trivial sub-cube. This is
something we insist when we define BPs here as our focus is on capturing the limitations of those BPs that

1Gryaznov et al. [9] used just the name weakly read once for such programs.
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are derived from a resolution proof DAG by reversing the direction of its edges. It, possibly, would have
been more meaningful to call these latter objects affine DAGs, but we chose to call it linear branching
programs for the sake of continuity wrt the earlier works by Efremenko et al. [6] and Gryaznov et al.
[9]. In this section, we take the liberty of indeed calling them DAGs to compare them with BPs. Affine
DAGs severely restrict the power of computing Boolean functions. This is because the set of sink nodes
of such a DAG of small size computing a Boolean function f simply provides an efficient affine cover of
f−1(0) as well as f−1(1). Thus, immediately, one concludes that any affine DAG, without any restriction
on the number of reads of a variable, computing the Inner-product on n bits requires 2Ω(n) size2 as IP
has large affine cover number. On the other hand, IP can be easily seen to be computed by a linear-size
read-once and bit-querying branching program.

On the other hand, the situation for problems of searching a falsified clause, is quite different. As
Lemma 2.4 in the work of Efremenko et al. [6] proves, for any unsatisfiable CNF Ψ, any top-read-once
linear branching program solving Search

(
Ψ
)
gives rise to a top-read-once affine DAG for Search

(
Ψ
)
with

hardly any blow-up in its size. The proof can be easily verified to additionally yield that a strongly
read-once linear BP for Search

(
Ψ
)
, completely analogously, yields a strongly read-once affine DAG for

Search
(
Ψ
)
with no essential blow-up to its size. Thus, our main result, Theorem 1 holds equally for

strongly read-once linear branching programs that are not restricted by definition to be affine DAGs.

4 Linear Algebraic Facts

In this section, we will describe the notions of linear algebra that we will need in our arguments. Let
us introduce some notation first. Let M ∈ Ft×m

2 be a matrix. We denote the row space of M by
R(M). For a vector c ∈ {0, 1}t, S(M, c) is the affine space of solutions to the linear system (M |c), i.e.,
S(M, c) = {α ∈ {0, 1}m |M · α = c}.

The entries of vectors of Fmb
2 are naturally divided into m blocks, each having b co-ordinates/bits,

i.e., for j ∈ [m], the j-th block contains the coordinates (j − 1)b+ 1, . . . , jb. For j ∈ [m], BLOCK(j) =
{(j− 1)b+1, · · · , jb}. Also for T ⊆ [m] define BLOCK(T ) = ∪t∈TBLOCK(t). For a vector u ∈ Fmb

2 and
a block j ∈ [m], uj ∈ Fb

2 is the vector corresponding to the block j of u, i.e., uj = (u(j−1)b+1, . . . , ujb).

We say a vector u ∈ Fmb
2 touches a block j ∈ [m] if the vector uj is non-zero. A set of vectors R ⊆ Fmb

2

touches a block j if at least one of the vectors in R touches j. Let U be a subspace of Fmb
2 and T ⊆ [m]

be a set of blocks. The subspace UT of U is the linear space of all vectors u that do not touch any block
outside T , i.e., UT = {u ∈ U | ∀j ̸∈ T : uj = (0, . . . , 0)}. For S = BLOCK(T ), the subspace U↓T of FS

2 is

the projection of U onto T , i.e., U↓T = {x ∈ FS
2 | ∃y ∈ F[mb]\S

2 : (x, y) ∈ U}. We call a tuple of vectors
R = (u1, . . . , ut), ui ∈ Fmb

2 to be safe if the following condition holds:

• The vectors (u1, . . . , ut) form a matrix M ∈ Ft×mb in echelon form, i.e., there are t distinct
coordinates a1, . . . , at ∈ [mb] such that for all i, j ∈ [t]:

(ui)aj =

{
1 if i = j

0 otherwise

In other words, the matrix M restricted to the columns a1, . . . , at is the identity matrix It ∈ Ft×t
2 .

• Moreover, each pivot ai lies in a distinct block.

The ai’s are called the pivot variables of R. There might be multiple possible choices for the tuple
of pivot variables (a1, . . . , at). In that case we pick any valid choice, say the lexicographically smallest
valid choice, and call it the set of pivots.

A subspace U of Fmb
2 is spread if any set of k linearly independent vectors of U touches at least k

blocks, for each 1 ≤ k ≤ m. We say a set of blocks T ⊆ [m] is an obstruction of a space U if U↓T̄ is
spread, where T̄ is complement of T , i.e., T̄ = [m] \ T . An obstruction T ⊆ [m] of a space U is minimal
if any proper subset T ′ ⊂ T is not an obstruction of U , i.e., U↓T̄ ′ is not spread. Efremenko et al. [6]
showed the following result.

Theorem 2 (Theorem 3.1, Efremenko et al. [6]). Let U be a spread subspace of Fmb
2 with dim(U) ≤ m.

Then, U has a safe basis.

2In fact, the case for cube DAGs is known to be more dramatic. If a Boolean function f can be computed by a cube
DAG of size s, then it can be also computed by a decision tree of size sO(log(s)·logn).
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The following is a basic fact.

Observation 3. Let U be any subspace of Fmb
2 and T ⊆ [m] be a set of blocks. Then,

dim(U) = dim(UT ) + dim
(
U↓T̄

)
.

Proof. Let U ′ be a suitable subspace of U such that U = UT ⊕U ′. It is simple to see that U↓T̄ = (U ′)↓T̄ .
This is because every vector u ∈ U can be written as x+u′, with x ∈ UT and u′ ∈ U ′. But, as x↓T̄ = 0, we

have u↓T̄ = u′↓T̄ . Hence, we conclude that dim
(
U↓T̄

)
= dim

(
(U ′)↓T̄

)
≤ dim

(
U ′

)
. To establish our result,

we will simply show that dim(U ′) ≤ dim
(
(U ′)↓T̄

)
. This follows if we show that whenever u′1, . . . , u

′
r ∈ U ′

are linearly independent vectors, so are
(
u′1

)
↓T̄ , . . . ,

(
u′r

)
↓T̄ . If that is not the case then there exists a

vector x ∈ UT such that x, u′1, . . . , u
′
r are not linearly independent, contradicting our assumption.

Efremenko et al. [6] showed the following properties of minimal obstructions.

Lemma 4. Let U be a subspace of Fmb
2 . Then, a minimal obstruction T ⊆ [m] of U is unique and

|T | ≤ dim(U).

Definition 2. For an affine space A = S(M, c) ⊆ Fmb
2 we define its closure Cl(A) ⊆ [m] to be its unique

minimal obstruction. Also, define VarCl(A) ⊆ [mb] to be the set of variables that appear in the blocks of
Cl(A), i.e.,

VarCl(A) = BLOCK(Cl(A)).

Efremenko et al. [6] proved the following relationship between the closures of two affine spaces when
one contains the other.

Lemma 5. Let A ⊆ A′ be two affine spaces of Fmb
2 . Then, Cl(A′) ⊆ Cl(A).

A partial assignment α′ of m variables is a string in {0, 1, ∗}m. A variable X ∈ [m] is assigned if
αX ∈ {0, 1}. For a total assignment α ∈ {0, 1}m and T ⊆ [m] we define the restriction α|T of α to T
to be the partial assignment arising from α by unassigning the variables that are not in T , i.e., for each
i ∈ [m] (

α|T )i =

{
αi if i ∈ T ,

∗ otherwise.

We describe the notion of stifling introduced by Chattopadhay et al. [4].

Definition 3. A Boolean function g : {0, 1}b → {0, 1} is stifled3 if the following holds

∀i ∈ [b] and a ∈ {0, 1} ∃δ ∈ {0, 1}b

such that for all γ ∈ {0, 1}b with γ|[b]\{i} = δ|[b]\{i} holds that g(γ) = a.

We call δ from the previous definition a stifling assignment for i and a. The utility of stifling is the
following. An adversary can pick any variable i ∈ [b] of g. For any a ∈ {0, 1}, we can pick a partial
assignment δa ∈ {0, 1, ∗}m that assigns a value to all variables except the i-th variable. Now, no matter
how the adversary chooses the value for the i-th variable to get a total assignment γa ∈ {0, 1}b from δa,
the value g(γa) will be always a.

Definition 4. A partial assignment β ∈ {0, 1, ∗}mb is called block-respecting if for each block j ∈ [m],
either all variables or no variables are assigned, i.e.,

(βj)i ∈ {0, 1} for all i ∈ [b] or (βj)i = ∗ for all i ∈ [b].

