
Strong Batching for Non-Interactive Statistical Zero-Knowledge
Changrui Mu∗ Shafik Nassar† Ron D. Rothblum‡ Prashant Nalini Vasudevan§

February 14, 2024

Abstract

A zero-knowledge proof enables a prover to convince a verifier that x ∈ S, without revealing
anything beyond this fact. By running a zero-knowledge proof k times, it is possible to prove
(still in zero-knowledge) that k separate instances x1, . . . , xk are all in S. However, this increases
the communication by a factor of k. Can one do better? In other words, is (non-trivial) zero-
knowledge batch verification for S possible?

Recent works by Kaslasi et al. (TCC 2020, Eurocrypt 2021) show that any problem pos-
sessing a non-interactive statistical zero-knowledge proof (NISZK) has a non-trivial statistical
zero-knowledge batch verification protocol. Their results had two major limitations: (1) to
batch verify k inputs of size n each, the communication in their batch protocol is roughly
poly(n, log k) + O(k), which is better than the naive cost of k · poly(n) but still scales linearly
with k, and, (2) the batch protocol requires Ω(k) rounds of interaction.

In this work we remove both of these limitations by showing that any problem in NISZK
has a non-interactive statistical zero-knowledge batch verification protocol with communication
poly(n, log k).

∗National University of Singapore. Email: changrui.mu@u.nus.edu.
†UT Austin. Email: shafik@cs.utexas.edu.
‡Technion. Email: rothblum@cs.technion.ac.il.
§National University of Singapore. Email: prashant@comp.nus.edu.sg.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 24 (2024)

changrui.mu@u.nus.edu
mailto:shafik@cs.utexas.edu
mailto:rothblum@cs.technion.ac.il
mailto:prashant@comp.nus.edu.sg

Contents
1 Introduction 3

1.1 Technical Overview . 4
1.2 Related Works . 11
1.3 Discussion and Open Problems . 12

2 Preliminaries 12
2.1 Probability Theory Background . 13
2.2 Hash Functions with Bounded Independence . 13

3 Non-Interactive Statistical Zero-knowledge 14
3.1 Complete Problems . 15
3.2 Smooth Entropy Approximation . 16

4 Derandomizing Batch Reductions 17

5 Batching AI by Direct Composition 19
5.1 Proof of Lemma 5.2 . 22

2

1 Introduction
Zero-knowledge proofs, introduced in the groundbreaking work of Goldwasser, Micali, and Rack-
off [GMR89], allow a prover to convince a verifier that a given statement “x ∈ S” is true, without
revealing anything beyond its validity. Since their inception, zero-knowledge proofs have had a
profound impact on cryptography, complexity theory, and more generally throughout theoretical
computer science. Remarkably, these proof-systems are now being used in practical systems as
well.1

In this work, we study batch verification of zero-knowledge proofs: assuming that S has a
zero-knowledge proof, can one prove, still in zero-knowledge, that x1, . . . , xk all belong to S? The
immediate answer to this question is yes – one can simply prove separately that each xi ∈ S, and
the resulting protocol only has a linear in k loss in zero-knowledge error. What we ask however, is
whether there is a protocol that can do so with much shorter communication.

We focus on the setting of statistical zero-knowledge (SZK) proofs – these are proof-systems
in which both the soundness and zero-knowledge properties hold in a strong information-theoretic
sense. Statistical zero-knowledge proofs are known for most of the commonly studied problems
in cryptography and are closely related to constructions of encryption and signature schemes. In
particular, the study of batch verification of zero-knowledge proofs is motivated by their enabling
of batch proofs that public-keys, ciphertexts or signatures are well-formed, and more generally, for
better understanding the rich structure2 of SZK.

The question of batch verification for statistical zero-knowledge proofs was raised in a recent pair
of works by Kaslasi et al. [KRR+20, KRV21]. These works showed that every problem possessing a
non-interactive SZK proof, has an interactive SZK proof-system for batch verification, with non-
trivial communication complexity. Recall that non-interactive statistical zero-knowledge proofs
(NISZK) [SCPY98, GSV99], similarly to their computational counterparts [BFM88], are defined
in the common random string model, in which all parties have access to a common random string
(aka a CRS).3

Thus, [KRR+20, KRV21] construct SZK batch verification protocols for every problem in
NISZK. However, their results suffer from some important drawbacks. First, the communication
complexity of their protocol is (up to poly-logarithmic factors) poly(n)+O(k). This is better than
the naive protocol which has communication poly(n) · k, but the improvement is still limited. We
call a batching protocol achieving such communication a weak batching protocol, since, ideally, we
would like the dependence on k to be much smaller. Second, while the starting point is a problem
that has a non-interactive SZK proof, the resulting batch protocol is highly interactive, requiring
Ω(k) rounds of interaction, which can be exorbitant for large values of k.

Our Results. In this work, we improve on the results of [KRR+20, KRV21] and construct a
strong batch verification protocol in which the communication only grows poly-logarithmically with
k. Furthermore, the resulting protocol is non-interactive (in the CRS model).

1See https://zkproof.org and references therein.
2See Vadhan’s thesis [Vad99] for further background.
3As is typically done in the statistical setting (see [GSV99]), we focus on the case that the CRS is a uniform random

string (rather than the related common “reference” string model, which is sometimes considered in the computational
setting).

3

https://zkproof.org

Theorem 1.1 (Batch Proofs for NISZK). Suppose Π ∈ NISZK and k = k(n) ∈ N such that
k(n) ≤ 2n

0.01, where n denotes the length of a single instance of Π. Then, Π⊗k has an NISZK
protocol in which the communication complexity and the length of the common random string is
poly

(
n, log k

)
. The completeness, soundness, and zero-knowledge errors are all negligible in n and

k, and the verifier runs in time poly(n, k).

Here and throughout, Π⊗k denotes the set of k-tuples of inputs (x1, . . . , xk) (of equal length),
all of which belong to Π.4 We remark that a poly(n) dependence in the communication complexity
is inevitable, even when k = 1, assuming the existence of a sub-exponentially hard problem in
NISZK (this follows from known limitations on laconic provers [GH98, GVW02]).

In addition, our protocol is significantly simpler than those in [KRR+20, KRV21]. The main
technical observations underlying it are that:

1. Hash functions with bounded independence (specifically 4-wise independence suffices) pre-
serve very specific types of entropies, and,

2. A cascade of such hash functions can be derandomized while still preserving this behaviour.
We elaborate on these points next.

1.1 Technical Overview
In this section, we provide an overview of our construction of batch NISZK protocols for any
problem in NISZK.

Batching Protocol for Permutations. The starting point of our protocol is the same as those
of [KRR+20, KRV21]. In particular, [KRR+20] first demonstrate a very simple batching protocol for
a specific promise problem in NISZK, denoted PERM, of checking whether a given length-preserving
circuit C : {0, 1}n → {0, 1}n is a permutation (these are the YES instances of the problem) or a
2-to-1 function (these are the NO instances). Hereon, we will use the notation N = 2n. Overloading
notation, we will use C to also represent the distribution induced by evaluating the circuit on a
uniformly random input.

A straightforward NISZK protocol for (a single instance of) PERM is to have the CRS contain a
random string r ∈ {0, 1}n and the proof is an x ∈ {0, 1}n such that C(x) = r. This simple protocol
clearly has perfect completeness and soundness error 1/2 (which can be amplified by repetition).
The protocol is perfectly zero-knowledge since the simulator can just sample x at random and
output (x, r = C(x)). The communication complexity and CRS length are both n, corresponding
to the input and output length of C – significantly, these are otherwise independent of the size of
C.

This protocol can be easily extended to prove that circuits C1, . . . , Ck all belong to PERM as
follows. The CRS is again a uniformly random r ∈ {0, 1}n, but now the proof is a string x ∈ {0, 1}n
such that (Ck ◦ Ck−1 ◦ · · · ◦ C1)(x) = r (here ◦ denotes composition of functions). Completeness
and zero-knowledge are as before. As for soundness, observe that even if one of the Ci’s is 2-to-1,
then the composed circuit has an image of size at most 2n/2 and so with probability at least 1/2,
the CRS string r is sampled outside the image and so a suitable preimage x does not exist.

4In the technical sections we refer to promise problems, in which the formal definition of Π⊗k requires that all k
inputs satisfy the promise of Π, see Section 2.

4

Approximate Injectivity. If the problem PERM were NISZK-complete, we would be done
– given k instances of any NISZK problem Π, we could reduce each of them to an instance of
PERM, and run the above batch NISZK protocol. Unfortunately, PERM is not known to be
NISZK-complete, and in fact seems unlikely to be, as it has a perfect zero-knowledge proof.

Still, [KRR+20, KRV21] identify a closely related problem that they show to be NISZK-
complete. This problem is called Approximate Injectivity, denoted by AIL,δ, and is specified by two
parameters L and δ.5 In the AIL,δ problem, the instance is a circuit C : {0, 1}n → {0, 1}m, where
m ≥ n, and:

• YES instances are circuits that are injective on all except a δ-fraction of inputs; that is, for
all except δ ·N elements x ∈ {0, 1}n, there is no x′ ̸= x such that C(x) = C(x′).

• NO instances are circuits where for all except a δ-fraction of inputs x, there are at least L
elements x′ such that C(x) = C(x′).

They then show that, even for sub-exponential values of L and δ, the problem AIL,δ is NISZK-
complete.

For this overview, it will be convenient to focus first on an exact variant of AIL,δ that we will
call Exact Injectivity, denoted EIL. Here YES instances are required to be fully injective, whereas
NO instances are exactly L-to-1. We will describe how to construct a batch NISZK protocol for
this problem, and later describe how to make this work with just approximate injectivity.

Batch Protocol for Exact Injectivity. We would now like to design an NISZK protocol that
distinguishes between the YES case where input circuits C1, . . . , Ck : {0, 1}n → {0, 1}m are all
injective, and the NO case where at least one of them is highly non-injective (i.e., it is L-to-1).
Simply composing the circuits as we did in the protocol for PERM does not work, even syntactically,
since the co-domain of each circuit Ci is larger than the domain of Ci+1. Since it is in general unclear
how to injectively map the co-domain of the former to the domain of the latter, a natural approach
is to perform this mapping at random.

Thus, consider selecting hash functions h1, . . . , hk : {0, 1}m → {0, 1}n from a suitable hash func-
tion family (e.g., of bounded independence), and applying these in between consecutive applications
of the Ci’s. This defines the following “chain” circuit:

C(x) = (hk ◦ Ck ◦ · · · ◦ h2 ◦ C2 ◦ h1 ◦ C1)(x).

Before continuing, looking ahead, a major problem with this approach is that even if each
hash function requires merely a constant number of bits to represent it, and if the hash functions
are chosen independently, then they must be communicated between the parties, which implies
that communication (or CRS length) still scales linearly with k. Getting around this requires an
entirely separate set of techniques that we describe towards the end of this section. For now, we
ignore this issue and focus on simply constructing a NISZK protocol with short prover to verifier
communication.

