
Probabilistically Checkable Reconfiguration Proofs
and Inapproximability of Reconfiguration Problems

Shuichi Hirahara* Naoto Ohsaka†

January 21, 2024

Abstract

Motivated by the inapproximability of reconfiguration problems, we present a new
PCP-type characterization of PSPACE, which we call a probabilistically checkable recon-
figuration proof (PCRP): Any PSPACE computation can be encoded into an exponentially
long sequence of polynomially long proofs such that every adjacent pair of the proofs dif-
fers in at most one bit, and every proof can be probabilistically checked by reading a
constant number of bits.

Using the new characterization, we prove PSPACE-completeness of approximate ver-
sions of many reconfiguration problems, such as the MAXMIN 3-SAT RECONFIGURA-
TION problem. This resolves the open problem posed by Ito, Demaine, Harvey, Papadim-
itriou, Sideri, Uehara, and Uno (ISAAC 2008; Theor. Comput. Sci. 2011) as well as the
Reconfiguration Inapproximability Hypothesis by Ohsaka (STACS 2023) affirmatively.
We also present PSPACE-completeness of approximating the MAXMIN CLIQUE RECON-
FIGURATION problem to within a factor of nε for some constant ε> 0.

*National Institute of Informatics, Japan. s_hirahara@nii.ac.jp
†CyberAgent, Inc., Tokyo, Japan. ohsaka_naoto@cyberagent.co.jp; naoto.ohsaka@gmail.com

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 23 (2024)

mailto:s\protect _hirahara@nii.ac.jp
mailto:ohsaka\protect _naoto@cyberagent.co.jp
mailto:naoto.ohsaka@gmail.com


Contents
1 Introduction 3

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Proof Overview 7
2.1 SUCCINCT GRAPH REACHABILITY as Reconfiguration Problems . . . . . . . . 7
2.2 PCRP System for SUCCINCT GRAPH REACHABILITY . . . . . . . . . . . . . . . 8

3 Related Work 9

4 Preliminaries 10
4.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Error-Correcting and Locally Testable Codes . . . . . . . . . . . . . . . . . . . . 10
4.3 Probabilistically Checkable Proofs of Proximity . . . . . . . . . . . . . . . . . . 10
4.4 Constraint Satisfaction Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Probabilistic Checkable Reconfiguration Proofs 13
5.1 PSPACE-completeness of SUCCINCT GRAPH REACHABILITY . . . . . . . . . . . 13
5.2 PCRP System for SUCCINCT GRAPH REACHABILITY . . . . . . . . . . . . . . . 14

5.2.1 Verifier Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2.2 Completeness and Soundness . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.3 Impossibility of Extension to Average Case . . . . . . . . . . . . . . . . . . . . . 23

6 PSPACE-hardness of Approximation for Reconfiguration Problems 23
6.1 Constant-factor Inapproximability of MAXMIN CSP RECONFIGURATION . . . 23
6.2 Polynomial-factor Inapproximability of MAXMIN CLIQUE RECONFIGURATION 24

2



1 Introduction
Reconfiguration problems ask to decide whether there exists a sequence of operations

that transform one feasible solution to another. A canonical example is the 3-SAT RECON-
FIGURATION problem, which is known to be PSPACE-complete [GKMP09].

Definition 1.1 (3-SAT RECONFIGURATION [GKMP09]). Given a 3-CNF formula ϕ and its
two satisfying assignments σstart and σgoal, we are required to decide if there is a sequence
of satisfying assignments to ϕ, (σ(1), . . . ,σ(T)), such that σ(1) =σstart, σ(T) =σgoal, and σ(t) and
σ(t+1) differ in at most one variable for every t ∈ {1, . . . ,T −1}.

Example 1.2. Suppose we are given a 3-CNF formula ϕ := (x1∨x2∨x3)∧(x1∨x2∨x3)∧(x1∨
x2∨x3) made up of three clauses over three variables x1, x2, x3 and its two satisfying assign-
ments σstart1 := (1,0,0) and σ

goal
1 := (0,1,0). Then, (ϕ,σstart1 ,σgoal1 ) is a YES instance of 3-SAT

RECONFIGURATION: there exists a sequence ((1,0,0), (0,0,0), (0,1,0)) from σstart1 to σgoal1 that
meets the requirement. On the other hand, if we are given a pair of two satisfying assign-
ments σstart2 := (1,0,0) and σ

goal
2 := (1,1,1), then (ϕ,σstart2 ,σgoal2 ) is a NO instance because any

sequence from σstart2 to σgoal2 must run through (0,1,1), (1,0,1), or (1,1,0), neither of which
satisfy ϕ.

It is natural to consider its approximate variant, whose complexity was posed as an open
problem in [IDHPSUU11].

Definition 1.3 (MAXMIN 3-SAT RECONFIGURATION [IDHPSUU11]). Given a 3-CNF for-
mula ϕ over m clauses C1, . . . ,Cm and its two satisfying assignments σstart and σgoal, we are
required to find a sequence of assignments, (σ(1), . . . ,σ(T)), such that σ(1) =σstart, σ(T) =σgoal,
σ(t) and σ(t+1) differ in at most one variable for every t ∈ {1, . . . ,T − 1}, and the following
objective value is maximized:

min
1ÉtÉT

1
m

∣∣∣{ j ∈ {1, . . . ,m}
∣∣∣σ(t) satisfies C j

}∣∣∣ . (1.1)

Example 1.4. Consider again the same 3-CNF formula ϕ and its two satisfying assign-
ments σstart2 = (1,0,0) and σ

goal
2 = (1,1,1). There is a sequence ((1,0,0), (1,1,0), (1,1,1)) from

σstart2 to σgoal2 , which is a feasible solution to MAXMIN 3-SAT RECONFIGURATION and whose
objective value is 2

3 .

The main contribution of this paper is to prove PSPACE-completeness of approximating
the MAXMIN 3-SAT RECONFIGURATION problem within a constant factor, which answers
the open problem of [IDHPSUU11]. In what follows, we present the background of this
result and then the details of our results.

3



1.1 Background
Given a source problem that asks the existence of a feasible solution, reconfiguration

problems are defined as a problem of deciding the existence of a reconfiguration sequence,
that is, a step-by-step transformation between a pair of feasible solutions while always pre-
serving the feasibility of solutions. For example, 3-SAT RECONFIGURATION [GKMP09]
is defined from 3-SAT as a source problem. Many reconfiguration problems can be de-
fined from Boolean satisfiability, constraint satisfaction problems, graph problems, and oth-
ers. Studying reconfiguration problems may help elucidate the structure of the solution
space [GKMP09], which is motivated by, e.g., the application to the behavior analysis of
SAT solvers, such as DPLL [ABM04]. From a different point of view, reconfiguration prob-
lems may date back to motion planning [HSS84] and classical puzzles, including 15 puzzles
[JS79] and Rubik’s Cube.

Typically, a reconfiguration problem becomes PSPACE-complete if its source problem is
intractable (say, NP-complete); e.g., 3-SAT [GKMP09], INDEPENDENT SET [HD05, HD09],
SET COVER [IDHPSUU11], and 4-COLORING [BC09]. On the other hand, a source problem
in P frequently leads to a reconfiguration problem in P, e.g., MATCHING [IDHPSUU11]
and 2-SAT [GKMP09]. Some exceptions are known: whereas 3-COLORING is NP-complete,
its reconfiguration problem is solvable in polynomial time [CvJ11]; SHORTEST PATH on a
graph is tractable, but its reconfiguration problem is PSPACE-complete [Bon13]. We refer
the readers to the surveys by Nishimura [Nis18] and van den Heuvel [van13] for algorithmic
and hardness results and the Combinatorial Reconfiguration wiki [Hoa23] for an exhaustive
list of related articles.

A common way to cope with intractable problems is to consider approximation prob-
lems. Relaxing the feasibility of intermediate solutions, we can formalize approximate
variants for reconfiguration problems, which are also motivated by the situation wherein
there does not exist a reconfiguration sequence for the original decision problem. For ex-
ample, in MAXMIN 3-SAT RECONFIGURATION [IDHPSUU11], we are allowed to include
any non-satisfying assignment in a reconfiguration sequence, but required to maximize the
minimum fraction of satisfied clauses. Solving this problem may result in a reasonable re-
configuration sequence consisting of almost-satisfying assignments, e.g., each violating at
most 1% of clauses. Intriguingly, a different trend regarding the approximability has been
observed between a source problem and its reconfiguration analogue; e.g., SET COVER is NP-
hard to approximate within a factor better than lnn [DS14, Fei98, LY94], whereas MINMAX

SET COVER RECONFIGURATION admits a 2-factor approximation algorithm [IDHPSUU11].
Other reconfiguration problems whose approximability was investigated include: SUBSET

SUM RECONFIGURATION has a PTAS [ID14]; SUBMODULAR RECONFIGURATION [OM22]
and POWER SUPPLY RECONFIGURATION [IDHPSUU11] are constant-factor approximable.

Little is known about the hardness of approximation for reconfiguration problems. Us-
ing the fact that source problems (e.g., MAX 3-SAT) are NP-hard to approximate [ALMSS98,
AS98], Ito, Demaine, Harvey, Papadimitriou, Sideri, Uehara, and Uno [IDHPSUU11] proved
that several reconfiguration problems (e.g., MAXMIN 3-SAT RECONFIGURATION) are NP-
hard to approximate; however, most reconfiguration problems are in PSPACE, and thus

4



their NP-hardness results are not optimal. It was left open to improve the NP-hardness
results to PSPACE-hardness. We here stress the significance of showing PSPACE-hardness
compared to NP-hardness:

1. PSPACE-hardness is tight because most reconfiguration problems belong to PSPACE
[Nis18];

2. it disproves the existence of a polynomial-length witness (in particular, a polynomial-
length reconfiguration sequence) assuming NP ̸=PSPACE;

3. it rules out any polynomial-time algorithm under the weak assumption that P ̸=PSPACE.

In order to improve the NP-hardness of approximation to PSPACE-hardness of approxi-
mation, it is crucial to develop a reconfiguration analogue of the PCP theorem [ALMSS98,
AS98]. As indicated by the gap in the approximation factors of SET COVER and its re-
configuration counterpart, the required theory must be different and tailored to PSPACE.
Ohsaka [Ohs23b] recently postulated a reconfiguration analogue of the PCP theorem, called
the Reconfiguration Inapproximability Hypothesis (RIH), under which a bunch of popular
reconfiguration problems are shown to be PSPACE-hard to approximate. The major open
question is whether RIH holds.

1.2 Our Results
Our contribution is to present a new PCP-type characterization of PSPACE, which we

call a probabilistically checkable reconfiguration proof (PCPR), and thereby affirmatively
resolve the open problem posed by Ito, Demaine, Harvey, Papadimitriou, Sideri, Uehara,
and Uno [IDHPSUU11] and confirm RIH of Ohsaka [Ohs23b].

Our characterization of PSPACE encodes any PSPACE computation into an exponentially
long reconfiguration sequence of polynomial-length proofs, each of which can be probabilis-
tically checked by reading a constant number of bits. A reconfiguration sequence from πstart

to πgoal over {0,1}n is a sequence (π(1), · · · ,π(T)) ∈ ({0,1}n)∗ such that πstart = π(1), πgoal = π(T),
and π(t) and π(t+1) differ in at most one bit for every t ∈ {1, · · · ,T −1}.

