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Abstract

We prove the first hardness results against efficient proof search by quantum algorithms. We show that under

Learning with Errors (LWE), the standard lattice-based cryptographic assumption, no quantum algorithm can

weakly automate TC0
-Frege. This extends the line of results of Krajíček and Pudlák (Information and Computation,

1998), Bonet, Pitassi, and Raz (FOCS, 1997), and Bonet, Domingo, Gavaldà, Maciel, and Pitassi (Computational
Complexity, 2004), who showed that Extended Frege, TC0

-Frege and AC0
-Frege, respectively, cannot be weakly

automated by classical algorithms if either the RSA cryptosystem or the Diffie-Hellman key exchange protocol are

secure. To the best of our knowledge, this is the first interaction between quantum computation and propositional

proof search.

1 Introduction

Originally, propositional proof complexity has been primarily concerned with proving lower bounds for the

length of proofs in propositional proof systems, with the ultimate goal of settling whether NP = coNP [CR79].

In parallel, a growing line of research has focused on the computational hardness of finding propositional proofs.

Efficient proof search is formally captured by the notion of automatability, introduced by Bonet, Pitassi, and

Raz [BPR00]: a propositional proof system 𝑆 is automatable if there exists an algorithm that given as input a

tautology 𝜑 , outputs an 𝑆-proof of 𝜑 in time polynomial in the size of the shortest proof. By relating proofs and

computation, automatability connects proof complexity to central areas of theoretical computer science such as

automated theorem proving, SAT solving and combinatorial optimization [BN21], learning theory [PS22], and

Kolmogorov complexity [Kra22].

Except for very weak proof systems like Tree-like Resolution, automatable in quasipolynomial time [BP96],

most natural systems appear to be non-automatable under standard hardness assumptions. Existing hardness

results can be split into two broad categories. Work from the late 90s and early 00s showed that stronger proof

systems are non-automatable under cryptographic assumptions, while more recent work has shown that weaker

proof systems are non-automatable under the optimal assumption that P ≠ NP.

The cryptography-based approach was initiated by the seminal work of Krajíček and Pudlák [KP98], who

showed that Extended Frege is not automatable unless factoring can be solved efficiently, although the notion

of automatability would only be defined slightly later by Bonet, Pitassi, and Raz [BPR00], who showed that

TC0
-Frege is hard to automate unless Blum integers can be factored by polynomial-size circuits. Finally, Bonet,

Domingo, Gavaldà, Maciel, and Pitassi [BDG+04] extended the existing result from TC0
-Frege to AC0

-Frege

under the stronger assumption that Blum integers cannot be factored by subexponential-size circuits.

Building on a long line of work [Bus95; Iwa97; Pud03; AB04; ABMP06; AR08; MPW19], the first NP-hardness

result was shown in 2019, when Atserias and Müller [AM20] proved that Resolution is not automatable unless

P = NP. This is optimal, as P = NP implies the automatability of any proof system. Their proof uses a clever

reduction from SAT that requires showing a specific lower bound for this system. The technique has since been

adapted to other weak proof systems such as Regular and Ordered Resolution [Bel20], 𝑘-DNF Resolution [Gar20],
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Cutting Planes [GKMP20], Nullstellensatz and Polynomial Calculus [dRGN+21], the OBDD proof system [IR22]

and, more recently, even AC0
-Frege [Pap23].

Though the latter works prove non-automatability under the optimal hardness assumption, their strength

is incomparable to the cryptography-based results. The NP-hardness results all rely on proving specific super-

polynomial proof complexity lower bounds for each system, meaning this strategy fails for AC0 [2]-Frege and

systems above, for which no lower bounds are known. In contrast, the cryptographic hardness results work

by ruling out feasible interpolation for these systems, a property which allows one to extract computational

content from proofs. For a proof system 𝑆 proving its own soundness (such as TC0
-Frege), feasible interpolation

is equivalent to the notion of weak automatability introduced by Atserias and Bonet [AB04], the latter meaning

that no proof system simulating 𝑆 is automatable. The question of whether weak systems such as Resolution

are weakly automatable remains one of the major open problems in the field. In short, there exists a trade-off

between the strength of the hardness assumption involved (P ≠ NP versus cryptographic) and the generality of

the result (automatability versus weak automatability).

Our work is the first new contribution to the non-automatability of strong proof systems
1

in more than two

decades. The early results [KP98; BPR00; BDG+04] relied on the assumption that factoring is hard, which does

not hold for quantum models of computation due to Shor’s breakthrough algorithm [Sho94]. This raises the

question of whether a quantum machine could carry out proof search efficiently for some strong proof system.

Grover’s search algorithm [Gro96] already provides a quadratic speed-up over brute-force proof search for any

system. While this is not enough to achieve automatability, the possibility of more powerful algorithms motivates

the interest in new conditional hardness results. The NP-hardness results outlined above imply that NP ⊈ BQP
suffices to rule out automatability for weak systems, but for stronger systems no widely believed assumption had

yet been proven sufficient.

In this work, we formally define the notion of quantum automatability and show the first hardness results.

We prove that TC0
-Frege is not quantum automatable unless lattice-based cryptography can be broken by

polynomial-size quantum circuits. Our results follow from the relationship between automatability and feasible

interpolation suitably generalized to the quantum setting. This means that we also rule out quantum feasible

interpolation and weak quantum automatability under the same cryptographic assumptions.

Contributions

Our main contribution is proving the hardness of quantum automatability under the assumption that lattice-based

cryptography is secure against quantum computers.

In 1996, Ajtai [Ajt96] gave the first worst-case to average-case reductions for lattice problems. In 1997, in

joint work with Dwork [AD97], the worst-case hardness of such lattice problems was used to design public-key

cryptosystems. Building on similar principles, the Learning with Errors (LWE) assumption of Regev [Reg09]

has become the standard post-quantum cryptographic assumption. The LWE assumption is simple to state,

surprisingly versatile, and does not seem susceptible to the period-finding technique crucial to Shor’s algorithm.

In this work we show that any quantum algorithm that automates TC0
-Frege can be used to break LWE.

Theorem (Main theorem, informal). If there exists a polynomial-time quantum algorithm that weakly automates
TC0-Frege, then LWE can be broken in polynomial time by a quantum machine.

We then exploit the simulation of TC0
-Frege by AC0

-Frege proofs of subexponential size to extend the result

to AC0
-Frege under a slightly stronger assumption, in the style of Bonet et al. [BDG+04].

Corollary. If there exists a polynomial-time quantum algorithm that weakly automates AC0-Frege, then LWE can
be broken in subexponential time by a quantum machine.

In order to properly state and prove these results, we first formally define the notion of quantum automatability

for quantum Turing machines. Note that a quantum algorithm might provide a wrong answer with small

probability, so we need to be careful in choosing the right definitions. We show that our definition is equivalent

to a similar one over uniform quantum circuits, and we verify that it is robust by reproving Impagliazzo’s

observation that weak automatability implies feasible interpolation, suitably translated to the quantum setting.

1
We use the terms weak and strong informally throughout the paper. Traditionally, a strong proof system is a system that proves its own

soundness, though it is often also intended to be a system for which lower bounds are lacking. For our purposes, strong refers to anything

simulating TC0
-Frege, for which both of the previous conditions apply.
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Techniques

The overall structure of the proofs follows the strategy of the previous non-automatability results of Krajíček

and Pudlák [KP98] and Bonet, Pitassi, and Raz [BPR00], but the technical details are quite different due to certain

complications arising from lattice-based cryptography. We outline below the main hurdles and the techniques

used to overcome them.

Quantum feasible interpolation. Our result follows from conditionally ruling out feasible interpolation

by quantum circuits. As observed by Impagliazzo, weak automatability implies feasible interpolation. We use

this observation contrapositively. Suppose that a proof system can prove the injectivity of a candidate one-way

function. In the presence of feasible interpolation, we are guaranteed the existence of small circuits capable

of inverting the one-way function one bit at a time. If one believes in the security of the cryptographic object,

one must conclude that the proof system does not admit feasible interpolation, and in turn that it is not weakly

automatable.

For this strategy to work the candidate one-way function should fulfill two important conditions. First, its

definition must be simple enough that the proof system can easily reason about it. For example, RSA requires

modular exponentiation to be defined, which is conjectured not to be computable in TC0
. This forced Bonet,

Pitassi, and Raz to use instead the Diffie-Hellman protocol. Second, the candidate one-way function must be

injective. The rather technical reason for injectivity is that feasible interpolation allows one to carry out the

inversion bit by bit, which does not guarantee retrieving a correct preimage if there are multiple ones.

A few injective one-way functions based on lattice geometry have been proposed throughout the literature,

e.g., see [PW08; GKVW20; MP12]. However, we consider instead a simple scheme for worst-case lattice-based

functions that closely resembles the one described by Micciancio [Mic11]. Such a scheme has the advantage that

its injectivity can be easily verified, and that its worst case one way-ness is guaranteed by the assumed hardness

of Learning with Errors, which we will now discuss.

Learning with Errors and certificates of injectivity. We base our construction directly on the Learning

with Errors assumption. The assumption is simple to define: roughly speaking, a vector 𝑥 should be hard to

recover after being multiplied by some public matrix 𝐴, and summed with some Gaussian noise, 𝐴𝑥 + 𝜀. While

the most naive functions based on LWE are not necessarily injective, we can bound the magnitude of the error

vectors to construct a family of functions where almost all of the functions are injective. For most matrices 𝐴,

the corresponding function 𝑓𝐴 in this family is worst-case one-way assuming the hardness of LWE [Mic11].

However, the functions being injective and worst-case one-way is not sufficient, because their injectivity

needs to be provable inside TC0
-Frege. Unlike with the Diffie-Hellman construction, where a single proof showed

the injectivity of the protocol for all generators, here each injective 𝑓𝐴 may require a tailored proof of injectivity.

Fortunately, most of these 𝑓𝐴 can have their injectivity certified by a left-inverse of 𝐴 together with a short basis

for the dual lattice of the 𝑞-ary lattice spanned by 𝐴. These short bases not only certify injectivity, but can also

be used as trapdoors to invert the function [Pei16]. Though we do not exploit this directly, one may think of the

automating algorithm as extracting such trapdoors from proofs. Instead, we use these certificates to prove the

injectivity of most 𝑓𝐴 inside TC0
-Frege.

With these properties, we can show that feasible interpolation can be used to invert almost all 𝑓𝐴, which is

sufficient to break LWE and its associated worst-case lattice problems.

Formal theories for linear algebra. The most technical component of the previous work on TC0
-Frege

and AC0
-Frege was the formalization of many basic properties of arithmetic directly inside the propositional

proof systems, which can be quite cumbersome. While we can borrow a large part of the existing formalization

of Bonet, Pitassi, and Raz [BPR00], putting it together to carry out arguments about lattice geometry would still

be quite convoluted.

Instead, we follow the approach of Krajíček and Pudlák, who showed the injectivity of RSA in Extended

Frege by reasoning in Buss’s theory S1

2
of bounded arithmetic. Universal theorems of this first-order theory

translate into propositional tautologies with succinct proofs in Extended Frege. For TC0
-Frege and its sequent

calculus formalism PTK, the corresponding first-order theory of bounded arithmetic is the two-sorted theory

VTC0
introduced by Cook and Nguyen [CN10]. This theory is quite expressive and can reason even about analytic
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functions, as shown by Jeřábek [Jeř23]. However, since we are mostly interested in statements of matrix algebra,

we use the more convenient formal theory LA for linear algebra introduced by Soltys and Cook [SC04].

The theory LA is quantifier-free and operates directly with matrices. It is strong enough to prove their ring

properties, but weak enough to allow all theorems in LA to translate into propositional tautologies with short

TC0
-Frege proofs. In order to handle all the concepts required in our arguments, we work over a conservative

extension of LA over the rationals which we show still propositionally translates into TC0
-Frege.

Open problems

To the best of our knowledge, this is the first interaction between quantum computation and propositional proof

search, and we believe further exploration of connections between the two fields is worthwhile. We outline below

three open lines of research, ranging from the interaction between quantum computation and proof complexity

to a classical problem in the theory of automatability.

Positive results? While hardness of proof search in most natural proof systems is now conditionally ruled

out under different assumptions, there exists a handful of systems for which no non-automatability results are

known. This is the case for the Res(⊕), Res(log), Sherali-Adams and Sum-of-Squares proof systems. Could

quantum algorithms automate any of these systems efficiently?

Even for proof systems where worst-case hardness is known, could quantum algorithms provide a significant

speed-up over brute-force search? Clearly, Grover’s algorithm already achieves a quadratic speed-up, but could

this be pushed further in some cases?

Quantum proof complexity. Hardness results in automatability involve three key elements: the proof

system, the hardness assumption and the model of computation for the automating algorithm. In this work

we shifted the latter two to the quantum setting, by choosing a post-quantum cryptographic assumption and a

quantum model of computation, but the proof systems considered remain classical.

What would it mean to have an inherently quantum proof system? In the same way that Extended Frege can

be seen as P/poly-Frege, could we define a proof system where lines are quantum circuits? This could open the

door to a quantum analogue of the Cook-Reckhow program, where showing lower bounds on quantum proof

systems would be related to the question of whether QMA = coQMA. We note that an analogous approach

exists in the field of parameterized complexity, starting with the work of Dantchev, Martin, and Szeider [DMS11],

who defined parameterized proof complexity as a program to gain evidence on the W-hierarchy being different

from FPT. As an intermediate step, it would make sense to consider the case of randomized proof systems and

the relationship between MA and coMA, though this has proven to be challenging so far.

We remark that while Pudlák [Pud09] already defined the notion of quantum derivation rules for propositional

proof systems and defined the quantum Frege proof system, his approach is orthogonal to ours, in that those

systems are still designed to derive propositional tautologies. In fact, he showed that classical Frege systems

simulate quantum Frege systems, though classical Frege proofs cannot be extracted from quantum proofs by a

classical algorithm unless factoring is in FP.

