

Randomness Extractors in AC^0 and NC^1 : Optimal up to Constant Factors

Kuan Cheng *

Ruiyang Wu[†]

Abstract

We study randomness extractors in AC^0 and NC^1 . For the AC^0 setting, we give a logspaceuniform construction such that for every $k \ge n/\operatorname{poly}\log n$, $\varepsilon \ge 2^{-\operatorname{poly}\log n}$, it can extract from an arbitrary (n,k) source, with a small constant fraction entropy loss, and the seed length is $O(\log \frac{n}{\varepsilon})$. The seed length and output length are optimal up to constant factors matching the parameters of the best polynomial time construction such as [GUV09]. The range of k and ε almost meets the lower bound in [GVW15] and [CL18]. We also generalize the main lower bound of [GVW15] for extractors in AC^0 , showing that when $k < n/\operatorname{poly}\log n$, even strong dispersers do not exist in non-uniform AC^0 . For the NC^1 setting, we also give a logspace-uniform extractor construction with seed length $O(\log \frac{n}{\varepsilon})$ and a small constant fraction entropy loss in the output. It works for every $k \ge O(\log^2 n), \varepsilon \ge 2^{-O(\sqrt{k})}$.

Our main techniques include a new error reduction process and a new output stretch process, based on low-depth circuit implementations for mergers, condensers, and somewhere extractors.

1 Introduction

Randomness extractors are functions that can transform weak random sources into distributions close to uniform. A typical definition of weak random sources is by min-entropy. A random variable (weak rsource) X has min-entropy k if for every x in the support of X, $\log \frac{1}{\Pr[X=x]} \ge k$. To extract from an arbitrary weak source of a certain min-entropy, Nisan and Zuckerman [NZ96] introduced the definition of seeded extractor, where the extractor has a short uniform random seed as an extra input. Specifically, a function EXT : $\{0, 1\}^n \times \{0, 1\}^d \to \{0, 1\}^m$ is defined to be a strong (k, ε) -extractor, if for every source X with min-entropy k,

$$\| (U_d, \operatorname{Ext}(X, U_d)) - U_{d+m} \| \leq \varepsilon,$$

where U_d and U_m are uniform distributions over $\{0, 1\}^d$ and $\{0, 1\}^m$ respectively, and $\|\cdot\|$ is the statistical distance. The entropy loss of such a strong extractor is k - m. On the contrary, a weak (k, ε) -extractor has the same definition except we only require

$$\|\operatorname{Ext}(X, U_d) - U_m\| \leq \varepsilon.$$

The entropy loss of such a weak extractor is k + d - m.

As a fundamental pseudorandom construction, extractors are closely related to other pseudorandom objects and also have various applications in computational complexity, combinatorics,

^{*}School of Computer Science, Peking University. ckkcdh@hotmail.com

[†]School of Computer Science, Peking University. 2301111967@stu.pku.edu.cn

algorithm design, information theory, and cryptography. See surveys [NT99][Sha02] [Vad07] [Sha11] [AB09] [Vad12].

Optimizing extractor constructions aims to get, for every k and ε , an extractor with d as small as possible, and m as large as possible. An existential bound for strong extractors can be given by a probabilistic argument, which has $d = \log(n-k)+2\log(1/\varepsilon)+O(1)$, $m = k-2\log(1/\varepsilon)-O(1)$. This is optimal up to some additive constants for $k \le n/2$, due to the lower bound by [RTS00]. After [NZ96], a long line of work has been done to seek explicit extractors with parameters close to the existential bounds [WZ99, SZ99, GW94, Ta-96, Zuc97, RRV99, NT99, RSW00, Tre01, Ta-98, RRV02, LRVW03, GUV09, TSU12, DKSS13, KT22]. Among them, [GUV09] first achieves $d = \log n + O(\log(k/\varepsilon))$ and an arbitrary constant factor entropy loss, and also achieves $m = k - 2\log(1/\varepsilon) - O(1)$ with $d = \log n + O(\log k \cdot \log(k/\varepsilon))$. [TSU12] and [KT22] can also achieve the same parameters by replacing the condenser in [GUV09] with their condenser versions. On the other hand, [TSU12] and [DKSS13] achieve subconstant entropy loss $m = (1-1/\operatorname{poly} \log n)k$, $d = O(\log n)$ when $\varepsilon \ge 1/2^{\log^{\beta} n}$ for any constant $\beta < 1$.

In terms of computational complexity, an explicit construction is an algorithm that can compute the function in deterministic polynomial time on given parameters. A natural question is whether one can construct extractors in lower complexity classes, with matching parameters to the current best explicit ones. Some early work on extractors already pays attention to constructions in lowcomplexity models. For example, Zuckerman [Zuc97] showed that his construction is actually in NC. Also Bar-Yossef, Reingold, Shaltiel, and Vadhan [BYRST02] showed streaming constructions for several pseudorandom objects including extractors. Furthermore, extractors in low-complexity models have already been used in derandomization tasks for certain low-complexity classes, such as in [Te119, CDST23]. In this paper, we specifically focus on two low-complexity classes, i.e. AC^0 and NC^1 . AC^0 is the class of all uniform circuit families of polynomial-size, constant depth, with NOT, AND, and OR gates, where AND and OR gates have unbounded fan-in. NC^1 is the class of all uniform circuit families of polynomial-size, $O(\log n)$ depth, with NOT, AND, and OR gates, where AND, OR gates have fan-in 2. Unless otherwise specified, our constructions are all logspace-uniform circuit families, i.e. there exists a logspace Turing machine that can output the description for each circuit in the family.

Viola [Vio05] raised the question on extractor construction in AC^0 and showed that for every constant D, there exists a polynomial p such that as long as $k \leq n/p(\log n)$, no extractor in AC^0 with depth D extract even 1 bit with a constant error, no matter how long the seed is. Goldreich and Wigderson [GVW15] extend the result for bit-fixing sources. This rules out the possibility for the case that $k = n/\log^{\omega(1)} n$. For the case $k \geq n/poly \log n$, [GVW15] gives a strong extractor in AC^0 that has an output length linear to the seed length. Lately Cheng and Li [CL18] give a construction that significantly improves the parameters. For the case that $\varepsilon = 1/poly n$, $\delta = 1/poly \log n$, they achieve $d = O(\log n), m = O(\delta n)$. For the more general case that $\varepsilon = 2^{-poly \log n}, \delta = 1/poly \log n$, they achieve $d = O\left((\log n + \frac{\log(n/\varepsilon)\log(1/\varepsilon)}{\log n})\right), m = O(\delta n)$. They also show that ε has to be at least $2^{-poly \log n}$ for AC^0 extractors.

For extractors in NC^1 , unlike the AC^0 case, there are no known lower bounds for k or ε . Indeed the extractor based on universal hash functions [CW79], argued by the leftover hash lemma [ILL89], can achieve an arbitrary ε and k. It can be realized in NC^1 since there are simple linear function constructions for such hash functions. Trevisan's extractor [Tre01], and its improved version [RRV02] can also be realized in NC^1 , since their main components, the average-case hard function based on local list-decodable codes can be computed in NC^1 . Extractors can also be derived from averaging samplers [Zuc97]. Healy [Hea08] constructs a sampler in NC^1 . However if one simply applies the transformation of [Zuc97] on it, then this can only give an extractor with a constant error. So it is still a question whether one can achieve extractors in NC¹ with better parameters for arbitrary k and ε .

1.1 Our results

Our main positive result is an AC^0 computable extractor with parameters optimal up to constant factors.

Theorem 1.1. For every constant $a, c > 0, \gamma \in (0, 1)$, every $k \ge \frac{n}{\log^a(n)}, \varepsilon \ge 2^{-\log^c(n)}$, there exists an explicit (k, ε) -strong extractor EXT : $\{0, 1\}^n \times \{0, 1\}^d \to \{0, 1\}^m$ in AC⁰ with depth $O(a + c + 1)^2$, such that $d = O(\log \frac{n}{\varepsilon})$, and $m \ge (1 - \gamma)k$.

Notice that this is much better in seed length compared to the previous best AC^0 constructions [CL18], which requires $d = O\left(\left(\log n + \frac{\log(n/\varepsilon)\log(1/\varepsilon)}{\log n}\right)\log^a n\right)$ for such an output length. Also, notice that there are lower bounds for k and ε in the AC^0 construction setting, i.e. k has to be at least $n/\operatorname{poly}\log n$ by [GVW15] and ε has to be $2^{-\operatorname{poly}\log n}$ by [CL18]. Thus roughly in the plausible range for k and ε , we achieve parameters optimal up to constant factors.

Our method can also be used to give NC^1 computable extractors.

Theorem 1.2. For every constant $\gamma \in (0,1)$ every $k \ge \Omega(\log^2(n)), \varepsilon \ge 2^{-O(\sqrt{k})}$, there exists a strong (k,ε) extractor EXT : $\{0,1\}^n \times \{0,1\}^d \to \{0,1\}^m$ computable in NC¹, with $d = O(\log(n/\varepsilon))$, $m = (1 - \gamma)k$.

To our knowledge, the previous best known NC¹ construction is the improved Trevisan's extractor from [RRV02], which has seed length $O(\log^2 n \log \frac{1}{\varepsilon})$, for all k, ε . Our parameters are optimal up to constant factors for ranges of k, ε as stated.

Our negative result generalizes the previous entropy parameter lower bound by [GVW15] for strong extractors in AC^0 to strong dispersers in AC^0 .

Theorem 1.3. For every d, s > 0, every constant $\delta \in (0, 1)$, if $C : \{0, 1\}^n \times \{0, 1\}^r \to \{0, 1\}$ is a $(k, \frac{1}{2} - \delta)$ -disperser that can be computed by a non-uniform AC circuit of size s and depth d, then $k \ge \Theta(\frac{\delta n}{\log^{d-1} s})$.

1.2 Technique Overview

1.2.1 Extractor in AC^0

Our AC^0 computable extractor is constructed by three main parts.

Merger in AC^0 In this part, we show that any somewhere high-entropy source X can be merged to be a high-entropy source in AC^0 under a restricted setting of parameters. The merger is a crucial building block in the construction of our extractor.

Recall that $X = (X_1, \ldots, X_\Lambda)$ is a simple somewhere (n, k) source if there exists $i \in [\Lambda]$, X_i is a (n, k) source. We call each X_i a segment. A somewhere (n, k) source is a convex combination of simple somewhere (n, k) sources. A (k, k', ε) merger is a function Merge : $\{0, 1\}^{n\Lambda} \times \{0, 1\}^d \to \{0, 1\}^m$, such that for any input somewhere (n, k) source X, Merge(X, U) has entropy k'. [DKSS13] gives a fairly good merger for somewhere uniform sources, which has $m = n = k, k' = (1 - \delta)k, d = \frac{1}{\delta}(\log \frac{2\Lambda}{\varepsilon})$. Our key observation is that if the number of segments in the somewhere uniform source is poly log n, δ is a small constant, and error $\varepsilon = 2^{-\operatorname{poly} \log n}$, then this merger can be computed in AC⁰. To see this, note that the computation of [DKSS13] is over a finite field F_q , where $q = 2^d = 2^{\operatorname{poly} \log n}$

in this setting. The computation only involves three operations: (1) the summation of poly $\log n$ elements; (2) the powering y^i where $y \in \mathbb{F}_q$, $i = \operatorname{poly} \log n$; (3) the product of a constant number of field elements. (1) is clearly in AC⁰ since it is actually the summation of poly $\log n$ bits, while (2) and (3) are shown to be in AC⁰ by [HV06]. Note that this can be straightforwardly generalized to a merger for somewhere high-entropy source by first applying an extractor to each segment and then merging them.

