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Abstract. In an attempt to show that the acceptance probability of a quan-
tum query algorithm making q queries can be well-approximated almost every-
where by a classical decision tree of depth ≤ poly(q), Aaronson and Ambainis
proposed the following conjecture: let f : {±1}n → [0, 1] be a degree d poly-
nomial with variance ≥ ϵ. Then, there exists a coordinate of f with influence
≥ poly(ϵ, 1/d).

We show that for any polynomial f : {±1}n → [0, 1] of degree d (d ≥ 2)
and variance Var[f ] ≥ 1/d, if ρ denotes a random restriction with survival

probability
log(d)

C1d
,

Pr

[
fρ has a coordinate with influence ≥ Var[f ]2

dC2

]
≥ Var[f ] log(d)

50C1d

where C1, C2 > 0 are universal constants. Thus, Aaronson-Ambainis conjec-
ture is true for a non-negligible fraction of random restrictions of the given
polynomial assuming its variance is not too low.

1. Introduction

One of the central open problems in the field of quantum query complexity is
finding if there exists a partial function which is defined on a large fraction of
the Boolean hypercube (say, constant) but whose quantum query complexity and
classical query complexity are super-polynomially separated. The seminal result
of Beals, Burhman et al. [4] shows that no such separation is possible when
the function is defined on the entire hypercube. On the other hand, functions
for which we know such a separation (e.g. - Forrelation [1] , Bernstein-Vazirani
[5]) are defined on an exponentially small fraction of the hypercube. A possible
explanation as to why all known functions exhibiting large gaps between quantum
and classical query complexity have very small support size would be the following
folklore conjecture:

Conjecture 1.1. Let Q be a quantum query algorithm with Boolean output
on n qubits making q queries. Let P : {±1}n → [0, 1] be given by P (x) =
Pr[Q outputs 1 on x]. For any ϵ > 0, there exists a classical query algorithm A

such that E[(A(x)−Q(x))2] ≤ ϵ and A makes at most poly

(
q,

1

ϵ

)
queries.

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 35 (2024)



2 SREEJATA KISHOR BHATTACHARYA

It is known that ifQmakes at most q queries, then P is given by a polynomial of
degree at most 2q. Although P has more structure than any arbitrary low degree
bounded polynomial, it is further conjectured that such structure is not necessary.
In other words, we forget the fact that P arises from a quantum query algorithm
and instead try to construct a classical query algorithm for any bounded low-
degree polynomial. This led to the following conjecture (also folklore).

Conjecture 1.2. Let P : {±1}n → [0, 1] be a degree d polynomial. For any
ϵ > 0, there exists a classical decision tree T of depth at most poly(d, 1/ϵ) such
that E[(P (x)− T (x))2] ≤ ϵ.

Aaronson and Ambainis [2] proposed the following query algorithm to estimate
P : suppose the variance of the function is sufficiently small. Then we terminate
the query algorithm and output the average over the unqueried coordinates. If
not, we query the coordinate with the highest influence and restrict the function
according to the response received. We keep doing this until we have made too
many queries or the variance has become sufficiently low. In order to show that
this algorithm gives an accurate estimate, [2] observed that it is sufficient to prove
the following conjecture.

Conjecture 1.3. (Aaronson-Ambainis conjecture) Let f : {±1}n → [0, 1]
be a degree d polynomial. Then, there exists a coordinate j such that Infj[f ] ≥
poly(1/d,Var[f ])

As a side remark, we mention that O’Donnell et al. [14] had shown previously
that functions which can be approximated by decision trees have a coordinate
with high influence. So conjectures 1.2 and 1.3 are equivalent.

Aaronson-Ambainis conjecture has received significant attention in the past few
years. A 2006 result of Dinur, Friedgut et al. [7] shows that the conjecture is true
if poly(d) is replaced by exp(d). In 2012, Montanaro [12] proved the conjecture
in the special case of block-multilinear forms where all coefficients have the same
magnitude. In 2016, O’Donnell and Zhao [15] showed that it suffices to prove
the conjecture for a special class of polynomials known as one-block decoupled
polynomials. In 2020, Keller and Klein [9] claimed to have found a proof for the
conjecture but their paper had a subtle flaw and turned out to be wrong. More
recently, Lovett and Zhang [11] initiated a new line of attack using the notions of
fractional block sensitivity and fractional certificate complexity. In 2022, Bansal,
Sinha, Wolf [3] proved that this conjecture is true for completely bounded block
multilinear forms - a class of polynomials that captures a special kind of quantum
query algorithms.

In this work we show that Aaronson-Ambainis conjecture is true for a large
fraction of random restrictions of f assuming Var[f ] is not too low. We hope our
result gives new insights to the Aaronson-Ambainis conjecture. In particular, this
opens up a possible line of attack:

• Assuming a supposed counterexample f : {±1}n → [0, 1], modify it appro-
priately (e.g., by composing it with some appropriate gadget or applying
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a low noise operator) to get a function f̃ : {±1}ñ → [0, 1] such that most
of its random restrictions remain a counterexample. Combined with our
result, this will prove Aaronson-Ambainis conjecture. This approach is
discussed in a bit more detail in the conclusion.

Our main result is a new structural restriction about bounded low-degree poly-
nomials over the hypercube. While several structural results are known about
low-degree boolean functions f : {±1}n → {0, 1}, such results are rare for low-
degree bounded functions f : {±1}n → [0, 1]. We show that if f : {±1}n → [0, 1]
has degree d and ρ is a random restriction with survival probability O(log(d)/d),
then with very high probability fρ depends essentially on ≈ poly(d) coordinates,
even though there are O(n log(d)/d) alive coordinates on average.

2. Organization

We introduce notations and necessary preliminaries in section 3. We give a
high level overview of our proof in section 4. In section 5 we compile some
lemmas that will be needed in our main proof. Our main results are proven
in section 6. Our main technical tool is Theorem 6.3, which says that most
random restrictions of a bounded low-degree function can be approximated by a
small junta. In Theorem 6.4 we prove the result mentioned in the abstract (that
Aaronson-Ambainis conjecture is true for a non-negligible fraction of random
restrictions).

