# A subquadratic upper bound on sum-of-squares composition formulas 

Pavel Hrubeš *

May 14, 2024


#### Abstract

For every $n$, we construct a sum-of-squares identity $$
\left(\sum_{i=1}^{n} x_{i}^{2}\right)\left(\sum_{j=1}^{n} y_{j}^{2}\right)=\sum_{k=1}^{s} f_{k}^{2}
$$


where $f_{k}$ are bilinear forms with complex coefficients and $s=O\left(n^{1.62}\right)$. Previously, such a construction was known with $s=O\left(n^{2} / \log n\right)$. The same bound holds over any field of positive characteristic.

## 1 Introduction

The problem of Hurwitz [8] asks for which integers $n, m, s$ does there exist a sum-of-squares identity

$$
\begin{equation*}
\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)\left(y_{1}^{2}+\cdots+y_{m}^{2}\right)=f_{1}^{2}+\cdots+f_{s}^{2}, \tag{1}
\end{equation*}
$$

where $f_{1}, \ldots, f_{s}$ are bilinear forms in $x$ and $y$ with complex coefficients. Historically, the problem was motivated by existence of non-trivial identities with $n=m=s$. Starting with the obvious $x_{1}^{2} y_{1}^{2}=\left(x_{1} y_{1}\right)^{2}$, the first remarkable identity is

$$
\left(x_{1}^{2}+x_{2}^{2}\right)\left(y_{1}^{2}+y_{2}^{2}\right)=\left(x_{1} y_{1}-x_{2} y_{2}\right)^{2}+\left(x_{1} y_{2}+x_{2} y_{1}\right)^{2} .
$$

It can be interpreted as asserting multiplicativity of the norm on complex numbers. Euler's 4 -square identity is an example with $n, m, s=4$ which has later been interpreted as multiplicativity of the norm on quaternions. The final one is an 8 -square identity which arises in connection to the algebra of octonions.

A classical result of Hurwitz 8 shows that these are the only cases: an identity (1) exists with $m, s=n$ iff $n \in\{1,2,4,8\}$. An extension of this result is given by Hurwitz-Radon theorem [11]: an identity (11) exists with $s=n$ iff

[^0]$m \leq \rho(n)$, where $\rho(n)$ is the Hurwitz-Radon number. The value of $\rho(n)$ is known exactly. For every $n, \rho(n) \leq n$ and equality is achieved only in the cases $n \in\{1,2,4,8\}$. Asymptotically, $\rho(n)$ lies between $2 \log _{2} n$ and $2 \log _{2} n+2$ if $n$ is a power of 2 . As shown in [12, Hurwitz-Radon theorem remains valid over any field of characteristic different from two. Hurwitz's problem is an intriguing question with connections to several branches of mathematics. We recommend D. Shapiro's monograph [13] on this subject.

Let $\sigma(n)$ denote the smallest $s$ such that an identity (1) with $m=n$ exists. While Hurwitz-Radon theorem solves the case $s=n$ exactly, even the asymptotic behavior of $\sigma(n)$ is not known. Elementary bounds ${ }^{1}$ are $n \leq \sigma(n) \leq n^{2}$. Hurwitz's theorem implies that the first inequality is strict if $n$ is sufficiently large. Using Hurwitz-Radon theorem, the upper bound can be improved to

$$
\sigma(n) \leq O\left(n^{2} / \log n\right)
$$

As far as we are aware, this was the best asymptotic upper bound previously known. In this paper, we will improve it to a truly subquadratic bound

$$
\begin{equation*}
\sigma(n) \leq O\left(n^{1.62}\right) \tag{2}
\end{equation*}
$$

A specific motivation for this problem comes from arithmetic circuit complexity. In [6], Wigderson, Yehudayoff and the current author related the sum-of-squares problem with complexity of non-commutative computations. Noncommutative arithmetic circuit is a model for computing polynomials whose variables do not multiplicatively commute. Since the seminal paper of Nisan [10], it has been an open problem to give a superpolynomial lower bound on circuit size in this model. In [6], it has been shown that a superlinear lower bound of $\Omega\left(n^{1+\epsilon}\right)$ on $\sigma(n)$ translates to an exponential lower bound in the noncommutative setting. Hence, providing asymptotic lower bounds on Hurwitz's problem can be seen as a concrete approach towards answering Nisan's question. A more general, and hence less concrete, result of this flavor was given by Carmosino et al. in [1]. In an attempt to implement the sum-of-squares approach, the authors from [6] gave an $\Omega\left(n^{6 / 5}\right)$ lower bound under the assumption that the identity (1) involves integer coefficients only [7]. However, the upper bound (2) goes in the opposite direction. Since it is superlinear, it does not immediately frustrate the approach from [6], it merely dampens its optimism.

## 2 The main result

Let $\mathbb{F}$ be a field. Define $\sigma_{\mathbb{F}}(n, m)$ as the smallest $s$ such that there exist bilienear ${ }^{2} f_{1}, \ldots, f_{s} \in \mathbb{F}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots y_{m}\right]$ satisfying (1). Furthermore, let $\sigma_{\mathbb{F}}(n):=\sigma_{\mathbb{F}}(n, n)$.