Error Reduction In this part, we give a new error reduction that can be realized in a highly parallel way. The required seed length is optimal up to constant factors, significantly better than [CL18]. Our method takes the basic extractor from [CL18], applies error reduction and stretches the output length to $poly(\log n)$ bits. The stretching is designed to satisfy the requirement in the next part.

Let X be an input (n, k)-source with $k = n/\log^a n$ for some constant a. We start from an AC⁰ computable (k, ε_0) extractor EXT₀ : $\{0, 1\}^n \times \{0, 1\}^{d_0} \to \{0, 1\}^{m_0}$ where $\varepsilon_0 = 1/n$, $d_0 = O(\log n), m_0 = O(k^2/n)$, which is achieved in [CL18]. Then for every given constant c, the new error reduction can reduce the error to be as small as $\varepsilon = 2^{-\log^c(n)}$, with a seed length $O(\log \frac{n}{\varepsilon})$. We briefly describe the main steps of the procedure along with their arguments.

1. Apply EXT₀ to X for $t = \frac{\log(n/\varepsilon)}{\log n}$ times in parallel, using independent seeds, outputting Y_1, Y_2, \ldots, Y_t respectively, each of length m_0 .

Notice that by the error reduction of [RRV99], one can show that with probability at least $1 - \varepsilon' \ge 1 - O(\varepsilon_0)^t$, there exists *i* such that Y_i has min-entropy at least $m_0 - O(\log t)$, while the seed length used here is only $td_0 = O(\log(n/\varepsilon))$. Hence one can deduce that (Y_1, \ldots, Y_t) is $t\varepsilon'$ close to a somewhere $(m_0, m_0 - O(\log t))$ source. We stress that this step is also the first step in the error reduction of [CL18]. But we differ from [CL18] after then.

2. For each *i*, cut Y_i into $l = O(\log n)$ blocks such that their lengths form a geometric sequence. That is $Y_i = (Y_{i,1}, Y_{i,2}, \ldots, Y_{i,l})$, where we let $m_j = |Y_{i,j}| = m_0^{0.1} \cdot 3^j$. Denote $Y_{i,1\ldots j}$ as the first *j* blocks of *Y*. Then for each *j*, let $B_j = (Y_{1,1\ldots j}, Y_{2,1\ldots j}, \ldots, Y_{t,1\ldots j})$, i.e. the *i*-th segment of B_j is the first *j* blocks from Y_i . Regard B_j as a somewhere high-entropy source and merge it by the merger from the previous part, attaining Z_j . Here we use the same seed for each *j*. Then we regard (Z_1, Z_2, \ldots, Z_l) as a block source and extract in a standard way by using an extractor EXT₁. Here EXT₁ is constructed by first sampling $O(\log \frac{n}{\varepsilon})$ bits from the source and then applying universal hashing.

Notice that since the high entropy segment of Y is a $(m_0, m_0 - O(\log t))$ source, each B_j has to be a somewhere $(M_j, M_j - O(\log t))$ source, where $M_j = m_1 + m_2 + \cdots + m_j$. Also, as $t = \text{poly} \log n$, the merger can be implemented in AC⁰. As a result of merging, Z_j has a high constant entropy rate. Since $m_j, j \in [l]$ forms a geometric sequence, Z_j is a constant times longer than Z_{j-1} . Thus (Z_1, Z_2, \ldots, Z_l) is indeed very close to a block source that has a constant conditional entropy rate. The output length is $\Omega(\log n \log \frac{n}{\varepsilon})$ since for each block we can sample $O(\log \frac{n}{\varepsilon})$ bits and then apply an extractor from the left-over hash lemma. The seed length is $O(\log \frac{n}{\varepsilon})$ since both the merger and the sample-then-extract have a seed length $O(\log \frac{n}{\varepsilon})$.

3. Assume the previous steps give an extractor EXT'. To increase the output length, we run the above steps again but instead use EXT' to replace EXT₁ in the second step. This can increase the output length by a $\Omega(\log n)$ factor. We do this for b times to finally get an extractor with output length $\Omega(\log^b n \cdot \log \frac{n}{\epsilon})$, for a given arbitrary constant b.

Note that in this way the circuit depth has a factor b blow-up. The seed length also has a factor b blow-up. But as b is a constant, the construction is still in AC^0 and the seed length is still $O(\log \frac{n}{\epsilon})$.

Output Stretch The last part is a new output stretch procedure for AC^0 computable extractors. Compared to the one in [CL18], the new method attains an output length $(1 - \gamma)k$ with a seed length $O(\log \frac{n}{\epsilon})$.

Observe that if the input source already has a constant entropy rate, then this is an easy case. Because one can do sampling to get a two-block source with constant conditional entropy rates. Then one can use the extractor derived from the previous part to extract from the second source, attaining a poly log $\frac{n}{\varepsilon}$ length output, and then use it to extract the first block by applying the main extractor from [CL18]. However, the hard case is when the entropy rate is sub-constant i.e. $k = \frac{n}{\log^4 n}$. The above simple strategy does not work since we don't know how to argue that the block attained from sampling can keep a constant fraction of all entropy while conditioned on this block, the source still keeps a fairly large conditional entropy. To resolve this issue, we follow a general strategy used in [DKSS13]. We describe the following 3 steps to reduce the hard case to the easy case.

1. Use Ta-shma's somewhere-block-source converter [Ta-98] to convert the original source into a somewhere-two-block-source.

Recall that Ta-shma's converter tries every position of the input source. For each position, the source is cut into two substrings. To avoid having too many segments in the resulting somewhere-two-block-source, one can pick a cutting position after, for example, every $n/\log^{2a} n$ consecutive positions. In this way, the number of segments is $\Lambda = \log^{2a} n$. [Ta-98] shows that for at least one of the position choices, the cutting can give a two-block source where the first block has entropy $\Omega(k)$, and the second has conditional entropy $\Omega(k)$.

2. For each segment, apply our extractor in the error reduction part for the second block and then use the output as a seed to extract the first block by the extractor in [CL18].

As at least one segment of the somewhere source is indeed a two-block source, the extraction for the second block can provide an output of length poly $\log \frac{n}{\varepsilon}$. This is enough to extract a constant fraction of entropy i.e. $\Omega(k)$ from the first block by [CL18]. Then what we get is very close to a somewhere uniform source.

3. Use the merger in AC^0 from the previous part to get a source with a constant entropy rate and min-entropy $\Omega(k)$.

As we only have poly log n segments, $\varepsilon = 2^{-\operatorname{poly} \log n}$, and the entropy rate attained is a constant, it holds that the merger is in AC⁰, with a seed length $O(\log \frac{n}{\varepsilon})$. Then after merging, the hard setting is reduced to the previously discussed easy setting, i.e. the constant entropy rate case.

1.2.2 Extractor in NC^1

Our construction for extractor in NC^1 can be described by the following 3 steps.

1. First apply a condenser from [KT22]. Regard the output as (Y_1, Y_2) such that Y_1, Y_2 have a equal length.

Compared to the condenser in [GUV09], the condenser in [KT22] can only work for $k \geq \Omega(\log^2(n)), \varepsilon \geq 2^{-O(\sqrt{k(n)})}$, However, the advantage is that it is computable in NC¹. Recall that the [KT22] $(k, k + d, \varepsilon)$ condenser can actually be viewed as Cond : $\mathbb{F}_q^n \times \mathbb{F}_q \to \mathbb{F}_q^m$. It views the input source as coefficients of a degree n-1 polynomial $f(x) = \sum_{i=0}^{n-1} a_i x^i$ over field \mathbb{F}_q , $\log q = O(\log \frac{n}{\varepsilon})$. The seed is a random element of \mathbb{F}_q . The computation is actually $\operatorname{Cond}(f, u) = (u, f(u), f^{(1)}(u), \dots, f^{(m)}(u))$. Where $f^{(j)}(u) = \sum_{i=0}^{d} \frac{i!}{(i-j)!} a_i u^{i-j}$ is the *j*-th derivative of *f*. Notice that all these coefficients $\frac{i!}{(i-j)!}$ can be precomputed and hardwired in the circuits. The polynomial evaluation consists of three operations: (1) the powering x^{i-j} , (2) the multiplication of two \mathbb{F}_q elements, and (3) the summation of a polynomial number of elements. The powering could be implemented with two steps: powering in N and then divided by *q*, which is computable in NC¹ by [BCH86]. The multiplication and summation are both in NC¹ by straightforward realizations. So after condensing, we get a source (Y_1, Y_2) with an entropy rate > 3/4. As Y_1 and Y_2 have an equal length, they form a two-block source with constant conditional entropy rates.

- 2. For Y_2 , apply the extractor from our error reduction to get Z of length $O(\log^2 n \log(n/\epsilon))$. This step is basically the same as the AC⁰ case. We make sure the error reduction can also be done in NC¹ under this parameter setting, and the seed length is still $O(\log \frac{n}{\epsilon})$.
- 3. Apply the improved Trevisan's extractor [RRV02] to Y_1 using Z as the seed.

Notice that this extracts O(k) bits with a desired error. It can be further stretched to $(1 - \gamma)k$ by a standard parallel method. Also, notice that it is a folklore that Trevisan's extractor [Tre01] and its improved version [RRV02] can be realized in NC¹. So our whole construction is in NC¹. The required seed length for improved Trevisan's extractor is $O(\log^2 n \log(n/\epsilon))$, and the output from step 2 is enough to feed it. Hence the overall seed length is $O(\log \frac{n}{\epsilon})$.

1.2.3 A lower bound for AC^0 computable dispersers

Our lower bound follows from the improved switching lemma in [Ros]. Assume Disp : $\{0,1\}^n \times \{0,1\}^r \to \{0,1\}$ is a strong $(k,\frac{1}{2}-\delta)$ -disperser computable in AC^0 with depth d and size s. Notice that we only need to consider the 1 bit output setting. Consider that for a fixed seed $y \in \{0,1\}^r$, we apply a random restriction on $C_y := \text{Disp}(\cdot, y)$. Let the random restriction be R_p over $\{0,1,*\}^n$ such that for every $i \in [n]$, independently we have $\Pr[R_p(i) = *] = p, \Pr[R_p(i) = 0] = \Pr[R_p(i) = 1] = \frac{1-p}{2}$. For a restriction ρ sampled from R_p , the function $C_y|_\rho$ is defined to be a function such that if ρ_i is 1 or 0 then fix the *i*-th input to be ρ_i , otherwise leave it unfixed, and then apply C_y on this modified input. The switching lemma from [Ros] basically shows that $\Pr_{\rho \sim R_p}[C_y|_\rho$ is not constant] $\leq \delta$, if $p = \frac{\delta}{\Theta(\log s)^{d-1}}$. Also notice that when δ is a constant, with probability at least $1 - 2^{-O(pn)} > 1 - \delta$, the number of stars in ρ is at least p/2 fraction. By a union bound and an averaging argument, one can show that there exists a ρ which has at least pn/2 stars such that for $> 1 - 2\delta$ fraction of $y, C_y|_\rho$ is a constant. Notice that if we take this ρ for a uniform input source, then it becomes a bit-fixing source of entropy $k \geq pn/2 = \Theta(\frac{\delta n}{\log^{d-1}s})$. Also notice that for every y such that $C_y|_\rho$ is not fixed, $\operatorname{Supp}(C_y|_\rho(X)) \leq 2$ as C_y only has 1 bit output. This implies that $|\operatorname{Supp}(U,\operatorname{Disp}(X,U))|$ is less than $2\delta^{2r} \cdot 2 + (1-2\delta)2^r \leq (\frac{1}{2}+\delta)2^{r+1}$, a contradiction to the disperser definition.

