
A stronger bound for linear 3-LCC

Tal Yankovitz∗

Abstract

A q-locally correctable code (LCC) C : {0, 1}k → {0, 1}n is a code in which

it is possible to correct every bit of a (not too) corrupted codeword by making

at most q queries to the word. The cases in which q is constant are of special

interest, and so are the cases that C is linear.

In a breakthrough result Kothari and Manohar (STOC 2024) showed that

for linear 3-LCC n = 2Ω(k1/8). In this work we prove that n = 2Ω(k1/4). As

Reed-Muller codes yield 3-LCC with n = 2O(k1/2), this brings us closer to

closing the gap. Moreover, in the special case of design-LCC (into which

Reed-Muller fall) the bound we get is n = 2Ω(k1/3).

∗Tel Aviv University. talyankovitz@mail.tau.ac.il. Supported by ERC starting grant 949499.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 36 (2024)

Contents

1 Introduction 1

1.1 Our result . 1

1.1.1 The special case of designs . 2

1.1.2 Larger alphabets . 2

1.2 Proof overview . 3

1.3 Comparison with [KM23] . 6

1.4 Organization . 6

2 Preliminaries 7

3 Proof 7

3.1 Decoding sequences . 7

3.2 Extended decoding sequences . 9

3.3 Decoding sequences and random sets . 14

3.4 Deducing the bound . 23

A The case of design LCC 26

B Easy claims - proofs 30

C The case of larger alphabets 31

C.0.1 Preliminaries for this section . 31

C.0.2 A bound for special-form LCC . 32

C.0.3 From LCC to special-form LCC . 35

D Proof sketch for Fact 2.3 and Fact C.4 36

1 Introduction

A q-locally correctable code (q-LCC) is a code in which every bit of the codeword - veiled

by access to a noisy version of it - can be corrected by making at most q queries to the

noisy word. A q-locally decodable code (q-LDC) is a code in which every bit of the message

can be decoded by making at most q queries to the accessible word. More formally,

Definition 1.1. An injective C : {0, 1}k → {0, 1}n is a (q, δ, ε)-LCC ((q, δ, ε)-LDC), for

ε < 1/2, if there exists a randomized procedure that takes as input j ∈ [n] (respectively,

i ∈ [k]), gets oracle access to z ∈ {0, 1}n at relative Hamming distance at most δ from

C(x) for some x, and in making at most q queries to z, and with probability at least 1−ε:

its output is equal to C(x)j (respectively, xi). We say that C is linear if it is a linear map.

LCCs in the regime in which q and δ are constant are of special interest, and the central

question is how small n can be compared to k. Within this regime, in the case that q = 2

there are tight upper and lower bounds [GKST02, KdW04], showing that n = 2Θ(k). For

every larger q ≥ 3, polynomial lower bounds are known [KT00, KdW04, Woo07] while the

best upper bounds are exponential. In an exciting development, [KM23] proved a much

stronger lower bound in the case that q = 3, showing that

Theorem 1.2 ([KM23]). Let C : {0, 1}k → {0, 1}n be a linear (3, δ, ε). Then n =

2Ω(δ2k1/8).

Besides the strong bound their result also established a separation between 3-LCCs

and 3-LDCs, as 3-LDCs with n = 2k
o(1)

are known [Yek08, Efr09].

The methods [KM23] use in obtaining the bound are based on spectral refutations

via Kikuchi matrices constructed from XOR formulas obtained by long chain derivations.

The Kikuchi matrix method was also used in obtaining a better bound in the case of

3-LDC [AGKM23].

As noted by [KM23] the state of the art upper bound for q = 3 LCC is achieved by

binary Reed-Muller codes, yielding

n = 2O(k1/2),

while having a constant δ.

1.1 Our result

In this work we prove the following.

Theorem 1.3. Let C : {0, 1}k → {0, 1}n be a linear (3, δ, ε)-LCC. Then n = 2Ω(δ1/2k1/4).

1

We remark that besides k the expression has a stronger dependence on δ. The proof

only relies on elementary facts and the [GKST02] bound. While inspired by clever ideas

of [KM23] the viewpoint of the proof is different and diverging from [KM23], our approach

goes via constructing asymmetric decoding sequences.

1.1.1 The special case of designs

In the special case of design 3-LCCs we get a better bound. We define design LCC as

follows.

Definition 1.4. We say that a (q, δ, ε)-LCC is a design LCC if there exists a randomized

procedure satisfying the requirements in Definition 1.1 and further: For every distinct pair

of coordinates a, c ∈ [n], there are at most O(1) j’s such that a and c can both be queried

by invoking (once) the procedure to correct j.

In other words, design LCCs are LCCs in which learning about any pair of coordinates

sampled to be queried by the correction procedure almost reveals the identity of the

coordinate being corrected (upto O(1) options).1

Fact 1.5. Reed-Muller codes are design LCCs.2

Theorem 1.6. Let C : {0, 1}k → {0, 1}n be a linear (3, δ, ε)-design LCC. Then n =

2Ω(δ2/3k1/3).

Thus in the state of affairs we get, in the case of 3-design LCC, the gap is smaller.

1.1.2 Larger alphabets

The definition of LCC can be naturally generalized to fields other than F2. [KM23] give a

generalized version of their bound for the cases of fields other than F2. We do so as well,

and get the following generalization.

Theorem 1.7. For any field F, let C : Fk → Fn be an F-linear (3, δ, ε)-LCC. Then

n = 2
Ω(δ

1/2k1/4

|F|1/2
)
.

The generalized LCC definition and the proof for Theorem 1.7 are in the appendix.

1For fields with characteristic 0 (and fields with very large characteristic) there are strong bounds

[BDYW11, DSW14, DGOS18] on equivalents of linear design q-LCC, over these fields.
2In our definition: for constant q’s.

2

1.2 Proof overview

We turn to give a high level overview of the elements of the proof. Assume that C :

{0, 1}k → {0, 1}n is a linear (3, δ, ε)-LCC.

Decoding sets. For a coordinate j ∈ [n] and a set Q ⊆ [n] we say that Q determines j

if C(x)j =
∑

j′∈QC(x)j′ ∀x ∈ {0, 1}k . It is well known that a linear (q, δ, ε)-LCC induces

m = δn
q
sets {Qj

w}j∈[n],[w∈m] such that for every j, {Qj
w}[w∈m] are disjoint subsets of [n] of

size at most q, which determine j. We call the sets {Qj
w}j∈[n],[w∈m] decoding sets.

Decoding sequences. We can use the decoding sets to generate many more decoding

sequences of any length s. We assume without loss of generality that every query set is

of size exactly 33, and we arbitrarily divide each query set Qj
w into three designated parts

Qj
w = {A(j;w), B(j;w), c(j;w)}. Given r ∈ [m]s, which is a “set of instructions”, we

construct two longer decoding sequences A(j; r) ∈ [n]s, B(j; r) ∈ [n]s, and c(j; r) ∈ [n] to

which we call a reminder. These are defined by A(j; r) = A(j; r1) ◦ A(c(j; r1); r2, . . . , rs),
B(j; r) = B(j; r1) ◦ B(c(j; r1); r2, . . . , rs) and c(j; r) = c(c(j; r1); r2, . . . , rs). It is easy to

see that because of the promise that the query sets {A(j;w), B(j;w), c(j;w)}w determine

j,

C(x)A(j;r) + C(x)B(j;r) + C(x)c(j;r) = C(x)j, ∀x ∈ {0, 1}k, (1.1)

where for a sequence D = (d1, . . . , ds) ∈ [n]s, C(x)D := C(x)d1 + . . . + C(x)ds . From

here on we fix some s to be the length of the sequences. We say that the sequences are

asymmetric because when using them A and c will be used as one part, and B will be the

other.

Extended decoding sequences. For the argument to work we will need to handle

the case of repeated suffixes. A suffix of a decoding sequence involves only the “A part”

decoding sequence and the reminder c. For any g ≥ 1, Ã ∈ [n]s−g and c ∈ [n], the degree

of the suffix (Ã; c) is the number of j′’s such that A(j′; r′) = Ã and c(j′; r′) = c for some

r′ ∈ [m]s−g. It can be checked that if the query sets are such that every pair of distinct

a, c ∈ [n] is contained in at most one query set Qj
w, then the degree of every (Ã; c) is

at most 1, however this may not be the case with the query sets of C. The aim in the

proof is to argue that there are many “different” ways to deduce each j ∈ [n], and while

repeated suffixes may pose a problem, they can also be useful. If there is a specific decoding

sequence which contains a suffix (Ã; c) for Ã ∈ [n]s−g and c ∈ [n] with a high degree, we can

use this fact to generate on base of this decoding sequence - more decoding sequences - as

3As we can add zero coordinates and use them to extend the sets, at most doubling n.

3

many more as the degree, having each one of them posses a different reminder (this raises

the probability that a random set of coordinates is useful for decoding j). More specifically,

if we start with the decoding sequence A = A(j; r), B = B(j; r), c = c(j; r), for r ∈ [m]s,

and A = (A1, . . . , Ag, Ag+1, . . . , As) where Ã = (Ag+1, . . . , As; c) is of high degree, then we

can take any j′ ∈ [n] for which there exists r′ ∈ [m]s−g such that A(j′; r′) = (Ag+1, . . . , As)

and c(j′; r′) = c, and replace in A(j; r) the part (Ag+1, . . . , As) with B(j′; r′), and replace

c(j; r) with j′. That is, part of the A-part of the suffix turns into a B-part of a different

decoding sequence, and the reminder is switched with the starting point of a sequence.

Note that the length of the sequence is unchanged. We see that every choice among the

different j′’s gives us a different reminder. It can be checked that as the suffix was shared,

we maintained the property stated in (1.1) - that is, that the obtained sequence still

determines j. We remark, however, that there is some cost to doing this - if we do this

for suffixes with too low degree, we may end up making the reminder more predictable

rather than less, and so there is benefit in doing this only if the degree is above a certain

threshold.

The asymmetric graph. For the high level explanation of this part we will ignore

and rest aside the problem of repeated suffixes and so we will assume decoding sequences

rather than extended decoding sequences. Let ℓ be a parameter. For every j ∈ [n] we

construct a bipartite graph Gj which on the left side has a vertex set
(
[n]
ℓ

)s × [n] and on

the right side has a vertex set
(
[n]
ℓ

)s
. The set of vertices will be the same for every j,

but the edges will be j-dependent. Fix some j. The edges of Gj are colored with colors

r ∈ [m]s4 and the total number of edges is the sum of the number of edges of each color.

For a certain color r ∈ [m]s, we put an edge of color r between (L, h) = ((L1, . . . , Ls), h)

of the left side and L′ = (L′
1, . . . , L

′
s) of the right side if A(j; r)1 ∈ L1, . . . , A(j; r)s ∈ Ls,

c(j; r) = h, B(j; r)1 /∈ L1, . . . , B(j; r)s /∈ Ls
5, and

L′ = ((L1 \ {A(j; r)1}) ∪ {B(j; r)1}, . . . , (Ls \ {A(j; r)s}) ∪ {B(j; r)s}).

Notice that such an edge (((L1, . . . , Ls), h), (L
′
1, . . . , L

′
s)) will satisfy that

C(x)L1 + . . .+ C(x)Ls + C(x)L′
1
+ . . .+ C(x)L′

s
+ C(x)h = C(x)j ∀x ∈ {0, 1}k (1.2)

by Equation (1.1).

4In fact, if there are repeated suffixes, we also have colors that say which reminder we take when

“switching” according to the repeated suffix. But we ignore this in describing the graph in this overview.
5We can assume that the color satisfies A(j; r)t ̸= B(j; r)t so the condition can be true, but in fact

we do things a bit differently in the technical part and so this assumption will not be needed.

4

We would like to argue that there are many edges in Gj and that they are “different”

in some way from one another. We cannot hope to show that there is a large matching,

since the graph is asymmetric. However, as a first step, we will argue that there are indeed

many edges, Θ
(
ms
(
ℓ
n

)s (n
ℓ

)s)
, and that - in a good choice of ℓ and s - it holds that a

constant fraction among them are edges that only touch two vertices whose degree is close

to the average degree of their side. On the left side the average degree is Θ(ms 1
n

(
ℓ
n

)s
) and

on the right side it is Θ(ms
(
ℓ
n

)s
).6 Arguing that there are many edges touching vertices

with degree close to the average degree on the left part will require care, and is where the

problem with repeated suffixes arises. The key to showing this is to argue that this holds

separately within each color.

Finally, we construct another bipartite graph G′
j from Gj, for every j ∈ [n], as follows.

