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Abstract

Lifting theorems are used for transferring lower bounds between Boolean function complex-
ity measures. Given a lower bound on a complexity measure A for some function f , we compose
f with a carefully chosen gadget function g and get essentially the same lower bound on a com-
plexity measure B for the lifted function f ⋄ g. Lifting theorems have a number of applications
in many different areas such as circuit complexity, communication complexity, proof complexity,
etc. One of the main questions in the context of lifting is how to choose a suitable gadget g.
Generally, to get better results, i.e., to minimize the losses when transferring lower bounds,
we need the gadget to be of a constant size (number of inputs). Unfortunately, in many set-
tings we know lifting results only for gadgets of size that grows with the size of f , and it is
unclear whether it can be improved to a constant size gadget. This motivates us to identify the
properties of gadgets that make lifting possible.

In this paper, we systematically study the question “For which gadgets does the lifting result
hold?” in the following four settings: lifting from decision tree depth to decision tree size, lifting
from conjunction DAG width to conjunction DAG size, lifting from decision tree depth to parity
decision tree depth and size, and lifting from block sensitivity to deterministic and randomized
communication complexities. In all the cases, we prove the complete classification of gadgets by
exposing the properties of gadgets that make lifting results hold. The structure of the results
shows that there is no intermediate cases–—for every gadget there is either a polynomial lifting
or no lifting at all. As a byproduct of our studies, we prove the log-rank conjecture for the class
of functions that can be represented as f ⋄OR ⋄XOR for some function f .
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1 Introduction

For functions f : {0, 1}n → V and g : {0, 1}m → {0, 1}, a (block-)composition f ⋄ g : {0, 1}n×m → V
is defined by

(f ⋄ g)(z1, z2, . . . , zn) := f(g(z1), g(z2), . . . , g(zn)),

where each zi ∈ {0, 1}m. Usually lifting theorems have the following general form:

B(f ⋄ g) = Ω(A(f)),

where A and B are two complexity measures. Note that the hidden constant in Ω(·) may depend
on g. In this context, we call the function g a gadget and say that there is a (linear) lifting
from A to B. One of the first examples of a lifting theorem appeared in [RM99] where Raz and
McKenzie proved a separation for the hierarchy of monotone circuit complexity classes within NC
using a query-to-communication lifting theorem.

The need for such theorems is due to the fact that, in many cases, communication complexity
lower bounds are much more difficult to prove compared to query complexity lower bounds. Lifting
theorems proved to be useful in many other scenarios: proving communication complexity separa-
tions [GP18, GPW18, GPW17, CKLM19], proof complexity separations [GLM+16, HN12, GP18,
dRMN+20], monotone circuit complexity separations [RM99, GGKS20], etc.

While the lifting technique is widely used in different areas we still do not quite understand its
limitations. In the query-to-communication lifting theorems, we want to lower bound the deter-
ministic/randomized communication complexity of the lifted function by deterministic/randomized
query complexity of the original function. So, these theorems usually have the following form:

D(f ⋄ g) = DT(f) ·Θ(log n),

where the gadget g has at most logarithmic communication complexity. In all the lifting theorems of
this type, the size (the number of inputs) of the gadget g grows with the number of inputs of f (e.g.,
in [LMM+22] the size of the gadget is n1+ε, where n is a number of inputs of the lifted function).
Even though some results do not depend on the gadget size (e.g., [GPW18]), in many scenarios
the use of non-constant size gadgets leads to weaker results in the applications (e.g., when lifting
theorems are used to prove monotone circuit lower bounds via communication complexity). It is
unknown whether it is possible to prove a query-to-communication lifting theorem with a constant
size gadget, but we tend to believe that such lifting exists.

At the same time, for other complexity measures there are lifting theorems that can accommo-
date constant size gadgets. Here are some examples of such lifting theorems:

1. Lifting decision tree depth to decision tree size (XOR gadget [Urq11]).

2. Lifting decision tree depth to parity decision tree depth/size (stifling gadgets [CMSS22];
INDEX gadget [BK23]).

3. Lifting from critical block sensitivity to communication complexity (VER gadget [GP18]).

4. Lifting parity decision tree depth to communication complexity (XOR gadget [HHL18]).

5. Lifting AND decision tree depth to communication complexity (AND gadget [KLMY21]).

6. Lifting block sensitivity to randomized communication complexity (AND gadget [Zha09]).
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Note that in examples 4 and 5, the communication complexity is lower bounded by some power of
the parity decision tree complexity or the AND decision tree complexity (in the latter case, with
an additional log n factor). In such cases, we say that there is a polynomial lifting.

As mentioned earlier, lifting theorems which lower bound communication complexity by a linear
function of query complexity are only known for non-constant size gadgets. But in case of a
polynomial lifting, there are query to communication complexity lifting theorems with constant
size gadgets. E.g., in example 6 the author lifts block sensitivity to randomized communication
complexity with a constant size gadget. Given that block sensitivity is polynomially related to
query complexity, this gives a polynomial lifting from query to communication complexity.

All the examples of the lifting theorems with constant size gadgets that we mentioned above
use specific and simple gadgets. But what happens if we plug some other gadget? The same proof
might not work, but would the lifting result still be true? That is not always clear. And this
reflects our lack of understanding of what properties of the gadget make lifting possible. For these
theorems it is natural to pose the following question:

For which gadgets does the lifting result hold?

A systematical study of this question will help us to better understand how lifting works and what
are the requirements for the gadget. Especially it would be interesting to understand for which
gadgets lifting fails. This is what we need, for example, if we want to find a good candidate for
query-to-communication linear lifting with constant size gadget.

One of the areas that might benefit from new lifting theorem is the study of the log-rank
conjecture [LS88]. The log-rank conjecture states that for any function f the deterministic com-
munication complexity of a function is polynomially related to the logarithm of the real rank of its
associated communication matrix. Currently there is a exponential gap between the lower bound
Ω
(

log2(rank(f)
)

[GPW18] and the upper bound O
(
√

rank(f) · log rank(f)
)

[Lov16]. It seems that
the general case of this problems is out of reach now. So most of research in this area has concen-
trated on the study of various complexity measures and special cases such as composed functions
(e.g., see [KLMY21]). Therefore, lifting in this area is one of the main proof techniques.

The other area craving for new lifting theorems is proof complexity. There is a tight connection
between proof complexity and lifting theorems. For example, lifting decision tree depth to parity
decision tree depth/size from [CMSS22, BK23] provides a systematic way to prove tree-like Res(⊕)
size lower bounds. It is important to mention that for proof complexity we usually need lifting
theorems that hold for relations.

Finally, we think that a large number of different applications makes lifting a technique that
is worth exploring on its own. A deeper understanding of how lifting works and what it requires
from gadgets can lead to new applications and results.

1.1 Our results and methods

In this paper, we systematically explore the question “For which gadgets does the lifting result
hold?” in several different settings. We prove complete classifications of gadgets in the following
four settings:

• lifting from decision tree depth to decision tree size,

• lifting from certificate complexity to conjunction DAG size,
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• lifting from decision tree depth to parity decision tree depth and size,

• lifting from block sensitivity to deterministic and randomized communication complexities.

All these results are formulated in the form of dichotomies (a trichotomy in one of the cases) that
essentially state that there is either polynomial lifting or no lifting at all (no intermediate cases).
As a byproduct of our studies, we prove the log-rank conjecture for the class of functions that can
be represented as f ⋄OR ⋄XOR for some function f .

Now we describe the results in more detail and give an overview of the proof methods.

1.1.1 Decision tree depth to size

In Section 3, we define a class of resistant gadgets (defined in Section 3.1) and prove a decision tree
depth to decision tree size lifting theorem for this class of gadgets (see Theorem 3.2). We give two
different proofs illustrating the ideas of two different approaches: proof by simulation and proof
using random projections. The proofs later in the paper refer to the proofs in this simple case. The
proof by simulation is constructive––it shows how given a decision tree for the lifted function f ⋄ g
one can construct a decision tree for the original function f , such that the depth of the new tree
is bounded by a logarithm of the size of the given tree. In the proof using random projections, we
use probabilistic method to show that there is a projection that converts the decision tree for f ⋄ g
into a shallow decision tree for f .

Our goal is to prove a classification theorem, so we need to find a class of gadgets such that
lifting works only for gadgets in this class. It appears that the class of resistant gadgets is too small
for this. We define a wider class of weakly resistant gadgets (defined in Section 3.2) and prove
a certificate complexity to decision tree size lifting theorem (see Theorem 3.4). The proof uses the
random projections method. Note that the decision tree size is upper bounded by the certificate
complexity squared, so as a corollary we get a polynomial lifting from decision tree depth to decision
tree size (see Corollary 3.5).

Finally, we give a complete classification of gadget functions in the context of polynomial lifting
from decision tree depth to decision tree size. It is stated as a dichotomy result (see Theorem 3.9):
either a gadget is weakly resistant and there is a polynomial lifting or there is no lifting at all.

In Section 3.4, we briefly discuss that some of the results above can be generalized to the case
of search problems. Unfortunately, that does not give a classification theorem because decision tree
depth of a search problem can be exponentially greater than its certificate complexity. However, we
state a conjecture there is a decision tree depth to decision tree size polynomial lifting for weakly
resistant gadgets.

1.1.2 Conjunction DAG width to size

In Section 4, we generalize the results from the previous section to decision conjunction DAGs
(defined in Section 4.1). First of all, in Section 4.2, we show that similarly to decision trees where
depth and size are exponentially separated, there is an exponential separation between conjunction
DAG width and size. The separation is achieved for the Tribes function. In Section 4.3, we show that
there is an exponential separation between decision tree size and conjunction DAG size in the case of
relations. Indeed, conjunction DAGs can capture the structure of Resolution proofs, while decision
trees can only capture the structure of tree-like Resolution proofs. Thus, the separation between
these proof systems implies the separation between the measures under consideration. Finally, we

5



argue that the lifting theorems from Section 3 can be generalized to the case of conjunction DAGs
(see Theorem 4.1 and Theorem 4.2) using essentially the same proofs. Thus, we have a dichotomy
result (see Theorem 4.3).

1.1.3 Decision tree depth to parity decision tree depth and size

Recently, Chattopadhyay et al. [CMSS22] showed that if g is stifling (defined in Section 5.1) then
logDTSize⊕(f ⋄ g) = Θ(DT(f)). In Section 5, we extend their result providing the complete
classification of the gadgets for decision tree depth to parity decision tree depth and size lifting.
In Section 5.2, we state and prove a “minimum weight lemma” (see Lemma 5.3), the technical
lemma that we will use several times. This lemma states that if the certificate complexity of
some function f is large enough in comparison to the parity certificate complexity of the lifted
function f ⋄ g at some input, then there is a substitution such that the minimal parity certificate
of f ⋄ g at this input has a large Hamming weight.