Theorem 1.5 (Probabilistically Checkable Reconfiguration Proof (PCRP); see also Theo-
rem 5.1). A language L is in PSPACE if and only if there exist a randomized polynomial-time
verifier V with randomness complexity O(logn) and query complexity O(1) on inputs of length
n and polynomial-time algorithms πstart and πgoal with the following properties:

1. (Completeness) If x ∈ L, then there exists a reconfiguration sequence (π(1), · · · ,π(T)) from
πstart(x) to πgoal(x) over {0,1}poly(n) such that for every t ∈ {1, · · · ,T},

ℙ𝕣
[
Vπ(t)

(x)= 1
]
= 1.

2. (Soundness) If x ̸∈ L, then for every reconfiguration sequence (π(1), · · · ,π(T)) from πstart(x)
to πgoal(x), for some t ∈ {1, · · · ,T},

ℙ𝕣
[
Vπ(t)

(x)= 1
]
< 1

2
.

5



Here, Vπ(t)
(x) denotes the output of V on input x given oracle access to π(t), and the probabil-

ities are over the O(logn) random bits of the verifier V .

The verifier V can be regarded as a ∀·coRP-type verifier: The verifier co-nondeterministically
guesses t ∈ {1, · · · ,T} and probabilistically checks the t-th proof π(t). This verifier should
be compared with the standard coRP-type PCP verifier V ′ for PSPACE-complete problems,
which can be obtained from the PCP theorem for NEXP ⊇ PSPACE [BFL91]. The num-
ber of random bits used by V ′ is nΘ(1), whereas the number of random bits of our verifier
V is O(logn). The latter is crucial for the application to inapproximability of reconfigu-
ration problems. The standard verifier V ′ uses only random bits, whereas our verifier V
co-nondeterministically guesses t. Given that V ′ does not use any nondeterministic choice,
it is natural to wonder whether V can be improved to a coRP-type verifier that chooses
t ∈ {1, · · · ,T} randomly; however, such an extension is impossible (see Observation 5.9), and
thus our characterization is one of the “best” characterizations in this direction.

As a corollary of Theorem 5.1 and [Ohs23a, Ohs23b], we obtain that a host of reconfigu-
ration problems are PSPACE-complete to approximate.

Corollary 1.6 (from Theorem 5.1 and [Ohs23a, Ohs23b]). For some universal constant ε0 ∈
(0,1), the following approximate variants of reconfiguration problems are PSPACE-hard to
approximate within a factor of (1−ε0).

• MAXMIN k-SAT RECONFIGURATION for all k Ê 2;

• MAXMIN q-CSP RECONFIGURATION for all q Ê 2;

• MAXMIN INDEPENDENT SET RECONFIGURATION on bounded-degree graphs;

• MINMAX VERTEX COVER RECONFIGURATION on bounded-degree graphs;

• MAXMIN CLIQUE RECONFIGURATION;

• MINMAX DOMINATING SET RECONFIGURATION;

• MINMAX SET COVER RECONFIGURATION;

• MAXMIN NONDETERMINISTIC CONSTRAINT LOGIC.

Moreover, we improve an inapproximability factor of MAXMIN CLIQUE RECONFIGURA-
TION to a polynomial; that is, MAXMIN CLIQUE RECONFIGURATION is PSPACE-hard to
approximate within a factor of nε for some constant ε> 0, where n is the number of vertices
(Theorem 6.2). This is the first polynomial-factor inapproximability result for approximate
variants of reconfiguration problems (to the best of our knowledge).1

1See Section 3 for discussion of existing hardness-of-approximation results for reconfiguration problems.

6



2 Proof Overview
Here, we present a proof sketch of Theorem 1.5.
A naïve attempt for the proof of Theorem 1.5 would be to develop reconfiguration coun-

terparts for the simple proof of the PCP theorem by Dinur [Din07]. The proof of the PCP
theorem consists of repeated applications of the three steps — a degree reduction (the pre-
processing lemma [Din07, Lemma 1.9]), gap amplification and an alphabet reduction. Coun-
terparts of some of the steps have been developed in the recent literature of reconfiguration
problems [Ohs23a, Ohs23b]. For example, Ohsaka [Ohs23b] presented a degree reduction
for reconfiguration problems, i.e., a reduction that converts a graph that represents a PCRP
(probabilistically checkable reconfiguration proof) system with soundness error 1− ε into
another graph whose degree ∆ is small. However, the parameter achieved in [Ohs23b] is
weaker than that of [Din07, PY91]: ∆≤ poly(1/ε). If ε= o(1), the degree ∆ can be ω(1), which
is not sufficient for Dinur’s proof to go through. It appears to be very difficult to construct
PCRPs based on this approach.

Our actual approach is much simpler. We use existing machinery developed in the lit-
erature of PCP theorems in a black-box way. The main ingredient for our proof is the PCP
of Proximity (PCPP) [BGHSV06, DR06]. A PCPP for a language L ∈ NP allows us to ap-
proximately verify that x ∈ L by reading a constant number of bits from x and a proof. In
particular, by encoding x by an error-correcting code, we can reliably check whether x ∈ L
efficiently.

To construct a PCRP for every problem in PSPACE, it suffices to construct a PCRP for
some PSPACE-complete problem. We consider the PSPACE-complete problem called SUC-
CINCT GRAPH REACHABILITY. In what follows, we first explain how this problem can be
regarded as a reconfiguration problem, and then explain how to construct a PCRP system
for SUCCINCT GRAPH REACHABILITY.

2.1 SUCCINCT GRAPH REACHABILITY as Reconfiguration Problems
SUCCINCT GRAPH REACHABILITY is the following problem. The input consists of a

circuit which succinctly represents an exponentially large graph G = (V ,E) and two vertices
vstart and vgoal ∈V , and the task is to decide whether there exists a path from vstart to vgoal in
G. Each vertex is represented by an n-bit string; i.e., V = {0,1}n. For simplicity of notation,
throughout this section, we assume that every vertex in G has a self-loop, i.e., (x, x) ∈ E for
every x ∈V . For two strings x and y, we denote by x◦ y the concatenation of x and y.

SUCCINCT GRAPH REACHABILITY can be naturally regarded as the following reconfig-
uration problem. Given a (succinctly described) graph G and two vertices vstart,vgoal ∈ V ,
the task is to decide whether there exists a sequence (x1 ◦ y1, · · · , xT ◦ yT) ∈ ({0,1}2n)∗ from
vstart ◦vstart to vgoal ◦vgoal such that

1. every configuration xt ◦ yt ∈ {0,1}2n satisfies the constraint that (xt, yt) ∈ E, and

2. each adjacent pair of configurations satisfy xt = xt+1 or yt = yt+1.

7



In other words, this is the reconfiguration problem which asks to decide whether the token
that initially placed at the edge (vstart,vstart) can be moved to the edge (vgoal,vgoal) by a
sequence of operations that move the token from an edge to one of its adjacent edges.

In Theorem 1.5, each adjacent pair of proofs differs in at most one bit. In terms of
reconfiguration problems, this means that the operations which we are allowed to perform
are to change one bit of a configuration instead of one vertex of the token placed at an edge.
By introducing a special symbol “⊥”, we can regard SUCCINCT GRAPH REACHABILITY as
the following reconfiguration problem in which operations are restricted to changing one bit
of configurations: Given a (succinctly described) graph G and two vertices vstart,vgoal ∈ V ,
the task is to decide whether there exists a sequence (x1 ◦ y1, · · · , xT ◦ yT) ∈ ({0,1,⊥}2n)∗ from
vstart ◦vstart to vgoal ◦vgoal such that

1. (xt, yt) ∈ E or (xt ∈ {0,1}n and yt ∈ {0,1}n), and

2. each adjacent pair (xt ◦ yt, xt+1 ◦ yt+1) differs in at most one position.

Informally, the existence of the symbol ⊥ indicates that we are on the way of the transition,
and we are allowed to include ⊥ in at most one of xt or yt (that is, we do not allow to change
both vertices of the token simultaneously). This reconfiguration problem “simulates” SUC-
CINCT GRAPH REACHABILITY in the following sense: If a token placed at an edge (x, y1) ∈ E
is moved to another edge (x, y2) ∈ E, then in the new reconfiguration problem, we may con-
sider a sequence of operations that first transform x ◦ y1 into x ◦⊥n by replacing each bit of
y1 with ⊥ one by one, and then transform x ◦⊥n into x ◦ y2 by replacing ⊥ with a bit of y2
one by one.

2.2 PCRP System for SUCCINCT GRAPH REACHABILITY

The main idea for constructing a PCRP for SUCCINCT GRAPH REACHABILITY is to prob-
abilistically check item 1, i.e., the condition that (xt, yt) ∈ E or (xt ∈ {0,1}n and yt ∈ {0,1}n), by
reading a constant number of bits. To this end, we encode each vertex by a locally testable
error-correcting code Enc : {0,1}n → {0,1}ℓ and use the PCPP to check whether the encoded
pair of vertices (xt, yt) satisfies (xt, yt) ∈ E. Specifically, let VPCPP be a PCPP verifier for the
language LG = {Enc(x)◦Enc(y) | (x, y) ∈ E}. This verifier takes random access to f ◦ g and a
proof π ∈ {0,1}p and checks whether f ◦ g is close to some Enc(x)◦Enc(y) ∈ LG . Then, given
a sequence of proofs (σ(1), · · · ,σ(T)) ∈ ({0,1,⊥}2ℓ+p)∗, we probabilistically check each proof
σ(t) = f ◦ g ◦π as follows:

1. Using the local tester for Enc, we check that both f and g are close to some codewords
Enc(x) and Enc(y), respectively. If both are far from codewords, then we reject.

2. By random sampling, we test whether either f or g contains many ⊥ symbols. If so,
we accept.

3. Finally, by running VPCPP for ( f ◦ g,π), we check that (x, y) ∈ E. We accept if and only
if VPCPP accepts.

8



The first item ensures that either f or g is close to some codewords Enc(x) and Enc(y). The
second item checks whether we are on the way of the transition from one edge to another, in
which case we accept. We run the test of the third item only if either f or g is close to some
codewords, and both f and g do not contain many ⊥ symbols. Using the PCPP, we check
that f and g encode x and y such that (x, y) ∈ E.

We note that the size of alphabets {0,1,⊥} of the PCRP system is 3. This can be reduced
to 2 by using a simple alphabet reduction of Ohsaka [Ohs23b], which transforms any PCRP
system with perfect completeness over alphabets of constant size into a PCRP system over
the binary alphabets {0,1}.

It is thus important to make sure that the PCRP system has perfect completeness, i.e.,
in the YES case, the verifier accepts with probability 1. For this reason, in the actual proof,
we need to modify the PCPP verifier VPCPP so that it immediately accepts if a ⊥ symbol in f
or g is queried by VPCPP. Details can be found in Section 5.

3 Related Work
Another characterization of PSPACE is probabilistically checkable debate systems due

to Condon, Feigenbaum, Lund, and Shor [CFLS95], which can be used to show PSPACE-
hardness of approximating QUANTIFIED BOOLEAN FORMULA and the problem of selecting
as many finite-state automata as possible that accept a common string. These results are
incomparable to our PCRP because the underlying structure of the problems is different
from each other.