Does Naive Hashing Work? Clearly, if even one of the Ci’s is L-to-1, then similarly to the
case of PERM, the size of the range of the chain circuit C is at most N/L. So in the NO case we

5The NISZK hardness of AI also follows from the instance dependent universal one-way hashing constructed in
the earlier work of Ong and Vadhan [OV08].

5

have what we want, but what about the YES case? Can we argue that if C1, . . . , Ck are all injective
then C is also injective (with high probability)? Unfortunately, the answer is negative. Even if the
functions hi were chosen completely at random, by the birthday bound, a very large number of
collisions is likely to occur. Let alone further compositions, the expected size of the range of even
(h1 ◦ C1) is only (1− (1− 1/N)N) ·N ≈ (1− 1/e) ·N , which is a constant factor smaller than N .
These collisions from the hi’s skew the output distribution of C, and after a large (k ≫ n) number
of compositions it is unclear whether we will be able to distinguish between the YES and NO cases.
Indeed, even if each composition decreases the entropy of the resulting circuit by merely 1/p(n) for
some polynomial p, after k ≫ p steps, the two cases become indistinguishable.

Prior work [KRR+20, KRV21] handled this using a delicate interactive protocol in which infor-
mation is only gradually revealed both to the prover and the verifier. This gradual process handled
each circuit in the chain, in order, via a constant-round interactive protocol. In each round, the
collisions coming out of the corresponding hash hi were “nipped at the bud” (i.e., immediately
when they appeared). This approach led to a total of Ω(k) rounds, which, in particular, also meant
that the communication complexity was Ω(k).

At this point we depart from the [KRR+20, KRV21] approach. We show that as a matter of
fact, in the YES case, even though there are many collisions in C, its output distribution still has
higher entropy (for a particular notion of entropy) than in the NO case. Given such a gap between
YES and NO instances, we then construct an NISZK protocol that takes advantage of this. We
find the fact that we can control the output distribution of the circuit even after a huge number
of compositions (i.e., even if k is sub-exponential in n) quite surprising, and we elaborate on this
below.

The Range of C. To see why C stands any chance of having high entropy when all the Ci’s are
injective, it is useful to think about the size of its range. As observed earlier, even if C1 is injective
and h1 is a completely random function, the expected size of the range of (h1 ◦ C1) is, with good
probability, close to (1− 1/e) ·N . This is computed as follows:

• There are N elements y ∈ {0, 1}m that are in the range of C1, since it is injective.

• For any z ∈ {0, 1}n, the probability there exists a y in the image of C1 with h1(y) = z is:(
1− (1− 1/N)N

)
≈ 1− 1/e.

• The expected number of z’s in the range of (h1 ◦ C1) is thus ≈ (1− 1/e) ·N .

It can also be shown that the size of this range concentrates around this expectation. The expected
size of the range of (h2 ◦ C2 ◦ h1 ◦ C1) will also be a constant factor smaller than (1− 1/e) ·N . If
this trend continues, then after k compositions there is no hope that C will have a large range.

Fortunately, it does not. Suppose that for some i and hash functions h1, . . . , hi−1, the function
(Ci ◦hi−1 ◦ · · · ◦C1) has range of size S ≪ N . Then, the expected size of the range of (hi ◦Ci ◦ · · ·)
when hi is completely random is computed as:

• For any z ∈ {0, 1}n, the probability there exists a y in the image of (Ci ◦ · · ·) with hi(y) = z
can be approximated using the Taylor series as:(

1− (1− 1/N)S
)
≈ S

N
−O

(
S2

N2

)
.

6

• The expected number of z’s in the range of (hi ◦ Ci ◦ · · ·) is thus ≈ S −O(S2/N).
So if (S2/N) is smaller than o(S), the size of the range does not shrink by a constant factor. In
other words, as we keep composing with (h2 ◦ C2), (h3 ◦ C3), etc., the size of the range of the
composed circuit might quickly drop to o(N), but after that the rate of its decrease goes down,
and the size of the range nearly stabilises. By careful arguments along these lines, it can in fact be
shown that, with high probability, the size of the range of C is at least Ω(N/k).

Entropies of C. The arguments so far indicate that if all the Ci’s are injective, the range of C
is of size at least Ω(N/k), whereas if even one of them is L-to-1, it is at most N/L. If L is much
larger than k (as can be arranged6), there is a significant gap between these numbers. While this
is encouraging, it is insufficient for an NISZK protocol. The problem of distinguishing between
circuits whose range is large and ones whose range is small is, in fact, NP-hard7, and thus unlikely
to have an SZK protocol (let alone an NISZK one).

We do, however, know how to construct NISZK protocols that distinguish between circuits
whose output distribution has large entropy, and circuits with a small range. To help with precision,
we define the following notions of entropy of a distribution D. Below, Dx denotes the probability
mass placed on the element x by D.

• Max Entropy: H0(D) = log |Supp(D)|.

• Shannon Entropy: H1(D) =
∑

x−Dx logDx.
Circuit C having a small range corresponds to H0(C) being small. Following the work of Goldreich
et al. [GSV99], we know NISZK protocols that can distinguish between circuits with large and
small Shannon entropies. As the max entropy is always larger than the Shannon entropy, this
immediately gives us an NISZK protocol that can distinguish between circuits with large Shannon
entropy and those with small range.

So if we can show that in the YES case the composed circuit C has high Shannon entropy, we
would be done. We show this by proving a stronger statement. We consider the following notion
of entropy that is a lower bound on the Shannon entropy8:

• Rényi Entropy: H2(D) = − log
∑

xD
2
x.

We show that in the YES case (i.e., when C1, . . . , Ck are injective), C actually has large Rényi
entropy. We consider this notion of entropy for two reasons. First, the quantity inside the log
above (i.e.,

∑
xD

2
x, aka the collision probability of D) is simpler and easier to work with. The

more important reason, however, is the following. Eventually, we are going to derandomise the
construction of C so that we don’t need Ω(k) bits to describe all the functions hi. We show that
the derandomization procedure we use more-or-less preserves the Rényi entropy of C. It is not at
all clear, however, whether the process preserves the Shannon entropy. So it would not have been
sufficient to show that C has high Shannon entropy, and we do need it to have Rényi entropy.

6Recall that k ≤ 2n
ε , for some small ε > 0, and as noted earlier, the problem AIL,δ is NISZK-hard [KRV21] even

for some sub-exponential values of L.
7This NP-hardness can be shown by reducing from SAT. Given a SAT formula ϕ, construct a circuit that takes

input (x, y) where x, y ∈ {0, 1}n, and outputs 0n if ϕ(x) = 0, and y otherwise. If ϕ is not satisfiable, the size of
the range of this circuit is 1, whereas if it has even one satisfying assignment, it is 2n. So an algorithm that can
distinguish between these two cases can be used to solve SAT.

8Technically, this is only one of a family of measures called Rényi entropies, of which the Shannon entropy is also
one. We simply refer to this as Rényi entropy for convenience.

7

Preservation of Rényi Entropy. Next we describe how we bound the Rényi entropy of C,
arguing in terms of its collision probability, denoted by cp(C). Note that H2(D) = − log (cp(D)).
For each i ∈ [0, k], define the following distribution:

Di ≡ (hi ◦ Ci ◦ · · · ◦ h1 ◦ C1)(x),

where x is uniformly random. To show that the Rényi entropy of C is high if all the Ci’s are
injective, we proceed inductively, and show that C’s collision probability is small. First, D0 is
simply the uniform distribution over {0, 1}n, and its collision probability is 1/N . We then show
that for each i ∈ [k]:

E
hi

[cp(Di)] ≤ cp
(
Ci(Di−1)

)
+

1

N
= cp(Di−1) +

1

N
,

where the inequality follows from the law of total expectation and the pairwise independence of
hi, and the equality follows from the fact that Ci is injective. This shows that the expected
collision probability of Dk ≡ C is at most (k + 1)/N . We then similarly bound the variances of
the cp(Di)’s, and inductively use concentration bounds to show that, with high probability, the
collision probability of Dk is not much larger than O(k/N). The above bound on the expectation
can be shown as long as the hi’s are drawn from a family that is pairwise-independent. And for
the bound on the variance, it is sufficient that they are 4-wise independent.

So the Rényi entropy of C, with high probability over the choice of h1, . . . , hk, is not much less
than (n− log k). If at least one of the Ci’s was L-to-1, then C has a range of size at most N/L, and
thus max entropy of at most (n− logL). So as long as k ≪ L, there is a gap between these bounds
and we have an NISZK protocol that distinguishes between these cases. For any k < 2n

o(1) , there
is a setting of L ≫ k and δ for which AIL,δ is NISZK-hard, and so we can support batching of k
instances of any NISZK problem with this approach.

Dealing with Approximate Injectivity. So far, however, we have ignored the fact that in the
actual NISZK-complete problem AIL,δ, the circuits are only approximately injective or L-to-1. In
the NO case, the approximation is not an issue as it only slightly increases the size of the range of
the circuit. In the YES case, however, we need to be careful.

To be more precise, recall that YES instances of AIL,δ are circuits where up to a δ fraction of
inputs may not be mapped injectively. When this happens, the relation cp

(
Ci(Di−1)

)
= cp(Di−1)

that we used to inductively bound the collision probabilities of Di breaks down – composition with
Ci does not necessarily preserve collision probabilities any more. For instance, suppose C1 is such
that it maps (1 − δ)N inputs injectively, and maps all of the remaining δN inputs to 0m. The
collision probability of C1(x) is now at least δ2, which could already be much larger than O(k/N)
and O(L/N).

However, while the collision probability of C1(x) is not small, it is, in fact, close to another
distribution whose collision probability is small. Consider a function Ĉ1 that satisfies the following
two properties:

• Ĉ1 : {0, 1}n → {0, 1}m is injective.
• For any x that C1 maps injectively, Ĉ1(x) = C1(x).

Fix any such function. Note that the statistical distance between C1(x) and Ĉ1(x) is at most δ –
the probability mass from all the inputs on which C1 and Ĉ1 might disagree. And also, the collision
probability of Ĉ1(x) is 1/N , as Ĉ1 is injective.

8

Recall that our earlier approach was to show that the collision probability of Dk is small. While
we cannot hope for this any more following the above observations, we may still endeavour to show
that Dk is close to a distribution whose collision probability is small. This would aso be sufficient
for constructing an NISZK protocol, using a simple reduction to the Statistical Difference from
Uniform (SDU) problem (also complete for NISZK [GSV99]) by hashing and using the Leftover
Hash Lemma.

So far using the closeness of C1 and Ĉ1, for any h1, we can show the following bound on
statistical distance from the data processing inequality:

∆(h1 ◦ C1, h1 ◦ Ĉ1) ≤ δ.