In Section 5.3, we consider the most challenging case of this setting––the case of OR gadget. In
Theorem 5.4, we show that there is at least a quadratic gap in the certificate to parity certificate
complexity lifting for OR gadget. If we assume that the lifting result in [CMSS22] holds for OR
gadget as well then the quadratic separation is tight (see Proposition 5.5). In Section 5.3.2, we
show a polynomial (cubic) lifting for OR gadget (see Theorem 5.6). The proof consists of three
ingredients. First, we show that if the minimum weight of a parity certificate for the lifted function
is at least the size of the parity certificate then this certificate covers the all-1 input for the inner
function (see Lemma 5.7). Then we use it to upper bound the minimum weight of a parity certificate
in terms of the sizes of parity certificates for 0 and 1 (see Lemma 5.8). And finally, we apply the
“minimum weight lemma” (see Lemma 5.9). In the proof of Theorem 5.6, we assume that the
certificate complexity of the original function is much larger than the parity certificate complexity
of the lifted function, but due to the “minimum weight lemma” it would contradict the upper
bound on the minimum weight of the parity certificate.

In Section 5.4, we prove a lifting from certificate complexity to parity decision tree size for
AND/OR gadgets, the gadgets that affine project to both binary AND and binary OR (see Theo-
rem 5.11). The proof is by simulation similar to the simulation proof in [CMSS22].

Finally, in Section 5.5, we prove the trichotomy result that gives us a complete classification of
gadgets (see Theorem 5.14). The classification is based on the fact that if a gadget is not AND/OR
then it is a disjunction or a conjunction of affine forms (see Lemma 5.13). We show that there are
only three cases possible: (1) there are simultaneously a lifting from decision tree depth to parity
decision tree depth and a lifting from certificate complexity to parity certificate complexity (the
case of AND/OR gadgets); (2) there is a lifting from decision tree depth to parity decision tree
depth but no lifting between certificate complexities (the case of gadgets that affine project to OR);
(3) there is no lifting (all other gadgets, constant or affine).

In Section 5.6, we show an alternative proof for the lifting from decision tree depth to parity
decision tree depth using function degree and sparsity (see Theorem 5.15). In the proof we show
that the degree of a function is upper bounded by the logarithm of the sparsity of the function lifted
with OR gadget, and compose it with a number of previously known inequalities. As a byproduct,
we get a proof of the log-rank conjecture for the class of functions that can be represented as
f ⋄OR ⋄XOR (see Theorem 5.16).
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1.1.4 Block sensitivity to communication complexity

In Section 6, we provide a complete classification of gadgets for lifting from block sensitivity to
deterministic and randomized communication complexities. Note that this classification also gives
us a classification of gadgets for query-to-communication polynomial lifting since block sensitivity
and query complexity are polynomially related to each other in the case of total functions. How-
ever, since the proof goes through block sensitivity, we classify block sensitivity to communication
complexity lifting.

We start with the lifting theorem of Zhang [Zha09] (see Theorem 6.1) that works for gadget g iff
both AND and OR reduce to g via a communication complexity reduction (defined in Section 6.1).
Then we show that if there is no reduction from OR to a gadget g then the communication matrix
of g is (up to rearrangement) block diagonal (see Lemma 6.3). This gives us a classification of
gadgets in the context of reductions from OR, AND, and XOR (see Corollary 6.5 and Corollary 6.6).

In Section 6.2, we prove a dichotomy result for randomized communication complexity (see The-
orem 6.7). The proof is based on the fact that if OR does not reduce to a gadget g then ANDn ⋄ g is
essentially an instance of the equality function, and hence its randomized communication complexity
is logarithmic. If AND does not reduce to a gadget, the situation is symmetrical (see Lemma 6.8).
Thus, the theorem of Zhang covers all gadgets for which there is a lifting.

In Section 6.3, we prove the dichotomy result for deterministic communication complexity
(see Theorem 6.10). The proof of the dichotomy depends on a block sensitivity to determinis-
tic communication complexity lifting theorem that works for gadget g iff both AND and XOR
reduce to g (see Theorem 6.9). Together with the Zhang’s lifting theorem that give us a com-
plete classification of gadgets: if at least two of three functions AND, OR, XOR reduce to gadget
g then there is a block sensitivity to deterministic communication complexity polynomial lifting.
Otherwise, if at least two functions from this list do not reduce to g then g is either a constant
function or (essentially) one of the functions AND, OR, XOR. The proof of the lifting theorem
requires a number of ingredients. First of all, we compose two results from [HHL18, ZS10] to get
a parity certificate to deterministic communication complexity polynomial lifting for XOR gadget
(see Corollary 6.11). Then we show two lower bounds for specific cases: we show that the determin-
istic communication complexity of f ⋄XOR is lower bounded by the size of any minimal sensitive
block of the function f (see Lemma 6.12), and that the deterministic communication complexity of
f ⋄AND is lower bounded by the block sensitivity of f at the all-0 input (see Lemma 6.13). One of
the ingredients is again the “minimum weight lemma” (see Lemma 6.14). And the last one, is the
lemma that shows that parity certificates of high minimum weight always intersect with (regular)
certificates of sufficiently small size (see Lemma 6.15). Putting all the ingredients together we get
the desired lifting result.

2 Prerequisites

2.1 Notation

All the logarithms are base 2. We use ORn, ANDn, XORn to denote, respectively, logical ‘and’, ‘or’
and ‘exclusive or’ of n Boolean inputs. For simplicity we also define OR := OR2, AND := AND2,
and XOR := XOR2. We use the notation xB for x ∈ {0, 1}n and B ⊆ [n] to denote x with all the
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coordinates in B flipped, i.e., xi = xBi ⇐⇒ i 6∈ B. For g : {0, 1}k → {0, 1}, we define1 a function
gn : {0, 1}n×k → {0, 1}n such that

gn(x1, x2, . . . , xn) := (g(x1), g(x2), . . . , g(xn)).

For a function f : {0, 1}n → {0, 1}, an input x ∈ {0, 1}n, and a partial assignment σ ∈ {0, 1, ∗}n
that agrees with x on all non-∗ coordinates, we use f |σ to denote a restriction of f to σ and x|σ to
denote a projection of x to the ∗-coordinates of σ. For a gadget g : {0, 1}k → {0, 1} and a blockwise
partial assignment σ ∈

(

{0, 1}k ∪ {∗k}
)n

(i.e., in any block of variables that corresponds to one
copy of g, the variables are either all set or all stars), we use gn(σ) to denote the partial assignment
in {0, 1, ∗}n induced by applying g to non-∗ blocks of σ. We use ‘⊔’ instead of ‘∪’ to indicate a
union of disjoint sets.

2.2 Complexity measures

Throughout the text, we will consider several complexity measures.

Decision tree complexity A decision tree is a rooted binary tree with internal nodes labeled
by input variables (represent queries), edges labeled with 0 and 1, and leaves labeled by some
values. Decision tree evaluation is defined in the natural way: given an assignment for the input
variables, we traverse the tree starting from the root and then sequentially choose every next edge
according to the given assignments until we reach some leaf. The label of this leaf is the result
of the evaluation. A decision tree computes some function f if for all possible assignments to the
input variables the decision tree evaluates to the value of the function. For a function f , DT(f)
denotes the minimal depth of a decision tree computing f , and DTSize(f) denotes the minimal
number of leaves in a decision tree computing f .

Parity decision tree complexity A parity decision tree is a generalization of a decision tree
where the queries are arbitrary linear combinations of the input variables. It can be described as
a rooted binary tree with internal nodes labeled by linear combinations of the input variables, edges
labeled with 0 and 1, and leaves labeled by some values. The evaluation is defined analogously.
For a function f, DT⊕(f) denotes the minimal depth of a parity decision tree computing f , and
DTSize⊕(f) denotes the minimal number of leaves in a parity decision tree computing f .

Certificate complexity A certificate complexity is a non-deterministic analogue of the decision
tree complexity. A certificate for an input x ∈ {0, 1}n to a function f is a set S ⊆ [n] of indices such
that f restricted to all inputs that match x on S is constant, i.e., f(y) = f(x) whenever y|S = x|S .
The certificate complexity C(f, x) of f at input x is the size of the smallest certificate for x. Finally,
the certificate complexity of function f is defined as C(f) := maxx∈{0,1}n C(f, x).

Parity certificate complexity A parity certificate for an input x ∈ {0, 1}n to a function f
is a set A of linear forms such that f is constant on the affine subspace defined by A = A(x).
A parity certificate complexity C⊕(f, x) of function f at input x is the size (number of linear
forms) of the smallest parity certificate for x. The parity certificate complexity of f is defined as
C⊕(f) := maxx∈{0,1}n C⊕(f, x).

1In some papers lifting theorems are formulated for the classical composition operation ‘◦’ rather then for the

block-composition ‘⋄’. Note that for f : {0, 1}n → {0, 1} and g : {0, 1}k → {0, 1}, f ⋄ g ≡ f ◦ gn.
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Block sensitivity A block B ⊆ [n] is sensitive for a function f at x iff f(x) 6= f(xB). The block
sensitivity bs(f, x) of f at x is the maximum number of disjoint sensitive blocks for f at x. The
block sensitivity bs(f) of f is the maximum sensitivity bs(f, x) over all points x ∈ {0, 1}n.

Degree and sparsity of the function Every Boolean function defined on {0, 1}n → {0, 1}
can be considered as a function f : {−1, 1}n → {−1, 1} by substituting 0 and 1 with 1 and −1,
respectively. Every such function has a unique representation as a multilinear polynomial over R
of the following form

f(x) =
∑

S⊆[n]

cSxS , where xS =
∏

i∈S
xi.

Degree of f is defined to be the degree of the corresponding polynomial, we denote it by deg(f).
Sparsity of f is the number of nonzero coefficients in this representation, we denote it by spar(f).

Deterministic communication complexity and rank For a function f : X × Y → Z, let’s
consider the following game for two players, Alice and Bob, that want to compute f . Alice and Bob
are given x ∈ X and y ∈ Y , respectively. Their goal is to compute f(x, y). In order to do it, the
players exchange information about their parts of the input using a simple communication channel
that allows sending bit messages. Before the game the players come up with a communication
protocol that determines their behavior on all possible inputs. The cost of a protocol is the maximum
total number of bits sent by the players over all possible inputs x ∈ X, y ∈ Y . The deterministic
communication complexity of f is the minimal cost of a deterministic communication protocol that
computes f . We denote it by D(f).