Towards generic hardness assumptions. Like the original works on weak automatability, our proof

requires concrete cryptographic assumptions. That is, we assume that some specific candidate one-way function

or cryptographic protocol is secure. The reason is that in order to obtain the upper bounds on which to apply

feasible interpolation we need concrete formulas to manipulate inside the different proof systems.

A major open problem in the theory of automatability is to disentangle these results from concrete families

of candidate one-way functions. That is, can we prove that TC0
-Frege is not (weakly) automatable under the

assumption that, say, one-way functions exist? Even better, can one obtain NP-hardness of automating strong

proof systems without the need to prove lower bounds first, in a way different from the strategy of Atserias and

Müller [AM20]? This seems to require conceptual breakthroughs.

Structure of the paper

The paper is structured as follows. Section 2 recalls the necessary concepts in proof complexity and lattice-based

cryptography needed in the rest of the paper. Section 3 defines automatability for quantum Turing machines
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and uniform quantum circuits and proves the equivalence between both models to then reprove Impagliazzo’s

observation on the relation between automatability and feasible interpolation, now in the quantum setting.

Section 4 states and proves the main theorem of the paper. The section first presents a detailed overview of the

main argument, while the subsections contain all the necessary technical work.

2 Preliminaries

We assume basic familiarity with computational complexity theory, propositional logic and quantum circuits.

We review the main concepts needed from proof complexity and refer the reader to standard texts like [Kra19]

for further details. We also recall some relevant notions from linear algebra and lattice geometry useful in our

arguments.

2.1 Proof complexity

Following Cook and Reckhow [CR79], a propositional proof system 𝑆 for the language Taut of propositional

tautologies is a polynomial-time surjective function 𝑆 : {0, 1}∗ → Taut. We think of 𝑆 as a proof checker that

takes some proof 𝜋 ∈ {0, 1}∗ and outputs 𝑆 (𝜋) = 𝜑 , the theorem that 𝜋 proves. Soundness follows from the fact

that the range is exactly Taut, and implicational completeness is guaranteed by the fact that 𝑆 is surjective. One

may alternatively define proof systems for refuting propositional contradictions. We move from one setup to the

other depending on context.

We denote by size𝑆 (𝜑) the size of the smallest 𝑆-proof of 𝜑 plus the size of 𝜑 . We say that a proof system 𝑆

is polynomially bounded if for every 𝜑 ∈ Taut, size𝑆 (𝜑) ≤ |𝜑 |𝑂 (1)
. We say that a proof system 𝑆 polynomially

simulates a system 𝑄 if for every 𝜑 ∈ Taut, size𝑆 (𝜑) ≤ size𝑄 (𝜑)𝑂 (1)
. For a family {𝜑𝑛}𝑛∈N of propositional

tautologies, we write 𝑆 ⊢ 𝜑𝑛 whenever size𝑆 (𝜑𝑛) ≤ |𝜑 |𝑂 (1)
. Finally, a proof system 𝑆 is said to be closed under

restrictions if whenever 𝑆 proves a formula 𝜑 in size 𝑠 , for every partial restriction 𝜌 to the variables in 𝜑 , there

exists a proof of the restricted formula 𝜑↾𝜌 in size 𝑠𝑂 (1)
.

The focus of this work is on a specific class of proof systems known as Frege systems. A Frege system is a

finite set of axiom schemas and inference rules that are sound and implicationally complete for the language

of propositional tautologies built from the Boolean connectives negation (¬), conjunction (∧), and disjunction

(∨). A Frege proof is a sequence of formulas where each formula is obtained by either substitution of an axiom

schema or by application of an inference rule on previously derived formulas. As long as the set of inference

rules is finite, sound and implicationally complete, the specific choice of rules does not effect the size of the

proofs up to polynomial factors, as all Frege systems polynomially simulate each other [Kra19, Theorem 4.4.13].

We can make gradations between Frege systems by restricting the complexity of their proof lines. For a

circuit class C, the system C-Frege is any Frege system where lines are restricted to be C-circuits (see [Jeř05] for

a formal definition). In this setup, a standard Frege system amounts to NC1
-Frege. We are mostly interested in

the weaker systems AC0
-Frege and TC0

-Frege, where the proof lines are, respectively, circuits of constant-depth

and unbounded fan-in, and threshold circuits of constant-depth and unbounded fan-in. A threshold circuit is a

Boolean circuit where gates can be the usual ¬,∨,∧ as well as the threshold ones Th𝑘 (𝑥1, . . . , 𝑥𝑛), where Th𝑘 is

true if at least 𝑘 of its inputs are true.

It is often convenient to consider an alternative formalism of TC0
-Frege in the style of Gentzen’s sequent

calculus. The Propositional Threshold Calculus PTK [CN10, Chapter X.4.1] is a version of the propositional sequent

calculus where the cuts are restricted to threshold formulas of constant depth. We refer to [BPR00, Section 2] for

a complete rendering of the derivational rules of PTK.

2.2 Lattice geometry

We recall some basic definitions from lattice geometry. For a linearly independent set of 𝑛 vectors B =

{𝑏1, . . . , 𝑏𝑛} ⊆ R𝑚 , which we often treat simply as an 𝑚 × 𝑛 matrix, the lattice over B is defined to be the

set of all integer linear combinations of vectors in B,

L(B) B {𝑥 ∈ R𝑚 | there is 𝑎 ∈ Z𝑛 such that 𝑥 = B𝑎} .
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When the vectors in B belong in Z𝑚𝑞 for some modulus 𝑞, we can further define a modular lattice over B,

denoted L𝑞 (B), to be the set of all integer linear combinations of the basis modulo 𝑞,

L𝑞 (B) B {𝑥 ∈ Z𝑚𝑞 | there is 𝑎 ∈ Z𝑛𝑞 such that B𝑎 ≡ 𝑥 mod 𝑞} ,

where the mod function is applied element-wise in the vector.

We define the length of a vector 𝑥 in L𝑞 (B) to be the Euclidean norm of the shortest vector in Z𝑚 that is

congruent to 𝑥 modulo 𝑞. Note that these shortest vectors will always fall in the domain [−⌊𝑞/2⌋, ⌊𝑞/2⌋]𝑚 .

A 𝑞-ary lattice Δ𝑞 (B) can be thought of as an extension of a modular lattice back to Z𝑚 and is the set of all

vectors 𝑥 ∈ Z𝑚 congruent to members of the modular lattice,

Δ𝑞 (B) B {𝑥 ∈ Z𝑚 | there is 𝑎 ∈ Z𝑛 such that B𝑎 ≡ 𝑥 mod 𝑞} .

Note that because for all 𝑥 ∈ {0, 𝑞}𝑚 , 𝑥 ∈ Δ𝑞 (B), we have that all 𝑞-ary lattices have rank𝑚.

From the definitions above it is clear that L𝑞 (B) ⊆ Δ𝑞 (B). Consequently a proof that no vector in Δ𝑞 (B)
has length less than ℓ also proves that no vector in L(B) has length less than ℓ .

Another important concept in lattice geometry is that of a dual lattice. Given a lattice L(B), its dual lattice

L∗ (B) is defined to be the set of vectors within the subspace spanned by B whose inner product with any

element in L is an integer. Formally,

L∗ (B) B {𝑦 ∈ R𝑚 | there is 𝑧 ∈ R𝑛 such that 𝑦 = B𝑧 and for all 𝑥 ∈ L(B), ⟨𝑥,𝑦⟩ ∈ Z} ,

where ⟨·, ·⟩ denotes the inner product. The dual lattice is also a lattice, whose basis admits a closed form.

Lemma 2.1. For a basis B ∈ R𝑚×𝑛 , L∗ (B) = L(B(B⊺B)−1).

Note that, if B ∈ Z𝑚×𝑛
, it is easy to show that B(B⊺B)−1 ∈ Q𝑚×𝑛

, and, therefore, that any 𝑥 ∈ L∗ (B)
belongs to Q𝑚 . This lemma is standard and can be found, for example, in [Mic11].

Modular lattices and 𝑞-ary lattices are fairly different mathematical objects, but we can show that given a

matrix B ∈ Z𝑚×𝑛
𝑞 such that rank(B) = 𝑛, there exists a closed form for a matrix B′

such that L(B′) = Δ𝑞 (B).

Lemma 2.2 (Full-rank modular lattices have 𝑞-ary lattice bases). Let B ∈ Z𝑚×𝑛
𝑞 and define 𝐶 ∈ {0, 1}𝑚×𝑚 to be

the permutation matrix that swaps the appropriate rows so that the first 𝑛 rows of 𝐶B are linearly independent.
Let B1 ∈ Z𝑛×𝑛 and B2 ∈ Z𝑚−𝑛×𝑛 be matrices such that B = [𝐶B1 | 𝐶B2]⊺ . Then, for B ∈ Z𝑚×𝑛

𝑞 , if rank(B) = 𝑛,
Δ𝑞 (B) = L(B′), where

B′ = 𝐶

[
𝐼𝑛 0

(𝐶B)2 (𝐶B)−1

1
𝑞𝐼𝑚−𝑛

]
𝐶−1 ,

and where the inverses 𝑀−1 are defined over the modular lattice Z𝑚𝑞 .

Note that we can combine this corollary with Lemma 2.1 to get a closed form for B′
such that Δ∗

𝑞 (B) = L(B′).
The 𝑖-th successive minimum of a lattice L is 𝜆𝑖 (L) B inf{𝑟 ∈ Z | dim(span(L ∩𝐵(0, 𝑟 ))) ≥ 𝑖}, where 𝐵(0, 𝑟 )

is the ball of radius 𝑟 around the origin. Roughly speaking, this means that 𝜆𝑖 (L) is the length of the 𝑖-th smallest

linearly independent vector in the lattice.

There exists an intimate relationship between a lattice and its dual, as captured by Banaszczyk’s Transference

Theorem.

Theorem 2.3 (Transference Theorem [Ban93]). For any rank-𝑛 lattice L ⊆ Z𝑚 , 1 ≤ 𝜆1 (L) · 𝜆𝑛 (L∗) ≤ 𝑛.

Modular lattices L𝑞 (B) are subsets of Z𝑚𝑞 , not Z𝑚 , and therefore the Transference Theorem does not directly

apply. However we are able to leverage the fact that 𝜆1 (Δ𝑞 (B)) = min(𝑞, 𝜆1 (L𝑞 (B))) to indirectly apply it

through the 𝑞-ary lattice.

We recall useful properties of random lattices.

Lemma 2.4. For a randomly selected matrix 𝐴 ∈ Z𝑚×𝑛
𝑞 , we have that

(i) Pr𝐴 [rank(𝐴) = 𝑛] ≥ 𝑛/𝑞𝑚−𝑛+1;

(ii) Pr𝐴 [𝜆1 (L𝑞 (𝐴)) < 𝑟 | rank(𝐴) = 𝑛] ≤ (2𝑟 + 1)𝑚/𝑞𝑚−2𝑛−1.

These properties are folklore. For the sake of completeness, we provide proofs in Appendix C.
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2.3 Learning with Errors (LWE)

Learning with Errors (LWE) is a central problem of learning theory, introduced by Regev [Reg09].

Assumption 2.5 (The Learning with Errors (LWE) assumption [Reg09; Pei16]). Let𝑚 = 𝑛𝑂 (1)
, 𝑞 ≤ 2

𝑛𝑂 (1)
, let

𝑠 ∼ Z𝑛𝑞 be a secret vector, 𝐴 ∼ Z𝑚×𝑛
𝑞 , and 𝜀 ∈ Z𝑚𝑞 a sample from the discrete Gaussian with standard deviation 𝛼𝑞

with 𝛼 = 𝑜 (1) and 𝛼 ∈ [0, 1]. The Learning with Errors assumption states that there is no quantum inverter
2 𝑀

running in time 𝑛𝑂 (1)
such that 𝑀 (𝐴,𝐴𝑠 + 𝜀) outputs 𝑠 with noticeable probability over the choice of 𝑠 , 𝐴, 𝜀, and

the internal randomness of 𝑀 .

The security of this assumption relies on the existence of worst-case to average-case reductions to fundamental

lattice problems conjectured to be hard. In particular, as shown by Regev [Reg09], breaking LWE implies solving

the 𝛾-GapSVP problem for an approximation factor 𝛾 = 𝑛2
. Here, 𝛾-GapSVP refers to the 𝛾-Approximate Shortest

Vector Problem: given a lattice basis B ∈ Q𝑚×𝑛
and a distance threshold 𝑟 > 0, decide whether 𝜆1 (L(B)) ≤ 𝑟 , or

𝜆1 (L(B)) > 𝛾𝑟 , when one of those cases is promised to hold.

The belief that 𝛾-GapSVP is intractable is backed by the fact that the problem is NP-hard under randomized

reductions when the approximation factor is constant [Ajt96; Pei16; BP23]. However, for the range of 𝛾 in which

the reduction to LWE works, no NP-hardness is known. Obtaining NP-hardness for polynomial approximation

factors would imply the breakthrough consequence of basing cryptography on worst-case hardness assumptions.

In turn, this would turn our non-automatability results into NP-hardness results. As appealing as this might

be, it is unlikely. For 𝛾 ≥
√
𝑛, the problem 𝛾-GapSVP is known to be in NP ∩ coNP [AR05] and thus cannot be

NP-hard unless PH collapses.

2.4 The formal theory LA

The theory LA is a quantifier-free theory introduced by Soltys and Cook [SC04] whose main objects are matrices.

This is not technically speaking a first-order theory of bounded arithmetic like those used by Krajíček and Pudlák

[KP98], but like them it admits a propositional translation into Frege systems.

The system LA operates over three sorts: indices (intended to be natural numbers), field elements (over some

abstract field F), and matrices (with entries over F). Variables for these three sorts are usually denoted 𝑖, 𝑗, 𝑘, . . . for

indices, 𝑎, 𝑏, 𝑐, . . . for field elements, and 𝐴, 𝐵,𝐶, . . . , for matrices. We sometimes use lower-case letters 𝑣,𝑤, . . .

for vectors, which are seen as a special case of matrices.