We summarize approximate variants of reconfiguration problems whose inapproxima-
bility was investigated. MAXMIN CLIQUE RECONFIGURATION and MAXMIN SAT RECON-
FIGURATION are NP-hard to approximate [IDHPSUU11]. SHORTEST PATH RECONFIGU-
RATION is PSPACE-hard to approximate with respect to its objective value [GJKL22]. The
obejctive value called the price is determined based on the number of vertices in a path
changed at a time, which is fundamentally different from those of reconfiguration prob-
lems listed in Corollary 1.6. SUBMODULAR RECONFIGURATION is constant-factor inapprox-
imable [OM22], whose proof resorts to inapproximability results of SUBMODULAR FUNC-
TION MAXIMIZATION [FMV11].

We note that approximability of reconfiguration problems frequently refers to that of the
shortest sequence [BHIKMMSW20, IKKKO22, KMM11, MNORTU16], which seems orthog-
onal to the present study.

The pebble game [PH70] is a single-player game, which models the trade-off between
the memory usage and running time of a computation and is recently used in the context
of proof complexity [Nor13]. This game can be thought of as a reconfiguration problem,
whose objective function, called the pebbling price, is defined as the maximum number of
pebbles at any time required to place a pebble to the unique sink. The pebbling price is
known to be PSPACE-hard to approximate within an additive n

1
3−ε term for the graph size

n [CLNV15, DL17]. We leave open whether our PCRPs can be used to derive PSPACE-
hardness of approximating the pebbling price within a multiplicative factor.

9



4 Preliminaries

4.1 Notations
For a nonnegative integer n ∈ ℕ, let [n] := {1,2, . . . ,n}. A sequence E of a finite number

of elements E(1), . . . ,E(T) is denoted by (E(1), . . . ,E(T)), and we write E ∈E to indicate that
E appears in E. The symbol ◦ stands for a concatenation of two strings. Let Σ be a finite
set called alphabet. For a length-n string f ∈ Σn and index set I ⊆ [n], we use f |I to denote
the restriction of f to I. We write 0n and 1n for 0 · · ·0︸ ︷︷ ︸

n times

and 1 · · ·1︸ ︷︷ ︸
n times

, respectively. The relative

distance between two strings f , g ∈Σn, denoted ∆( f , g), is defined as the fraction of positions
on which f and g differ; namely, ∆( f , g) = ℙ𝕣i∼[n][ f i ̸= g i] = |{i∈[n]| f i ̸=g i}|

n . We say that f is
ε-close to g if ∆( f , g)É ε and ε-far from g if ∆( f , g)> ε. For a set of strings S ⊆Σn, analogous
notions are defined; e.g., ∆( f ,S) :=ming∈S∆( f , g) and f is ε-close to S if ∆( f ,S)É ε.

4.2 Error-Correcting and Locally Testable Codes
Here, we introduce error-correcting and locally testable codes.

Definition 4.1 (Error-correcting codes). For any ρ ∈ [0,1], a function Enc : {0,1}n → {0,1}ℓ

is an error-correcting code with relative distance ρ if ∆(Enc(α),Enc(β)) > ρ for every α ̸= β ∈
{0,1}n. We call Enc(α) for each α ∈ {0,1}n a codeword of Enc. Denote by Enc(·) the set of all
codewords of Enc.

Definition 4.2 (Locally testable codes; e.g., Goldreich and Sudan [GS06]). For any q ∈ ℕ
and κ > 0, an error-correcting code Enc : {0,1}n → {0,1}ℓ is said to be (q,κ)-locally testable if
there exists a probabilistic polynomial-time algorithm M that, given oracle access to a string
f ∈ {0,1}ℓ, makes at most q nonadaptive queries of f and satisfies the following conditions:

• (Completeness) If f ∈ Enc(·), then M always accepts; namely, ℙ𝕣[M f accepts]= 1.

• (Soundness) If f ∉ Enc(·), then M rejects with probability at least κ·∆( f ,Enc(·)); namely,
ℙ𝕣[M f rejects]Ê κ ·∆( f ,Enc(·)).

Such an algorithm M is called a (q,κ)-local tester for Enc.

Theorem 4.3 ([BGHSV06, BSVW03]). There exist ρ,κ > 0 and q ∈ ℕ such that for in-
finitely many n’s, there exists a polynomial-time construction of a (q,κ)-locally testable error-
correcting code Encn : {0,1}n → {0,1}ℓ(n) with relative distance ρ and ℓ(n)= n1+o(1). Moreover,
if the code Encn : {0,1}n → {0,1}ℓ(n) of the desired property exists for integer n ∈ ℕ, then the
next integer n′ ∈ℕ for which Encn′ : {0,1}n′ → {0,1}ℓ(n′) exists is at most n1+o(1).

4.3 Probabilistically Checkable Proofs of Proximity
We formally define the notion of verifier.

10



Definition 4.4 (Verifier). A verifier with randomness complexity r : ℕ→ℕ and query com-
plexity q : ℕ → ℕ is a probabilistic polynomial-time algorithm V that given an input x ∈
{0,1}∗, tosses r = r(|x|) random bits R and use R to generate a sequence of q = q(|x|) queries
I = (i1, . . . , iq) and a circuit D : {0,1}q → {0,1}. We write (I,D) ∼ V (x) to denote the random
variable for a pair of the query sequence and circuit generated by V on input x ∈ {0,1}∗.
Denote by Vπ(x) := D(π|I) the output of V on input x given oracle access to a proof π ∈ {0,1}∗.
We say that V (x) accepts a proof π if Vπ(x)= 1; i.e., D(π|I)= 1 for (I,D)∼V (x).

We proceed to the definition of PCPs of proximity [BGHSV06] (a.k.a. assignment testers
[DR06]). For any pair language L ⊆ {0,1}∗× {0,1}∗, we define L(x) := {y ∈ {0,1}∗ | (x, y) ∈ L} for
an input x ∈ {0,1}∗.

Definition 4.5 (PCP of proximity [BGHSV06, DR06]). A PCP of proximity (PCPP) verifier
for a pair language L ⊆ {0,1}∗×{0,1}∗ with proximity parameter δ ∈ (0,1) and soundness error
s ∈ (0,1) is a verifier V such that for every pair of an explicit input x ∈ {0,1}∗ and an implicit
input oracle y ∈ {0,1}∗, the following conditions hold:

• (Completeness) If (x, y) ∈ L, there exists a proof π ∈ {0,1}∗ such that V (x) accepts y◦π
with probability 1; namely,

∃π ∈ {0,1}∗, ℙ𝕣
(I,D)∼V (x)

[
D((y◦π)|I)= 1

]
= 1. (4.1)

• (Soundness) If y is δ-far from L(x), for every alleged proof π ∈ {0,1}∗, V (x) accepts y◦π
with probability less than s; namely,

∀π ∈ {0,1}∗, ℙ𝕣
(I,D)∼V (x)

[
D((y◦π)|I)= 1

]
< s. (4.2)

Subsequently, we introduce smooth PCPP verifiers. We say that a verifier is smooth if
each position in its proof is equally likely to be queried.

Definition 4.6 (Smoothness). A PCPP verifier V is smooth if V queries each position in
implicit input y and proof π with equal probability; namely, there exists p ∈ (0,1) such that

p = ℙ𝕣
(I,D)∼V (x)

[
i ∈ I

]
(4.3)

for every position i of y◦π.

Theorem 4.7 (Smooth PCPP [BGHSV06, Par21]). For every pair language L in NP and
every number δ ∈ (0,1), there exists a smooth PCPP verifier V for L with randomness com-
plexity r(n) = O(logn), query complexity q(n) = O(1), proximity parameter δ, and soundness
error s = 1−Ω(δ). Moreover, for every pair (x, y) ∈ L, a proof π ∈ {0,1}poly(n) such that V (x)
always accepts y◦π can be constructed in polynomial time.

11



4.4 Constraint Satisfaction Problems
Here, we review constraint satisfaction problems.

Definition 4.8. A q-ary constraint system over variable set N and alphabet Σ is defined
as a collection of q-ary constraints, Ψ = (ψ j) j∈[m], where each constraint ψ j : ΣN → {0,1}
depends on q variables of N; namely, there exist i1, . . . , iq ∈ N and f : Σq → {0,1} such that
ψ j(A)= f (A(i1), . . . , A(iq)) for every A : N →Σ.

For an assignment A : N → Σ, we say that A satisfies constraint ψ j if ψ j(A) = 1, and A
satisfies Ψ if it satisfies all constraints of Ψ. Moreover, we say that Ψ is satisfiable if Ψ
is satisfied by some assignment. For an assignment A : N → Σ, its value is defined as the
fraction of constraints of Ψ satisfied by A; namely,

valΨ(A) := 1
|Ψ| ·

∣∣∣{ψ j ∈Ψ
∣∣∣ A satisfies ψ j

}∣∣∣ . (4.4)

We refer to the equivalence between a PCP system and GAP q-CSP (see, e.g., [AB09,
Section 11.3]), whose proof is included for the sake of completeness.

Proposition 4.9. Let V be a verifier with randomness complexity O(logn), query complexity
O(1), and alphabet Σ, and let x ∈ {0,1}∗ be an input. Then, one can construct in polynomial
time a constraint system Ψ = (ψ j) j∈[m] over poly(|x|) variables and alphabet Σ such that
valΨ(π)=ℙ𝕣[Vπ(x)= 1] for every proof π ∈Σpoly(|x|).

On the other hand, for a q-ary constraint system Ψ over variable set N and alphabet
Σ, one can construct in polynomial time a verifier V with randomness complexity O(logn),
query complexity O(1), and alphabet Σ such that ℙ𝕣[V A = 1] = valΨ(A) for every assignment
A : N →Σ.

Proof. Let V be a verifier with randomness complexity r(n)=O(n), query complexity q(n)=
q ∈ℕ, and alphabet Σ. Given an input x ∈ {0,1}∗, we can assume the proof length for V to
be poly(|x|). We construct a q-ary constraint system Ψ over variable set N := [poly(|x|)] and
alphabet Σ as follows:

• for every possible sequence R ∈ {0,1}r(|x|) of r(|x|) random bits, we run V (x) to generate
a query sequence IR = (i1, . . . , iq) and a circuit DR : Σq → {0,1} in polynomial time.

• create a new constraint ψ j such that

ψ j(A) := DR(A(i1), . . . , A(iq)) (4.5)

for every assignment A : N →Σ.

Note that the construction of Ψ completes in polynomial time; in particular, the size of Ψ
is polynomial in |x|. Observe that for any proof π ∈ ΣN , which can be thought of as an
assignment to Ψ,

valΨ(π)= ℙ𝕣
ψ j∼Ψ

[
ψ j(π)= 1

]
= ℙ𝕣

(I,D)∼V (S)

[
D(π|I)= 1

]
=ℙ𝕣

[
Vπ(S)= 1

]
, (4.6)

completing the proof of the first statement. The second statement is omitted as can be shown
similarly.

12



5 Probabilistic Checkable Reconfiguration Proofs
In this section, we prove the main result of this paper, i.e., a PCRP verifier for a PSPACE-

complete reconfiguration problem. For any pair of proofs πstart,πgoal ∈Σn, a reconfiguration
sequence from πstart to πgoal over Σn is a sequence (π(1), . . . ,π(T)) ∈ (Σn)∗ such that π(1) =πstart,
π(T) =πgoal, and π(t) and π(t+1) differ in at most one symbol for every t ∈ [T −1].