So D1 ≡ (h1 ◦C1) is indeed close to a distribution whose collision probability is small. To take this
argument further, simlarly define Ĉi for the other circuits Ci, and define the following corresponding
distributions:

D̂i ≡ (hi ◦ Ĉi ◦ · · · ◦ h1 ◦ Ĉ1)(x).

We have shown above that for any choice of h1, the distributions D1 and D̂1 are close. We would
like to argue that for any choices of h1, . . . , hk, the distributions Dk and D̂k are close. It is not
straightforward to argue this for further compositions, however. Ideally, we would like to also say,
for instance, that for any h1 and h2, the distributions of (h2 ◦ C2 ◦ h1 ◦ Ĉ1) and (h2 ◦ Ĉ2 ◦ h1 ◦ Ĉ1)
are close, to enable a hybrid argument where we slowly replace the Ci’s with the Ĉi’s. This is,
however, not true. Consider an h1 that maps all inputs to an x on which C2 is not injective. Then,
the distance between (C2 ◦ h1 ◦ Ĉ1) and (Ĉ2 ◦ h1 ◦ Ĉ1) can be very large.

Pathological cases like this can be avoided if the distribution of (h1 ◦ Ĉ1) has high entropy.
Roughly, if this distribution has high entropy, then it cannot place too much probability mass on
the elements on which C2 and Ĉ2 differ. Observe that the distance between (C2 ◦ h1 ◦ Ĉ1) and
(Ĉ2 ◦ h1 ◦ Ĉ1) is upper bounded by this probability mass. Using such arguments, we can show that
if D̂1 ≡ (h ◦ Ĉ1) has high Rényi entropy, then the distance between D2 and D̂2 is small.

Note that for any choice of h1, . . . , hk, the entropy of any D̂i is at least that of D̂k, as entropy
cannot be increased by composition with deterministic functions. We can then proceed inductively
to show that for any hash functions h1, . . . , hk for which D̂k has high Rényi entropy, the distance
between Dk and D̂k is small.

That is, for any such choice of hash functions (which happens with high probability), C is close
to a distribution that has high Rényi entropy. This implies, in particular, that with high probability
C will be close to a distribution that has high Rényi entropy. This latter statement seems sufficient
for our purposes, but is not. We will actually need the former stronger statement to perform the
derandomization of C as discussed next.

Derandomizing the Reduction. What we have so far is a randomized reduction from AI⊗kL,δ

to a problem in which the YES instances are circuits that are close to having high Rényi entropy,
and NO instances are circuits that have low max entropy. As noted earlier, although throughout
the previous discussion we have assumed that the hash functions h1, . . . , hk are truly random, it
suffices to use 4-wise independent hash functions to bound the collision probability. This still
yields a reduction that uses a lot of randomness. Namely, since we need to sample k independent
4-wise independent hash functions, the randomness grows linearly with k. Recall that our goal

9

is to construct an NISZK protocol with a CRS of size poly(n, log k). In our protocol, both the
verifier and prover run the reduction using randomness from the CRS, therefore we cannot afford
to sample k independent hash functions for this reduction.

It is natural to try to reduce the randomness by using correlated hash functions, but one has to
be extremely careful as in each step we apply the hash function to a potentially correlated input.

We explain how to overcome this problem in the exact injectivity case, since that captures the
main idea of the derandomization. We recall that our reduction outputs a chain

C(x) = (hk ◦ Ck ◦ · · · ◦ h2 ◦ C2 ◦ h1 ◦ C1)(x).

alternating between the input circuits and the random hash functions. We can view the description
of the hash functions h1, . . . , hk as additional input to the circuit C and denote

Ch1,...,hk
(x) = (hk ◦ Ck ◦ · · · ◦ h2 ◦ C2 ◦ h1 ◦ C1)(x).

Completeness of our protocol relies on the guarantee that if all of the circuits C1, . . . , Ck are
injective then with high probability over h1, . . . , hk, the circuit Ch1,...,hk

would have a small collision
probability.

Once an input x is fixed, the circuit C can be modeled as a small-width Read Once Branching
Program (ROBP), with h1, . . . , hk as the inputs. The key observation is that the collision probability
of C can therefore also be computed using a small-width ROBP. Hence, we can use Nisan’s [Nis92]
pseudorandom generator (PRG) for ROBP to sample the h1, . . . , hk, while nearly preserving the
collision probability, and thus keeping the same guarantee even when sampling pseudorandom
h1, . . . , hk. We remark that here we crucially use the fact that the collision probability can be
computed via a local process (namely sampling two inputs and checking for a collision). This does
not seem to be the case for other notions of entropy (e.g., Shannon entropy), for which we do not
know a similar derandomization.

In more detail, for any two inputs x1, x2, we can define a ROBP Mx1,x2(h1, . . . , hk) of length k
and width 22n that outputs 1 if and only if Ch1,...,hk

(x1) = Ch1,...,hk
(x2). The collision probability

can thus be written as

cp(Ch1,...,hk
) = Pr

x1,x2←{0,1}n
[Mx1,x2(h1, . . . , hk) = 1] .

Using the linearity of expectation, the expected collision probability over the choice of h1, . . . , hk is

E
h1,...,hk

[cp(Ch1,...,hk
)] = E

x1,x2←{0,1}n

[
Pr

h1,...,hk

[Mx1,x2(h1, . . . , hk) = 1]

]
.

If we employ a PRG for ROBP, with error ε, the collision probability increases by at most ε more
than if h1, . . . , hk were sampled uniformly at random. Since the seed length in Nisan’s PRG only
depends logarithmically on ε, we can afford to use ε = 2−Ω(n) and so the collision probability is
indeed preserved up to very small factors. Thus, using Nisan’s PRG reduces the seed length to
poly(n, log k), as desired.

The Protocol. To summarize, given k instances of any NISZK problem Π, both the verifier
and the prover first reduce the instances to AIL,δ instances C1, . . . , Ck : {0, 1}n → {0, 1}m. Then
they utilize poly(n, log k) bits from CRS as the seed for Nisan’s PRG. The output of the PRG is

10

then used to sample 4-wise independent hash functions, denoted as h1, . . . , hk : {0, 1}m → {0, 1}n.
These functions are used to construct the chain circuit C(x) = (hk ◦Ck ◦ · · · ◦ h2 ◦C2 ◦ h1 ◦C1)(x).

In the YES case (i.e. when all instances are YES instances of Π), with probability all but
negligible in n, k, there exists a Ĉ such that:

• Ĉ has high Rényi entropy.
• The distribution of C is very close to that of Ĉ.

As a consequence, C can be reduced to a YES instance of SDU by hashing its output with an
appropriate pairwise-independent hash function. In the NO case (i.e. some instances are NO
instances of Π), the max entropy H0(C) will be small. As a result, applying the same reduction on
C will yield a NO instance of SDU.

The prover and verifier then run the NISZK protocol for SDU on this instance. This uses an
additional poly(n) bits from the CRS and poly(n) bits of communication. Here we crucially use the
fact that the communication of the NISZK protocol for SDU only depends on the input/output
size of the circuit, rather than the size of its description

(
as in our case the former is poly(n)

whereas the latter is k ·poly(n)
)
. The negligible error associated with the reduction is incorporated

into the completeness error of the protocol.

1.2 Related Works
The two closest relevant works, already mentioned above are [KRR+20, KRV21], where the former
constructed an honest-verifier SZK protocol for batch verification of NISZK, whereas the latter
constructed a malicious-verifier (and public-coin) protocol. We remark that our NISZK protocol
can be transformed into an interactive public-coin (malicious verifier) SZK protocol using standard
transformations [GSV98].

If one drops the zero-knowledge requirement and merely strives for short communication, batch
verification is possible for every problem in NP (or more generally PSPACE), using the IP =
PSPACE Theorem [LFKN92, Sha92]. That protocol however has an exponential-time prover.
Reingold, Rothblum and Rothblum [RRR21, RRR18, RR20] constructed batch verification protocol
for every problem in UP (i.e., NP problems in which YES instances have a unique witness) in which
the honest prover runs in polynomial-time given the witnesses. Curiously, this line of work also
started with a protocol achieveing weak batching [RRR21] (i.e., with an additive linear dependence
on k) and gradually improved to a poly-logarithmic dependence on k [RRR18, RR20].

A separate and exciting line of work has construted non-interactive computationally sound batch
verification protocols for all of NP (aka batch arguments or BARGs for short) [BHK17, CJJ21a,
KVZ21, CJJ21b, WW22, DGKV22, PP22, KLVW23, CGJ+23]. In contrast to the NISZK setting,
these results focus on protocols for all of NP but only offer computational soundness and rely on
unproven cryptographic assumptions such as LWE. A recent work by Bitansky et al. [BKP+23] has
shown that different notions of batch proofs automatically yield hiding properties such as witness
indistinguishibilty and, under suitable cryptographic assumptions, even full fledged zero-knowledge.

Lastly, we mention the work of Goel et al. [GHKS23] who construct efficient zero-knowledge
proofs for disjunctions, whereas batch verification can be viewed as zero-knowledge proofs for
conjuctions; and the work of Brakerski et al. [BBK+23] who construct computationally sound
protocols for monotone policies within NP.

11

1.3 Discussion and Open Problems
Theorem 1.1 introduces a non-interactive batching verification protocol for the NISZK class,
achieving substantial communication efficiency compared to independent executions. This is an
encouraging indication for the possibility of batch verification in zero-knowledge proofs. Below are
some natural open problems for future investigation:

1. Theorem 1.1 gives a non-interactive batching verification protocol for problems in NISZK.
The most pressing open question is whether a similar result holds for SZK – namely, for every
Π ∈ SZK does there exist an SZK proof for Π⊗k with communication poly(n, log k)? Or,
alternatively, one that features less strigent, yet non-trivial, communication such as sub-linear
dependence on k?

2. As highlighted in [KRR+20], one avenue of research focuses on prover efficiency. It is known
that problems in SZK ∩NP have SZK protocol where the prover is efficient given an NP-
witness [NV06]. All the current batch protocols for NISZK proceed by reducing to NISZK-
complete problems and thus do not preserve this efficiency. Is it possible to construct batch
protocols even for NISZK ∩NP that preserve prover efficiency?

3. Is it possible to improve the multiplicative overhead in our construction to be a fixed constant?
That is, can we achieve communication O(c)+polylog(n, k), where c is the communication for
a single instance? This might necessitate avoiding the complete problems, since the reduction
introduces a polynomial overhead (or, alternatively, achieving the result only for a limited
class of problems).
Pushing things even further, can we push the constant to be close to 1 (aka a “rate-1”
batch-proof)? Results of this flavor have been recently achieved in the computational setting
[PP22, DGKV22].

4. Our protocol shows an efficient closure property of NISZK for conjunctions. What about
more general efficient forms of closure: given a formula ϕ : {0, 1}k → {0, 1}, does there exist an
SZK protocol for ϕ(b1, . . . , bk), where bi = 1↔ xi ∈ S, with sublinear in k communication?