A block-respecting assignment β ∈ {0, 1, ∗}mb naturally gives a partial assignment −→g (β) ∈ {0, 1, ∗}m
by applying the gadget g to the assigned blocks. Formally, for each j ∈ [m] we have

−→g (β)j =

{
g(βj

1, . . . , β
j
b ) if for all i ∈ [b] : βj

i are assigned,

∗ otherwise.

31-stifled called by Chattopadhyay et al. [4]
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Definition 5. Let A ⊆ Fmb be an affine space and β ∈ A. The closure-assignment of β, β|VarCl(A)

is the partial assignment which fixes all coordinates in blocks of Cl(A) according to β and keeps other
coordinates free. In other words,

(β|VarCl(A))
j =

{
βj if j ∈ Cl(A),

(∗, . . . , ∗) otherwise.

Lemma 6. Let A = S(M, c) ⊆ Fmb be an affine space and let g : {0, 1}b → {0, 1} be a stifled gadget. Let
β ∈ A be a vector and β′ ∈ {0, 1, ∗}mb be its closure assignment. Let α′ := −→g (β′) ∈ {0, 1, ∗}m. Then,
for any extension of α′ to a total assignment α ∈ {0, 1}m, there exists γ ∈ A such that −→g (γ) = α.

Proof. WLOG assume the rows of M are linearly independent. Let U = R(M) be the row-space of M
and let T ⊆ [m] be the closure of A. First, we construct a matrix M ′ which has the same row-space as
M .

Construction of M ′

1. Let (u1, . . . , ud) be an arbitrary basis of UT and let M1 ∈ Fd×mb be the matrix whose rows are the
vectors u1, . . . , ud:

M1 =


u1
u2
...
ud


2. Let (w1, . . . , wd′) be a safe basis of U↓T̄ . Such a basis exists by the definition of closure and

Theorem 2. Let a1, . . . , ad′ be pivots of w1, . . . , wd′ . Each of these pivots lie in a distinct block.
Moreover, none of these pivots are in the blocks of T .

Let L : U → U↓T̄ be the projection of U to U↓T̄ . Let w
′
i be an arbitrary pre-image of wi according

to L, i.e., L(w′i) = wi. Since (w1, . . . , wd′) are linearly independent, the vectors (w′1, . . . , w
′
d′) are

linearly independent as well. Let M2 ∈ Fd′×mb be the matrix with the vectors w′1, . . . , w
′
d′ as its

rows.

M2 =


w′1
w′2
...
w′d′


3. Take M ′ ∈ F(d+d′)×mb to be the matrix obtained by stacking M1 on top of M2:

M ′ =

[
M1

M2

]
Claim 1. The matrices M and M ′ have the same row-space.

Proof. By Observation 3, dim(U) = dim(UT ) + dim(U↓T̄ ) = d+ d′. No row of M2 can be generated by
rows of M1 as the pivots a1, . . . , ad′ of the matrix M2 lie in columns where the matrix M1 has only 0
entries. Thus, rank(M ′) = rank(M1) + rank(M2) = d+ d′ = dim(U) = rank(M). Moreover, any row of
M ′ lies in U = R(M). It follows that R(M) = R(M ′).

Thus, there is a vector c′ ∈ Fmb such that A = S(M ′, c′). Now, we prove the lemma. We are given a
vector β ∈ S(M ′, c′) and a target assignment α ∈ {0, 1}m such that g(βj) = αj for all j ∈ Cl(A). Our
goal is to show the existence of a γ ∈ Fmb such that −→g (γ) = α and M ′γ = c′. Recall that the tuple
of rows of M2, (w

′
1, . . . , w

′
d′) is a safe tuple with set of pivots a1, . . . , ad′ . Suppose aj ∈ BLOCK(bj).

The blocks b1, . . . , bd′ are distinct and all of them lie in [m] \ T . Let PIVOTS = {b1, b2, · · · , bd′} and
FREE = [m] \ (T ∪ PIVOTS). We construct γ in two steps. In the first step we construct a β̃ ∈ Fmb

such that −→g (β̃) = α, but it is not necessarily the case that M ′β̃ = c′. In the second step we modify β̃
in the coordinates a1, . . . , ad′ to get an assignment γ ∈ S(M ′, c′).
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Constructing β̃

• For each i ∈ T = Cl(A), β̃ agrees with β on BLOCK(i), i.e., (β̃)i = βi.

• For each i ∈ FREE, choose an arbitrary preimage ui ∈ g−1(αi) and set (β̃)i = ui.

• For each i = bj ∈ PIVOT: Suppose the pivot aj is the ℓ-th coordinate of BLOCK(j). Pick

ui ∈ g−1(αi) to be a stifling assignment for the ℓ-th coordinate, i.e., g(ui) = g(u
(l)
i ) = αi

(where s(l) denotes s with l-th coordinate flipped). Set (β̃)i = ui.

Constructing γ: We modify β̃ in the coordinates a1, . . . , ad′ to get an assignment γ in S(M ′, c′) as
follows. For 1 ≤ j ≤ d, let fj = ⟨w′j , β̃⟩+ (c′)j . Let γ ∈ Fmb be the following assignment:

γi =

{
(β̃)i if i ̸∈ {a1, . . . , ad′},
(β̃)i + fj if i = aj .

Claim 2. −→g (γ) = α and γ ∈ S(M ′, c′).

Proof. We show both points separately.

Showing −→g (γ) = α: We argue that g(γi) = αi for all i ∈ [m].

Case 1, i ∈ T : We have set (β̃)i = βi. Note that γ differs from β̃ only in coordinates a1, a2, · · · , ad′ .
All these coordinates lie outside BLOCK(T ). Thus, g(γi) = g(βi) = αi.

Case 2, i ∈ FREE: We have set (β̃)i = ui where ui ∈ g−1(αi). Again, note that γ differs from
β̃ only in the coordinates a1, a2, · · · , ad′ , all of which lie outside BLOCK(i). It follows that
g(γi) = αi.

Case 3, i ∈ PIVOTS: Let i = bj and let aj ∈ BLOCK(bj) be the corresponding pivot variable.
Recall that each pivot variable lies in a distinct block. Let aj be the ℓ-th coordinate of

BLOCK(bj). We have set (β̃i) = ui where ui ∈ g−1(αi) is a stifling assignment for ℓ and αi.
This means that g((ui)

(ℓ)) = g(ui) = αi (s
(ℓ) denotes s with ℓ-th coordinate flipped). Notice

that γ and β̃ agree everywhere on BLOCK(bj) except possibly aj . This implies g(γi) = αi.

Showing γ ∈ S(M ′, c′): Note that all equations corresponding to rows in M1 are satisfied by γ since
they are satisfied by β and hence by β̃ too. That the equations corresponding toM2 are satisfied by
γ follows from the row echelon structure of M2, i.e., the fact that after an appropriate permutation
of the columns, M ′ looks as follows:

M’ =
B1 0 0 =M1

B2 Id′ B3 =M2

Closure T Pivots of M2

Since S(M ′, c′) = S(M, c) = A, Lemma 6 follows immediately from Claim 2.

5 Proof Outline

In this section, we provide an outline of the proof of our main result, Theorem 1. The proof consists of
two parts. The first part shows that the formula Stone(G, ρ)◦g has a polynomial length resolution proof
for any directed acyclic graph G on N vertices and out-degree 2, any obfuscation map ρ : [N ]3 → V, and
any gadget g : {0, 1}b → {0, 1}, where b is logarithmic in N (recall that the number of variables m of the
formula Stone(G, ρ) is 2N2). This part of the proof is an adaptation of an analogous proof for the stone
formula given by Alekhnovich et al. [1].

The second part establishes that there is a graph G and an obfuscation map ρ : [N ]3 → V such that
any bottom-regular ResLin proof of Stone(G, ρ) ◦ IP has exponential length in m, where IP is the inner
product function on b = Θ(logm) bits. The proof of this part is involved and non-trivial. We outline the
main steps in the figure below, immediately followed by a high-level description of each step depicted.
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Construct µ such that D7/10,µ(Search(F )) ≥ t

Step 1

D⊕
8/10,−→g −1(µ)

(Search(F ◦ g)) ≥ Ω(tb)

Step 2

Prβ∼−→g −1(µ)[P(β, t) is foolable] ≥ 2/3

Step 3

v is a node of P such that Av is foolable =⇒ co-dim(Av) ≥ r Prβ∼−→g −1(µ)[co-dim((P(β, t)) ≥ r] ≥ 2/3

Step 4

co-dim(A) ≥ r =⇒
for any lifted distribution D,

Prβ←D [β ∈ A] ≤ exp(−Ω(r/b)) [Lemma 20]

Step 5

|P| ≥ s =
2

3
exp(Ω(r/b))

Theorem 5

Lemma 16

Figure 2: Outline of the proof. The solid boxes refer to parts that are quite general and not specific to a
formula, while the dashed boxes contain modules that are more specific to SPn ◦ IP and similar formulas.