The language of LA consists of the following constant, predicate and function symbols, over the three different

sorts:

• Index sort: 0index, 1index, +index, ·index,−index, div, rem, condindex, ≤index,=index

• Field sort: 0field, 1field, +field, ·index,−index,
−1 , r, c, e, Σ, condfield,=field

• Matrix sort: =matrix

The meaning of the symbols is the standard one, except for −index that denotes the cutoff subtraction (𝑖 − 𝑗 = 0

if 𝑖 < 𝑗 ) and for 𝑎−1
, denoting the inverse of a field element 𝑎, with 0

−1 = 0. For operations over matrices,

r(𝐴) and c(𝐴) are, respectively, the number of rows and columns in 𝐴, e(𝐴, 𝑖, 𝑗) is the field element 𝐴𝑖, 𝑗 (with

e(𝐴, 𝑖, 𝑗) = 0 if either 𝑖 = 0, 𝑗 = 0, 𝑖 > r(𝐴) or 𝑗 > c(𝐴)) and Σ𝐴 is the sum of the elements in 𝐴. The function

symbol cond(𝛼, 𝑡1, 𝑡2) is interpreted to mean that if 𝛼 holds, then the returned value should be 𝑡1, else 𝑡2, where 𝛼

is a formula all of whose atomic subformulas have the form𝑚 ≤ 𝑛 or𝑚 = 𝑛, where𝑚 and 𝑛 are of the index sort,

and 𝑡1, 𝑡2 are terms either both of index sort or both of field sort.

The language of LA can be enriched with the following defined terms: index maximum (max), matrix sum

(+, when sizes of the matrices are compatible), scalar product (·), matrix transpose (𝐴⊺), zero (0) and identity

matrices (𝐼 ), matrix trace (tr), dot product (⟨_, _⟩), and matrix product (·). See [SC04, Section 2.1] for details on

the definitions of these terms. In general, whenever it is clear from context, we drop the subscripts indicating the

sort and we use standard linear algebra notation for the sake of readability.

2
In some instances there may also be some 𝑠′ and small enough 𝜀′ such that 𝐴𝑠′ + 𝜀′ = 𝐴𝑠 + 𝜀, in which case 𝑠′ would also be a valid

inversion of (𝐴,𝐴𝑠 + 𝜀). However, as we discuss later, there are exponentially few matrices 𝐴 for which any such 𝑠′ will exist together

with some 𝜀′ small enough. Thus, defining the problem in terms of unique inversion (as done by Regev [Reg09] and Piekert [Pei16]) is

asymptotically equivalent to a more complex definition accounting for non-unique inversion.
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The theory then consists of several groups of axioms fixing the meaning of these symbols. These are rather

lengthy to state, so we relegate them to Appendix A.1, where we also include several theorems derived by Soltys

and Cook inside LA.

Observe that the theory is field-independent, but whenever we fix the field to be either finite or Q, LA has

the robust property that every theorem translates into a family of propositional formulas with short TC0
-Frege

proofs. This is the main property of LA that we shall exploit.

3 Quantum automatability and feasible interpolation

Following Bonet, Pitassi, and Raz [BPR00], we say that a propositional proof system 𝑆 is automatable in time 𝑡 if

there exists a deterministic Turing machine 𝐴 that on input a formula 𝜑 outputs an 𝑆-proof of 𝜑 , if one exists, in

time 𝑡 (size𝑆 (𝜑)). We now consider the possibility of replacing 𝐴 by a probabilistic or quantum Turing machine.

The main issue in the definition is now that the output of the machine may be erroneous, albeit with small

probability. Note, however, that if a machine were to output an incorrect proof, we would be able to easily detect

this, since we can verify the proofs in polynomial time. We may thus assume that when yielding an incorrect

proof, the machine will restart and find another one. Hence, instead of asking for the error-probability of the

machine to be bounded, we ask for the expected running time to be bounded. The following definition captures

this idea.

Definition 3.1 (Quantum and randomized automatability). Let 𝑆 be a propositional proof system and let

𝑡 : N→ N be a time-constructible function. We say that 𝑆 is quantum (respectively, random) automatable in time
𝑡 or simply quantumatable in time 𝑡 if there exists a quantum Turing machine (respectively, a randomized Turing

machine) that on input a formula 𝜑 outputs an 𝑆-proof of 𝜑 , if one exists, in expected time 𝑡 (size𝑆 (𝜑)).

In what follows, we assume 𝑡 to be a polynomial and talk simply about a system being automatable or

quantum automatable, without reference to 𝑡 . Since quantum circuits are often more convenient than quantum

Turing machines, we also define automatability in the circuit setting.

Definition 3.2 (Circuit automatability). Let 𝑆 be a propositional proof system. We say that 𝑆 is circuit-automatable
if there exists a constant 𝑐 and a uniform multi-output circuit family {𝐶𝑛,𝑠 }𝑛,𝑠∈N of size (𝑛 + 𝑠)𝑐 such that 𝐶𝑛,𝑠

takes as input a formula 𝜑 of size 𝑛 and outputs an 𝑆-proof of size 𝑠𝑐 if a proof of size 𝑠 exists, and is allowed to

output any string otherwise.

The generalization to randomized and quantum circuits is now immediate.

Definition 3.3. Let 𝑆 be a propositional proof system. We say 𝑆 is quantum circuit-automatable if there exists a

constant 𝑐 and a uniform multi-output quantum circuit family {𝐶𝑛,𝑠 }𝑛,𝑠∈N of size (𝑛 + 𝑠)𝑐 such that 𝐶𝑛,𝑠 takes

as input a formula 𝜑 of size 𝑛, and outputs an 𝑆-proof of size 𝑠𝑐 with probability at least 2/3 if a proof of size 𝑠

exists, and is allowed to output any string otherwise. We say that 𝑆 is random circuit-automatable if the circuit is

classical but also takes as input a sequence 𝑟 of random bits and, for at least 2/3s of the choices for 𝑟 , 𝐶𝑛,𝑠 (𝜑, 𝑟 )
outputs an 𝑆-proof of size 𝑠𝑐 if a proof of size 𝑠 exists, and is allowed to output any string otherwise.

In fact, the machine-based and circuit-based definitions are equivalent.

Proposition 3.4. Let 𝑆 be a propositional proof system. The following equivalences hold:

(i) the system 𝑆 is automatable if and only if it is circuit-automatable;

(ii) the system 𝑆 is random automatable if and only if it is random circuit-automatable;

(iii) the system 𝑆 is quantum automatable if and only if it is quantum circuit-automatable.

We defer the rather simple proof to Appendix B.

Even if a proof system is not automatable, one might still hope for an algorithm that finds some proof

efficiently, even if it is in a different proof system. We say that a proof system 𝑆 is weakly automatable if

there exists another proof system 𝑄 and an algorithm 𝐴 that given a formula 𝜑 , outputs a 𝑄-proof of 𝜑 in

time size𝑆 (𝜑)𝑂 (1)
. The concept was introduced by Atserias and Bonet [AB04], who further showed that this is

equivalent to 𝑆 being simulated by a system𝑄 that is itself automatable. Despite the fact that weak automatability

has been conditionally ruled out for Resolution under hardness assumptions for certain two-player games [AM11;
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HP11; BPT14], establishing whether weak proof systems—such as Resolution—are weakly automatable under

more standard hardness conjectures remains one of the main open problems in the area. It is straightforward to

extend the notion of weak automatability to the quantum setting.

Weak automatability is closely related to feasible interpolation. We recall this connection in its classical form

and then move to the quantum setting.

Definition 3.5 (Feasible interpolation [Kra97; Pud03]). We say that a proof system 𝑆 has the feasible interpolation
property if there exists a polynomial-time computable function 𝐼 such that for every tautological split formula

𝜑 (𝑥,𝑦, 𝑧) = 𝛼 (𝑥, 𝑧) ∨ 𝛽 (𝑧,𝑦), whenever a proof 𝜋 in 𝑆 derives 𝜑 in size 𝑠 , 𝐼 (𝜋) produces an interpolant circuit 𝐶𝜑

of size 𝑠𝑂 (1)
that takes as input an assignment 𝜌 to the 𝑧-variables and such that

𝐶𝜑 (𝜌) =
{

0 only if 𝛼 (𝑥, 𝜌) is a tautology

1 only if 𝛽 (𝜌,𝑦) is a tautology

indicating which side of the conjunction is tautological.

Bonet, Pitassi, and Raz attribute the following crucial observation relating (weak) automatability and feasible

interpolation to Impagliazzo. We refer to it as Impagliazzo’s observation.

Proposition 3.6 (Impagliazzo’s observation [BPR00, Thm. 1.1]). If a proof system is weakly automatable and
closed under restrictions, then it admits feasible interpolation.

Impagliazzo’s observation is useful contrapositively: to rule out (weak) automatability it suffices to rule out

feasible interpolation, as done in the previous works [KP98; BPR00]. We outline this strategy further in Section 4,

where we instantiate it together with our cryptographic assumption.

To use feasible interpolation in our setting, we suitably adapt the definition to the quantum world.

Definition 3.7 (Quantum feasible interpolation). We say that a proof system 𝑆 has the quantum feasible
interpolation property if there exists a polynomial-time computable function 𝐼 such that, for every tautological

split formula 𝜑 (𝑥,𝑦, 𝑧) = 𝛼 (𝑥, 𝑧) ∨ 𝛽 (𝑧,𝑦), whenever a proof 𝜋 derives 𝜑 in 𝑆 in size 𝑠 , 𝐼 (𝜋) prints the description

of a quantum interpolant circuit 𝐶𝜑 of size 𝑠𝑂 (1)
as in Definition 3.5. If the circuit is instead randomized, we call

this property random feasible interpolation.

Interestingly, feasible interpolation is not affected by moving from classical automatability to randomized

automatability. This is essentially folklore, but we reprove it for the sake of completeness.

Proposition 3.8. If a proof system 𝑆 is weakly random automatable and closed under restrictions, then it has
feasible interpolation by deterministic Boolean circuits.

Proof. The proof is essentially the same as the original proof in [BPR00], except for having to take randomness

into account. Suppose 𝑅 is a probabilistic automating algorithm for 𝑆 . By Proposition 3.4.(ii), we can instead

think of a family of randomized circuits {𝐶𝑛,𝑠 }𝑛,𝑠∈N that, for some fixed constant 𝑐 , outputs proofs of size 𝑠𝑐

when a proof of size 𝑠 exists. Furthermore, let 𝑑 be the constant in the exponent that bounds the blow-up in size

happening in the closure under restrictions. Given a split formula 𝜑 = 𝛼 ∨ 𝛽 , we want to obtain an interpolant

circuit 𝐶𝜑 .

Use the automating algorithm to find some proof of 𝜑 . Let 𝑠0 be the size of such a proof. We first show that it

is possible to extract a polynomial-size randomized circuit that computes the interpolant with one-sided error.

Consider the circuit that takes as input the restriction 𝜌 together with some random bits and proceeds to compute

𝐶 |𝛼 |,𝑠𝑑
0

(𝛼↾𝜌 , 𝑟 ). If this circuit finds a proof of 𝛼↾𝜌 and it is checked to be correct, we output 0; else, we output 1. We

claim that for at least 2/3 choices of 𝑟 , this circuit is a correct interpolant (and, in fact, whenever it outputs 0, it is

always correct). First, note that if we output 0 it is because a proof of 𝛼↾𝜌 was found, in which case it is correct to

say that 𝛼↾𝜌 is a tautology. Otherwise, we will always output 1. The only problematic case is when the circuit

outputs 1 while ¬𝛽↾𝜌 is satisfiable. If such was the case, then let 𝜎 be a satisfying assignment to the 𝑧-variables

such that ¬𝛽↾𝜌,𝜎 is satisfied. Since 𝑆 can prove 𝜑 in size 𝑠0 and 𝑆 is closed under restrictions, we know that 𝑆 can

prove 𝜑↾𝜌,𝜎 in size 𝑠𝑑
0

, and this proof must clearly be deriving 𝛼↾𝜌,𝜎 = 𝛼↾𝜌 . Since 𝑠𝑐𝑑
0

≥ 𝑠𝑑
0

, for a “good” choice of

𝑟 the circuit 𝐶 |𝛼 |,𝑠𝑑
0

(𝛼↾𝜌 , 𝑟 ) would have found such a proof, so the only reason why we could have output 1 is

that we chose a bad 𝑟 . But this of course only happens with probability at most 1/3. So this randomized circuit

interpolates 𝜑 , makes only one-sided error, and has size polynomial in the size of the shortest proof.
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We now replicate the strategy used in Adleman’s theorem (BPP ⊆ P/poly) to show that in fact randomness

is not needed in the circuit. One can follow here the standard argument as presented, for example, by Arora

and Barak [AB09, Thm. 7.15]: given the interpolant circuit 𝐹𝜑 , perform error reduction and then argue that

there must be a string of random bits that is “good” for all inputs of the same size. The circuit no longer makes

mistakes and computes 𝑓𝜑 as desired.

□

Remark 3.9 (Constructive feasible interpolation). Our definition of feasible interpolation deviates from the one

given in standard texts like that of Krajíček [Kra19], and follows instead the one given by Pudlák [Pud03], who

imposes the condition that the interpolant circuit must be constructed from the given proof in polynomial time.

Note that even if we adopted the non-constructive definition, the kind of feasible interpolation obtained by the

construction above achieves this property anyway.

The constructivity requirement is useful to obtain a sort of converse of Impagliazzo’s observation: if a

propositional proof system has uniform polynomial-size proofs of its reflection principle, then it is weakly

automatable (see [Pud03, Prop. 3.6]).