Theorem 5.1 (Probabilistic Checkable Reconfiguration Proof (PCRP)). A language L is in
PSPACE if and only if there exists a verifier V with randomness complexity r(n) = O(logn)
and query complexity q(n)=O(1), coupled with polynomial-time computable proofs πstart,πgoal :
{0,1}∗ → {0,1}∗ such that the following hold for every input x ∈ {0,1}∗:

• (Completeness) If x ∈ L, there exists a reconfiguration sequence π = (π(1), . . .π(T)) from
πstart(x) to πgoal(x) over {0,1}poly(n) such that V (x) accepts every proof with probability
1; namely,

∀t ∈ [T], ℙ𝕣
[
Vπ(t)

(x)= 1
]
= 1. (5.1)

• (Soundness) If x ∉ L, every reconfiguration sequence π = (π(1), . . .π(T)) from πstart(x) to
πgoal(x) over {0,1}poly(n) includes a proof that is rejected by V (x) with probability more
than 1

2 ; namely,

∃t ∈ [T], ℙ𝕣
[
Vπ(t)

(x)= 1
]
< 1

2
. (5.2)

5.1 PSPACE-completeness of SUCCINCT GRAPH REACHABILITY

We first introduce a canonical PSPACE-complete problem called SUCCINCT GRAPH REACH-
ABILITY, for which we design a PCRP system.

Problem 5.2. For a polynomial-size circuit S : {0,1}n → {0,1}n promised that S(1n) = 1n,
SUCCINCT GRAPH REACHABILITY requests to decide if there is a sequence of a finite num-
ber of assignments, (α(1), . . . ,α(T)), from 0n to 1n such that α(t) = α(t+1), S(α(t)) = α(t+1), or
S(α(t+1))=α(t) for all t ∈ [T −1].

Similar variants were formulated previously, e.g., [GW83, PY86]. PSPACE-completeness
of SUCCINCT GRAPH REACHABILITY is shown below for the sake of completeness.

Proposition 5.3. SUCCINCT GRAPH REACHABILITY is PSPACE-complete.

Proof. For the sake of convenience, we first show that a circuit S : {0,1}n → {0,1}n is a YES
instance of SUCCINCT GRAPH REACHABILITY if and only if

∃m ∈ℕ such that S ◦ · · · ◦S︸ ︷︷ ︸
m times

(0n)= 1n. (5.3)

13



The “if” direction is obvious because whenever S ◦ · · · ◦S︸ ︷︷ ︸
m times

(0n)= 1n, the sequence (α(1), . . . ,α(m+1))

such that α(t) = S ◦ · · · ◦S︸ ︷︷ ︸
t−1 times

(0n) for all t ∈ [m + 1] satisfies the desired property. Suppose

we have a sequence (α(1), . . . ,α(T)) from 0n to 1n such that α(t) = α(t+1), S(α(t)) = α(t+1), or
S(α(t+1)) = α(t). It is not hard to see that for each t, S ◦ · · · ◦S︸ ︷︷ ︸

mt times

(α(t)) = 1n for some mt ∈ℕ; in

particular, this is the case for α(1) = 0n, completing the “only if” direction.
We now show the PSPACE-completeness of SUCCINCT GRAPH REACHABILITY. Member-

ship in PSPACE follows from the fact that SUCCINCT GRAPH REACHABILITY ∈ NPSPACE
and Savitch’s theorem [Sav70]. Consider the following PSPACE-complete problem: Given a
deterministic Turing machine M, input x ∈ {0,1}∗, and 1n, does M accept x in space n? Note
that all possible configurations of M having space n on input x are specified by {0,1}αn for
some constant α depending on M. Let cinit ∈ {0,1}αn denote the initial configuration of M on
input x, and M(x, c) ∈ {0,1}αn denote the next configuration of M following c ∈ {0,1}αn. Define
now a circuit S : {0,1}2+αn → {0,1}2+αn of polynomial size (in |M|, |x|, and n) as follows:

S(00◦0αn) := 01◦ cinit,

S(01◦ c) :=


11◦1αn if c is any accepting configuration,
00◦0αn if c is any rejecting configuration,
01◦M(x, c) otherwise,

S(11◦1αn) := 11◦1αn.

(5.4)

Observe easily that S ◦ · · · ◦S︸ ︷︷ ︸
m times

(02+αn) = 12+αn for some m ∈ ℕ if and only if M accepts x in

space n, completing the proof.

5.2 PCRP System for SUCCINCT GRAPH REACHABILITY

Here, we will construct a PCRP system for SUCCINCT GRAPH REACHABILITY. We first
encode the assignment to a circuit by an error-correcting code. For a polynomial-size circuit
S : {0,1}n → {0,1}n, let Enc : {0,1}n → {0,1}ℓ(n) be an (O(1),κ)-locally testable error-correcting
code with relative distance ρ such that ρ ∈ (0,1), κ ∈ℕ, and ℓ(n) = n1+o(1) by Theorem 4.3.2

Let M be an (O(1),κ)-local tester for Enc. Consider the following pair language Lckt ⊆ {0,1}∗×
{0,1}∗: Given a polynomial-size circuit S : {0,1}n → {0,1}n and two strings f , g ∈ {0,1}ℓ(n), we
define (S, f ◦g) ∈ Lckt if and only if f = Enc(α) and g = Enc(β) for a pair α,β ∈ {0,1}n such that
α=β, S(α)=β, or S(β)=α. Intuitively, Lckt determines the adjacency relation of codewords
of Enc with respect to S. Observe easily that Lckt is in NP, and by Proposition 5.3, S is a
YES instance of SUCCINCT GRAPH REACHABILITY if and only if there exists a sequence of

2Without loss of generality, we can assume Theorem 4.3 holds for given n because we can find n′ = n1+o(1)

for which Theorem 4.3 holds and construct a slightly larger circuit S′ : {0,1}n′ → {0,1}n′
such that S′ is a YES

instance if and only if so is S.

14



strings, ( f (1), . . . , f (T)), from Enc(0n) to Enc(1n) such that (S, f (t)◦ f (t+1)) ∈ Lckt for all t ∈ [T−1].
We will use Lckt(S) to denote the set of all strings f ◦ g ∈ {0,1}2ℓ(n) such that (S, f ◦ g) ∈ Lckt;
namely,

Lckt(S) :=
{

f ◦ g ∈ {0,1}2ℓ(n)
∣∣∣ (S, f ◦ g) ∈ Lckt

}
=

{
Enc(α)◦Enc(β)

∣∣∣α=β∨S(α)=β∨S(β)=α
}
.

(5.5)

Let Vckt denote a smooth PCPP verifier for Lckt, having randomness complexity r(n) =
O(logn), query complexity q(n) = q ∈ ℕ, proximity parameter δckt := ρ

4 ∈ (0,1), and sound-
ness error sckt := 1−Ω(δckt) ∈ (0,1) obtained by Theorem 4.7. Note that the proof length can
be bounded by some polynomial p(n) in the input length n. Hereafter, we use a new symbol
“⊥” that is neither 0 nor 1. We will write f ◦ g ◦π for a string provided to Vckt(S), where
f ◦ g ∈ {0,1,⊥}ℓ(n) × {0,1,⊥}ℓ(n) and π ∈ {0,1,⊥}p(n) is an alleged proof.

5.2.1 Verifier Description

Our verifier V is given a polynomial-size circuit S : {0,1}n → {0,1}n and oracle access to
f ◦ g ◦π ∈ {0,1,⊥}2ℓ(n)+p(n), and is designed as follows:

1. V ensures that f or g must be a codeword of Enc by running the local tester M on f
and g separately. Note that M rejects whenever it reads ⊥ at least once, which still
ensures that ℙ𝕣[M f rejects]Ê κ ·∆( f ,Enc(·)).

2. V allows f ◦g to contain ⊥, enabling f or g to transform between different codewords of
Enc. Specifically, V accepts with probability equal to the fraction of ⊥ in f or g, which
can be done by testing whether f i =⊥ or g j =⊥ for independently and uniformly cho-
sen i, j ∈ [ℓ(n)]. During f =⊥n or g =⊥n, the contents of π can be modified arbitrarily
without being rejected, which is essential in the perfect completeness (Lemma 5.4).

3. On the other hand, if neither f nor g contains “many” ⊥’s, V expects f ◦ g to be close
to Lckt(S); thus, it wants to execute the smooth PCPP verifier Vckt(S), whose behav-
ior is, however, undefined if f ◦ g ◦π contains ⊥. Instead, we run a modified verifier
V ′

ckt(S), which accepts if and only if ( f ◦ g)|I contains ⊥ or (π|I does not contain ⊥ and
D(( f ◦ g ◦π)|I) = 1) for (I,D) ∼ Vckt(S).3 This test is crucial for proving the soundness
(Lemma 5.5).

The precise pseudocode of V (S) is presented below.

3In the latter case, we can safely assume that ( f ◦ g)|I does not contain ⊥.

15



Verifier V f ◦g◦π(S) using local tester M for Enc and smooth PCPP verifier Vckt for Lckt.

Input: a polynomial-size circuit S : {0,1}n → {0,1}n.
Oracle access: strings f , g ∈ {0,1,⊥}ℓ(n) representing an implicit input and a proof π ∈

{0,1,⊥}p(n).
1: run local tester M on f and g. ▷ M declares reject if it reads ⊥.
2: if both runs of M declare reject then
3: reject.
4: pick i ∼ [ℓ(n)] and j ∼ [ℓ(n)] independently and uniformly.
5: if f i ̸= ⊥ and g j ̸= ⊥ then
6: ▷ run a modified PCPP verifier V ′

ckt(S). ◁

7: execute PCPP verifier Vckt(S) to generate a query sequence I = (i1, . . . , iq) and a
circuit D : {0,1}q → {0,1}.

8: if ( f ◦ g)|I contains ⊥ then
9: accept.

10: else if π|I does not contain ⊥ and D(( f ◦ g ◦π)|I)= 1 then
11: accept.
12: else
13: reject.
14: else
15: accept.

For any two strings α,β ∈ {0,1}n such that Enc(α)◦Enc(β) ∈ Lckt(S), let Π(α,β) ∈ {0,1}p(n)

denote a polynomial-time computable proof that makes Vckt(S) to accept Enc(α) ◦Enc(β) ◦
Π(α,β) with probability 1. Note that Enc(0n) ◦ Enc(0n) ◦Π(0n,0n) and Enc(1n) ◦ Enc(1n) ◦
Π(1n,1n) are accepted by V (S) with probability 1.

5.2.2 Completeness and Soundness

We now prove the completeness and soundness. Define σstart := Enc(0n)◦Enc(0n)◦Π(0n,0n) ∈
{0,1}2ℓ(n)+p(n) and σgoal := Enc(1n)◦Enc(1n)◦Π(1n,1n) ∈ {0,1}2ℓ(n)+p(n). Let valV (S) denote the
maximum possible value of

min
σ(t)∈σ

ℙ𝕣
[
V (S) accepts σ(t)

]
(5.6)

over all possible reconfiguration sequences σ= (σ(1), . . . ,σ(T)) from σstart to σgoal. The perfect
completeness ensures that valV (S) = 1 if S is a YES instance, while the soundness guaran-
tees that valV (S)< 1−δ for some δ ∈ (0,1) if S is a NO instance.

We first show the completeness.