2 Preliminaries
For any N ∈ N, we denote the set of numbers {1, . . . , N} by [N]. For convenience, we may write a
boolean circuit C with n input bits and m output bits as C : [N] → [M] where N = 2n,M = 2m.
For any circuit C : [N]→ [M] and any set S ⊆ [N], we denote by C(S) the set of images of inputs
in S, that is C(S) = {C(x) : x ∈ S}. For an element y ∈ [M], we denote by C−1(y) the set of
preimages of y. For any set S, we denote by US the uniform distribution over S. For any positive
integer n, we denote by Un the uniform distribution of {0, 1}n.

A promise problem is a pair Π = (Y,N) of disjoint sets (i.e., Y ∩ N = ∅). We use x ∈ Π to
denote that x ∈ Y ∪N and say that x satisfies the promise. We denote by YES(Π) = Y and refer
to this set as the “YES” instances and by NO(Π) = N the “NO” instances.

Definition 2.1. Let Π be a promise problem, and let k = k(n) ∈ N. We define the promise problem
Π⊗k where

YES
(
Π⊗k

)
=

{
(x1, . . . , xk) ∈

(
YES(Π)

)k
: |x1| = · · · = |xk|

}
12

and
NO

(
Π⊗k

)
=

{
(x1, . . . , xk) ∈ Πk : |x1| = · · · = |xk|

}∖
YES

(
Π⊗k

)
.

2.1 Probability Theory Background
Lemma 2.2 (Chebyshev’s inequality). Let X be a random variable. Then, for every α > 0:

Pr
[
|X −E [X] | ≥ α

]
≤ Var [X]

α2
.

Definition 2.3 (Statistical Distance). The statistical distance between two distributions X and Y
over a finite domain D is defined as

∆(X,Y) = max
S⊆U

(X(S)− Y (S)) =
1

2

∑
u∈U
|X(u)− Y (u)|.

Fact 2.4. Let D be a domain and X be a distribution over D. If |Supp(X)| < δ · |D| then
∆(X,UD) > 1− δ.

Definition 2.5. The collision probability of a distribution X is defined as cp(X) = Pr
x,x′←X

[x = x′].

Definition 2.6. Consider a random variable X over domain D. For any x ∈ D, denote by
px = Pr [X = x]. We recall the following notions of entropy of X:

• Max Entropy: H0(X) = log (|{x | px ̸= 0}|).

• Shannon Entropy: H1(X) = −
∑

x∈D px log (px).

• Renyi Entropy: H2(X) = − log
(∑

x∈D p2x
)
= − log (cp(X)).

Technically, all of the above (as well as the notion of “min-entropy” which we do not use in
this work) are usually referred to as Renyi entropies of various orders. For convenience, we use this
term only for H2 and the terms above for the others.

Fact 2.7. For any random variable X, we have: H2(X) ≤ H1(X) ≤ H0(X).

2.2 Hash Functions with Bounded Independence
Definition 2.8. (ℓ-wise Independent Hash Functions). For ℓ = ℓ(n) ∈ N and m = m(n) ∈ N, a
family of functions F = (Fn)n∈N, where Fn = {f : {0, 1}m → {0, 1}n} is called ℓ-wise independent
if for every n ∈ N and every ℓ distinct domain elements x1, x2, . . . , xℓ ∈ {0, 1}m, and every
y1, y2, . . . , yℓ ∈ {0, 1}n, it holds that:

Pr
f

$←Fn

[ℓ∧
i=1

f(xi) = yi

]
= 2−ℓ·n.

Lemma 2.9 (See, e.g., [Vad12, Section 3.5.5]). For every ℓ = ℓ(n) ∈ N and m = m(n) ∈ N, there
exists a family of ℓ-wise independent hash functions F (ℓ) = {f : {0, 1}m → {0, 1}n} where a random
function from Fn,m can be selected using O(ℓ ·max(n,m)) random bits, and given a description of
f ∈ F (ℓ) and x ∈ {0, 1}m, the value f(x) can be computed in time poly(n,m, ℓ).

13

Lemma 2.10 (Leftover Hash Lemma [HILL99], see also [Vad12, Section 6.2]). For any polynomial
k = k(n) and ε = ε(n) ∈ (0, 1), if H = {h : {0, 1}n → {0, 1}m} is a family of pairwise independent
hash functions such that m = k − 2 log(1/ε), then for any distribution X over {0, 1}n such that
cp(X) < 2−k it holds that

∆
((

H,H(X)
)
,
(
H,Um

))
≤ ε,

where H distributed uniformly over H.

Remark 2.11. The Leftover Hash Lemma is typically described with respect to sources that have
large min-entropy. However, examining the proof given in [Vad12, Section 6.2] shows that an upper
bound on the collision probability suffices.

3 Non-Interactive Statistical Zero-knowledge
In this section, we present the formal definitions of NISZK and some of its complete problems
that are useful in our work. In Section 3.2, we define a new problem that is more directly useful,
and prove that it is complete for NISZK.

Definition 3.1 (NISZK). Let c = c(n) ∈ [0, 1], s = s(n) ∈ [0, 1] and z = z(n) ∈ [0, 1]. A non-
interactive statistical zero-knowledge proof (NISZK) with completeness error c, soundness error
s and zero-knowledge error z for a promise problem Π, consists of a probabilistic polynomial-time
verifier V, a computationally unbounded prover P and a polynomial ℓ = ℓ(n) such that the following
properties hold:

• Completeness: For any x ∈ YESn(Π):

Pr
r←{0,1}ℓ(|x|)

[V(x, r, π) accepts] ≥ 1− c(n),

where π = P(x, r).

• Soundness: For any x ∈ NOn(Π):

Pr
r←{0,1}ℓ(|x|)

[∃π∗ s.t. V(x, r, π∗) accepts] ≤ s(n),

• Zero Knowledge: There exists a probabilistic polynomial-time algorithm Sim (called the
simulator) such that for any x ∈ YESn(Π):

∆
((

Uℓ,P(x, Uℓ)
)
, Sim(x)

)
≤ z(n),

where Uℓ denotes a random variable distributed uniformly over {0, 1}ℓ(n).

Unless otherwise specified, we assume by default that c(·), s(·) and z(·) are negligible in the
input size, and say that Π has an NISZK protocol if the latter holds. We further use NISZK to
denote the class of all such promise problems.

We note that parallel repetition of NISZK reduces the completeness and soundness errors at
an exponential rate, while increasing the zero-knowledge error at only a linear rate.9

9We remark that this property does not hold for interactive zero-knowledge proofs [FS90, GK96]. The reason that
it works for NISZK is that in NISZK the verifier cannot cheat as there is no interaction [BSMP91].

14

3.1 Complete Problems
We recall some known complete problems for NISZK that are useful in our work.

Definition 3.2 (Statistical Difference from Uniform [GSV99]). The Statistical Difference from
Uniform problem, denoted SDU, is a promise problem defined by the following sets:

YESn(SDU) = {circuit C : ∆(C,Un) < 1/n} ;
NOn(SDU) = {circuit C : ∆(C,Un) > 1− 1/n} ,

where C is a circuit that outputs n bits. The size of an instance C is its output length n.

Goldreich et al. [GSV99] showed that SDU is NISZK-complete, as shown by the following
lemma.

Lemma 3.3 (SDU is NISZK-complete [GSV99]). The promise problem SDU is complete for
NISZK. Moreover, the NISZK protocol for SDU only needs black-box access to the instance
circuit; and for a parameter s that is any polynomial in the input and output sizes of the circuit in
the instance, there are such protocols with the following properties:

• the communication complexity and the length of the common random string are poly(s),
• the completeness, soundness, and zero-knowledge errors are 2−s.

We note that the “moreover” part is not stated explicitly in [GSV99], but follows by examining
their proof.

Definition 3.4 (Approximate Injectivity [KRR+20, KRV21]). For any L = L(n) ∈ N and any
δ = δ(n) ∈ [0, 1], the Approximate Injectivity problem AIL,δ is a promise problem defined as follows
over circuits taking n bits of input and outputting 3n bits:

YESn(AIL,δ) =

{
circuit C : Pr

x←{0,1}n
[∣∣C−1(C(x))

∣∣ > 1
]
≤ δ

}
;

NOn(AIL,δ) =

{
circuit C : Pr

x←{0,1}n
[∣∣C−1(C(x))

∣∣ < L
]
≤ δ

}
.

Lemma 3.5 (AI is NISZK-hard [KRR+20, KRV21], see also [OV08, Theorem 2]). For any L(n) <
2n

0.1 and non-increasing δ(n) > 2−n
0.1, the problem AIL,δ is NISZK-hard.

Remark 3.6. In [KRR+20, KRV21], the definition of the AI problem does not restrict the output
length of the circuits to 3n as Definition 3.4 does. This restricted version, however, is equivalent
in complexity to the unrestricted version. An instance C : {0, 1}n → {0, 1}m of the unrestricted AI
problem can be reduced to an instance Ĉ of the restricted version as follows:

• If m > 3n, Ĉ takes as input (x, y) ∈ {0, 1}n+(m−3n)/2 and outputs (C(x), y).
• If m < 3n, Ĉ(x) outputs C(x) padded with (3n−m) zeroes.

Neither of these transformations change its membership in YES(AI) or NO(AI), and the resulting
circuits are of size O(m+ n) larger than that of C.

15

3.2 Smooth Entropy Approximation
We start by defining smoothened versions of the various entropy measures defined in Section 2,
again slightly modified from usual convention to fit our application.

Definition 3.7 (Smooth Entropy [RW04]). For any ε ≥ 0, the ε-smooth Rényi entropy of a random
variable X is defined as:

Hε
2(X) = max

Y ∈Bε(X)
H2(Y),

where Bε(X) is the set of all distributions within statistical distance ε of X.

We define the following variant of the Entropy Approximation problem [GSV99] using the
smooth Rényi and max entropies. Similar problems can be defined with other entropy measures
as well [DGRV11]. We show in Lemma 3.9 below that this problem has an NISZK protocol, and
that it is, in fact, NISZK-complete, as stated in Theorem 3.10.

Definition 3.8 (Smooth Entropy Approximation). For any ε = ε(n) ∈ [0, 1], the ε-Smooth Entropy
Approximation problem, denoted by SEAε, is a promise problem defined by the following sets:

YESn(SEAε) = {(C, k) | Hε
2(C) ≥ k + 1} ;

NOn(SEAε) = {(C, k) | H0(C) ≤ k − 1} ,

where C is a circuit that takes n bits as input and outputs m ≤ 3n bits, and k is a positive real
number that is at most the output length of C. The input and output sizes of an instance (C, k)
refer to the input and output lengths of C, respectively.