Since randomness does not buy us anything when it comes to proof search, all hardness results immediately

transfer to the randomized setting. In particular, for every proof system 𝑆 simulating TC0
-Frege, 𝑆 is not weakly

random automatable unless Blum integers can be factored by polynomial-size randomized circuits. For weak proof

systems where automatability is known to be NP-hard, the systems cannot be automatable unless NP ⊆ BPP.

When moving to the quantum setting, unfortunately, we do not know of any way to get a deterministic

circuit for the interpolant. Instead, we have the following natural version of Impagliazzo’s observation.

Proposition 3.10. If a proof system is quantum automatable and closed under restrictions, then it admits feasible
interpolation by quantum circuits.

Proof. The proof follows the argument in Proposition 3.8, except we can no longer apply the final step to

get rid of quantumness. The interpolant now is a quantum circuit, since it is simulating the quantum circuit

𝐶 |𝛼 |,𝑠𝑑
0

(𝛼↾𝜌 ). □

4 TC0
-Frege is hard to quantum automate

The quantum version of Impagliazzo’s observation (Proposition 3.10) is the main tool needed for our hardness

results, which we are now ready to state formally.

Theorem 4.1 (Main theorem). If there exists a polynomial-time quantum algorithm that weakly automates TC0-
Frege, then the LWE assumption (Assumption 2.5) is broken by a uniform family of polynomial-size quantum circuits.
Furthermore, if the weak automating algorithm is classical, the LWE assumption is broken by a uniform family of
polynomial-size Boolean circuits.

We can then extend the result to AC0
-Frege under a stronger assumption. This is done by applying the fact

that TC0
-Frege proofs can be translated into AC0

-Frege proofs of subexponential size (see, for example, Theorems

2.5.6 and 18.7.3 in [Kra19] or the original work on the non-automatability of AC0
-Frege [BDG+04]).

Corollary 4.2. If there exists a polynomial-time (quantum) algorithm that weakly automates AC0-Frege, then the
LWE assumption is broken by a uniform family of (quantum) circuits of size 2

𝑛𝑜 (1) .

We devote the rest of the paper to formally proving Theorem 4.1.

Suppose ℎ : {0, 1}𝑛 → {0, 1}𝑛 is an injective and secure one-way function. Let 𝑥 , 𝑦 and 𝑧 denote variables

ranging over {0, 1}𝑛 and assume that TC0
-Frege is able to state and refute efficiently the following unsatisfiable

formula,

(ℎ(𝑥) = 𝑧 ∧ 𝑥1 = 0) ∧ (ℎ(𝑦) = 𝑧 ∧ 𝑦1 = 1) ,

where 𝑥1, 𝑦1 are respectively the first bit of 𝑥 and 𝑦. The unsatisfiability follows precisely from the fact that ℎ is

injective, and hence every output has a unique preimage.
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If TC0
-Frege admits feasible interpolation, we are guaranteed the existence of a small circuit 𝐶 (𝑧) such that

𝐶 (𝑧) =
{

0 if ℎ(𝑥) = 𝑧 ∧ 𝑥1 = 0 is unsatisfiable

1 if ℎ(𝑦) = 𝑧 ∧ 𝑦1 = 1 is unsatisfiable

meaning that𝐶 is able to invert one bit of 𝑧. Since every output has a unique preimage, we can iterate the process

to get the entire input string. This contradicts the assumption that ℎ is one-way.

In order to instantiate the proof strategy to rule out quantum feasible interpolation, we now need a candidate

one-way function that is injective and conjectured to be post-quantum secure and for which injectivity can

be proven inside the proof system. Unfortunately, to the best of our knowledge, no such candidate function

is currently known, or not with enough security guarantees
3
. Alternatively, we may use other cryptographic

objects that do achieve some form of injectivity, such as bit commitments, but the formalization of the latter does

not seem simpler than the approach we follow instead. We now explain how we avoid this issue.

The most reliable post-quantum cryptographic assumptions have their security based on worst-case reductions

to lattice problems conjectured to be hard. This is the case of the Learning with Errors framework [Reg09], on

which we base the security of the following class of candidate one-way functions. For these functions, as well as

the basic properties of them that we employ, we follow the treatment of Micciancio [Mic11]. We include the

details for the proof complexity readers, who may not be familiar with these constructions.

Definition 4.3 (The candidate functions 𝑓𝐴). Let 𝑚 = 𝑛𝑂 (1)
, 𝑞 ≤ 2

𝑛𝑂 (1)
, and 𝑐 = 𝛼𝑞/

√
𝑛, where 𝛼 ∈ [0, 1]. For

every matrix 𝐴 ∈ Z𝑚×𝑛
𝑞 , we define the function 𝑓𝐴 : Z𝑛𝑞 × {𝜀 ∈ Z𝑚𝑞 : |𝜀 | ≤ 10𝑐

√
𝑚𝑛} → Z𝑚𝑞 as

𝑓𝐴 (𝑠, 𝜀) B (𝐴𝑠 + 𝜀) mod 𝑞 .

At this point, we would like to show inside TC0
-Frege that the conjunction

(𝑓𝐴 (𝑥) = 𝑧 ∧ 𝑥1 = 0) ∧ (𝑓𝐴 (𝑦) = 𝑧 ∧ 𝑦1 = 1) (1)

is a contradiction, where 𝐴 is represented by free variables and 𝑥1 and 𝑦1 refer to the first bits of 𝑥 and 𝑦.

Unfortunately, the problem concerning injectivity mentioned above remains. The formula is not necessarily a

contradiction, since for some choices of 𝐴, the function 𝑓𝐴 is not injective. We can show, however, that with high

probability over the choice of 𝐴, the function 𝑓𝐴 will satisfy two conditions that imply injectivity. Namely, 𝐴 will

be full rank and the shortest vector in the 𝑞-ary lattice spanned by 𝐴 will be large enough.

The following proposition, which captures this idea, is standard. We reprove it here for the sake of complete-

ness, since we shall formalize part of it inside the proof systems later.

Proposition 4.4. Let 𝑛 ∈ N,𝑚 = 𝑛 log𝑛 and 𝑞 ≥ 𝑛5. With high probability over the choice of 𝐴 ∈ Z𝑚×𝑛
𝑞 ,

rank(𝐴) = 𝑛 and 𝜆1 (L𝑞 (𝐴)) > 20𝑐
√
𝑛𝑚. Furthermore, when these hold, the function 𝑓𝐴 is injective.

Proof. From Lemma 2.4.i we get that Pr𝐴∼U(Z𝑚×𝑛
𝑞 ) [rank(𝐴) < 𝑛] ≤ 𝑛/𝑞𝑚−𝑛+1

. By Lemma 2.4.ii we can see that

Pr

𝐴∼U(Z𝑚×𝑛
𝑞 )

[𝜆1 (L(𝐴)) ≤ 20𝑐
√
𝑚𝑛 | rank(𝐴) = 𝑛] ≤ (40𝑐

√
𝑚𝑛 + 1)𝑚

𝑞𝑚−2𝑛−1
.

The probability that a random 𝐴 does not satisfy the conditions in the statement is at most the sum of the two

probabilities above, which are both negligible for our choice of𝑚 and 𝑞.

For injectivity, suppose for contradiction that there exist 𝑥, 𝑥 ′, 𝜀, 𝜀′, with either 𝑥 ≠ 𝑥 ′ or 𝜀 ≠ 𝜀′, causing a

collision 𝑓𝐴 (𝑥, 𝜀) = 𝐴𝑥 + 𝜀 = 𝐴𝑥 ′ + 𝜀′ = 𝑓𝐴 (𝑥 ′, 𝜀′). We have two cases.

(a) If 𝜀 = 𝜀′, then the collision happens if and only if rank(𝐴) < 𝑛, which contradicts the assumption.

(b) Suppose that 𝜀 ≠ 𝜀′. We have that 𝜀 − 𝜀′ = 𝐴(𝑥 ′ − 𝑥). Since the norm of 𝜀 − 𝜀′ is at most 20𝑐
√
𝑛𝑚, by

transitivity we have that the length of 𝐴(𝑥 ′ − 𝑥) is bounded by the same quantity. However, the latter

belongs to the lattice and therefore we obtain a contradiction. □

3
In a previous version of this work we formalized the injectivity of several group-based post-quantum cryptographic assumptions, such

as MOBS [RS21], as well as variants of supersingular isogeny-based Diffie-Hellman protocols, which unfortunately all happen to be now

broken more or less efficiently.
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Luckily for us, these two conditions are succinctly certifiable! Indeed, to certify that the matrix 𝐴 is full

rank we may provide a left-inverse 𝐴−1

𝐿
such that 𝐴−1

𝐿
𝐴 = 𝐼𝑛 . Unfortunately, we cannot guarantee that all

injective 𝑓𝐴 have simple certificates of the second property, 𝜆1 (L𝑞 (𝐴)) > 20𝑐
√
𝑛𝑚. Nevertheless, we show in

Section 4.2 that almost all of them do. These certificates take the form of sets𝑊 = {𝑤1, . . . ,𝑤𝑚} ⊆ Δ∗
𝑞 (𝐴) of short

linearly independent vectors in the dual of the 𝑞-ary lattice. We prove—using the left inequality of Banaszczyk’s

Transference Theorem—that such a set suffices to certify the second property, and then show—using the right

side of Banaszczyk’s Transference Theorem— that the certificate𝑊 exists with high probability.

Definition 4.5 (Certificate of injectivity). A certificate of injectivity for the function 𝑓𝐴, with 𝐴 ∈ Z𝑚×𝑛
𝑞 , is a pair

(𝐴−1

𝐿
,𝑊 ) such that 𝐴−1

𝐿
is a left-inverse so that 𝐴−1

𝐿
𝐴 = 𝐼𝑛 , and𝑊 = {𝑤1, . . . ,𝑤𝑚} ⊆ Δ∗

𝑞 (𝐴) is a set of𝑚 linearly

independent vectors such that max𝑖∈[𝑚] | |𝑤𝑖 | | < 1/20𝑐
√
𝑛𝑚.

The relation between injectivity and these certificates is made formal as follows.

Proposition 4.6. Let 𝑛 ∈ N,𝑚 = 𝑛 log𝑛, 𝑞 = 𝑛5, and 𝐴 ∈ Z𝑚×𝑛
𝑞 . The following hold:

(i) if there is a certificate of injectivity (𝐴−1

𝐿
,𝑊 ) for 𝑓𝐴, then 𝑓𝐴 is injective;

(ii) if rank(𝐴) = 𝑛 and 𝜆1 (L𝑞 (𝐴)) > 20𝑚𝑐
√
𝑛𝑚, then there exists a certificate of injectivity for 𝑓𝐴;

(iii) with high probability over the choice of 𝐴, rank(𝐴) = 𝑛 and 𝜆1 (L𝑞 (𝐴)) > 20𝑚𝑐
√
𝑛𝑚.

Observe that given a certificate (𝐴−1

𝐿
,𝑊 ), verifying its correctness is a rather simple task: it is sufficient check

that 𝐴−1

𝐿
𝐴 = 𝐼𝑛 , to verify that𝑊 is a set of linearly independent vectors in Δ∗

𝑞 (𝐴), and finally to ensure that the

vectors in𝑊 are small enough.

Let us return to the propositional system. We denote by Inj(𝑓𝐴) the propositional formula encoding that

𝑓𝐴 is injective. From this formula, TC0
-Frege can derive that (1) is a contradiction. However, Inj(𝑓𝐴) is false if

we leave 𝐴 as free variables. We instead prove Inj(𝑓𝐴0
) for concrete injective 𝑓𝐴0

, where 𝐴0 is hardwired. The

concrete 𝑓𝐴0
for which we do it are the ones that admit a certificate of injectivity.

Essentially, we formalize inside TC0
-Frege that a certificate of injectivity implies injectivity. That is,

TC0
-Frege ⊢ Cert(𝐶𝐴) → Inj(𝑓𝐴) , (2)

where Cert(𝐶𝐴) encodes that𝐶𝐴 is a correct certificate for 𝑓𝐴. Here𝐶𝐴 and 𝐴 are free variables. This implication

is precisely Proposition 4.6.i above. The proof inside the system is carried out in Section 4.3.

Now, given a concrete certificate 𝐶𝐴0
for 𝑓𝐴0

, the formula Cert(𝐶𝐴0
) is derivable inside TC0

-Frege, which

amounts to the system verifying the certificate’s correctness. From this, TC0
-Frege proves Inj(𝑓𝐴0

).
The rest of this section completes the missing parts in the proof. Section 4.1 sketches the known fact that 𝑓𝐴

is worst-case one-way based on the hardness of Learning with Errors, while Section 4.2 proves Proposition 4.6

showing the existence of certificates. We remark that the arguments and techniques are standard in cryptography

and readers familiar with the area might want to skip them. We include them for the sake of completeness and to

cater to the proof complexity reader that may have never come across these ideas before, and we refer to standard

texts like [Mic11] for further details. Finally, Section 4.3 formalizes the certificate-to-injectivity implication

above inside the theory LAQ, which propositionally translates into TC0
-Frege. Section 4.4 reconstructs the final

argument.

4.1 Security of 𝑓𝐴

The functions in {𝑓𝐴}𝐴∈Z𝑚×𝑛
𝑞

very closely resemble the standard Learning with Errors functions, the only difference

being that we have set a maximum value on the magnitude of the error vectors and allowed these to be chosen

as a uniform part of the input (instead of being sampled from a Gaussian distribution). We now observe that

inverting these functions allows us to invert LWE with high probability over the choice of the error vector.

Lemma 4.7 ([Mic11, Section 3.2]). Suppose there exists an algorithm 𝐵 taking as input 𝐴 ∈ Z𝑚×𝑛
𝑞 and a string 𝑧

and outputting a preimage in 𝑓 −1

𝐴
(𝑧) with probability 𝑝 . Then, LWE can be broken with probability 0.99𝑝 over the

choice of the error vector 𝜀 and the internal randomness of 𝐵.