Lemma 5.4. Suppose a circuit S : {0,1}n → {0,1}n is a YES instance of SUCCINCT GRAPH

REACHABILITY. Then, there exists a reconfiguration sequence σ from σstart to σgoal over
{0,1,⊥}2ℓ(n)+p(n) such that V (S) accepts any proof in σ with probability 1.

Proof. It suffices to show that for any α ̸= β ∈ {0,1}n such that α = S(β) or β = S(α) (i.e.,
Enc(α)◦Enc(β) ∈ Lckt(S)), there is a reconfiguration sequence σ from Enc(α)◦Enc(α)◦Π(α,α)

16



to Enc(α)◦Enc(β)◦Π(α,β) such that V (S) accepts any proof in σ with probability 1. Such a
reconfiguration sequence is obtained by the following procedure:

Reconfiguration σ from Enc(α)◦Enc(α)◦Π(α,α) to Enc(α)◦Enc(β)◦Π(α,β).

1: ▷ start from Enc(α)◦Enc(α)◦Π(α,α). ◁

2: change the second string from Enc(α) to ⊥ℓ(n) one by one.
3: ▷ obtain Enc(α)◦⊥ℓ(n) ◦Π(α,α). ◁

4: change the proof from Π(α,α) to Π(α,β) one by one.
5: ▷ obtain Enc(α)◦⊥ℓ(n) ◦Π(α,β). ◁

6: change the second string from ⊥ℓ(n) to Enc(β).
7: ▷ end at Enc(α)◦Enc(β)◦π(α,β). ◁

By the following case analysis, V (S) turns out to accept every intermediate proof f ◦ g◦π
with probability 1, as desired.

• (Line 2) f ◦ g ◦π is obtained from Enc(α) ◦Enc(α) ◦Π(α,α) by replacing some symbols
of the second Enc(α) by ⊥. Observe that the local tester M always accepts f = Enc(α).
We show that V ′

ckt(S) always accepts f ◦ g ◦π. Let (I,D) ∼ Vckt(S). If ( f ◦ g)|I contains
⊥, V ′

ckt(S) accepts. Otherwise, since π =Π(α,α) does not contain ⊥, it holds that ( f ◦
g ◦π)|I = (Enc(α)◦Enc(α)◦Π(α,α))|I , implying D(( f ◦ g ◦π)|I)= 1.

• (Line 4) f ◦ g◦π has a form of Enc(α)◦⊥ℓ(n)◦π for some π ∈ {0,1,⊥}p(n). The local tester
M always accepts Enc(α), and V (S) would not have run the modified verifier V ′

ckt(S);
i.e., V (S) always accepts f ◦ g ◦π.

• (Line 6) f ◦ g◦π is obtained from Enc(α)◦Enc(β)◦Π(α,β) by replacing some symbols of
Enc(β) by ⊥. Similarly to the first case, we can show that V (S) always accepts f ◦ g◦π.

We then show the soundness.

Lemma 5.5. Suppose a circuit S : {0,1}n → {0,1}n is a NO instance of SUCCINCT GRAPH

REACHABILITY. Then, for any reconfiguration sequence σ from σstart to σgoal over {0,1,⊥}2ℓ(n)+p(n),
σ includes a proof that is rejected by V (S) with probability at least

min
{

(κε)2, (1−ε)2 · 1− sckt

2

}
, where ε :=min

{
1− sckt

2q
,
ρ

3

}
. (5.7)

By Lemmas 5.4 and 5.5, we can complete the proof of Theorem 5.1.

Proof of Theorem 5.1. We first prove the “only if” direction. Since SUCCINCT GRAPH REACH-
ABILITY is PSPACE-complete, it is sufficient to create its verifier V and polynomial-time
computable proofs πstart and πgoal. The verifier V is described in Section 5.2.1. For a
polynomial-size circuit S : {0,1}n → {0,1}, the number of queries that V makes is bounded
by 2 · (# queries of M)+2+ (# queries of Vckt) = O(1), and the number of random bits that V

17



uses is bounded by 2 · (random bits of M)+2 · (logℓ(n))+ (random bits of Vckt) =O(logn). We
define πstart := Enc(0n)◦Enc(0n)◦Π(0n,0n) and πgoal := Enc(1n)◦Enc(1n)◦Π(1n,1n), which are
polynomial-time computable.

We reduce the alphabet size of V from three (i.e., {0,1,⊥}) to two. Using Proposition 4.9,
we first convert V (S) into a constraint system Ψ= (ψ j) j∈[m] over alphabet {0,1,⊥} such that
ℙ𝕣[V (S) accepts π] is equal to valΨ(π) for any proof π ∈ {0,1,⊥}poly(n). By [Ohs23b], we obtain
a constraint system Ψ′ = (ψ′

j) j∈[m′] over alphabet {0,1} and its two satisfying assignments
Astart and Agoal such that valΨ(πstart ↭ πgoal) = 1 implies valΨ′(Astart ↭ Agoal) = 1, and
valΨ(πstart ↭ πgoal) < 1− ε implies valΨ′(Astart ↭ Agoal) < 1−Ω(ε). Using Proposition 4.9
again, we convert Ψ′ into a verifier V ′ with randomness complexity O(logn), query complex-
ity O(1), and alphabet {0,1} such that ℙ𝕣[V ′ accepts π′] is equal to valΨ′(π′) for any proof
π′ ∈ {0,1}poly(n). Consequently, if S is a YES instance, by Lemma 5.4, there exists a recon-
figuration sequence A from Astart to Agoal over {0,1}poly(n) such that V ′ accepts any proof in
A with probability 1, whereas if S is a NO instance, by Lemma 5.5, for any reconfiguration
sequence A from Astart to Agoal over {0,1}poly(n), A includes a proof that is rejected by V ′

with probability Ω(1), which can be amplified to 1
2 by a constant number of repetition, as

desired.
We then prove the “if” direction. Suppose a language L admits a verifier V with random-

ness complexity r(n)=O(logn) and query complexity q(n)=O(1), associated with polynomial-
time computable proofs πstart and πgoal. Consider then the following nondeterministic algo-
rithm for finding a reconfiguration sequence from πstart to πgoal.

Nondeterministic polynomial-space algorithm for finding a reconfiguration sequence.

Input: x ∈ {0,1}∗.
1: compute proofs πstart(x) and πgoal(x) that are accepted by V with probability 1.
2: let π(0) :=πstart(x) and t ← 0.
3: repeat
4: if π(t) =πgoal(x) then
5: accept.
6: nondeterministically guess the next proof π(t+1) ∈ {0,1}poly(|x|).
7: check if π(t) and π(t+1) differ in at most one bit, and V accepts π(t+1) with proba-

bility 1 by enumerating all possible r(|x|) random bits.
8: if the above test passes then
9: forget π(t) and let t ← t+1.

10: else
11: reject.
12: until t > 2poly(|x|)

13: reject.

The above algorithm accepts x if and only if x ∈ L. Moreover, it requires polynomial space
and terminates within a finite steps; namely, L ∈NPSPACE. By Savitch’s theorem [Sav70],
L ∈PSPACE.

18



t 1 · · · t1 t1 +1 · · · t2 −1 t2 t2 +1 · · · t3 −1 t3 t3 +1 · · · t4 −1 t4 t4 +1 · · · T −1 T

α(t) 0n · · · 0n ∗ ·· · ∗ α(t2) α(t2) · · · α(t2) α(t2) ∗ ·· · ∗ 1n 1n · · · 1n 1n

β(t) 0n · · · 0n 0n · · · 0n 0n ∗ ·· · ∗ β(t3) β(t3) · · · β(t3) β(t3) ∗ ·· · ∗ 1n

Table 1: Illustration of Claim 5.7, which finds a sequence γ from 0n to 1n over
{0,1}n using ((α(1),β(1)), . . . , (α(T),β(T))). Colored strings are included in γ, resulting in
γ= (0n, . . . ,0n,α(t2), . . . ,α(t2),β(t3), . . . ,β(t3),1n, . . . ,1n). If an input circuit S is a NO instance, at
least one of Enc(α(t2))◦Enc(0n), Enc(α(t2))◦Enc(β(t3)), or Enc(β(t3))◦Enc(1n) is not in Lckt(S).

The remainder of this section is devoted to the proof of Lemma 5.5.

Proof of Lemma 5.5. Suppose we are given a reconfiguration sequence σ= (σ(1), . . . ,σ(T))=
( f (1)◦g(1)◦π(1), . . . , f (T)◦g(T)◦π(T)) from σstart to σgoal such that valV (S)=mint∈[T]ℙ𝕣[V (S) accepts σ(t)].
Define

ε :=min
{

1− sckt

2q
,
ρ

3

}
, (5.8)

where q is the query complexity of Vckt, sckt is the soundness error of Vckt, and ρ is the
relative distance of Enc. Observe that if both f (t) and g(t) for some t ∈ [T] are ε-far from
Enc(·), then M rejects each f (t) and g(t) with probability more than κε; namely,

ℙ𝕣
[
V (S) rejects σ(t)

]
Êℙ𝕣

[
M rejects f

]
·ℙ𝕣

[
M rejects g

]
> (κε)2. (5.9)

Hereafter, we assume that f (t) or g(t) is ε-close to Enc(·) for every t ∈ [T].
We then define Dec : {0,1}ℓ(n) → {0,1}n ∪ {∗} as

Dec( f ) :=
argmin

α∈{0,1}n
∆( f ,Enc(α)) if f is ε-close to Enc(·),

∗ otherwise,
(5.10)

where ∗ means “undefined”. Using Dec, we obtain a sequence from (0n,0n) to (1n,1n), de-
noted ((α(1),β(1)), . . . , (α(T),β(T))), where α(t) :=Dec( f (t)) and β(t) :=Dec(g(t)) for all t ∈ [T]. By
assumption, α(t) or β(t) must not be ∗ for all t ∈ [T]. We claim the following (see also Table 1):

Claim 5.6. The following hold:

(P1) α(t) =α(t+1) or β(t) =β(t+1) for each t.

(P2) If α(t) ̸= ∗ and α(t+1) ̸= ∗, then α(t) =α(t+1).

(P3) If β(t) ̸= ∗ and β(t+1) ̸= ∗, then β(t) =β(t+1).

Proof. Suppose first α(t) ̸=α(t+1) and β(t) ̸=β(t+1) for some t. Then, f (t) ◦ g(t) and f (t+1) ◦ g(t+1)

differ in at least two symbols, contradicting that σ is a reconfiguration sequence; thus, (P1)
must hold.

19



Suppose then α(t) ̸= ∗, α(t+1) ̸= ∗, and α(t) ̸=α(t+1). Since f (t) and f (t+1) are assumed to be
ε-close to Enc(·), by triangle inequality, we have

∆( f (t), f (t+1))Ê∆(Enc(α(t)),Enc(α(t+1)))︸ ︷︷ ︸
Êρ

−∆( f (t),Enc(α(t)))︸ ︷︷ ︸
Éε

−∆( f (t+1),Enc(α(t+1)))︸ ︷︷ ︸
Éε

Ê ρ−2ε,
(5.11)

implying that f (t) and f (t+1) differ in (ρ−2ε)·ℓ(n)Ê 2 bits (for sufficiently large n), contradict-
ing that σ is a reconfiguration sequence; thus, (P2) holds. Similarly, (P3) can be shown.