3. Notations and preliminaries

Query algorithms.

(1) A classical query algorithm A (or equivalently, a decision tree) for com-
puting a function f : {±1}n → R can access the input x ∈ {±1}n by
adaptively issuing queries to its bits. We assume internal computations
have no cost. The depth of the query algorithm/decision tree is the maxi-
mum number of bit queries issued on an input. We say A ϵ-approximates
f if ||f − A||22 = Ex∈{±1}n [(f(x)− A(x))2] ≤ ϵ.

For a partial function f : S(⊆ {±1}n) → {0, 1}, its classical query
complexity D(f) is the smallest d for which there exists a decision tree T
of depth d such that T (x) = f(x) for all x ∈ S.

(2) A quantum query algorithm can access the input x ∈ {±1}n via an oracle
Ox. The register has n qubits and some ancilla qubits. The oracle Ox

applies the following unitary operation on the first n qubits:

Ox|s1s2 · · · sn⟩ = (−1)⟨x,s⟩|s1s2 · · · sn⟩

The quantum query algorithm applies a sequence of unitary operators,
where each operator is either Ox or an input-independent unitary opera-
tor U . In the end, it measures the first qubit and outputs the measurement
result. The number of queries issued is the number of times Ox is applied.
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Notice that a quantum query algorithm Q naturally defines a function
P : {±1}n → [0, 1]:

P (x) = Pr[Q outputs 1 on input x]

It is well-known that if Q makes q queries, then P is a degree 2q polyno-
mial.

For a function f : S(⊆ {±1}n) → {0, 1}, we define its quantum query
complexity Q(f) to be the smallest q for which there exists a quantum
query algorithm Q making q queries such that for all x ∈ S,

Pr[Q outputs 1 on input x]

{
≥ 2/3 if f(x) = 1

≤ 1/3 if f(x) = 0

Analysis of boolean functions. In this section we recall some results from
analysis of boolean functions. A good reference is O’ Donnell’s textbook [13].

(1) Any function f : {±1}n → R has a unique representation as f(x) =∑
S⊆[n]

f̂(S)χS(x) where χS(x) =
∏
i∈S

xi. The coefficients f̂(S) are the Fourier

coefficients of f . The degree of f is max{|S||f̂(S) ̸= 0}.

(2) The variance of f is

Varx∈{±1}n [f(x)] =
∑
S ̸=ϕ

f̂(S)2

(3) For a cooordinate i, the influence of the i’th coordinate is defined as

Infi[f ] = Ex∈{±1}n

[(
f(x)− f(x(i))

2

)2
]

=
∑
i∈S

f̂(S)2

The total influence of f is

Inf[f ] =
∑
i∈[n]

Infi[f ] =
∑
S

|S|f̂(S)2

From the Fourier expansion it is clear that if deg(f) ≤ d, Inf[f ] ≤ dVar[f ]
(4) Given two functions f, g{±1}n → R, we say g ϵ−approximates f if ||f −

g||22 = Ex [(f(x)− g(x))2] ≤ ϵ.
(5) For a point x ∈ {±1}n and a subset S ⊆ [n] and −1 ≤ ρ ≤ 1, we define a

distribution Nρ,S(x) on {±1}n as follows:
• The bits y1, y2, · · · , yn are independent, and

Pr[yi = xi] =

{
1 if i ̸∈ S

(1 + ρ)/2 if i ∈ S
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When S = [n], we abbreviate Nρ,S(x) by Nρ(x).

(6) For f : {±1}n → R and −1 ≤ ρ ≤ 1 define Tρf : {±1}n → R by

Tρf(x) = Ez←Nρ(x)[f(z)].

It is easy to see that the Fourier expansion of Tρf is given by

Tρf(x) =
∑
S⊆[n]

ρ|S|f̂(S)χS(x).

(7) A function f : {±1}n → R is a junta of arity l or l-junta if there exists
a subset S ⊆ [n], |S| ≤ l such that f only depends on the coordinates in
S. We say f is a (ϵ, l) junta if it can be ϵ-approximated by a l-junta, i.e.,
there exists a l-junta g such that ||f − g||22 ≤ ϵ.

(8) A restriction ρ = (S, y) of f : {±1}n → R is specified by a subset S ⊆ [n]
and an assignment y ∈ {±1}[n]\S. Such a restriction naturally induces a
function fρ : {±1}S → R. Sometimes we shall write fy instead of fρ (note
that S is determined by y since y ∈ {±1}[n]\S)

By a random restriction with survival probability p, we mean sampling
ρ = (S, y ∈ {±1}[n]\S) where each coordinate i ∈ [n] is included in S with
probability p independently, and each bit of y is independently set to a
uniformly random bit.

Remark 3.1. Throughout the paper, all growing parameters (e.g., the degree d)
will be assumed to be larger than some sufficiently big constant. This is to make
the expressions look neat, as we will be replacing terms like (C1)

kpoly(k) by (C2)
k

where C2 > C1.

4. Proof Overview

The main technical tool in this paper is a structural result for bounded low-
degree functions similar in spirit to Hastad’s switching lemma [8]. Let f :
{±1}n → [0, 1] be a polynomial of degree d, and let ρ denote a random restriction

with survival probability
log(d)

Cd
. We show that for some constant C,

Pr
[
fρ is a (O(d−C), O(dC)) junta

]
≥ 1− 1

dΩ(1)
.

Once this is established, we can prove Aaronson-Ambainis conjecture for ran-
dom restrictions as follows: it is easy to see that

Pr

[
Var[fρ] ≥

Var[f ] log(d)

2Cd

]
≥ Var[f ] log(d)

2Cd
.