We maintain the left vertices of G′
j, and for the right side - we duplicate every vertex to

have n copies - so that G′
j is balanced. As for the edges, we only consider edges of Gj

whose both endpoints have a degree that is close to the average. For every vertex on the

right side in Gj, we distribute evenly its edges - that we considered - among the n copies

of the vertex in G′
j. In that way, a vertex which originally had degree close to ms

(
ℓ
n

)s
will now have degree close to 1

n
ms
(
ℓ
n

)s
, like the vertices on the left side which already

had degree close to ms 1
n

(
ℓ
n

)s
. Since we considered Θ

(
ms
(
ℓ
n

)s (n
ℓ

)s)
edges of Gj, and in

defining their induced edges in G′
j - we used each edge once, then G′

j has Θ
(
ms
(
ℓ
n

)s (n
ℓ

)s)
edges, and maximal left and right degrees close to ms 1

n

(
ℓ
n

)s
, it follows that G′

j contains

a large matching.

Bounding k. Recall that the vertices ofG′
j are the same for every j ∈ [n], on the left side

each vertex is of the form ((L1, . . . , Ls), h), on the right side each vertex is ((L′
1, . . . , L

′
s), t)

where t is the copy number, and that for every edge e in G′
j and every C(x), the total sum

of the coordinates of C(x) corresponding to both endpoints of e is equal to C(x)j (note

that t is just a copy number, not a coordinate, and it doesn’t affect the summation).

Hence, we will define a code C ′ : {0, 1}k → {0, 1}N “on” the vertices of {G′
j}j, with

N = 2
(
n
ℓ

)s
n, given by

C ′(x)(L1,...,Ls,h) = C(x)L1 + . . .+ C(x)Ls + C(x)h

and

C ′(x)(L′
1,...,L

′
s,t) = C(x)L′

1
+ . . .+ C(x)L′

s
.

6Notice that, in particular, it cannot be true that there are many such edges if ms 1
n

(
ℓ
n

)s ≪ 1, as in

such a case every edge contradicts the requirement. Since m ≈ δn, we see that (δℓ)s cannot be much

smaller than n, and so max(ℓ, s) ⪆ log n. Notice that this is a result of the 1
n factor - which is present

because of the “imbalanced” nature of the graph - but when s ≥ log n the “imbalance” becomes less

meaningful, and smaller choices of ℓ become possible.

5

As C is injective we can assume without loss of generality that for every i ∈ [k], C(x)i =

xi
7. Since there is a large matching in each G′

j for every j ∈ [n], there is in particular a

large matching in G′
i for every i ∈ [k]. And so, for every i ∈ [k] there is a large number

of disjoint pairs of coordinates of C ′ which determine i (and thus, xi), by Equation (1.2),

and it follows that C ′ is a 2-LDC. It is only left to apply the bound of [GKST02] to the

get the result.8

1.3 Comparison with [KM23]

It is somewhat hard to compare exactly the proof of [KM23] and the proof we give here

since the two proofs differ in viewpoints. The [KM23] Kikuchi method proof utilizes some

tools that we do not use here (such representing via XOR instances, bounding the spectral

norm, computing some partial derivatives, etc). The proof in the viewpoint we give here

is combinatorical and only uses elementry facts. Yet there are similar points made in

both arguments and our argument is inspired by the clever ideas of [KM23]. The long

chain-derivation idea employed by [KM23] is of course similar to the decoding sequences

we use. The issue with heavy pairs which arises in the [KM23] argument is like the issue

with repeated suffixes here. The handling of [KM23] for the issue is by their constructing

of contiguously regular partitions, and while there are differences in the handling, we

employed a threshold check similar to the one incorporated there. We add that we do

not partition [k] into two sets as is done in [KM23] (in a part that could be interpreted

as partitioning the message into two sets and zeroing one of the sets). The “asymmetric”

part here is taking a different approach compared to [KM23].

1.4 Organization

In Section 3.1 we define Decoding sequences. In Section 3.2 we define Extended decoding

sequences and prove needed claims regarding them. In Section 3.3 we define the asymmet-

ric graph, and argue for the existence of a large matching in the final graph. In Section 3.4

we define a 2-LDC code on top of the constructed graph, and deduce the bound. In the

appendix, Appendix A, we analyze the case of 3-design LCC. In Appendix C we prove

the generalized bound for larger alphabets.

7It is a well known fact that a linear code can be made systematic.
8If the “large matching” is in fact of size Ω(N), the [GKST02] bound implies that k is logarithmic in

the length of the code, N , and so we want logN ≈ ℓ · s · log n to be small. One limitation on how small

s and ℓ can be is discussed in a previous footnote. Moreover, in fact we will argue for the existence of a

matching of a size that is slightly smaller than Ω(N).

6

2 Preliminaries

Notations. All logarithms in this paper are taken to the base 2. The set of natural

numbers is N = {0, 1, 2, . . .}. For n ∈ N, n ≥ 1, we use [n] to denote the set {1, . . . , n}.
We denote by

(
[n]
ℓ

)
the set of subsets of [n] of size ℓ. We use F to denote a field, and Fq

to specify that it is of size q. For a sequence D ∈ {0, 1}s and a set S = {h1, . . . , ht} ⊆ [s]

for h1 < . . . < ht we denote by DS the sequence at locations h1, . . . , ht. If S = ∅ then

DS = ε is the empty sequence. We will also write Dh1,...,ht as short for D{h1,...,ht}. We use

◦ to denote the concatenation of two sequences. We use IA to denote an indicator random

variable, supported on {0, 1}, for the event A.

We will need the following fact, that says that for a linear code there is a systematic

encoding.

Fact 2.1. For every linear injective C : Fk → Fn there is a linear C̃ : Fk → Fn such that

Img(C) = Img(C̃), and there are j1, . . . , jk ∈ [n] such that for every i ∈ [k] C̃(x)ji = xi∀ x.

We will make use of the [GKST02] bound for 2-LDCs.

Theorem 2.2 ([GKST02]). Let C : {0, 1}k → {0, 1}n be a linear map such that for

every i ∈ [k] there is a set of δcn disjoint pairs of coordinates {u, v} ⊆ [n] such that

xi = C(x)u + C(x)v ∀x. Then k = O(1
δc
log n).

We will also need the following well known fact regarding LCCs.9

Fact 2.3. Let C : {0, 1}k → {0, 1}n be a linear (q, δ, ε)-LCC. Then there exist sets

{Qj
w}j∈[n],w∈[m] for m ≥ δn/q such that for every j ∈ [n] the sets Qj

w |w∈[m] are disjoint

subsets of [n] of size at most q, each satisfying that C(x)j =
∑

j′∈Qj
w
C(x)j′ ∀x ∈ {0, 1}k.

A proof sketch for Fact 2.3 is found in the appendix, for completeness.

3 Proof

3.1 Decoding sequences

We start by defining decoding sequences, which are composed of two sequences of length

s, the A-part, the B-part, which are both sequences of n coordinates, and of a reminder

c which is a single coordinate.

9See a similar statement by [KT00] for the case of LDCs.

7

First, we assume that we are given n ∈ N and m ≤ n and nm sets Qj
w ⊆ [n] |j∈[n],w∈[m],

such that each set is of size exactly 3.10 We will assume that it’s possible to order each

set such that it is composed of three designated elements, {A(Qj
w), B(Qj

w), c(Q
j
w)} = Qj

w,

satisfying the following guarantee:

(*) For every j ∈ [n], w ̸= w′ and D ∈ {A,B, c}, D(Qj
w) ̸= D(Qj

w′).

Note that if for every j the sets {Qj
w}w∈[m] are known to be disjoint, in particular the

guarantee is satisfied by any arbitrary ordering.

Definition 3.1 (Decoding sequences). For every s ≥ 0 we will define three functions

A : [n]× [m]s → [n]s,

B : [n]× [m]s → [n]s,

c : [n]× [m]s → [n].

The definition is inductive. For s = 0, r ∈ [m]s and j ∈ [n]

A(j; r) = ε,

B(j; r) = ε,

c(j; r) = j,

where ε is the empty sequence. For s > 0, r ∈ [m]s and j ∈ [n]

A(j; r) = A(Qj
r1
) ◦ A(c(Qj

r1
); r2,...,s),

B(j; r) = B(Qj
r1
) ◦B(c(Qj

r1
); r2,...,s),

c(j; r) = c(c(Qj
r1
); r2,...,s).

We will require the following easy claim which considers how many sequences satisfy

a set of constraints.

Claim 3.2. For every j ∈ [n], S ⊆ [s] and E ∈ [n]s,

|{r ∈ [m]s | A(j; r)S = ES}| ≤ ms−|S|.

|{r ∈ [m]s | B(j; r)S = ES}| ≤ ms−|S|.

In particular, for every j ∈ [n], A(j; ·) and B(j; ·) are injective.

Proof. Follows directly from Definition 3.1 and the guarantee (*).
10In this part (and the two following) we only make structural definitions and claims based on the

given sets {Qj
w}. But it will be good to notice that the definition of decoding sequences that we give next

is tailored to be useful for decoding, assuming that {Qj
w} are.

8

3.2 Extended decoding sequences

We turn to define extended decoding sequences, in order to handle repeated suffixes. For

what comes next, we fix some s and some f ≥ 1. We will need the following definitions.

Definition 3.3. Let h ≥ 0, A ∈ [n]h and c ∈ [n]. We define

J(A; c) = {j ∈ [n] | ∃r ∈ [m]h A(j; r) = A, c(j; r) = c}

and

deg(A; c) = |J(A; c)|.

That is, J defines the set of indices for which there is a sequence whose A-part and c

are equal to a given suffix (A; c), and the degree of (A; c) is the number of these indices.

Definition 3.4. Define for every g ∈ [s]

Rg(j) =
{
r ∈ [m]s | deg(A(j;r)g+1,...,s;c(j;r))≥fs−g∧

∀g′∈{1,...,g−1}:deg(A(j;r)g′+1,...,s;c(j;r))≤fs−g′

}
.

In words, Rg(j) is the set of instructions which result in a sequence with a common

suffix starting from position g+1, and for every location closer to the start of the sequence,

the suffix is uncommon. By common we mean that the degree of the suffix crosses a

threshold which depends on where the suffix starts: we check if the degree is at most

f s−g.

We argue that there is (at least) oneRg than contains many of the possible instructions.

That is, there is an Rg which induces many sequences.

Claim 3.5. For every j ∈ [n] there exists some g ∈ [s] such that |Rg(j)| ≥ 1
s
ms.

Proof. For every r ∈ [m]s, there is at least one g = g(r) ∈ [s] such that r ∈ Rg(j). This

holds as for g = 1 the second condition

∀g′ ∈ {1, . . . , g − 1} = ∅ : deg(A(j; r;)g′+1,...,s, c(j; r)) ≤ f s−g′

is always (trivially) met. Hence, if g = 1 also satisfies the first condition

deg(A(j; r;)g+1,...,s, c(j; r)) ≥ f s−g

we can take g(r) = 1. If otherwise, then g = 2 always satisfies the second condition, and

if it also satisfies the first we can take g(r) = 2. And so on. Notice that for g = s the first

condition is always met, since

1 = deg(ε; c(j; r)) = deg(A(j; r)g+1,...,s; c(j; r)) ≥ f s−g = 1,

and therefore the described procedure must halt.

Since there are ms r’s and each one is a member of at least one of the s Rg(j)’s, the

claim follows.

9

When we will use extended decoding sequences (which we have not yet defined), we

will do it with respect to one specific g (for each j ∈ [n]) that satisfies the above claim.

Before we turn to define extended decoding sequences we need to handle another

matter as set up. In the above we defined Rg(j) to correspond to sequences in which

that g-th suffix is repeated at least f s−g times (among suffix sequences of length s − g).

We wish to reduce to the case that each such suffix is repeated exactly f s−g times, and

towards that we will require the following definitions. We will later cut a part of J(A; c)

to achieve this - but we start with assuming that we are given a subset of J(A; c) which

is of size that is a multiple of f s−g (we will next denote this subset byJg(j;A; c)).

A remark for first time reading. The next definition will make a few somewhat long

notations. A first time reader may be advised to only skim through this definition (and

the related claim Claim 3.7 that follows it) and to go back to it after reading Section 3.3.

For the reader who opts to doing so it should be helpful to know that in the claim

following the definition, Claim 3.7, we define a set of “good enough” instruction sets

R̃g(j) ⊆ Rg(j) ⊆ [m]s and argue that it is large enough - we will only consider sequences

induced by instructions r from this set (rather than [m]s).