Outline of the Lower Bound Proof. Our argument is an adaptation of the method presented in
Efremenko et al [6] with addition of some new ingredients. See Figure 2, for depicting the method. Let
P(β, t) be the node that P arrives at after making t linear queries on β.

Some Details: Let P be a bottom-read-once branching program computing Search(Stone(G, ρ) ◦ IP)
corresponding to a bottom-regular ResLin proof of Stone(G, ρ) ◦ IP where G is a pyramid graph of n
levels and ρ is a carefully chosen obfuscation map. The proof consists of several steps.

1. We design a distribution µ over the assignment of variables of the base formula F over m variables,
typically supported over critical assignments, i.e. those which result in the falsification of exactly
one clause. This module requires one to show that Search(F ) is average-case hard for determin-
istic decision trees of small height wrt µ. In particular, our Lemma 15 proves that the problem
Search(Stone(G, ρ)) is average-case hard for deterministic decision trees of height at most O(n1/3).
As the µ exhibited is formula specific, the box corresponding to this module is dashed.

2. In this step, we prove that the search problem associated with the lifted formula F ◦ g remains
average case hard for parity decision trees wrt a lifted distribution as long as the gadget g has small
rectangular discrepancy. More precisely, let −→g −1(µ) denote the lifted distribution generated by
the following sampling: sample an input z ∈ {0, 1}m according to µ. Then, sample at random an
input β ∈ {0, 1}mb, conditioned on −→g (β) = z. Using Theorem 5, implicit in the proof of the main
result of Chattopadhyay, Filmus, Koroth, Meir and Pitassi [3], we conclude that Search(F ◦ g) is
average-case hard for deterministic parity decision trees of small height, under the lifted distribution
−→g −1(µ). This step is generic and works for any gadget of size c · log(m), that has sufficiently small
rectangular discrepancy under the uniform distribution over {0, 1}b. The gadget we use here is IP.

3. We then want to define a notion of progress the branching program P has made on arriving at a node
v. To do so, consider the affine space Av that labels the node. Av may have nearly fixed/exposed
the values of some of the blocks of input. These dangerous blocks are precisely Cl(Av) as defined
in Section 4. They form the minimum obstruction set. Intuitively, the danger is P may have
nearly found out a falsified clause of F ◦ g on reaching v if that clause was made up entirely of
variables from blocks in Cl(Av). However, in this step we observe that the average-case hardness
of the Search problem for PDTs proved in the previous step precludes this from happening with
appreciable probability, when the input is sampled according to the lifted distribution −→g −1(µ). To
formalize this idea, we need to concretely say when Av is (not) dangerous. So far, we have not
been able to lay out a general notion of danger, but notions specific to individual formulas have
been defined. For Stone(G, ρ), this notion is captured by Definition 8 of foolable spaces, provided
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in Section 7.3. Theorem 6 shows that w.h.p., P reaches a foolable space on walking for n1/3 steps,
querying an input sampled according to −→g −1(µ).

4. In this step, we show that when the affine space Av is not dangerous, i.e. it is foolable or consistent,
the appropriate notion depending on the formula at hand, Av has large co-dimension. All steps
until now held for general branching programs (or equivalently proof DAGs). This step is the
only one where the bottom-read-once property is exploited. For Stone(G, ρ), this is achieved in
Section 7.4, at the end, by Lemma 19.

5. In this step, we prove a general result about lifted distributions. For any affine space A of
co-dim(A) = r and any distribution µ on {0, 1}m, we prove that β sampled by −→g −1(µ) is in
A only with probability 2−Ω(r/b), as long as the gadget g is balanced and stifling. In other words,
lifted distributions, even though their support is quite sparse in the ambient space, are pseudo-
random for the rank measure. This property, though simple to prove, turns out to be extremely
useful, especially for formulas like the stone formulas that are barely hard.

At this stage we are ready to put together the above steps in the following way. Let R be a set of nodes
w of P such that there is a path from the root of P to w of length t, and co-dim(Aw) ≥ t. Setting
t := n1/3 we have the following.

7

10
≤ Pr

β∼
−→
IP−1(µ)

[
co-dim(Av) ≥ t for v = P(β, t)

]
(by Step 3 and 4)

≤
∑
w∈R

Pr
β∼
−→
IP−1(µ)

[
P(β, t) = w

]
(by union bound)

≤ |R| · 2Ω(−t/b) (by Step 5)

By rearranging, we get the lower bound |R| ≥ 2Ω(n1/3/ logn). Recall that the number of variables of

Stone(G, ρ) ◦ IP is M = Θ(n4 log(n)). In terms of M , the lower bound is 2Ω(M1/12/ log13/12 M ) = 2M
Ω(1)

.

6 Upper Bound

In this section, we show the upper bound part of Theorem 1.

Theorem 3. Let G = (V,E) be an directed acyclic graph with N vertices such that there is exactly one
root r (vertex with indegree 0), and each non-sink vertex has outdegree exactly 2. Let ρ : [N ]3 → V be
any obfuscation map, and g : {0, 1}b → {0, 1} be a Boolean function for b ≤ O(logN). Then, the formula
Stone(G, ρ) ◦ g admits a resolution refutation of length polynomial in N .

The proof of Theorem 3 is an adaptation of the proof given by Alekhnevich et al. [1] for lifted formulas.
We remark that Alekhnevich et al. [1] presented a resolution refutation for the stone formulas of constant
width. This allow us to adapt the refutation for the lifted formula. For the rest of the section, we fix
a graph G, an obfuscation map ρ, and a gadget g satisfying the assumptions of Theorem 3. First, we
prove several auxiliary lemmas about the formula Stone(G, ρ) ◦ g.

Lemma 7. Let C be a clause with width w. Suppose we have derived the clauses C ∨ ¬Pv,j for a fixed
v ∈ V and all 1 ≤ j ≤ N . Then, we can derive C in N steps in width ≤ w + 2.

Proof. We derive the clause C in N steps. We will subsequently derive C ∨ ¬Zv,j+1
from C ∨ ¬Zv,j

Base step: Deriving C ∨ ¬Zv,1.

C ∨ ¬Zv,1

{C ∨ ¬Pv,1} {Pv,1 ∨ ¬Zv,1}

Step j: For j ∈ [N − 2], deriving C ∨ ¬Zv,j+1 from C ∨ ¬Zv,j .
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C ∨ ¬Zv,j+1

{C ∨ ¬Pv,j+1} {C ∨ Pv,j+1 ∨ ¬Zv,j+1}

{C ∨ ¬Zv,j} {Zv,j ∨ Pv,j+1 ∨ ¬Zv,j+1}

Final step: Deriving C.

C

{C ∨ ¬Pv,N} {C ∨ Pv,N}

{C ∨ ¬Zv,N−1} {Pv,N ∨ Zv,N−1}

For a vertex v, we define the set of clauses S(v) = {¬Pv,j ∨Rj |1 ≤ j ≤ N}.

Lemma 8. Let v be a vertex in G with children v0, v1. We can derive S(v) from S(v0), and S(v1) in
constant width and length O(N3).

Proof. We derive S(v) in several steps.

1. For every j, j0, j1 ∈ [N ], we perform the following sequence of operations:

¬Pv,j ∨ ¬Pv0,j0 ∨ ¬Pv1,j1 ∨Rj

{¬Pv1,j1 ∨Rj1} {¬Pv,j ∨ ¬Pv0,j0 ∨ ¬Pv1,j1 ∨ ¬Rj1 ∨Rj}

{¬Pv0,j0 ∨Rj0} {¬Pv,j ∨ ¬Pv0,j0 ∨ ¬Rj0 ∨ ¬Pv1,j1 ∨ ¬Rj1 ∨Rj}

2. For each fixed j0, j, we apply Lemma 7 to the clause C := ¬Pv,j ∨ ¬Pv0,j0 ∨ Rj and we derive
¬Pv,j ∨ ¬Pv0,j0 ∨Rj .

3. For each fixed j, we apply Lemma 7 to the clause C := ¬Pv,j ∨Rj and we derive ¬Pv,j ∨Rj .

Lemma 9. The formula Stone(G, ρ) has a resolution refutation of width O(1) and size polynomial in
N .