This probability will be significantly more than the failure probability of the

switching lemma

(
1

dΩ(1)

)
(this is the only place where we need the lower bound

on Var[f ]). So for a ≈ O(Var[f ] log(d)/d) fraction of random restrictions, the
variance of fρ is high and fρ can be well approximated by a junta with arity
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poly(d). This means one of the coordinates of the junta must have high influence.
This concludes the proof.

Now we give a brief overview of how we prove the switching lemma. The
starting point is the work by Dinur, Friedgut et al. [7] which states the following:

Theorem 4.1. For any f : {±1}n → [0, 1], if∑
|S|>k

f̂(S)2 ≤ exp(−O(k2 log(k)/ϵ)),

then f is a (ϵ, 2O(k)/ϵ2) junta.

In other words, if the Fourier tail above a certain level k is bounded, then f
can be well approximated by juntas of arity roughly 2O(k).

We start with the observation that random restrictions have bounded Fourier
tails: if the function has degree d and we make a random restriction with sur-

vival probability
log(d)

Cd
, using Chernoff bound we can show that with very high

probability the Fourier weight above level log(d) will be low; around the order of
exp(−Ω(C log(d))). If we can manage to bring the Fourier weight above log(d)
small enough so that Theorem 4.1 applies, then we will get that fρ can be well
approximated by a poly(d) junta. Unfortunately, if we try this, it turns out that
we have to set the survival probability so low that on expectation the variance
of fρ goes down significantly as well. In other words, while it is true that fρ can
be well-approximated by juntas, it is for a trivial reason that its variance itself
is very low. (And moreover, this is also true for functions f : {±1}n → R that
are merely L2 bounded i.e, E[f 2] ≤ 1, so we would not be using any additional
structure that arises from the fact that f is pointwise bounded.)

In order to make this approach work, we need to improve the tail bound
exp(−O(k2 log(k))/ϵ). The problematic term is the quadratic exp(−O(k2)) in
the exponential. If the dominant term were to the order of exp(−O(k)) in-
stead, the calculations would go through. Can we hope to increase the tail
bound to exp(−O(k)) while paying a cost by increasing the junta arity? Un-
fortunately, again, this is not possible: [7] constructs a function which shows
that the tail bound is essentially tight upto the log(k) factor - their function has
||f>k||22 ≈ exp(−Θ(k2)) but approximating it to even 1/3 accuracy requires read-
ing Ω(n) coordinates. Our key observation is that the function constructed by [7]
has full degree whereas we are working with random restrictions of a low degree
function, so in addition to the fact that Fourier tail of fρ above level log(d) is
very small, we also know that fρ has degree d. Can we hope to improve the tail
bound in Theorem 4.1 if we have the additional restriction that the function is
of degree d? Indeed, this turns out to be true. We prove the following result in
Theorem 4.2:.

Theorem 4.2. There exists a constant C such that the following is true:
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If f : {±1}n → [0, 1] has degree d and
∑
|S|>k

f̂(S)2 ≤ ϵ

CkdC
, f is a (ϵ, ϵ−2dCCk)

junta.

Below we briefly discuss how we are able to improve the tail bound under the
additional degree assumption. Dinur et al [7] prove their tail bound by showing
the following result (we are omitting the exact quantitative parameters here for
reading convenience).

Theorem 4.3. Let h : {±1}n → R be a degree k function with E[h2] ≤ 1 (but
not necessarily pointwise bounded) which cannot be approximated by 2O(k) juntas
to accuracy µ. Then, for any function g : {±1}n → [0, 1], E[(h− g)2] ≥ ε.

To prove Theorem 4.1, [7] applies Theorem 4.3 on the truncated function h =

f≤k =
∑
|S|≤k

f̂(S)χS and takes g to be the original function f . This then lower

bounds E[(f − f≤k)2] which is precisely the Fourier tail above weight k. Thus,
the distance lower bound ε in Theorem 4.3 governs the Fourier tail lower bound
in Theorem 4.1. Since we have the additional information that f is of degree
d, for our purposes it will suffice to bound the distance from bounded degree
d functions, not necessarily all bounded functions. In Theorem 6.1 we prove
a result of the following form (again, we are omitting the exact parameters for
reading convenience)

Theorem 4.4. Let h : {±1}n → R be a degree k function with E[h2] ≤ 1 (but not
necessarily pointwise bounded) which cannot be approximated by 2O(k) juntas to
accuracy µ. Then, for any degree d function g : {±1}n → [0, 1], E[(h− g)2] ≥ ε̃.

The parameter ε̃ in Theorem 4.4 is bigger than the corresponding ε parame-
ter in Theorem 4.3 because we are only lower bounding the distance of h from
bounded low-degree functions whereas Theorem 4.3 lower bounds the distance of
h from arbitrary bounded functions. It turns out that the improvement in this
parameter is sufficiently good for the random restriction approach to go through.

In order to prove Theorem 4.4 we shall use the main idea of the proof of [7]
along with a structural restriction for bounded low-degree functions discovered
first in [4]. Given any function f : {±1}n → R and x ∈ {±1}n define the block
sensitivity of f at x to be

bs(f, x) = sup

∑
j∈[k]

∣∣f(x)− f(x(Bj))
∣∣

where the supremum ranges over all partitions (B1, B2, · · · , Bk) of the variables
(x(Bj) denotes x with the coordinates in Bj flipped). Define the block sensitivity
of f to be bs(f) = supx bs(f, x). We shall use the following fact about bounded
low-degree functions:

Theorem 4.5. [4] If f : {±1}n → [0, 1] has degree d, bs(f) ≤ 6d2.
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We give a high-level overview of how we are able to improve upon the bound
of ε using the fact that the block sensitivity of a bounded low degree function is
small. At one point in their proof, [7] lower bounds the probability of a linear form
of Rademacher random variables l(x1, x2, · · · , xt) = a1x1 + · · ·+ atxt exceeding a
certain threshold times its standard deviation, i.e.,

Pr

[
a1x1 + · · ·+ atxt ≥ α

√
a21 + · · ·+ a2t

]
.