[^1]Theorem 1. Let $\mathbb{F}$ be either $\mathbb{C}$ or a field of positive characteristic. Then $\sigma_{\mathbb{F}}(n) \leq O\left(n^{c}\right)$ where $c<1.62$.

This will be proved in Section 4. In Section 5.1, we will give a modification of Theorem 1 that applies to any field.

Remark 2. (i). If the field has characteristic two, Theorem 1 is trivial. Since $\left(\sum_{i} x_{i}^{2}\right)\left(\sum_{j} y_{j}^{2}\right)=\left(\sum_{i, j} x_{i} y_{j}\right)^{2}$, we have $\sigma_{\mathbb{F}}(n, m)=1$.
(ii). Instead of $\mathbb{C}$, the result holds also over Gaussian rationals $\mathbb{Q}(i)$.

Notation Given vectors $u, v \in \mathbb{F}^{n},\langle u, v\rangle:=\sum_{i=1}^{n} u_{i} v_{i}$ is their inner product. For a set $S,\binom{S}{k}$ denotes the set of $k$-element subsets of $S$ and $\binom{S}{\leq k}$ the set of subsets with at most $k$ elements. $\binom{n}{\leq k}:=\sum_{i=0}^{k}\binom{n}{i} .[n]$ is the set $\{1, \ldots, n\}$.

## 3 Hurwitz-Radon conditions

In this section, we give some well-known properties of $\sigma$ that we will need later.
The definition immediately implies thet $\sigma_{\mathbb{F}}(n, m)$ is symmetric, subadditive, and monotone:

$$
\begin{align*}
\sigma_{\mathbb{F}}(n, m) & =\sigma_{\mathbb{F}}(m, n), \\
\sigma_{\mathbb{F}}\left(n, m_{1}+m_{2}\right) & \leq \sigma_{\mathbb{F}}\left(n, m_{1}\right)+\sigma_{\mathbb{F}}\left(n, m_{2}\right), \\
\sigma_{\mathbb{F}}(n, m) & \leq \sigma_{\mathbb{F}}\left(n, m^{\prime}\right), m \leq m^{\prime} \tag{3}
\end{align*}
$$

The following lemma gives a characterization of $\sigma$ in terms of Hurwitz-Radon conditions (4). A proof can be found, e.g., in [13], but we present it for completeness.

Lemma 3. Let $\mathbb{F}$ be a field of characteristic different from two. Then $\sigma_{\mathbb{F}}(n, m)$ equals the smallest $s$ such that there exist matrices $H_{1}, \ldots, H_{m} \in \mathbb{F}^{n \times s}$ satisfying

$$
\begin{align*}
H_{i} H_{i}^{t} & =I_{n} \\
H_{i} H_{j}^{t} & +H_{j} H_{i}^{t}=0, i \neq j \tag{4}
\end{align*}
$$

for every $i, j \in[m]$.
Proof. Let $f_{1}, \ldots, f_{s}$ be bilinear polynomials in variables $x_{1}, \ldots, x_{n}$ and $y_{1}, \ldots, y_{m}$. Then the vector $\bar{f}=\left(f_{1}, \ldots, f_{s}\right)$ can be written as

$$
\bar{f}=\sum_{i=1}^{n} \bar{x} H_{i} y_{i}
$$

where $\bar{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $H_{i} \in \mathbb{F}^{n \times s}$. Hence

$$
\sum_{k=1}^{s} f_{k}^{2}=\bar{f} \bar{f}^{t}=\sum_{i} y_{i}^{2} \bar{x} H_{i} H_{i}^{t} \bar{x}^{t}+\sum_{i<j} y_{i} y_{j} \bar{x}\left(H_{i} H_{j}^{t}+H_{j} H_{i}^{t}\right) \bar{x}^{t}
$$

If the matrices satisfy (4), this equals $\sum_{i} y_{i}^{2} \bar{x} I_{n} \bar{x}^{t}=\left(y_{1}^{2}+\cdots+y_{m}^{2}\right)\left(x_{1}^{2}+\right.$ $\cdots+x_{n}^{2}$ ), which gives a sum-of-squares identity with $s$ squares. Conversely, if $\left(y_{1}^{2}+\cdots+y_{m}^{2}\right)\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)=\sum f_{k}^{2}$, we must have $\bar{x} H_{i} H_{i}^{t} \bar{x}^{t}=x_{1}^{2}+\cdots+x_{n}^{2}$ and $\bar{x}\left(H_{i} H_{j}^{t}+H_{j} H_{i}^{t}\right) \bar{x}^{t}=0$. In characteristic different from 2, this is possible only if the conditions (4) are satisfied.

Given a natural number of the form $n=2^{k} a$ where $a$ is odd, the HurwitzRadon number is defined as

$$
\rho(n)=\left\{\begin{array}{ll}
2 k+1, & \text { if } k=0 \\
2 k, & \text { if } k=1 \\
2 k, & \text { if } k=2 \\
2 k+2, & \text { if } k=3
\end{array} \bmod 4\right.
$$

Observe that

$$
2 \log _{2} n \leq \rho(n) \leq 2 \log _{2}(n)+2
$$

whenever $n$ is a power of two.
Square matrices $A_{1}, A_{2}$ anticommute if $A_{1} A_{2}=-A_{2} A_{1}$. A family of square matrices $A_{1}, \ldots, A_{t}$ will be called anticommuting if $A_{i}, A_{j}$ anticommute for every $i \neq j$.