1.3 Paper Organization

In Section 2 we prepare some basic tools used in the rest of the paper. In Section 3 we show that merger can be implemented in AC^0 . In Section 4 we give our new error reduction. In Section 5 we give our new output stretch and show our AC^0 computable extractor finally. In Section 6 we show our NC^1 computable extractor. In Section 7 we give our lower bound for dispersers in AC^0 . In Section 8 we describe some open questions.

2 Preliminaries

We use the following results from previous works. First, we review the extractors in AC^0 from [CL18]. They are actually logspace-uniform constructions, though [CL18] did not explicitly mention this. We briefly explain the reason after exhibiting their results.

Theorem 2.1 ([CL18]). For every constant $a, c \ge 1$, every $k = \delta n = \Theta(n/\log^a n)$ there exists an explicit $(k, 1/n^c)$ -extractor EXT : $\{0, 1\}^n \times \{0, 1\}^d \to \{0, 1\}^m$ computable in AC⁰ with depth O(a), where $d = O(\log n), m = k^{0.01}$.

Remark. Theorem 2.1 uses several tools and all of them can be implemented by logspace-uniform AC^0 circuits. Specifically they use hardness amplifications from [Imp95] and [IW97] and the Nisan-Wigderson (NW) generator [NW94]. These tools only use 4 kinds of operations: 1) pairwise independent generator; 2) inner product in $\mathbb{F}_2^{O(\log n)}$; 3) parity function on $O(\log n)$ bits; 4) Construct a combinatorial design and run the NW generator. It is straightforward to see that Procedure 1), 2) and 3) are all logspace-uniform. Procedure 4) is also logspace-uniform by Lemma A.3 in [CT21].

For smaller errors, they have the following theorem.

Theorem 2.2 ([CL18] for small entropy). For every constant $\gamma \in (0, 1), a, c \geq 1, k = \delta n = \Theta(n/\log^a n), \varepsilon = 2^{-\Theta(\log^c n)}$, there exists an explicit (k, ε) -extractor EXT : $\{0, 1\}^n \times \{0, 1\}^d \to \{0, 1\}^m$ in AC⁰ with depth O(a + c), where $d = O\left(\left(\log n + \frac{\log(n/\varepsilon)\log(1/\varepsilon)}{\log n}\right)/\delta\right), m \geq (1 - \gamma)k$.

Also, recall the sample-then-extract technique in AC^0 .

Theorem 2.3 ([CL18] Sample-then-extract). For every constant $\delta \in (0,1], c \geq 1$ and every $\epsilon = 2^{-\log^c n}$, there exists an explicit strong $(\delta n, \epsilon)$ -extractor EXT : $\{0,1\}^n \times \{0,1\}^d \to \{0,1\}^m$ in AC⁰ with depth O(c), where $d = O(\log(n/\varepsilon))$, $m = \Theta(\log(n/\varepsilon))$.

Remark. Theorem 2.3 has two main ingradients: 1) The NC¹ sampler from [Hea08]. 2) Transforming a circuit of input length $l = \Theta(\log^c n)$, depth $O(\log l)$ and size poly(l) to a AC⁰ circuit, from [GGH⁺ 07] (See also Lemma 2.7). Both of them are indeed logspace-uniform.

Theorem 2.2 uses Theorem 2.1 together with an error reduction and output stretch procedure. Both the error reduction and output stretch only consist of some sample-then extract techniques and some utilities of the transformation from $[GGH^+ 07]$. Hence it is also logspace-uniform.

Leftover hash lemma is also needed in our construction.

Lemma 2.4 (Leftover Hash Lemma [ILL89]). Let X be an $(n', k = \delta n')$ -source. For any $\Delta > 0$, let H be a universal family of hash functions mapping n' bits to $m = k - 2\Delta$ bits. The distribution $U \circ \text{Ext}(X, U)$ is at distance at most $1/2^{\Delta}$ to uniform distribution where the function $\text{Ext} : \{0, 1\}^{n'} \times \{0, 1\}^d \to \{0, 1\}^m$ chooses the U'th hash function h_U in H and outputs $h_U(X)$.

For universal hash functions, we use the construction from Toeplitz matrices. For every u, the hash function $h_A(x)$ equals to Ax where A is a Toeplitz matrix.

Error reduction for extractors has been extensively studied in previous works. We recall the following key ingredient in the classic error-reducing technique [RRV99].

Lemma 2.5 (G_x Property [RRV99]). Let EXT : $\{0,1\}^n \times \{0,1\}^d \to \{0,1\}^m$ be a (k,ϵ) -extractor with $\epsilon < 1/4$. Let X be any (n, k + t)-source. For every $x \in \{0,1\}^n$, there exists a set G_x such that the following holds.

- For every $x \in \{0,1\}^n$, $G_x \subset \{0,1\}^d$ and $|G_x|/2^d = 1 2\epsilon$.
- If we draw a y from $\text{Ext}(X, G_X)$ (draw an x from X, then draw g_x uniformly from the set G_x , take $y = \text{Ext}(x, g_x)$), then with probability at least $1 2^{-t}$ over this random drawing, the y we get can have the property that $\Pr[\text{Ext}(X, G_X) = y] \leq 2^{-(m-1)}$. Here $\text{Ext}(X, G_X)$ is obtained by first sampling x according to X, then choosing r uniformly from G_x , and outputting Ext(x, r).

We also need to use the following lemmas about low-depth circuits computing.

Lemma 2.6 (folklore, see also [CL18]). Let a > 0 be an absolute constant. Then $\log^{a}(n)$ -bit parity can be computed by an AC⁰ circuit with O(a) depth and poly(n) size.

Lemma 2.7 ([GGH⁺07]). For every $c \in \mathbb{N}$, every integer $l = \Theta(\log^c n)$, if the function $f_l : \{0, 1\}^l \rightarrow \{0, 1\}$ can be computed by circuits of depth $O(\log l)$ and size poly(l), then it can be computed by AC⁰ circuits of depth c + 1, size poly(n).

Remark. The transformation from $[GGH^+ 07]$ mainly uses Barrington's Theorem [Bar86] which provides a Dlogtime-uniform AC^0 reduction from any NC^1 circuit to a downward self-reducible NC^1 -complete language. The self-reducible here is logspace-uniform NC^0 reduction. Thus the NC^1 complete language of input size $l = \Theta(\log^c n)$ can be reduced to a language of input size $O(\log n)$ and thus can be decided by logspace-uniform AC^0 circuits.

Finally, we use some folklore facts about block sources. Proofs of them can be found in the full version.

Definition 2.8 (block source). Let $X = (X_1, \ldots, X_l)$ such that each X_i is distributed on $\{0, 1\}^{n_i}$. We say X is a $(n_1, k_1, n_2, k_2, \ldots, n_l, k_l)$ -block source if for every $i \in [l]$ and $(x_1, \ldots, x_{i-1}) \in \{0, 1\}^{n_1 + \cdots + n_{i-1}}$, $X_i|_{X_1 = x_1, \ldots, X_{i-1} = x_{i-1}}$ is a (n_i, k_i) -source.

Lemma 2.9. Fix $t \in \mathbb{N}$ and $k, s, n, n_1, \ldots, n_k \in \mathbb{N}$ such that $n_1 + \cdots + n_k = n$. Let $X = (X_1, \ldots, X_l)$ be a (n, n - k)-source on $\{0, 1\}^n$ such that X_i is distributed on $\{0, 1\}^{n_i}$ for each $i \in [t]$. Then (X_1, \ldots, X_l) is $l \cdot 2^{-s}$ -close to a $(n_1, n_1 - k, n_2, n_2 - k - s, \ldots, n_l, n_l - k - s)$ -source.

Lemma 2.10. Let $X = (X_1, \ldots, X_l)$ be a $(n_1, k_1, n_2, k_2, \ldots, n_l, k_l)$ -block source on $\{0, 1\}^n$. Suppose that $\operatorname{Ext}_i : \{0, 1\}^{n_i} \times \{0, 1\}^r \to \{0, 1\}^{m_i}$ is a strong (k_i, ε) -extractor for each $i \in [l]$. Let Y be a uniformly random variable on $\{0, 1\}^r$. Take $Z = (Z_1, \ldots, Z_l)$ such that $Z_i = \operatorname{Ext}_i(X_i, Y)$. Then (Y, Z) is $l \cdot \varepsilon$ -close to uniform.

Definition 2.11 (strong two-block extractor). We say a function EXT : $\{0,1\}^{n_1} \times \{0,1\}^{n_2} \times \{0,1\}^r \rightarrow \{0,1\}^m$ is a strong (k_1,k_2,ε) -two-block extractor, if for any (k_1,k_2) -block-source $X = (X_1,X_2)$ and independent uniform random distribution U_r on $\{0,1\}^r$, the joint distribution $(U_r, \text{EXT}(X_1, X_2, U_r))$ is ε -close to uniform distribution on $\{0,1\}^r \times \{0,1\}^m$.

Lemma 2.12. Let $\text{Exr}_1 : \{0,1\}^{n_1} \times \{0,1\}^{m_1} \to \{0,1\}^{m_2}$ be a (k_1,ε_1) -strong extractor, and $\text{Exr}_2 : \{0,1\}^{n_2} \times \{0,1\}^r \to \{0,1\}^{m_1}$ be a (k_2,ε_2) -strong extractor. Then the construction

$$Ext(X_1, X_2, U_r) = Ext_1(X_1, Ext_2(X_2, U_r))$$
(1)

is a strong $(k_1, k_2, \varepsilon_1 + \varepsilon_2)$ -two-block extractor

Merger in AC^0 3

In this section, we will examine the merger construction in [DKSS13] and show that the merger can indeed be implemented in AC^0 for some specific setting of parameters.

We start by defining somewhere (n, k) sources.

Definition 3.1 (somewhere-(n, k) source). Let $X = (X_1, \ldots, X_\Lambda)$ such that each X_i is distributed on $\{0,1\}^n$. We say X is a simple somewhere (n,k) source with Λ segments if there exists $i \in [\Lambda]$ such that X_i is a (n,k)-source on $\{0,1\}^n$. We say X is a somewhere-uniform source if X is a convex combination of simple somewhere (n, k) sources.

If n = k in the above definition, which means that X_i is uniform, we say X is a somewhereuniform source.

A merger is a function that takes a somewhere-uniform source and a uniform random seed as input and outputs a (m, k')-source. The remaining entropy k' is usually less than the original entropy k.