Proof. The refutation proceeds in the following steps.

Elimination of the ρ’s : For every induction clause C, we resolve the appended ρ-variable.
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C

{C ∨ ρ} {C ∨ ¬ρ}

Derivation of S(r): For each sink s of G, the clauses S(s) are present in the axioms of Stone(G, ρ).
By Lemma 8, we subsequently derive the set S(r) for the root r of G.

Empty clause derivation: For each 1 ≤ j ≤ N, we derive ¬Pr,j .

¬Pr,j

{¬Pr,j ∨ ¬Rj} {¬Pr,j ∨Rj}

Now by applying Lemma 7 for C being an empty clause ⊥, we derive ⊥, that concludes the proof.

Now, from constant-width polynomial-length refutation of Stone(G, ρ) we derive a polynomial-length
refutation of the lifted formula Stone(G, ρ) ◦ g.

Lemma 10. Let g : {0, 1}b → {0, 1} be a Boolean function and Φ be a CNF unsatisfiable formula over n
variables containing only constant width clauses. Suppose Φ has a resolution refutation of length ℓ and
constant width. Then, Φ ◦ g contains clauses of width O(b) and admits a resolution refutation of size
ℓ · 2O(b).

Proof. By construction, if C is a clause of width k, then |C ◦ g| ≤ 2bk. If k is constant, this is 2O(b).
We show that, for every derivation step (A ∨ x), (B ∨ ¬x) → (A ∨B) in a proof for Φ, we can derive all
clauses of (A∨B) ◦ g from the clauses of (A∨ x) ◦ g and (B ∨¬x) ◦ g in polynomial size, assuming each
of A,B has constant width. This follows from the fact that (A ∨ x) ◦ g and (B ∨ ¬x) ◦ g semantically
imply (A∨B) ◦ g: an assignment (xi,1, . . . , xi,b)i∈[M ] satisfies formula C ◦ g if and only if the assignment
(g(xi,1, . . . , xi,b))i∈[n] satisfies clause C. And since clauses A ∨ x,B ∨ ¬x semantically imply A ∨ B, it
follows that the formulas (A ∨ x) ◦ g and (B ∨ ¬x) ◦ g semantically imply the formula (A ∨B) ◦ g.

As both A and B are constant-width clauses, each of the formulae (A ∨ x) ◦ g and (B ∨ ¬x) ◦ g are
defined on at most O(b) variables. By Lemma 1, we can derive each clause in (A∨B)◦ g from (A∨x)◦ g
and (B ∨ ¬x) ◦ g in at most 2O(b) resolution steps.

Using this fact, we can mimic the resolution refutation of Φ. For each intermediate clause C derived
in the resolution refutation for Φ, we can derive all clauses in C◦g. In the end, we derive ⊥ ◦g = {⊥}, i.e.,
the empty clause. Assuming the width of the resolution refutation for Φ is bounded by some constant,
the total length of our simulation is at most ℓ · 2O(b).

Now, Theorem 3 is a corollary of Lemma 9, and 10.

7 Lower Bound

In this subsection, we prove the lower bound part of Theorem 1 following the outline given in Section 5.

Theorem 4. There is an obfuscation map ρ : [N ]3 → V such that any bottom-regular ResLin refutation

of SPn,ρ ◦ IP must have length at least 2Ω(n1/3/ logn).

Recall that number of variables of SPn,ρ◦IP is Θ(n4 log n). Thus, the lower bound given by Theorem 4
yields the lower bound claimed in Theorem 1. For the rest of this section, we fix G = (V,E) to be the
pyramid graph of n levels, and N = n(n+ 1)/2 vertices.
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7.1 The Stone Formula is Average-Case Hard for Decision Trees

We shall construct a distribution µ on {0, 1}m such that for any obfuscation map ρ : [N ]3 → V, the
search problem Search(SPn,ρ) is hard on average w.r.t. µ for deterministic decision trees of sufficiently
small height (around n1/3).

First, we fix an arbitrary bijection f : [N ] → V between stones and vertices of the pyramid. All
assignments in Supp(µ) will place the stone i on vertex f(i). The distribution µ samples the assignments
as follows.

1. Assign stone i to vertex f(i). Formally for each v ∈ V , i ∈ [N ], and j ∈ [N − 1], we set:

Pv,i =

{
1 if f(i) = v

0 otherwise

Zv,j =

{
0 if j < f−1(v)

1 otherwise

2. Sample n− 2 independent uniform bits B2, . . . , Bn−1 ∈ {0, 1}

3. Let X1 = 1, and for 2 ≤ j ≤ n − 1, let Xj = Xj−1 + Bj . Color the vertices (j,Xj) blue for
1 ≤ j ≤ n− 1 and other vertices red, i.e., for each stone i ∈ [N ], we set:

Ri =

{
0 if j ≤ n− 1 and (j,Xj) = f(i)

1 otherwise

Let α ∈ Supp(µ). The assignment α corresponds to the following stone placement. It places a
different stone on each vertex. There is a path P from the root r = (1, 1) to a vertex v in the level n− 1
given by the random variables X1, . . . , Xn−1, i.e. the vertices of the path are {(1, X1), . . . , (n−1, Xn−1)}.
The stones on the vertices of P are colored blue, all other stones are colored red. An example of such a
coloring is shown in Figure 3.

Figure 3: An example of a pyramid graph with coloring giving by an assignment sampled by the hard
distribution µ.

We call the path P as the blue path induced by α and the vertex v as the end of P . Note that the
only clause falsified by the assignment α is one of the induction clauses for the vertex v and its children
u and w. Formally, for the stones i = f−1(u), j = f−1(w), and k = f−1(v), the assignment α falsifies
exactly one of the following two induction clauses (depending how α sets the value of ρ(i, j, k)):

D1(v) := ¬Pu,i ∨ ¬Ri ∨ ¬Pw,j ∨ ¬Rj ∨ ¬Pv,k ∨Rk ∨ ρ(i, j, k)

D0(v) := ¬Pu,i ∨ ¬Ri ∨ ¬Pw,j ∨ ¬Rj ∨ ¬Pv,k ∨Rk ∨ ¬ρ(i, j, k)
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Consider a random walk Y1, . . . , Yk on a number line starting at q ∈ N distributed as follows: Y1 = q,
and for i > 1

Yi =

{
Yi−1 + 1 with probability 1

2

Yi−1 with probability 1
2

Note that the random variablesX1, . . . , Xn−1 used in the construction of µ are distributed as Y1, . . . , Yn−1
for Y1 = 1.

Lemma 11. There exists a constant c1 ≥ 0 such that for any p ∈ {q, . . . , q + k − 1} and t ∈ {2, . . . , k},
we have Pr[Yt = p] ≤ c1/

√
t.

Proof. Note that Yt = q +
∑t

i=2Bi, where each Bi is an independent uniform random bit. Now,

Yt = p = p′ + q for p′ ∈ {0, . . . , k − 1} if and only if
∑t

i=2Bi = p′.

Pr[Yt = p] = Pr

[
t∑

i=2

Bi = p′

]
=

(
t− 1

p′

)
· 2−t+1 ≤

(
t− 1

⌊ t−1
2 ⌋

)
· 2−t+1 ≤ c1√

t

For an appropriate constant c1 > 0, the last inequality is implied by Stirling’s formula.

For a set S ⊆ [k]× N, we say the random walk W avoids S if for all (i, j) ∈ S it holds that Yi ̸= j.

Lemma 12. Let c2 ≥ 1 be a constant and S ⊆ [k]×N be a set of forbidden points with |S| ≤ t. Suppose
there exists an interval I = [L,R] ⊆ [k] with |I| ≥ c · t2 for sufficiently large constant c depending on
c2, such that no point of S has the first coordinate in I, i.e., for all (i, j) ∈ S : i < L or i > R. If the
random walk W = Y1, . . . , Yk avoids S with non-zero probability, then for any z ∈ {q, . . . , q + k − 1} it
holds that

Pr
[
Yk = z |W avoids S

]
≤ 1

c2t
.

Proof. We partition S into two subsets S1 and S2 of points before and after the interval I, S1 = {(i, j) ∈
S | i < L}, and S2 = {(i, j) ∈ S | i > R}. Note that by the assumption, we have S = S1∪̇S2.