Lemma 3.9 (NISZK Protocol for SEA). Consider any m = m(n) and ε = ε(n) such that ε(n) <
o
(
1/max(n,m) · log2m

)
. Then, SEAε has an NISZK protocol where, for any instance (C, k) with

input and output lengths n and m, respectively, the communication complexity and the length of the
common random string are poly(n,m). The completeness, soundness, and zero-knowledge errors
of this protocol are all 2−Ω(max(n,m)).

Proof. We show a reduction from SEA to SDU that preserves the input and output lengths of the
circuit up to a poly(n,m) blowup. The rest follows from Lemma 3.3. For any m and k ≤ m, let
Hm,k =

{
h : {0, 1}m → {0, 1}k

}
be the pairwise-independent family of hash functions promised by

Lemma 2.9, where each hash function is described by O(max(m, k)) = O(m) bits.
Consider an instance (C, k) of SEAε,g where the input length of C is n and its output length

is m. Construct the circuit C ′ that corresponds to 20 logm copies of C evaluated independently.
Its input length is n′ = n · (20 logm), and its output length is m′ = m · (20 logm). Similarly, let
k′ = k · (20 logm). The reduction, on input (C, k), outputs a circuit Ĉ that works as follows:

• It takes as input a description h of a hash function in Hm′,k′ and an x ∈ {0, 1}n
′
.

• It outputs
(
h, h

(
C ′(x)

))
.

The output length of Ĉ is m̂ = O(m′)+k′ < O(max(n′,m′)). Its input length is also O(max(n′,m′)).
Suppose (C, k) ∈ YES(SEAε). That is, Hε

2(C) ≥ k + 1, and thus Hε′
2 (C ′) ≥ k′ + 20 logm, where

ε′ = ε · (20 logm). This implies that there is a distribution Y that is at most ε′-far from C ′ that has

16

cp(Y) ≤ 2−(k
′+20 logm). Let H denote the random variable corresponding to a uniformly random

h ∈ Hm′,k′ . By the leftover hash lemma (Lemma 2.10), the statistical distance between (H,H(Y))
and (H,Uk) is at most 2−(20 logm)/2. Thus, the distance between (H,H(C)) and (H,Uk) is at most
ε′ + 2−10 logm < 1/m̂. So Ĉ ∈ YES(SDU).

Suppose (C, k) ∈ NO(SEAε). That is, H0(C) ≤ k − 1. This means that C has support of size
at most 2k−1, and C ′ has support of size at most 2k

′−20 logm. This implies that the support size
of (H,H(C ′)) is at most |Hm,k| · 2k

′−20 logm = 2−20 logm · 2m̂. This implies that the distance of
(H,H(C ′)) from (H,Uk) is at least (1− 2−20 logm) ≥ (1− 1/m̂). Thus, Ĉ ∈ NO(SDU).

Theorem 3.10 (SEA is NISZK-complete). For any ε(n) ∈
(
2−n

0.1
, o(1/n)

)
, the problem SEAε is

NISZK-complete under randomized reductions.

Proof of Theorem 3.10. By Lemma 3.9, for any ε(n) < o(1/n), we know that SEAε is contained in
NISZK. We now show a reduction from AIL,δ. Specifically, for any L = L(n) and δ = δ(n), with
ε(n) = δ(n), we claim that if C is a YES instance of AIL,δ, then (C, n − 1) is a YES instance of
SEAε, and the same for NO instances.

Suppose C : {0, 1}n → {0, 1}3n is a YES instance of AIL,δ. Consider any injective function Ĉ on
the same domain and co-domain that agrees with C on all inputs on which C is injective. Then,
the statistical distance between the output distributions of C and Ĉ is at most δ. Further, the
Rényi entropy of Ĉ is n. So Hε

2(C) = n. Thus, (C, n− 1) is a YES instance of SEAε.
Suppose C is a NO instance of AIL,δ. Then, the size of its range is at most (1−δ) ·(N/L)+δN ≤

N · (δ + 1/L). So H0(C) ≤ n− logL+ log (1 + δL). As long as L ≥ 8 and δL ≤ 1, this is at most
(n− 2), and (C, n− 1) is a NO instance of SEAε for any ε.

Therefore, for any ε(n) ∈ (2−n
0.1
, 1/8), choosing δ(n) = ε(n) and L(n) = 1/ε(n), we get a

reduction to SEAε from AIL,δ, which is hard for NISZK. So for such ε, the problem SEAε is also
hard for NISZK (Lemma 3.5). This completes the proof of the theorem.

4 Derandomizing Batch Reductions
In this section, we set up a framework for derandomizing the specific kinds of randomized reductions
that we perform in Section 5. These reductions result in a sequential composition of circuits
alternated with randomly chosen hash functions from some hash family. We show that sampling
these functions using a PRG for read-once branching programs (rather than sampling them all
uniformly at random from the family) preserves certain properties of this composed circuit that
are important to our reduction. We start by formalizing this type of reduction, using what we call
a “randomized chaining circuit”. Subsequently, Lemma 4.4 states that certain properties of such
circuits related to thir Rényi entropy are preserved upon derandomization.

Definition 4.1 (Randomized Chaining Circuit). Let R : {0, 1}r × {0, 1}m → {0, 1}n be a Boolean
circuit family and denote Rρ(y) := R(ρ, y) for each (r, y) ∈ {0, 1}r × {0, 1}m, and let C1, . . . , Ck :

{0, 1}n → {0, 1}m be a sequence of Boolean circuits. A circuit C̄ : {0, 1}n × {0, 1}rk → {0, 1}n of
the following form is called a randomized chaining circuit:

C̄(x, ρ1, . . . , ρk) = (Rρk ◦ Ck ◦ . . . ◦Rρ1 ◦ C1)(x).

The parameter k is called the chain length.

17

Definition 4.2 (Read-Once Branching Program). A read-once branching program (ROBP) is a
directed acyclic multi-graph where the vertices are organized into a grid of ℓ + 1 layers indexed in
by 0, . . . , ℓ, with w vertices in each layer internal, a single start vertex in layer 0. Every vertex in
layers 0, . . . , ℓ− 1 has exactly d outgoing (possibly parallel) edges to vertices in the next layer, with
each edge having a unique label in [d]. Every vertex in layer ℓ is additionally labeled with an output
in [M]. On input (x1, . . . , xℓ) ∈ [d]ℓ, a ROBP B : [d]ℓ → [M] computes by successively taking each
edge label xi from layer i−1 to layer i. The output B(x1, . . . , xℓ) is the label of the vertex it reaches
in layer ℓ.

The parameters w, ℓ and d are called the width, length and branching factor of the ROBP
respectively.

In a seminal work, Nisan [Nis92] constructed a PRG for read-once branching programs. His
result is typically stated for programs of braching factor 2 but can be easily generalized to larger
branching factors (e.g., by emulating the latter program by the former, while acconting for the
increase in length and width).
Lemma 4.3 (PRG for Branching Programs [Nis92]). For any ℓ, w, d ∈ N and any ε ∈ (0, 1), there
exists a function G : {0, 1}seed → [d]ℓ where seed = log(ℓ) · log(ℓ ·w ·d/ε) ·poly(log log(d)) such that
for any read-once branching program B : [d]ℓ → {0, 1} with length ℓ, width w, branching factor d
and binary output, it holds that∣∣Pr[B(U[d]ℓ) = 1]− Pr

[
B
(
G(Useed)

)
= 1

]∣∣ ≤ ε,

where U[d]ℓ and Useed represent uniform distribution over [d]ℓ and {0, 1}seed, respectively. Further-
more, G is computable in poly(ℓ, seed) time.
Lemma 4.4. For any n, r, k ∈ N and t ∈ R, suppose C : {0, 1}n×{0, 1}rk → {0, 1}n is a randomized
chaining circuit such that:

Pr
ρ←{0,1}rk

[H2(Cρ) > t] > 1− δ.

Let G : {0, 1}seed → {0, 1}rk be the PRG guaranteed by Lemma 4.3 for Branching Programs with
length k, width 22n, and error ε. Then, for any s > 0,

Pr
ρ←G(Useed)

[H2(Cρ) > t− s] > 1− δ′,

where δ′ = 1
2s + (δ + ε) · 2t−s.

Proof. Denote by cρ the collision probability of the circuit Cρ. Let P denote the random variable
corresponding to the distribution of cρ when ρ is sampled from {0, 1}rk, and let P̂ denote the same
when ρ is sampled from G(Us). We will show that the expectations of these two variables are very
close, and use that to bound the probability that P̂ is too large (thus making the Rényi entropy
small).

Note that H2(Cρ) > t implies that cρ < 2−t. We bound the expectation of P as follows:

E [P] ≤ (1− δ) · 2−t + δ · 1 ≤ 2−t + δ. (1)

Recall that Cρ is a chaining circuit of the form (Rρk◦Ck◦· · ·◦Rρ1◦C1)(x), where ρ = (ρ1, . . . , ρk),
with Ci : {0, 1}n → {0, 1}m and Rρi : {0, 1}

m → {0, 1}n. For any x1, x2 ∈ {0, 1}n, define a read-
once branching program Mx1,x2 with length k that gets as input (ρ1, . . . , ρk), reads a single ρi at a
time, and works as follows:

18

• Mx1,x2 starts with a state labelled (x1, x2).
• At layer i ∈ [0, k − 1], if it is at a state (y1, y2) and receives input ρi+1, it moves to the state(

Rρi+1

(
Ci+1(y1)

)
, Rρi+1

(
Ci+1(y2)

))
in layer (i+ 1).

• At layer k, it accepts iff it is at a state (y1, y2) such that y1 = y2.
Note that the length of Mx1,x2 is k, and its width is 22n. Essentially, Mx1,x2 , on input ρ, computes
Cρ(x1) and Cρ(x2), and accepts if and only if they are equal. Thus, we can express the collision
probability of Cρ as follows:

cρ = Pr
x1,x2←{0,1}n

[Cρ(x1) = Cρ(x2)] = Pr
x1,x2←{0,1}n

[Mx1,x2(ρ) = 1] .

We can write the expectations of P and P̂ as follows:

E [P] = E
ρ←{0,1}rk

[cρ] = E
ρ←{0,1}rk

[
Pr

x1,x2←{0,1}n
[Mx1,x2(ρ) = 1]

]

= E
x1,x2←{0,1}n

[
Pr

ρ←{0,1}rk
[Mx1,x2(ρ) = 1]

]
.

Similarly, for P̂ ,

E
[
P̂
]
= E

ρ←G(Us)
[cρ] = E

x1,x2←{0,1}n

[
Pr

ρ←G(Us)
[Mx1,x2(ρ) = 1]

]
≤ E

x1,x2←{0,1}n

[
Pr

ρ←{0,1}rk
[Mx1,x2(ρ) = 1]

]
+ ε

= E [P] + ε, (2)

where the inequality follows from Lemma 4.3, as Mx1,x2 is indeed an ROBP that satisfies the
required conditions. Combining Eqs. (1) and (2), we have that:

E
[
P̂
]
≤ E [P] + ε ≤ 2−t + δ + ε.