The following lemma is a key ingredient in the proof of Hurwitz-Radon theorem. A self-contained construction can be found in 2].

Lemma 4. For every $n$, there exists an anticommuting family of $t=\rho(n)-1$ integer matrices $e_{1}, \ldots, e_{t} \in \mathbb{Z}^{n \times n}$ which are orthonormal and antisymmetric (i.e., $e_{i} e_{i}^{t}=I_{n}$ and $e_{i}=-e_{i}^{t}$ ).

Remark 5. A straightforward construction (see, e.g., [5]) gives an anticommuting family of $t=2 \log _{2} n+1$ integer matrices $e_{1}, \ldots, e_{t} \in \mathbb{Z}^{n \times n}$ with $e_{i}^{2}= \pm I_{n}$ whenever $n$ is a power of two. With minor modifications, these matrices could be used in the subsequent construction instead.

## 4 The construction

Let $e_{1}, \ldots, e_{t}$ be a set of square matrices. Given $A=\left\{i_{1}, \ldots, i_{k}\right\} \subseteq[t]$ with $i_{1}<\cdots<i_{k}$, let $e_{A}:=\prod_{j=1}^{k} e_{i_{j}}$.
Lemma 6. Let $e_{1}, \ldots, e_{t}$ be a set of anticommuting matrices. If $A, B \subseteq[t]$ have even size (resp. odd size) then $e_{A}, e_{B}$ anticommute assuming $|A \cap B|$ is odd (resp. even).

Proof. Since $e_{i}$ anticommutes with every $e_{j}, j \neq i$, but commutes with itself, we obtain

$$
e_{A} e_{i}=(-1)^{|A \backslash\{i\}|} e_{i} e_{A}
$$

This implies that

$$
e_{A} e_{B}=(-1)^{q} e_{B} e_{A},
$$

where $q=|A| \cdot|B|-|A \cap B|$. Hence if $A, B$ are even (resp. odd) and their intersection is odd (resp. even), $q$ is odd and $e_{A}, e_{B}$ anticommute.

Given integers $0 \leq k \leq t$, a $(k, t)$-parity representation of dimension $s$ over a field $\mathbb{F}$ is a map $\xi:\binom{[t]}{k} \rightarrow \mathbb{F}^{s}$ such that for every $A, B \in\binom{[t]}{k}$

$$
\begin{align*}
& \langle\xi(A), \xi(A)\rangle=1 \\
& \langle\xi(A), \xi(B)\rangle=0, \text { if } A \neq B \text { and }(|A \cap B|=k \bmod 2) \tag{5}
\end{align*}
$$

Lemma 7. Let $0 \leq k \leq t$. Over $\mathbb{C}$, there exists a $(k, t)$-parity representation of dimension $\binom{t^{-}}{\leq\lfloor k / 2\rfloor}$. If $\mathbb{F}$ is a field of odd characteristic $p$, there exists a $(k, t)$-parity representation of dimension $(p-1)\binom{t}{\leq\lfloor k / 2\rfloor}$.

The case of odd characteristic will be proved in the Appendix.
Proof of Lemma 7 over $\mathbb{C}$. Let $0 \leq k \leq t$ be given and $d:=\lfloor k / 2\rfloor$.
For $a \in\{0,1\}^{t}$, let $|a|$ be the number of ones in $a$. Recall that a polynomial is multilinear, if every variable in it has individual degree at most one. We first observe:

Claim 8. There exists a multilinear polynomial $f \in \mathbb{Q}\left(x_{1}, \ldots, x_{t}\right)$ of degree at most $d$ such that for every $a \in\{0,1\}^{t}$

$$
f(a)= \begin{cases}1, & \text { if }|a|=k  \tag{6}\\ 0, & \text { if }|a|<k \text { and }(|a|=k \bmod 2)\end{cases}
$$

Proof of Claim. Consider the polynomial

$$
g\left(x_{1}, \ldots, x_{t}\right):=c \prod_{0 \leq i<k, i=k \bmod 2}\left(\sum_{j=1}^{t} x_{j}-i\right)
$$

Then $g$ has degree $d$ and we can choose $c \in \mathbb{Q}$ so that $g$ satisfies (6). Since we care about inputs from $\{0,1\}^{t}, g$ can be rewritten as a multilinear polynomial $f$ of degree at most $d$.