Now, we can find a valid sequence from 0n to 1n over {0,1}n, denoted γ = (γ(1), . . . ,γ(T ′)),
along a “path” over a grid {α,β}× [T] by the following procedure (see also Table 1):

Sequence γ from 0n to 1n.

let α(T+1) := 1n and β(T+1) := 1n for convenience.
let t′ ← 0 and place a token at (α,1).
repeat

let t′ ← t′+1.
if token is at (α, t) then

let γ(t′) :=α(t).
if α(t+1) ̸= ∗ then token goes to (α, t+1).
else token goes to (β, t).

if token is at (β, t) then
let γ(t′) :=β(t).
if β(t+1) ̸= ∗ then token goes to (β, t+1).
else token goes to (α, t).

until token is at (α,T +1) or (β,T +1)
return γ := (γ(1), . . . ,γ(t′)).

The correctness of the above procedure is shown in the following claim.

Claim 5.7. The above procedure terminates and returns a sequence γ = (γ(1), . . . ,γ(T ′)) from
0n to 1n consisting only of strings of {0,1}n. Moreover, each pair (γ(t′),γ(t′+1)) is equal to either
(α(t),α(t+1)), (β(t),β(t+1)), (α(t),β(t)), or (β(t),α(t)) for some t.

Proof. (P1) of Claim 5.6 ensures that

• if α(t) ̸= ∗, then α(t+1) ̸= ∗ or β(t) ̸= ∗;4

• if β(t) ̸= ∗, then β(t+1) ̸= ∗ or α(t) ̸= ∗.

Thus, by construction, γ does not include any ∗.

4Because otherwise, we have α(t) ̸= ∗ and α(t+1) = β(t) = ∗, which implies β(t+1) = ∗ by (P1), a contradiction
that α(t+1) or β(t+1) is not ∗.

20



Suppose the token is currently placed at (α, t) and just before at (β, t). Then, the token
must be placed at (α, t+1) in the next step. Similarly, if the token is placed at (β, t) and
just before at (α, t); then, it must be at (β, t+ 1) in the next step, which ensures that we
eventually reach (α,T +1) or (β,T +1) to terminate. The latter statement is obvious from
the construction.

Since we have been given a NO instance, γ must include (γ(t′),γ(t′+1)) for some t′ ∈ [T ′]
such that γ(t′) ̸= γ(t′+1), S(γ(t′)) ̸= γ(t′+1), and S(γ(t′+1)) ̸= γ(t′). By (P2) and (P3) and Claim 5.7,
either of (α(t),β(t))= (γ(t′),γ(t′+1)) or (β(t),α(t))= (γ(t′),γ(t′+1)) must hold for some t ∈ [T], imply-
ing that α(t) ̸=β(t), S(α(t)) ̸=β(t), and S(β(t)) ̸=α(t); namely, Enc(α(t))◦Enc(β(t)) ∉ Lckt(S).

We now estimate the probability that V (S) rejects σ(t). Recall that f (t) and g(t) are ε-close
to Enc(·), implying that

ℙ𝕣
i, j∼[n]

[
f (t)

i ̸= ⊥ and g(t)
j ̸= ⊥

]
Ê (1−ε)2. (5.12)

So, we would run the modified PCPP verifier V ′
ckt with probability Ê (1− ε)2. We use the

following claim to bound the rejection probability of V ′
ckt(S):

Claim 5.8. Suppose α=Dec( f ) ∈ {0,1}n, β=Dec(g) ∈ {0,1}n, and Enc(α)◦Enc(β) ∉ Lckt(S) for
f ◦ g ∈ {0,1,⊥}2ℓ(n). Then, for every proof π ∈ {0,1,⊥}p(n), the modified PCPP verifier V ′

ckt(S)
rejects f ◦ g ◦π with probability more than 1− sckt −εq.

Proof. We first show that ( f ◦ g)|I contains ⊥ for (I,D)∼Vckt(S) with probability at most εq.
Denote by Ickt the indices of f ◦ g ◦π, where |Ickt| = 2ℓ(n)+ p(n). By smoothness of Vckt, we
have pckt :=ℙ𝕣(I,D)[i ∈ I] for all i ∈ Ickt. Since |I| = q for any (I,D)∼Vckt(S), we obtain

|Ickt| · pckt =
∑

i∈Ickt

ℙ𝕣
(I,D)

[
i ∈ I

]
É q =⇒ pckt É

q
2ℓ(n)+ p(n)

. (5.13)

Using a union bound and the assumption that each f and g contains ⊥ in at most ε ·ℓ(n)
positions, we derive

ℙ𝕣
(I,D)

[
( f ◦ g)I contains ⊥

]
= ℙ𝕣

(I,D)

[
∃i ∈ I s.t. ( f ◦ g)i =⊥

]
É ∑

i:( f ◦g)i=⊥
ℙ𝕣

(I,D)

[
i ∈ I

]
É ε ·2ℓ(n) · pckt É εq.

(5.14)

Subsequently, we show that f ◦g is δckt-far from Lckt(S), where δckt = ρ

4 . Letting (α⋆,β⋆) ∈
{0,1}n × {0,1}n such that Enc(α⋆) ◦Enc(β⋆) ∈ Lckt(S), we have α ̸= α⋆ or β ̸= β⋆. Suppose
α ̸=α⋆; then, we have

∆( f ,Enc(α⋆))Ê∆(Enc(α⋆),Enc(α))−∆(Enc(α), f )Ê ρ−ε. (5.15)

21



Similarly, ∆(g,Enc(β⋆))Ê ρ−ε if β ̸=β⋆. Consequently, we obtain

∆( f ◦ g,Enc(α⋆)◦Enc(β⋆))Ê ρ−ε
2

> ρ

4
= δckt, (5.16)

where we used the fact that εÉ ρ

3 .
Taking a union bound, we derive

ℙ𝕣
[
modified verifier V ′

ckt(S) accepts f ◦ g ◦π
]

= ℙ𝕣
(I,D)

[
( f ◦ g)|I contains ⊥ or

(
π|I doesn’t contain ⊥ and D(( f ◦ g ◦π)|I)= 1

)]
= ℙ𝕣

(I,D)

[
( f ◦ g)|I contains ⊥ or

(
( f ◦ g ◦π)|I doesn’t contain ⊥ and D(( f ◦ g ◦π)|I)= 1

)]
É ℙ𝕣

(I,D)

[
( f ◦ g)|I contains ⊥

]
︸ ︷︷ ︸

Éεq

+ ℙ𝕣
(I,D)

[
( f ◦ g ◦π)|I doesn’t contain ⊥ and D(( f ◦ g ◦π)|I)= 1

]
.

(5.17)

Let π̃ be a proof obtained from π by replacing every occurrence of ⊥ by 0. If ( f ◦ g ◦π)|I does
not contain ⊥ and D(( f ◦ g ◦π)|I) = 1, then D(( f ◦ g ◦ π̃)|I) = 1. Since f ◦ g is δckt-far from
Lckt(S), we have

ℙ𝕣
(I,D)

[
( f ◦ g ◦π)|I doesn’t contain ⊥ and D(( f ◦ g ◦π)|I)= 1

]
É ℙ𝕣

(I,D)

[
D(( f ◦ g ◦ π̃)|I)= 1

]
=ℙ𝕣

[
Vckt(S) accepts f ◦ g ◦ π̃

]
< sckt.

(5.18)

Accordingly, we get

ℙ𝕣
[
V ′

ckt(S) rejects f ◦ g ◦π
]
= 1−ℙ𝕣

[
V ′

ckt(S) accepts f ◦ g ◦π
]
> 1− sckt −εq, (5.19)

completing the proof.

Using Claim 5.8 and the definition of ε in Eq. (5.8), we derive

ℙ𝕣
[
V (S) rejects σ(t)

]
Ê ℙ𝕣

i, j∼[ℓ(n)]

[
f (t)

i ̸= ⊥ and g(t)
j ̸= ⊥

]
·ℙ𝕣

[
V ′

ckt(S) rejects σ(t)
]

> (1−ε)2 · (1− sckt −εq)

Ê︸︷︷︸
εÉ 1−sckt

2q

(1−ε)2 · 1− sckt

2
,

(5.20)

Consequently, we get

max
t∈[T]

ℙ𝕣
[
V (S) rejects σ(t)

]
>min

{
(κε)2, (1−ε)2 · 1− sckt

2

}
, (5.21)

accomplishing the proof of Lemma 5.5.

22



5.3 Impossibility of Extension to Average Case
Since the verifier of Theorem 5.1 co-nondeterministically guesses t ∈ [T] and probabilisti-

cally checks π(t), one might think of extending it so as to choose t ∈ [T] randomly. The sound-
ness case then requires that the verifier accepts “most” of but rejects a constant fraction of
the proofs in any reconfiguration sequence. The resulting reconfiguration proof (π(1), . . . ,π(T))
can be thought of as a (kind of) rectangular PCPs [BHPT20], whose column is of exponential
length and row is of polynomial length, and we pick t ∈ [T] and run a verifier on π(t) to decide
whether to accept. However, such relaxation is impossible, as formally stated below.

Observation 5.9. Let V be a verifier with randomness complexity r(n)=O(logn) and query
complexity q(n) = O(1), x ∈ {0,1}n be an input of length n, and πstart(x),πgoal(x) ∈ {0,1}poly(n)

be a pair of proofs that are accepted by V with probability 1. Then, there always exists a
reconfiguration sequence π= (π(1), . . . ,π(T)) from πstart(x) to πgoal(x) over {0,1}poly(n) such that

ℙ𝕣
t∼[T]

[
V accepts π(t)

]
= ℙ𝕣

t∼[T]
(I,D)∼V (x)

[
D(π(t)|I)= 1

]
> 1− 1

2Ω(n) , (5.22)

where the probability is over the r(n) random bits of V and t ∼ [T].

Proof. Consider any reconfiguration sequence (π(1), . . .π(poly(n)+1)) from πstart(x) to πgoal(x).
By appending (πgoal(x), . . . ,πgoal(x)︸ ︷︷ ︸

2n−(poly(n)+1) times

) to it, we obtain an exponential-length reconfiguration

sequence π= (π(1), . . . ,π(2n)). Since π contains (at least) 2n − (poly(n)+1) number of πgoal(x),
we have

ℙ𝕣
t∼[T]

[
V accepts π(t)

]
Ê 2n − (poly(n)+1)

2n = 1− 1
2Ω(n) , (5.23)

as desired.

6 PSPACE-hardness of Approximation for Reconfigura-
tion Problems

In this section, we show that many popular reconfiguration problems are PSPACE-hard
to approximate, answering an open problem of [IDHPSUU11]. Since Ohsaka [Ohs23b] has
already shown gap-preserving reductions starting from the Reconfiguration Inapproxima-
bility Hypothesis (RIH), which asserts that a gap version of MAXMIN CSP RECONFIGURA-
TION is PSPACE-hard, we prove that RIH is true.