Thus, by the Markov bound:

Pr
[
P̂ > 2−(t−s)

]
≤ 2−t + δ + ε

2s · 2−t
=

1 + (δ + ε) · 2t

2s
.

5 Batching AI by Direct Composition
In this section, we show how to reduce k size-n instances of AI to a single instance of the Smooth
Entropy Approximation (SEA) problem. Crucially, the length of inputs and outputs of the circuit in
the resulting SEA instance is still only n. The NISZK protocol for this SEA instance (Lemma 3.9)
then gives a batch protocol for AI, and thus any problem in NISZK.

19

Theorem 5.1. Consider functions k(n), L(n), and δ(n) ≤ 1/L(n), and let ε(n) = (δ(n)1/2 · k(n) ·
L(n)1/2). There is a poly(n, k) algorithm that, given k = k(n) circuits (C1, . . . , Ck), each taking n
input bits, outputs a tuple (C, t) such that:

• If all of the Ci’s are YES instances of AIL,δ, then except with probability O(k(n)3/L(n)), the
instance (C, t) is a YES instance of SEAε.

• If some Ci is a NO instance of AIL,δ, then (C, t) is a NO instance of SEAε.

Further, the input and output lengths of C are both n, and the algorithm uses n · poly(log k, log n)
bits of randomness.

Before proceeding to the proof, we restate and prove our main theorem about batching NISZK
proofs.

Theorem 1.1 (Batch Proofs for NISZK). Suppose Π ∈ NISZK and k = k(n) ∈ N such that
k(n) ≤ 2n

0.01, where n denotes the length of a single instance of Π. Then, Π⊗k has an NISZK
protocol in which the communication complexity and the length of the common random string is
poly

(
n, log k

)
. The completeness, soundness, and zero-knowledge errors are all negligible in n and

k, and the verifier runs in time poly(n, k).

Proof of Theorem 1.1. Given k instances of Π of size n, set L = max(2log
3(n), klog log k), δ = 1/L4,

and ε = (δ1/2 · k · L1/2). Note that we still have L < 2n
0.1 and δ > 2−n

0.1 as needed for the
NISZK-hardness of AIL,δ (Lemma 3.5), while also satisfying the conditions required by Theo-
rem 5.1. Further, ε and (k3/L) are both negligible in both k and n. The prover and verifier in our
NISZK protocol run as follows:

1. Using Lemma 3.5, reduce the k instances of Π respectively to k instances of AIL,δ of size
poly(n, log k) each.10

2. Reduce these k instances of AIL,δ to a single instance of SEAε with input and output length
poly(n, log k), using the reduction promised by Theorem 5.1. Here, both the prover and
verifier will use poly(n, log k) bits from the common random string as the randomness for the
reduction. The probability that the reduction fails is at most O(k3/L) for YES instances,
and 0 for NO instances.

3. Run the NISZK protocol for SEAε (with input and output lengths poly(n)) promised by
Lemma 3.9. This protocol has all errors bounded by 2−n

Ω(1) , negligible in k and n.

Completeness, soundness, and zero-knowledge errors are negligible in k and n following those of the
protocol for SEA, and using the fact that the reduction to SEA only fails with negligible probability.
Overall, the length of the CRS is poly(n, log k) and the communication complexity of the protocol
is poly(n, log k).

We now present, in Figure 1, the reduction that establishes Theorem 5.1. Then we state
Lemmas 5.2 and 5.3 about its properties. These lemmas together imply Theorem 5.1, as we show
below. We present the proof of Lemma 5.3 immediately after, and prove Lemma 5.2 in Section 5.1.
For the rest of the section we adopt the notation N = 2n and L = 2ℓ.

10The log(k) factor comes from our setting of the parameter L of AIL,δ, see [KRV21, Lemma 4.3]. It is important
to note, however, that given that k(n) ≤ 2n

0.01 , it holds poly(n, log k) = poly(n)

20

Reduction from AI⊗kL,δ to SEA

Input: C1, . . . , Ck, where each Ci is a circuit Ci : {0, 1}n → {0, 1}3n (k instances of AIL,δ)
Output: (C, t), where C is a circuit C : {0, 1}n → {0, 1}n (one instance of SEA)
Ingredients:

• H =
{
h : {0, 1}3n → {0, 1}n

}
is a family of efficient 4-wise independent hash functions as

guaranteed to exist by Lemma 2.9. A random function from this family is selected using
d = O(n) random bits. For any string r ∈ {0, 1}d, we will denote by hr the function in
H selected by this string.

• G : {0, 1}s → ({0, 1}d)k is the PRG for Branching Programs promised by Lemma 4.3,
with the parameters there instantiated as: ℓ = k, w = 22n, D = 2d = 2O(n), and ε = 2−5n.
This implies a seed length of s = (n+ log(k)) · log(k) · polylog(n).

Procedure:

1. Sample random ρ← {0, 1}s.

2. Compute (r1, . . . , rk)← G(ρ), where each ri ∈ {0, 1}d.

3. Define circuit C as C(x) = (hrk ◦ Ck ◦ hrk−1
◦ Ck−1 ◦ · · · ◦ hr1 ◦ C1)(x).

4. Output (C, t), where t = (n− logL+ 2).

Figure 1: Reducing k instances of AI to one instance of SEA

Lemma 5.2. Let (C, t) be the output of the reduction in Figure 1 on input circuits (C1, . . . , Ck).
For any L and δ, if all of the Ci’s are YES-instance of AIL,δ, then for any c > 1:

Pr
[
Hε

2(C) < n− c · log k
]
< O

(
1

kc−3

)
,

where ε = δ1/2 · k1+c/2.

Lemma 5.3. Let (C, t) be the output of the reduction in Figure 1 on input circuits (C1, . . . , Ck).
For any L and δ such that δ · L ≤ 1, if at least one of the Ci’s is a NO-instance of AIL,δ, then:

H0(C) ≤ n− ℓ+ 1.

Proof of Lemma 5.3. Suppose Ci∗ is a NO-instance of AIL,δ. This implies that:

|Supp(Ci∗)| ≤ (1− δ) ·N · 1
L

+ δ ·N · 1 ≤ N ·
(
1

L
+ δ

)
.

So even if all the other Ci’s and the hash functions chosen in the reduction are injective, the
number of possible images of C is at most this (since merely composing functions cannot increase

21

the support size). So the max entropy of C can be bounded as:

H0(C) = log(|Supp(C)|) ≤ logN + log

(
1

L
+ δ

)
= logN − logL+ log (1 + δL)

≤ n− ℓ+ 1.

Proof of Theorem 5.1. Let (C, t) be the output of the reduction in Figure 1 on input (C1, . . . , Ck).
Note that t = n − ℓ + 2. By Lemma 5.3, if even one of the Ci’s is a NO-instance of AIL,δ, then
H0(C) ≤ t− 1, and thus (C, t) is a NO-instance of SEAε for any ε.

Suppose all the Ci’s are YES instances of AIL,δ. Applying Lemma 5.2 with c = (ℓ − 3)/ log k,
we get that:

Pr
[
Hε

2(C) ≥ n− ℓ+ 3
]
> 1−O

(
k3

L

)
,

where ε < δ1/2 · k · L1/2. Thus, (C, t) is a YES-instance of SEAε for such a value of ε. The input
and output lengths of C and the randomness complexity of the reduction may be verified in a
straightforward manner to be n and poly(n, log k), respectively. This proves the theorem.

5.1 Proof of Lemma 5.2
For convenience, we set up the following notation in the context of the reduction in Figure 1. For
any circuit C, denote by inj(C) the set of inputs on which C is injective. The input to the reduction
are the circuits C1, . . . , Ck : {0, 1}n → {0, 1}3n, which are all YES instances of AIL,δ. The output
is (C, t), where C : {0, 1}n → {0, 1}n. We will denote the process of sampling the hash functions
in the reduction by (h1, . . . , hk) ← G – this indicates first computing (r1, . . . , rk) ← G(ρ) for a
uniformly random ρ, and setting hi to be hri . We will denote sampling k uniformly random hash
functions from H by (h1, . . . , hk) ← Hk. For any tuple of hash functions h = (h1, . . . , hk), we will
denote the circuit constructed by using these for the composition by Ch or Ch1,...,hk

. That is,

Ch1,...,hk
(x) = (hk ◦ Ck ◦ hk−1 ◦ Ck−1 ◦ · · · ◦ h1 ◦ C1)(x).

The reduction samples h = (h1, . . . , hk) ← G and outputs Ch. Our approach is to show
that, with high probability over h, the output distribution of the circuit Ch is close to that of a
different function Ĉh : {0, 1}n → {0, 1}n, which has high Rényi entropy. We start by defining this
function. For each Ci, we define its injective completion, denoted Ĉi : {0, 1}n → {0, 1}3n, to be the
lexicographically smallest function11 that has the following two properties:

• Ĉi is injective.
• For all x ∈ inj(Ci), we have Ĉi(x) = Ci(x).

11Any function that satisfies the two stated properties will do for our purpose, and the injective completion may
be defined to be any such function.

22

Note that Ĉi always exists because the co-domain of Ci is larger than its domain. For any tuple of
hash functions h, the function Ĉh is defined as:

Ĉh1,...,hk
(x) = (hk ◦ Ĉk ◦ hk−1 ◦ Ĉk−1 ◦ · · · ◦ h1 ◦ Ĉ1)(x).

The proof now proceeds by showing the following:
1. For (h1, . . . , hk)← G, with high probability, Ĉh has high Rényi entropy.
2. For any h for which Ĉh has high Rényi entropy, the distribution of Ch is close to that of Ĉh.

Together, these imply that with h← G, with high probability, Ch has high smooth Rényi entropy,
which proves the lemma. We now state these claims formally, show how to use them to prove the
lemma, and then prove the claims.

Proposition 5.4. For any s ∈ (3, n), we have:

Pr
(h1,...,hk)←G

[
H2(Ĉh1,...,hk

) < n− log k − s
]
< O

(
k2

2s

)
.

Proposition 5.5. For any (h1, . . . , hk) for which H2(Ĉh1,...,hk
) ≥ t, we have:

∆(Ĉh1,...,hk
, Ch1,...,hk

) ≤ k · δ1/2 · 2(n−t)/2.

Proof of Lemma 5.2. Setting s = (c− 1) · log k, we get the following from Proposition 5.4:

Pr
(h1,...,hk)←G

[
H2(Ĉh1,...,hk

) ≥ n− c · log k
]
> 1−O

(
1

kc−3

)
.

For any (h1, . . . , hk) for which the above event happens, Proposition 5.5 implies that:

∆(Ĉh1,...,hk
, Ch1,...,hk

) ≤ δ1/2 · k1+c/2,

which proves the lemma.

5.1.1 Proof of Proposition 5.4

We prove the claim by first showing a similar bound when the hash functions are sampled completely
at random, and then derandomizing this using G.