A communication matrix of the function f is a matrix Mf ∈ ZX×Y such that (Mf )x,y := f(x, y)
for all x ∈ X, y ∈ Y . We define rank(f) to be the rank of matrix Mf .

Randomized communication complexity In a randomized communication game, Alice and
Bob have access to an unlimited amount of random bits and they can use it to decide which bit to
send next. We say that a (private coin) randomized communication protocol Π computes a function
f : X × Y → Z with error ε if

Pr
rA,rB

[

Π(x, y, rA, rB) = f(x, y)
]

≥ 1− ε, ∀x ∈ X, y ∈ Y,

where rA and rB are the strings of random bits used by Alice and Bob, respectively. The cost of
a randomized protocol is the maximum number of bits that can be sent. We denote by Rε(f) the
minimal cost of a private coin randomized communication protocol that computes f with error ε.
A randomized communication complexity of f is defined as R(f) := R1/3(f).

3 Decision tree depth to size

We start by exploring perhaps one of the simplest scenarios, depth-to-size lifting in decision trees.
To give a flavor of the techniques that we are going to use in this paper, we prove a lifting theorem
for the class of resistant gadgets.
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3.1 Resistant gadgets

Urquhart [Urq11] proved that for any function f : {0, 1}n → {0, 1},

logDTSize(f ⋄XOR) = Ω(DT(f)).

We generalize this result for the class of resistant gadgets.

Definition 3.1. A gadget g : {0, 1}m → {0, 1} is resistant if for every i ∈ [m] and b ∈ {0, 1}, the
function obtained by fixing the ith input to b is not constant. Equivalently, the minimum certificate
complexity at inputs is larger than 1. E.g., XOR function is resistant while AND function is not.

Theorem 3.2. For any function f : {0, 1}n → {0, 1} and a resistant gadget g : {0, 1}m → {0, 1},

logDTSize(f ⋄ g) = Ω(DT(f)).

We give two proofs of this theorem using two different approaches: simulation and random
projections. The first proof is more clear and in some sense constructive, but the second proof can
be generalized to other settings. In the following proofs, we use x1, . . . , xn to refer to the inputs of
function f . The inputs to the lifted function f ⋄ g are denoted by zi,j , where i ∈ [n] and j ∈ [m].

Proof by simulation. Given a decision tree T for f ⋄ g of size S, we construct a decision tree for f
of depth at most logS. We traverse T from the root to a leaf and maintain a partial assignment
to z which is consistent with the input x, in the sense that the partial assignment can be extended
to an input z which satisfies x = gn(z) (i.e., xi = g(zi,1, . . . , zi,m)). This ensures that if the leaf is
labelled b then f(x) = b.

Initially the partial assignment is empty. When at a node labelled zi,j , there are two options.
If the value of zi,j is already known, then we follow the edge labelled with its value. Otherwise,
we set zi,j to the value which corresponds to the smaller subtree, query xi, and set the remaining
zi,k’s so that xi = g(zi,1, . . . , zi,m) (this is possible since g is resistant).

Each time we make a query to x, the size of the current tree is at least halved (the size of the
smaller child-subtree of T ′ is at most half the size of T ′), and hence the process terminates after at
most logS queries to x.

Proof using random projections. Let T be a decision tree for f ⋄ g of size S. We apply the following
random projection. For each i ∈ [n], choose an index j ∈ [m] at random, and set it to a random
value b ∈ {0, 1}. Set the remaining variables to xi, x̄i, 0, 1 in such a way that g(zi) = xi. This is
possible since g is resistant, as we show below. The result is a decision tree T ′ for f .

To see that we can always construct such a projection, let h(z) be a non-constant function, and
choose two inputs w0, w1 such that h(wb) = b. We define the projection ρ as follows: if w0

i = w1
i = a

then set zi = a; otherwise, if w0
i = 0 then set zi = x, and if w1

i = 0 then set zi = x̄. By construction,
ρ|x=b = wb and so h|ρ(b) = h(wb) = b.

For example, suppose that h(z1, z2, z3) is the majority function on three inputs, and that we
set the first bit z1 to 0. Then h(0, 1, xi) = xi and h(0, xi, xi) = xi are two possible ways to choose
a pair of inputs (w0, w1) corresponding to (010, 011) and (000, 011), respectively.

We would like to say that there is a choice of random projection for which T ′ is shallow. To do
this, let us calculate the probability that a vertex at depthD in T survives in T ′. The path leading to
the vertex involves variables from at least D/m different blocks (each zi is a block). For each block
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appearing in the path, choose an arbitrary variable appearing in the path. If we set this variable
to the opposite value then the vertex disappears. This happens with probability at least 1/(2m)
for each variable, and so the vertex survives with probability p ≤ (1− 1/(2m))D/m = 1/2O(D).

If pS < 1 then the expected number of vertices at depth D surviving in T ′ is less than 1,
and so there is a random projection for which T ′ has depth less than D. This happens for some
D = O(logS).

3.2 Weakly resistant gadgets

There are gadgets, such as x ∨ (y ∧ z), which are clearly not resistant, but for which the lifting
still holds as we will show below. To capture these cases, we define a more general class of weakly
resistant gadgets.

Definition 3.3. A gadget g : {0, 1}m → {0, 1} is weakly resistant if for every certificate α (a partial
assignment which sets the value of g) there is a partial assignment yj = b which conflicts with α
and does not make g constant.

Every resistant gadget is trivially weakly resistant: we can take any variable mentioned in α
and substitute the opposite value. The aforementioned gadget h = x ∨ (y ∧ z) is weakly resistant
(as we show below) but not resistant, since h|x=1 = 1. The gadget x∨y is not even weakly resistant
due to the certificate x = y = 0: if we substitute x = 1 or y = 1 then the gadget becomes constant.

Let us verify that h is weakly resistant, by considering all possible certificates:

• x = 1: take x = 0.

• y = z = 1: take y = 0 or z = 0.

• x = y = 0: take y = 1.

• x = z = 0: take z = 1.

We now prove the following lifting theorem:

Theorem 3.4. For any f : {0, 1}n → {0, 1} and a weakly resistant gadget g : {0, 1}m → {0, 1} the
following holds:

logDTSize(f ⋄ g) = Ω(C(f)).

Proof. Given a decision tree T for f ⋄ g of size S, we construct a blockwise random projection ρ
in the following way. For each i ∈ [n], we choose a random certificate C of g. Let yj = b be the
substitution promised by weak resistance. We substitute zij = b. Since this does not make g(zi)
constant, we can complete ρ|zi to a projection to xi such that g(ρ|zi) = xi (as in the case of resistant
predicates).

Let ℓ be a leaf of T . Suppose that at least D blocks in ℓ contain certificates. If there are
M certificates of g, then ℓ is consistent with ρ with probability is at most (1 − 1/M)D. Choose
D = Θ(logS) so that (1 − 1/M)DS < 1, which implies that under some choice of ρ, all leaves of
T |ρ contain less than D blocks with certificates. Since (f ⋄ g)|ρ = f , this shows that C(f) < D.

Indeed, given an input x to f , consider the corresponding input ρ(x) to f ⋄ g. This input reaches
some leaf ℓ, in which less than D blocks contain certificates, say the blocks in I ⊆ [n]. For each
input x′ consistent with gadget values for blocks in I, we can find an input z reaching the same
leaf such that gn(z) = x′. Hence the block certificates in ℓ correspond to a certificate of f .

11



Corollary 3.5. For any function f : {0, 1}n → {0, 1} and a weakly resistant gadget g : {0, 1}m →
{0, 1} the following holds:

logDTSize(f ⋄ g) = Ω
(
√

DT(f)
)

.

Proof. [BBC+01] shows that for any function f

DT(f) ≤ (C(f))2.

Together with Theorem 3.4, that gives us the desired bound.

Note 3.6. This proof can also be phrased in the language of simulations. This was worked out
jointly with Amit Chakrabarty, Mika Göös, Johan H̊astad, Susanna de Rezende, Robert Robere,
and Avishay Tal in a Dagstuhl breakout session.

Question 3.7. We do not know whether the lower bound is tight, even for h = x ∨ (y ∧ z). At the
moment we can’t even rule out logDTSize(f ⋄h) = Ω(DT(f)).

Sherstov [She10, Theorem 6.4] proved that

max
(

log rank(f ⋄AND), log rank(f ⋄OR)
)

≥ deg(f).

Since rank lower bounds decision tree size, this implies that

logDTSize(f ⋄ g) ≥ deg(f).

Note that we are not aware of any separation between DT(f) and max(C(f), deg(f)).

3.3 Gadget classification

Now we can prove a dichotomy result. First of all, we need the following classification of gadgets.

Lemma 3.8. For every g : {0, 1}m → {0, 1}, one of the following cases holds:

1. Function g is a (possibly empty) conjunction or a disjunction of literals.

2. Function g is weakly resistant.

Proof. If g is not weakly resistant then there is a certificate α such that for every substitution
yj = b conflicting with α, the function g|yj=b is constant. Moreover we can assume that α is an
inclusion-minimal certificate.

Suppose that
α = {yi1 = b1, . . . , yit = bt}

and g|α = b. By assumption, the function g|yis=b̄s is constant. Since α is inclusion-minimal,

necessarily g|yis=b̄s = b̄. Thus if b = 1 then

g = [yi1 = b1] ∧ · · · ∧ [yit = bt],

otherwise, if b = 0 then
g = [yi1 6= b1] ∨ · · · ∨ [yit 6= bt].

We can now state the dichotomy theorem.
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Theorem 3.9. For every gadget g : {0, 1}m → {0, 1}, one of the following cases holds:

1. There is an infinite family of functions fn with DT(fn)→∞ and DTSize(fn ⋄ g) = O(DT(fn)).

2. For every function f , we have logDTSize(f ⋄ g) = Ω
(

DT(f)Ω(1)
)

.

Proof. The two cases correspond to the two cases of Lemma 3.8. If g is a disjunction then we take
fn := ORn. Clearly DT(fn) = n and DTSize(f ⋄ g) = O(n) (if g is constant, then DTSize(fn) = 1).
The case of a conjunction is similar.

Otherwise, g is weakly resistant, thus by Corollary 3.5 we have logDTSize(f ⋄ g) = Ω
(
√

DT(f)
)

.

3.4 Generalization to search problems

A relation f is a subset of {0, 1}n × V . For a gadget g : {0, 1}m → {0, 1}, we define a composition
f ⋄ g ⊆ ({0, 1}m)n × V as a relation, such that

(z1, z2, . . . , zn, r) ∈ (f ⋄ g) ⇐⇒ (g(z1), g(z2), . . . , g(zn), r) ∈ f.