Definition 3.2 (merger and strong merger). We say Merge : $\{0,1\}^{\Lambda \cdot n} \times \{0,1\}^r \to \{0,1\}^m$ is a (k, k', ε) -merger if for any somewhere-(n, k) source $X = (X_1, \ldots, X_\Lambda)$, the distribution $\operatorname{Merge}(X, U_r)$ is ε -close to a k'-source. Here U_r is a independent uniform random distribution on $\{0,1\}^r$

Furthermore, if $(U_r, \text{Merge}(X, U_r))$ is ε -close to (U_r, W) , we say Merge is a strong (k, k', ε) merger. Here W is a distribution such that for all $a \in \{0,1\}^r$, $W|_{U_r=a}$ is a k'-source.

We examine the merger introduced in [DKSS13], and find that the merger can be implemented in AC^0 if the number of segments is not too large.

Theorem 3.3 (merger in [DKSS13]). For any constant $a, c > 0, \delta \in (0, 1)$, let $\Lambda(n) \leq \log^{a}(n), \varepsilon(n) \geq \log^{a}(n), \varepsilon(n) \geq \log^{a}(n), \varepsilon(n) \leq \log^{a}(n), \varepsilon(n) \geq \log^{a}(n), \varepsilon(n) \leq \log^{a}(n), \varepsilon(n) < \log$ $2^{-\log^{c}(n)}$. Then there exists explicit $(n, \delta n, \varepsilon(n))$ -mergers Merge : $\{0, 1\}^{\Lambda(n) \cdot n} \times \{0, 1\}^{r(n)} \to \{0, 1\}^{n}$. Here $r(n) = O(\log(\frac{1}{c})).$

Furthermore, the mergers can be implemented in AC^0 with O(a + c + 1) depth and poly(n) size,

The merger in [DKSS13] is defined as follows:

Define $q = 2^s$ be a power of two which is decided later. Let \mathbb{F}_q be the finite field of order q. Let $X = (X_1, \ldots, X_\Lambda)$ be a somewhere-uniform-source with Λ segments. Regard each X_i as distributed on \mathbb{F}_{a}^{K} with $K = \frac{n}{s}$. Then

$$X_i = (X_{i,1}, \dots, X_{i,K}), \quad X_{i,j} \in \mathbb{F}_q.$$

$$\tag{2}$$

Note that the uniform distribution on \mathbb{F}_q^K is equivalent to the uniform distribution on $\{0, 1\}^n$. Take $\gamma_1, \ldots, \gamma_\Lambda$ be Λ unique points in \mathbb{F}_q . Let C_1, \ldots, C_Λ be Λ unique polynomials in $\mathbb{F}_q[x]$ of degree at most $\Lambda - 1$, such that $C_i(\gamma_i) = 1$ if i = j and $C_i(\gamma_i) = 0$ if $i \neq j$. Then the merger is defined as:

$$\operatorname{Merge}(X, y) = \left(\sum_{i=1}^{\Lambda} C_i(y) X_{i,1}, \dots, \sum_{i=1}^{\Lambda} C_i(y) X_{i,K}\right),$$
(3)

where $y \in \mathbb{F}_q$.

Lemma 3.4 (merger in [DKSS13]). For any constant $\delta > 0$, let $q \ge \left(\frac{2\Lambda}{\varepsilon}\right)^{1/\delta}$. Then the function Merge : $\mathbb{F}_q^{K\cdot\Lambda} \times \mathbb{F}_q \to \mathbb{F}_q^K$ is a $(K \log q, k, \varepsilon)$ -merger, where $k = (1 - \delta) \cdot K \cdot \log q$.

The condition $q \ge \left(\frac{2\Lambda}{\varepsilon}\right)^{1/\delta}$ is equivalent to $r \ge \frac{1}{\delta}\log\left(\frac{2\Lambda}{\varepsilon}\right)$. When $\Lambda = \log^a(n), \varepsilon = 2^{-\log^c(n)}$, this requires $r \ge \frac{2}{\delta}\log^c(n)$. So we can pick $r(n) = \min\{s \in \mathbb{N} | s \ge \frac{2}{\delta}\log^c(n), \exists d \in \mathbb{N}, s = 3 \cdot 2^d\}$. As δ is a constant, $r(n) = O(\log^c(n)) = O\left(\log\left(\frac{1}{\varepsilon}\right)\right)$.

Lemma 3.5. For any constant $a, c, \delta \in (0, 1)$, let $\Lambda(n) \leq \log^a n, \varepsilon(n) \geq 2^{-\log^c(n)}$. Define $r(n) = \min\{s \in \mathbb{N} \mid s \geq \frac{2}{\delta} \log^c(n), \exists d \in \mathbb{N}, s = 3 \cdot 2^d\}, q(n) = 2^{r(n)}, K(n) = \frac{n}{r(n)}$. Then the $(n, \delta n, \varepsilon)$ -merger Merge : $\{0, 1\}^{\Lambda(n) \cdot n} \times \{0, 1\}^{r(n)} \to \{0, 1\}^n$ can be implemented in uniform AC⁰ with O(a + c + 1) depth and poly(n) size.

To prove the lemma, we can express the Λ polynomials C_1, \ldots, C_{Λ} by their Λ^2 coefficients. That is:

$$C_i(y) = \sum_{j=1}^{\Lambda} c_{i,j} y^{j-1}, \quad c_{i,j} \in \mathbb{F}_q, \quad i \in [\Lambda].$$

These coefficients are not necessarily computable in AC^0 . Instead, they can be pre-determined and stored in the circuit. Note that $\Lambda = \log^a(n)$ and $r_2(n) = O(\log^c(n))$. Therefore it requires $O(\log^c(n))$ bits to store one coefficient, and $O(\log^{2a+c}(n))$ bits to store all the coefficients.

Therefore, the AC^0 circuit for the merger is only required to do three types of operations: powering, multiplication and summation. The parameters of these operations satisfies the following conditions:

- 1. The powering operation is to compute y^j , where $j \leq \log^a(n)$, and $y \in \mathbb{F}_q$. The order $q = 2^s$ is a power of 2, and $s = O(\log^c(n))$.
- 2. The multiplication operation is to compute $c_{i,j}y^{j-1}X_{i,k}$, for each $i \in [\Lambda], j \in [\Lambda], k \in [K]$. All of the three multipliers are in \mathbb{F}_q .
- 3. The summation operation is to compute $\sum_{i=1}^{\Lambda} \sum_{j=1}^{\Lambda} c_{i,j} y^{j-1} X_{i,k}$ for each $k \in [K]$. All the addends are in \mathbb{F}_q , and the total number of them is $\log^{4a}(n)$.

The following theorems in the work of Healy and Viola [HV06] show that the powering and multiplication are indeed in AC^0 .

Lemma 3.6 ([HV06, Corollary 6(1)]). Let a, c > 0 be absolute constants. Let $y \in \mathbb{F}_q$ where $q = 2^s$ and $s = 2 \cdot 3^d$ for some $d \in \mathbb{N}$. Suppose that $j \leq \log^a(n)$ and $s \leq \log^c(n)$, then y^j can be computed by a logspace-uniform AC⁰ circuit with O(a + c) depth and poly(n) size.

Lemma 3.7 ([HV06, Corollary 6(2)]). Let a, c > 0 be absolute constants. Let $y_1, y_2 \in \mathbb{F}_q$ where $q = 2^s$ and $s = 2 \cdot 3^d$ for some $d \in \mathbb{N}$. Suppose that $s \leq \log^c(n)$, then $y_1 \cdot y_2$ can be computed by a logspace-uniform AC⁰ circuit with O(c) depth and poly(n) size.

The summation operation is also in AC^0 , as the summation of elements in \mathbb{F}_q where $q = 2^s$ is equivalent to bitwise parity of the binary representation of the elements if we implement \mathbb{F}_q by polynomial fields with coefficients in \mathbb{F}_2 . When the number of addends is poly log n, it is in AC^0 by Lemma 2.6.

With these results, the merger can be implemented in AC^0 with O(a + c) depth and poly(n) size.

Proof of Lemma 3.5. It is sufficient prove that each $\sum_{i=1}^{\Lambda} \sum_{j=1}^{\Lambda} c_{i,j} y^{j-1} X_{i,k}$ can be computed in AC⁰ with O(a+c) depth and poly(n) size. The powering could be computed in O(a+c) depth and poly(n) size by Lemma 3.6. The multiplication could be computed in O(c) depth and poly(n) size by Lemma 3.7. The summation could be computed in O(a) depth and poly(n) size by Lemma 2.6. \Box

Theorem 3.3 follows directly from Lemma 3.4 and Lemma 3.5.

Proof of Theorem 3.3. Take $r(n) = \min\{s \in \mathbb{N} | s \geq \frac{2\log^c(n)}{\delta}, \exists d \in \mathbb{N}, s = 3 \cdot 2^d\}, q(n) = 2^{r(n)}, K(n) = \frac{n}{r(n)}$ as discussed above. By Lemma 3.4, we know that the merger is a $(n, k(n), \varepsilon(n))$ -merger, where $k(n) = (1 - \delta)n$. By Lemma 3.5, we know that the merger can be implemented in AC⁰ with O(a + c) depth and poly(n) size.

As noted in [DKSS13], their merger for somewhere uniform sources can be extended to handle somewhere high entropy sources. Following their idea, we also prepare a merger for somewhere high entropy sources, and furthermore, it is computable by low-depth circuits.

Corollary 3.8. Let $\delta \in (0,1), \Lambda(n) \leq \operatorname{poly}(n), \varepsilon(n) = 2^{-O(n)}, \Delta(n) = O(\log(\frac{n}{\varepsilon}))$. Then there exists a strong $(n - \Delta(n), \delta m(n), \varepsilon(n))$ -merger Merge : $\{0, 1\}^{\Lambda(n) \cdot n} \times \{0, 1\}^{r(n)} \to \{0, 1\}^{m(n)}$. Here $r(n) = O(\log(\frac{n}{\varepsilon}))$ and $m(n) = \Omega(n)$. The merger is computable in logspace-uniform AC⁰[2].

If $\Lambda(n) \leq \log^{a}(n), \varepsilon(n) \geq 2^{-\log^{c}(n)}$ for constant a, c > 0, then the merger can be implemented in AC^{0} with O(a + c + 1) depth and poly(n) size.