Claim 5.6. Pr(h1,...,hk)←Hk

[
H2(Ĉh1,...,hk

) < n− log k − 3
]
< O

(
k3

2n

)
.

Proof of Proposition 5.4. Note that Ĉh1,...,hk
is a chaining circuit (as in Definition 4.1), and so we

can use the derandomization techniques from Section 4 to derandomize Claim 5.6. Specifically,
applying Lemma 4.4 with Ĉh1,...,hk

as the chaining circuit, with t = n − log k − 3, δ = O(k3/2n),
and ε = 2−5n (as in our reduction), we get the following conclusion:

Pr
(h1,...,hk)←G

[
H2(Ĉh1,...,hk

) < n− log k − 3− (s− 3)
]
<

1

2s−3
+

(
O

(
k3

2n

)
+

1

25n

)
· 2n−log k−s

= O

(
k2

2s

)
.

23

Recall that H is a 4-wise independent family of hash functions mapping {0, 1}3n to {0, 1}n. We
prove Claim 5.6 by showing that most functions from H nearly preserve the collision probability of
their input distribution. Given any distribution D over {0, 1}3n, denote by h(D) the distribution
obtained by applying the function h to a sample from D. We first show the following claim, use it
to prove Claim 5.6, and then complete its proof.

Claim 5.7. If H2(D) ≥ t and H is a 4-wise independent family of hash functions, then:

Pr
h←H

[
H2

(
h(D)

)
< t− 2t+2

2n

]
≤ 4

22t−n
.

This claim is only interesting when t > n/2. In our applications of it, we will be using values
of t that are very close to n, and it gives rather strong bounds.

Proof of Claim 5.6. For i ∈ [0, k], define distribution Di as the output distribution of (hi ◦ Ĉi ◦ · · · ◦
h1 ◦ Ĉ1)(x) when x is uniformly random. We will prove the claim by induction on the Di’s. To
start with, note that D0 is the uniform distribution over {0, 1}n, and so H2(D0) = n.

For any i, since Ĉi is injective, we have H2(Ĉi(Di−1)) = H2(Di−1). Applying Claim 5.7 with any
t ∈ [n−log k−3, n−log k−2], we get that if H2(Ĉi(Di−1)) = H2(Di−1) > t, then H2(Di) < (t−1/k)
with probability at most 28 · k2/2n. Starting from D0 and t = (n − log k − 2) and applying this
iteratively, and using a union bound, we get that the probabilty that H2(Dk) < n− log k − 3 is at
most O(k3/2n), as needed.

Proof of Claim 5.7. Our approach will be to show that the expected collision probability of h(D)
is not much larger than cp(D), and that its variance is small. We can then bound the probability
that cp(h(D)) is much larger than cp(D) using Chebyshev’s inequality (Lemma 2.2). Recall that
H is a set of 4-wise independent hash functions whose co-domain is of size N = 2n.

We set up the following notation:
• Denote by c = cp(D) denote the collision probability of D.
• For any h ∈ H, denote by Qh the collision probability of h(D).

The hypothesis of the claim implies that:

c ≤ 2−t. (3)

By the definition of collision probability, we have for any h:

Qh = Pr
x1,x2←D

[h(x1) = h(x2)] .

Its expectation can be calculated as follows:

E
h←H

[Qh] = Pr
h,x1,x2

[h(x1) = h(x2)]

= Pr [x1 = x2] · 1 + Pr [x1 ̸= x2] · Pr [h(x1) = h(x2) | x1 ̸= x2]

= c+
1− c

N
, (4)

24

where in the last equality we used the fact that H is a pairwise independent family. Next we
calculate its second moment. If Qh is the collision probability of h(D), then Q2

h is the probabilty
that when two pairs of samples from h(D) are picked, both pairs are colliding. Thus, we have:

E
[
Q2

h

]
= Pr

h,x1,x2,x3,x4

[h(x1) = h(x2) ∧ h(x3) = h(x4)]

=
∑
i

Pr [Ei] · Pr [h(x1) = h(x2) ∧ h(x3) = h(x4) | Ei] , (5)

where Ei’s are any set of disjoint events whose union is the entire sample space. We will employ a
set of such events Ei as follows, and in each case we will bound the following quantities:

pi = Pr [Ei] and qi = Pr [h(x1) = h(x2) ∧ h(x3) = h(x4) | Ei] .

Throughout the following analysis, we use the fact that h is from a family of 4-wise independent
hash functions, and cp(D) = c.

• E1 ≡
(
(x1 = x2) ∧ (x3 = x4)

)
: In this case, hashes are always equal. The probability this

event happens is simply the square of the collision probability. So we have:

p1 = c2;

q1 = 1.

• E2 ≡
(
(x1 = x2) ∧ (x3 ̸= x4): In this case, h(x1) is always equal to h(x2), and the event

h(x3) = h(x4) is independent of this. So we have:

p2 = c · (1− c);

q2 =
1

N
.

• E3 ≡
(
(x1 ̸= x2) ∧ (x3 = x4)

)
: The probabilities here are the same as for E2.

• E4 ≡ (x1 ̸= x2) ∧ (x3 ̸= x4) ∧ ({x1, x2} = {x3, x4}): In this case, either x1 = x3 and x2 = x4,
or the other way round. Further, the events h(x1) = h(x2) and h(x3) = h(x4) are the same.
We have:

p4 ≤ Pr [x1 = x3 ∧ x2 = x4] + Pr [x1 = x4 ∧ x2 = x3] = 2c2;

q4 =
1

N
.

• E5 ≡ (x1 ̸= x2) ∧ (x3 ̸= x4) ∧ ({x1, x2} ̸= {x3, x4}): In this case, it could be that all the xi’s
are distinct, but it could also be that x1 = x3 and x2 ̸= x4 (or the other way round, etc.).
In any case, the events h(x1) = h(x2) and h(x3) = h(x4) are always independent due to the
4-wise independence of H. We have:

p5 ≤ 1;

q5 =
1

N2
.

25

With the above analysis and Eq. (5), we can bound the second moment of Qh as:

E
[
Q2

n

]
≤ c2 +

2c(1− c)

N
+

2c2

N
+

1

N2
.

The variance of Qh can now be bounded as:

Var
[
Q2

h

]
= E

[
Q2

h

]
−E [Qh]

2

≤
(
c2 +

2c(1− c)

N
+

2c2

N
+

1

N2

)
−
(
c+

1− c

N

)2

= c2 +
2c(1− c)

N
+

2c2

N
+

1

N2
− c2 −

(
1− c

N

)2

− 2c(1− c)

N

=
2c2

N
+

1

N2
−
(

1

N2
+

c2

N2
− 2c

N2

)
≤ 2c2

N
+

2c

N2

≤ 4c2

N
, (6)

where in the last inequality we used the fact that c ≥ 1/N . From Eqs. (3), (4) and (6), we get:

E [Qh] ≤ 2−t +
1

N
;

Var [Qh] ≤
2−(2t−2)

N
.

Applying Chebychev’s inequality (Lemma 2.2),

Pr
h

[
Qh > 2−t +

2

N

]
≤ 2−(2t−2)

N
·N2 =

4

22t−n
.

Using the fact that log2 (1 + x) ≤ 2x, we have:

Pr

[
H2(h(D)) < t− 2t+2

2n

]
≤ Pr

[
H2(h(D)) < t− log

(
1 +

2t+1

N

)]
= Pr

[
Qh > 2−t +

2

N

]
≤ 4

22t−n
,

which proves the claim.

5.1.2 Proof of Proposition 5.5

Fix some h1, . . . , hk for which H2(Ĉh1,...,hk
) ≥ t. To help with the proof, we define the following

sets of distributions for i ∈ [0, k], with x chosen uniformly at random:

Di = (hi ◦ Ci ◦ · · · ◦ h1 ◦ C1)(x).

D̂i = (hi ◦ Ĉi ◦ · · · ◦ h1 ◦ Ĉ1)(x).

26

Here, D0 and D̂0 are both the uniform distribution over {0, 1}n, and Dk and D̂k are the distributions
whose distance we need to bound to show the claim. The hypothesis of the claim is that H2(D̂k) ≥ t.
We will prove the claim inductively, with the identity of D0 and D̂0 as the base case, and using the
following claims for the inductive steps.

Claim 5.8. For any i ∈ [k], we have:

∆
(
Di, D̂i

)
≤ ∆

(
Ci(Di−1), Ĉi(D̂i−1)

)
.

Proof. Di and D̂i are sampled, respectively, by applying the same function hi to a sample from
Ci(Di−1) and Ĉi(D̂i−1). Thus, the claim follows from the data processing inequality.

Claim 5.9. For any i ∈ [k], we have:

∆
(
Ci(Di−1), Ĉi(D̂i−1)

)
≤ ∆

(
Di−1, D̂i−1

)
+ δ

1
2 · 2

n−t
2 .

Proof. We start with the observation that the hypothesis of the claim – H2(Ĉh1,...,hk
) ≥ t – also

implies that for all i ∈ [0, k], we have H2(D̂i) ≥ t. This is because all the hi’s and Ĉi’s are fixed
deterministic functions, and applying them can only decrease the entropy of a distribution.

For any x ∈ inj(Ci), by definition, Ci(x) = Ĉi(x). Thus, we have:

∆
(
Ci(D̂i−1), Ĉi(D̂i−1)

)
≤ Pr

x←D̂i−1

[x /∈ inj(Ci)] . (7)

Denote the quantity in the right-hand side above by p, which we will now bound. As Ci is a YES
instance of AIL,δ, the number of x’s not in inj(Ci) is at most δN . The least possible collision
probability achievable for D̂i−1 with a probability mass of p on this set is achieved when the mass
is distributed uniformly across it. Thus, due to the contribution to collision probability from this
set alone, we get:

cp(D̂i−1) ≥
∣∣∣inj(Ci)

∣∣∣ · (p

|inj(Ci)|

)2
≥ p2

δN
.

On the other hand, we know that cp(D̂i−1) ≤ 2−t. This gives us:

p ≤ (2−t · δN)1/2 = δ1/2 · 2(n−t)/2. (8)

Next, by the data processing inequality, we have:

∆
(
Ci(Di−1), Ci(D̂i−1)

)
≤ ∆

(
Di−1, D̂i−1

)
. (9)

Putting together Eqs. (7) to (9) and using the triangle inequality gives us the claim.

Proof of Proposition 5.5. Starting with the fact that ∆(D0, D̂0) = 0 and applying Claims 5.8
and 5.9 inductively k times proves the claim.

27

Acknowledgements
We thank Or Keret for helpful comments.

Shafik Nassar and Ron Rothblum were funded by the European Union (ERC, FASTPROOF,
101041208). Views and opinions expressed are however those of the author(s) only and do not
necessarily reflect those of the European Union or the European Research Council. Neither the
European Union nor the granting authority can be held responsible for them. Shafik Nassar is also
supported in part by NSF CNS-1908611, CNS-2318701, and CNS-2140975.