We show that for all p such that Pr
[
YL = p | W avoids S

]
> 0, we have Pr

[
Yk = z | YL =

p,W avoids S
]
≤ 1/c2t. We set c := 4c21c

2
2 where c1 is the constant given by Lemma 11. We have by

Lemma 11 that

Pr
[
Yk = z | YL = p,W avoids S1

]
= Pr

[
Yk = z | YL = p

]
≤ 1

2c2t
, (7.1)

since z − L ≥ |I| ≥ c · t2. Again, for all (i, j) ∈ S2 (i.e., i > R) we have by Lemma 11 that

Pr
[
Yi = j | YL = p,W avoids S1

]
≤ 1

2c2t
≤ 1

2t
.

By union bound,

Pr
[
∃(i, j) ∈ S2 such that Yi = j | YL = p,W avoids S1

]
≤ 1

2
. (7.2)

Therefore,

Pr[Yk = z | YL = p,W avoids S] =
Pr

[
Yk = z,W avoids S2 | YL = p,W avoids S1

]
Pr

[
W avoids S2 | YL = p,W avoids S1

]
≤ 2 · Pr

[
Yk = z | YL = p,W avoids S1

]
(by (7.2))

≤ 1

c2t
(by (7.1))

Now, we are ready to finish the proof.

Pr
[
Yk = z|W avoids S

]
=

∑
p

Pr
[
YL = p |W avoids S] · Pr

[
Yk = z | YL = p,W avoids S

]
≤

∑
p

Pr
[
YL = p |W avoids S] · 1

c2t
=

1

c2t
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Now we show that when inputs are sampled according to µ, any deterministic decision tree for
Search(SPn,ρ) with small height makes an error with high probability. Note that for each v ∈ V, i ∈
[N ], j ∈ [N −1], the assignment to the variables Pv,i and Zv,j are fixed by any assignment in Supp(µ) (in
other words, for each vertex the stone placed on it is fixed). Thus, we can assume WLOG the decision
tree only queries the variables Rj . We say a decision tree queries the color of a vertex v of G if it queries
the variable Rf−1(v). (Recall that the stone f

−1(v) is placed on the vertex v by assignments in Supp(µ).)
Note that there is a simple, even non-adaptive, decision tree of height O(

√
n) that makes few errors.

It simply queries the colours of O(
√
n) nodes of the pyramid graph, centered around the (n − 1)/2-th

node at level n − 1. With very high probability, there is a blue node among the queried ones which
uniquely identifies the falsified induction clause. Nevertheless, we will show that all decision trees of
height at most n1/3, will make errors with large probability to identify a falsified clause.

Consider a decision tree T for Search(SPn,ρ). We transform T into a decision tree T ′ in a canonical
form:

• Initially, T ′ always queries the color of the root r of G.

• Suppose T outputs an induction clause D0(v) or D1(v) for a vertex v of G. Then, T ′ queries the
color of the vertex v first. If the color of v is red (i.e., Rf−1(v) = 1), then T ′ outputs an error
symbol. Otherwise it outputs the same induction clause that T outputs.

• If T outputs any other clause, then T ′ outputs an error symbol.

We remark this modification increases the height of the tree by at most two. Given any assignment in
Supp(µ), a decision tree T ′ in a canonical form can output either an induction clause from {D0(v), D1(v) |
v ∈ V (G)} or an error symbol. The probability of T making an error is precisely the probability of
reaching a leaf node of T ′ labeled with an error symbol.

Note that for each cube C ⊆ {0, 1}m there is a corresponding partial assignment αC ∈ {0, 1, ∗}m such
that the cube C is exactly the set of total extensions of αC , i.e., C = {α ∈ {0, 1}m | α extends αC}. We
say a cube C ⊆ {0, 1}m fixes a vertex v ∈ V (G) to red (or blue) if the corresponding partial assignment
αC assigns a value 1 (or 0) to the variable Rf−1(v).

Now, fix a decision tree T for Search(SPn,ρ) in a canonical form and let h := γ · n1/3 be the height
of T , where γ > 0 is sufficiently small constant.

Definition 6. We say a cube C ⊆ {0, 1}m is useful if there exist 1 ≤ L1 ≤ L2 ≤ L3 ≤ L4 ≤ N such
that:

1. The cube C fixes the some vertex in level L1 to blue and some vertex in level L4 to blue.

2. For all L2 ≤ ℓ ≤ L3, the cube C does not fix the color of any vertex in level ℓ.

3. L3 − L2 ≥ n

2h

A node p of T is called useful if the cube Cp associated with it is useful.

Clearly, the root of T is not useful.

Lemma 13. Let α ∈ Supp(µ) be an assignment on which T reaches the leaf p. If p does not output an
error symbol, then p is useful.

Proof. Let v be the endpoint of the blue path induced by α. Then, p outputs one of the induction clauses
D0(v) or D1(v) for v ∈ V (G). Since T is in the canonical form, the cube Cp fixes the vertex v and the
root r of G to blue. Recall that the vertex v is in level n− 1. Let 1 = ℓ1 < · · · < ℓd = n− 1 be the levels

where Cp fixes some vertices. Since d ≤ h, there must exist an i such that ℓi+1 − ℓi ≥ n− 1

h+ 1
>

n

2h
..

There is no fixed vertex on levels ℓi + 1, . . . , ℓi+1 − 1.
We take largest the ℓ1 such that ℓ1 ≤ ℓi and Cp fixes a vertex on ℓ1 to blue. Similarly, we take the

smallest ℓ2 such that ℓ2 ≥ ℓi+1 and Cp fixes a vertex on ℓ2 to blue. The cube Cp satisfies the conditions
of being a useful node in Definition 6 by taking (L1, L2, L3, L4) = (ℓ1, ℓi + 1, ℓi+1 − 1, ℓ2).

Lemma 14. For any ε > 0 there exists γ > 0 such that

Pr
α∼µ

[The computation path of T on α reaches a useful node] ≤ ε.

18



Proof. Let T (α, k) denote the node of T reached by α after k queries. For each 1 ≤ k ≤ h, we upper
bound the probability that the computation path of α reaches a useful node for the first time at step k.
Then, we shall use union bound on k. Formally, we bound the probability as follows.

Pr
α∼µ

[computation path of α reaches a useful node]

= Pr
α∼µ

[
∃k ∈ [h] : T (α, k) is useful and T (α, k − 1) is not useful

]
≤

h∑
k=1

Pr
α∼µ

[
T (α, k) is useful and T (α, k − 1) is not useful

]
≤ h ·max

k∈[h]
Pr
α∼µ

[
T (α, k) is useful | T (α, k − 1) is not useful

]
We bound the last probability for any k ∈ [h]. Let p = T (α, k − 1). We assume the node p is not

useful. Let (i, j) ∈ V (G) be the lowest vertex that is fixed by Cp to blue. Suppose that in the the next
step T queries a color of the vertex (i′, j′). If the next node has to be useful, the response to the query
has to be blue. Moreover, there have to be n/2h consecutive layers i < ℓ′, . . . , ℓ′ + n

2h − 1 < i′ such that
Cp does not fix any vertex on those layers. The probability that the response to the query is blue is

Pr
α∼µ|Cp

[The blue path induced by α visits (i′, j′)] .

Consider the random walk X1, . . . , Xn−1 that determines the blue path P induced by α ∼ µ. Recall
that the vertices of P are {(1, X1), . . . , (n − 1, Xn−1)}. The cube Cp fixes colors of some vertices of G.
Let B and R be the set of vertices whose colors are fixed by Cp to blue and red respectively.

Conditioning on the cube Cp restricts the random walk X1, . . . , Xn−1 that it must visit the points
in B and must not visit the points in R. Formally, for any (q, y) ∈ B it holds that Xq = y and for any
(q′, y′) ∈ R it holds that Xq′ ̸= y′. We know there is at least one walk that avoids R and visits B (the
walk corresponding to P ). Moreover, we have |R| ≤ h and there is a large ”gap” in R, i.e., for each
(i1, j1) ∈ R it holds that i1 < ℓ′ or i1 > ℓ′ + n

2h − 1. Recall that we set h = γn1/3. Set γ to a sufficiently

small constant so that
n

2h
≥ ch2, where c is a sufficiently large constant for which we can apply Lemma

12 with c2 = ε−1. By applying an appropriate time shift, we have by Lemma 12 that

Pr
α∼µ|Cp

[
The blue path induced by α visits (i′, j′)

]
= Pr

µ|Cp

[Xi′ = j′] ≤ 1

c2h
≤ ε

h
.

Thus, we conclude that for all k ∈ [h],

Prµ∼α
[
T (α, k) is useful | T (α, k − 1) is not useful

]
≤ ε

h
.

Therefore, the probability that the computation path ever reaches a useful node is at most ε.

We end this subsection with by showing that the formula SPn,ρ is average-case hard for decision trees.