Proof. Assume that X is a simple somewhere $(n, n - \Delta(n))$ source with Λ segments. Let $X_{i'}$ be a good segment. The construction of the merger is as follows:

- 1. Separate each X_i into $l = \frac{n}{\Delta(n) + 5\log(\frac{1}{\varepsilon})}$ blocks of length $\Delta(n) + 5\log(\frac{1}{\varepsilon})$, which are $X_{i,1}, \ldots, X_{i,l}$. Take $s = 2\log(\frac{n}{\varepsilon})$. By Lemma 2.9, the good segment $X_{i'}$ is a $(n, n - \Delta(n))$ -source and satisfies that $(X_{i',1}, \ldots, X_{i',l})$ is $l \cdot 2^{-s}$ -close to a $(n_1, k_1, n_2, k_2, \ldots, n_l, k_l)$ -block source. Here $n_j = \Delta(n) + 5\log(\frac{1}{\varepsilon})$ and $k_j = 3\log(\frac{n}{\varepsilon})$ for each $j \in [l]$.
- 2. Since $3\log(\frac{n}{\varepsilon}) 2\log(\frac{2l}{\varepsilon}) \ge \log(\frac{n}{\varepsilon})$, we take $\operatorname{ExT}_1 : \{0,1\}^{u(n)} \times \{0,1\}^{r_1} \to \{0,1\}^{\log(\frac{n}{\varepsilon})}$ be a strong $(3\log(\frac{n}{\varepsilon}), \frac{\varepsilon}{2l})$ -extractor using the leftover hash lemma from Lemma 2.4. Take U_1 be a uniformly random variable on $\{0,1\}^{r_1}$. We extract $\log(\frac{n}{\varepsilon})$ bits of randomness from each block in the good segment $X_{i'}$. That makes $Y_{i,j} = \operatorname{ExT}_1(X_{i,j}, U_1)$ for each $i \in [\Lambda(n)], j \in [l]$. Each source $Y_i = (Y_{i,1}, Y_{i,2}, \ldots, Y_{i,l})$ is of length $m(n) = l \cdot \log(\frac{n}{\varepsilon}) = \Omega(n)$. By Lemma 2.10, the good segment $Y_{i'} = (Y_{i',1}, \ldots, Y_{i',l})$ is $\frac{\varepsilon}{2}$ -close to uniform.
- 3. Take the merger $\operatorname{Merge}_1 : \{0,1\}^{\Lambda(n) \cdot m(n)} \times \{0,1\}^{r_2} \to \{0,1\}^{m(n)}$ be the $(m(n), \delta m(n), \frac{\varepsilon}{2})$ merger from Theorem 3.3. Take U_2 be a uniformly random variable on $\{0,1\}^{r_2}$. We merge the
 good segment $Y_{i'}$ with other Y_i 's. That is $Z = \operatorname{Merge}_1(Y, U_2)$. By Theorem 3.3, Z is ε -close
 to a δm -source.

The merger is defined as $Z = \text{Merge}(X, U_1, U_2)$. According to the above construction and analysis, it is indeed a $(n - \Delta(n), \delta m(n), \varepsilon(n))$ -merger.

For the $AC^{0}[2]$ case, the extractor $ExT_{1}(x, y)$ can be realized as computing Ax on input x where A = A(y) is a Toeplitz matrix of size $u(n) \cdot \log(\frac{n}{\varepsilon}) = poly(n)$. So it is computable in uniform $AC^{0}[2]$.

The merger Merge₁ requires poly(n)'th exponentiation of a O(n)-bit number in \mathbb{F} of characristic 2, which is in uniform $AC^0[2]$ by [HV06, Theorem 4]. The multiplication and addition are both in uniform $AC^0[2]$. Therefore Merge₁ is computable in uniform $AC^0[2]$.

For the AC^0 case, notice that we set $\varepsilon(n) \ge 2^{-\log^c(n)}$. So the matrix size in ExT_1 is reduced to $O(\log^{2c}(n))$. Therefore it is computable in AC^0 by Lemma 2.6. For the merger, if $\Lambda(n) \le \log^a(n)$, then Theorem 3.3 shows that the merger is computable in AC^0 .

The total seed length is $r_1 + r_2 = O(\log(\frac{n}{\epsilon}))$.

The same arguments hold for the case that X is a somewhere- $(n, n - \Delta(n))$ source because a somewhere- $(n, n - \Delta(n))$ source is a convex combination of simple somewhere- $(n, n - \Delta(n))$ sources. The theorem follows.

4 Error Reduction

The main theorem of this section is the following:

Theorem 4.1. For any constant $a, c > 0, b \in \mathbb{N}^+$, every $k(n) \ge n/\log^a(n), \varepsilon(n) \ge 2^{-\log^c(n)}$, there exists a strong $(k(n), \varepsilon(n))$ -extractor EXT : $\{0, 1\}^n \times \{0, 1\}^{r(n)} \to \{0, 1\}^{m(n)}$, where $r(n) = O(\log(\frac{n}{\varepsilon(n)}))$, $m(n) = \Theta\left(\log^b(n) \cdot \log(\frac{n}{\varepsilon(n)})\right)$.

Furthermore, the extractor can be implemented in AC^0 with O(b(a+c+1)) depth.

We show this theorem by giving a new error reduction stated as the following. To describe it, We fix a > 0 to be a constant and $k(n) = \frac{n}{\log^a n}$.

Lemma 4.2. For any $\varepsilon_0 \in (0,1)$ every constant c > 0 and $\varepsilon = 2^{-\log^c n}$, suppose there exists $a \ (k,\varepsilon_0)$ -extractor $\operatorname{Ext}_0 : \{0,1\}^n \times \{0,1\}^{d_0} \to \{0,1\}^{m_0}$ with $m_0 \ge k^{0.01}$ and a family of strong $(n_1/100,\varepsilon)$ -extractors $\operatorname{Ext}_1 : \{0,1\}^{n_1} \times \{0,1\}^{d_1} \to \{0,1\}^{m_1}$ for every $n_1 \in [m_0^{0.1},m_0]$, Then for any $\varepsilon = 2^{-\log^c n}$, there exists a strong (k,ε) -extractor $\operatorname{Ext}' : \{0,1\}^n \times \{0,1\}^d \to \{0,1\}^m$, where $d = O(d_1 + d_0 \cdot \frac{\log \varepsilon}{\log \varepsilon_0})$, $m = \Theta(m_1 \cdot \log n)$.

If Ext_0 and Ext_1 can be realized by depth h and g AC circuits respectively, then Ext' can be realized by a depth O(h + g + c + 1) AC circuit.

Now we describe the construction and analysis of Lemma 4.2.

4.1 Step 1: extracting in parallel

We apply Ext_0 for $t = \frac{\log(1/\varepsilon)}{\log(1/\varepsilon_0)}$ times in parallel, with independent seeds. Specifically, take $U_{1,i}$ be independent uniform seeds in $\{0,1\}^{d_0}$ for every $i \in [t]$. Let $Y = (Y_1, Y_2, \ldots, Y_t)$, where $Y_i = \operatorname{Ext}_0(X, U_{1,i})$. The step can be computed by depth h AC circuits because the extractor Ext_0 has depth h, and the parallel extraction can be done without increasing the depth.

Analysis We now show that Y is close to a somewhere $(m_0(n), m_0(n) - O(\log t))$ -source. The main idea is that by Lemma 2.5, we know that with high probability, at least one of the seeds U_i lands in G_x , which makes Y_i a good source with a high entropy rate. The following lemma states this formally:

Lemma 4.3. Let $\operatorname{ExT}_0 : \{0,1\}^n \times \{0,1\}^{d_0} \to \{0,1\}^{m_0}$ be an (k,ε_0) -extractor and X be a (n,k+s)source. Take independent seeds $U_1, U_2, \ldots, U_s \in \{0,1\}^{d_0}$. Let $Y = (Y_1, Y_2, \ldots, Y_t)$, where $Y_i = \operatorname{ExT}_0(X, U_i)$. Then Y is $(2\varepsilon_0)^t + t \cdot 2^{-s}$ -close to a somewhere $(m_0, m_0 - O(\log t))$ -source

Take x from a fixed distribution X and fix extractor EXT. Let G_x be the set of good seeds from Lemma 2.5. We first denote event $BAD_i = \{U_i \notin G_X\}$. Note that these events are not necessarily independent. However, the probability that all of them happen is exponentially small, as the following claim shows.

Claim 4.4. $\Pr[BAD_1 \land BAD_2 \land \cdots \land BAD_t] \leq (2\varepsilon_0)^t$.

Proof. Fix any x from X. By Lemma 2.5, we know that $\Pr\{U_i \notin G_x\} \leq 2\varepsilon_0$ for every $i \in [t]$. By the independence of U_i 's, we have $\Pr\{U_i \notin G_x, \forall i \in [t]\} \leq (2\varepsilon_0)^t$. Since this holds for every $x \in X$, we have $\Pr\{BAD_1 \land BAD_2 \land \cdots \land BAD_t\} \leq (2\varepsilon_0)^t$. \Box

We define an indicator random variable $I \in \{0, 1\}^{[t]}$ as follows:

$$\forall i \in [t], i \in I \iff U_i \in G_X. \tag{4}$$

With probability at least $1 - (2\varepsilon_0)^t$, The set I is not an empty set. Take $Y_i = \text{Ext}(X, U_i)$. By Lemma 2.5, $Y_i|_{(\text{BAD}_i)^c} = Y_i|_{i \in I}$ is 2^{-s} -close to a $(m_0, m_0 - O(1))$ source.

We apply the technique from [LRVW03] to prove that (Y_1, Y_2, \ldots, Y_t) is indeed close to a somewhere- $(m_0, m_0 - O(\log t))$ -source.

Lemma 4.5 ([LRVW03]). Let $Y = (Y_1, \ldots, Y_t)$ be the random variable defined in Lemma 4.3. Let I be a random set subset of [t]. Assume $I \neq \emptyset$, and for every $i \in [t]$, $Y_i|_{i \in I}$ is ε -close to a (m, k)-source. Then Y is $(t \cdot \varepsilon)$ -close to a somewhere $(m, k - \log t)$ source.

For completeness of the proof, we reprove this lemma.

Proof. Take I_0 to be the random selector variable over [t], such that for every $S \subseteq [t]$, $I_0|_{I=S}$ uniformly randomly chooses one index from S. Fix $i \in [t]$, for every atomic state (y_1, \ldots, y_t, S) such that $i \in S$, define the atomic event $E = E(y_1, \ldots, y_t, S) = \{Y_1 = y_1, \ldots, Y_t = y_t, I = S\}$. Then for each event E,

$$\frac{\Pr(E \wedge I_0 = i)}{\Pr(E \wedge i \in I)} = \frac{\Pr(I_0 \text{ choose } i \text{ from } I|_E) \Pr[E]}{\Pr[E]} \in [1/t, 1].$$
(5)

By summing over all such events, we have

$$\frac{\Pr(I_0 = i)}{\Pr(i \in I)} = \frac{\sum_{\{(y_1, \dots, y_t, S) | i \in S\}} \Pr(E(y_1, \dots, y_t,) \land I_0 = i)}{\sum_{\{(y_1, \dots, y_t, S) | i \in S\}} \Pr(E(y_1, \dots, y_t, S) \land i \in I)} \in [1/t, 1].$$
(6)

By conditioning on the events respectively,

$$\frac{\Pr(E|_{I_0=i})}{\Pr(E|_{i\in I})} = \frac{\Pr(E \wedge I_0 = i) / \Pr(I_0 = i)}{\Pr(E \wedge i \in I) / \Pr(i \in I)} \in [1/t, t].$$

$$\tag{7}$$

Therefore, we have

$$\frac{\Pr\{Y_i = y|_{I_0=i}\}}{\Pr\{Y_i = y|_{i\in I}\}} = \frac{\sum_{\{(y_1,\dots,y_t,S)|i\in S, y_i=y\}} \Pr\{E(y_1,\dots,y_t,S)|_{I_0=i}\}}{\sum_{\{(y_1,\dots,y_t,S)|i\in S, y_i=y\}} \Pr\{E(y_1,\dots,y_t,S)|_{i\in I}\}} \in [1/t,t].$$
(8)

By assumption, $Y_i|_{i \in I}$ is ε -close to a (m, k)-source. Equivalently,

$$\sum_{\{y|\Pr\{Y_i|_{i\in I}=y\}\geq 2^{-k}\}} \Pr\{Y_i|_{i\in I}=y\} - 2^{-k} \leq \varepsilon.$$
(9)

By applying the multiplicative relation between $\Pr\{Y_i|_{I_0=i}=y\}$ and $\Pr\{Y_i|_{i\in I}=y\}$, we have

$$\sum_{\{y|\Pr\{Y_i|_{I_0=i}=y\}\geq t\cdot 2^{-k}\}} \Pr\{Y_i|_{I_0=i}=y\} - t\cdot 2^{-k} \leq t\cdot \varepsilon.$$
(10)

The lemma follows.