One can observe that the proofs of Theorems 3.2 and 3.4 work as well when we let f to be a relation.
However, the Corollary 3.5 does not hold for the relations since DT(f) can be exponentially greater
than C(f). As an example of this, one can take f to be a falsified clause problem corresponding to
the Pigeonhole Principle Formula over an expander graph. [BSW01] showed that resolution width
of any refutation for this formula at least Ω(n) (which is greater or equal than DT(f)), but the
certificate complexity is constant (since each of the clauses of the formula is constant-sized).

However, we conjecture that lifting from decision tree depth to decision tree size can also be
proved for weakly resistant gadgets. Equivalently, this will mean that such lifting holds for the
gadget g(x, y, z) := x ∨ (y ∧ z).

4 Conjunction DAG width to size

4.1 Conjunction DAGs

Conjunction DAGs were first defined formally in [GGKS20], though they appear implicitly in
previous work. A conjunction DAG over a set of variables is a single-rooted DAG with the following
additional information:

• Each internal vertex is annotated with a variable, and it has two outgoing edges, one labeled
0 and the other one labeled 1.

• Each vertex v is annotated with a partial assignment ρ(v) with the following constraint.
Suppose that v queries xi, and the answer b leads to the vertex vb. Then the partial assignment
ρ(vb) is a subset of the partial assignment ρ(v) ∪ {xi ← b}. (This is not identical to the
definition in [GGKS20], but morally the same.)

• The partial assignment at the root is the empty assignment.

• Each leaf is annotated with some value.
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A decision DAG computes f if for every leaf ℓ annotated with yℓ, ρ(ℓ) is a yℓ-certificate of f .
Every decision tree is a decision DAG. There are three parameters of interest: the (total) size

(number of vertices), the leaf size (number of leaves), and the width (maximum number of variables
in any ρ(v)).

4.2 Size vs width

A decision tree of depth d contains at most 2d leaves, and this is tight for the parity function, in
the sense that the bound DTSize(f) ≤ 2DT(f) cannot be improved when f is the parity function.

Similarly, a conjunction DAG of width d contains at most
(

n
≤d

)

= O(nd) vertices, and this is
tight for the following function (also known as the Tribes function)

f(x) =

√
n

∨

i=1

√
n

∧

j=1

xij .

We can construct a conjunction DAG of width O(
√
n) for f as follows. We think of the input as

a matrix, where i is the row number and j is the column number. We scan each row sequentially.
If the current row consists only of 1s, we stop. Otherwise, we add the first 0 to ρ, and forget all
the remaining entries of the row.

Conversely, consider the set of
√
n
√
n
inputs having a single 0 per row. No two inputs share the

same certificate, and so every conjunction DAG for f must contain at least n
√
n/2 leaves.

4.3 Separation between decision tree size and conjunction DAG size

Let d(f) denotes the conjunction DAG width of a function f , which is the smallest width of
a conjunction DAG for f . Since DT(f) ≥ d(f) ≥ C(f) = Ω

(
√

DT(f)
)

, in case of functions
conjunction DAG width and decision tree depth are polynomially related. In this section, we show
that in case of relations decision tree size and conjunction DAG size can be far apart.

Alekhnovich et al. [AJPU07] constructed a family of CNF contradictions φn with poly(n) many
variables and clauses which have a refutation in Resolution of size poly(n), but such that any
refutation in tree-like Resolution (even in regular Resolution) is of size 2Ω(n).

We can think of a Resolution proof as a conjunction DAG which solves the falsified clause
problem: given a truth assignment, find a falsified clause. This is a relation rather then function.
Similarly, a tree-like Resolution proof is a decision tree solving the same problem.

Now we are going to show that there is a function f : {0, 1}n → {0, 1} with a conjunction DAG
of size poly(n) such that DTSize(f) = 2Ω(n/ log n). Consider the contradictions φn mentioned above.
Index the clauses of φn using bitstrings of length ℓ = O(logn) in some arbitrary way. Now consider
a polynomial size Resolution proof of φn, and let fi be the function mapping a truth assignment
to the i-th bit of the bitstring indexing the falsified clause found by the proof. By construction,
each fi has a conjunction DAG of size poly(n). Given decision trees for f1, . . . , fℓ, we can construct
a decision tree solving the falsified clause problem of size

∏

iDTSize(fi). Since this product must
be at least 2Ω(n), we conclude that maxiDTSize(fi) = 2Ω(n/ logn).

4.4 Gadget classification

For the case of conjunction DAGs, we can generalize Theorem 3.2:
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Theorem 4.1. Let f ⊆ {0, 1} × V be a relation and g : {0, 1}m → {0, 1} be a resistant gadget. If
there is a conjunction DAG of size S computing f ⋄ g, then there is a conjunction DAG of width
O(logS) computing f .

Proof. We argue that the random projection proof of Theorem 3.2 can be adapted for this theorem
as well. The difference is that instead of killing terms of high depth, we now focus on the nodes
with high width and show that with high probability, after random projection there will be no such
nodes in the DAG. All the calculations remain unchanged.

Moreover, for conjunction DAGs we can prove an analogue of Theorem 3.4:

Theorem 4.2. Let f ⊆ {0, 1} × V be a relation and g : {0, 1}m → {0, 1} be a weakly resistant
gadget. If there is a conjunction DAG for f ⋄ g with S leaves, then the certificate complexity of f
is at most O(logS).

Proof. The proof of Theorem 3.4 can be applied in this setting as is.

Note that Theorem 4.2 gives us a lifting from certificate complexity to leaf size. Unfortunately,
in the case of the falsified clause problem for CNF, this theorem cannot be effectively used to prove
lower bounds since leaf size is usually small as well as certificate complexity. However, this theorem
still implies a dichotomy result similar to one in Theorem 3.9.

Theorem 4.3. For every gadget g : {0, 1}m → {0, 1}, one of the following cases holds:

1. There exists an infinite family of functions fn such that fn ⋄ g can be computed with a con-
junction DAG having O(n) leaves, but C(fn) = Ω(n).

2. For every relation f , if we have a conjunction DAG for f ⋄ g with S leaves, then the certificate
complexity of f is at most O(logS).

Proof. The two cases of the theorem correspond to the two cases in Lemma 3.8. If g is a disjunction
then we take fn := ORn. Clearly DT(fn) = n and S = O(n) (if g is constant, then DTSize(fn) = 1).
The case of a conjunction is similar.

Otherwise, gadget g is weakly resistant and by Theorem 4.2 we have logS = Ω
(

C(f)
)

.

5 Decision tree depth to parity decision tree depth and size

In this section, we are going to classify gadgets in the context of decision tree depth to parity decision
tree depth and size lifting. We start by restating recent result of Chattopadhyay et al. [CMSS22].
After that we are going to state the “minimum weight lemma” (Lemma 5.3) that is a technical tool
we will use multiple times throughout this section and the following one. We use this lemma to
prove the lifting from certificate complexity to parity certificate complexity with OR gadget, which
is the most challenging case in the classification. Finally, we will show an alternative and much
simpler proof for the lifting from decision tree depth to parity decision tree depth using degree and
sparsity. In some sense, this proof should give us a better exponent for the decision tree lifting. The
main point of considering certificate complexity lifting is that there is a non-trivial upper bound for
OR gadget showing that it is impossible to prove a linear lifting in this setting (see Theorem 5.4).
As a byproduct, we get a proof of the log-rank conjecture for the class of functions that can be
represented as f ⋄OR ⋄XOR.
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5.1 Stifling gadgets

Chattopadhyay et al. [CMSS22] defined the following notion.

Definition 5.1. A function g : {0, 1}m → {0, 1} is k-stifling if for every set of k coordinates and
b ∈ {0, 1} there is a way to set the remaining m− k coordinates so that the output is b (regardless
of the value of the chosen k coordinates). A function is stifling if it is 1-stifling.

Chattopadhyay et al. [CMSS22] showed that if g is stifling then logDTSize⊕(f ⋄ g) = Θ(DT(f)),
where the hidden constant can depend on g. See Appendix A for an exposition of their proof.

5.2 Minimum weight lemma

A parity certificate C is a system of affine equations, so it can be represented by a matrix M and
a vector v that define a linear subspace.

Definition 5.2. A minimum weight of a parity certificate C is the minimum Hamming weight of
non-zero vectors in the row space of M .

For example, one can consider a certificate {x + y = 1, x + y + z = 0}. The minimum weight
of this certificate is equal to 1 and this corresponds to the equation z = 1. On the other hand, the
minimum weight of a certificate {x+ y = 1, x+ z = 0} is equal to 2.

The following lemma is a key tool that we will use both in Section 5 and in Section 6. This lemma
shows that if the certificate complexity of some function f is large enough in comparison to the
parity certificate complexity of the lifted function f ⋄ g at some input, then there is a substitution
such that the minimal parity certificate of f ⋄ g at this input has large Hamming weight. Informally,
this means that we can make a small enough substitution, such that the preimage of the parity
certificate after the substitution will contain the points that we are interested in.

Lemma 5.3 (minimal weight lemma). For functions f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1},
suppose that f ⋄ g has a parity certificate complexity at most k at some point x. Let K be a param-
eter. If certificate complexity of f at gn(x) is greater than k ·K then we can find a blockwise partial
assignment σ to the inputs of f ⋄ g consistent with x, such that for some k′ ≤ k:

• (f ⋄ g)|σ has a parity certificate of size k′ at x|σ whose minimum weight is at least K,

• C
(

f |gn(σ), gn(x)|gn(σ)
)

> k′K.

Proof. The proof is by induction on k. If k = 0 then the premises contradict each other, so we can
assume that k > 0.

Let C be the parity certificate for f ⋄ g at input x. By the assumption, the size of C is at most k.
If its minimum weight is at least K then we are done. Otherwise, without loss of generality C con-
tains a nontrivial constraint ℓ = α whose support is less than K. Choose a partial assignment that
agrees with x on the support of this constraint, and complete it to a blockwise partial assignment σ
consistent with x (complete only the blocks with at least one variable assigned). And let τ := gn(σ).

By construction, (f ⋄ g)|σ has a parity certificate of size at most k−1 at x|σ, namely C\{ℓ = α}.
On the other hand, since we only set the values of at most K blocks, the certificate complexity of f
reduces by at most K after being restricted to τ , and hence C(f |τ , gn(x)|τ ) > (k − 1)K. Now we
can apply the induction hypothesis for k − 1.
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5.3 OR gadget

5.3.1 Separation

Chattopadhyay et al. [CMSS22] showed that C⊕(f ⋄ g) = Θ(C(f)) whenever g is stifling. This no
longer holds when g is binary OR. The following theorem shows that there is at least a quadratic
gap for OR gadget in the certificate to parity certificate complexity lifting.