6.1 Constant-factor Inapproximability of MAXMIN CSP RECONFIG-
URATION

We first define reconfiguration problems on constraint satisfaction. For a q-ary con-
straint system Ψ = (ψ j) j∈[m] over variable set N and alphabet Σ and its two satisfying as-
signments Astart and Agoal for Ψ, a reconfiguration sequence from Astart to Agoal over ΣN is

23



a sequence (A(1), . . . , A(T)) ∈ (ΣN)∗ such that A(1) = Astart, A(T) = Agoal, and A(t) and A(t+1)

differ in at most one vertex for every t ∈ [T−1]. In the q-CSP RECONFIGURATION problem,
we are asked to decide if there is a reconfiguration sequence of satisfying assignments to Ψ
from Astart to Agoal. Subsequently, we formulate an approximate variant of q-CSP RECON-
FIGURATION [IDHPSUU11, Ohs23b]. For a reconfiguration sequence A = (A(1), . . . , A(T)) of
assignments, let valΨ(A) denote the minimum fraction of satisfied constraints over all A(i)’s
in A; namely,

valΨ(A) := min
A(i)∈A

valΨ(A(i)). (6.1)

In MAXMIN q-CSP RECONFIGURATION, we wish to maximize valΨ(A) subject to A = (Astart, . . . , Agoal).
For two assignments Astart, Agoal : N → Σ, let valΨ(Astart ↭ Agoal) denote the maximum
value of valΨ(A) over all possible reconfiguration sequences A from Astart to Agoal; namely,

valΨ(Astart↭ Agoal) := max
A=(Astart,...,Agoal)

valΨ(A)= max
A=(Astart,...,Agoal)

min
A(i)∈A

valΨ(A(i)). (6.2)

For every numbers 0 É s É c É 1, GAPc,s q-CSP RECONFIGURATION requests to deter-
mine for a q-ary constraint system Ψ and its two assignments Astart and Agoal, whether
valΨ(Astart↭ Agoal)Ê c or valΨ(Astart↭ Agoal)< s. As a corollary of Theorem 5.1 and Propo-
sition 4.9, we immediately obtain a proof of RIH, as formally stated below.

Theorem 6.1. The Reconfiguration Inapproximability Hypothesis holds; that is, there exist
a universal constant q ∈ℕ such that GAP1, 1

2
q-CSP RECONFIGURATION with alphabet size

2 is PSPACE-complete.

By Theorem 6.1 and [Ohs23a, Ohs23b], a host of reconfiguration problems turn out to be
PSPACE-hard to approximate within a constant factor, as listed in Corollary 1.6.

6.2 Polynomial-factor Inapproximability of MAXMIN CLIQUE RECON-
FIGURATION

We amplify inapproximability of MAXMIN CLIQUE RECONFIGURATION from a constant
factor to a polynomial factor. The proof of the following result uses the derandomized graph
product due to Alon, Feige, Wigderson, and Zuckerman [AFWZ95]; see also [HLW06, Sec-
tion 3.3.2] and [AB09, Example 22.7].

Theorem 6.2. There exists a constant ε ∈ (0,1) such that MAXMIN CLIQUE RECONFIGURA-
TION is PSPACE-hard to approximate within a factor of nε, where n is the number of vertices.

We here formulate CLIQUE RECONFIGURATION and its approximate variant. Denote
by ω(G) the clique number of a graph G. For a pair of cliques Cstart and Cgoal of a graph
G, a reconfiguration sequence from Cstart to Cgoal is a sequence (C(1), . . . ,C(T)) of cliques of
G such that C(1) = Cstart, C(T) = Cgoal, and C(t) and C(t+1) differ in at most one vertex; i.e.,

24



|C(t)∆C(t+1)| = 1.5 CLIQUE RECONFIGURATION asks if there is a reconfiguration sequence
from Cstart to Cgoal made up of cliques only of size at least min{|Cstart|, |Cgoal|}− 1. For a
reconfiguration sequence of cliques of G, denoted C = (C(1), . . . ,C(T)), let

valG(C) := min
C(i)∈C

|C(i)|. (6.3)

Then, for a pair of cliques Cstart and Cgoal of G, MAXMIN CLIQUE RECONFIGURATION re-
quires to maximize valG(C) subject to C = (Cstart, . . . ,Cgoal). Subsequently, let valG(Cstart↭
Cgoal) denote the maximum value of valG(C) over all possible reconfiguration sequences C

from Cstart to Cgoal; namely,

valG(Cstart↭Cgoal) := max
C=(Cstart,...,Cgoal)

valG(C). (6.4)

Reduction. We first describe a gap-amplification reduction from MAXMIN CLIQUE RE-
CONFIGURATION to itself using the derandomized graph product [AFWZ95]. Let (G,Cstart,Cgoal)
be an instance of MAXMIN CLIQUE RECONFIGURATION, where G = (V ,E) is a graph on n
vertices. By Theorem 6.1 and [Ohs23b], it is PSPACE-hard to distinguish whether valG(Cstart↭
Cgoal) Ê ω(G)−1 or valG(Cstart ↭ Cgoal) Ê (1− ε)(ω(G)−1) for some constant ε ∈ (0,1) even
when |Cstart| = |Cgoal| =ω(G) and ω(G)

n ∈ [1
3 , 1

2

]
.

Construct then a new instance (H,Dstart,Dgoal) of MAXMIN CLIQUE RECONFIGURATION

as follows. Let ℓ= ⌈logn⌉, and X be a (d,λ)-expander graph over the same vertex as G. The
precise value of d and λ will be determined later. Graph H = (W ,F) is defined as follows:

• Vertex set: W is the set consisting of all length-(ℓ−1) walks w = (w1, . . . ,wℓ) over X .
Note that the number of vertices is equal to N := |W | = ndℓ−1, which is polynomial in
n.

• Edge set: H contains an edge between w1 ̸= w2 ∈ W if and only if a subgraph of G
induced by w1 ∪w2 forms a clique.

For any clique C ⊆V of G, define DC ⊆W as

DC :=
{
w ∈W

∣∣∣ w⊆ C
}
, (6.5)

which is a clique of H as well. Constructing Dstart := DCstart and Dgoal := DCgoal completes the
reduction. We refer to the following property about random walks over expander graphs.

Lemma 6.3 ([AFWZ95]). Let S be any vertex set of X , and Z := (Z1, . . . , Zℓ) a ℓ-tuple of
random variables denoting the vertices of a uniformly chosen (ℓ− 1)-length random walk
over X . Then, it holds that( |S|

|V | −2
λ

d

)ℓ
Éℙ𝕣

Z

[
∀i ∈ [ℓ], Zi ∈ S

]
É

( |S|
|V | +2

λ

d

)ℓ
. (6.6)

5Such a model of reconfiguration is called token addition and removal [IDHPSUU11].

25



The completeness and soundness are shown below.

Lemma 6.4. If valG(Cstart↭Cgoal)Êω(G)−1, then

valH(Dstart↭ Dgoal)Ê |W | ·
(
ω(G)−1

|V | −2
λ

d

)ℓ
. (6.7)

Proof. It suffices to consider the case that Cstart and Cgoal differ in exactly two vertices (i.e.,
Cgoal is obtained from Cstart by removing and adding a single vertex). There is a reconfig-
uration sequence (Cstart,C◦,Cgoal) from Cstart to Cgoal, where C◦ := Cstart∩Cgoal is a clique
of size ω(G)−1. Since DCstart ⊃ DC◦ and DCgoal ⊃ DC◦ by definition, we can reconfigure from
Dstart = DCstart to Dgoal = DCgoal by first removing the vertices of DCstart \ DC◦ one by one and
then adding the vertices of DCgoal \ DC◦ one by one. Thus, we have valH(Dstart ↭ Dgoal) Ê
|DC◦ |. Lemma 6.3 derives that

|DC◦ |
|W | =ℙ𝕣

Z

[
∀i ∈ [ℓ], Zi ∈ C◦

]
Ê

( |C◦|
|V | −2

λ

d

)ℓ
=

(
ω(G)−1

|V | −2
λ

d

)ℓ
, (6.8)

completing the proof.

Lemma 6.5. If valG(Cstart↭Cgoal)< (1−ε)(ω(G)−1), then

valH(Dstart↭ Dgoal)< |W | ·
(
(1−ε)ω(G)−1

|V | +2
λ

d

)ℓ
. (6.9)

Proof. We show the contrapositive. Suppose we are given a reconfiguration sequence D =
(D(1), . . . ,D(T)) from Dstart to Dgoal such that valH(D) Ê |W | ·

(
(1−ε)ω(G)−1

|V | +2λ
d

)ℓ
. For any

clique D of H, define CD as

CD := ⋃
w∈D

w, (6.10)

which is a clique of G as well. Observe that valG(CD(t) ↭ CD(t+1)) Ê min{|CD(t) |, |CD(t+1) |} for
any t ∈ [T −1] since CD(t) ⊂ CD(t+1) or CD(t) ⊃ CD(t+1) , implying further that

valG(Cstart↭Cgoal)Ê min
t∈[T−1]

valG(CD(t) ↭CD(t+1))

Ê min
t∈[T−1]

min
{
|CD(t) |, |CD(t+1) |

}
Ê min

D(t)∈D
|CD(t) |.

(6.11)

Lemma 6.3 derives that

|D(t)|
|W | =ℙ𝕣

Z

[
Z ∈ D(t)

]
Éℙ𝕣

Z

[
∀i ∈ [ℓ], Zi ∈ CD(t)

]
É

( |CD(t) |
|V | +2

λ

d

)ℓ
. (6.12)

26



On the other hand, by assumption,

|D(t)|
|W | Ê

(
(1−ε)ω(G)−1

|V | +2
λ

d

)ℓ
. (6.13)

Consequently, we have |CD(t) | Ê (1− ε)(ω(G)−1) for all t ∈ [T]; thus, valG(Cstart ↭ Cgoal) Ê
(1−ε)(ω(G)−1), as desired.

We are now ready to accomplish the proof of Theorem 6.2.

Proof of Theorem 6.2. Letting X satisfy λ
d < ε

32 so that λ
d < 1

8
ω(G)−1

n ε for sufficiently large n,
we have

ω(G)−1
|V | −2

λ

d
Ê ω(G)−1

|V |
(
1− ε

4

)
(6.14)

(1−ε)ω(G)−1
|V | +2

λ

d
< ω(G)−1

|V |
(
1− 3

4
ε

)
. (6.15)

Such an expander graph X can be constructed in polynomial time in n, e.g., by using an
explicit construction of near-Ramanujan graphs [Alo21, MOP21]. By Lemmas 6.4 and 6.5
and Eqs. (6.14) and (6.15), it is PSPACE-hard to approximate MAXMIN CLIQUE RECONFIG-
URATION within a factor of

|W | ·
(
ω(G)−1

n −2λ
d

)ℓ
|W | ·

(
(1−ε)ω(G)−1

n +2λ
d

)ℓ > νℓ, where ν := 1− ε
4

1− 3
4ε

. (6.16)

Suppose νℓ = Nδ for some δ; then, δ should be

ν⌈logn⌉ = (n ·d⌈logn⌉−1)δ

=⇒ ⌈logn⌉ · logν= δ · (logn+ (⌈logn⌉−1) · logd)

=⇒ δ= ⌈logn⌉ · logν
logn+ (⌈logn⌉−1) · logd

=Θ
(

logν
1+ logd

)
.

(6.17)

Consequently, MAXMIN CLIQUE RECONFIGURATION is PSPACE-hard to approximate within
a factor of Nδ for some δ ∈ (0,1).

References
[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern

Approach. Cambridge University Press, 2009 (↰ pp. 12, 24).

[ABM04] Dimitris Achlioptas, Paul Beame, and Michael Molloy. “Exponential Bounds
for DPLL Below the Satisfiability Threshold”. In: SODA. 2004, pp. 139–
140 (↰ p. 4).