Lemma 15. For any ε > 0, there exists γ > 0 such that every deterministic decision tree of height at
most γ · n1/3 for Search(SPn,ρ) makes error with probability ≥ 1− ε w.r.t. the distribution µ.

Proof. If the decision tree answers correctly, by Lemma 13 it must reach a useful node at some point.
By Lemma 14, the probability of this ever happening is at most ε if γ is small enough.

7.2 Lifting the Average-Case Hardness to Parity Decision Trees

We lift the distribution µ to a distribution µ′ of variables of SPn,ρ ◦ IP as follows:

1. Sample an assignment α according to µ.

2. Sample a uniformly random assignment from
−→
IP−1(α).
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We remark that an assignment β sampled by µ′ falsifies exactly one clause of SPn,ρ ◦ IP, in particular one
clause that arises by a lifting clause C of SPn,ρ where C is the unique clause falsified by the assignment
−→
IP(β).

In this section, we prove Search(SPn,ρ ◦ IP) is average-case hard for parity decision trees of small
height under the lifted distribution. To do so, we shall use a result of Chattopadhyay et al. [3], that built
upon the earlier work of Göös, Pitassi and Watson [8].

We will need to consider randomized decision trees that output Boolean strings in {0, 1}t, rather
than 0/1. For a given deterministic 2-party communication protocol Π, let Π(x, y) denote the transcript
generated by Π on input (x, y).

Theorem 5 (Implicit in [3]). Assume b ≥ 50 log(m). Let Π be any deterministic 2-party communication
protocol of cost c, where Alice and Bob each get inputs from {0, 1}mb. For any z ∈ {0, 1}m, let (Xz, Yz)

denote the distribution on pairs obtained by sampling from
−→
IP−1(z) uniformly at random. Then, there

exists a randomized decision tree T of cost O(c/b) such that the following holds for every z ∈ {0, 1}m:

dTV

(
T (z),Π(Xz, Yz)

)
≤ 1/10.

The above theorem says that a randomized decision tree is able to simulate by probing only a few
bits of its input z, the transcript of a deterministic communication protocol when it is given a random
input pair Xz, Yz. Its relevance for us is due to the following simple observation.

Observation 4. Every deterministic parity decision tree of height h can be simulated exactly by a
deterministic 2-party communication protocol of cost at most 2h.

Now we can lift our avarage-case hardness to parity decision trees.

Lemma 16. There exists a constant c > 0 such that for every obfuscation map ρ and every parity
decision tree T of height at most c ·n1/3 log n purporting to solve Search

(
SPn,ρ ◦ IP

)
, the following is true:

Pr
β∼µ′

[
T (β)is falsified on β

]
≤ 2

5
.

Proof. Assume T makes an error with probability < 3/5. Then our main idea is that we would be
able to construct an ordinary decision tree for Search(SPn,ρ) of depth O(n1/3) which makes error with
probability < 7/10 under distribution µ. This contradicts Lemma 15.

Using Observation 4, we get a deterministic 2-party protocol of cost at most 2 · depth(T ) that makes
error less than 3/5 for solving Search

(
SPn,ρ ◦ IP

)
. Theorem 5 then yields a randomized decision tree T ′

with the following properties. On input α ∼ µ,

• T ′ makes at most O (cost(Π)/ log n) queries to α, i.e., at most O(n1/3).

• IfD1 denotes the actual distribution of the transcript of Π when it is run on input sampled uniformly

at random from
−→
IP−1(α) and D2 denotes the distribution of the transcript of Π simulated by T ′,

||D1 −D2|| ≤
1

10

We now modify T ′ to output a clause as follows. A transcript of Π leads it to output a clause of SPn,ρ◦IP.
The modified T ′ outputs the unique corresponding un-lifted clause of SPn,ρ. The probability of error is
at most Pr[Π errs ] + 1/10 < 7/10. This gives a randomized decision tree; by fixing the coins we can
replace it by a deterministic decision tree, contradicting Lemma 15.

7.3 Foolable Nodes Are Frequent

Let P be a bottom-read-once linear branching program for Search
(
SPn,ρ ◦ IP

)
that corresponds to a

bottom-regular ResLin proof of the unsatisfiability of SPn,ρ ◦ IP. Our goal is to show size of P is large.
To do so, we establish that the affine spaces associated with many nodes of P have a certain property
that allows to fool them. In particular, let β be an assignment sampled by µ′. We will prove that with
high probability after making t = O(n1/3) linear queries, according to β, we will end in a node v of P
such that the associated affine space Av does not have much information about β. We will show that this
implies the affine space Av contains many useful assignments that allows us to prove the co-dimension
Av is large. Now, we define the sought property formally.
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Definition 7. Let α ∈ Supp(µ) and P be the blue path induced by α that ends at v. Let u and w be the
two children of v. We say a subset T ⊆ [m] is α-foolable if T does not contain any variable mentioning
v, u or w, i.e. the variables Px,i, Zx,j for x ∈ {u, v, w}, i ∈ [N ], j ∈ [N − 1].

Definition 8. An affine space A ⊆ Fmb
2 is α-foolable if Cl(A) is α-foolable with α ∈ Supp(µ) and there

exists β ∈ A such that α =
−→
IP(β).

We call a node v of P α-foolable if the associated affine space Av is α-foolable. Recall that P(β, t) is
the node that P arrives at after making t linear queries on β. It turns out the node P(β, t) is α-foolable
with high probability if t is sufficiently small. We prove this in the following theorem.

Theorem 6. Let P be any bottom-read-once linear branching program corresponding to a bottom-regular
ResLin proof of SPn,ρ ◦ IP. There exists a constant c > 0 such that if t < c · n1/3, then

Pr
α∼µ,β∼

−→
IP−1(α)

[
P(β, t) is α-foolable

]
>

3

5
.

Proof. Let v denote the random node P(β, t). Let the blue path induced by α end at a and let the chil-
dren of a be b and c. Notice that the second condition of being α-foolable (that Av contains an element

of
−→
IP−1(α)) is always satisfied by P(β, t) since one such element is β. We just need to lower bound the

probability of the first condition of α-foolability being satisfied, i.e., the probability that Cl(Av) does not
contain any variable mentioning a, b or c.

We construct a PDT T for Search(SPn ◦ IP) from P in the following manner: on input β, it will
simulate the path traced out in P for t steps by making precisely those linear queries that would have
been issued in P. At the end of it, T does the following: Let A be the affine space corresponding to the
queries issued and responses received so far. For every vertex k = (i, j) in the pyramid graph Gn such
that one of its variables (Pk,ℓ or Zk,ℓ for some ℓ ∈ [N ]) is in Cl(A), query the b coordinates from the
blocks of the following set of variables:

S =
{
Rf−1(w)|w ∈ {(i− 1, j − 1), (i− 1, j), (i, j − 1), (i, j), (i, j + 1), (i+ 1, j), (i+ 1, j + 1)} ∩ V (G)

}
If one of the induction clauses mentioning only stones in S is falsified (recall that the placement of stones
to vertices is the same for all assignments in µ), output the corresponding clause. Otherwise, output an
error symbol.

Clearly, the depth of T is O(n1/3 log n). Thus, by Lemma 16, the probability that it outputs a falsified
clause is at most 2/5. Let Av denote the affine space at P(β, t). Note that A ⊆ Av =⇒ Cl(Av) ⊆ Cl(A),
by Lemma 5. It is straight-forward to verify that if Av is not α-foolable, then T successfully outputs a
clause falsified by β: if one of the variables belonging to a, b or c is in Cl(A), in the final step the PDT
queries the stones placed on a, b, c and detects that an induction clause at a is falsified. The result now
follows from Lemma 16.

7.4 Foolability Implies Large Rank

In this subsection, we prove there is an obfuscation map ρ : [N ]3 → V such that for a foolable node v
of a bottom-read-once linear branching program P computing Search(SPn,ρ ◦ IP), the associated affine
space Av must have large co-dimension.

First, we prove an auxiliary lemma. Let T ⊆ [m] be a subset of the variables of SPn,ρ. We say a
stone j is marked by T if T contains a variable that mentions the stone j, i.e. Rj , Pv,j for any vertex
v ∈ V , Pf(j),k for any stone k ∈ [N ], or Zf(j),ℓ for any ℓ ∈ [N − 1]. Let Q(T ) ⊆ [N ] be the set of stones
marked by T .