By Claim 4.4 and Lemma 4.5, we can prove Lemma 4.3:

Proof of Lemma 4.3. Take I as the random set indicator defined above. By Lemma 2.5, $Y_i|_{(BAD_i)^c} = Y_i|_{i \in I}$ is 2^{-s} -close to a $(m_0, m_0 - O(1))$ source. By Claim 4.4, we know that with probability at least $1 - (2\varepsilon_0)^t$, I is not an empty set. Conditioning on such events, Lemma 4.5 implies that $Y|_{\{I \neq \emptyset\}}$ is $t \cdot 2^{-s}$ -close to a somewhere- $(m_0, m_0 - O(\log t))$ source. The lemma follows.

4.2Step 2: divide and merge

Assume we have a somewhere $(m_0, m_0 - O(\log t))$ -source. We divide each segment of the source into a sequence of blocks whose lengths form a geometric sequence. Specifically, take $Y = (Y_1, Y_2, \ldots, Y_t)$ to be a simple somewhere $(m_0, m_0 - O(\log t))$ -source. We divide each Y_i into l + 1 blocks of length $m_1, m_2, \ldots, m_{l+1}$ respectively, such that

$$Y_i = (Y_{i,1}, Y_{i,2}, \dots, Y_{i,l+1})$$
 for every $i \in [t]$. (11)

The lengths satisfies

$$m_j = m_0^{0.1} \cdot 3^{j-1}$$
 for every $j \in [l].$ (12)

where $l = \lfloor \log_3 m_0^{0.9} \rfloor$. Denote $Y_{i,1...j} = (Y_{i,1}, Y_{i,2}, ..., Y_{i,j})$ for every $i \in [t]$ and $j \in [l]$. Define B_j as:

$$B_j = (Y_{1,1\dots j}, Y_{2,1\dots j}, \dots, Y_{t,1\dots j}) \text{ for every } j \in [l].$$
(13)

We denote $M_j = m_1 + m_2 + \dots + m_j$ for every $j \in [l]$. Let $\operatorname{Merge}_j : \{0,1\}^{t \cdot M_j} \times \{0,1\}^{d_2(n)} \to \{0,1\}^{(1-\alpha)M_j}$ be a strong $(M_j - \Delta, \frac{3}{4}(1-\alpha)M_j, \varepsilon(n)/l)$ merger from Corollary 3.8 for every $j \in [l]$, where α is a constant. The seed length of the merger is $d_2(n) = O(\log(\frac{M_j}{\varepsilon(n)})) = O(\log(\frac{m(n)}{\varepsilon(n)}))$. Let U_2 be a uniform random variable on $\{0,1\}^{d_2(n)}$. Define

$$Z_j = \operatorname{Merge}_j(B_j, U_2) \text{ for every } j \in [l].$$
(14)

The gap between source length and source entropy is $\Delta = O(\log t) = O(\log \frac{1}{\varepsilon(n)})$, which meets the requirement that $\Delta = O(\log \frac{M_j}{\varepsilon(n)})$ in Corollary 3.8. Next, we apply the strong extractor family EXT₁ to extract from the block source. Let EXT_{1,j}:

 $\{0,1\}^{(1-\alpha)M_j} \times \{0,1\}^{d_3(n)} \to \{0,1\}^{m'(n)}$ be a strong $((1-\alpha)M_j/100,\varepsilon(n)/l)$ -extractor for every $j \in [l]$. These EXT_{1,j}, $j \in [l]$ with different input lengths, are all from the family EXT₁. Let U_3 be a uniform random variable on $\{0,1\}^{d_3(n)}$. Then

$$W_j = \operatorname{Ext}_{1,j}(Z_j, U_3) \text{ for every } j \in [l].$$
(15)

Analysis Now we give our analysis. Note that since Y is a simple somewhere high entropy source, by dividing it into blocks, each prefix B_i is a simple somewhere $(M_i, M_i - O(\log t))$ -source. Through merging, Z_j 's are correlated high-entropy sources with different lengths. They are close to a block source.

Lemma 4.6. Z_j is $\varepsilon(n)/l$ -close to a $((1-\alpha)M_j, \frac{3}{4}(1-\alpha)M_j)$ -source for every $j \in [l]$.

Proof. Let Y_i be a $(m_0, m_0 - O(\log t))$ -source in Y. Then $Y_{i,1...j}$ must have entropy at least $m_j - O(\log t)$. Therefore B_j is a somewhere $(m_j, m_j - O(\log t))$ -source. By Corollary 3.8, Z_j is $\varepsilon(n)/l$ -close to a $((1-\alpha)M_j, \frac{3}{4}(1-\alpha)M_j)$ -source. The claim follows.

Denote $Z_0 = (U_1, U_2)$ as the seeds used in all previous steps to obtain Z_1, \ldots, Z_j . We stress that the sequence Z_0, Z_1, \ldots, Z_1 is of exponentially increasing length and each contains $|Z_j| - O(\log \frac{1}{\varepsilon(n)})$ bits of min-entropy. Therefore, even if all the randomness in (Z_0, \ldots, Z_i) is contained in Z_{i+1} , there still must be $\Omega(|Z_{i+1}|)$ bits of conditional min-entropy within Z_{i+1} . That makes the sequence a block source. We formalize the inspection into the following lemma.

Lemma 4.7. $(Z_0, Z_1, Z_2, \ldots, Z_l)$ is $2\varepsilon(n)$ -close to a block source $(Z_0, Z'_1, Z'_2, \ldots, Z'_l)$. The conditional entropy of Z'_j is larger than $(1-\alpha)M_j/100 = \Omega((1-\alpha)M_j)$ for each $j \in [l]$

Proof. We prove by induction that $(Z_0, Z_1, Z_2, \ldots, Z_j)$ is $\frac{2j}{l}\varepsilon(n)$ -close to another block source $(Z_0, Z'_1, Z'_2, \ldots, Z'_j)$. The base case j = 0 is straightforward.

For the induction case, assume that the proposition holds for j-1. Consider the distribution $(Z_0, Z'_1, Z'_2, \ldots, Z'_{j-1}, Z^*_j)$, where $Z^*_j = T_I$. Here $I \in \{0, 1\}$ is a selector random variable and T_0, T_1 are two different random variables. For simplicity, we denote $Z_{pref} = (Z_0, Z_1, Z_2, \ldots, Z_{j-1})$ and $Z'_{pref} = (Z_0, Z'_1, Z'_2, \ldots, Z_{j'-1})$. The conditional distribution $I|_{Z'_{pref}=z}$ is defined as $\Pr[I|_{Z'_{pref}=z} = 0] = \frac{\min(\Pr[Z_{pref}=z], \Pr[Z'_{pref}=z])}{\Pr[Z'_{pref}=z]}$. The distribution T_0 satisfies that $T_0|_{Z'_{pref}=z}$ has the same distribution as $Z_j|_{Z_{pref}=z}$.

Since $(Z_0, Z_1, Z_2, \ldots, Z_{j-1})$ is $\frac{2(j-1)}{l} \varepsilon(n)$ -close to $(Z_0, Z'_1, Z'_2, \ldots, Z'_{j-1})$ by induction hypothesis, we have $\Pr[I = 0] \ge 1 - \frac{2(j-1)}{l} \varepsilon(n)$. Since T_0 has the same conditional distribution as Z_j , $(z_0, Z'_1, Z'_2, \ldots, Z'_{j-1}, T_I)$ is $\frac{2(j-1)}{l} \varepsilon(n)$ -close to $(Z_1, Z_2, \ldots, Z_{j-1}, Z_j)$ regardless of how we choose T_1 . Furthermore, $\Pr[Z_j = z] \ge \Pr[T_0 = z \land I = 0]$ for every point z in the co-domain.

We define T_1 such that $Z_j^* = T_I$ has the same distribution as Z_j . T_1 is a distribution independent of Z_{pref} , Z'_{pref} such that $\Pr[T_1 = z] = \frac{\Pr[Z_j=z] - \Pr[T_0=z \land I=0]}{\sum_{w \in \{0,1\}^m} (\Pr[Z_j=w] - \Pr[T_0=w \land I=0])} = \frac{\Pr[Z_j=z] - \Pr[T_0=z \land I=0]}{\Pr[I=1]}$ Then $\Pr[T_I = z] = \Pr[T_0 = z \land I = 0] + \Pr[T_1 = z \land I = 1] = \Pr[Z_j = z].$

The distribution $(Z_0, Z'_1, \ldots, Z'_{j-1}, Z^*_j)$ is $\frac{2(j-1)}{l} \varepsilon(n)$ -close to $(Z_0, Z_1, \ldots, Z_{j-1}, Z_j)$ and $Z^*_j = T_I$ has the same distribution as Z_j . By Lemma 4.6, there exists a $((1 - \alpha)M_j, \frac{3}{4}(1 - \alpha)M_j)$ -source Z''_j such that Z^*_j is $\varepsilon(n)/l$ -close to Z''_j .

Because $\frac{3}{4}(1-\alpha)M_j$ is larger than $\sum_{i=1}^{j-1} |Z_{j-1}| = \sum_{i=1}^{j-1} (1-a)M_i$, Lemma 2.9 implies that $(Z_0, Z'_1, \dots, Z'_{j-1}, Z''_j)$ is 2^{-s} -close to $(Z_0, Z'_1, \dots, Z'_{j-1}, Z'_j)$ and $Z'_j|_{Z_0=z_0, Z'_1=z'_1, \dots, Z'_{j-1}=z'_{j-1}}$ is a $((1-\alpha)M_j, \frac{3}{4}(1-\alpha)M_j - s - \sum_{i=1}^{j-1} (1-a)M_i)$ source. Take $s = (1-\alpha)M_j/100$. The min-entropy is $(1-\alpha)M_j \cdot (\frac{3}{4} - \frac{1}{100} - \sum_{i=1}^{j-1} 3^{-i}) \ge (1-\alpha)M_j/100$. The statistical distance is $2^{-s} = 2^{-(1-\alpha)M_j/100} \le \varepsilon(n)/l$.

By triangular inequality, $(Z_0, Z_1, \ldots, Z_{j-1}, Z_j)$ is $\frac{2j}{l} \varepsilon(n)$ -close to $(Z_0, Z'_1, \ldots, Z'_j)$.

Then we can extract from the block-source using standard methods.

Lemma 4.8. $(Z_0, U_3, W_1, W_2, \ldots, W_l)$ is $3\varepsilon(n)$ -close to (Z_0, U_3, V) , where V is a independent uniform distribution.