Since $f$ is multilinear, we can write it as

$$
f\left(x_{1}, \ldots, x_{t}\right)=\sum_{C \in\binom{[t]}{\leq d}} \alpha_{C} \prod_{i \in C} x_{i}
$$

where $\alpha_{C}$ are rational coefficients. Identifying a subset $A$ of $[t]$ with its characteristic vector in $\{0,1\}^{t}$, we have

$$
f(A)=\sum_{C \subseteq A} \alpha_{C}
$$

Let $s:=\binom{t}{\leq d}$. Given $A \in\binom{[t]}{k}$, let $\xi(A) \in \mathbb{C}^{s}$ be the vector whose coordinates are indexed by subsets $C \in\binom{[t]}{\leq d}$ such that

$$
\xi(A)_{C}= \begin{cases}\left(\alpha_{C}\right)^{1 / 2}, & \text { if } C \subseteq A \\ 0, & \text { if } C \nsubseteq A\end{cases}
$$

This guarantees

$$
\langle\xi(A), \xi(B)\rangle=\sum_{C} \xi(A)_{C} \xi(B)_{C}=\sum_{C \subseteq A \cap B} \alpha_{C}=f(A \cap B) .
$$

Hence conditions (6) translate to the desired properties of the map $\xi$.
Combining Lemma 6 and 7, we obtain the following bound on $\sigma$ :
Theorem 9. Let $n$ be a non-negative integer. Let $0 \leq k \leq \rho(n)-1$ and $m:=\binom{\rho(n)-1}{k}$. Then

$$
\sigma_{\mathbb{C}}(n, m) \leq n \cdot\binom{\rho(n)-1}{\leq\lfloor k / 2\rfloor}
$$

If $\mathbb{F}$ is a field of odd characteristic $p$ then

$$
\sigma_{\mathbb{F}}(n, m) \leq(p-1) n \cdot\binom{\rho(n)-1}{\leq\lfloor k / 2\rfloor}
$$

Proof. Let $n, k, m$ be as in the assumption. Let $e_{1}, \ldots, e_{t}$ be the matrices from Lemma 4 with $t=\rho(n)-1$. Let $\xi$ be the ( $k, t$ )-parity representation given by the previous lemma. For $A \in\binom{[t]}{k}$, let

$$
H_{A}:=e_{A} \otimes \xi(A)
$$

where $e_{A}$ is defined as in Lemma 6, $\xi(A)$ is viewed as a row vector, and $\otimes$ is the Kronecker (tensor) product.

Note that each $H_{A}$ has dimension $n \times(n s)$ where $s$ is the dimension of the parity representation, and there are $m=\binom{t}{k}$ such matrices $H_{A}$. By Lemma 3. it is sufficient to show that the system of matrices $H_{A}, A \in\binom{[t]}{k}$, satisfies Hurwitz-Radon conditions (4).

We have

$$
H_{A} H_{B}^{t}=\left(e_{A} e_{B}^{t}\right) \otimes\left(\xi(A) \xi(B)^{t}\right)=\langle\xi(A), \xi(B)\rangle \cdot e_{A} e_{B}^{t}
$$

Since every $e_{i}$ is orthonormal, we have $e_{A} e_{A}^{t}=I_{n}$. 5 gives $\langle\xi(A), \xi(A)\rangle=1$ and hence

$$
H_{A} H_{A}^{t}=I_{n}
$$

If $A \neq B$ then

$$
\begin{equation*}
H_{A} H_{B}^{t}+H_{B} H_{A}^{t}=\langle\xi(A), \xi(B)\rangle \cdot\left(e_{A} e_{B}^{t}+e_{B} e_{A}^{t}\right) \tag{7}
\end{equation*}
$$

If $|A \cap B|=k \bmod 2$ then $\langle\xi(A), \xi(B)\rangle=0$ by (5) and hence (7) equals zero. If $|A \cap B| \neq k \bmod 2$ then $e_{A} e_{B}^{t}+e_{B} e_{A}^{t}=0$. This is because $e_{A} e_{B}=-e_{B} e_{A}$ by Lemma 6 and that, since $e_{i}$ are antisymmetric, $e_{A}, e_{B}$ are either both symmetric or both antisymmetric. Therefore 7) equals zero for every $A \neq B \in\binom{[t]}{k}$.

Theorem 1 is an application of Theorem 9
Proof of Theorem 1. Assume first that $n$ is a power of 16 . This gives $\rho(n)=$ $2 \log _{2}(n)+1$. Let $k$ be the smallest integer with $n \leq\binom{ 2 \log _{2} n}{k}=: m$. From the previous theorem and monotonicity of $\sigma$ (cf. (3)), we obtain

$$
\sigma_{\mathbb{F}}(n) \leq \sigma_{\mathbb{F}}(n, m) \leq c n s
$$

where the constant $c$ depends on the field only and $s:=\binom{2 \log _{2} n}{\leq\lfloor k / 2\rfloor}$.
We have $k=2\left(\alpha+\epsilon_{n}\right) \log _{2} n$ where $\alpha \in\left(0, \frac{1}{2}\right)$ is such that $H(\alpha)=1 / 2(H$ is the binary entropy function) and $\epsilon_{n} \rightarrow 0$ as $n$ approaches infinity. We also have

$$
s \leq 2^{2 H\left(\frac{\alpha+\epsilon_{n}}{2}\right) \log _{2} n}=n^{2 H\left(\frac{\alpha}{2}\right)+\epsilon_{n}^{\prime}},
$$

where $\epsilon_{n}^{\prime} \rightarrow 0$. Hence

$$
\sigma_{\mathbb{F}}(n) \leq c n^{1+2 H\left(\frac{\alpha}{2}\right)+\epsilon_{n}^{\prime}}
$$

The numerical value of $\alpha$ is $0.11 \ldots$ which leads to $\sigma_{\mathbb{F}}(n) \leq c n^{1.615+\epsilon_{n}^{\prime}} \leq$ $O\left(n^{1.616}\right)$.