Theorem 5.4. Let n = m2, and let f : {0, 1}n → {0, 1} be the function that accepts an m × m
Boolean matrix iff it has no rows of Hamming weight 1.

1. C(f) = n,

2. C⊕(f ⋄OR) ≤ 2m.

Proof. For the first part, we will show that C(f, 0) = n. Indeed, f(0) = 1, but if we flip any bit we
get a 0-input of f .

For the second part, observe first that if (f ⋄OR)(x) = 0 then one of the rows has Hamming
weight 1, which can be certified using m constraints. We complete the proof by showing that given
inputs for one row of the matrix y, z ∈ {0, 1}m, we can certify that y ∨ z does not have Hamming
weight 1 using two constraints.

If y ∨ z has at least two 1s, say (y ∨ z)i = (y ∨ z)j = 1, then this can be certified using one of
yi, zi and one of yj , zj . If y = z = ~0 then we can certify that y∨ z does not have Hamming weight 1
by two constraints XORn(y) = XORn(z) = 0. Indeed, if y ∨ z had Hamming weight 1, say yi = 1,
then XORn(y) = 1.

Note that if we assume that the lifting result of [CMSS22] holds for the OR gadget as well then
the quadratic separation is tight.

Proposition 5.5. Suppose that DT⊕(f ⋄OR) = Θ(DT(f)) for all f . Then every function f
satisfies C(f) = O(C⊕(f ⋄OR)2).

Proof. The assumption implies that

C(f) ≤ DT(f) = Θ(DT⊕(f ⋄OR))
[ZS10]
= O(C⊕(f ⋄OR)2).

5.3.2 Lifting

Given Lemma 5.3 we are going to prove the following lifting for the certificate complexity.

Theorem 5.6. For every function f : {0, 1}n → {0, 1}, we have C(f) = O(C⊕(f ⋄OR)3).

Throughout the proof we will think of f as having inputs x1, x2 . . . , xn, and of f ⋄OR as having
inputs z1,1, z1,2, z2,1, z2,2 . . . , zn,1, zn,2, such that xi corresponds to zi,1 ∨ zi,2. The twin of zi,1 is zi,2,
and vice versa. We start the proof with the following lemma, which would be another technical
tool in this section. Together with Lemma 5.3, the proof of the lifting theorem is essentially a
combination of these two tricks.

Lemma 5.7. Suppose that C is a parity certificate of size k whose minimum weight is at least k.
Then there are k indices i1, . . . , ik such that for every input x with xi1 = · · · = xik = 1, we can find
an input z satisfying C such that ORn(z) = x. In particular, there is an input z satisfying C such
that ORn(z) = (1, . . . , 1).
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Proof. Let V + b be the affine subspace corresponding to C, where V is a linear subspace. We pick
a basis ℓ1, . . . , ℓk for V and indices (i1, j1), . . . , (ik, jk) ∈ [n]× [2] such that:

• zit,jt is in the support of ℓt.

• zis,1, zis,2 are not in the support of ℓt for s < t.

We do this inductively. At step t, we can identify the complement of the span of ℓ1, . . . , ℓt−1 in
V with all vectors in V whose support does not contain any of the variables zi1,j1 , . . . , zit−1,jt−1

.
Since V has minimum weight k > t− 1, we can find a vector ℓt in the complement whose support
contains a variable zit,jt with it 6∈ {i1, . . . , it−1}.

Now let x be an input satisfying xi1 = · · · = xik = 1. We set the twins of zi1,j1 , . . . , zit,jt to
1, and set zi,1, zi,2 for i 6= i1, . . . , it in an arbitrary way subject to zi,1 ∨ zi,2 = xi. We then set
zit,jt , . . . , zi1,j1 (in this order) in such a way that the resulting input satisfies C.

The next lemma that we need for the proof of the lifting result gives an upper bound on the
minimum weight of a parity certificate in terms of the sizes of certificates for 0 and 1.

Lemma 5.8. Suppose that f ′ ⋄OR has a parity certificate C ′ of size k′ which certifies b, and a parity
certificate C ′′ of size k′′ which certifies b̄. Then the minimum weight of C ′ is at most k′ + 2(k′′)2.

Proof. First observe that k′ > 0 and k′′ > 0 since otherwise f ′ ⋄OR is constant and can not have
certificates for both 0 and 1.

Consider the case k′′ = 1. Suppose for the sake of contradiction that the minimum weight of C ′

is at least k′ + 2(k′′)2 + 1 = k′ + 3 > k′. According to Lemma 5.7, some input z satisfying C ′

satisfies ORn(z) = (1, . . . , 1), and so f ′(1, . . . , 1) = b. If the minimum weight of C ′′ was at least 2
then the same argument would imply f ′(1, . . . , 1) = b̄. Therefore C ′′ consists of a single-variable
constraint zi,j = α. Certificates C ′ and C ′′ have to contradict each other but it can not be the case
since the minimum weight of C ′ is at least 3, so the substitution zi,j ← α can not contradict it.

We proceed by induction on k′′ using almost the same argument. Suppose for the sake of
contradiction that the minimum weight of C is at least k′+2(k′′)2+1 > k′. According to Lemma 5.7,
some input z satisfying C satisfies ORn(z) = (1, . . . , 1), and so f ′(1, . . . , 1) = b. If the minimum
weight of C ′′ was also at least k′′ then the same argument would imply that f ′(1, . . . , 1) = b̄.
Therefore the minimum weight of C ′ is at most k′′. Consider some constraint ℓ = α of C ′′ of weight
at most k′′. Lets choose some partial assignment satisfying ℓ = α, and complete it to a blockwise
partial assignment τ in an arbitrary way. Thus τ assigns at most 2k′′ variables. The assignment τ
can not contradict C ′ since the minimum weight of C ′ is greater than 2k′′. Therefore (f ′ ⋄OR)|τ
still has a b-certificate C ′|τ of size k′ and a b̄-certificate C ′′|τ of size k′′− 1. By induction, we know
that the minimum weight of C ′|τ is at most k′ +2(k′′− 1)2, and so the minimum weight of C ′ is at
most k′ + 2(k′′ − 1)2 + 2k′′ < k′ + 2(k′′)2.

The following lemma is an application of the “minimal weight lemma” to the current setting.

Lemma 5.9. Suppose that f ⋄OR has a parity certificate complexity at some input z of size at
most k. Let K be a parameter. Suppose that certificate complexity of f at ORn(z) is greater than
k ·K. Then we can find a blockwise partial assignment σ to the inputs of f ⋄OR, consistent with z,
such that for some k′ ≤ k:

• (f ⋄OR)|σ has a parity certificate of size k′ at z|σ whose minimum weight is at least K.
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• C(f |ORn(σ),ORn(z)|ORn(σ)) > k′K.

Proof. Apply Lemma 5.3 for a function f and a gadget g = OR.

Now we have all the ingredients for proving Theorem 5.6.

Proof of Theorem 5.6. Let C⊕(f ⋄OR) = k, and let K be a parameter to be determined later.
Suppose that C(f) > kK. Apply Lemma 5.9 to get a non-constant function f ′, obtained by
restricting f , such that f ′ ⋄OR has a parity certificate of size k′ whose minimum weight is at least K
(the function f ′ is non-constant since its certificate complexity is positive). Since C⊕(f ′ ⋄OR) ≤
C⊕(f ⋄OR) and f ′ is non-constant, Lemma 5.8 (with k′′ ≤ k) shows that K ≤ k′+2(k′′)2 ≤ k+2k2.
By choosing K = k + 2k2 + 1 we reach a contradiction. Therefore C(f) ≤ kK = O(k3).

Question 5.10. Can we improve this bound from cubic to quadratic, so this bound matches the
separation provided by Proposition 5.5?

5.4 AND/OR gadgets

A function g : {0, 1}m → {0, 1} affine projects to a function h : {0, 1}p → {0, 1} if there are affine
functions ℓ1, . . . , ℓm : Zp

2 → Z2 such that

g(ℓ1(z), . . . , ℓm(z)) = h(z).

A gadget g : {0, 1}m → {0, 1} is AND/OR if it affine projects to both binary AND and binary
OR. Here are some examples of AND/OR gadgets:

• g(x, y, z) := x ∨ (y ∧ z). The projections: g(0, a, b) = a ∧ b and g(a, b, 1) = a ∨ b.

• g(x, y, z) := [x+ y + z = 1]. The projections: g(1, ā, b̄) = a ∧ b and g(ā, b̄, a⊕ b) = a ∨ b.

Theorem 5.11. If g is an AND/OR gadget then for all functions f : {0, 1}n → {0, 1}

logDTSize⊕(f ⋄ g) ≥ C(f).

Proof. Let T0 be a parity decision tree for f ⋄ g. Let z be a point such that C(f, z) = C(f). Since g
is AND/OR, we can apply affine substitutions to T0 and get a parity decision tree T computing
function f ⋄(hz1 , . . . , hzn), where h0(a, b) := a ∧ b and h1(a, b) := a ∨ b.

Now we follow the simulation proof of Chattopadhyay et al. [CMSS22]. We start at the root.
When at a node v, if the query is constant then we follow the corresponding edge, otherwise we
pick some variable, without loss of generality ai, which appears in the query. So the query is of the
form ai ⊕ ℓ. We set bi := 0 if zi = 0, and we set bi := 1 if zi = 1. Then we choose c, the answer to
the query, such that it leads to the smaller subtree, and set ai := ℓ ⊕ c. From now on, we do not
see neither ai nor bi.

Eventually we reach a leaf. Suppose that this happens after eliminating coordinates i1, . . . , iK ,
which means that T contains at least 2K leaves. For every input z′ to f which agrees with z on
i1, . . . , iK we can find an input w′ to T which satisfies g(w′) = z′ and leads to the same leaf, showing
that z′i1 = zi1 , . . . , z

′
iK

= ziK is a certificate for f at z. We conclude that K ≥ C(f, z) = C(f), and

so |T0| ≥ |T | ≥ 2K .
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5.5 Gadget classification

For the proof we will need the following classical fact.

Proposition 5.12 ([Che09, Theorem 4.3]). Suppose that f : {0, 1}n → {0, 1} satisfies the following
condition: whenever f(x) = f(y) = f(z) = 1 then f(x⊕ y ⊕ z) = 1. Then either f ≡ 0, or f is an
indicator of an affine subspace.

We use this statement to classify gadgets which are not AND/OR.