Proof. It suffices to show that with high probability the error vectors in the standard Learning with Errors

functions are bounded as in our definition of 𝑓𝐴, and thus the same inverter for 𝑓𝐴 will also work for most of the
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original LWE instances. This follows from a standard Gaussian tail bound. Thus, if we are able to invert 𝑓𝐴 on

all outputs with probability 𝑝 , then we are able to invert its corresponding LWE function with probability, say,

0.99𝑝 over the choice of 𝜀. □

Note that it is in fact possible to invert with all but negligible probability, since finding a vector whose norm

is far above the expectation with high probability requires that several independently sampled coordinates all

return values much larger than the expected one. For simplicity, we use this weaker result which suffices for our

applications.

4.2 Existence of certificates of injectivity: Proof of Proposition 4.6

This section proves the three statements of Proposition 4.6.

Proposition 4.6.i (Correctness of certificates). If there is a certificate of injectivity (𝐴−1

𝐿
,𝑊 ) for 𝑓𝐴, then rank(𝐴) =

𝑛 and 𝜆1 (L𝑞 (𝐴)) > 20𝑐
√
𝑛𝑚, and thus the function 𝑓𝐴 is injective.

Proof. As discussed in the proof of Proposition 4.4, 𝑓𝐴 is injective if and only if both rank(𝐴) = 𝑛 and 𝜆1 (L𝑞 (𝐴)) >
20𝑐

√
𝑚𝑛. By elementary linear algebra, rank(𝐴) = 𝑛 if and only if there exists a 𝐴−1

𝐿
. As previously observed

we know that 𝜆1 (Δ𝑞 (𝐴)) = min(𝑞, 𝜆1 (L(𝐴))) and since 20𝑐
√
𝑚𝑛 ≤ 𝑞/𝑚, therefore it suffices to show that the

existence of𝑊 as described above implies that 𝜆1 (Δ𝑞 (𝐴)) > 20𝑐
√
𝑚𝑛.

Because it is a 𝑞-ary lattice we known that rank(Δ𝑞 (𝐴)) = 𝑚. By rearranging the left inequality of the

Transference Theorem for rank-𝑚 lattices, we get that 𝜆1 (Δ𝑞 (𝐴)) ≥ 1/𝜆𝑚 (Δ∗
𝑞 (𝐴)). By the definition of𝑊 , we

conclude that 𝜆𝑚 (L∗) < 1/20𝑐
√
𝑛𝑚, which implies that 𝜆1 (L𝑞 (𝐴)) = 𝜆1 (Δ𝑞 (𝐴)) > 20𝑐

√
𝑛𝑚.

Injectivity of 𝑓𝐴 now immediately follows from the argument in Proposition 4.4. □

Proposition 4.6.ii (Conditional existence of certificates). If rank(𝐴) = 𝑛 and 𝜆1 (L𝑞 (𝐴)) > 20𝑚𝑐
√
𝑛𝑚, then there

exists a certificate of injectivity for 𝑓𝐴.

Proof. Since we assumed that rank(𝐴) = 𝑛, there exists a left inverse 𝐴−1

𝐿
for 𝐴. It therefore suffices to show that

if rank(𝐴) = 𝑛 and 𝜆1 (L𝑞 (𝐴)) > 20𝑚𝑐
√
𝑛𝑚, then there exists a set of vectors𝑊 satisfying the conditions above.

By the right inequality of the Transference Theorem for rank-𝑚 lattices, we can obtain that 𝜆𝑚 (Δ∗
𝑞 (𝐴)) ≤

𝑚/𝜆1 (Δ𝑞 (𝐴)). Since 𝜆1 (L𝑞 (𝐴)) > 20𝑚𝑐
√
𝑛𝑚 ≤ 𝑞, and 𝜆1 (Δ𝑞 (𝐴)) = min(𝑞, 𝜆1 (L𝑞 (𝐴))) = 𝜆1 (L𝑞 (𝐴)) there must

exist a set of𝑚 linearly independent vectors in Δ∗
𝑞 (𝐴), such that max𝑖∈[𝑚] | |𝑤𝑖 | | < 1/20𝑐

√
𝑛𝑚. □

Proposition 4.6.iii (Existence of certificates with high probability). Let 𝑛 ∈ N,𝑚 = 𝑛 log𝑛, 𝑞 ≥ 𝑛5, 𝑐 ≤
√
𝑛𝑚/40

and 𝐴 ∈ Z𝑚×𝑛
𝑞 be sampled uniformly at random. The probability that rank(𝐴) = 𝑛 and 𝜆1 (L𝑞 (𝐴)) > 20𝑐𝑚

√
𝑛𝑚 is

at least
1 − 𝑛

𝑞𝑚−𝑛+1
−𝑚3𝑚−(𝑚−2𝑛−1) log𝑚 𝑞 .

This probability is at least exponentially close to 1 for our choice of 𝑞 and𝑚.

Proof. For the following equations we define Eshort to be the event that 𝜆1 (L𝑞 (𝐴)) ≤ 20𝑐𝑚
√
𝑛𝑚. We have that

Pr

𝐴
[rank(𝐴) ≠ 𝑛 ∨ Eshort] = Pr

𝐴
[rank(𝐴) ≠ 𝑛] + Pr

𝐴
[Eshort ∧ rank(𝐴) = 𝑛]

≤ Pr

𝐴
[rank(𝐴) ≠ 𝑛] + Pr

𝐴
[Eshort | rank(𝐴) = 𝑛] .

By Lemma 2.4.i, we know that Pr𝐴 [rank(𝐴) ≠ 𝑛] ≤ 𝑛/𝑞𝑚−𝑛+1
, and by the second point of Lemma 2.4.ii, we

have that

Pr[Eshort | rank(𝐴) = 𝑛] ≤ (40𝑚𝑐
√
𝑚𝑛)𝑚

𝑞𝑚−2𝑛−1
≤ (𝑚2𝑛)𝑚

𝑞𝑚−2𝑛−1
≤ 𝑚3𝑚

𝑚 (𝑚−2𝑛−1) log𝑚 𝑞
=𝑚3𝑚−(𝑚−2𝑛−1) log𝑚 𝑞 .

□
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4.3 Formalization

At this point, the only thing left is the formalization of the implication Cert(𝐶𝐴) → Inj(𝑓𝐴) inside the proposi-

tional system. Since this is rather cumbersome, we work instead in the more convenient theory LA of linear

algebra of Soltys and Cook [SC04]. The theory, however, is field-independent, which means we cannot state

or prove properties about the ordering of the rationals, which is needed in our arguments. Furthermore, we

sometimes use the fact that certain matrices are over the integers, so we must be able to identify certain elements

as integers. To solve this, we introduce a conservative extension of the theory, called LAQ, which assumes the

underlying field to be Q.

4.3.1 The conservative extension LAQ

On top of the existing symbols of the language of LA, we have two new predicate symbols int and <Q. The int
predicate, applied to a field element 𝑞, written int(𝑞), is supposed to be true whenever the rational 𝑞 is an integer.

The symbol <Q, which we overload onto < in what follows, is intended to represent the usual ordering

relation over the rationals. For convenience, we also add the symbol 𝑥 ≤ 𝑦 together with an axiom imposing that

its meaning is 𝑥 < 𝑦 ∨ 𝑥 = 𝑦. Recall that equality of field elements was a symbol in the base theory LA, which

already equipped it with its corresponding axioms.

We now extend the axiom-set of LA with axioms for the new symbols. Recall that the original axioms of LA
are listed in Appendix A.1.

Axioms for int

(Int1) int(0)
(Int2) int(1)
(Int3) int(−1)
(Int4) int(𝑥) ∧ int(𝑦) → int(𝑥 + 𝑦)
(Int5) int(𝑥) ∧ int(𝑦) → int(𝑥 · 𝑦)
(Int6) int(𝑥) ∧ 0 < 𝑥 → 1 ≤ 𝑥

Axioms for <Q

(Ord1) 𝑥 ≤ 𝑦 ↔ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦)

(Ord2) ¬(𝑥 < 𝑥)
(Ord3) 𝑥 < 𝑦 → ¬(𝑥 = 𝑦)
(Ord4) 𝑥 < 𝑦 ∧ 𝑦 < 𝑧 → 𝑥 < 𝑧

(Ord5) ¬(𝑥 = 𝑦) → 𝑥 < 𝑦 ∨ 𝑦 < 𝑥

(Ord6) 𝑥 ≤ 𝑦 ∧ 𝑧 ≤ 𝑤 → 𝑥 + 𝑧 ≤ 𝑦 +𝑤
(Ord7) 0 ≤ 𝑥 ∧ 0 ≤ 𝑦 → 0 ≤ 𝑥 · 𝑦
(Ord8) 0 ≤ 𝑥 · 𝑥
(Ord9) 0 ≤ 𝑥 ∧ 𝑦 < 0 → 𝑥 · 𝑦 ≤ 0

(Ord10) 𝑎, 𝑏, 𝑐, 𝑑 ≥ 0 ∧ 𝑎 < 𝑏 ∧ 𝑐 < 𝑑 → 𝑎𝑐 < 𝑏𝑑

The axioms for the ordering symbols are essentially the axioms of a strict total order (Ord2-Ord5), together

with an axiom connecting ≤ and < (Ord1). We then ensure the compatibility of the operations with the ordering

relation, (Ord6-Ord10). Our axioms are not necessarily minimal, since we are interested in convenience rather

than succinctness.

The axioms for int are more ad hoc and it might seem that they are not enough to fix the correct interpretation

of the symbol. Indeed, the axioms for int only really force that addition and multiplication are closed under this

predicate and that every integer in the standard model can be argued to be an integer in LAQ, but they do not

identify Z as a substructure of Q. The reason this is not an issue is that we are only interested in LAQ for its

propositional translation. For our purposes, these axioms are the only ones we need to prove the required claims

about lattices, and once we translate to the propositional setting, the symbols will take the standard intended

interpretation, so it does not matter that these are underspecified in the theory.

It is not hard to show that theorems of LAQ admit succinct TC0
-Frege proofs. Showing this requires extend-

ing the propositional translation of Soltys and Cook to include the new symbols and axioms. We do this in

Appendix A.2.

4.3.2 Formalization of the proofs

We are ready to present the formal proofs needed inside our theory. In what follows, LA_._ stands for the

corresponding axiom in Appendix A.1.

First, we observe that under our new axioms, LAQ can argue that the inner product of a vector with itself is

non-negative. Recall that the inner product operator ⟨𝑢, 𝑣⟩ is a defined term in LA, namely 𝑢 · 𝑣⊺ .

Lemma 4.8. Provably in LAQ, for every 𝑣 ∈ Q𝑛 , 0 ≤ ⟨𝑣, 𝑣⟩.
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Proof. Unfolding the definition of the term ⟨𝑣, 𝑣⟩ in LAQ, ⟨𝑣, 𝑣⟩ =
∑𝑛

𝑖=1
𝑣𝑖 · 𝑣𝑖 , so by axiom (Ord8) each term

in the sum satisfies 𝑣𝑖 · 𝑣𝑖 ≥ 0, and by repeatedly applying axiom (Ord6), the entire sum can be proven to be

non-negative. □

We now formalize inside LAQ the classical Cauchy-Schwartz inequality.

Lemma 4.9 (Cauchy-Schwartz in LAQ). The theory LAQ proves that for every 𝑢, 𝑣 ∈ Q𝑛 , ⟨𝑢, 𝑣⟩2 ≤ ⟨𝑢,𝑢⟩ · ⟨𝑣, 𝑣⟩.

Proof. We first show that LAQ can derive the following equality,

1

⟨𝑣, 𝑣⟩ ⟨(⟨𝑣, 𝑣⟩𝑢 − ⟨𝑢, 𝑣⟩𝑣), (⟨𝑣, 𝑣⟩𝑢 − ⟨𝑢, 𝑣⟩𝑣)⟩ = ⟨𝑢,𝑢⟩⟨𝑣, 𝑣⟩ − ⟨𝑢, 𝑣⟩2 , (3)

where
1

⟨𝑣,𝑣⟩ can be explicitly referred to in LAQ as ⟨𝑣, 𝑣⟩−1
.

We do this explicitly by deriving the following chain of equalities,

1

⟨𝑣, 𝑣⟩ ⟨(⟨𝑣, 𝑣⟩𝑢 − ⟨𝑢, 𝑣⟩𝑣), (⟨𝑣, 𝑣⟩𝑢 − ⟨𝑢, 𝑣⟩𝑣)⟩ = (LA7.b)

1

⟨𝑣, 𝑣⟩ (⟨(⟨𝑣, 𝑣⟩𝑢 − ⟨𝑢, 𝑣⟩𝑣), (⟨𝑣, 𝑣⟩𝑢)⟩ + ⟨(⟨𝑣, 𝑣⟩𝑢 − ⟨𝑢, 𝑣⟩𝑣), (−⟨𝑢, 𝑣⟩𝑣)⟩) = (LA7.b + LA7.c + LA7.a)

1

⟨𝑣, 𝑣⟩ (⟨𝑣, 𝑣⟩
2⟨𝑢,𝑢⟩ − ⟨𝑣, 𝑣⟩⟨𝑣,𝑢⟩2) = (LA7.c)

(⟨𝑣, 𝑣⟩⟨𝑢,𝑢⟩ − (⟨𝑣,𝑢⟩2) .

Observe now that from Lemma 4.8 above, we know that ⟨(⟨𝑣, 𝑣⟩𝑢− ⟨𝑢, 𝑣⟩𝑣), (⟨𝑣, 𝑣⟩𝑢− ⟨𝑢, 𝑣⟩𝑣)⟩ is non-negative,

and it is also clear that 0 ≤ 1

⟨𝑣,𝑣⟩ : we know again that ⟨𝑣, 𝑣⟩ ≥ 0, and ⟨𝑣, 𝑣⟩⟨𝑣, 𝑣⟩−1
is either 0 or 1, by LA3.d; if it is

0, we are done, and if it is 1, then by axiom (Ord9) we can get a contradiction.