If $n$ is not a power of 16 , take $n^{\prime}$ with $n<n^{\prime}<16 n$ which is. By monotonicity of $\sigma$, we have $\sigma_{\mathbb{F}}(n) \leq \sigma_{\mathbb{F}}\left(n^{\prime}\right)$.

### 4.1 Comments

Remark 10. (i). Instead of $\mathbb{C}$, the proof of Theorem 9 applies to any field where all rationals have a square root. However, Theorem 1 holds also over Gaussian rationals $\mathbb{Q}(i)$ (cf. Section 5.1).
(ii). In positive characteristic, the bounds in Lemma 7 and Theorem 9 can sometimes be improved: if $\mathbb{F} \supseteq \mathbb{F}_{p^{2}}$, the factor $(p-1)$ can be dropped. For certain values of $k,\binom{t}{\leq\lfloor k / 2\rfloor}$ can be replaced with $\binom{t}{\lfloor k / 2\rfloor}$ (cf. Remark 19).

An improvement on the dimension of parity representation in Lemma 7, if possible, will lead to an improvement in Theorem 1. However, this dimension cannot be too small:

Remark 11. If $k$ is even, every ( $k, t$ )-parity representation must have dimension at least $s=\binom{\lfloor t / 2\rfloor}{ k / 2}$ over any field. This is because there exists a family $\mathcal{A}$ of $k$-element subsets of $[t]$ whose pairwise intersection is even, and $|\mathcal{A}|=s$. The map $\xi$ must assign linearly independent vectors to elements of $\mathcal{A}$. Similarly for $k$ odd.

On the other hand, $\binom{t}{\leq\lfloor k / 2\rfloor}$ in Lemma 7 can be replaced with $\binom{t}{\leq\lfloor t-k / 2\rfloor}$ which gives a smaller bound if if $k>t / 2$. This is because we can instead work with complements of $A \in\binom{[t]}{k}$.

The notion of $(k, t)$-parity representation can be restated in the language of orthonormal representations of graphs of Lovász 9. Given a graph $G$ with
vertex set $V$, its orthonormal representation is a map $\xi(V): \rightarrow \mathbb{F}^{s}$ such that for every $u, v \in V$

$$
\begin{aligned}
& \langle\xi(u), \xi(u)\rangle=1 \\
& \langle\xi(u), \xi(v)\rangle=0, \text { if } u \neq v \text { are not adjacent in } G .
\end{aligned}
$$

In this language, $(k, t)$-parity representation is an orthonormal representation of the following combinatorial Knesser-type graph $G_{k, t}$ : vertices of $G_{k, t}$ are $k$ element subsets of $[t]$. There is an edge between $u$ and $v$ iff $|u \cap v| \neq k \bmod 2$. Orthogonal representations of related graphs have been studied by Haviv in [4, 3].

## 5 Modifications and extensions

### 5.1 A sum of bilinear products

Define $\beta_{\mathbb{F}}(n)$ as the smallest $s$ such there exists an identity

$$
\begin{equation*}
\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)\left(y_{1}^{2}+\cdots+y_{n}^{2}\right)=f_{1} f_{1}^{\prime}+\cdots+f_{s} f_{s}^{\prime} \tag{8}
\end{equation*}
$$

where $f_{1}, \ldots, f_{s}$ and $f_{1}^{\prime}, \ldots, f_{s}^{\prime}$ are bilinear forms with coefficients from $\mathbb{F}$.
We have $\beta_{\mathbb{F}}(n) \leq \sigma_{\mathbb{F}}(n)$. In some contexts, $\beta$ is a more natural quantity than $\sigma$. In this section, we give a modification of Theorem 1 in terms of $\beta$ :

Theorem 12. Over any field, $\beta_{\mathbb{F}}(n) \leq O\left(n^{c}\right)$ where $c<1.62$.
Remark 13. In characteristic different from two, we have $f f^{\prime}=\left(\frac{f+f^{\prime}}{2}\right)^{2}-$ $\left(\frac{f-f^{\prime}}{2}\right)^{2}$, which allows to rewrite (8) as

$$
\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)\left(y_{1}^{2}+\cdots+y_{n}^{2}\right)=g_{1}^{2}+\cdots+g_{s}^{2}-h_{1}^{2}-\cdots-h_{s}^{2}
$$

It follows that

$$
\begin{aligned}
& \sigma_{\mathbb{F}}(n) \leq 2 \beta_{\mathbb{F}}(n), \quad \text { if } \mathbb{F} \text { contains a square root of }-1, \\
& \sigma_{\mathbb{F}}(n) \leq p \beta_{\mathbb{F}}(n), \quad \text { if } \mathbb{F} \text { has characteristic } p>0
\end{aligned}
$$

We conclude that, first, Theorem 1 is a consequence of Theorem 12 and, second, Theorem 1 holds also over Gaussian rationals $\mathbb{Q}(\mathrm{i})$.

The proof of Theorem 12 is a straightforward modification of that of Theorem 1 and we only highlight the main points.