Definition 3.6. Let j ∈ [n], g ∈ [s], A ∈ [n]s−g and c ∈ [n] be such that deg(A; c) ≥ f s−g,

and further let Jg(j;A; c) ⊆ J(A; c) be a subset (chosen specifically for j and g) of size

which is a multiple of f s−g.

• We arbitrarily partition Jg(j;A; c) into parts of size f s−g, and we assume that each

part has an arbitrary fixed order.

• For every c′ ∈ Jg(j;A; c), we define P (j; c′;A; c) to be the part of the partition to

which c′ belongs.

• Furthermore, for every z ∈ [f s−g] we denote by P (j; c′;A; c)z the z-th element of the

part P (j; c′;A; c).

• Lastly, we will denote by T (j; c′;A; c)z the (unique) sequence r ∈ [m]s−g for which

A(P (j; c′;A; c)z; r) = A(and c(P (j; c′;A; c)z; r) = c).

Intuitively, splitting each Jg(j;A; c) into parts {P (j; c′;A; c)}c′ of size exactly f s−g will

allow us to fall back to the case that J(A; c) had been of size f s−g to begin with. We

will need to be able to address a specific index within each such part, and so we set the

notation P (j; c′;A; c)z. As for the last defined notation T (j; c′;A; c)z, recall that the way

J(A; c) is defined is by taking all indices c′ for which there is some instruction sequence

10

r that results in a specific common suffix (A; c) - we want to be able to address this r by

virtue of which c′ is in J(A; c), and in P (j; c′;A; c).

We are almost done with the setup - it is only left to explain how we cut J(A; c) to

be of a right size, as we have assumed, without losing too many of our sequences: We

will assume that the subsets Jg(j;A; c) ⊆ J(A; c) mentioned in the previous definition are

such who satisfy the following claim.11

Claim 3.7. For every j ∈ [n] and g ∈ [s], there exist subsets Jg(j;A; c) ⊆ J(A; c) ∀A, c,
of sizes that are a multiple of f s−g, such that the set

R̃g(j) := {r ∈ Rg(j) | c(j; r1,...,g) ∈ Jg(j;A(j; r)g+1,...,s; c(j; r))}

is of size at least 1
2
|Rg(j)| (Recall that by the definition of J(A; c) it is known that

c(j; r1,...,g) ∈ J(A(j; r)g+1,...,s; c(j; r))).

Proof. Fix j ∈ [n] and g ∈ [s]. For every A, c and every c′ ∈ [n] set countA,c(c
′) = |{r ∈

Rg(j) | c(j; r1,...,g) = c′ ∧ A(j; r)g+1,...,s = A ∧ c(j; r) = c}|. For every A, c we sort J(A; c)

in descending order of countA,c(c
′) (for c′ ∈ J(A; c)) and take Jg(j;A; c) to be the first

|J(A; c)| − (|J(A; c)| mod f s−g) elements. Note that for every A, c such that |J(A; c)| ≥
f s−g, |Jg(j;A; c)| ≥ 1

2
|J(A; c)|. As for every r ∈ Rg(j), |J(A(j; r)g+1,...,s; c(j; r))| ≥ f s−g,

and as we sorted J(A; c) from the most used (as c(j; r1,...,g) for r ∈ Rg(j) | A(j; r)g+1,...,s =

A ∧ c(j; r) = c) to the least used, the claim follows.

We can now finally define extended decoding sequences, which are dependent on which

g is chosen to be used.

A remark for first time reading. A reader that only skimmed through Definition 3.6

(see previous remark) may also only skim through the definition of cg and Ag below (which

depend on Definition 3.6).

Definition 3.8 (Extended decoding sequences). We extend Definition 3.1 by defining

three more functions for every g ∈ [s]

Ag : [n]× R̃g(j)× [f s−g] → [n]s,

Bg : [n]× R̃g(j)× [f s−g] → [n]s,

cg : [n]× R̃g(j)× [f s−g] → [n].

11The reason that we “lose” sequences in cutting J(A; c) is that it will come with disallowing sequences

that pass through the cut indices (dependent on the suffix (A; c); see next definition).

11

as follows

cg(j; r; z) = P
(
j; c(j; r1,...,g);A(j; r)g+1,...,s; c(j; r)

)
z
,

Ag(j; r; z) = A(j; r)1,...,g ◦B
(
cg(j; r; z);T

(
j; c(j; r1,...,g);A(j; r)g+1,...,s; c(j; r)

)
z

)
Bg(j; r) = B(j; r).

12

In our use of extended decoding seqeunces in the next section, we will need to be able

to bound the number of sequences that are “close” to some sequence, and for that we have

the following definitions and two claims. In the case of the A-part, we will specifically

consider the case that the sequence is close to some other sequence, and that the reminders

are equal.

Definition 3.9. For j ∈ [n], g ∈ [s], A ∈ [n]s, B ∈ [n]s, c ∈ [n] and S ⊆ [s] define

Rg(j, A, S, c) = {(r, z) ∈ R̃g(j)× [f s−g] | Ag(j; r; z)S = AS ∧ cg(j; r; z) = c},
Rg(j, B, S) = {r ∈ R̃g(j) | Bg(j; r)S = BS}.

That is, given a set S of “constraints” we count either how many sequences there are

that agree with a given A on S, and have specific reminder, or how many sequences there

are whose B-part agrees with a given sequence on B on S (without a requirement on the

reminder).

Claim 3.10.

|Rg(j, A, S, c)| ≤

ms−|S| if [g] ⊆ S

ms−|S|−1f s−max([g]\S) else.

A remark for first time reading. A reader that only skimmed through Definition 3.6

and the definitions of cg and Ag may also only skim through the proof for Claim 3.10. After

reading Section 3.3 the motivation for Claim 3.10 should be clear - and so Definition 3.6,

the definitions of cg and Ag and the proof Claim 3.10 can be thoroughly read afterwards.

12In words, opening up the definitions of P (·)z and T (·)z: cg and Ag take as input an extra instruc-

tion z ∈ [fs−g], beside the instructions r. This instruction determines which member j′ of the part

P
(
j; c(j; r1,...,g);A(j; r)g+1,...,s; c(j; r)

)
is taken to be the new reminder. The new A-part is achieved by

maintaining the original A-part upto location g, and the locations g+1, . . . , s are replaced with the B-part

of the sequence starting from j′, using the same instruction sequence r′ for which A(j′; r′) = A(j, r)g+1,...,s

and c(j′; r′) = c(j; r). Bg remains the same as the original B and doesn’t take an extra instruction z.

12

Proof for Claim 3.10. Consider r ∈ R̃g(j), z ∈ [f s−g] such that Ag(j; r; z)S = AS and

cg(j; r; z) = c. Note that it is enough to bound the number of options for r, since for

every possible r, the constraint cg(j; r; z) = c determines z.

Note first that:

(**) There are at most ms−g−|S∩{g+1,...,s}| options for

B

(
cg(j; r; z);T

(
j; c(j; r1,...,g);A(j; r)g+1,...,s; c(j; r)

)
z

)
and A(j; r)g+1,...,s.

Indeed, this follows by Claim 3.2, as we have a B-part sequence of length s− g, subjected

to |S ∩ {g + 1, . . . , s}| constraints, and cg(j; r; z) = c is fixed. Moreover, for every such

option for B

(
cg(j; r; z);T

(
j; c(j; r1,...,g);A(j; r)g+1,...,s; c(j; r)

)
z

)
there is only one option

for A(j; r)g+1,...,s = A

(
cg(j; r; z);T

(
j; c(j; r1,...,g);A(j; r)g+1,...,s; c(j; r)

)
z

)
and c(j; r) =

c

(
cg(j; r; z);T

(
j; c(j; r1,...,g);A(j; r)g+1,...,s; c(j; r)

)
z

)
.

We proceed by analyzing the two cases of the argued inequality.

1. If [g] ⊆ S. Since A(j; r)[g] is fixed, every option for A(j; r)g+1,...,s determines A(j; r),

and by Claim 3.2, it also determines r. Hence in this case by (**)

|Rg(j, A, S, c)| ≤ ms−g−|S∩{g+1,...,s}| = ms−|S|.

2. If [g] ⊈ S, set g′ = max([g] \ S). First, note that again by Claim 3.2, there are at

most mg′−1−|S∩{1,...,g′−1}| options for A(j; r)1,...,g′−1 = Ag(j; r; z)1,...,g′−1 as it is an A-

part sequence of length g′−1 subjected to |S∩{1, . . . , g′−1}| constraints. Secondly,
we argue that for every option for A(j; r)g+1,...,s and c(j; r) (and recall that by (**)

there are at most ms−g−|S∩{g+1,...,s}| such) the number of options for c(j; r1,...,g′) is at

most f s−g′ .

To see this, we first note that by the choice of g′, A(j; r)g′+1,...,g = Ag(j; r; z)g′+1,...,g

is fixed as {g′ + 1, . . . , g} ⊆ S, and so every option for A(j; r)g+1,...,s determines

A(j; r)g′+1,...,s. Secondly we, again, consider two cases - for the location of g′, and

see that the number of options for c(j; r1,...,g′) is at most f s−g′ in both of them:

(a) If g′ < g. Since R̃g(j) ⊆ Rg(j), deg(A(j; r)g′+1,...,s; c(j; r)) ≤ f s−g′ , by the

definition of Rg(j). Furthermore, c(j; r1,...,g′) ∈ J(A(j; r)g′+1,...,s; c(j; r)) which

is of size deg(A(j; r)g′+1,...,s; c(j; r)). Hence, there are at most f s−g′ options for

c(j; r1,...,g′).

13

(b) If g′ = g. Since c(j; r1,...,g) ∈ P (j; c;A(j; r)g+1,...,s; c(j; r)) (since it is a part of a

partition to which both c and c(j; r1,...,g) belong), and |P (j; c;A(j; r)g+1,...,s; c(j; r))| =
f s−g, there are at most f s−g options for c(j; r1,...,g).

Thus, we conclude that there are at mostmg′−1−|S∩{1,...,g′−1}| options forA(j; r)1,...,g′−1,

at most ms−g′−|S∩{g′+1,...,s}| options for A(j; r)g′+1,...,s - and for every fixing of these

options - at most f s−g′ options for c(j; r1,...,g′). Notice that if A(j; r)1,...,g′−1 is given,

then c(j; r1,...,g′−1) is known (as r1,...,g′−1 is known). If c(j; r1,...,g′−1) is known then for

every option for c(j; r1,...,g′) there is one option for A(j; r)g′ (since knowing c(j; r1,...,g′)

further determines rg′). Hence, there are at most mg′−1−|S∩{1,...,g′−1}| options for

A(j; r)1,...,g′−1, at most ms−g′−|S∩{g′+1,...,s}| options for A(j; r)g′+1,...,s - and for every

fixing of these - at most f s−g′ options for A(j; r)g′ . We conclude that in the case

that [g] ⊈ S:

|Rg(j, A, S, c)| ≤ mg′−1−|S∩{1,...,g′−1}|ms−g′−|S∩{g′+1,...,s}|f s−g′

=ms−1−|S∩{1,...,s}|f s−g′

ms−1−|S|f s−g′ ,

where we used the fact that g′ /∈ S by its definition.

We have thus shown the two cases of the inequality, and the claim follows.

The following claim bounds the sequences that are close to the B-part.

Claim 3.11.

|Rg(j, B, S)| ≤ ms−|S|.

Proof. follows directly from Claim 3.2.

3.3 Decoding sequences and random sets

In this part we will define a bipartite graph for every j ∈ [n], whose edges will correspond

to extended decoding sequences of j and so they can be used in correcting j. The aim is

to show that each such graph contains a large matching.

Before we define these graphs, we require some set up. Again in this subsection we

assume n ∈ N and m ≤ n. We will also assume nm sets {Qj
r}j∈[n],r∈[m] which are as in

Section 3.1, and satisfy guarantee (*). Further, we fix s and ℓ to be some parameters to

be chosen later, and we will assume that ℓ = o(n) and

s = O
(n
ℓ

)
. (3.1)

14

We set

f = e0

(
1 +

mℓ

n

)
(3.2)

for a small enough universal constant e0 < 1. Moreover we will assume that s, ℓ satisfy(
e0

(
1 +

mℓ

n

))s

> m. (3.3)

For every j ∈ [n] we choose g(j) ∈ [s] to be one that satisfies Claim 3.5 with respect to s,

f (and j). In a slight abuse of notation we will write g as short for g(j) but it will always

be in contexts where j is specific.

We now define a relation which we will use in defining the edges of the graphs, and a

couple of notations.