Thus, the left-hand side of Equation (3) is positive and LAQ can derive this fact. Then, by the transitivity

axiom (Ord4), the right-hand side of Equation (3) is non-negative as well. Rearranging the inequality using

(Ord6), the inequality follows. □

The other technical component needed in the final proof is a weakening of the lower bound in Banaszczyk’s

Transference Theorem (see Theorem 2.3). Informally, we need to prove that for every 𝐴 ∈ Q𝑚×𝑛
, every non-zero

vector 𝑣 ∈ L(𝐴) and any set of linearly independent vectors𝑊 = {𝑤1, . . . ,𝑤𝑛} ⊆ L∗ (𝐴), ⟨𝑣, 𝑣⟩ · ⟨𝑤𝑖 ,𝑤𝑖⟩ ≥ 1 for

some 𝑖 ∈ [𝑛].
In order for LAQ to process the conditions of the theorem, we provide certificate-like objects ensuring all the

different hypotheses. For example, when we quantify over a vector 𝑣 belonging to a lattice L(𝐴), we provide the

vector of coefficients 𝑐𝑣 such that 𝐴𝑐𝑣 = 𝑣 . Note as well that when we quantify over matrices with elements in Z,

we are using the int predicate under the hood to enforce the entries to be integers. As a final remark, recall that

we do not have existential quantifiers in LA, but whenever we do some existential quantification in the following

lemmas we are quantifying over small finite domains, meaning we can write everything as a small disjunction.

Lemma 4.10 (Banaszczyk’s left inequality in LAQ). The theory LAQ proves the following implication. Let𝐴 ∈ Z𝑚×𝑛 ,
𝐵 ∈ Q𝑛×𝑛 , 𝑣 ∈ Q𝑛 , 𝑐𝑣 ∈ Z𝑚 ,𝑊 = [𝑤1 | . . . |𝑤𝑛] ∈ Q𝑚×𝑛 , 𝑐𝑊 = [𝑐𝑤1

| · · · | 𝑐𝑤𝑛
] ∈ Z𝑚×𝑛 ,𝑊 ′ ∈ Q𝑚×𝑛 fulfilling the

following conditions:

1. the vector 𝑣 is non-zero, 𝑣 ≠ 0𝑛 ;

2. the vector 𝑣 belongs to the lattice L(𝐴), 𝑣 = 𝐴𝑐𝑣 ;

3. the vectors in𝑊 belong to the dual lattice4 L∗ (𝐴), 𝑤𝑖 = 𝐴𝐵𝑐𝑤𝑖
for all 𝑖 ∈ [𝑛];

4. (𝐴⊺𝐴)𝐵 = 𝐼𝑛 ;

5. the vectors in𝑊 are linearly independent,𝑊 ′𝑊 ⊺ = 𝐼𝑛 .

Then, for some 𝑖 ∈ [𝑛], ⟨𝑣, 𝑣⟩ · ⟨𝑤𝑖 ,𝑤𝑖⟩ ≥ 1.
4
This dual lattice, in fact, admits a closed form for its base, as in Lemma 2.1. In particular, 𝐵 can be seen as (𝐴⊺𝐴)−1

.

15



Proof. The proof has two steps. First, we show that for all 𝑖 ∈ [𝑛], ⟨𝑣,𝑤𝑖⟩ ∈ Z. To do this we use the following

chain of equalities, where 𝑤 is some arbitrary column 𝑤𝑖 of𝑊 , and where the comments on the side refer to

either axioms of LAQ or the assumptions in the statement of the lemma:

⟨𝑣,𝑤⟩ = ⟨𝐴𝑐𝑣, 𝐴𝐵𝑐𝑤⟩ (by ass. 2 and 3)

= 𝑐
⊺
𝑣 𝐴
⊺𝐴𝐵𝑐𝑤 (by def. of dot product)

= 𝑐
⊺
𝑣 (𝐴⊺𝐴)𝐵𝑐𝑤 (by associativity, LA5.i)

= 𝑐
⊺
𝑣 𝑐𝑤 . (by ass. 4)

By assumption, the entries in both 𝑐𝑣 and 𝑐𝑤 have integer entries, so by the closure under integer multiplication

and addition (Int4 and Int5) we have that 𝑐
⊺
𝑣 𝑐𝑤 is an integer, and thus we deduce that for all 𝑖 ∈ [𝑛], ⟨𝑣,𝑤𝑖⟩ ∈ Z.

In the second step of the proof, we show that there is 𝑖 ∈ [𝑛] such that ⟨𝑣,𝑤𝑖⟩ ≠ 0. We consider the vector

𝑠 B𝑊 ⊺𝑣 . Note that by definition, the 𝑗-th entry of 𝑠 is ⟨𝑤 𝑗 , 𝑣⟩. We can multiply both sides by the same matrix

𝑊 ′
, leading to𝑊 ′𝑠 =𝑊 ′𝑊 ⊺𝑣 . Using associativity (LA5.i), assumption (5) and properties of the identity matrix

(LA5.f), we get that𝑊 ′𝑠 = 𝑣 . Suppose that for all 𝑖 ∈ [𝑛], ⟨𝑣,𝑤𝑖⟩ = 0. Then, by definition, 𝑠 = 0𝑛 . We can easily

derive (using LA3.a, LA3.c and LA3.i) that𝑊 ′𝑠 = 0 and therefore 𝑣 = 0. This contradicts assumption (1).

Finally, let 𝑖 denote the particular index for which we have now derived that simultaneously ⟨𝑣,𝑤𝑖⟩ ∈ Z
and ⟨𝑣,𝑤𝑖⟩ ≠ 0. By axiom (Ord8), ⟨𝑣,𝑤𝑖⟩2 ≥ 0. Furthermore, it is easy to derive already in LA that for any field

elements 𝑎 and 𝑏, if 𝑎 ≠ 0 and 𝑏 ≠ 0, then 𝑎𝑏 ≠ 0 (this follows immediately from axioms LA3.a-d). Thus, by axiom

(Ord1), ⟨𝑣,𝑤𝑖⟩2 > 0. Recall now that by axiom (Int6) of LAQ, every non-zero positive integer is greater or equal

than 1, so ⟨𝑣,𝑤𝑖⟩2 ≥ 1. Then, the Cauchy-Schwartz inequality from Lemma 4.9 gives us

1 ≤ ⟨𝑣,𝑤𝑖⟩2 ≤ ⟨𝑣, 𝑣⟩ · ⟨𝑤𝑖 ,𝑤𝑖⟩,
which together with transitivity (axiom Ord4 together with Ord1) yields the desired 1 ≤ ⟨𝑣, 𝑣⟩ · ⟨𝑤𝑖 ,𝑤𝑖⟩. □

We are now ready to prove in LAQ that a correct certificate of injectivity implies the injectivity of 𝑓𝐴.

Informally, we aim to prove that given a certificate of injectivity as in Definition 4.5, the function 𝑓𝐴 is injective.

As before, we need to provide some additional objects together with the certificate to make sure LAQ can reason

about this conditional implication and carry out the verification of the certificate.

Lemma 4.11 (Certificate-implies-injectivity in LAQ). Let 𝐴 ∈ Z𝑚×𝑛 , 𝐵 ∈ Q𝑛×𝑛 , 𝑣1 ∈ Q𝑛 , 𝑐𝑣1
∈ Z𝑚 , 𝑣2 ∈ Q𝑛 ,

𝑐𝑣2
∈ Z𝑚 , 𝜀1 ∈ Q𝑛 , 𝜀2 ∈ Q𝑛 ,𝑊 = [𝑤1 | . . . |𝑤𝑛] ∈ Q𝑚×𝑛 , 𝑐𝑊 = [𝑐𝑤1

| · · · | 𝑐𝑤𝑛
] ∈ Z𝑚×𝑛 ,𝑊 ′ ∈ Q𝑚×𝑛 fulfilling the

following conditions:

1. the vector 𝑣1 belongs to the lattice L(𝐴), 𝑣1 = 𝐴𝑐𝑣1
;

2. the vector 𝑣2 belongs to the lattice L(𝐴), 𝑣2 = 𝐴𝑐𝑣2
;

3. the vectors 𝑣1 and 𝑣2 are distinct, 𝑣1 ≠ 𝑣2;
4. the vectors in𝑊 belong to the dual lattice L∗ (𝐴), 𝑤𝑖 = 𝐴𝐵𝑐𝑤𝑖

for all 𝑖 ∈ [𝑛];
5. (𝐴⊺𝐴)𝐵 = 𝐼𝑛 ;
6. the vectors in𝑊 are linearly independent,𝑊 ′𝑊 ⊺ = 𝐼𝑛 ;
7. ⟨𝑤𝑖 ,𝑤𝑖⟩ < 1/400𝑐2𝑛𝑚 for all 𝑖 ∈ [𝑛];
8. ⟨𝜀2 − 𝜀1, 𝜀2 − 𝜀1⟩ < 400𝑐2𝑛𝑚.

Then, 𝐴𝑣1 + 𝜀1 ≠ 𝐴𝑣2 + 𝜀2.

Proof. The proof proceeds by contradiction. Suppose that 𝐴𝑣1 + 𝜀1 = 𝐴𝑣2 + 𝜀2, meaning that a collision exists in

the range of 𝑓𝐴. By simple algebraic manipulations in LAQ, we derive that 𝐴(𝑣1 − 𝑣2) = 𝜀2 − 𝜀1. Let 𝑣 B 𝐴(𝑣1 − 𝑣2)
and 𝜀 B 𝜀2 − 𝜀1, so that we have 𝑣 = 𝜀.

Observe now that assumptions (7) and (8), together with axiom (Ord10) and (LA3.d) give us ⟨𝑤𝑖 ,𝑤𝑖⟩⟨𝜀, 𝜀⟩ < 1

for every 𝑖 ∈ [𝑛]. With the existing assumptions of the theorem we can in fact apply Lemma 4.10 to 𝑣 , getting

that there exists 𝑖 such that ⟨𝑣, 𝑣⟩⟨𝑤𝑖 ,𝑤𝑖⟩ ≥ 1. Since 𝑣 = 𝜀, we get ⟨𝜀, 𝜀⟩⟨𝑤𝑖 ,𝑤𝑖⟩ ≥ 1, but this means

1 ≤ ⟨𝜀, 𝜀⟩⟨𝑤𝑖 ,𝑤𝑖⟩ < 1.

We remark that while technically the transitivity axiom (Ord4) is stated for strict orders, the existing set of axioms

immediately implies the “mixed” version, namely that for field elements 𝑎, 𝑏 and 𝑐 , if 𝑎 ≤ 𝑏 and 𝑏 < 𝑐 , then 𝑎 < 𝑐 .

Thus we now have 1 < 1, but this contradicts axiom (Ord2). □
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4.4 Proof of Theorem 4.1

We are ready to put all the pieces together.

Proof of Theorem 4.1. Suppose that TC0
-Frege is weakly quantum automatable, that is, suppose that 𝑆 is a

quantum automatable proof system simulating TC0
-Frege. Let 𝑄 be the quantum algorithm automating 𝑆 . We

describe a quantum algorithm 𝑄 ′
that takes as input a matrix 𝐴 defining a function 𝑓𝐴 as in Definition 4.3 and an

output 𝑧 of this function and succeeds in finding a preimage of 𝑧 with high probability.

For a specific input matrix𝐴0, consider the formula Cert(𝐶𝐴) → Inj(𝑓𝐴), where𝐶 and𝐴 are free variables. In

Lemma 4.11 this implication was proven inside LAQ, and by the propositional translation for LAQ in Theorem A.2

we get an efficient proof inside TC0
-Frege, and thus also in 𝑆 . Craft now the formula Inj(𝑓𝐴0

) for the particular 𝐴0

received as input. By Proposition 4.6, for most 𝑓𝐴0
there exists a certificate of injectivity𝐶𝐴0

such that Cert(𝐶𝐴0
)

is true and, in fact, has no free variables. Consider this certificate as a partial restriction and apply it to the

implication above. Since TC0
-Frege is closed under restrictions, there must be a polynomial-size proof of Inj(𝑓𝐴0

),
and so 𝑆 also proves this efficiently. Recall that, as noted in Remark 3.9, Impagliazzo’s observation guarantees

that under the existence of an automating algorithm we get constructive feasible interpolation, so from the proof

of Inj(𝑓𝐴0
) we can get a circuit that breaks one bit of the given output. By iterating this process we can recover

the entire preimage. This procedure works as long as 𝑓𝐴0
is injective and admits a certificate of injectivity, but by

Proposition 4.6 this is the case with overwhelming probability. Then, by Lemma 4.7, we break LWE and get the

desired conclusion. □

The proof above is phrased from the starting assumption of a weak automating algorithm rather than feasible

interpolation. The reason is that, intuitively, feasible interpolation alone does not seem to immediately break the

cryptographic assumption: for every fixed matrix 𝐴, feasible interpolation only seems to guarantee the existence

(with high probability) of a circuit breaking 𝑓𝐴, but this circuit seems to essentially depend on 𝐴. By starting the

argument from an automating algorithm, we have a uniform way of finding the proofs of injectivity for each

particular 𝑓𝐴 to then construct the corresponding interpolating circuit.

While we find this more intuitive, we can still phrase the argument directly in terms of interpolation (and

hence rule out this too under the same assumption). It suffices to argue that TC0
-Frege can refute the contradictory

formulas

(𝑓𝐴 (𝑥) = 𝑧 ∧ 𝑥𝑖 = 0) ∧ ((𝑓𝐴 (𝑦) = 𝑧 ∧ 𝑦𝑖 = 1) ∧ Cert(𝐶𝐴)),

where 𝑥𝑖 and 𝑦𝑖 refer to the 𝑖-th respective bits, and Cert(𝐶𝐴) is the certificate predicate, as in Equation (2).