The following is an analogy of Lemma 3
Lemma 14. Assume that there are matrices $H_{1}, \ldots H_{m}, \tilde{H}_{1}, \ldots, \tilde{H}_{m} \in \mathbb{F}^{n \times s}$ satisfying

$$
H_{i} \tilde{H}_{i}^{t}=I_{n}, H_{i} \tilde{H}_{j}^{t}+H_{j} \tilde{H}_{i}^{t}=0, i \neq j
$$

for every $i, j \in[m]$. Then $\beta_{\mathbb{F}}(n, m) \leq s$.

Proof. Define

$$
\left(f_{1}, \ldots, f_{s}\right)=\sum_{i=1}^{n} \bar{x} H_{i} y_{i},\left(f_{1}^{\prime}, \ldots, f_{s}^{\prime}\right)=\sum_{i=1}^{n} \bar{x} \tilde{H}_{i} y_{i}
$$

Hence
$\sum_{k=1}^{s} f_{k} f_{k}^{\prime}=\left(f_{1}, \ldots, f_{s}\right)\left(f_{1}^{\prime}, \ldots, f_{s}^{\prime}\right)^{t}=\sum_{i} y_{i}^{2} \bar{x} H_{i} \tilde{H}_{i}^{t} \bar{x}^{t}+\sum_{i<j} y_{i} y_{j} \bar{x}\left(H_{i} \tilde{H}_{j}^{t}+H_{j} \tilde{H}_{i}^{t}\right) \bar{x}^{t}$.
This equals $\sum_{i} y_{i}^{2} \bar{x} I_{n} \bar{x}^{t}=\left(y_{1}^{2}+\cdots+y_{m}^{2}\right)\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)$ as required.
Lemma 15. For $0 \leq k \leq t$ and any field $\mathbb{F}$ of characteristic different from two, there exists a pair of maps $\xi, \tilde{\xi}:\binom{[t]}{k} \rightarrow \mathbb{F}^{s}$ with $s=\binom{t}{\leq\lfloor k / 2\rfloor}$ such that for every $A, B \in\binom{[t]}{k}$

$$
\begin{array}{ll}
\langle\xi(A), \tilde{\xi}(A)\rangle & =1 \\
\langle\xi(A), \tilde{\xi}(B)\rangle & =\langle\xi(B), \tilde{\xi}(A)\rangle \\
\langle\xi(A), \tilde{\xi}(B)\rangle & =0, \text { if } A \neq B \text { and }(|A \cap B|=k \bmod 2)
\end{array}
$$

Proof. The proof is almost the same as that of Lemma 7. Equipped with the polynomial $f$ from Claim 8 or Lemma 17 , it is is sufficient to modify the definition of $\xi$ as follows:

$$
\xi(A)_{C}=\left\{\begin{array}{ll}
\alpha_{C}, & \text { if } C \subseteq A \\
0, & \text { if } C \nsubseteq A .
\end{array}, \tilde{\xi}(A)_{C}= \begin{cases}1, & \text { if } C \subseteq A \\
0, & \text { if } C \nsubseteq A\end{cases}\right.
$$

Proof sketch of Thoreom 12. In Theorem 9, replace the matrices $H_{A}$ by the pair

$$
H_{A}:=e_{A} \otimes \xi(A), \tilde{H}_{A}=e_{A} \otimes \tilde{\xi}(A)
$$

They satisfy the conditions from Lemma 14 and we can proceed as in Theorem 1.

### 5.2 A tensor product construction

We now outline an alternative construction of non-trivial sum-of-squares identities. While it gives different types of identities, it does not seem to give better bounds asymptotically.

Instead of the products of anticommuting matrices $e_{A}$, one can take the tensor product of matrices satisfying Hurwitz-Radon conditions (4). Namely, given such matrices $H_{1}, \ldots, H_{m} \in \mathbb{F}^{n \times s}$, and $a \in[m]^{\ell}$, let

$$
H_{a}:=H_{a_{1}} \otimes H_{a_{2}} \cdots \otimes H_{a_{\ell}}
$$

Observe that every $H_{a}$ satisfies $H_{a} H_{a}^{t}=I_{n^{\ell}}$ and that

$$
H_{a} H_{b}^{t}+H_{b} H_{a}^{t}=0
$$

whenever $a$ and $b$ have odd Hamming distance (i.e., they differ in an odd number of coordinates). As in Lemma 7, we can find a map $\xi:[m]^{\ell} \rightarrow \mathbb{C}^{s}$ with $s \leq(4 m)^{\ell / 2}$ such that

$$
\begin{array}{ll}
\langle\xi(a), \xi(a)\rangle & =1 \\
\langle\xi(a), \xi(b)\rangle & =0, \text { if } a \neq b \text { have even Hamming distance. }
\end{array}
$$

This gives for every $\ell$

$$
\sigma_{\mathbb{C}}\left(n^{\ell}, m^{\ell}\right) \leq \sigma_{\mathbb{C}}(n, m)^{\ell}(4 m)^{\ell / 2}
$$

For example, starting with $\sigma_{\mathbb{C}}(8,8)=8$, we have

$$
\sigma_{\mathbb{C}}\left(8^{\ell}, 8^{\ell}\right) \leq 8^{11 \ell / 6}
$$

## 6 Open problems

Let Even $_{t}$ denote the set of even-sized subsets of $[t]$. A map $\xi:$ Even $_{t} \rightarrow \mathbb{F}^{s}$ will be called a $t$-parity representation of dimension $s$ if for every $A, B \in$ Even $_{t}$

$$
\begin{aligned}
& \langle\xi(A), \xi(A)\rangle=1 \\
& \langle\xi(A), \xi(B)\rangle=0, \text { if } A \neq B \text { and }|A \cap B| \text { is even. }
\end{aligned}
$$

Problem 1. Over $\mathbb{C}$, does there exist a t-parity representation of dimension $2^{(0.5+o(1)) t}$ ?