Definition 3.12. Let

A = (a1, . . . , as) ∈ [n]s, B = (b1, . . . , bs) ∈ [n]s, c ∈ [n],

L = (L1, . . . , Ls, Ls+1) ∈
(
[n]

ℓ

)s

× [n], L′ = (L′
1, . . . , L

′
s) ∈

(
[n]

ℓ

)s

.

We write A ⊆ L if a1 ∈ L1, . . . , as ∈ Ls, B ⊆ L′ if b1 ∈ L′
1, . . . , bs ∈ L′

s; c ⊆ L if Ls+1 = c.

Further, we write L ∼A,B,c L
′ if A, c ⊆ L and

L′
1 = (L1 \ {a1}) ∪ {b1}, . . . , L′

s = (Ls \ {as}) ∪ {bs} (3.4)

(which implies B ⊆ L′). Moreover, we write (B \ A) ∩ L = ∅ if for every h ∈ [s], if

ah ̸= bh, bh /∈ Lh. Similarly, we write (A \ B) ∩ L′ = ∅ if for every h ∈ [s], if ah ̸= bh,

ah /∈ L′
h. We note that if L ∼A,B,c L′ and L,L′ are from the above sets, it follows that

(B \ A) ∩ L = ∅ as otherwise some L′
h would have been of size smaller than ℓ, and also

that (A \B) ∩ L′ = ∅ (which follows directly from Equation (3.4)).

We also define two probabilities.

Definition 3.13. For r ∈ R̃g(j), z ∈ [f s−g],

pgA(j; r; z) = Pr
L
[Ag(j; r; z), cg(j; r; z) ⊆ L ∧ (Bg(j; r) \ Ag(j; r; z)) ∩ L = ∅]

pgB(j; r; z) = Pr
L′
[Bg(j; r) ⊆ L′ ∧ (Ag(j; r; z) \Bg(j; r)) ∩ L′ = ∅],

where L ∈
(
[n]
ℓ

)s × [n], L′ ∈
(
[n]
ℓ

)s
are uniformly random.

It is easy to bound these probabilities.

15

Claim 3.14. For any r ∈ R̃g(j), z ∈ [f s−g],

1

n

(
ℓ

n

)s

≥ pgA(j; r; z) ≥
1

n

(
ℓ

n

)s(
1− ℓ− 1

n− 1

)s

,(
ℓ

n

)s

≥ pgB(j; r) ≥
(
ℓ

n

)s(
1− ℓ− 1

n− 1

)s

.

The simple proof for Claim 3.14 is in the appendix. We continue with considering two

more conditional probabilities and bound them in the two following claims.

Definition 3.15. For A ∈ [n]s, B ∈ [n]s, c ∈ [n], r ∈ R̃g(j) and z ∈ [f s−g] define

pgA(j; r; z | A,B, c) = Pr
L
[Ag(j; r; z), cg(j; r; z) ⊆ L ∧ (Bg(j; r) \ Ag(j; r; z) ∩ L) = ∅

| A, c ⊆ L ∧ (B \ A) ∩ L = ∅],
pgB(j; r; z | A,B) = Pr

L′
[Bg(j; r) ⊆ L′ ∧ (Ag(j; r; z) \Bg(j; r)) ∩ L′ = ∅

| B ⊆ L′ ∧ (A \B) ∩ L′ = ∅],

where L ∈
(
[n]
ℓ

)s × [n], L′ ∈
(
[n]
ℓ

)s
are uniformly random.

Claim 3.16. Let A ∈ [n]s, c ∈ [n], r ∈ R̃g(j), z ∈ [f s−g], and S ⊆ [s] be such that for

h /∈ S, Ag(j; r; z)h ̸= Ah. Then

pgA(j; r; z | A,B, c) ≤


(
ℓ
n

)s−|S|
if cg(j; r; z) = c

0 if cg(j; r; z) ̸= c.

Claim 3.17. Let B ∈ [n]s, r ∈ R̃g(j) and S ⊆ [s] be such that for h /∈ S, Bg(j; r)h ̸= Bh.

Then for every z ∈ [f s−g]

pgB(j; r; z | A,B) ≤
(
ℓ

n

)s−|S|

.

The proofs for the two claims are in the appendix.

We can now define the graphs for every j ∈ [n].

Definition 3.18. For every j ∈ [n] we define two bipartite graphs. The first graph

Gj = (U, V,Ej) is defined as follows. The left and right vertices are U =
(
[n]
ℓ

)s × [n] and

the right vertices are V =
(
[n]
ℓ

)s
. For every r ∈ R̃g(j), z ∈ [f s−g], we define the following

set of edges

Ej,r,z = {(L,L′) ∈ U × V | L ∼Ag(j;r;z),Bg(j;r),cg(j;r;z) L
′}.

We say that the edges in Ej,r,z are colored with r, z. The set of edges Ej of Gj is achieved

by appending all edges Ej,r,z of each color r, z, allowing multiple edges.

16

The second graph is G̃j = (U, Ṽ , Ẽj) and it is obtained by duplicating each right vertex

of Gj so that it will have n copies, duplicating each edge into as many copies as well.

Denote N = |U | = |Ṽ |.

We note that for every j ∈ [n] we can characterize the set of edges of each color r, z,

as we have the following claim.

Claim 3.19. For every r, z, Ej,r,z is a perfect matching between

Uj,r,z = {L | Ag(j; r; z), cg(j; r; z) ⊆ L ∧ (Bg(j; r) \ Ag(j; r; z)) ∩ L = ∅} ⊆ U

and

Vj,r,z = {L′ | Bg(j; r) ⊆ L′ ∧ (Ag(j; r; z) \Bg(j; r)) ∩ L′ = ∅} ⊆ V

of size pgA(j; r; z)n
(
n
ℓ

)s
= pgB(j; r)

(
n
ℓ

)s
.

Proof. Denote A = (a1, . . . , as) = Ag(j; r; z), B = (b1, . . . , bs) = Bg(j; r) and c =

cg(j; r; z). The claim follows immediately by the definitions as, first, for every L =

(L1, . . . , Ls+1) ∈ Uj,r,z there is exactly one L′ = (L′
1, . . . , L

′
s) such that (L,L′) ∈ Ej,r,z:

L′ = ((L1 \ {a1}) ∪ {b1}, . . . , (Ls \ {as}) ∪ {bs}), and indeed L′ ∈ Vj,r,z, since B ⊆ L′,

and for every h ∈ [s] if ah ̸= bh then ah /∈ L′, and lastly L′ ∈
(
[n]
ℓ

)s
since for ev-

ery h we removed ah and added bh, and bh /∈ Lh if ah ̸= bh. Similarly, for every

L′ = (L′
1, . . . , L

′
s) ∈ Vj,r,z there is exactly one L = (L1, . . . , Ls+1) such that (L,L′) ∈ Ej,r,z:

L = ((L′
1 \ {b1}) ∪ {a1}, . . . , (L′

s \ {bs}) ∪ {as}, c), and indeed L ∈ Uj,r,z. Lastly, for every

(L,L′) ∈ Ej,r,z, L ∈ Uj,r,z and L′ ∈ Vj,r,z.

The claimed size of the matching follows as |Uj,r,z| = pgA(j; r; z)
(
n
ℓ

)s
n and |Vj,r,z| =

pgB(j; r)
(
n
ℓ

)s
by the definitions of pgA(j; r; z) and pgB(j; r).

Using this claim, we can see what are the average degrees of the graphs. Set for

j ∈ [n]13

∆(j) = f s−g

(
mℓ

n

)s

. (3.5)

We will write ∆ as short for ∆(j) but it will always be in contexts where j is specific. For

every j ∈ [n], Claim 3.19, Claim 3.14 with Equation (3.1) and Claim 3.5 imply that the

average degree of the left side of Gj is∑
r∈R̃g(j),z∈[fs−g]

pgA(j; r; z) = |R̃g(j)|f s−gΘ

(
1

n

(
ℓ

n

)s)
∈
[
Ω

(
1

sn
∆

)
, O

(
1

n
∆

)]
, (3.6)

13Recall that g = g(j) is j-specific.

17

by Claim 3.5 and Claim 3.7, and the average degree of the right side is∑
r∈R̃g(j),z∈[fs−g]

pgB(j; r; z) = |R̃g(j)|f s−gΘ

((
ℓ

n

)s)
∈
[
Ω

(
1

s
∆

)
, O(∆)

]
.

In what follows we argue that there are many edges that touch vertices whose degree

is close to the average degree (of their side).

Definition 3.20. For every j ∈ [n] we define

E ′
j =

{
(L,L′) ∈ Ej | degGj

(L) ≤ w0

(
1 +

n

mℓ

)s 1

m
∆

}
E ′′

j = {(L,L′) ∈ Ej | degGj
(L′) ≤ w0

(
1 +

n

mℓ

)s
∆}

for some large enough universal constant w0.

The fact that there are many edges touching vertices with degree close to average will

follow by the fact that this holds within each color.

Proposition 3.21. Define for every r, z,

E ′
j,r,z =

{
(L,L′) ∈ Ej,r,z | degGj

(L) ≤ w0

(
1 +

n

mℓ

)s 1

m
∆

}
.

Then |E ′
j,r,z| ≥ 2

3
|Ej,r,z|.

Proposition 3.22. Define for every r, z,

E ′′
j,r,z = {(L,L′) ∈ Ej,r,z | degGj

(L′) ≤ w0

(
1 +

n

mℓ

)s
∆}.

Then |E ′′
j,r,z| ≥ 2

3
|Ej,r,z|.

Before we prove Proposition 3.21 and Proposition 3.22 we conclude that they imply

that there exists a large matching in G̃j. First we note that indeed the above bounds

for each color, and for each side separately, imply many such edges in Gj that satisfy the

requirement on both of their sides.

Claim 3.23. For every j, |E ′
j ∩ E ′′

j | ≥ 1
3
|Ej|.

Proof. For every r, z, by Proposition 3.21 and Proposition 3.22, |E ′
j,r,z ∩E ′′

j,r,z| ≥ 1
3
|Ej,r,z|.

As all edges in E ′
j,r,z ∩E ′′

j,r,z are in E ′
j ∩E ′′

j , and edges corresponding to different r, z have

different colors, the claim follows.

We conclude that there is indeed a large matching in each G̃j.

18

Lemma 3.24. G̃j contains a matching Mj ⊆ Ẽj of size Ω

(
1

(1+ n
mℓ)

s
m
sn
N

)
.

Proof. To show that it contains a large matching, we won’t use all the edges of G̃j.

Rather, we will consider a subset Ẽ ′
j ⊆ Ẽj, which is chosen as follows. Recall that every

edge of G̃j is induced by an edge of Gj. First, we will only consider edges induced from

an edge e in Gj such that e ∈ E ′
j ∩ E ′′

j . Secondly, we will only use one of the n copies

of e in G̃j. Specifically, for every L′ which is the right end of such edge, we have that

degGj
(L′) ≤ w0

(
1 + n

mℓ

)s
∆, and so we will arbitrarily split the set of edges touching L′

into at most n parts, indexed by 1, 2, . . . , of size at most 1
n
w0

(
1 + n

mℓ

)s
∆. For every such

part i we add to Ẽ ′
j the induced edges touching (i, L′) ∈ Ṽ . In that way, we ensure that

the maximal right degree in Ẽ ′
j is at most 1

n
w0

(
1 + n

mℓ

)s
∆. As we take every edge in

E ′
j ∩E ′′

j exactly once, |Ẽ ′
j| = |E ′

j ∩E ′′
j |, and the maximal left degree is, like in E ′

j, at most

w0

(
1 + n

mℓ

)s 1
m
∆. Notice that as m ≤ n, both the left and right degrees in Ẽ ′

j are at most

w0

(
1 + n

mℓ

)s 1
m
∆. Hence, there is a matching Mj ⊆ Ẽ ′

j ⊆ Ẽj of size at least

Ω

(
|E ′

j ∩ E ′′
j |(

1 + n
mℓ

)s 1
m
∆

)
= Ω

(
1
3
|Ej|(

1 + n
mℓ

)s 1
m
∆

)

= Ω

(
1
sn
∆N(

1 + n
mℓ

)s 1
m
∆

)

= Ω

(
1(

1 + n
mℓ

)s m
sn

N

)

by Equation (3.6) and Claim 3.23. As required.

We now prove Proposition 3.21 and Proposition 3.22.

Proof for Proposition 3.21. Denote A = Ag(j; r; z), B = Bg(j; r) and c = cg(j; r; z).