Proof. By Lemma 4.7, $(Z_0, Z_1, Z_2, \ldots, Z_l)$ is $2\varepsilon(n)$ -close to a block source $(Z_0, Z'_1, Z'_2, \ldots, Z'_l)$. Therefore, $(Z_0, U_3, \operatorname{Ext}_{1,1}(Z_1, U_3), \operatorname{Ext}_{1,2}(Z_2, U_3), \ldots, \operatorname{Ext}_{1,j}(Z_j, U_3))$ is $2\varepsilon(n)$ -close to the source $(Z_0, U_3, \operatorname{Ext}_{1,1}(Z'_1, U_3), \operatorname{Ext}_{1,2}(Z'_2, U_3), \ldots, \operatorname{Ext}_{1,j-1}(Z'_j, U_3))$. The block source for extraction $(Z_0, Z'_1, Z'_2, \ldots, Z'_{j-1}, C_j, U_3)$ contains the required entropy. By Lemma 2.10, the lemma holds.

Remark. For a simple somewhere- $(m, m - O(\log t))$ -source Y, the seed Z_0 may not be uniform because we conditioned on it to make Y 'simple'. However, the convex combination of all such seeds makes a uniform distribution. Therefore, if we take Y to be the general somewhere- $(m, m - O(\log t))$ source from step 1 and Z_0 its seed, then $(Z_0, U_3, W_1, W_2, \ldots, W_l)$ is $3\varepsilon(n)$ -close to uniform.

4.3 Wrap-up to prove Lemma 4.2 and Theorem 4.1

Proof of Lemma 4.2. Take X be the sources, U_1, U_2, U_3 be the seeds. Let $Y = (Y_1, Y_2, \ldots, Y_t)$ such that $Y_i = \text{Ext}_0(X, U_{1,i})$ for every $i \in [t]$ as in the first step. By Lemma 4.3, Y is $\varepsilon(n)$ -close to a somewhere- $(m(n), m(n) - O(\log t))$ -source. Let B_j be the source $(Y_{1,1\dots j}, Y_{2,1\dots j}, \ldots, Y_{t,1\dots j})$ for every $j \in [l]$. Then take $Z_j = \text{Merge}_i(B_j, U_2)$ and $W_j = \text{Ext}_{1,j}(Z_j, U_3)$ for every $j \in [l]$ as

in the second step. Here $\text{Ext}_{1,j}$ is the strong extractor from family Ext_1 with source length $n_1 = m_j$. By Lemma 4.8 and its remark, (U_1, U_2, U_3, W) is $3\varepsilon(n)$ -close to uniform if Y is a somewhere- $(m(n), m(n) - O(\log t))$ -source. By the triangle inequality, W is $4\varepsilon(n)$ -close to uniform.

Step 1 executes the extractor Ext_0 in parallel, which costs depth h. Step 2 executes the merger Merge_j from Corollary 3.8 and the extractor $\text{Ext}_{1,j}$, for every $j \in [l]$ in parallel. This takes depth O(c+g). So the overall depth is as the lemma stated.

The seed length of the extractor is $d(n) = |U_1| + |U_2| + |U_3|$. $U_1 = (U_{1,1}, U_{1,2}, \dots, U_{1,t})$ where $|U_{1,i}| = d_0$ for every $i \in [t]$ and $t = \frac{\log \varepsilon(n)}{\log \varepsilon_0}$. $|U_2| = O(\log(\frac{n}{\varepsilon(n)}))$ and $|U_3| = d_1$. Therefore $d = O(d_1 + d_0 \cdot \frac{\log \varepsilon}{\log \varepsilon_0})$.

The output consists of $\Theta(\log n)$ parts of length m_1 . Therefore the output length is $m = \Theta(m_1 \cdot \log n)$.

By applying the error reduction we can immediately have the following.

Corollary 4.9. For any constant a, c > 0, every $k(n) \ge n/\log^a(n), \varepsilon(n) \ge 2^{-\log^c(n)}$, there exists a strong $(k(n), \varepsilon(n))$ -extractor EXT : $\{0, 1\}^n \times \{0, 1\}^{r(n)} \to \{0, 1\}^{m(n)}$, where $r(n) = O(\log(\frac{n}{\varepsilon(n)}))$, $m(n) = \Theta\left(\log(n) \cdot \log(\frac{n}{\varepsilon(n)})\right)$.

Furthermore, the extractor can be implemented in uniform AC^0 with O(a + c + 1) depth.

Proof. We instantiate EXT₀ as the extractor from Theorem 2.1 and EXT₁ as the strong extractors from Theorem 2.3. So EXT₀ has seed length $O(\log n)$, $\varepsilon_0 = 1/\operatorname{poly}(n)$, $m_0 \ge k^{0.01}$. And $\operatorname{EXT}_{1,j}$ has seed length $d_3(n) = O(\log(\frac{(1-\alpha)M_j}{\varepsilon(n)})) = O(\log(\frac{n}{\varepsilon(n)}))$ and output length $m'(n) = \Theta(\log(\frac{n}{\varepsilon(n)})$, since it is from the extractor family EXT₁. By Lemma 4.2, one can get an extractor with $d(n) = O(\log(\frac{n}{\varepsilon(n)}))$, $m(n) = \Theta\left(\log(n) \cdot \log(\frac{n}{\varepsilon(n)})\right)$, which can be computed by AC⁰ circuits with desired depths. \Box

The only gap between Corollary 4.9 and Theorem 4.1 is that the output length of Corollary 4.9 is only $\Theta\left(\log(n) \cdot \log(\frac{n}{\varepsilon})\right)$ instead of $\Theta\left(\log^b(n) \cdot \log(\frac{n}{\varepsilon})\right)$. We resolve the issue by repeatedly using Lemma 4.2, each time instantiating EXT₁ in Lemma 4.2 as the strong extractor family provided by the immediate previous using of Lemma 4.2. After an iteration, the output length is multiplied by a $\Theta(\log n)$ factor. Therefore we can achieve the parameter as in Theorem 4.1 after *b* iterations.

5 Output Stretch

In this section, we will use the framework introduced in [DKSS13], to further stretch the output length from $O(\log^{c}(n))$ to a near-optimal O(k). The main theorem of this section is the following:

Theorem 5.1. For any constant a, c > 0 and $\gamma \in (0,1)$, let $k(n) \ge \frac{n}{\log^a(n)}, \varepsilon(n) \ge 2^{-\log^c(n)}$. Then there exists a $(k(n), \varepsilon(n))$ -strong extractor EXT : $\{0, 1\}^n \times \{0, 1\}^{r(n)} \to \{0, 1\}^{m(n)}$, such that $r(n) = O(\log(\frac{n}{\varepsilon}))$, and $m(n) \ge (1 - \gamma) \cdot k(n)$.

Furthermore, the extractor can be implemented in AC^0 , with $O(a + c + 1)^2$ depth and poly(n) size.

We use a four-step method to extract randomness.

5.1 Step 1: Converting to a somewhere-block-source

In this subsection, we will convert the original k-source into a somewhere-block-source. First, we define the concept:

Definition 5.2 (somewhere-block-source). Let $X = (X_1, \ldots, X_\Lambda)$ be a random variable with Λ segments, each X_i distributed on $\{0,1\}^{n_1} \times \{0,1\}^{n_2}$. We say X is a simple (k_1,k_2) -somewhere-block-source if there exists $i \in [\Lambda]$ such that X_i is a (k_1,k_2) -block-source. We say X is a (k_1,k_2) -somewhere-block-source if X is a convex combination of simple (k_1,k_2) -somewhere-block-sources.

Ta-shma's somewhere-block-source converter [Ta-98] is a deterministic function that converts a $k_1 + k_2 + s$ -source into a $(k_1 - O(n/\Lambda), k_2)$ -somewhere-block-source, which has Λ segments.

Take $X_1 \in \{0, 1\}^n$ as the original source, assume *n* is divisible by Λ , otherwise pad X_1 with 0's. Regard X_1 as a source with Λ parts, each of length n/Λ :

$$X_1 = (X_{1,1}, \dots, X_{1,\Lambda}) \in \left(\{0,1\}^{n/\Lambda}\right)^{\Lambda}.$$
(16)

Now define the following separation of these parts into (Y_i, Z_i) :

$$Y_i = (X_{1,1}, \dots, X_{1,i}, 0^{(\Lambda - i) \cdot (n/\Lambda)}),$$
(17)

$$Z_{i} = (0^{i \cdot (n/\Lambda)}, X_{1,i+1}, \dots, X_{1,\Lambda}).$$
(18)

Then $(Y_i, Z_i) \in \{0, 1\}^{2n}$. The Ta-shma's somewhere-block-source converter is defined as the collection of all (Y_i, Z_i) , for $i \in [\Lambda]$:

$$B_{TS}^{\Lambda}(X_1) = \left\{ (Y_i, Z_i) \in \{0, 1\}^{2n} \mid i \in [\Lambda] \right\}.$$
 (19)

Theorem 5.3 ([Ta-98]). Let Λ be an integer and Λ divides n. Let $\mathbb{B}_{TS}^{\Lambda}$ be the Ta-shma's somewhereblock-source converter defined above. Fix $k, k_1, k_2, s \in \mathbb{N}$ such that $k = k_1 + k_2 + s$. Then for any k-source $X \in \{0,1\}^n$, $\mathbb{B}_{TS}^{\Lambda}(X)$ is $O(n \cdot 2^{-s/3})$ -close to a $(k_1 - O(n/\Lambda), k_2)$ -somewhere-block-source.

Now we summarize the first step:

Step 1: Set
$$\Lambda = \log^{2a}(n)$$
, Take $X_2 = (X_{2,1}, \dots, X_{2,\Lambda}) = B_{TS}^{\Lambda}(X_1)$ as a somewhere-block-source.

Lemma 5.4. For any constant $a \ge 0$, let $k \ge \frac{n}{\log^a(n)}$. Then for any k-source $X_1 \in \{0,1\}^n$, the somewhere-block-source $X_2 = B_{TS}^{\Lambda}(X_1)$ is $n \cdot 2^{-\frac{n}{\log^{2a}n}}$ -close to a $(k - O(\frac{n}{\log^{2a}n}), \frac{n}{\log^{2a}n})$ -somewhere-block-source.

The first step can be computed in AC^0 with O(1) depth and poly(n) size, as it is only splitting the input into blocks.

5.2 Step 2: Extracting from a somewhere-block-source

In this subsection, we focus on the good block of the somewhere-block-source, and extract randomness from it. A two-block extractor is employed in this section. We use the block-extraction technique together with our extractors from Theorem 2.2 and Theorem 4.1 to extract $O(\log^{a+c} n)$ randomness from the second block of the block source, then use it as seed for another extractor, in order to extract O(k) randomness from the first block of the block source.

For a somewhere-block-source, we may apply the two-block extractor to each segment such that the good segment is converted into a somewhere-close-to-uniform source. The source is defined as follows: **Lemma 5.5.** Let $X = (X_1, \ldots, X_\Lambda)$ be a (k_1, k_2) -somewhere-block-source, where each segments is a source on $\{0, 1\}^{n_1} \times \{0, 1\}^{n_2}$. Let EXT : $\{0, 1\}^{n_1} \times \{0, 1\}^{n_2} \times \{0, 1\}^r \rightarrow \{0, 1\}^m$ be a (k_1, k_2, ε) strong-two-block extractor. Let U_r be a uniform random distribution on $\{0, 1\}^r$. Then

$$(\operatorname{Ext}(X_1, U_r), \ldots, \operatorname{Ext}(X_\Lambda, U_r))$$

is ε -close to a somewhere-uniform-source.