If this were the case, we could improve the bound of Theorem 1 to $\sigma_{\mathbb{C}}(n, n) \leq$ $n^{1.5+o(1)}$. A more surprising consequence would be that

$$
\sigma_{C}\left(n, n^{2}\right) \leq n^{2+o(1)}
$$

The constant 0.5 in Problem 1 cannot be improved: since there exists a family of $2^{\lfloor t / 2\rfloor}$ subsets of $[t]$ with pairwise even intersection, every $t$-parity representation must have dimension at least $2^{\lfloor t / 2\rfloor}$ (cf. Remark 11). On the other hand, Lemma 7 implies that there exists a $t$-parity representation of dimension at most $2^{(H(0.25)+o(1)) t}<2^{0.82 t}$.

Our results do not apply to sum-of-squares composition formulas over the real numbers. Since $\mathbb{R}$ is one of the most natural choices of the underlying field, it is desirable to extend the construction in this direction. This motivates the following:

Problem 2. Over $\mathbb{R}$, does there exist a $t$-parity representation of dimension $O\left(2^{c t}\right)$ with $c<1$ ?

## References

[1] Marco L. Carmosino, Russell Impagliazzo, Shachar Lovett, and Ivan Mihajlin. Hardness amplification for non-commutative arithmetic circuits. In Proceedings of the 33rd Computational Complexity Conference, CCC '18, 2018.
[2] A. Geramita and N. Pullman. A theorem of Hurwitz and Radon and orthogonal projective modules. Proceedings of The American Mathematical Society, 42:51-51, 011974.
[3] I. Haviv. On minrank and the Lovász Theta function. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 2018.
[4] I. Haviv. Topological bounds on the dimension of orthogonal representations of graphs. European Journal of Combinatorics, 81:84-97, 2019.
[5] P. Hrubeš. On families of anticommuting matrices. Linear Algebra and Applications, 493:494-507, 2016.
[6] P. Hrubeš, A. Wigderson, and A. Yehudayoff. Non-commutative circuits and the sum of squares problem. In STOC' 10 Proceedings of the 42 nd symposium on Theory of Computing, pages 667-676, 2010.
[7] P. Hrubeš, A. Wigderson, and A. Yehudayoff. An asymptotic bound on the composition number of integer sums of squares formulas. Canadian Mathematical Bulletin, 56:70-79, 2013.
[8] A. Hurwitz. Über die Komposition der quadratischen Formen von beliebigvielen Variabeln. Nach. Ges. der Wiss. Göttingen, pages 309-316, 1898.
[9] L. Lovász. On the Shannon capacity of a graph. IEEE Trans. Inform. Theory, 25(1):1-7, 1979.
[10] N. Nisan. Lower bounds for non-commutative computation. In Proceeding of the 23th STOC, pages 410-418, 1991.
[11] J. Radon. Lineare scharen orthogonalen Matrizen. Abh. Math. Sem. Univ. Hamburg, 1(2-14), 1922.
[12] D. B. Shapiro. Quadratic forms and similarities. Bull. Amer. Math. Soc., 81(6), 1975.
[13] D. B. Shapiro. Compositions of quadratic forms. De Gruyter expositions in mathematics $33,2000$.

## A Proof of Lemma 7 in positive characteristic

Given non-negative integers $\bar{n}=\left(n_{1}, \ldots, n_{d}\right)$ let $B(\bar{n})$ be the $d \times d$ matrix $\left\{B(\bar{n})_{i, j}\right\}_{i, j \in[d]}$ with

$$
B(\bar{n})_{i, j}=\binom{n_{j}}{i-1}
$$

We assume that $\binom{n}{k}=0$ whenever $n<k$; this guarantees $\binom{n}{k}=\frac{n(n-1) \cdots(n-k+1)}{k!}$.
Lemma 16. If $\bar{n}=(r, r+2, \ldots, r+2(d-1))$ for some non-negative integer $r$ then $\operatorname{det}(B(\bar{n}))=2^{\binom{d}{2}}$.
Proof. We claim that

$$
\operatorname{det}(B(\bar{n}))=\left(\prod_{i=1}^{d-1} i!\right)^{-1} \operatorname{det}(V(\bar{n}))
$$

where $V(\bar{n})$ is the Vandermonde matrix with entries $V(\bar{n})_{i, j}=n_{j}^{i-1}$. To see this, multiply every $i$-th row of $B(\bar{n})$ by $(i-1)$ ! to obtain matrix $B^{\prime}(\bar{n})$ with

$$
\operatorname{det}\left(B^{\prime}(\bar{n})\right)=\left(\prod_{i=1}^{d-1} i!\right) \operatorname{det}(B(\bar{n}))
$$

An $i$-th row $r_{i}$ of $B^{\prime}(\bar{n})$ is of the form $\left(n_{1}^{i-1}+g_{i}\left(n_{1}\right), \ldots, n_{d}^{i}+g_{i}\left(n_{d}\right)\right)$ where $g_{i}$ is a polynomial of degree $<(i-1)$. This means that $r_{i}$ equals the $i$-th row of $V(\bar{n})$ plus a suitable linear of combination of the preceding rows of $V(\bar{n})$. Therefore, $\operatorname{det}\left(B^{\prime}(\bar{n})\right)=\operatorname{det}(V(\bar{n}))$.