Using Claim 3.19 |Ej,r,z| = |Uj,r,z| for Uj,r,z = {L | A, c ⊆ L ∧ (B \ A) ∩ L = ∅},
and |E ′

j,r,z| = |{L ∈ Uj,r,z | degGj
(L) ≤ w0

(
1 + n

mℓ

)s 1
m
∆}|, where w0 is a large enough

constant. Thus, by Markov’s inequality, to conclude the proposition it is enough to show

that

E
L|A,c⊆L∧(B\A)∩L=∅

[degGj
(L)] = O

((
1 +

n

mℓ

)s 1

m
∆

)
.

19

Indeed, using Claim 3.16,

E
L|A,c⊆L

∧(B\A)∩L=∅

[degGj
(L)] = E

L|A,c⊆L
∧(B\A)∩L=∅

 ∑
r∈R̃g(j),z∈[fs−g]

I Ag(j;r;z),cg(j;r;z)⊆L
∧(Bg(j;r)\Ag(j;r;z))∩L=∅


=

∑
r∈R̃g(j),z∈[fs−g]

pgA(j; r; z | A,B, c)

=
∑
S⊆[s]

(∑
r,z∈{r,z|{h∈[s]|Ag(j;r;z)h=Ah}=S,

cg(j;r;z)=c}

pgA(j; r; z | A,B, c)

+
∑
c′ ̸=c

∑
r,z∈{r,z|{h∈[s]|Ag(j;r;z)h=Ah}=S,

cg(j;r;z)=c}

pgA(j; r; z | A,B, c)

)

≤
∑
S⊆[s]

∑
r,z∈{r,z|{h∈[s]|Ag(j;r;z)h=Ah}=S,

cg(j;r;z)=c}

(
ℓ

n

)s−|S|

≤
∑
S⊆[s]

|Rg(j, A, S, c)|
(
ℓ

n

)s−|S|

,

where recall that the definition of Rg(j, A, S, c) as per Definition 3.9 is all the instructions

that result in agreement on the reminder c, and on AS (the last transition is an inequality

because in Rg(j, A, S, c) we don’t insist on disagreement outside S). We invoke Claim 3.10

to bound the above sum. We first consider the part of the sum, which is over sets that

contain [g], that is S = [g] ∪ S ′ for some S ′ ⊆ [s] \ [g],

∑
S′⊆[s]\[g]

(
|Rg(j, A, [g] ∪ S ′, c)|

(
ℓ

n

)s−g−|S′|
)

≤
∑

S′⊆[s]\[g]

ms−g−|S′|
(
ℓ

n

)s−g−|S′|

=

(
1 +

mℓ

n

)s−g

.

The other part of the sum, over sets which don’t contain [g], again by Claim 3.10, is

20

bounded by

∑
[g]⊈S⊆[s]

(
|Rg(j, A, S, c)|

(
ℓ

n

)s−|S|
)

≤
∑

[g]⊈S⊆[s]

ms−|S|−1f s−max([g]\S)
(
ℓ

n

)s−|S|

=
1

m

∑
[g]⊈S⊆[s]

f s−max([g]\S)
(
mℓ

n

)s−|S|

:=α(g).

We continue by bounding α(g) for g ∈ [s]. This time, splitting the sets according to

b = max([g] \ S), that is writing S = S ′ ∪ {b+ 1, . . . , g} for some S ′ ⊆ [b− 1] ∪ ([s] \ [g]).
Writing α(g) in such manner we get that

α(g) =
1

m

∑
b∈[g]

∑
S′⊆[b−1]∪([s]\[g])

f s−b

(
mℓ

n

)s−(g−b)−|S′|

=
1

m

(
mℓ

n

)∑
b∈[g]

f s−b
∑

S′′⊆[s−(g−b+1)]

(
mℓ

n

)|S′′|

=
1

m

(
mℓ

n

)∑
b∈[g]

f s−b

(
1 +

mℓ

n

)s−(g−b)−1

=
1

m

(
mℓ
n

1 + mℓ
n

)∑
b∈[g]

f s−b

(
1 +

mℓ

n

)s−(g−b)

≤ 1

m

∑
b∈[g]

f s−b

(
1 +

mℓ

n

)s−(g−b)

=
1

m
f s−g

(
1 +

mℓ

n

)s∑
b∈[g]

f g−b

(
1 +

mℓ

n

)−(g−b)

=
1

m
f s−g

(
1 +

mℓ

n

)s g−1∑
b=0

f b

(
1 +

mℓ

n

)−b

.

And, we continue by plugging Equation (3.2), and we see that

α(g) ≤ 1

m
f s−g

(
1 +

mℓ

n

)s

·O(1),

21

We conclude that, recalling ∆’s definition in Equation (3.5),

E
L|A,c⊆L∧(B\A)∩L=∅

[degGj
(L)] ≤

(
1 +

mℓ

n

)s−g

+ α(g)

=

(
1 +

mℓ

n

)s−g

+
1

m
f s−g

(
1 +

mℓ

n

)s

·O(1)

=
1

m
f s−g

(
1 +

mℓ

n

)s

·O(1)

= O

((
1 +

n

mℓ

)s 1

m
∆

)
,

where the second equality is by Equation (3.3). The proposition follows.

Proof for Proposition 3.22. Denote A = Ag(j; r; z) and B = Bg(j; r). Using Claim 3.19

|Ej,r,z| = |Vj,r,z| for Vj,r,z = {L′ | B ⊆ L′ ∧ (A \ B) ∩ L′ = ∅}, and |E ′′
j,r,z| = |{L′ ∈ Vj,r,z |

degGj
(L′) ≤ w0

(
1 + n

mℓ

)s
∆}|, where w0 is a large enough constant. Thus, by Markov’s

inequality, to conclude the proposition it is enough to show that

E
L′|B⊆L′∧(A\B)∩L′=∅

[degGj
(L′)] = O

((
1 +

n

mℓ

)s
∆
)
.

Indeed,

E
L′|B⊆L′∧(A\B)∩L′=∅

[degGj
(L)] = E

L′|B⊆L′∧(A\B)∩L′=∅

 ∑
r∈R̃g(j),z∈[fs−g]

I Bg(j;r)⊆L′

∧(Ag(j;r;z)\Bg(j;r))∩L′=∅


=

∑
r∈R̃g(j),z∈[fs−g]

pgB(j; r; z | A,B)

∑
S⊆[s]

∑
z∈[fs−g]

∑
r∈{r|

{h∈[s]|Bg(j;r)h=Bh}=S}

pgB(j; r; z | A,B)

≤
∑
S⊆[s]

∑
z∈[fs−g]

∑
r∈{r|

{h∈[s]|Bg(j;r)h=Bh}=S}

(
ℓ

n

)s−|S|

= f s−g
∑
S⊆[s]

∑
r∈{r|

{h∈[s]|Bg(j;r)h=Bh}=S}

(
ℓ

n

)s−|S|

,

where the inequality follows by Claim 3.17. We continue, noting that the above is bounded

22

above by

f s−g
∑
S⊆[s]

|Rg(j, B, S)|
(
ℓ

n

)s−|S|

≤ f s−g
∑
S⊆[s]

ms−|S|
(
ℓ

n

)s−|S|

,

= f s−g

(
1 +

mℓ

n

)s

=
(
1 +

n

mℓ

)s
∆,

where the inequality is using Claim 3.11. The proposition follows.

3.4 Deducing the bound

Let C : {0, 1}k → {0, 1}n be a linear (3, δ, ε)-LCC. Set m = δn
3
. Without loss of generality,

by Fact 2.1 for every i ∈ [k], C(x)i = xi ∀x. By Fact 2.3 there exist sets Qj
r |j∈[n],r∈[m] of

size at most 3, such that for every j ∈ [n], the m sets Qj
w |w∈[m] are disjoint, and for every

w ∈ [m],

C(x)j =
∑
j′∈Qj

w

C(x)j′ ∀x ∈ {0, 1}k. (3.7)

Without loss of generality the sets Qj
r |j∈[n],r∈[m] are of size exactly 3 (we can add zero

coordinates, at worst doubling n).

Let s and ℓ be parameters. Set U = {0} ×
(
[n]
ℓ

)s × [n] and V = {1} ×
(
[n]
ℓ

)s × [n]. We

define a new code C ′ : {0, 1}k → {0, 1}U∪V as follows. For every x ∈ {0, 1}k

∀u = (0, L1, . . . , Ls, c) ∈ U : C ′(x)u = C(x)c +
∑

t∈[s],j∈Lt

C(x)j.

∀v = (1, L′
1, . . . , L

′
s, c

′) ∈ V : C ′(x)v =
∑

t∈[s],j∈L′
t

C(x)j.

That is, C ′ is defined on top two coordinate sets which are all the possibilities for s

subsets of [n] of size ℓ, and one more coordinate c in [n]. In each coordinate in the U side,

C ′(x) has the sum of the elements of C(x) which are contained in the chosen sets, and

the element of the extra coordinate. On the V side, C ′(x) has the sum of the elements of

C(x) which are contained in the chosen sets, and the extra coordinate is not used.

Let A(j; r), B(j; r), c(j; r) and Ag(j; r; z), Bg(j; r), cg(j; r; z) |j,g,r,z be the decoding

sequences and extended decoding sequences considered in the previous sections. The

following claim can easily be verified, by inspecting the definition of decoding sequences

23

and extended decoding sequences, and relaying on Equation (3.7) (a proof is given in the

appendix).

Claim 3.25. For every j ∈ [n] and r ∈ [m]s,
∑

h∈[s] C(x)A(j;r)h +
∑

h∈[s] C(x)B(j;r)h +

C(x)c(j;r) = C(x)j ∀x ∈ {0, 1}k. Similarly,
∑

h∈[s] C(x)Ag(j;r;z)h +
∑

h∈[s] C(x)Bg(j;r)h +

C(x)cg(j;r;z) = C(x)j ∀x ∈ {0, 1}k.

We also observe the following direct implication.

Claim 3.26. Let u = (0, L1, . . . , Ls, c) ∈ U and v = (1, L′
1, . . . , L

′
s, c

′) ∈ U be such that

(L1, . . . , Ls, c) ∼Ag(j;r;z),Bg(j;r),cg(j;r;z) (L
′
1, . . . , L

′
s) where the ∼Ag(j;r;z),Bg(j;r),cg(j;r;z) relation

is as defined in the previous part in Definition 3.12. Then C ′(x)u + C ′(x)v = C(x)j for

every x.

Proof. We argue that

C ′(x)u + C ′(x)v =
∑
h∈S

C(x)Ag(j;r;z)h +
∑
h∈[s]

C(x)Bg(j;r)h + C(x)cg(j;r;z).

To see this, denote Ag(j; r; z) = (a1, . . . , as) and Bg(j; r) = (b1, . . . , bs). By the assump-

tion (L1, . . . , Ls, c) ∼Ag(j;r;z),Bg(j;r),cg(j;r;z) (L
′
1, . . . , L

′
s) we have that c = cg(j; r; z) and for

every h ∈ [s]

C(x)Lh
+ C(x)L′

h
= C(x)Lh

+ C(x)Lh\{ah} + C(x)bh = C(x)ah + C(x)bh

and so

C ′(x)u + C ′(x)v =
∑
h∈[s]

C(x)Lh
+ c+

∑
h∈[s]

C(x)L′
h
=
∑
h∈[s]

(ah + bh) + c

and so the claim follows by applying Claim 3.25.

For every j ∈ [n] let G̃j be the bipartite graph defined in the previous section. Note

that |U | = |V | = N and there is a natural isomorphism between the vertices of G̃j and

the coordinates of C ′, given by that every left side vertex L ∈
(
[n]
ℓ

)s × [n] corresponds to

the coordinate u = (0, L) ∈ U , and every right vertex (i, L′) for i ∈ [n] and L′ ∈
(
[n]
ℓ

)s
corresponds to the coordinate v = (1, L′, i) ∈ V . By the previous claim, for every edge

(L, (i, L′)) in G̃j and its corresponding coordinates (u, v), we have that C ′(x)u+C ′(x)v =

C(x)j for every x ∈ {0, 1}k.
We can now apply Lemma 3.24 and conclude that for every j ∈ [n] there is a set of

Ω

(
1(

1 + n
mℓ

)s m
sn

N

)
= Ω

(
1(

1 + 1
δℓ

)s δ
s
N

)
disjoint pairs of coordinates {u, v} of C ′ such that C ′(x)u + C ′(x)v = C(x)j ∀x.

We can now conclude the bound.

24

Theorem 3.27 (Theorem 1.3, rephrased). Let C : {0, 1}k → {0, 1}n be a linear (3, δ, ε)-

LCC. Then k = O
(

1
δ2
log4 n

)
.