For each such point x where this linear form is high, [7] shows that many related
points x′ must have f(x′) > 2. Using this they conclude that f must deviate
from the interval [0, 1] too often and therefore cannot be approximated by any
bounded function.

We follow the proof of [7] up until this point. Instead of directly lower bounding
the probability that a1x1 + · · · + atxt is high, we partition the set of variables
[t] into L blocks B1, · · · , BL (L is an appropriately chosen parameter) such that
each block gets roughly same total weight: for all j ∈ [L],∑

i∈Bj

a2i ≥
a21 + · · ·+ a2t

2L
.

It will turn out that the ai’s are sufficiently small for such a partition to exist.
For each block we lower bound the probability that the linear form restricted to
this block is high:

Pr

∑
j∈Bi

ajxj ≥ α̃

√∑
j∈Bi

a2j

 .

Now, on a random assignment z, the linear form restricted to many of these blocks

will be high. Take such a block Bi:
∑
j∈Bi

ajzj ≥ α̃

√∑
j∈Bi

a2j . For each such block

we will be able to find a large number of related points zi such that |f(z)− f(zi)|
is large. Crucially, these related points will differ from x only at Bi. Thus, we
will find many points which differ from z at disjoint sets and whose f differ from
z significantly. This will show that f cannot be too close to a bounded low degree
function, because those functions have low block sensitivity.

Our advantage is that we need to set α′ so that we can conclude |f(z)− f(z′)|
is only somewhat larger than Ω(d2/L) (as opposed to Ω(1) in [7]) - by setting L
large enough this allows us to set a much smaller α and get rid of the quadratic
exponential dependence.

5. Tools

In this section we compile some lemmas that we shall use in our proof.
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A reverse Markov inequality. We will use the following simple inequality
throughout the proof.

Lemma 5.1. Let X be a random variable such that X ≤ M with probability 1.

Let E[X] = µ > 0. Then, Pr[X ≥ µ/2] ≥ µ

2M

Proof. Assume Pr[X ≥ µ/2] <
µ

2M
. Then,

E[X] ≤ Pr[X ≥ µ/2]M + Pr[X ≤ µ/2]
µ

2
< µ,

contradiction. □

An anticoncentration inequality for linear forms of Rademacher ran-
dom variables.

Lemma 5.2. There exists a universal constant K such that the following holds:
let x1, · · · , xn be independent Rademacher random variables and let l(x1, · · · , xn) =

a1x1 + · · ·+ anxn. Let σ =
√

a21 + · · ·+ a2n. Suppose |ai| ≤
σ

Kt
. Then,

Pr[l(x1, · · · , xn) ≥ tσ] ≥ exp(−Kt2).

Proof. Equation 4.2 in [10]. □

Random restrictions have small tail.

Lemma 5.3. Let f : {±1}n → R have degree d, C > 1 be a sufficiently large
constant, and let ρ = (S, y ∈ {±1}[n]\S) be a random restriction with survival

probability
log(d)

Cd
. Let k = log(d). Then,

E

∑
|T |>k

f̂y(T )
2

 ≤ exp(−C log(d)/8)Var[f ].

Proof. First suppose (S, y ∈ {±1}[n]\S) is a fixed restriction. Note that for z ∈
{±1}S,

fy(z) =
∑
U⊆[n]

f̂(U)χU(y, z)

so for T ⊆ [S], f̂y(T ) =
∑
U⊆S

f̂(U ∪T )χU(y). By Parseval’s theorem, for a fixed S,

Ey

[
f̂y(T )

2
]
=

∑
U⊆[n]\S

f̂(U ∪ T )2.

Therefore, for a fixed S,

Ey

∑
|T |>k

f̂y(T )
2

 =
∑

V⊆[n],|V ∩S|>k

f̂(V )2.
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Randomizing over S again,

ES,y

∑
|T |>k

f̂y(T )
2

 =
∑
V⊆[n]

Pr[|V ∩ S| > k]f̂(V )2.

Since f has degree d, we only need to worry about the terms where |V | ≤ d.
Also, for |V | ≤ k the relevant probability is 0. Since each element is included in

S with probability
log(d)

Cd
, by Chernoff bound, for each V with |V | ≤ d,

Pr [|V ∩ S| > k] ≤ exp((C − 1)2k/4C) ≤ exp(−C log(d)/8).

Thus we get that

ES,y

∑
|T |>k

f̂y(T )
2

 ≤ exp(−C log(d)/8)
∑
T ̸=ϕ

f̂(T )2 = exp(−C log(d)/8)Var[f ].

□

Random restrictions don’t have low variance.

Lemma 5.4. Let f : {±1}n → R be any function and let ρ = (S, y ∈ {±1}[n]\S)
be a random restriction with survival probability p. Then, E[Var[fρ]] ≥ pVar[f ].

Proof. Fix a restriction (S, y ∈ {±1}[n]\S). For each T ⊆ S, f̂y(T ) =
∑

U⊆[n]\S

f̂(T ∪

U)χU(y). Thus, by Parseval’s theorem, for a fixed S,

Ey[Var[fy]] =
∑

T :T∩S ̸=ϕ

f̂(T )2.

Randomizing over S again,

ES,y[Var[fy]] =
∑
T ̸=ϕ

Pr[T ∩ S ̸= ϕ]f̂(T )2

=
∑
T ̸=ϕ

(
1− (1− p)|T |

)
f̂(T )2

≥
∑
T ̸=ϕ

pf̂(T )2

= pVar[f ].

□

Random restrictions with appropriate survival probability put large
Fourier mass on the linear level.

Lemma 5.5. Let f : {±1}n → R, J ⊆ [n] and k be such that∑
2k≤|T∩Jc|<2k+1

f̂(T )2 ≥ µ.
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Consider a random restriction ρ = (S, y ∈ {±1}[n]\S) where each j ∈ J is fixed
and given an uniformly random assignment, and each i ∈ J c is kept alive with
probability p = 2−k. Then,

E

[∑
i∈S

f̂y({i})2
]
≥ µ

20
.