Lemma 5.13. If g is not an AND/OR then g is a disjunction or a conjunction of affine forms in
the inputs.

Proof. Suppose that g does not affine project to OR. We claim that for any inputs x, y, z, if
g(x) = g(y) = g(z) = 1 then g(x ⊕ y ⊕ z) = 1. Indeed, suppose that g(x) = g(y) = g(z) = 1 but
g(x⊕ y ⊕ z) = 0, and consider the projection

h(a, b) := g(x⊕ y ⊕ z ⊕ a(x⊕ y)⊕ b(x⊕ z)).

Then h(0, 0) = g(x ⊕ y ⊕ z) = 0, h(1, 0) = g(z) = 1, h(0, 1) = g(y) = 1, and h(1, 1) = g(x) = 1.
Thus, we can conclude that g affine projects to OR.

Applying Proposition 5.12, we see that if g does not affine project to OR then it is either the
empty disjunction or a conjunction of affine forms. Similarly, if g does not affine project to AND
then ḡ does not affine project to OR, and so g is either the empty conjunction or a disjunction of
affine forms.

Now we can prove the classification of gadgets.

Theorem 5.14. For every gadget g, one of the following cases holds:

1. There is an infinite family of functions fn with DT(fn)→∞ and DTSize⊕(fn ⋄ g) = O(1).

2. For every function f , DT⊕(f ⋄ g) = Ω
(

DT(f)Ω(1)
)

. There is an infinite family of functions
fn with DT(fn)→∞ and DTSize(fn ⋄ g) = O(DT(f)).

3. For every function f , logDTSize⊕(f ⋄ g) = Ω
(

DT(f)Ω(1)
)

and also C⊕(f ⋄ g) = Ω
(

C(f)Ω(1)
)

.

Proof. If g is AND/OR then by Theorem 5.11 we have logDTSize⊕(f ⋄ g) ≥ C(f) = Ω
(
√

DT(f)
)

.

Since C⊕(f ⋄ g) = Ω
(
√

DT⊕(f ⋄ g)
)

[ZS10] and DT⊕(f ⋄ g) ≥ logDTSize⊕(f ⋄ g), we get the third
case of the theorem.

Otherwise, by Lemma 5.13, gadget g is either a conjunction of affine forms or a disjunction of
affine forms. Suppose, without loss of generality, that g is a disjunction of affine forms. If g ≡ 0 or g
is affine then we can take fn = ⊕n to get the first case of the theorem. If g is not affine then it affine
projects to OR, and thus we get the second case: we need to apply Theorem 5.6 together with the
polynomial relations between (parity) certificate complexity and (parity) decision tree complexity;
the infinite family of functions is fn = ORn.
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5.6 Lifting for OR gadget and the log-rank conjecture

In this section, we provide a proof of the following inequality:

Theorem 5.15. For any function f : {0, 1}n → {0, 1},

DT(f) ≤ O
(

DT⊕(f ⋄OR)O(1)
)

.

This inequalty is a corollary of Theorem 5.6 using the fact that DT is polynomially related to C,
and DT⊕ is polynomially related to C⊕. We present an alternative proof of this statement that
gives as a byproduct a proof of the log-rank conjecture for a subclass of Boolean functions that can
be represented as f ⋄OR ⋄XOR for arbitrary function f .

In this section, we will need a composition of a function and a gadget (XOR in this case) in
the communication complexity context. For a function f : {0, 1}n → {0, 1} we define a function
f⊕ : {0, 1}n × {0, 1}n → {0, 1}, such that f⊕(x, y) := f(x1 ⊕ y1, . . . , xn ⊕ yn), and associate it with
the following communication problem: Alice and Bob are given x and y, respectively, and their goal
is to compute f(x, y). For a subclass of such XOR functions, we will prove the following version of
log-rank conjecture:

Theorem 5.16. For any function f : {0, 1}n → {0, 1},

D((f ⋄OR)⊕) ≤ poly(log rank((f ⋄OR)⊕).

The proof depends on the following lemma.

Lemma 5.17. For any function f : {0, 1}n → {0, 1},

DT(f)
(1)

≤ 2 deg(f)4
(2)

≤ O((log spar(f ⋄OR))4)
(3)
= O((log rank((f ⋄OR)⊕))

4)

(4)

≤ O(D((f ⋄OR)⊕)
4)

(5)

≤ O(DT⊕(f ⋄OR)4),

Proof.

(1) See [Bd02].

(2) We need to prove that
deg(f) ≤ log spar(f ⋄OR).

We can assume that f : {−1, 1}n → {−1, 1} has degree n. If not, we can fix a monomial of the
maximum degree and substitute 1 into all other variables. This substitution does not change
the degree while the sparsity can only decrease. So, the function f has the following multilinear
representation:

f(x) = α[n]

n
∏

i=1

xi +
∑

S([n]

αSxS , where α[n] 6= 0.

In order to get the multilinear representation of the function f ⋄OR one can substitute each
xi with

yi1yi2−yi1−yi2−1
2 . After the substitution, for any combination of indices j1, j2, . . . , jn ∈

{1, 2}, the coefficient of the monomial
∏n

k=1 ykjk is equal to α[n] · 2−n. Indeed, such monomi-
als can only be produced by the substitution into the maximum degree monomial, and such
substitution results in the coefficient α[n] · 2−n.
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Note that α[n] 6= 0 and hence there is a monomial for every 2n possible combinations of indexes
j1, j2, . . . , jn. That gives us the desired bound:

log spar(f ⋄OR) ≥ n = deg(f).

(3) See [BC99].

(4) See [LS93].

(5) Each time we query a linear function ℓ(x ⊕ y) = ℓ(x) ⊕ ℓ(y), Alice and Bob can send to each
other ℓ(x) and ℓ(y) to compute ℓ(x⊕ y).

Theorem 5.15 follows immediately. For Theorem 5.16 we need one more inequality in the chain.

Proof of Theorem 5.16. We need to show that DT⊕(f ⋄OR) ≤ 2DT(f). Indeed, the decision tree
for f can be transformed into a decision tree for f ⋄OR by replacing every query with two queries
of corresponding variables. Together with Lemma 5.17 that finishes the proof.

6 Block sensitivity to communication complexity

In this section, we provide a complete classification of gadgets for lifting from block sensitivity
to deterministic and randomized communication complexities. Note that this classification will
also give us a classification of gadgets for query-to-communication polynomial lifting since block
sensitivity and query complexity are polynomially related to each other in the case of total func-
tions. However, since the proof goes through block sensitivity, we will classify block sensitivity to
communication complexity lifting.

6.1 Reductions in communication complexity

Let fi : Xi ×Yi → {0, 1} for i = 1, 2 be two-party functions. We say that f1 reduces to f2, denoted
f1 ≤ f2, if the communication matrix of f1 is a submatrix of the communication matrix of f2.
Equivalently, f1 ≤ f2 iff there exist one-to-one mappings πA and πB such that

f1(x, y) = f2(πA(x), πB(y)), ∀(x, y) ∈ X1 × Y1.

Zhang [Zha09] proved the following theorem:

Theorem 6.1 (Zhang). If a two-party gadget g : X × Y → {0, 1} satisfies AND,OR ≤ g, then for
every function f : {0, 1}n → Q, the function f ⋄ g has (constant error) randomized communication
complexity Ω(bs(f)).

For completeness we present the proof that is a reduction from unique set disjointnes.

Definition 6.2. The disjointness function Disjn : {0, 1}n × {0, 1}n is defined as follows:

Disjn(x, y) :=
n
∨

i=1

xi ∧ yi.

Unique set disjointness, PromiseDisjn, is a promise version of disjointness with the promise that
there is always at most one i such that xi ∧ yi = 1.
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Proof of Theorem 6.1. Razborov [Raz92] showed that R(PromiseDisjm) = Ω(m). We will show
a reduction from this problem to computing f ⋄ g. To illustrate the proof, let us start with the case
in which f(~0) = 0 and f(ei) = 1 for all i ∈ [n], where ei is the i’th unit vector. Then

PromiseDisjn(x, y) = f(x1 ∧ y1, . . . , xn ∧ yn).

Since AND ≤ g, we can solve unique set disjointness using a protocol for f ⋄ g. Therefore f ⋄ g has
communication complexity Ω(n). Note that this case only required AND ≤ g; we need OR ≤ g in
order to handle inputs changing from 1 to 0.

To handle the general case, let X∧(0), X∧(1) ∈ X and Y ∧(0), Y ∧(1) ∈ Y witness AND ≤ g,
and let X∨(0), X∨(1) ∈ X and Y ∨(0), Y ∨(1) ∈ Y witness OR ≤ g.

Let z be a point witnessing bs(f), and let B1, . . . , Bm be the corresponding blocks, where
m = bs(f). Given inputs x, y to unique set disjointness, we construct the following inputs X,Y to
f ⋄ g:

• If i does not belong to any of the blocks, then we fix Xi, Yi so that g(Xi, Yi) = zi.

• If i ∈ Bj and zi = 0, put Xi = X∧(xj), Yi = Y ∧(yj).

• If i ∈ Bj and zi = 1, put Xi = X∨(x̄j), Yi = Y ∨(ȳj).

The reader can check that if x, y are disjoint then applying g to X,Y yields z, and if they intersect
only at j then it yields z ⊕ Bj . Hence f ⋄ g can be used to compute unique set disjointness of
length m, and consequently we obtain a lower bound of Ω(m).

For the classification of gadgets, we will need the following lemma that shows that if OR � g
then the communication matrix of g is block diagonal.

Lemma 6.3. If g : X ×Y → {0, 1} satisfies that OR � g then there are partitions of X and Y into
disjoint sets

X = X0 ⊔ X1 ⊔ · · · ⊔ Xk and Y = Y0 ⊔ Y1 ⊔ · · · ⊔ Yk,
such that

• If x ∈ Xi, y ∈ Yj, where i 6= j, or i = 0, or j = 0, then g(x, y) = 0.

• If x ∈ Xi, y ∈ Yi, where i 6= 0, then g(x, y) = 1.

Proof. We can construct such a partition step by step. Consider any point (x0, y0) such that
g(x0, y0) = 1. If we don’t have such a point, then we can take X0 = X and Y0 = Y. Otherwise,
we consider all points y ∈ Y such that g(x0, y) = 1. Denote the set of all such points as Y ′. Now,
we can consider all x ∈ X such that g(x, y0) = 1. Denote the set of all such points as X ′. Observe
that every point (x, y) ∈ X ′×Y ′ satisfies g(x, y) = 1, otherwise we can project our gadget to points
(x0, y0), (x0, y), (x, y0), (x, y) and get OR.