Prashant Nalini Vasudevan is supported by the National Research Foundation, Singapore, under
its NRF Fellowship programme, award no. NRF-NRFF14-2022-0010.

References
[BBK+23] Zvika Brakerski, Maya Farber Brodsky, Yael Tauman Kalai, Alex Lombardi, and Omer

Paneth. SNARGs for monotone policy batch NP. In Helena Handschuh and Anna
Lysyanskaya, editors, Advances in Cryptology - CRYPTO 2023 - 43rd Annual Interna-
tional Cryptology Conference, CRYPTO 2023, Santa Barbara, CA, USA, August 20-24,
2023, Proceedings, Part II, volume 14082 of Lecture Notes in Computer Science, pages
252–283. Springer, 2023.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and
its applications (extended abstract). In Janos Simon, editor, Proceedings of the 20th
Annual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois,
USA, pages 103–112. ACM, 1988.

[BHK17] Zvika Brakerski, Justin Holmgren, and Yael Tauman Kalai. Non-interactive delega-
tion and batch NP verification from standard computational assumptions. In Hamed
Hatami, Pierre McKenzie, and Valerie King, editors, Proceedings of the 49th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC,
Canada, June 19-23, 2017, pages 474–482. ACM, 2017.

[BKP+23] Nir Bitansky, Chethan Kamath, Omer Paneth, Ron Rothblum, and Prashant Nalini
Vasudevan. Batch proofs are statistically hiding. Electron. Colloquium Comput. Com-
plex., TR23-077, 2023.

[BSMP91] Manuel Blum, Alfredo Santis, Silvio Micali, and Giuseppe Persiano. Noninteractive
zero-knowledge. SIAM J. Comput., 20(6):1084–1118, dec 1991.

[CGJ+23] Arka Rai Choudhuri, Sanjam Garg, Abhishek Jain, Zhengzhong Jin, and Jiaheng
Zhang. Correlation intractability and SNARGs from sub-exponential DDH. In He-
lena Handschuh and Anna Lysyanskaya, editors, Advances in Cryptology - CRYPTO
2023 - 43rd Annual International Cryptology Conference, CRYPTO 2023, Santa Bar-
bara, CA, USA, August 20-24, 2023, Proceedings, Part IV, volume 14084 of Lecture
Notes in Computer Science, pages 635–668. Springer, 2023.

[CJJ21a] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. Non-interactive batch ar-
guments for NP from standard assumptions. In Tal Malkin and Chris Peikert, editors,

28

Advances in Cryptology - CRYPTO 2021 - 41st Annual International Cryptology Con-
ference, CRYPTO 2021, Virtual Event, August 16-20, 2021, Proceedings, Part IV,
volume 12828 of Lecture Notes in Computer Science, pages 394–423. Springer, 2021.

[CJJ21b] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. SNARGs for P from LWE.
In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021,
Denver, CO, USA, February 7-10, 2022, pages 68–79. IEEE, 2021.

[DGKV22] Lalita Devadas, Rishab Goyal, Yael Kalai, and Vinod Vaikuntanathan. Rate-1 non-
interactive arguments for batch-NP and applications. In 63rd IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31 -
November 3, 2022, pages 1057–1068. IEEE, 2022.

[DGRV11] Zeev Dvir, Dan Gutfreund, Guy N. Rothblum, and Salil P. Vadhan. On approximat-
ing the entropy of polynomial mappings. In Bernard Chazelle, editor, Innovations in
Computer Science - ICS 2011, Tsinghua University, Beijing, China, January 7-9, 2011.
Proceedings, pages 460–475. Tsinghua University Press, 2011.

[FS90] U. Feige and A. Shamir. Witness indistinguishable and witness hiding protocols. In
Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Comput-
ing, STOC ’90, page 416–426, New York, NY, USA, 1990. Association for Computing
Machinery.

[GH98] Oded Goldreich and Johan Håstad. On the complexity of interactive proofs with
bounded communication. Information Processing Letters, 67(4):205–214, 1998.

[GHKS23] Aarushi Goel, Mathias Hall-Andersen, Gabriel Kaptchuk, and Nicholas Spooner. Speed-
stacking: Fast sublinear zero-knowledge proofs for disjunctions. In Carmit Hazay and
Martijn Stam, editors, Advances in Cryptology - EUROCRYPT 2023 - 42nd Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Lyon, France, April 23-27, 2023, Proceedings, Part II, volume 14005 of Lecture Notes
in Computer Science, pages 347–378. Springer, 2023.

[GK96] Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge proof
systems. SIAM Journal on Computing, 25(1):169–192, 1996.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM J. Comput., 18(1):186–208, 1989.

[GSV98] Oded Goldreich, Amit Sahai, and Salil P. Vadhan. Honest-verifier statistical zero-
knowledge equals general statistical zero-knowledge. In Jeffrey Scott Vitter, editor,
Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing,
Dallas, Texas, USA, May 23-26, 1998, pages 399–408. ACM, 1998.

[GSV99] Oded Goldreich, Amit Sahai, and Salil Vadhan. Can statistical zero knowledge be
made non-interactive? or on the relationship of SZK and NISZK. In Michael Wiener,
editor, Advances in Cryptology — CRYPTO’ 99, pages 467–484, Berlin, Heidelberg,
1999. Springer Berlin Heidelberg.

29

[GVW02] Oded Goldreich, Salil Vadhan, and Avi Wigderson. On interactive proofs with a laconic
prover. Comput. Complex., 11(1/2):1–53, jun 2002.

[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudo-
random generator from any one-way function. SIAM J. Comput., 28(4):1364–1396,
1999.

[KLVW23] Yael Kalai, Alex Lombardi, Vinod Vaikuntanathan, and Daniel Wichs. Boosting batch
arguments and RAM delegation. In Barna Saha and Rocco A. Servedio, editors, Pro-
ceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023,
Orlando, FL, USA, June 20-23, 2023, pages 1545–1552. ACM, 2023.

[KRR+20] Inbar Kaslasi, Guy N. Rothblum, Ron D. Rothblum, Adam Sealfon, and Prashant Nalini
Vasudevan. Batch verification for statistical zero knowledge proofs. In Rafael Pass and
Krzysztof Pietrzak, editors, Theory of Cryptography - 18th International Conference,
TCC 2020, Durham, NC, USA, November 16-19, 2020, Proceedings, Part II, volume
12551 of Lecture Notes in Computer Science, pages 139–167. Springer, 2020.

[KRV21] Inbar Kaslasi, Ron D. Rothblum, and Prashant Nalini Vasudevan. Public-coin statis-
tical zero-knowledge batch verification against malicious verifiers. In Anne Canteaut
and François-Xavier Standaert, editors, Advances in Cryptology - EUROCRYPT 2021 -
40th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Zagreb, Croatia, October 17-21, 2021, Proceedings, Part III, volume 12698
of Lecture Notes in Computer Science, pages 219–246. Springer, 2021.

[KVZ21] Yael Tauman Kalai, Vinod Vaikuntanathan, and Rachel Yun Zhang. Somewhere sta-
tistical soundness, post-quantum security, and SNARGs. In Kobbi Nissim and Brent
Waters, editors, Theory of Cryptography - 19th International Conference, TCC 2021,
Raleigh, NC, USA, November 8-11, 2021, Proceedings, Part I, volume 13042 of Lecture
Notes in Computer Science, pages 330–368. Springer, 2021.

[LFKN92] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods
for interactive proof systems. J. ACM, 39(4):859–868, 1992.

[Nis92] Noam Nisan. Pseudorandom generators for space-bounded computation. Comb.,
12(4):449–461, 1992.

[NV06] Minh-Huyen Nguyen and Salil P. Vadhan. Zero knowledge with efficient provers. In
Jon M. Kleinberg, editor, Proceedings of the 38th Annual ACM Symposium on Theory
of Computing, Seattle, WA, USA, May 21-23, 2006, pages 287–295. ACM, 2006.

[OV08] Shien Jin Ong and Salil P. Vadhan. An equivalence between zero knowledge and
commitments. In Ran Canetti, editor, Theory of Cryptography, Fifth Theory of Cryp-
tography Conference, TCC 2008, New York, USA, March 19-21, 2008, volume 4948 of
Lecture Notes in Computer Science, pages 482–500. Springer, 2008.

[PP22] Omer Paneth and Rafael Pass. Incrementally verifiable computation via rate-1 batch
arguments. In 63rd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2022, Denver, CO, USA, October 31 - November 3, 2022, pages 1045–1056.
IEEE, 2022.

30

[RR20] Guy N. Rothblum and Ron D. Rothblum. Batch verification and proofs of proximity
with polylog overhead. In Rafael Pass and Krzysztof Pietrzak, editors, Theory of Cryp-
tography - 18th International Conference, TCC 2020, Durham, NC, USA, November
16-19, 2020, Proceedings, Part II, volume 12551 of Lecture Notes in Computer Science,
pages 108–138. Springer, 2020.

[RRR18] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Efficient batch verification
for UP. In Rocco A. Servedio, editor, 33rd Computational Complexity Conference, CCC
2018, June 22-24, 2018, San Diego, CA, USA, volume 102 of LIPIcs, pages 22:1–22:23.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[RRR21] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round interactive
proofs for delegating computation. SIAM J. Comput., 50(3), 2021.

[RW04] R. Renner and S. Wolf. Smooth Renyi entropy and applications. In International
Symposium onInformation Theory, 2004. ISIT 2004. Proceedings., pages 233–, 2004.

[SCPY98] Alfredo De Santis, Giovanni Di Crescenzo, Giuseppe Persiano, and Moti Yung. Im-
age density is complete for non-interactive-SZK (extended abstract). In Kim Guld-
strand Larsen, Sven Skyum, and Glynn Winskel, editors, Automata, Languages and
Programming, 25th International Colloquium, ICALP’98, Aalborg, Denmark, July 13-
17, 1998, Proceedings, volume 1443 of Lecture Notes in Computer Science, pages 784–
795. Springer, 1998.

[Sha92] Adi Shamir. IP = PSPACE. J. ACM, 39(4):869–877, 1992.

[Vad99] Salil Pravin Vadhan. A study of statistical zero-knowledge proofs. PhD thesis, Mas-
sachusetts Institute of Technology, 1999.

[Vad12] Salil P. Vadhan. Pseudorandomness. Foundations and Trends® in Theoretical Computer
Science, 7(1–3):1–336, 2012.

[WW22] Brent Waters and David J. Wu. Batch arguments for NP and more from standard bilin-
ear group assumptions. In Yevgeniy Dodis and Thomas Shrimpton, editors, Advances
in Cryptology - CRYPTO 2022 - 42nd Annual International Cryptology Conference,
CRYPTO 2022, Santa Barbara, CA, USA, August 15-18, 2022, Proceedings, Part II,
volume 13508 of Lecture Notes in Computer Science, pages 433–463. Springer, 2022.

31

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