Proof. For a fixed (S, y ∈ {±1}[n]\S (note that J ∩ S = ϕ) and j ∈ S we have

f̂y({j}) =
∑

T⊆[n],T∩S={j}

f̂(T )χT\{j}(y).

By Parseval’s theorem, for a fixed S,

Ey

[
f̂y({j})2

]
=

∑
T⊆[n],T∩S={j}

f̂(T )2.

Randomizing over S,

E

[∑
j∈S

f̂y({j})2
]
=

∑
T⊆[n]

∑
j∈[n]

Pr[T ∩ S = {j}]

 f̂(T )2

≥
∑

2k≤|T∩Jc|<2k+1

|T |p(1− p)|T |−1f̂(T )2.

By standard inequalities, for n ∈ [1/p, 2/p), np(1− p)n−1 ≥ 1/20. It follows that

Ey

[
f̂y({j})2

]
≥ µ

20
.

□

Some hypercontractive inequalities for low degree functions. The proof
of these lemmas can be found in [7].

Lemma 5.6. There exists a universal constant W > 0 such that the following
holds:

Let f : {±1}n → R be a degree k function. Let E[f 2] = σ2. Then,

E
[
f(z)21f(z)2≤Wkσ2

]
≥ 1

2
E[f(z)2].

Proof. Corollary 2.4 in [7]. □

Lemma 5.7. There exists a universal constant B > 0 such that the following
holds:

Let f : {±1}n → R be a degree k function. Let ρ ∈ [−1/2, 1/2] be a noise
parameter, and x0 ∈ {±1}n. Suppose Ez←Nρ(x)[f(z)− f(x0)] = µ ≥ 0. Then,

Pr
z←Nρ

[f(z)− f(x0) ≥ µ] ≥ 1

Bk
.

Proof. Lemma 2.5 in [7] □
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The noise lemma. This is the main result of [7]. We use a slight variant. First
we recall some known results from approximation theory.

Lemma 5.8. For any k, there exist constants ρ1, ρ2, · · · , ρk+1 ∈ [−1/2, 1/2] with
the following property: for any polynomial of degree k, p(x) = a0+a1x+· · ·+akx

k,

there exists a j ∈ [k + 1] such that p(ρj) ≥
a1

2(k + 1)
.

Proof. Page 112 in [6]. □

Now we state the lemma.

Lemma 5.9. There exists a universal constant B > 0 such that the following
holds:

Consider a degree k polynomial f : {±1}n → R. Let S ⊆ [n] and ℓ(x) =∑
i∈S

f̂({i})xi. Consider an input x0 ∈ {±1}n such that ℓ(x0) ≥ γ. Sample a

z ← {±1}n by the following procedure:

(1) Sample ρ← {ρ1, · · · , ρk+1} uniformly at random.
(2) Sample z ← Nρ,S(x0).

Then,

Pr

[
f(z)− f(x0) ≥

γ

2(k + 1)

]
≥ 1

(k + 1)Bk
.

Remark 5.1. Observe that z differs from x only in the coordinates of S. This
will be crucial later on.

Proof. Take B to be the same universal constant as in Lemma 5.6. By replacing
f with an appropriate restriction if necessary, we can assume S = [n]. Consider
the polynomial p(ρ) = Tρf(x0) − f(x0). From the Fourier expansion of noise
operator, we see that

p(ρ) =
∑
S ̸=ϕ

ρ|S|f̂(S).

This is a degree k polynomial in ρ with linear coefficient l(x0). By Lemma 5.8,
there exists a h ∈ [k + 1] such that p(ρh) ≥ γ/(2k + 2). By Lemma 5.6,

Pr
z←Nρ(x0)

[
f(z)− f(x0) ≥

γ

2(k + 1)

∣∣ρ = ρh

]
≥ 1

Bk
.

We choose ρ = ρh in step (1) with probability 1/(k + 1), so

Pr
z←Nρ(x0)

[
f(z)− f(x0) ≥

γ

2(k + 1)

]
≥ 1

(k + 1)Bk
.

□
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Partitioning a set of numbers in a balanced manner. We need an easy
lemma about partitioning a set of weights none of which is too large into disjoint
buckets where each bucket gets roughly the same total weight. We will later use
this lemma on the set of small linear Fourier coefficients of a function.

Lemma 5.10. Let a1, a2, · · · , an be a set of non-negative real numbers and 1 ≤
L ≤ n. Suppose ai ≤

a1 + a2 + · · ·+ an
2L

for all 1 ≤ i ≤ n. Then, there exists a

partition (B1, B2, · · · , BL) of [n] such that for all 1 ≤ j ≤ L,∑
i∈Bj

ai ≥
a1 + · · ·+ an

2L
.

Proof. Start with an arbitrary partition (B1, B2, · · · , BL). Then, refine it itera-
tively according to the following algorithm.

Refinement algorithm:

(1) Locate a j such that the condition is violated for j, i.e.,∑
i∈Bj

ai <
a1 + · · ·+ an

2L
.

If no such j exists, terminate.
(2) Locate a k such that ∑

i∈Bk

ai ≥
a1 + · · ·+ an

L
.

(3) Take an arbitrary l ∈ Bk such that al ̸= 0 and place it in Bj;

Bk ← Bk \ {l}
Bj ← Bj ∪ {l}

An appropriate k always exists in step (2) by an averaging argument. Since

al ≤
a1 + · · ·+ an

2L
, the size of Bk does not go below

a1 + · · ·+ an
2L

after step (3).

It is easy to see this procedure must terminate. Formally, notice that the quantity∑
j∈[L]

min

a1 + · · ·+ an
2L

−
∑
i∈Bj

ai, 0


reduces by min{ai|ai ̸= 0} at each step, so at some point of time it must be 0 at
which point the algorithm terminates and returns a valid partition.