Now, observe that for any (x′′, y′) ∈ (X \X ′)×Y ′ we have g(x′′, y0) = 0 by construction, and thus
g(x′′, y′) = 0, since otherwise we can project the gadget to points (x0, y

′), (x0, y0), (x′′, y′), (x′′, y0)
and get OR. By analogy, for any (x′, y′′) ∈ X ′ × (Y \ Y ′) we have g(x′, y′′) = 0.

This means that X ′×Y ′ forms a valid block of our partition, so we can use the same procedure
to construct a block of (X \ X ′) × (Y \ Y ′). In the end, if we get sets X ′′ and Y ′′ such that any
(x, y) ∈ X ′′ × Y ′′ satisfies g(x, y) = 0, we take X0 = X ′′ and Y0 = Y ′′.
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Definition 6.4. We say that a gadget g : X×Y → {0, 1} is a blow-up of a gadget h : Z×W → {0, 1}
if there are decompositions X =

⊔

z∈Z Xz and Y =
⊔

w∈W Yw, with Xz,Yw 6= ∅, such that all
(xz, yw) ∈ Xz × Yw satisfy g(xz, yw) = h(z, w).

For example, g is a blow-up of XOR if (up to rearrangement) it has communication matrix of
the following form





















1 · · · 1 0 · · · 0
...

. . .
...

...
. . .

...
1 · · · 1 0 · · · 0
0 · · · 0 1 · · · 1
...

. . .
...

...
. . .

...
0 · · · 0 1 · · · 1





















If g is a blow-up of h then f ⋄ g and f ⋄h have the same communication complexity in all models.
Indeed, on the one hand, h is a restriction of g, and so a protocol for f ⋄ g can be used to solve
f ⋄h; and on the other hand, by replacing x ∈ Xz by z and y ∈ Yw by w, we can use a protocol for
f ⋄h to solve f ⋄ g.
Corollary 6.5. If g : X ×Y → {0, 1} satisfies both OR 6≤ g and AND 6≤ g then either g is constant,
or it is a blow-up of XOR.

Proof. We can assume that the Xi,Yi 6= ∅, except that possibly X0 = Y0 = ∅.
If X0 6= ∅ and k > 0 then AND ≤ g. Indeed, if we restrict the matrix of g so that it contains

one row each from X0,X1 and one column each from Y0,Y1 then we get
[

0 0
0 1

]

which is AND. Consequently, either k = 0 or X0 = Y0 = ∅.
If k = 0 then g ≡ 0. Now suppose that X0 = Y0 = ∅. If k ≥ 3 and we restrict the communication

matrix of g so that it contains one row from each X1,X2,X3 and one column from each Y1,Y2,Y3
then we get





1 0 0

0 1 0
0 0 1





Again we get a restriction to AND. Hence, k ≤ 2. If k = 1 then g ≡ 1, and otherwise g is a blow-up
of XOR.

Corollary 6.6. If g : X ×Y → {0, 1} satisfies both OR 6≤ g and XOR 6≤ g then either g is constant,
or it is a blow-up of AND. Similarly, if AND 6≤ g and XOR 6≤ g then either g is constant, or it is
a blow-up of OR.

Proof. We can assume that the Xi,Yi 6= ∅, except that possibly X0 = Y0 = ∅. We start by proving
the first claim, and so we assume that OR,XOR 6≤ g.

If k ≥ 2 then XOR ≤ g. Indeed, if we restrict the matrix of g so that it contains one row from
each X1,X2 and one column from each Y1,Y2 then we obtain

[

1 0
0 1

]
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which is XOR. If k = 0 then g ≡ 0. If k = 1 and X0 = Y0 = ∅ then g ≡ 1‘. Finally, if k = 1 and
X0,Y0 6= ∅ then g is a blow-up of AND.

Suppose that AND,XOR 6≤ g. Then OR,XOR 6≤ ḡ, where ḡ is the negation of g. Hence either
ḡ is constant or it is a blow-up of AND. Thus, either g is constant or it is a blow-up of OR.

6.2 Gadget classification for randomized communication complexity

In this section we prove the following dichotomy result for the randomized case.

Theorem 6.7. For every gadget g, one of the following cases holds:

1. There is an infinite family of functions fn with bs(fn) = Ω(n) and R(fn ⋄ g) = O(log n).

2. For every function f , we have R(f ⋄ g) = Ω
(

bs(f)Ω(1)
)

.

First we need to prove the following lemma.

Lemma 6.8. Let g, h : X × Y → {0, 1} be gadgets such that OR � g and AND � h. Then

R(ANDn ⋄ g) = O(logn), R(ORn ⋄h) = O(logn).

Proof. The bounds for g and h are symmetrical, so we prove only the first one. Consider the
decomposition X = X0 ⊔ X1 ⊔ · · · ⊔ Xk and Y = Y0 ⊔ Y1 ⊔ · · · ⊔ Yk provided by Lemma 6.3.
If one of the blocks gi was given an input from X0 or Y0, then one of the players can share
this information with the other player and finish the communication. Otherwise, they indicate
that they do not have such blocks. After this step, they are restricted to inputs from X \ X0

and Y \ Y0. Since any two inputs from the same block Xi or Yi are indistinguishable for our
gadget, they need to solve ANDn ⋄EQm, where EQm is the equality function for m-bit inputs
(i.e., EQm(x, y) = 1 ⇐⇒ x = y) for m = ⌈log k⌉. This is exactly an instance of EQnm, which
can be solved with O(logn) bits of communication (note that m is a constant) by a randomized
communication protocol (see [KN96]).

Now we are ready to prove the dichotomy result.

Proof of Theorem 6.7. If AND,OR ≤ g then Theorem 6.1 shows that R(f ⋄ g) = Ω
(

bs(f)Ω(1)
)

, so
we get the second case.

Otherwise, OR � g or AND � g. We apply Lemma 6.8: if OR � g we take fn = ANDn,
otherwise we take fn = ORn. This gives us the first case of the theorem.

6.3 Gadget classification for deterministic communication complexity

In this section, we will prove the following lifting theorem that implies the classification theorem.

Theorem 6.9. If a two-party gadget g : X × Y → {0, 1} satisfies AND,XOR ≤ g, then for every
function f : {0, 1}n → {0, 1}, the function f ⋄ g has communication complexity Ω(bs(f)k) for some
fixed constant k > 0. The same is true if g satisfies OR,XOR ≤ g.

Together with Theorem 6.1 this will give us a complete classification of gadgets.

Theorem 6.10. For every gadget g, one of the following cases holds:
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1. There is an infinite family of functions fn with bs(fn) = Ω(n) and D(fn ⋄ g) = O(1).

2. For every function f , we have D(f ⋄ g) = Ω
(

bs(f)Ω(1)
)

.

Proof. If AND,OR ≤ g, or AND,XOR ≤ g, or OR,XOR ≤ g, then Theorem 6.1 and Theorem 6.9
show that D(f ⋄ g) = Ω

(

bs(f)Ω(1)
)

, so the second case holds.
If none of these cases holds, then at least two of the functions AND,OR,XOR do not reduce

to g. Corollaries 6.5 and 6.6 show that either g is constant (and so the first case trivially holds)
or it is a blow-up of one of the functions XOR,OR,AND. By taking fn = XORn,ORn,ANDn

(respectively), we get the first case of the theorem.

In the rest of this section we will cover the proof of Theorem 6.9. We start with the following ob-
servation: according to [HHL18], for any f : {0, 1}n → {0, 1} we have DT⊕(f) ≤ O(D(f ⋄XOR)6).
Zhang and Shi [ZS10] showed that DT⊕(f) = O(C⊕(f)2). Combining these results, we can derive
the following corollary:

Corollary 6.11. For any f : {0, 1}n → {0, 1}, we have C⊕(f) ≤ O(D(f ⋄XOR)12).

In the following lemma, a minimal sensitive block of a function f : {0, 1}n → {0, 1} at point x
is a subset I ⊆ [n] such that f(xI) 6= f(x) but f(xJ) = f(x) for all J ( I. This lemma shows
that the deterministic communication complexity of f ⋄XOR is lower bounded by the size of any
minimal sensitive block of the function f .

Lemma 6.12. For any f : {0, 1}n → {0, 1} and α ∈ {0, 1}n such that there is a minimal sensitive
block of f at α of size S. Then the following holds:

D(f ⋄XOR) ≥ S.

Proof. Consider some minimal sensitive block of f at α of size S. Let i1, i2, . . . , iS be the indices
of the variables in this block of α. Let restrict the function f by substituting values xj = αj for
the all j /∈ {i1, i2, . . . , iS}. This gives us a function f ′(y1, y2, . . . , yS) such that

• f ′(y1, . . . , yS) = f(x), if yj 6= αij for at least one j.

• f ′(y1, . . . , yS) 6= f(x), if yj = αij for all j.

Thus, if we substitute XOR inside each yj this will give us an instance of the function

(z1 ⊕ z′1 ⊕ αi1) ∨ (z2 ⊕ z′2 ⊕ αi2) ∨ · · · ∨ (zS ⊕ z′S ⊕ αiS ),

where each zi and z′i are distinct variables. This function is essentially a negation of the equality
function with a shift. So, its deterministic complexity is equal to S (see [KN96] for the lower bound
for EQn). Thus D(f ⋄XOR) ≥ D(f ′ ⋄XOR) ≥ S.

The following lemma shows that the deterministic communication complexity of f ⋄AND is
lower bounded by the block sensitivity of f at the all-0 input.

Lemma 6.13. For any f : {0, 1}n → {0, 1} such that bs(f,~0) = S, the following holds:

D(f ⋄AND) ≥ Ω(S).
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Proof. The proof essentially follows the proof from [Zha09]. Let I1, . . . , IS be the minimal sensitive
blocks of f at ~0. We describe a reduction from PromiseDisjS to f ⋄AND, so any protocol for f ⋄AND
can be used to solve PromiseDisjS , and thus D(f ⋄AND) ≥ Ω(S). For any input (a, b) ∈ {0, 1}S to
PromiseDisjS we define the corresponding input (x, y) ∈ {0, 1}n to f ⋄AND.

1. Let xi = yi = 0 for all i /∈ ⋃S
j=1 Ij .

2. Let xi = aj and yi = bj for all i ∈ Ij .

We claim that this is a correct reduction. Indeed, if there is a unique j such that aj ∧ bj = 1, then

f(x1 ∧ y1, x2 ∧ y2, . . . , xn ∧ yn) = f
(

0Ij
)

6= f(0, . . . , 0).