Proof. Consider C ′ as defined according to C and note that it is a code of length 2N ,

where N = n
(
n
ℓ

)s
. Set δC′ = 1

(1+ 1
δℓ)

s
δ
s
. From the conclusion of the previous paragraph,

for every i ∈ [k] there is a set of Ω(δC′N) disjoint pairs of coordinates {u, v} such that

C ′(x)u + C ′(x)v = C(x)i = xi ∀x ∈ {0, 1}k. Hence, by Theorem 2.2,

k = O

(
1

δC′
logN

)
= O

(
1

δC′
sℓ log n

)
.

Thus, if we set ℓ = Θ(1
δ
log n) and s = Θ(log n) then the assumption in Equation (3.3) is

met, and as
(
1 + 1

δℓ

)s
= O(1), δC′ = Ω(δ

s
). We get that

k = O

(
1

δ
s2ℓ log n

)
= O

(
1

δ2
log4 n

)
,

as required.

References

[AGKM23] Omar Alrabiah, Venkatesan Guruswami, Pravesh K Kothari, and Peter

Manohar. A near-cubic lower bound for 3-query locally decodable codes

from semirandom csp refutation. In Proceedings of the 55th Annual ACM

Symposium on Theory of Computing, pages 1438–1448, 2023.

[BDYW11] Boaz Barak, Zeev Dvir, Amir Yehudayoff, and Avi Wigderson. Rank bounds

for design matrices with applications to combinatorial geometry and locally

correctable codes. In Proceedings of the forty-third annual ACM symposium

on Theory of computing, pages 519–528, 2011.

[DGOS18] Zeev Dvir, Ankit Garg, Rafael Oliveira, and József Solymosi. Rank bounds

for design matrices with block entries and geometric applications. Discrete

Analysis, 5(2018):1–24, 2018.

[DSW14] Zeev Dvir, Shubhangi Saraf, and Avi Wigderson. Improved rank bounds for

design matrices and a new proof of kelly’s theorem. In Forum of Mathematics,

Sigma, volume 2, page e4. Cambridge University Press, 2014.

[Efr09] Klim Efremenko. 3-query locally decodable codes of subexponential length. In

Proceedings of the forty-first annual ACM symposium on Theory of computing,

pages 39–44, 2009.

25

[GKST02] Oded Goldreich, Howard Karloff, Leonard J Schulman, and Luca Trevisan.

Lower bounds for linear locally decodable codes and private information re-

trieval. In Proceedings 17th IEEE Annual Conference on Computational Com-

plexity, pages 175–183. IEEE, 2002.

[KdW04] Iordanis Kerenidis and Ronald de Wolf. Exponential lower bound for 2-query

locally decodable codes via a quantum argument. Journal of Computer and

System Sciences, 69(3):395–420, 2004.

[KM23] Pravesh K Kothari and Peter Manohar. An exponential lower bound for linear

3-query locally correctable codes. In Electronic Colloquium on Computational

Complexity (ECCC), number 162, 2023.

[KT00] Jonathan Katz and Luca Trevisan. On the efficiency of local decoding pro-

cedures for error-correcting codes. In Proceedings of the thirty-second annual

ACM symposium on Theory of computing, pages 80–86, 2000.

[Woo07] David Woodruff. New lower bounds for general locally decodable codes. In

Electronic Colloquium on Computational Complexity (ECCC), volume 14,

2007.

[Yek08] Sergey Yekhanin. Towards 3-query locally decodable codes of subexponential

length. Journal of the ACM (JACM), 55(1):1–16, 2008.

[Yek11] S. Yekhanin. Locally decodable codes. In International Computer Science

Symposium in Russia, pages 289–290. Springer, 2011.

[ZD] Kalina Petrova Zeev Dvir. Lecture 1: Introduction. Lecture notes: https:

//www.cs.princeton.edu/~zdvir/LDCnotes/LDC1.pdf, year=2016,.

A The case of design LCC

In this part we prove Theorem 1.6. We start by restating the definition of design LCC.

Definition A.1. We say that a (q, δ, ε)-LCC is a design LCC if there exists a randomized

procedure satisfying the requirements in Definition 1.1 and further: For every distinct pair

of coordinates a, c ∈ [n], there are at most O(1) j’s such that a and c can both be queried

by invoking (once) the procedure to correct j.

26

https://www.cs.princeton.edu/~zdvir/LDCnotes/LDC1.pdf
https://www.cs.princeton.edu/~zdvir/LDCnotes/LDC1.pdf

Let C : {0, 1}k → {0, 1}n be a linear (3, δ, ε) design LCC. Set m = δn
3
. It follows by

the proof for Fact 2.3 that there exist sets Qj
r |j∈[n],r∈[m] of size at most 3, such that for

every j ∈ [n], the m sets Qj
w |w∈[m] are disjoint, and for every w ∈ [m],

C(x)j =
∑
j′∈Qj

w

C(x)j′ ,

and further, for every distinct a, c ∈ [n],

|{j ∈ [n] | ∃w ∈ [m] : {a, c} ⊆ Qj
w}| ≤ O(1). (A.1)

We now notice the following fact, which takes more care in proving than in the non-

design case.

Claim A.2. We can assume without loss of generality that the sets Qj
r |j∈[n],r∈[m] are of

size exactly 3.

Proof. We show that we can add some O(n) coordinates to C and {Qj
w}, such that each

set is of size 3, without invalidating Equation (A.1) (and the other assumed properties).

We first wish to argue that by adding O(n) zero coordinates we can increase by 1 the

size of every Qj
w for which |Qj

w| < 3 while maintaining Equation (A.1). If indeed we can

do that, after doing it once we will do it once more, and be done.

Towards that, we first argue that we can add n′ ∈ [n, 4n] zero coordinates that satisfy

the requirements. We do this by adding n′ = 4⌈
1
2
logn⌉ zero coordinates, o1, . . . , on′ to

C. We identify {o1, . . . , on′} with (F4)
⌈ 1
2
logn⌉ and we denote by L the set of all lines in

(F4)
⌈ 1
2
logn⌉14. For every j ∈ [n′], we construct {Qoj

w }w by taking all lines that pass through

oj, and for each such line ℓ = {oj, oj1 , oj2 , oj3} we define the set Q
oj
ℓ = {oj1 , oj2 , oj3}. We

then take the first m lines ℓ1, . . . , ℓm and for every w ∈ [m] we set Q
oj
w = Q

oj
ℓw
. Notice that

the number of such lines is n′−1
3

≥ n−1
3

> m and so there are enough lines. Thus, the zero

coordinates we added {o1, . . . , on′} have sets {Qoj
w } of size exactly 3, for every oj the sets

are disjoint since its lines are disjoint. Moreover, Equation (A.1) holds with regards to

{o1, . . . , on′} since every pair of coordinates is contained in one line ℓ = {oj1 , oj2 , oj3 , oj4}.
We use the n coordinates {o1, . . . , on} to increase the size of too small sets, as follows.

For every j, w such that |Qj
w| < 3 we arbitrarily choose a ∈ Qj

w (if |Qj
w| = 1 there is

only one choice, otherwise there are two15), and we set Q′j
w = Qj

w ∪ {o1+(j+a mod n)}. We

14That is, L = {{At+B | t ∈ F4} | A,B ∈ (F4)
⌈ 1
2 logn⌉}.

15We can assume without loss of generality that there are no query sets of size 0 since without loss of

generality (the original) C doesn’t contain coordinates fixed to zero (removing such coordinates can only

improve the parameters of the LCC, so we first remove them and then apply the transformation in the

proof).

27

argue that in doing this, we maintained Equation (A.1). Indeed, every pair x, y such

that x, y /∈ {o1, . . . , on} satisfied Equation (A.1) before and still does. So is the case

if x, y ∈ {o1, . . . , on}. Now, for a pair x /∈ {o1, . . . , on} and y ∈ {o1, . . . , on} such that

{x, y} ⊆ Qj
w for some j and w, we have that either y = o1+(x+j mod n) or y = o1+(z+j mod n)

for z ∈ Qj
w. The first case can only occur for one j, since (x+j mod n) ̸= (x+j′ mod n)

if j ̸= j′. The second case can only occur for O(1) j’s, because for every j that satisfies

it, there is some w such that {x, z} ⊆ Qj
w, and so by Equation (A.1).

Thus we have shown that we can increase by 1 the size of too small sets, while main-

taining the properties, by adding O(n) zero coordinates. The claim follows.

The saving in the design case will follow by that we argue that we can reduce to the

case that for every g, A ⊆ [n]s−g, c ∈ [n], deg(A; c) ≤ 1. We first require the following

lemma which addresses the degree of suffixes of length 1.

Lemma A.3. Assume that for every distinct a, c ∈ [n], |{j ∈ [n] | ∃w ∈ [m] : {a, c} ⊆
Qj

w}| ≤ O(1). Then, given that m = ω(log n), there is a way to order each Qj
w as three

parts A(j;w), B(j;w), c(j;w) such that for every j ∈ [n], |{w ∈ [m] | deg(A(j;w); c(j;w)) =
1}| = Ω(m).16 17

Proof. The proof is by the probabilistic method.18 We assume that for every distinct

a, c ∈ [n], |{j ∈ [n] | ∃w ∈ [m] : {a, c} ⊆ Qj
w}| ≤ y0 for some constant y0. For every j ∈ [n]

and w ∈ [m] we choose a uniformly random ordering {A(j;w), B(j;w), c(j;w)} = Qj
w.

Notice that given that we chose a specific ordering {A(j;w), B(j;w), c(j;w)} for Qj
w, the

probability that deg(A(j;w); c(j;w)) > 1 is bounded above by a constant smaller then 1.

Indeed, there are at most y0 − 1 j′ ∈ [n] \ {j} such that {A(j;w), c(j;w)} ⊆ Qj′

w′ for some

w′. Note that deg(A(j;w); c(j;w)) > 1 only if for one of those we chose A(j′;w′) = A(j;w)

and c(j′;w′) = c(j;w), and the probability that this occurs for (j′, w′) is less than 1
q
(it is

1
6
in the case that q = 3). Since there are at most y0− 1 such j’s, and their corresponding

events are independent, the probability that deg(A(j;w); c(j;w)) > 1 is bounded by

α := 1− (1− 1
q
)y0−1 < 1, which is a constant.

Fix some j ∈ [n]. We bound the probability pj that |{w ∈ [m] | deg(A(j;w); c(j;w)) >
1}| >

√
αm. From the above, E[

∑
w∈[m] Ideg(A(j;w);c(j;w))>1] ≤ αm. Notice that for

w ̸= w′, the events deg(A(j;w); c(j;w)) > 1 and deg(A(j;w′); c(j;w′)) > 1 are not

necessarily independent, rather, they are negatively correlated, as A(j;w′) ̸= A(j;w) and

c(j;w′) ̸= c(j;w). By the Chernoff bound for negatively correlated random variables,

pj = Pr[
∑

w∈[m] Ideg(A(j;w);c(j;w))>1 >
1√
α
αm] ≤ 2−Ω(m).

16This can be generalized for larger q’s as well.
17The Ω(m) bound can be meaningful only for m large enough.
18Note that a naive greedy approach could lead to some j’s losing many (or all) or their sets.

28

Hence, taking a union bound over all j ∈ [n], the probability that for some j ∈ [n],

|{w ∈ [m] | deg(A(j;w); c(j;w)) > 1}| >
√
αm, is bounded by n2−Ω(m) = o(1) per the

assumption on m. The lemma follows.

Notice that we can indeed assume m = ω(log n) as in the hypothesis of the lemma,

since if m = O(log n) then δ = O(logn
n

) and the bound in Theorem 1.6 holds trivially.

Therefore, without loss of generality, we will assume that the ordering of {Qj
w} from which

the decoding sequences are defined satisfies Lemma A.3.

We now note that the above implies that the degree of every suffix is bounded by 1

(and not only for suffixes of length 1).

Claim A.4. If for every a, c ∈ [n], deg(a; c) ≤ 1, then for every g ∈ [s], A ∈ [n]s−g and

c ∈ [n], deg(A; c) ≤ 1.

Proof. The proof is by induction. The base case for g = s holds trivially by the defi-

nitions. As for the induction step, for every g < s, for every j such that there exists

r ∈ [m]s−g for which A(j; r) = A and c(j; r) = c, we have that for j′ = c(j; r1) it holds

that A(j′; r2,...,s−g) = A2,...,s−g and c(j′; r2,...,s−g) = c. By the induction hypothesis, there is

at most one j′ for which this holds. But, we also must have that A(j; r)1 = A(j; r1) = A1.

So j must satisfy A(j; r1) = A1 and c(j; r1) = j′, and so as deg(A1; j
′) ≤ 1 per the

assumption, there is at most one such j.