□

6. Main results

6.1. Improved tail bound for low degree functions. This section is the core
technical part of our work: we show that if we have a function f : {±1}n → R
(not necessarily bounded) with E[f 2] ≤ 1 which cannot be approximated by jun-
tas, then f cannot be well-approximated by bounded low-degree functions.
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For a subset J ⊆ [n], consider the junta u : {±1}n → R which reads the
coordinates of J and outputs the average over the unqueried coordinates. It

is easy to see that u(x) =
∑
S⊆J

f̂(S)χS(x), so ||u − f ||22 =
∑
S ̸⊆J

f̂(S)2. Thus, u

approximates f if and only if
∑
S ̸⊆J

f̂(S)2 is small.

Remark 6.1. In fact, it is easy to see that there exists a junta u depending only

on coordinates of J such that ||f − u||22 ≤ ϵ if and only if
∑
S ̸⊆J

f̂(S)2 ≤ ϵ. This

immediately follows from the Fourier expansion of f − u.

Theorem 6.1. There exists a constant C such that the following holds:
Let f : {±1}n → R be a degree k function (not necessarily bounded) with E[f 2] ≤

1. Let J = {j|Infj[f ] ≥ θ} where θ =
µ2

CkdC
. If

∑
S ̸⊆J

f̂(S)2 ≥ µ, then for any

degree d function g : {±1}n → [0, 1], E[(f(x)− g(x))2] ≥ δ =
µ

CkdC
.

Remark 6.2. Notice here that although f is not pointwise bounded, g is.

Proof. Let W,B,K be the universal constants from Lemma 5.6, Lemma 5.9 and
Lemma 5.2 respectively. We take C to be a constant sufficiently larger than
B,K,W .

There exists a t such that ∑
2t≤|S∩Jc|<2t+1

f̂(S)2 ≥ µ

log(k)
.

Let ρ = (U, y ∈ {±1}[n]\U) be a random restriction where each j ∈ J is killed and
given a uniformly random assignment, and survival probability for each j ̸∈ J is
2−t. By Lemma 5.5,

E

[∑
j∈U

f̂y({j})2
]
≥ µ

20 log(k)
.

Fix a U such that

Ey∈{±1}[n]\U

[∑
j∈U

f̂y({j})2
]
≥ µ

20 log(k)
.

By Parseval’s theorem we have for all j ∈ U ,

E
[
f̂y({j})2

]
=

∑
S∩U={j}

f̂(S)2 ≤ Infj[f ].

For each y ∈ {±1}[n] define SMALLy = {j|f̂y({j})2 ≤ W kInfj[f ]}. Observe that
for all y, ∑

j∈SMALLy

f̂y({j})2 ≤ W kInf[f ] ≤ k ·W k ≤ (2W )k.
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For each j ∈ U we have from Lemma 5.7

E
[
f̂y({j})21f̂y({j})2≤WkInfj [j]

]
≥ 1

2
E
[
f̂y({j})2

]
.

Thus,

Ey∈{±1}[n]\U

 ∑
j∈SMALLy

f̂y({j})2
 ≥ µ

20 log(k)
,

so applying Lemma 5.1 2

Pry∈{±1}[n]\U

 ∑
j∈SMALLy

f̂y({j})2 ≥
µ

40 log(k)

 ≥ µ

40 log(k)(2W )k
≥ µ

(3W )k
.

Call y ∈ {±1}[n]\U for which
∑

j∈SMALLy
f̂y({j})2 ≥

µ

40 log(k)
to be good. Let

GOOD = {y ∈ {±1}[n]\U |y is good}. Let L =

⌈
(2B)kd8

Var[f ]

⌉
. For each good y,

choose a partition DIVIDE(y) = (B1, B2, · · · , BL) of SMALLy such that for all
1 ≤ i ≤ L, ∑

j∈Bi

f̂y({j})2 ≥
µ

80L log(k)
.

(If there are multiple such partitions, choose any one of them and call it DIVIDE(y).)

Our choice of parameters ensures that for all j ∈ SMALLy, f̂y({j})2 ≤
µ

80L log(k)
,

so such a partition exists by Lemma 5.10. Let ρ1, ρ2, · · · , ρk+1 be the constants
from Lemma 5.8.

Suppose, for the sake of contradiction, there exists a degree d polynomial g :
{±1}n → [0, 1] such that E[(f(x)−g(x))2] ≤ δ. Throughout the rest of the proof,
for a string s1 ∈ {±1}[n]\U and a string s2 ∈ {±1}U , the pair (s1, s2) denotes the
string s ∈ {±1}n which agrees with s1 on [n] \U and with s2 on U . Consider the
following randomized procedure which returns a real number.

Procedure 1:

(1) Sample a y ∈ GOOD uniformly at random.
(2) Sample ρ← {ρ1, ρ2, · · · , ρk+1} uniformly at random.
(3) Sample z ← {±1}U uniformly at random.
(4) Let DIVIDE(y) = (B1, B2, · · · , BL). Sample z̃(i) ← NBi,ρ(z) for 1 ≤ i ≤ L.

(5) Return
L∑
i=1

|f(y, z)− f(y, z̃(i))|.

We estimate the probability that procedure 1 returns a number > 15d2 in two dif-

ferent ways. First, we obtain a lower bound from our assumption that
∑
S ̸⊆J

f̂(S)2 ≥

2See remark 3.1.
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µ. Then, we obtain an upper bound from the assumption that E[(f(x)−g(x))2] ≤
δ. These two bounds will contradict each other - and that will prove the theorem.

Lower bound: Fix a y ∈ GOOD. Let DIVIDE(y) = (B1, B2, · · · , BL).

Let w =

√
µ

80L log(k)
. For each i ∈ [L] we have√∑

j∈Bi

f̂y({j})2 ≥ w.

Choose α such that αw =
100d4(2B)k

L
. Our choice of L ensures that α ≤ 1.