Given $\bar{n}$ as in the assumption, we obtain

$$
\begin{aligned}
\operatorname{det}(V(\bar{n})) & =\prod_{1 \leq j_{1}<j_{2} \leq d}\left(n_{j_{2}}-n_{j_{1}}\right)=\prod_{1 \leq j_{1}<j_{2} \leq d}\left(2 j_{2}-2 j_{1}\right) \\
& =2^{\binom{d}{2}} \prod_{1 \leq j_{1}<j_{2} \leq d}\left(j_{2}-j_{1}\right)=2^{\binom{d}{2}} \prod_{i=1}^{d-1} i!
\end{aligned}
$$

This shows that $\operatorname{det}(B(\bar{n}))=2^{\binom{d}{2}}$.
Lemma 17. Let $p$ be an odd prime. Given $0 \leq k \leq t$, there exists a multilinear polynomial $f \in \mathbb{F}_{p}\left(x_{1}, \ldots, x_{t}\right)$ of degree at most $d=\lfloor k / 2\rfloor$ such that for every $a \in\{0,1\}^{t}$

$$
f(a)= \begin{cases}1, & \text { if }|a|=k \\ 0, & \text { if }|a|<k \text { and }(|a|=k \bmod 2)\end{cases}
$$

Proof. We look for $f$ of the form $f=\sum_{j=0}^{d} c_{j} S_{t}^{j}$ where $S_{t}^{j}$ is the elementary symmetric polynomial $S_{t}^{j}=\sum_{|A|=j} \prod_{i \in A} x_{i}$. Given $a \in\{0,1\}^{t}$,

$$
f(a)=\sum_{j=0}^{d} c_{j}\binom{|a|}{j} \bmod p
$$

We are therefore looking for a solution of the linear system

$$
B(\bar{n})\left(c_{0} \ldots, c_{d}\right)^{t}=(0, \ldots, 0,1)^{t}
$$

where $\bar{n}=(0,2, \ldots, 2 d)$, if $k$ is even, and $\bar{n}=(1,3, \ldots, 2 d+1)$, if $k$ is odd. By the previous lemma, $B(\bar{n})$ is invertible over $\mathbb{F}_{p}$ and such a solution exists.

Lemma 18. If $\mathbb{F}$ is a field of odd characteristic $p$, there exists a ( $k, t$ )-parity representation of dimension $(p-1)\binom{t}{\leq\lfloor k / 2\rfloor}$.
Proof. If every element of $\mathbb{F}_{p}$ has a square root in $\mathbb{F}$, the proof is the same as over $\mathbb{C}$. In general, proceed as follows. Since every non-zero element of $\mathbb{F}_{p}$ is a sum of at most $(p-1)$ ones, we can write

$$
f\left(x_{1}, \ldots, x_{t}\right)=\sum_{C \in \mathcal{C}} \prod_{i \in C} x_{i}
$$

where $\mathcal{C}$ is a multiset of $s \leq(p-1)\binom{t}{\leq d}$ subsets of $[t]$. For $A \in\binom{[t]}{k}$, let $\xi(A) \in \mathbb{F}^{s}$ be a vector whose coordinates are indexed by elements $C$ of $\mathcal{C}$ so that

$$
\xi(A)_{C}= \begin{cases}1, & \text { if } C \subseteq A \\ 0, & \text { if } C \nsubseteq A\end{cases}
$$

Remark 19. (i). Over $\mathbb{F}_{p^{2}}$ or a larger field, the factor of $(p-1)$ in Lemma 18 can be dropped. This is because every element of $\mathbb{F}_{p}$ has a square root in $\mathbb{F}_{p^{2}}$.
(ii). For specific values of $k$, a stronger bound is possible. For example, if $k=2 p^{\ell}-1$, there is a $(k, t)$-parity representation of dimension $\binom{t}{\lfloor k / 2\rfloor}$. It follows from Lucas' theorem that in this case, $f$ in Lemma 17 can be taken simply as the elementary symmetric polynomial of degree $\lfloor k / 2\rfloor$. This polynomial has only $\binom{t}{\lfloor/ 2\rfloor}$ monomials.


[^0]:    *Institute of Mathematics of ASCR, pahrubes@gmail.com. This work was supported by Czech Science Foundation GAČR grant 19-27871X.

[^1]:    ${ }^{1}$ The former is obtained by substituting $(1,0, \ldots, 0)$ for the $y$ variables, the latter by writing $\left(\sum x_{i}^{2}\right)\left(\sum_{j} y_{j}^{2}\right)=\sum_{i, j}\left(x_{i} y_{j}\right)^{2}$.
    ${ }^{2}$ Namely, of the form $\sum_{i, j} a_{i, j} x_{i} y_{j}$.