Lemma 17. Let ρ be any obfuscation map and α ∈ Supp(µ). Let v be the vertex at which the blue path
induced by α ends. Let T ⊆ [m] be an α-foolable subset with |Q(T )| < N/2. For any i, j, k ∈ [N ] \Q(T ),
there exists an assignment γ ∈ {0, 1}m extending the restriction α|T which satisfies all clauses of SPn,ρ

except one of the following two:

C1 := ¬Pu,i ∨ ¬Ri ∨ ¬Pw,j ∨ ¬Rj ∨ ¬Pv,k ∨Rk ∨ ρ(i, j, k), or
C2 := ¬Pu,i ∨ ¬Ri ∨ ¬Pw,j ∨ ¬Rj ∨ ¬Pv,k ∨Rk ∨ ¬ρ(i, j, k),

where u and w are the out-neighbors of v.
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Proof. Let S ⊆ V (G) be the set of vertices in the blue path induced by α. We assign stone k to vertex
v and stones i, j to u,w respectively. To all other vertices we assign arbitrary stones as long as they are
consistent with α|T . Formally: pick two stones ℓ1, ℓ2 in [N ] \ (Q(T ) ∪ f−1(S) ∪ {i, j, k}). Consider the
following map STONE : V → [N ].

STONE(p) =



f−1(p) if f−1(p) ∈ Q(T )

i if p = v

j if p = u

k if p = w

ℓ1 if f−1(p) ̸∈ Q(T ) ∪ {i, j, k}, f−1(p) ∈ S

ℓ2 if f−1(p) ̸∈ Q(T ) ∪ {i, j, k} ∪ S

Define a coloring map COLOR : [N ] → {RED,BLUE} as follows:

COLOR(s) =



RED if s ∈ Q(T ), f(s) ̸∈ S

BLUE if s ∈ Q(T ), f(s) ∈ S

BLUE if s = i

RED if s = j

RED if s = k

BLUE if s = ℓ1

RED if s = ℓ2

BLUE otherwise

We remark the color used in the last case does not matter as these stones are not used in the stone
placement given by the map STONE. Let γ ∈ {0, 1}m be the assignment which sets the variables
according to this placement and coloring map, i.e.,

Pv,j =

{
1 if j = STONE(v)

0 otherwise

Zv,j =

{
0 if j < STONE(v)

1 otherwise

Rj =

{
1 if COLOR(j) = RED

0 if COLOR(j) = BLUE

Notice that this assignment is consistent with α on T and it falsifies a single induction clause at v: stone
i is placed at v, stones j, k are placed at u,w respectively; stones j, k are red while stone i is blue. We
remark that there is no set of clause in SPn,ρ which forces the placement of stones to vertices to be
bijective. Thus, the only clause of SPn,ρ falsified by γ is one of the following:

C1 := ¬Pu,i ∨ ¬Ri ∨ ¬Pw,j ∨ ¬Rj ∨ ¬Pv,k ∨Rk ∨ ρ(i, j, k),
C2 := ¬Pu,i ∨ ¬Ri ∨ ¬Pw,j ∨ ¬Rj ∨ ¬Pv,k ∨Rk ∨ ¬ρ(i, j, k),

For our hard formula, we use an appropriate obfuscation map ρ given by the following lemma. An
analogous lemma was proved by Alekhnovich et al. [1] with different constants as their formula is over a
slightly smaller set of constants, but still quadratic in N . For sake of completeness, we state the proof
in Appendix.

Lemma 18. For N sufficiently large, there exists a mapping ρ : [N ]3 → V such that for every Q ⊆ [N ]
with |Q| ≤ N/400 and every X ∈ V, there exist i < j < k ∈ [N ] \Q such that ρ(i, j, k) = X.

We remark that the proof of the following lemma is the only place where we are using an obfuscation
map with a certain property (given by Lemma 18) and also that the branching program computing
Search(SPn,ρ ◦ IP) is bottom-read-once.

22



Lemma 19. There exists an obfuscation map ρ : [N ]3 → V such that the following holds. Let β ∈ Fmb
2 ,

t > 0, and p = P(β, t) be a node in a bottom-read-once branching program P computing Search(SPn,ρ◦IP).
If p is α-foolable for α =

−→
IP(β), then co-dim(Ap) ≥ min{ N

800 , t}.

Proof. Fix ρ : [N ]3 → V to be a map with the property guaranteed by Lemma 18. Let Ap = S(M, c).
Suppose rank(M) ≤ N

800 . Let S be the set of sinks of P reachable from p.

Claim 3. For each variable Y of SPn,ρ ◦ IP there is a sink in S outputting a clause D such that Y or
¬Y is in D.

Proof of Claim 3. We shall show that there exists an assignment γ ∈ Ap such that γ falsifies only one
clause of SPn,ρ ◦ IP and that clause contains Y or ¬Y . Let Y ∈ BLOCK(Z). Let v be the endpoint of
the blue path induced by α, and let its children be u and w.

Let T = Cl(Ap). Note that |T | < N/800, thus Q(T ) < N/400. By Lemma 18, there exist i < j < k
in [N ] \Q(T ) such that ρ(i, j, k) = Z. By assumption, T is α-foolable. By Lemma 17, we can extend the
restriction α|T to a full assignment γ ∈ Fm

2 such that γ does not falsify any clause of SPn,ρ other than
one of the following two clauses:

C1 := ¬Pu,i ∨ ¬Ri ∨ ¬Pw,j ∨ ¬Rj ∨ ¬Pv,k ∨Rk ∨ Z
C2 := ¬Pu,i ∨ ¬Ri ∨ ¬Pw,j ∨ ¬Rj ∨ ¬Pv,k ∨Rk ∨ ¬Z.

By Lemma 6, there is an assignment β′ ∈ Ap such that
−→
IP(β′) = γ. Note that β′ falsifies only one clause

of SPn,ρ ◦ IP, and that clause belongs to either C1 ◦ IP or C2 ◦ IP. By Observation 2, every clause in
C1 ◦ IP and C2 ◦ IP contains every variable in the block of ρ(i, j, k) = Z (possibly with negations). Thus,
the only clause falsified by β′ contains either Y or ¬Y . Since β′ ∈ Ap and β′ falsifies only one clause C̃

of SPn,ρ ◦ IP, one of the sinks in S must be labelled C̃.

We continue the proof of Lemma 19. Let U be the space spanned by rows of matrices defining
the spaces of sinks in S. Formally, let s ∈ S be labelled by the affine space As = S(Ms, cs) (this
corresponds to a clause of SPn,ρ ◦ IP). Then, U = Span

(
{R(Ms) | s ∈ S}

)
. By Claim 3 each variable

of SPn,ρ ◦ IP is mentioned at some sink in S, so the space U has full dimension, i.e., dim(U) = mb. Let
W = Span

(
R(M) ∪ Post(p)

)
. By Lemma 2, we have

dim(W ) ≤ rank(M) + dim(Post(p)) ≤ rank(M) +mb− t.

On the other hand by Lemma 3, U ⊆ W and thus, dim(W ) ≥ dim(U) = mb. Putting both inequalities
together, we get rank(M) ≥ t.

7.5 Lifted Distributions Fool Rank

In the earlier two subsections, we have established the following two facts: (i) in any BROLBP P
corresponding to a bottom-regular ResLin proof of SPn,ρ ◦ IP, when inputs β are sampled according to
the IP lift of µ, the node P(β, t) is a foolable node with high probability; (ii) in such a BROLBP, the
constraint matrix for the affine space associated with a foolable node has large rank.

To prove that P has large size, it is sufficient to argue that each large rank constraint system is
satisfied with small probability under the IP lift of µ. Of course, such a statement is well known to be
true if we sample inputs from the uniform distribution in Fbm

2 . However, our distribution is not so at all.
In particular, it has quite sparse support. Still, it turns out that any lifted distribution is pseudo-random
with respect to the rank measure if the gadget satisfies a generalization of the stifling property. Consider
a gadget g : {0, 1}b → {0, 1}. For any i ∈ [b], and o ∈ {0, 1} an assignment α to the bits different from i
is called o-stifling for i if g gets fixed to o by α, i.e., the induced subfunction g|([b]\{i})←α gets fixed to the
constant function that always evaluates to o, no matter how the i-th bit is set. We say g is ε-balanced,
stifled if for any i ∈ [b], and for any o ∈ {0, 1}, the following is true: when we sample x ∈ {0, 1}b
uniformly at random from g−1(o), the projection of x on co-ordinates different from i is o-stifling for i
with probability at least ε.

Claim 4. Inner-product defined on 2b ≥ 8 bits is a 7/18-balanced and stifled gadget.
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Proof. By simple manipulation,

Pr
(x,y)∼{0,1}2b

[
IP(x, y) = 0 ∧ x1 = 0

]
= E

[(
1 + (−1)

∑b
i=1 xiyi

2

)(
1 + (−1)x1

2

)]
.