Observe that this is still a split formula, since the variables encoding the certificate 𝐶𝐴 appear only on the

right-hand side. That the proof system can show this is a contradiction follows immediately from the fact that

it can prove the implication in Equation (2). More importantly, the refutation of this formula is uniform and

known, with 𝐴 as free variables, meaning we can extract the interpolants directly. It is not hard to see that

interpolating on this formula we can still break the same functions that we would break with the aid of an

automating algorithm. This remark is due to Impagliazzo. Thus, the following corollary also follows from our

formalization.

Corollary 4.12. If TC0-Frege admits feasible interpolation by (quantum) circuits, then the LWE assumption can be
broken by a uniform family of polynomial-size (quantum) circuits.
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A The theories LA and LAQ
Appendix A.1 below lists the axioms of the theory LA of linear algebra of Soltys and Cook [SC04], together with

several theorems proven inside the theory in the original paper. Appendix A.2 proves that the conservative

extension LAQ admits a propositional translation into TC0
-Frege.

A.1 Axioms and basic theorems of LA

1. Equality axioms

(a) 𝑥 = 𝑥

(b) 𝑥 = 𝑦 → 𝑦 = 𝑥

(c) (𝑥 = 𝑦 ∧ 𝑦 = 𝑧) → 𝑥 = 𝑧

(d)

∧𝑛
𝑖 (𝑥𝑖 = 𝑦𝑖 ) → 𝑓 (𝑥) = 𝑓 (𝑦)

(e) 𝑖1 = 𝑗1, 𝑖2 = 𝑗2, 𝑖1 ≤ 𝑖2 → 𝑗1 ≤ 𝑗2.

2. Axioms for indices

(a) 𝑖 + 0 = 𝑖

(b) 𝑖 + ( 𝑗 + 1) = (𝑖 + 𝑗) + 1

(c) 𝑖 · ( 𝑗 + 1) = (𝑖 · 𝑗) + 𝑖
(d) 𝑖 + 1 = 𝑗 + 1 → 𝑖 = 𝑗

(e) 𝑖 + 1 ≠ 0

(f) 𝑖 ≤ 𝑖 + 𝑗

(g) 𝑖 ≤ 𝑗, 𝑗 ≤ 𝑖

(h) 𝑖 ≤ 𝑗, 𝑖 + 𝑘 = 𝑗 → ( 𝑗 − 𝑖 = 𝑘)
(i) 𝑖 ≤ 𝑗, 𝑖 + 𝑘 = 𝑗 → (𝑖 ≮ 𝑗 → 𝑗 − 𝑖 = 0)
(j) 𝑗 ≠ 0 → rem(𝑖, 𝑗) < 𝑗

(k) 𝑗 ≠ 0 → 𝑖 = 𝑗 · div(𝑖, 𝑗) + rem(𝑖, 𝑗)
(l) 𝛼 → cond(𝛼, 𝑖, 𝑗) = 𝑖

(m) ¬𝛼 → cond(𝛼, 𝑖, 𝑗) = 𝑗

3. Axioms for field elements

(a) 0 ≠ 1 ∧ 𝑎 + 0 = 𝑎

(b) 𝑎 + (−𝑎) = 0

(c) 1 · 𝑎 = 𝑎

(d) 𝑎 ≠ 0 → 𝑎 · (𝑎−1) = 1

(e) 𝑎 + 𝑏 = 𝑏 + 𝑎

(f) 𝑎 · 𝑏 = 𝑏 · 𝑎
(g) 𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐
(h) 𝑎 · (𝑏 · 𝑐) = (𝑎 · 𝑏) · 𝑐
(i) 𝑎 · (𝑏 + 𝑐) = 𝑎 · 𝑏 + 𝑎 · 𝑐
(j) 𝛼 → cond(𝛼, 𝑎, 𝑏) = 𝑎

(k) ¬𝛼 → cond(𝛼, 𝑎, 𝑏) = 𝑏

4. Axioms for matrices

(a) (𝑖 = 0 ∨ r(𝐴) < 𝑖 ∨ 𝑗 = 0 ∨ c(𝐴) < 𝑗) →
e(𝐴, 𝑖, 𝑗) = 0

(b) r(𝐴) = 1, c(𝐴) = 1 → Σ(𝐴) = e(𝐴, 1, 1)
(c) c(𝐴) = 1 → 𝜎 (𝐴) = 𝜎 (𝐴⊺)
(d) r(𝐴) = 0 ∨ c(𝐴) = 0 → Σ(𝐴) = 0

5. Theorems for ring properties

(a) max(𝑖, 𝑗) = max( 𝑗, 𝑖)
(b) max(𝑖,max( 𝑗, 𝑘)) = max(max(𝑖, 𝑗), 𝑘)
(c) max(𝑖,max( 𝑗, 𝑘)) = max(max(𝑖, 𝑗),max(𝑖, 𝑘))
(d) 𝐴 + 0 = 𝐴

(e) 𝐴 + (−1)𝐴 = 0

(f) 𝐴𝐼 = 𝐴 and 𝐼𝐴 = 𝐴

(g) 𝐴 + 𝐵 = 𝐵 +𝐴

(h) 𝐴 + (𝐵 +𝐶) = (𝐴 + 𝐵) +𝐶
(i) 𝐴(𝐵𝐶) = (𝐴𝐵)𝐶
(j) 𝐴(𝐵 +𝐶) = 𝐴𝐵 +𝐶𝐴
(k) (𝐵 +𝐶)𝐴 = 𝐵𝐴 +𝐶𝐴
(l) Σ0 = 0field

(m) Σ(𝑐𝐴) = 𝑐Σ(𝐴)
(n) Σ(𝐴 + 𝐵) = Σ(𝐴) + Σ(𝐵)
(o) Σ(𝐴) = Σ(𝐴⊺)

6. Theorems for module properties

(a) (𝑎 + 𝑏)𝐴 = 𝑎𝐴 + 𝑏𝐴
(b) 𝑎(𝐴 + 𝐵) = 𝑎𝐴 + 𝑎𝐵

(c) (𝑎𝑏)𝐴 = 𝑎(𝑏𝐴)

7. Theorems for inner product

(a) 𝐴 · 𝐵 = 𝐵 · 𝐴
(b) 𝐴 · (𝐵 +𝐶) = 𝐴 · 𝐵 +𝐴 ·𝐶
(c) 𝑎𝐴 · 𝐵 = 𝑎(𝐴 · 𝐵)

8. Miscellaneous theorems

(a) 𝑎(𝐴𝐵) = (𝑎𝐴)𝐵 ∧ (𝑎𝐴)𝐵 = 𝐴(𝑎𝐵)
(b) (𝐴𝐵)⊺ = 𝐵⊺𝐴⊺

(c) 𝐼⊺ = 𝐼

(d) 0
⊺ = 0

(e) (𝐴⊺)⊺ = 𝐴
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A.2 The propositional translation for LAQ
We show that theorems of LAQ still have short propositional proofs in TC0

-Frege despite the presence of new

symbols and axioms not present in LA.

The first step in the propositional translation is the conversion of LA formulas into propositional ones. The

translation is analogous to the usual propositional translations used elsewhere in bounded arithmetic (see, for

example, [CN10; Kra95]). Let 𝜑 be a formula of LAQ and let 𝜎 be an object assignment that assigns a natural

number to each free index variable occurring in 𝜑 and to each term of the form r(𝐴) and c(𝐴) occurring in 𝜑 . We

denote by 𝑁 the maximum value in the range of 𝜎 . For every variable 𝑞 standing for a rational number in 𝜑 , we

introduce enough Boolean variables to represent 𝑞 as a fraction 𝑎/𝑏, where 𝑎 and 𝑏 are integers represented in

binary. We may assume that 𝑁 is also an upper bound on the binary precision of these integers. We adopt the

convention that denominators are always positive. Note that the number of Boolean variables introduced is at

most polynomial in 𝑁 .

The translation of 𝜑 then proceeds by substituting every function and predicate symbol by the corresponding

TC0
circuit of the appropriate size, which is also at most poly(𝑁 ). It is easy to verify that all the functions and

predicate symbols in LA are computable in TC0
, and this is also the case for the extended vocabulary (<Q and

int). For <Q, given 𝑎/𝑏 and 𝑐/𝑑 , we check whether 𝑎𝑐 < 𝑏𝑑 , which only requires operations over the integers.

For int we shall use the circuit computing whether the rational 𝑞 = 𝑎/𝑏 satisfies that MOD(𝑎, 𝑏) = 0. This only

requires the standard remainder function, computable in TC0
, plus an equality check. We denote by | |𝜑 | |𝜎 the

propositional formula obtained by carrying out this translation process. The size of | |𝜑 | |𝜎 is again polynomial in

𝑁 .

Now, given an LA proof 𝜋 of a sentence 𝜑 and an object assignment 𝜎 , we translate 𝜋 into a TC0
-Frege proof

of | |𝜑 | |𝜎 . It suffices to translate each line in the proof into its corresponding propositional formula and observe

that the required inference steps can be carried out in TC0
-Frege. More precisely, the underlying proof system

for LA and LAQ is the sequent calculus, and we may think of TC0
-Frege in its sequent calculus formulation,

PTK. Since LA and LAQ formulas are quantifier-free, no derivation rules for quantifiers are present in 𝜋 . Every

inference step of an LA proof matches the corresponding sequent calculus rule of the propositional sequent

calculus. It is also not hard to see that the cut rule is always over a TC0
circuit, since the LAQ formula over which

we cut translates into a TC0
circuit.

The only problem occurs when reaching a leaf in the proof 𝜋 , which corresponds to an axiom of LA or LAQ.

These are not axioms of TC0
-Frege and hence require a proof to be appended in the translation. Cook and Soltys

observed that when instantiated over the rationals, all of the axioms of LA are either directly proven or follow

easily from the basic properties of arithmetic proven by Bonet, Pitassi, and Raz [BPR00] inside TC0
-Frege. Hence,

the only thing left to complete the propositional translation for LAQ is to provide small TC0
-Frege proofs of the

new axioms not present in LA.

Lemma A.1. There are polynomial-size TC0-Frege proofs of the propositional translation of the axioms of LAQ.

Proof. The axioms of LA were handled in the original work of Cook and Soltys (see Theorem 6.3 in [SC04]).

Furthermore, the axioms imposing that <Q is an ordering relation were already proven in [BPR00] as well (these

are precisely the lemmas proven in their Section 7.2). We therefore focus on the translation of the axioms for int.
For the sake of consistency with the previous work of Bonet, Pitassi, and Raz we adopt here the notation [𝑎]𝑏

for the MOD(𝑎, 𝑏) function and div𝑏 (𝑎) for the integer division between 𝑎 and 𝑏. We also reuse the following

lemmas proved by them inside TC0
-Frege, where L7._ stands for the corresponding lemma in [BPR00]:

(L7.19) (𝑎 < 𝑏) ∨ (𝑏 < 𝑎) ∨ (𝑎 = 𝑏).
(L7.27) 𝑎 = [𝑎]𝑏 + div𝑏 (𝑎) · 𝑏.

(L7.28) 𝑥 + 𝑦 · 𝑝 = 𝑢 + 𝑣 · 𝑝 ∧ 𝑦 < 𝑣 → 𝑝 ≤ 𝑥 .

(L7.29) [𝑎]𝑏 = [𝑎 + 𝑘 · 𝑏]𝑏 .

The first three axioms for int clearly admit constant-size proofs, so we only need to write the proofs for the

axioms (Int4), (Int5), and (Int6)

(Int4) Let 𝑥 and 𝑦 be represented by the fractions 𝑎/𝑏 and 𝑐/𝑑 respectively. The translation of the axiom

int(𝑥) ∧ int(𝑦) → int(𝑥 + 𝑦)
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yields the propositional formula

[𝑎]𝑏 = 0 ∧ [𝑐]𝑑 = 0 → [𝑎𝑑 + 𝑏𝑐]𝑏𝑑 = 0.

From [𝑎]𝑏 = 0 and [𝑐]𝑑 = 0, L7.27 gives us that 𝑎 = div𝑏 (𝑎) · 𝑏 and 𝑐 = div𝑑 (𝑐) · 𝑑 . Then,

[𝑎𝑑 + 𝑏𝑐]𝑏𝑑 = [div𝑏 (𝑎) · 𝑏︸      ︷︷      ︸
𝑎

· 𝑑 + div𝑑 (𝑐) · 𝑑︸      ︷︷      ︸
𝑐

· 𝑏]𝑏𝑑

= [𝑏𝑑 · (div𝑏 (𝑎) + div𝑑 (𝑐))]𝑏𝑑
= [0]𝑏𝑑
= 0

where the second to last equality follows by applying L7.29.

(Int5) In this case the translation of

int(𝑥) ∧ int(𝑦) → int(𝑥 · 𝑦)
yields the formula

[𝑎]𝑏 = 0 ∧ [𝑐]𝑑 = 0 → [𝑎𝑐]𝑏𝑑 = 0.

We have again that L7.27 gives us that 𝑎 = div𝑏 (𝑎) · 𝑏 and 𝑐 = div𝑑 (𝑐) · 𝑑 . Then,

[𝑎𝑐]𝑏𝑑 = [𝑎𝑐 + (− div𝑏 (𝑎) · div𝑑 (𝑐)) · 𝑏𝑑]𝑏𝑑
= [𝑎𝑐 − div𝑏 (𝑎) · 𝑏︸      ︷︷      ︸

𝑎

· div𝑑 (𝑐) · 𝑑︸      ︷︷      ︸
𝑐

]𝑏𝑑

= [𝑎𝑐 − 𝑎𝑐]𝑏𝑑
= [0]𝑏𝑑
= 0

where the first equality follows again from L7.29.

(Int6) We first write the propositional translation of

int(𝑥) ∧ 0 < 𝑥 → 1 ≤ 𝑥 .