27



[AFWZ95] Noga Alon, Uriel Feige, Avi Wigderson, and David Zuckerman. “De-
randomized graph products”. In: Comput. Complex. 5 (1995), pp. 60–75
(↰ pp. 24, 25).

[ALMSS98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario
Szegedy. “Proof Verification and the Hardness of Approximation Prob-
lems”. In: J. ACM 45.3 (1998), pp. 501–555 (↰ pp. 4, 5).

[Alo21] Noga Alon. “Explicit Expanders of Every Degree and Size”. In: Comb.
41.4 (2021), pp. 447–463 (↰ p. 27).

[AS98] Sanjeev Arora and Shmuel Safra. “Probabilistic Checking of Proofs: A
New Characterization of NP”. In: J. ACM 45.1 (1998), pp. 70–122 (↰ pp. 4,
5).

[BC09] Paul Bonsma and Luis Cereceda. “Finding paths between graph colour-
ings: PSPACE-completeness and superpolynomial distances”. In: Theor.
Comput. Sci. 410.50 (2009), pp. 5215–5226 (↰ p. 4).

[BFL91] László Babai, Lance Fortnow, and Carsten Lund. “Non-Deterministic
Exponential Time has Two-Prover Interactive Protocols”. In: Computa-
tional Complexity 1 (1991), pp. 3–40. DOI: 10.1007/BF01200056 (↰ p. 6).

[BGHSV06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and
Salil Vadhan. “Robust PCPs of Proximity, Shorter PCPs, and Applica-
tions to Coding”. In: SIAM J. Comput. 36.4 (2006), pp. 889–974 (↰ pp. 7,
10, 11).

[BHIKMMSW20] Marthe Bonamy, Marc Heinrich, Takehiro Ito, Yusuke Kobayashi, Haruka
Mizuta, Moritz Mühlenthaler, Akira Suzuki, and Kunihiro Wasa. “Short-
est Reconfiguration of Colorings Under Kempe Changes”. In: STACS.
2020, 35:1–35:14 (↰ p. 9).

[BHPT20] Amey Bhangale, Prahladh Harsha, Orr Paradise, and Avishay Tal. “Rigid
Matrices From Rectangular PCPs or: Hard Claims Have Complex Proofs”.
In: FOCS. 2020, pp. 858–869 (↰ p. 23).

[Bon13] Paul Bonsma. “The Complexity of Rerouting Shortest Paths”. In: Theor.
Comput. Sci. 510 (2013), pp. 1–12 (↰ p. 4).

[BSVW03] Eli Ben-Sasson, Madhu Sudan, Salil Vadhan, and Avi Wigderson. “Randomness-
efficient low degree tests and short PCPs via epsilon-biased sets”. In:
STOC. 2003, pp. 612–621 (↰ p. 10).

[CFLS95] Anne Condon, Joan Feigenbaum, Carsten Lund, and Peter W. Shor. “Prob-
abilistically Checkable Debate Systems and Nonapproximability of PSPACE-
Hard Functions”. In: Chic. J. Theor. Comput. Sci. 1995 (1995) (↰ p. 9).

[CLNV15] Siu Man Chan, Massimo Lauria, Jakob Nordströmm, and Marc Vinyals.
“Hardness of Approximation in PSPACE and Separation Results for
Pebble Games”. In: FOCS. 2015, pp. 466–485 (↰ p. 9).

28

https://doi.org/10.1007/BF01200056


[CvJ11] Luis Cereceda, Jan van den Heuvel, and Matthew Johnson. “Finding
paths between 3-colorings”. In: J. Graph Theory 67.1 (2011), pp. 69–82
(↰ p. 4).

[Din07] Irit Dinur. “The PCP Theorem by Gap Amplification”. In: J. ACM 54.3
(2007), p. 12 (↰ p. 7).

[DL17] Erik D. Demaine and Quanquan C. Liu. “Inapproximability of the Stan-
dard Pebble Game and Hard to Pebble Graphs”. In: WADS. 2017, pp. 313–
324 (↰ p. 9).

[DR06] Irit Dinur and Omer Reingold. “Assignment Testers: Towards a Combi-
natorial Proof of the PCP Theorem”. In: SIAM J. Comput. 36.4 (2006),
pp. 975–1024 (↰ pp. 7, 11).

[DS14] Irit Dinur and David Steurer. “Analytical approach to parallel repeti-
tion”. In: STOC. 2014, pp. 624–633 (↰ p. 4).

[Fei98] Uriel Feige. “A Threshold of lnn for Approximating Set Cover”. In: J.
ACM 45.4 (1998), pp. 634–652 (↰ p. 4).

[FMV11] Uriel Feige, Vahab S. Mirrokni, and Jan Vondrák. “Maximizing non-
monotone submodular functions”. In: SIAM J. Comput. 40.4 (2011), pp. 1133–
1153 (↰ p. 9).

[GJKL22] Kshitij Gajjar, Agastya Vibhuti Jha, Manish Kumar, and Abhiruk Lahiri.
“Reconfiguring Shortest Paths in Graphs”. In: AAAI. 2022, pp. 9758–
9766 (↰ p. 9).

[GKMP09] Parikshit Gopalan, Phokion G. Kolaitis, Elitza Maneva, and Christos
H. Papadimitriou. “The Connectivity of Boolean Satisfiability: Compu-
tational and Structural Dichotomies”. In: SIAM J. Comput. 38.6 (2009),
pp. 2330–2355 (↰ pp. 3, 4).

[GS06] Oded Goldreich and Madhu Sudan. “Locally testable codes and PCPs of
almost-linear length”. In: J. ACM 53.4 (2006), pp. 558–655 (↰ p. 10).

[GW83] Hana Galperin and Avi Wigderson. “Succinct Representations of Graphs”.
In: Inf. Control. 56.3 (1983), pp. 183–198 (↰ p. 13).

[HD05] Robert A. Hearn and Erik D. Demaine. “PSPACE-Completeness of Sliding-
Block Puzzles and Other Problems through the Nondeterministic Con-
straint Logic Model of Computation”. In: Theor. Comput. Sci. 343.1-2
(2005), pp. 72–96 (↰ p. 4).

[HD09] Robert A. Hearn and Erik D. Demaine. Games, Puzzles, and Computa-
tion. A K Peters, Ltd., 2009 (↰ p. 4).

[HLW06] Shlomo Hoory, Nathan Linial, and Avi Wigderson. “Expander graphs
and their applications”. In: Bull. Am. Math. Soc. 43.4 (2006), pp. 439–
561 (↰ p. 24).

29



[Hoa23] Duc A. Hoang. Combinatorial Reconfiguration. https://reconf.wikidot.
com/. 2023 (↰ p. 4).

[HSS84] John E. Hopcroft, Jacob Theodore Schwartz, and Micha Sharir. “On
the Complexity of Motion Planning for Multiple Independent Objects;
PSPACE-Hardness of the “Warehouseman’s Problem””. In: Int. J. Robot.
Res. 3.4 (1984), pp. 76–88 (↰ p. 4).

[ID14] Takehiro Ito and Erik D. Demaine. “Approximability of the subset sum
reconfiguration problem”. In: J. Comb. Optim. 28.3 (2014), pp. 639–654
(↰ p. 4).

[IDHPSUU11] Takehiro Ito, Erik D. Demaine, Nicholas J. A. Harvey, Christos H. Pa-
padimitriou, Martha Sideri, Ryuhei Uehara, and Yushi Uno. “On the
Complexity of Reconfiguration Problems”. In: Theor. Comput. Sci. 412.12-
14 (2011), pp. 1054–1065 (↰ pp. 3–5, 9, 23–25).

[IKKKO22] Takehiro Ito, Naonori Kakimura, Naoyuki Kamiyama, Yusuke Kobayashi,
and Yoshio Okamoto. “Shortest Reconfiguration of Perfect Matchings via
Alternating Cycles”. In: SIAM J. Discret. Math. 36.2 (2022), pp. 1102–
1123 (↰ p. 9).

[JS79] Wm Woolsey Johnson and William Edward Story. “Notes on the “15”
puzzle”. In: Am. J. Math. 2.4 (1879), pp. 397–404 (↰ p. 4).

[KMM11] Marcin Kamiński, Paul Medvedev, and Martin Milanič. “Shortest Paths
Between Shortest Paths”. In: Theor. Comput. Sci. 412.39 (2011), pp. 5205–
5210 (↰ p. 9).

[LY94] Carsten Lund and Mihalis Yannakakis. “On the Hardness of Approxi-
mating Minimization Problems”. In: J. ACM 41.5 (1994), pp. 960–981
(↰ p. 4).

[MNORTU16] Tillmann Miltzow, Lothar Narins, Yoshio Okamoto, Günter Rote, Anto-
nis Thomas, and Takeaki Uno. “Approximation and Hardness of Token
Swapping”. In: ESA. 2016, 66:1–66:15 (↰ p. 9).

[MOP21] Sidhanth Mohanty, Ryan O’Donnell, and Pedro Paredes. “Explicit Near-
Ramanujan Graphs of Every Degree”. In: SIAM J. Comput. 51.3 (2021),
STOC20-1-STOC20–23 (↰ p. 27).

[Nis18] Naomi Nishimura. “Introduction to Reconfiguration”. In: Algorithms 11.4
(2018), p. 52 (↰ pp. 4, 5).

[Nor13] Jakob Nordström. “Pebble Games, Proof Complexity, and Time-Space
Trade-offs”. In: Log. Methods Comput. Sci. 9 (2013) (↰ p. 9).

[Ohs23a] Naoto Ohsaka. “Gap Amplification for Reconfiguration Problems”. In:
CoRR abs/2310.14160 (2023) (↰ pp. 6, 7, 24).

[Ohs23b] Naoto Ohsaka. “Gap Preserving Reductions Between Reconfiguration
Problems”. In: STACS. 2023, 49:1–49:18 (↰ pp. 5–7, 9, 18, 23–25).

30

https://reconf.wikidot.com/
https://reconf.wikidot.com/


[OM22] Naoto Ohsaka and Tatsuya Matsuoka. “Reconfiguration Problems on
Submodular Functions”. In: WSDM. 2022, pp. 764–774 (↰ pp. 4, 9).

[Par21] Orr Paradise. “Smooth and Strong PCPs”. In: Comput. Complex. 30.1
(2021), p. 1 (↰ p. 11).

[PH70] Michael S. Paterson and Carl E. Hewitt. “Comparative Schematology”.
In: Record of the Project MAC Conference on Concurrent Systems and
Parallel Computation. 1970, pp. 119–127 (↰ p. 9).

[PY86] Christos H. Papadimitriou and Mihalis Yannakakis. “A Note on Succinct
Representations of Graphs”. In: Inf. Control. 71.3 (1986), pp. 181–185
(↰ p. 13).

[PY91] Christos H. Papadimitriou and Mihalis Yannakakis. “Optimization, Ap-
proximation, and Complexity Classes”. In: J. Comput. Syst. Sci. 43.3
(1991), pp. 425–440 (↰ p. 7).

[Sav70] Walter J. Savitch. “Relationships between nondeterministic and deter-
ministic tape complexities”. In: J. Comput. Syst. Sci. 4.2 (1970), pp. 177–
192 (↰ pp. 14, 18).

[van13] Jan van den Heuvel. “The Complexity of Change”. In: Surveys in Combi-
natorics 2013. Vol. 409. Cambridge University Press, 2013, pp. 127–160
(↰ p. 4).

31

ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