Moreover, our choice for influence threshold θ ensures that |f̂y({j})| ≤
w

Kα
for

all j ∈ Bi where K is the universal constant from the Lemma 5.2.
Therefore, we can apply Lemma 5.2 to obtain that

Prz∈{±1}Bi

[∑
j∈Bi

zj f̂y({j}) ≥
100d4(2B)k

L

]
≥ exp(−Kα2) ≥ 1

K1

.

Here K1 = exp(K) is an absolute constant.
By Lemma 5.9 applied on the restriction fy : {±1}U → [0, 1], as we sample

z ← {±1}U u.a.r, ρ← {ρ1, · · · , ρk+1} u.a.r, z̃(i) ← Nρ,Bi
(z), we have that

Pr

[
|f(y, z)− f(y, z̃(i))| ≥ 30d3(2B)k

L

]
≥ 1

K1(k + 1)Bk
≥ 1

(2B)k
.

By linearity of expectation,

E

[∣∣∣∣{i ∈ [L]||f(y, z)− f(y, z̃(i))| ≥ 30d3(2B)k

L

}∣∣∣∣] ≥ L

(2B)k
.

Using Lemma 5.1,

Pr

[∣∣∣∣{i ∈ [L]||f(y, z)− f(y, z̃(i))| ≥ 30d3(2B)k

L

}∣∣∣∣ ≥ L

2× (2B)k

]
≥ 1

2L× (2B)k
.

Observe that∣∣∣∣{i ∈ [L]||f(y, z)− f(y, z̃(i))| ≥ 30d3(2B)k

L

}∣∣∣∣ ≥ L

2× (2B)k
=⇒

∑
i∈[L]

|f(y, z)−f(y, z̃(i))| ≥ 15d3.

We conclude that for all y ∈ GOOD, as z, z̃(1), · · · , z̃(L) are sampled as in Proce-
dure 1,

Pr

∑
i∈[L]

|f(y, z)− f(y, z̃(i))| ≥ 15d3

 ≥ 1

2L× (2B)k
.

Thus, with probability at least
1

2L× (2B)k
, procedure 1 returns a number greater

than 15d3 > 15d2.
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Upper bound: Since E[(f(x)−g(x))2] ≤ δ and Pry∈{±1}[n]\U [y is good] ≥ µ/(3W )k,
we have that

E[(f(x)− g(x))2|x[n]\U is good] ≤ δ

µ
(3W )k.

Now consider a uniformly sampled y ∈ GOOD. Observe that as we sample
z ← {±1}U u.a.r, ρ ← {ρ1, · · · , ρk+1} u.a.r and z̃(i) ← Nρ,Bi

(z), the marginal
distribution of z̃(i) is uniform on {±1}U . By Markov’s inequality, we have

Pr

[
(f(y, z)− g(y, z))2 ≥ 1

L2

]
≤ L2δ

(3W )kµ

and for all i ∈ [L],

Pr

[
(f(y, z̃(i))− g(y, z̃(i)))2 ≥ 1

L2

]
≤ L2δ

(3W )kµ
.

By union bound, the probability that (f(y, z) − g(y, z))2 ≥ 1

L2
or for some i,

(f(y, z̃(i))−g(y, z̃(i)))2 ≥ 1

L2
is at most (L+1)

L2δ

(3W )kµ
≤ 2L3δ

(3W )kµ
. Our choice of

δ ensures that this quantity is less than <
1

2L× (2B)k
. Observe that if none of

these bad events holds, since the block sensitivity of g is bounded above by 6d2

(Theorem 4.5), we have that

∑
i∈[L]

|g(y, z)− g(y, z̃(i))| ≤ 6d2 =⇒
∑
i∈[L]

|f(y, z)− f(y, z̃(i))| ≤ 6d2 + 1 < 15d2.

Thus, we conclude

Pr

∑
i∈[L]

|f(y, z)− f(y, z̃(i))| > 15d2

 <
2L3δ

(3W )kµ
<

1

2L× (2B)k
.

As promised, we get conflicting lower and upper bounds for the probability
that procedure 1 returns a number > 15d2. This is our desired contradiction. □

Now we show that we can improve the tail bound of [7] under the additional
assumption that f has low degree. This follows straightforwardly from Theorem
6.1.

Theorem 6.2. There exists a universal constant C > 0 such that the following
is true:

Let f : {±1}n → [0, 1] be a degree d function. Let θ =
Var[f ]2

dCCk
and J =

{j|Infj[f ] ≥ θ}. If
∑
S ̸⊆J

f̂(S)2 ≥ µ, then
∑
|S|>k

f̂(S)2 ≥ µ

dCCk
.
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Proof. Assume
∑
|S|>k

f̂(S)2 < µ/2 (otherwise we are done). Let C̃ be the universal

constant from Theorem 6.1.

The idea is to apply Theorem 6.1 to the truncated function

f≤k(x) =
∑
|S|≤k

f̂(S)χS(x).

Note that while f≤k is not pointwise bounded, it satisfies E[(f≤k)2] ≤ 1 and
Infj[f

≤k] ≤ Infj[f ] for all j (this is clear from the Fourier expressions). Let
H = {j|Infj[f≤k] ≥ θ}. We have H ⊆ J , so∑

S ̸⊆H

ˆf≤k(S)2 ≥
∑
S ̸⊆J

f̂(S)2 − µ

2
≥ µ

2
.

Applying Theorem 6.1, we get that for any bounded degree d g : {±1}n → [0, 1],

E[(f(x) − g(x))2] ≥ µ

2dC̃C̃k
. Taking g to be our original function f , we get the

desired tail lower bound:

E[(f − f≤k)2] ≥ µ

2dC̃C̃k
=⇒

∑
|S|>k

f̂(S)2 >
µ

2dC̃C̃k
.

Taking C to be a slightly larger constant than C̃, we get that∑
|S|>k

f̂(S)2 ≥ µ

dCCk
.