Recall that we adopted the convention that denominators of fractions are always positive, and the

comparator circuit between two rationals 𝑎/𝑏 and 𝑐/𝑑 checks the integer inequality 𝑎𝑐 < 𝑏𝑑 . The

consequent 1 ≤ 𝑥 stands for 1 = 𝑥 ∨ 1 < 𝑥 , which translates as div𝑏 (𝑎) = 1 ∨ 𝑏 < 𝑎 when writing 𝑥 and

𝑎/𝑏. Thus, the formula to prove is

[𝑎]𝑏 = 0 ∧ 0 < 𝑎 → div𝑏 (𝑎) = 1 ∨ 𝑏 < 𝑎.

By L7.19, either 𝑏 < 𝑎, 𝑎 < 𝑏 or 𝑎 = 𝑏. If 𝑏 < 𝑎, we are done. If 𝑎 = 𝑏, using L7.27, it is easy to show that

div𝑎 (𝑎) = 1, since by L7.29,

[𝑎]𝑎 = [0 + 𝑎]𝑎 = [0]𝑎 = 0

and thus

𝑎 = div𝑎 (𝑎) · 𝑎 + [𝑎]𝑎 = div𝑎 (𝑎) · 𝑎.

Since by assumption 0 < 𝑎, we have 𝑎 ≠ 0, so div𝑎 (𝑎) = 1. Then,

div𝑏 (𝑎) = div𝑎 (𝑎) = 1.

Finally, if 𝑎 < 𝑏, we prove that the antecedent of the formula is falsified. We first show that div𝑎 (𝑏) = 0.

Suppose not, then it must be div𝑎 (𝑏) > 0. When taking 𝑥 = 𝑎, 𝑦 = 0, 𝑝 = 𝑏 and 𝑣 = div𝑏 (𝑎) in L7.28

above, we immediately get 𝑏 ≤ 𝑎, contradicting 𝑎 < 𝑏.

Now that we have div𝑏 (𝑎) = 0, by L7.27 we get 𝑎 = [𝑎]𝑏 . But if both [𝑎]𝑏 = 0 and 0 < 𝑎, we get a

contradiction. □
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Theorem A.2 (Propositional translation for LAQ). For every theorem 𝜑 of LAQ and every object assignment 𝜎 , the
propositional formula | |𝜑 | |𝜎 admits polynomial-size TC0-Frege proofs.

Proof. The proof is analogous to Theorem 6.3 in [SC04], except we need to handle the new axioms. By Lemma A.1

above, the translations of the new axioms have short TC0
-Frege proofs. This completes the proof. □

B Proof of Proposition 3.4

We prove the equivalence between the machine-based and circuit-based definitions in the three settings.

(i) Classical automatability. For the forward direction, suppose 𝐴 is an automating deterministic Turing

machine. In order to simulate 𝐴 by a circuit, we need to introduce a uniform bound on the running time

of 𝐴. We know 𝐴 runs in time size𝑆 (𝜑)𝑐 for some constant 𝑐 . Consider now the machine 𝐴′
that takes as

input both 𝜑 and a size parameter 𝑠 in unary and runs 𝐴(𝜑) for 𝑠𝑐 steps, and outputs a proof if one was

found, and some other string otherwise. This machine 𝐴′
can be simulated by a uniform circuit family of

size 𝑂 (( |𝜑 | + 𝑠)2𝑐 ), which is still polynomial in |𝜑 | + 𝑠 , and which outputs a proof of size polynomial in 𝑠 if

one exists.

For the backwards direction, assuming a circuit family {𝐶𝑛,𝑠 }𝑛,𝑠∈N, the machine on input 𝜑 simulates

𝐶 |𝜑 |,1 (𝜑), 𝐶 |𝜑 |,2 (𝜑) and so on, checking every time whether the output proof is valid, up to the first value

of 𝑠 for which a valid proof is obtained. This takes time polynomial in size𝑆 (𝜑).
(ii) Randomized automatability. The argument here is similar, except that we have to account for the

equivalence between the bounded expected running time of the machine and the bounded error probability

of the circuits.

For the forward direction, let 𝑅 be a probabilistic machine automating 𝑆 in expected time size𝑆 (𝜑)𝑐 for

some constant 𝑐 . Let 𝑇𝜑 be the random variable that denotes the number of steps 𝑅 takes to find a proof

on input 𝜑 , when 𝜑 does have some proof. We know that E[𝑇𝜑 ] ≤ size𝑆 (𝜑)𝑐 . Consider now the modified

machine 𝑅′
that takes 𝜑 and a size parameter 𝑠 and simulates 𝑅(𝜑) for 𝑘 · (𝑛 + 𝑠)𝑐 steps, for some constant

𝑘 such as 𝑘 = 100. This machine can be turned into a random circuit with 𝑘 · (𝑛 + 𝑠)𝑐 random bits. It just

suffices to argue that for at least 2/3 of the choices for the random bits, the circuit will output a proof

when one exists. Indeed, by Markov’s inequality, the probability that 𝑅′
might not output a proof in time

𝑘 · (𝑛 + 𝑠)𝑐 is just Pr

[
𝑇𝜑 > 𝑘 · E[𝑇𝜑 ]

]
≤ 1/𝑘 , which bounds the error of the circuit as desired.

For the backwards direction, from the sequence {𝐶𝑛,𝑠 }𝑛,𝑠∈N of randomized circuits we get an error-bounded

probabilistic Turing machine 𝑅(𝜑, 𝑠) that first obtains the description of𝐶 |𝜑 |,𝑠 (recall that the circuit family is

uniform) and then simulates𝐶 |𝜑 |,𝑠 (𝜑). This machine 𝑅 always halts after ( |𝜑 | + 𝑠)𝑂 (1)
steps, and, whenever

a proof of size 𝑠𝑐 exists, finds one with probability at least 2/3. Now, consider the machine 𝑅′
that takes

as input just the formula 𝜑 and runs 𝑅(𝜑, 1), 𝑅(𝜑, 2), . . . and so on, until a proof is found. For very small

values of 𝑠 the the machine 𝑅 will never find a proof, because none exists. Once we get to values of 𝑠 large

enough such that 𝑠𝑐 ≥ size𝑆 (𝜑), we might still be unlucky and not find a proof when running 𝑅(𝜑, 𝑠), and

move to 𝑅(𝜑, 𝑠 + 1). Note, however, that the number of times we may increments the parameter 𝑠 before a

proof is found follows a geometric distribution, and so the expected number of trials is at most 1/𝑝 , where

𝑝 is the probability of success. Since 𝑝 is at least 2/3, the expected number of times we will increment 𝑠

before a proof is found is at most 3/2. Altogether, the machine 𝑅′
will run in expected time polynomial in

size𝑆 (𝜑).
(iii) Quantum automatability. The proof is identical to (ii). By Yao’s result that quantum circuits can simulate

quantum Turing machines running in time 𝑇 in size 𝑂 (𝑇 2) [Yao93], we get the right transformations

between circuits and machines, and the probability analysis is exactly the same.

□

C Properties of random lattices (Proof of Lemma 2.4)

This section proves the two statements of Lemma 2.4. We start by proving that almost every randomly selected

matrix is full-rank (Lemma 2.4.i). We then prove two technical lemmas. Finally we show that almost every

randomly selected full rank matrix generates a lattice with no short vectors (Lemma 2.4.ii).
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From now on, unless otherwise specified, we consider lattices of the form L𝑞 (𝐴) where 𝐴 ∈ Z𝑚×𝑛
𝑞 and

rank(𝐴) = 𝑛. Note that for any such lattice |L𝑞 (𝐴) | = 𝑞𝑛 .

Proof of Lemma 2.4.i. When selecting a column vector there are 𝑞𝑚 different options. At each step 𝑖 the previously

selected columns span a subspace of Z𝑚𝑞 with 𝑞𝑖−1
elements, meaning that on the 𝑖-th selection the odds of

selecting a linearly dependent vector are only 𝑞𝑖−1/𝑞𝑚 = 1/𝑞𝑚−𝑖+1
. For each step 𝑖 , this probability is less than

1/𝑞𝑚−𝑛+1
. By union bounding over the 𝑛 opportunities, the probability of ever selecting a linearly dependent

column is less than the sum of these probabilities which in turn is less than 𝑛/𝑞𝑚−𝑛+1
. □

Lemma C.1. Let {L𝑞} be the set of all the possible distinct rank-𝑛 lattices in Z𝑚𝑞 . It holds that

|{L𝑞}| =
𝑛−1∏
𝑖=0

(
𝑞𝑚 − 𝑞𝑖

𝑞𝑛 − 𝑞𝑖

)
.

Proof. The cardinality of {L𝑞} is equal to the number of rank-𝑛 bases divided by the number of possible bases

for each given lattice. Formally,

|{L𝑞}| =
|{𝐴| rank(𝐴) = 𝑛}|

|{𝐴′ |L𝑞 (𝐴) = L𝑞 (𝐴′)}| .

We take an algorithmic approach to counting the number of 𝐴 for which rank(𝐴) = 𝑛. To select such an 𝐴, we

first set 𝑎0 equal to one of the 𝑞𝑚 − 1 non-zero points in Z𝑚𝑞 . Then for each subsequent 𝑖 we set 𝑎𝑖 equal to a

point in Z𝑚𝑞 not contained in the rank 𝑖 lattice spanned by (𝑎0, . . . , 𝑎𝑖−1). We know that there are 𝑞𝑖 vectors in

that lattice leaving us with 𝑞𝑚 − 𝑞𝑖 possible choices for 𝑎𝑖 . To avoid double counting the permutations of a given

basis we divide by 𝑛!, concluding that there are

∏𝑛−1

𝑖=0

(
𝑞𝑚 − 𝑞𝑖

)
/𝑛! matrices 𝐴 with rank(𝐴) = 𝑛.

Next, to count the number of possible bases 𝐴′
we first note that any set of 𝑛 linearly independent vectors

in L𝑞 (𝐴) is a basis of L𝑞 (𝐴). Then we follow the same method as above for generating a basis except our

choices are now limited to the 𝑞𝑛 vectors in the lattice. So we end up with a total number of possible bases of∏𝑛−1

𝑖=0

(
𝑞𝑛 − 𝑞𝑖

)
/𝑛!.

If we divide the number of rank-𝑛 bases by the number of bases per lattice we get

∏𝑛−1

𝑖=0

(
𝑞𝑚−𝑞𝑖
𝑞𝑛−𝑞𝑖

)
. □

Lemma C.2. When 𝑞 ≥ 𝑛 ≥ 1, log𝑞 (𝑞 + 1) (𝑛 − 1) ≤ 𝑛.

Proof. Because log𝑞 (𝑞 + 1) is monotonically decreasing it suffices to show that log𝑛 (𝑛 + 1) (𝑛 − 1) ≤ 𝑛. By change

of basis and reordering this is equivalent to proving that

ln(𝑛 + 1)
ln(𝑛) ≤ 𝑛

𝑛 − 1

.

It is well known that

𝑑 (ln(𝑛))
𝑑𝑛

=
1

𝑛
,

which is also monotonically decreasing, meaning that

ln(𝑛 + 1) ≤ ln(𝑛) + 1

1

𝑛
.

Thus,

ln(𝑛 + 1)
ln(𝑛) ≤

ln(𝑛) + 1

𝑛

ln(𝑛) = 1 + 1

𝑛 ln(𝑛) ≤ 1 + 1

𝑛 − 1

=
𝑛

𝑛 − 1

.

□

Proof of Lemma 2.4.ii. Every lattice with a short vector can be specified by a tuple of a lattice of rank 𝑛 − 1 and a

short vector. All vectors with length less than 𝑟 must lie in the region (−𝑟, 𝑟 )𝑚 so we know there are fewer than

(2𝑟 + 1)𝑚 short vectors. Combining this with the number of lattices of rank 𝑛 − 1 from Lemma C.1 we get that

|{L𝑞 (𝐴) | 𝜆1 (L𝑞 (𝐴)) ≤ 𝑟 }| ≤ (2𝑟 + 1)𝑚
𝑛−2∏
𝑖=0

(
𝑞𝑚 − 𝑞𝑖

𝑞𝑛−1 − 𝑞𝑖

)
.
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If we divide this upper bound on the number of lattices with short vectors by the exact count of the number

of total lattices from Lemma C.1 we can see that the fraction of lattices which contain a vector of length less than

𝑟 is less than

(2𝑟 + 1)𝑚 ∏𝑛−2

𝑖=0

(
𝑞𝑚−𝑞𝑖
𝑞𝑛−1−𝑞𝑖

)
∏𝑛−1

𝑖=0

(
𝑞𝑚−𝑞𝑖
𝑞𝑛−𝑞𝑖

) =
(2𝑟 + 1)𝑚
𝑞𝑚−𝑞𝑛−1

𝑞𝑛−𝑞𝑛−1

𝑛−2∏
𝑖=0

(
𝑞𝑚−𝑞𝑖
𝑞𝑛−1−𝑞𝑖

)(
𝑞𝑚−𝑞𝑖
𝑞𝑛−𝑞𝑖

)
= (2𝑟 + 1)𝑚 𝑞𝑛 − 𝑞𝑛−1

𝑞𝑚 − 𝑞𝑛−1

𝑛−2∏
𝑖=0

𝑞𝑛 − 𝑞𝑖

𝑞𝑛−1 − 𝑞𝑖

≤ (2𝑟 + 1)𝑚 𝑞𝑛

𝑞𝑚−1

(
𝑞𝑛 − 𝑞𝑛−2

𝑞𝑛−1 − 𝑞𝑛−2

)𝑛−1

=
(2𝑟 + 1)𝑚
𝑞𝑚−𝑛−1

(𝑞 + 1) (𝑛−1)

=
(2𝑟 + 1)𝑚
𝑞𝑚−𝑛−1

𝑞
log𝑞 (𝑞+1) (𝑛−1)

≤ (2𝑟 + 1)𝑚
𝑞𝑚−2𝑛−1

. (by Lemma C.2)

□
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