We can now deduce the theorem.

Proof for Theorem 1.6. Exactly the same as the proof for Theorem 3.27, except for the

following. In the proof for Theorem 3.27 we got that there is a set of disjoint pairs of size

Ω

(
1

(1+ 1
δℓ)

s
δ
s
N

)
. The 1

s
factor in the expression was inherited from applying Claim 3.5

and Claim 3.7 by Section 3.3 to argue that |R̃g(j)| ≥ 1
2
|Rg(j)| = Ω(1

s
ms) for every j (in

Equation (3.6)). In our current case, we note that we can just take g = s for every j and

get larger R̃g(j)’s. Indeed, since deg(A; c) ≤ 1 for every suffix A; c, Rs = [m]s, where Rs

is as defined in Definition 3.4, and so |R̃s(j)| = Ω(ms).

Thus, in our case, we do not lose the 1
s
factor and for every i ∈ [k] there is a set

of disjoint pairs of size Ω

(
1

(1+ 1
δℓ)

s δN

)
. Setting the same ℓ and s as in the proof for

Theorem 3.27, we get that

k = O

(
1

δ
sℓ log n

)
= O

(
1

δ2
log3 n

)
.

The theorem follows.

29

B Easy claims - proofs

Proof for Claim 3.14. Denote Ag(j; r; z) = (a1, . . . , as), B
g(j; r) = (b1, . . . , bs) and

cg(j; r; z) = c. Since L = (L1, . . . , Ls, Ls+1) ∈
(
[n]
ℓ

)
× [n] is a product we can bound

separately for h ∈ [s] that probability ph that ah ∈ Lh and bh /∈ Lh if ah ̸= bh. We

see that ℓ
n

(
1− ℓ−1

n−1

)
≤ ph ≤ ℓ

n
: the probability that ah ∈ Lh is ℓ

n
and if ah ̸= bh,

ph = ℓ
n
· PrLh

[bh /∈ L \ {ah} | ah ∈ L] = ℓ
n
·
(
1− ℓ−1

n−1

)
. Hence, as the probability that

Ls+1 = c is 1
n
, 1

n

(
ℓ
n

)s · (1− ℓ−1
n−1

)s ≤ pgA(j; r; z) ≤ 1
n

(
ℓ
n

)s
. Similarly for pgB(j; r; z).

Proof for Claim 3.16. Clearly if cg(j; r; z) ̸= c the conditional probability is zero since we

conditioned on Ls+1 = c. If cg(j; r; z) = c, then pgA(j; r; z | A,B, c) ≤
∏

h∈[s]\S ph where

for h ∈ [s] \ S, ph := PrLh
[Ag(j; r; z)h ∈ Lh | Ah ∈ Lh] =

ℓ−1
n−1

< ℓ
n
, as Ag(j; r; z)h ̸= Ah

for h /∈ S. Thus pgA(j; r; z | A,B, c) ≤
(
ℓ
n

)|S|−s
.

Proof for Claim 3.17. Identical to the case that cg(j; r; z) = c in the previous proof.

Proof for Claim 3.25. The proof that
∑

h∈[s] C(x)A(j;r)h +
∑

h∈[s] C(x)B(j;r)h +C(x)c(j;r) =

C(x)j is by inspecting Definition 3.1 and by induction on s. For the base case s = 0, the

two summations are empty, and C(x)c(j;r) = C(x)c(j;ε) = C(x)j by definition. As for the

induction step, for every s > 0 we have that∑
h∈[s]

C(x)A(j;r)h +
∑
h∈[s]

C(x)B(j;r)h + C(x)c(j;r)

=C(x)A(j;r)1 + C(x)B(j;r)1 +
∑

h∈{2,...,s}

C(x)A(j;r)h +
∑

h∈{2,...,s}

C(x)B(j;r)h + C(x)c(j;r)

=C(x)A(j;r1) + C(x)B(j;r1)+∑
h∈[s−1]

C(x)A(c(j;r1);r2,...,s)h +
∑

h∈[s−1]

C(x)B(c(j;r1);r2,...,s)h + C(x)c(c(j;r1);r2,...,s)

= C(x)A(j;r1) + C(x)B(j;r1) + C(x)c(j;r1)

= C(x)j,

where the penultimate equality is by the induction hypothesis, and the last equality is as

{A(j; r1), B(j; r1), c(j; r1)} = Qj
r1

and by Equation (3.7).

The proof that
∑

h∈[s] C(x)Ag(j;r;z)h +
∑

h∈[s] C(x)Bg(j;r)h + C(x)cg(j;r;z) follows by in-

specting Definition 3.8 noting that for j′ = P (j; c(j; r1,...,g);A(j; r)g+1,...,s; c(j; r))z and

30

r′ = T (j; c(j; r1,...,g);A(j; r)g+1,...,s; c(j; r))z we have that∑
h∈[s]

C(x)Bg(j;r)h +
∑
h∈[s]

C(x)Ag(j;r;z)h + C(x)cg(j;r;z)

=
∑
h∈[s]

C(x)B(j;r)h +
∑
h∈[g]

C(x)A(j;r)h +
∑

h∈[s−g]

C(x)B(j′;r′)h + C(x)j′

=
∑
h∈[s]

C(x)B(j;r)h +
∑
h∈[g]

C(x)A(j;r)h +
∑

h∈[s−g]

C(x)A(j′;r′)h +
∑

h∈[s−g]

C(x)B(j′;r′)h

+ C(x)c(j′;r′) + C(x)j′ −
∑

h∈[s−g]

C(x)A(j′;r′)h − C(x)c(j′;r′)

=
∑
h∈[s]

C(x)B(j;r)h +
∑
h∈[g]

C(x)A(j;r)h +
∑

h∈[s−g]

C(x)A(j′;r′)h + C(x)c(j′;r′)

=
∑
h∈[s]

C(x)B(j;r)h +
∑
h∈[g]

C(x)A(j;r)h +
∑

h∈{g+1,...,s}

C(x)A(j;r)h + C(x)c(j;r)

= C(x)j,

where the third equality is as

C(x)j′ =
∑

h∈[s−g]

C(x)A(j′;r′)h +
∑

h∈[s−g]

C(x)B(j′;r′)h + C(x)c(j′;r′)

and the penultimate equality is by the definitions of P (j; c(j; r1,...,g);A(j; r)g+1,...,s; c(j; r))z

and T (j; c(j; r1,...,g);A(j; r)g+1,...,s; c(j; r))z.

C The case of larger alphabets

In this section we prove Theorem 1.7. The proof is composed of two steps. In the first step

we define special-form LCC which, informally, are LCC in which the decoding procedure

of each coordinate is done by multiplying some queried coordinates by either 1 or −1, and

then summing up the obtained values. The idea is to show that in the case of special-form

LCC the same bound on k holds as in the case of binary LCC. In the second step we argue

that a linear LCC over any field F can be converted to a special-form LCC, at the cost

of a |F|-dependent deterioration in δ. This second step is identical to the preconditioning

done by [KM23] in their handling of the case F ̸= F2.

C.0.1 Preliminaries for this section

We start by formally extending the definition of LCC to alphabets other than binary.

31

Definition C.1. An injective C : Fk → Fn is a (q, δ, ε)-LCC, for ε < 1 − 1
|F| , if there

exists a randomized procedure that takes as input j ∈ [n], gets oracle access to z ∈ Fn

at relative Hamming distance at most δ from C(x) for some x, and in making at most q

queries to z, and with probability at least 1− ε: its output is equal to C(x)j. We say that

C is linear if it is a linear map.

We will make use of the following special case of the [GKST02] bound for linear 2-LDCs

over any field.

Theorem C.2 ([GKST02]). Let C : Fk → Fn be a linear map such that for every i ∈ [k]

there is a set of δcn disjoint pairs of coordinates {u, v} ⊆ [n] such that xi = C(x)u +

C(x)v ∀x ∈ Fk. Then k = O(1
δc
(log n+ log |F|)).

Definition C.3. Let C : Fk → Fn be a linear map, let j ∈ [n] and let Q = {Q1, . . . , Q|Q|} ⊆
[n]. We say that Q determines j (in C) if there exists α1, . . . , α|Q| ∈ F such that

C(x)j =
∑

t∈[|Q|] αtC(x)Qt ∀x ∈ Fk.

Fact C.4. Let C : Fk → Fn be a linear (q, δ, ε)-LCC. Then there exist sets {Qj
w}j∈[n],w∈[m]

for m ≥ δn/q such that for every j ∈ [n] the sets Qj
w |w∈[m] are disjoint subsets of [n] of

size at most q, such that each Qj
w determines j in C.

We include for completeness a proof sketch for Fact C.4 in Appendix D.

C.0.2 A bound for special-form LCC

Definition C.5. We say that an injective linear map C : Fk → Fn is a special-form (3, δ)-

LCC if for every j ∈ [n] there exist m = δn
3
disjoint sets Qj

r = {A(j; r), B(j; r), c(j; r)} |r∈[m]

of size 3 such that for every r ∈ [m]

C(x)j = C(x)B(j;r) − C(x)A(j;r) + C(x)c(j;r) ∀x ∈ Fk. (C.1)

Let C : Fk → Fn be a special-form (3, δ)-LCC. Set m = δn
3
. By Fact 2.1 we can assume

without loss of generality that for every i ∈ [k], C(x)i = xi ∀x ∈ Fk.

Let s and ℓ be parameters. Set U = {0} ×
(
[n]
ℓ

)s × [n] and V = {1} ×
(
[n]
ℓ

)s × [n]. We

define a new code C ′ : Fk → FU∪V as follows. For every x ∈ Fk

∀u = (0, L1, . . . , Ls, c) ∈ U : C ′(x)u = C(x)c −
∑

t∈[s],j∈Lt

C(x)j.

∀v = (1, L′
1, . . . , L

′
s, c

′) ∈ V : C ′(x)v =
∑

t∈[s],j∈L′
t

C(x)j.

32

Notice that the only change from the way that C ′ is defined in Section 3.4 is the minus

sign in the definition of C ′(x)u.

Let A(j; r), B(j; r), c(j; r) and Ag(j; r; z), Bg(j; r), cg(j; r; z) |j,g,r,z be the decoding se-
quences and extended decoding sequences defined in Section 3.1 and Section 3.2, according

to the sets Qj
r = {A(j; r), B(j; r), c(j; r)} |j∈[n],r∈[m] by virtue of which C is a special-from

(3, δ)-LCC. We argue that the following claim, similar to Claim 3.25 of Section 3.4, holds.

Claim C.6. For every j ∈ [n] and r ∈ [m]s,
∑

h∈[s] C(x)B(j;r)h −
∑

h∈[s] C(x)A(j;r)h +

C(x)c(j;r) = C(x)j ∀x ∈ Fk. Similarly,
∑

h∈[s] C(x)Bg(j;r)h−
∑

h∈[s] C(x)Ag(j;r;z)h+C(x)cg(j;r;z) =

C(x)j ∀x ∈ Fk.

Proof. The proof that
∑

h∈[s] C(x)B(j;r)h −
∑

h∈[s] C(x)A(j;r)h + C(x)c(j;r) = C(x)j is by

inspecting Definition 3.1 and by induction on s. For the base case s = 0, the two sums

are empty, and C(x)c(j;r) = C(x)c(j;ε) = C(x)j by definition. As for the induction step,

for s > 0 we have that∑
h∈[s]

C(x)B(j;r)h −
∑
h∈[s]

C(x)A(j;r)h + C(x)c(j;r)

=C(x)B(j;r)1 − C(x)A(j;r)1 +
∑

h∈{2,...,s}

C(x)B(j;r)h −
∑

h∈{2,...,s}

C(x)A(j;r)h + C(x)c(j;r)

=C(x)B(j;r1) − C(x)A(j;r1)

+
∑

h∈[s−1]

C(x)B(c(j;r1);r2,...,s)h −
∑

h∈[s−1]

C(x)A(c(j;r1);r2,...,s)h + C(x)c(c(j;r1);r2,...,s)

= C(x)B(j;r1) − C(x)A(j;r1) + C(x)c(j;r1)

= C(x)j,

where the penultimate equality is by the induction hypothesis, and the last equality is as

{A(j; r1), B(j; r1), c(j; r1)} = Qj
r1

and by Equation (C.1).