On the other hand, if aj ∧ bj = 0 for all j ∈ [S], then

f(x1 ∧ y1, x2 ∧ y2, . . . , xn ∧ yn) = f(0, . . . , 0).

The next lemma is an application of the “minimum weight lemma” for the identity gadget.

Lemma 6.14. Suppose that f has a parity certificate at some point x of size at most k. Let K be
a parameter. Suppose that the certificate complexity of f at x is greater than k ·K. Then we can
find a partial assignment σ to at most k ·K variables of f , consistent with x, such that:

• f |σ has a parity certificate at x|σ of size at most k.

• The minimum weight of this certificate is at least K.

Proof. Apply Lemma 5.3 for the function f and the identity function as a gadget g.

And the last ingredient needed for the proof of the classification theorem, the following lemma
that shows that parity certificates of high minimum weight always intersect with (regular) certifi-
cates of sufficiently small size.

Lemma 6.15. Suppose that for some function f and some input x the following holds: f has
a parity certificate C⊕(x) of size k at x whose minimum weight is at least K. Then, for any point
y with certificate complexity at most K − k, there is a non-empty intersection of the corresponding
certificates C(y) and C⊕(x).

In the proof, the parity certificate is processed with a careful Gaussian elimination and then
the variables fixed by the certificate C(y) are free variables of the parity certificate.

Proof. Let V + b be the affine subspace corresponding to C⊕(x), where V is a linear subspace. We
pick a basis ℓ1, . . . , ℓk for V and indices i1, . . . , ik ∈ [n] such that:

• zit is in the support of ℓt.

• zis is not in the support of ℓt for s < t.

• zit does not belong to the support of C(y).
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We do this inductively. At step t, we can identify the complement of the span of ℓ1, . . . , ℓt−1 in V
with all vectors in V whose support does not contain any of the variables zi1 , . . . , zit−1

. Since V
has minimum distance K > t−1+K−k, we can find a vector ℓt in the complement whose support
contains a variable zit with it /∈ {i1, . . . , it−1} and zit /∈ C(y).

Now we can construct an input α which belongs to both C(y) and C⊕(x). First, we set the
variables from C(y) such that the resulting input satisfies C(y). Then we set in an arbitrary way
all the variables not occurring in C(y) or in {zi1 , . . . , zik}. Finally, we set zik , . . . , zi1 (in this order)
in such a way that the resulting input satisfies C⊕(x).

Now we have everything we need to prove Theorem 6.9.

Proof of Theorem 6.9. Assume that AND,XOR ≤ g. The proof in case of AND,XOR ≤ g is
similar. Consider any function f . There is a constant S such that bs(f) = 9S5. If C⊕(f) ≥ S, then
by Corollary 6.11,

D(f ⋄ g) ≥ D(f ⋄XOR) ≥ C⊕(f)
1/12 ≥ S1/12 ≥ Ω

(

bs(f)1/(12·5)
)

,

and so the theorem holds for k = 1/60. So, we can assume that C⊕(f) < S. Also, we can assume
that for any input, the size of the minimal sensitive block is at most S, otherwise by Lemma 6.12
we get

D(f ⋄ g) ≥ D(f ⋄XOR) = Ω(S) = Ω(bs(f)1/5).

Consider any input x with maximal block sensitivity and the corresponding set of minimal
sensitive blocks. The certificate complexity of x is at least 9S5, since the certificate complexity is
at least the block sensitivity. By Lemma 6.14 (for k = S and K = 2S3), we can find a substitution
σ such that f |σ has a parity certificate at x|σ of size at most S with minimal weight least 2S3. In
addition, the block sensitivity of f |σ at xσ is at least 9S5 − 2S4 ≥ 7S5 (since we set at most 2S4

variables with σ), and the blocks still have size at most S. We fix the substitution σ and consider
the restricted function. In what follows, we denote f̂ := f |σ and x̂ := x|σ.

Consider any input y obtained from x̂ by swapping one of the blocks. Suppose that the certificate
complexity of this input is at most 2S3 − S. Then by Lemma 6.15 (for k = C⊕(f̂ , x̂) ≤ S and
K = 2S3), the certificate for y and the parity certificate for x̂ intersect. Since f̂(x̂) 6= f̂(y), this
leads to a contradiction. So, the certificate complexity of y should be greater than 2S3 − S.

Again, by using Lemma 6.14 (for k = S and K = S2 − 1), there is a substitution τ of at most
S3 variables, such that y|τ has a parity certificate of size at most S with minimal weight at least
S2 − 1. In addition, the certificate complexity of y|τ is at least 2S3 − S3 = S3.

Since the substitution τ consists of at most S3 variables, the minimal weight of the parity
certificate C⊕(f̂ , x̂)|τ (we apply τ to every linear form in the certificate) at least 2S3 − S3 ≥ S3.
Note that substitution τ can be inconsistent with x̂, but we still can make this substitution inside
C⊕(f̂ , x̂) and get a solvable certificate for f̂ |τ . Thus, if we find any point z, consistent with the
substitution τ , such that the certificate complexity of z|τ is at most S2−S−1, then this certificate
C(f̂ |τ , z|τ ) should intersect with both C⊕(f̂ , x̂)|τ and C⊕(f̂ , y)|τ by Lemma 6.15 (for k = C⊕(x̂) ≤ S
and K = S2 − 1). Since all the these certificates intersect, we have f̂(x̂) = f̂(z) = f̂(y), but this
contradicts f̂(x̂) 6= f̂(y).

Now, consider an input z consistent with τ such that all the ∗-variables of τ are set to zeroes.
We have shown above that the certificate complexity of f̂ |τ at z|τ is at least S2−S. Recall that z|τ
has a block sensitivity witness with all the blocks of size at most S. Since all the blocks together
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constitute a certificate, we conclude that the block sensitivity of f̂ |τ at z|τ is at least S − 1. Since
z|τ is the all zeroes, by Lemma 6.13 we have

D(f ⋄ g) ≥ D(f ⋄AND) = Ω(S) = Ω(bs(f)1/5).

7 Open problems

Matching lower and upper bounds for the certificate complexity lifting Theorem 5.4
shows that one there is a function f such that C(f) ≥ Ω(C⊕(f ⋄OR)2). However, Theorem 5.6
shows only that C(f) ≤ O(C⊕(f ⋄OR)3). Can we show that C(f) ≤ O(C⊕(f ⋄OR)2)?

Generalization of current results to relations Almost all the results discussed above were
proved for Boolean functions. However, the question of proving lifting dichotomies for relations is
still open.

One motivation for studying relations instead of functions is the following: any tree-like Resolu-
tion refutation of a CNF formula corresponds to a decision tree, solving the falsified clause problem
for this CNF (which is usually a relation rather than Boolean function). Similarly, any tree-like
Res(⊕) refutation of some CNF formula corresponds to a parity decision tree, solving the falsified
clause problem for this CNF. So, any lifting theorem from decision trees to parity decision trees
with constant size gadgets that holds for relations, should give us a new way of proving tree-like
Res(⊕) lower bounds.

Conjunction DAG to parity conjunction DAG lifting A parity conjunction DAG is defined
similarly to a conjunction DAG, with the following two differences:

• Queries are linear forms rather than variables.

• Nodes are annotated by affine subspaces rather than partial assignments. The label ρ(vb) of
a child node vb, that is attached to the parent node v via an edge labeled b, is a subspace of
ρ(v) ∪ {ℓ← b}, where ℓ is the query in v.

Another possible direction of research is to prove a lifting theorem from conjunction DAG
size to parity conjunction DAG size. The motivation for this kind of lifting also comes from the
proof complexity. Dag-like Resolution refutation can be viewed as a conjunction DAG and dag-like
Res(⊕) refutation can be viewed as a parity conjunction DAG. So, proving such lifting theorems for
the relations with small enough gadgets can be used to prove lower bounds for Res(⊕) refutations,
which is a long-standing open problem in proof complexity.
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A Decision tree depth to parity decision size for stifling gadgets

In this section, we paraphrase the proof of Theorem 4 in [CMSS22]. Given a parity decision tree
for f ⋄ g of size (number of leaves) S, where g is k-stifling for k ≥ 1, we construct a decision tree
for f of depth (logS)/k.

Suppose that f has n inputs and that g has m inputs. We denote the input to f by x1, . . . , xn
and the input to f ⋄ g by yij , where i ∈ [n] and j ∈ [m]. The function f ⋄ g is computed by first
computing xi = g(yi1, . . . , yim) and then computing f(x1, . . . , xn).

We will maintain a sequence of equations of the form

yIJ = yi1j1 ⊕ · · · ⊕ yiℓjℓ ⊕ b.

Initially, the sequence is empty. If yIJ is the left-hand side of one of the equations (in this case, we
say that yIJ is highlighted), then subsequent equations will not involve yIJ .

Given an input x to f , we traverse the parity decision tree for f ⋄ g from the root down to
the leaves. When we reach a leaf, we simply output the label listed there. When at an internal
vertex v labelled ℓ (which is a linear combination of yij ’s), we proceed as follows. First, iteratively
substitute the left-hand side of each equation by the right-hand side. Let the final result be ℓ′.
If ℓ′ is constant, then we descend to the corresponding child of v. Otherwise, we descend to the
child of v whose subtree has fewer leaves. Suppose that this corresponds to ℓ′ = b. We choose an
arbitrary yIJ occurring in ℓ′, say ℓ′ = yIJ ⊕ ℓ′′, and add the equation yIJ = ℓ′′⊕ b. We say that yIJ
is highlighted non-trivially.

If yIJ is the k’th highlighted input among yI1, . . . , yIm, then we query xI , set the non-highlighted
yIj ’s so that g(yI1, . . . , yIm) = xI no matter the value of the highlighted inputs, and add the
equations yIJ ′ = bIJ ′ corresponding to the m− k inputs set in this way (where bIJ ′ is the value to
which yIJ ′ is set).

By construction, each time a variable is highlighted non-trivially, the number of leaves decreases
by a factor of at least 2. If we query D inputs out of x1, . . . , xn, then we have highlighted non-
trivially at least kD inputs out of yij , and so S ≥ 2kD. Consequently D ≤ (logS)/k.

It remains to show that the output of the decision tree is correct. To see this, it suffices to
show that there is some input y such that g(y) = x and y reaches the same leaf of the parity
decision tree. Start by querying all xi not queried so far, and setting the non-highlighted yij so
that g(yi1, . . . , yim) = xi, which is possible since at most k−1 of these are highlighted. The system
of equations now involves all yij . Since the system is triangular by construction, it has a solution.
The solution corresponds to an input y which reaches the given leaf, and it satisfies g(y) = x by
construction.
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