The RHS becomes,
1

4
+

1

4
E
[
(−1)x1

]
+

1

2
E
[
(−1)

∑b
i=1 xiyi

]
The second sum is 0, and the third is at most 1

2b+1 . Overall, this gives that

Pr
(x,y)∼{0,1}2b

[
IP(x, y) = 0 ∧ x1 = 0

]
≥ 1

4
− 1

2b+1
.

Further, by a similar method,

Pr
(x,y)∼{0,1}2b

[
IP(x, y) = 0

]
≤ 1

2
+

1

2b
.

Thus,

Pr
(x,y)∼{0,1}2b

[
x1 = 0 | IP(x, y) = 0

]
≥ 1/4− 1/2b+1

1/2 + 1/2b
.

Note that any assignment that sets x1 = 0 stifles y1. Hence, y1 is stifled with probability at least 7/18,
if b ≥ 4, by the projection of a random 0 (and similarly 1) assignment to IP. Completely analogously,
any bit is stifled with the same probability.

Remark 7.1. It is worth noting that several gadgets, including Inner-Product, Indexing, Majority, even
on sufficiently large but constant number of bits, are stifled and balanced.

Now we state the utility of balanced, stifling gadgets.

Lemma 20. Let g be any ε-balanced, stifled gadget and z ∈ Fm
2 be any fixed vector. Then, for every

matrix M ∈ Fr×bm
2 of full rank r, and sny vector γ ∈ Fr

2 the following holds:

Pr
β∼−→g −1(z)

[
Mβ = γ

]
= 2−Ωε(r/b).

Proof. After Gaussian elimination, turning M into row-echelon form, there are at least r/b different
blocks in which pivots of rows appear. Let us call each such block a pivot block. The distribution
−→g −1(z) samples independently at random from g−1(zi) for each of the i-th block. It will be convenient
to think that we sample, one after the other, independently from blocks in this way, starting from the
rightmost. Consider the situation when we arrive at a pivot block having sampled all blocks to its right.
Let the bit of z corresponding to this pivot block be o ∈ {0, 1}. Consider any one row that has a pivot
in that block. Let the equation corresponding to this row be denoted by ℓ. By the property of g, with
probability at least ε the random assignment from g−1(o) will be stifling for the pivot of ℓ. Conditioned
on that event, the stifled bit will be set to each of 0, 1 with probability exactly 1/2 as each possible
setting gives rise to a distinct assignment in g−1(o). Hence, the probability that ℓ is satisfied by the
sampled assignment to this block is at most (1 − ε/2). Thus, continuing this way, the probability that

all the equations are satisfied is at most
(
1− ε/2

)r/b
, yielding the desired result.

7.6 Putting Everything Together

Now, we are ready to finish the proof of our lower bound, i.e., Theorem 4.

Proof of Theorem 4. Let P be the BROLBP derived from a bottom-regular ResLin proof of SPn,ρ ◦ IP.
Let t = ⌊c·n1/3⌋ for an appropriately chosen small constant c > 0. Combining Theorem 6 and Lemma 19,
we get

Prβ∼µ′

[
AP(β,t) has co-dimension ≥ t

]
≥ 3

5
. (7.3)
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On the other hand, for any node v of P which has co-dim(Av) ≥ t, Lemma 20 yields,

Pr
β∼µ′

[
P(β, t) is v

]
≤ 2−Ω

(
t

log n

)
. (7.4)

If s is the total number of nodes of P, combining (7.3) and (7.4), we get immediately

s · 2−Ω
(
t/ log(n)

)
≥ 3

5
.

Substituting the value of t in the above, the result immediately follows.

8 Future Directions

We provided the first super-polynomial separation between the powers of bottom-regular and general
ResLin proofs. We believe the general proof strategy that we implemented, modifying and generalizing
the recent technique of Efremenko, Garĺık and Itsykson [6], should yield exponential lower bounds on
the length of bottom-regular ResLin proofs for other formulas as well. For instance, formula MGTn

which is the constant-width version of GTn, that encodes the contradiction that a finite total order has
no minimal element, when obfuscated appropriately and then lifted with inner-product can be proved
to be hard for bottom-regular ResLin. Indeed, the first part of our proof strategy is quite general and
applies to all ResLin proofs without any assumption on regularity. Here, we need just the fact that the
search for a falsified clause in the base formula is hard on average for small height decision trees w.r.t
some distribution µ. That is sufficient, thanks to lifting theorems, to yield the fact that after the first
few (typically nΩ(1)) linear queries, the branching program corresponding to the ResLin proof is still far
from discovering a falsified clause in the lifted formula with high probability, when the input is sampled
from the lifted distribution −→g −1(µ). This is step 2 of our proof outline. In most formulas, one could
then define some natural notion of foolability and then say the affine space associated with nodes of the
branching program are frequently foolable. How do we know this is useful? Unfortunately, the usefulness
of these notions seem formula-specific. For the binary pigeonhole principle, Efremenko et al. observed
that local consistency was enough to yield high rank of the dual of the affine space. For our formula,
we achieved the same exploiting the obfuscation map and stifling nature of our lifting gadget. But this
seems not immediately generalizable. An interesting direction here is the following:

Problem 1. Prove strong lower bounds on the size of bottom-regular proofs for the lift of Tseitin formulas
over expander graphs.

Another direction is to consider the formulas where even implementing the first step of our strategy
seems impossible.

Problem 2. Prove strong lower bounds on size of bottom-regular ResLin proofs for appropriate lifts of
random constant-width CNF formulas.

The above seems challenging as for random formulas of constant-width, for every distribution, there
exists a decision tree that finds in O(1) queries a falsified clause with high probability. This, very likely,
requires changing our technique substantially. Finally, one of the challenges posed by Gryaznov et al.
[9] remains still open.

Problem 3. Prove super-polynomial lower bounds on the size of top-regular ResLin proofs.
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Appendix

Proof of Lemma 18. We prove a random mapping has the sought property with non-zero probability.
We choose ρ uniformly randomly from all possible mappings from [N ]3 to V. Let X ∈ V and Q ⊆ [N ]
with |Q| ≤ εN for ε = 1

400 . Recall that the number of variable of SPn,ρ is m = 2N2. Then, we have

Pr[For all i < j < k ∈ [N ] \Q : ρ(i, j, k) ̸= X] =

(
m− 1

m

)((1−ε)N
3 )

≤
(
1− 1

m

)(1−ε)3N3/12

≤ e−(1−ε)
3N/24

By union bound over all possible X ∈ V and Q ⊆ [N ] , we get the following bound for the probability
that there is X ∈ V and Q ⊆ [N ] of size εN such that for all triples i < j < k ∈ [N ] \ Q holds that
ρ(i, j, k) ̸= X.

2N2 ·
(
N

εN

)
· e−(1−ε)

3N/24 ≤ 2N2 · e(H(ε)−(1−ε)3/24)N ≤ 2N2 · e−0.0238N

The first inequality holds because
(
N
εN

)
≤ eH(ε)N for H(ε) = −ε ln ε − (1 − ε) ln(1− ε). The second

inequality holds for ε = 1
400 . The last term is clearly less than 1 for large enough N .

Proof of Lemma 1. Suppose the set of clauses Φ semantically implies C := [x1 = a1] ∨ · · · ∨ [xk = ak].
Then, the CNF formula Φ′ := Φ ∧ [x1 ̸= a1] ∧ · · · ∧ [xk ̸= ak] is unsatisfiable. We construct a decision
tree T for Search(Φ′) as follows:

Step 1: First, T queries the variables x1, . . . , xk. If it sees that xj = aj for some j ∈ [k], it outputs the
clause [xj ̸= aj ].

Step 2: Then, T queries the variables of Φ′ one-by-one and outputs a falsified clause as soon as it finds
one.

By the well-known equivalence between tree-like resolution and decision trees, T can be converted into
tree-like resolution refutation for Φ′. Each node v of T is labelled with a clause Cv. If a node queries
variable xi and has two children v0, v1, then Cv can be derived from Cv0 , Cv1 by resolving xi. The root
is labelled with the empty clause.

Let v be the node of T where Step 2 starts. The clause Cv must be C = [x1 = a1] ∨ · · · ∨ [xk = ak],
because resolving it with [x1 ̸= a1], . . . , [xk ̸= ak] results in the empty clause. Note that every leaf under
v is a clause of Φ. Moreover, the subtree rooted in v has size at most 2n. Thus, C = Cv can be derived
from Φ in at most 2n steps.
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