The proof that
∑

h∈[s] C(x)Bg(j;r)h −
∑

h∈[s] C(x)Ag(j;r;z)h + C(x)cg(j;r;z) follows by in-

specting Definition 3.8 noting that for j′ = P (j; c(j; r1,...,g);A(j; r)g+1,...,s; c(j; r))z and

33

r′ = T (j; c(j; r1,...,g);A(j; r)g+1,...,s; c(j; r))z we have that∑
h∈[s]

C(x)Bg(j;r)h −
∑
h∈[s]

C(x)Ag(j;r;z)h + C(x)cg(j;r;z)

=
∑
h∈[s]

C(x)B(j;r)h −
∑
h∈[g]

C(x)A(j;r)h −
∑

h∈[s−g]

C(x)B(j′;r′)h + C(x)j′

=
∑
h∈[s]

C(x)B(j;r)h −
∑
h∈[g]

C(x)A(j;r)h +
∑

h∈[s−g]

C(x)A(j′;r′)h −
∑

h∈[s−g]

C(x)B(j′;r′)h − C(x)c(j′;r′) + C(x)j′

−
∑

h∈[s−g]

C(x)A(j′;r′)h + C(x)c(j′;r′)

=
∑
h∈[s]

C(x)B(j;r)h −
∑
h∈[g]

C(x)A(j;r)h −
∑

h∈[s−g]

C(x)A(j′;r′)h + C(x)c(j′;r′)

=
∑
h∈[s]

C(x)B(j;r)h −
∑
h∈[g]

C(x)A(j;r)h −
∑

h∈{s−g}

C(x)A(j;r)g+h
+ C(x)c(j;r)

=
∑
h∈[s]

C(x)B(j;r)h −
∑
h∈[s]

C(x)A(j;r)h + C(x)c(j;r)

= C(x)j.

We also observe the following direct implication.

Claim C.7. Let u = (0, L1, . . . , Ls, c) ∈ U and v = (1, L′
1, . . . , L

′
s, c

′) ∈ U be such that

(L1, . . . , Ls, c) ∼Ag(j;r;z),Bg(j;r),cg(j;r;z) (L
′
1, . . . , L

′
s) where the ∼Ag(j;r;z),Bg(j;r),cg(j;r;z) relation

is as defined in Section 3.3 in Definition 3.12. Then C ′(x)u + C ′(x)v = C(x)j for every

x.

Proof. We argue that

C ′(x)u + C ′(x)v =
∑
h∈[s]

C(x)Bg(j;r)h −
∑
h∈[s]

C(x)Ag(j;r;z)h + C(x)cg(j;r;z).

To see this, denote Ag(j; r; z) = (a1, . . . , as) and Bg(j; r) = (b1, . . . , bs). By the assump-

tion (L1, . . . , Ls, c) ∼Ag(j;r;z),Bg(j;r),cg(j;r;z) (L
′
1, . . . , L

′
s) we have that c = cg(j; r; z) and for

every h ∈ [s]

C(x)L′
h
− C(x)Lh

= C(x)L′
h\Lh

− C(x)Lh\L′
h
= C(x)bh − C(x)ah .

Therefore, by the definition of C ′(x)u and C ′(x)v,

C ′(x)u + C ′(x)v = c−
∑
h∈[s]

C(x)Lh
+
∑
h∈[s]

C(x)L′
h
=
∑
h∈[s]

(bh − ah) + c.

The claim now follows by applying Claim 3.25.

34

For every j ∈ [n] let G̃j be the bipartite graph defined in Section 3.3. Note that

|U | = |V | = N and there is a natural isomorphism between the vertices of G̃j and the

coordinates of C ′, given by that every left side vertex L ∈
(
[n]
ℓ

)s × [n] corresponds to

the coordinate u = (0, L) ∈ U , and every right vertex (i, L′) for i ∈ [n] and L′ ∈
(
[n]
ℓ

)s
corresponds to the coordinate v = (1, L′, i) ∈ V . By the previous claim, for every edge

(L, (i, L′)) in G̃j and its corresponding coordinates (u, v), we have that C ′(x)u+C ′(x)v =

C(x)j for every x ∈ Fk.

We can now apply Lemma 3.24 and conclude that for every j ∈ [n] there is a set of

Ω

(
1(

1 + n
mℓ

)s m
sn

N

)
= Ω

(
1(

1 + 1
δℓ

)s δ
s
N

)
disjoint pairs of coordinates {u, v} of C ′ such that C ′(x)u + C ′(x)v = C(x)j ∀x ∈ Fk.

We can now conclude the bound.

Proposition C.8. Let C : Fk → Fn be a special-form (3, δ)-LCC, and assume that

|F| ≤ n. Then k = O
(

1
δ2
log4 n

)
.

Proof. The proof is the same as the proof for Theorem 3.27, except that instead of in-

voking Theorem 2.2 we apply Theorem C.2. Combined with the assumption |F| ≤ n, and

therefore in particular log(|F|) = O(logN) (as n ≤ N), we still get that

k = O

(
1

δC′
logN

)
in this case as well. The rest of the proof is identical.

C.0.3 From LCC to special-form LCC

Claim C.9. Let C : Fk → Fn be a linear (3, δ, ε)-LCC. Then, there exists a code C ′ :

Fk → Fn′
which is a special-form (3, δ′)-LCC, for n′ = O(|F|n) and δ′ = Ω(δ

|F|).

Proof. Set m = δn
3
. By Fact C.4 there exist sets Qj

r |j∈[n],r∈[m] of size at most 3, such

that for every j ∈ [n], the m sets Qj
r |r∈[m] are disjoint, and every Qj

r determines j in

C. Without loss of generality the sets Qj
r |j∈[n],r∈[m] are of size exactly 3 (we can add

zero coordinates, at worst doubling n). Denote Qj
r = {A(j; r), B(j; r), c(j; r)} and let

{αj
r,1, α

j
r,2, α

j
r,3 ∈ F \ {0}}j∈[n],r∈[m] be such that for every j, r

C(x)j = αj
r,1C(x)A(j;r) + αj

r,2C(x)B(j;r) + αj
r,3C(x)c(j;r) ∀x ∈ Fk.

Set N ′ = [n] × (F \ {0}) and we define C ′ : Fk → FN ′
as follows. For every j ∈ [n] and

β ∈ F \ {0}
C ′(x)j,β = βC(x)j.

35

We argue that C ′ is a special-form (3, δ′)-LCC for δ′ = δ
|F|−1

, of length n′ = (|F| − 1)n.

Indeed, for every j ∈ [n] and β ∈ F\{0}, we consider the sets Qj
r |r∈[m]. For every r ∈ [m]

we have that

C ′(x)j,β = βC(x)j

= βαj
r,1C(x)A(j;r) + βαj

r,2C(x)B(j;r) + βαj
r,3C(x)c(j;r)

= −C ′(x)A(j;r),−βαj
r,1

+ C ′(x)B(j;r),βαj
r,2

+ C ′(x)c(j;r),βαj
r,3

∀x ∈ Fk.

Thus, we defineQ′j,β
r = {A′(j, β; r), B′(j, β; r), c′(j, β; r)} forA′(j, β; r) = (A(j; r),−βαj

r,1) ∈
N ′, B′(j, β; r) = (B(j; r), βαj

r,2) ∈ N ′ and c′(j, β; r) = (c(j; r), βαj
r,3) ∈ N ′ in order to sat-

isfy Equation (C.1) of Definition C.5. It remains to check that the sets Q′j,β
r |r∈[m] are

disjoint. Indeed, this follows immediately from that Qj
r |r∈[m] are disjoint (if we consider

only the first part of the name of each coordinate in Q′j,β
r we will get disjoint sets). Finally,

for every j, β there are δn
3
sets {Q′j,β

r } and δn
3
= δ′|N ′|

3
for δ′ = δ

|F|−1
. The claim follows.

We can now conclude the bound for a general F.

Theorem C.10 (Theorem 1.7, rephrased). Let C : Fk → Fn be a linear (3, δ, ε)-LCC.

Then k = O
(

|F|2
δ2

log4 n
)
.

Proof. By Claim C.9 there exists a linear map C ′ : Fk → Fn′
which is a special-form

(3, δ′)-LCC, for n′ = O(|F|n) and δ′ = Ω(δ
|F|). Since if |F| > k the argued bound holds

trivially, we can assume |F| ≤ k. In particular, |F| ≤ n ≤ n′, and so we can invoke

Proposition C.8 with regards to C ′. We get that

k = O

(
1

δ′2
log4 n′

)
= O

(
|F|2

δ2
(log(n) + log(|F|)4)

)
= O

(
|F|2

δ2
log4 n

)
,

as required.

D Proof sketch for Fact 2.3 and Fact C.4

For completeness we give in this part a proof sketch for Fact 2.3 and Fact C.4. See also

[KT00, Yek11, ZD].

Definition D.1. We say that a randomized procedure A that gets oracle access to z ∈ Fn

and makes queries to z is non-adaptive if the distribution of the set of coordinates that it

queries does not depend on z.

Fact D.2. Let C : Fk → Fk and ℓ : Fk → F be two linear maps. Further let Q ⊆ [n] and

f ∈ FQ. Then, one of the following cases must hold.

36

1. There is at most one α ∈ F for which there exists some x ∈ Fk satisfying C(x)Q = f

and ℓ(x) = α.

2. For every α ∈ F there is an equal number of x ∈ Fk for which C(x)Q = f and

ℓ(x) = α.

In particular, either no function (even randomized) of C(x)Q can predict ℓ(x) with

probability larger than 1
|F| , when x ∈ Fk is randomly chosen uniformly, or C(x)Q deter-

mines ℓ(x) for all x ∈ Fk. Also in particular, in the second case, there is a linear function

from C(x)Q to ℓ(x), and thus a vector v ∈ FQ such that ℓ(x) =
∑

h∈Q vhC(x)h.

It is enough to give a proof sketch for Fact C.4 since Fact 2.3 is a special case of it.

Proof sketch for Fact C.4. Let j ∈ [n], and let Aj be a randomized procedure that satisfies

the requirements of Definition C.1, with an input coordinate fixed to j. Without loss of

generality Aj makes exactly q queries always (we can add queries and ignore them).

Since we only require that ε < 1 − 1
|F| , we can assume without loss of generality

that Aj is non-adaptive. Indeed, consider the algorithm A′
j which first guesses q values

h1, . . . , hq ∈ F, and then starts to simulate Aj. At each time t ∈ [q] that Aj makes a query,

A′
j queries that coordinate of z and checks if its value is equal to ht. If it is different,

A′
j halts the simulation of Aj and outputs a random value in F. Otherwise, if all guesses

turned up to be correct, it answers like Aj. A′
j is non-adaptive because it can make all

queries in advance. The success probability of A′
j is larger than 1

|F| : there is a positive

chance that A′
j guesses correctly the queries that Aj is going to make, and conditioned

on that, the success probability is 1− ε > 1
|F| ; if, on the other hand, the guesses of A′

j are

incorrect, the success probability is 1
|F| . Therefore the assumption that Aj is non-adaptive

is indeed without loss of generality.

We start by showing that there exists one set Q ∈
(
[n]
q

)
such that Q determines j in

C. Let X be a uniformly random message in Fk. We have that

Pr[Aj(C(X)) = C(X)j] ≥ 1− ε

where the probability is over the sampling of X and over the randomness of Aj, since for

every fixed x ∈ Fk the above holds. Moreover,

Pr[Aj(C(X)) = C(X)j]

=
∑

Q∈([n]
q)

Pr[Aj(C(X)) queries on Q] ·Pr[Aj(C(X)) = C(X)j | Aj(C(X)) queries on Q].

37

Hence there exists some fixed Q ∈
(
[n]
q

)
such that

Pr[Aj(C(X)) = C(X)j | Aj(C(X)) queries on Q] ≥ 1− ε >
1

|F|
.

Since Aj is non-adaptive, there is a randomized procedure AQ
j : FQ → F such that

Pr[Aj(C(X)) = C(X)j | Aj(C(X)) queries on Q] = Pr[AQ
j (C(X)Q) = C(X)j].

Hence, by Fact D.2, Q determines j in C (with the function ℓ being C’s j-th coordinate).

To see that there is another set, Q′, disjoint from Q, which also determines j in C, consider

the code C ′ : Fk → Fn defined by C ′(x)t = C(x)t for t /∈ Q and C ′(x)t = 0 for t ∈ Q.

It is not hard to see, following the same reasoning, that if |Q| ≤ δn, then there exists a

set Q′ and a procedure AQ′

j such that Pr[AQ′

j (C ′(X)Q′) = C(X)j] >
1
|F| , and without loss

of generality Q′ ∩ Q = ∅ (as C ′(X)Q is known to be 0). Hence again by Fact D.2 Q′ is

another set, disjoint from Q, that determines j in C. We can continue in this manner as

long as the size of the union of the sets is at most δn, and hence there are at least δn
q

disjoint sets for every j ∈ [n].

38

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