□

6.2. Random restrictions can be approximated by juntas. In this section
we use the fact that random restrictions have bounded tails to show that they
can be approximated by juntas.

Theorem 6.3. For any constants C̃1, C̃2 > 0, there exist constants C̃3, C̃4, C̃5 > 0
such that the following holds:
Let f : {±1}n → [0, 1] be a degree d polynomial and let ρ be a random restric-

tion with survival probability
log(d)

C̃3d
. With probability at least 1 − d−C̃2 , fρ is a

(d−C̃1Var[f ],Var[f ]−2dC̃4) junta. Moreover, if J denotes the set of coordinates on

which the junta depends, for each j ∈ J we have Infj[f ] ≥ Var[f ]−2d−C̃5.

Proof. We consider a random restriction with survival probability
log(d)

C̃3d
.

By Lemma 5.3, the expected Fourier tail of fρ above level log(d) is at most

exp(−C̃3 log(d)/8)Var[f ] =
Var[f ]

dC̃3/8
. By Markov’s inequality, with probability at

least 1− dC̃3/16, the Fourier tail above log(d) is ≤ Var[f ]

dC̃3/16
. Let C be the constant
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from Theorem 6.2. Let µ =
Var[f ]

dC̃3/16
dCC log(d) =

Var[f ]

dC̃3/16
d2C , θ =

µ2

dCC log(d)
=

µ2

d2C
and J = {j|Infj[fρ] ≥ θ}. Let u : {±1}n → [0, 1] be the junta which reads the
coordinates in J and outputs the average over the coordinates in J c. Choose

C̃3 large enough so that µ ≤ d−C̃1Var[f ]. Applying Theorem 6.2, we see that u

approximates fρ to accuracy d−C̃1Var[f ]. Using the fact that total influence is

bounded by d, we see that u has arity ≤ Var[f ]−2dC
′C̃3 for a universal constant

C ′. Taking (C̃4, C̃5) = (C ′C̃3, C̃3/32− 2C), we are done.
□

6.3. Aaronson-Ambainis conjecture is true for random restrictions.

Theorem 6.4. There exist constants C1, C2 > 0 such that the following holds:
let f : {±1}n → [0, 1] be a degree d polynomial (d ≥ 2) with Var[f ] ≥ 1/d. Let ρ

denote a random restriction with alive probability
log(d)

C1d
. Then,

Pr

[
fρ has a coordinate with influence ≥ Var[f ]2

dC2

]
≥ Var[f ] log(d)

50C1d
.

Proof. Let M be a large constant. Apply Theorem 6.3 with (C̃1, C̃2) = (M,M) to
get constants C̃3, C̃4, C̃5. Let ρ be a random restriction with survival probability
log(d)

C̃3d
. By Lemma 5.4,

E[Var[fρ]] ≥
Var[f ] log(d)

C̃3d

so by Lemma 5.1,

Pr

[
Var[fρ] ≥

Var[f ] log(d)

2C̃3d

]
≥ Var[f ] log(d)

2C̃3d
.

Since Var[f ] ≥ 1/d, d−M ≤ Var[f ] log(d)

10C̃3d
. By Theorem 6.3 and Remark 6.1, with

probability at least 1 − d−M , there exists a Jρ ⊆ [n] such that every coordinate

in Jρ has influence ≥ Var[fρ]
−2d−C̃5 and∑
S ̸⊆Jρ

f̂ρ(S)
2 ≤ d−MVar[f ].

So with probability at least
Var[f ] log(d)

2C̃3d
−d−M ≥ Var[f ] log(d)

4C̃3d
, both these events

(high variance of fρ and existence of Jρ) hold and we have that∑
S⊆Jρ

f̂ρ(S)
2 ≥ Var[fρ]− d−MVar[f ] ≥ Var[f ] log(d)

4C̃3d
.

In particular, we have that Jρ ̸= ϕ. Since for each j ∈ Jρ we have Infj[fρ] ≥
Var[fρ]

−2d−C̃5 , we are done by taking (C1, C2) = (C̃3, 2 + C̃5). □
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7. Conclusions and further directions

In this paper, we showed that if f : {±1}n → {0, 1} is a degree d polynomial,
a large fraction of its random restrictions have an influential coordinate. We
observe that this implies one of the results proven in [11] about the existence of
small sensitive blocks with a slightly different set of parameters.

Let f : {±1}n → [0, 1]. An input x ∈ {±1}n is said to be (r, ϵ) sensitive if there
exists a y such that d(x, y) ≤ r and |f(x)− f(y)| ≥ ϵ. [11] proves the following:

Theorem 7.1. If f : {±1}n → [0, 1] has degree d, then at least Ω(Var[f ]) fraction
of the inputs are (r, ϵ) sensitive where ϵ = poly(Var[f ]/d), r = poly(d, 1/ϵ, log(n))

An immediate consequence of our result is that at least Ω(Var[f ]/dO(1)) fraction
of inputs are (1, ϵ) sensitive where ϵ = poly(Var[f ]/d). Thus, while we lose a bit
in the fraction of sensitive inputs, we gain by letting our block size be exactly 1
instead of poly(d, 1/ϵ, log(n)).

It would be interesting to see if we can extend this to the full Aaronson-
Ambainis conjecture. We describe a potential approach here.

• Given a degree d polynomial f : {±1}n → [0, 1], we can lift it with a
Boolean function g : {±1}m → {±1}n each of whose coordinates gi is
unbiased and given by a low degree function. Then, the lifted polynomial
f⊙g : {±1}m → [0, 1] will be a low degree polynomial. As long as the gi’s
are pairwise independent, the variance of f will be preserved as well. Our
result shows that a large fraction of random restrictions of f ⊙ g have an
influential coordinate. Can we construct g1, g2, · · · , gn appropriately such
that this allows us to conclude f must have an influential coordinate as
well? The gi’s should introduce correlations between the different input
bits of f so that most random restrictions of f⊙gm look the same in some
appropriate sense.
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