Proof. If X is a simple-somewhere-block-source, then there exists a good segment X_i such that X_i is a (k_1, k_2) -block-source. Then $(\text{Ext}(X_i, U_r))$ is ε -close to a uniform distribution on $\{0, 1\}^m$. Therefore, $(\text{Ext}(X_1, U_r), \ldots, \text{Ext}(X_{\Lambda}, U_r))$ is ε -close to a somewhere-uniform-source.

Otherwise, X is a convex combination of simple-somewhere-block-sources. Each simple-somewhere-block-source is converted into a simple-somewhere-uniform-source. Therefore, X is converted into a somewhere-uniform-source. The lemma follows. \Box

For AC^0 implementation, we have the following theorem:

Theorem 5.6 (block-extraction in AC⁰). There exists a constant $\gamma \in (0, 1)$. For any constant a, c > 0, let $k_1(n) \ge \frac{n}{\log^a(n)}, k_2(n) \ge \frac{n}{\log^{2a}(n)}, \varepsilon(n) \ge 2^{-\log^c(n)}$, there exists a $(k_1(n), k_2(n), \varepsilon(n))$ -strong-two-block extractor EXT : $\{0, 1\}^n \times \{0, 1\}^n \times \{0, 1\}^r \to \{0, 1\}^m$, such that $r(n) = O(\log(\frac{n}{\varepsilon}))$, and $m(n) \ge (1 - \gamma)k_1(n)$.

Furthermore, the extractor can be implemented in AC^0 , with $O(a + c + 1)^2$ depth and poly(n) size.

Proof. Take $\operatorname{Ext}_1 : \{0,1\}^n \times \{0,1\}^{m_1} \to \{0,1\}^{m_2}$ be the $(k_1,\varepsilon(n)/2)$ -extractor from Theorem 2.2, where $m_1 = \log^{O(a+c)}(n)$ and $m_2 = (1-\gamma)k_1(n)$. Take $\operatorname{Ext}_2 : \{0,1\}^n \times \{0,1\}^r \to \{0,1\}^{m_1}$ be the $(k_2,\varepsilon(n)/2)$ -extractor from Theorem 4.1, where $r(n) = O(\log(\frac{n}{\varepsilon}))$ and $m_1 = \log^{O(a+c)}(n)$. By Lemma 2.12, $\operatorname{Ext}(X_1, X_2, U_r) = \operatorname{Ext}_1(X_1, \operatorname{Ext}_2(X_2, U_r))$ is a $(k_1, k_2, \varepsilon(n))$ -strong-two-block extractor.

The extractor is in AC⁰ with depth $O(a + c + 1)^2$, as EXT₁ is in AC⁰ with depth O(a + c + 1) and EXT₂ is in AC⁰ with depth $O(a + c + 1)^2$

We summarize the second step here:

Step 2: Take EXT : $\{0,1\}^n \times \{0,1\}^n \times \{0,1\}^{r_1(n)} \to \{0,1\}^{m(n)}$ as a $(\frac{n}{\log^a(n)}, \frac{n}{\log^{2a}(n)}, \varepsilon(n))$ strong-two-block extractor, where $r_1(n) = O(\log(\frac{n}{\varepsilon}))$ and $m(n) \ge (1-\gamma)k(n)$. Take $X_3 = (\text{EXT}(X_{2,1}, U_{r_1}), \dots, \text{EXT}(X_{2,\Lambda}, U_{r_1}))$ be $2 \cdot \varepsilon(n)$ -close to a somewhere-uniform-source.

This step can be implemented in AC^0 with O(a + c) depth and poly(n) size, as it is applying AC^0 functions to each block of the input.

The source X_3 is now $\varepsilon(n)$ -close to a somewhere-uniform-source. It has $\Lambda = \log^{2a}(n)$ segments, each of length $m(n) \ge (1 - \gamma)k(n)$. The next step is using the merger introduced in [DKSS13] to merge the segments into one source.

5.3 Step 3: Merging the segments

We use the merger introduced in [DKSS13] to merge the segments of the somewhere-uniform-source into one source. The construction of the merger is discussed in Theorem 3.3.

Step 3: Take Merge : $\{0,1\}^{\Lambda \cdot m(n)} \times \{0,1\}^{r_2(n)} \rightarrow \{0,1\}^{m(n)}$ be the $(m(n), \frac{3}{4}m(n), \varepsilon(n))$ -merger from Theorem 3.3. Then $X_4 = \text{Merge}(X_3, U_{r_2})$.

As a direct consequence of Theorem 3.3 we have the following lemma.

Lemma 5.7. X_4 is $3 \cdot \varepsilon(n)$ -close to a $\frac{3}{4}m(n)$ -source.

Also, notice that the computation in AC⁰ with depth O(a + c), with seed length $O(\log(n/\varepsilon(n)))$.

5.4 Step 4: Second extraction

The final step is as the following.

Step 4: Take Ext_2 : $\{0,1\}^{m(n)/2} \times \{0,1\}^{m(n)/2} \times \{0,1\}^{r_3(n)} \to \{0,1\}^{m'(n)}$ be the $(\frac{1}{8}m(n), \frac{1}{8}m(n), \varepsilon(n))$ -strong-two-block extractor from Theorem 5.6, where $r_3(n) = O(\log(\frac{n}{\varepsilon}))$ and $m'(n) \geq \frac{1-\gamma}{6} \cdot m(n)$. Take $X_5 = \operatorname{Ext}_2(X'_4, X''_4, U_{r_3})$, where U_{r_3} is a uniform random distribution on $\{0,1\}^{r_3(n)}$, where $(X'_4, X''_4) = X_4$.

Lemma 5.8. X_5 is $5\varepsilon(n)$ close to uniform.

Proof. We divide X_4 into 2 parts, $X_4 = (X'_4, X''_4)$ on $\{0, 1\}^{m(n)/2} \times \{0, 1\}^{m(n)/2}$. By Lemma 5.7, X_4 is $3 \cdot \varepsilon(n)$ -close to a $\frac{3}{4}m(n)$ -source on $\{0, 1\}^{m(n)}$. By Lemma 2.9, (X'_4, X''_4) is $3\varepsilon(n) + 2^{-\frac{1}{24}m(n)}$ -close to a $(\frac{1}{8}m(n), \frac{1}{8}m(n))$ -block source. Here $2^{-\frac{1}{24}m(n)} \le \varepsilon(n)$.

Now we apply the block extractor from Theorem 5.6 to extract randomness from the block source (X'_4, X''_4) .

Since (X'_4, X''_4) is $4\varepsilon(n)$ -close to a $(\frac{1}{8}m(n), \frac{1}{8}m(n))$ -block source by Lemma 5.7, the final distribution X_5 is $5\varepsilon(n)$ -close to a uniform distribution.

The circuit depth of ExT_2 is $O(a + c + 1)^2$ by Theorem 5.6. Now we prove the main theorem of this section:

Theorem 5.9. For any constant $a, c > 0, \gamma' \in (0, 1)$, let $k(n) \ge \frac{n}{\log^a(n)}, \varepsilon(n) \ge 2^{-\log^c(n)}$. Then there exists $a(k(n), \varepsilon'(n))$ -strong extractor EXT : $\{0, 1\}^n \times \{0, 1\}^{r(n)} \to \{0, 1\}^{m(n)}$, such that $r(n) = O(\log(\frac{n}{\varepsilon(n)}))$, and $m(n) \ge (1 - \gamma') \cdot k(n)$.

Furthermore, the extractor can be implemented in AC^0 , with $O(a + c + 1)^2$ depth and poly(n) size.

Proof. The extractor EXT is defined as $EXT(X_1, U_{r_1}, U_{r_2}, U_{r_3}) = X_5$, where X_5 is defined through the four steps above.

The extractor can be implemented in AC^0 with $O(a+c)^2$ depth and poly(n) size as each step is in AC^0 with corresponding parameters. The overall seed length is $r_1(n) + r_2(n) + r_3(n) = O(\log(\frac{n}{\varepsilon}))$. The output length is $m'(n) = \frac{1-\gamma}{6} \cdot m(n) = \frac{(1-\gamma)^2}{6}k(n)$. The error is $5\varepsilon(n)$ by Lemma 5.8.

By repeatedly extracting from the source X_1 in parallel for $(1-\gamma')/\frac{(1-\gamma')^2}{6}$ times with independent seeds, we could extract the desired amount of randomness with error $5\varepsilon(n) \cdot \frac{(1-\gamma)^2}{6} \cdot \frac{1}{1-\gamma'}$. The theorem follows by adjusting the error parameter by increasing the seed length.

6 Extractors in NC^1

Our method can also construct extractors in NC^1 with improved parameters. The construction consists of 3 parts:

- 1. Apply a condenser from [KT22]. It behaves like the GUV condenser but is computable in NC¹. It condenses the source into a source with a constant entropy rate. We regard the output as a block source.
- 2. For the second block, apply our error reduction method which outputs a seed of length $O(\log^2 n \log(n/\epsilon))$.
- 3. Apply the improved Trevisan's extractor [RRV02] to the first block, which outputs $\Omega(k)$ bits of randomness.

The main theorem is as follows:

Theorem 6.1. For every constant $\gamma \in (0,1)$ every $k = k(n) \ge \Omega(\log^2(n)), \varepsilon = \varepsilon(n) \ge 2^{-O(\sqrt{k(n)})}$, there exists a strong (k,ε) extractor EXT: $\{0,1\}^n \times \{0,1\}^{r(n)} \to \{0,1\}^{m(n)}$ computable in NC¹, with $r(n) = O(\log(n/\varepsilon)), m(n) = (1-\gamma)k(n).$

6.1 Condenser in NC^1

The first component in our construction is the condenser from [KT22]. A simplified version of their result is as follows:

Lemma 6.2 (condenser from [KT22]). For every $k = k(n) \ge \Omega(\log^2(n)), \varepsilon = \varepsilon(n) \ge n \cdot 2^{-\sqrt{k(n)}/1024}$, There exists $m(n) \le \frac{3}{2}k(n)$ and a function Cond : $\{0,1\}^n \times \{0,1\}^{r(n)} \to \{0,1\}^{m(n)}$ with $r \le 4\log(\frac{n}{\varepsilon})$ such that Cond is a $(k, k + r, \varepsilon)$ -condenser.

The condenser takes the input x as the representation of a degree $\leq d = O(\frac{n}{\log q})$ polynomial over \mathbb{F}_q for some prime $q \geq d$, $\log q \geq r$. Denote the degree $\leq d$ polynomial as f. The condenser takes the seed y as a point in \mathbb{F}_q . Then the output is defined as:

$$Cond(x,y) = (y, f(y), f^{(1)}(y), \dots, f^{(s)}(y))$$
(20)

for some $s = s(n) \leq \frac{m(n)}{r(n)}$. $f^{(i)}$ denotes the *i*-th formal derivative of *f*.

To apply the condenser, we need to transform a source on $\{0,1\}^n$ to a source on \mathbb{F}_q and transform it back for the output. We use division to do the transformation, which is computable in NC¹.

The condenser itself requires two sorts of operations: polynomial evaluation and formal derivative. Denote $f(x) = \sum_{i=0}^{d} a_i x^i$. Then $f^{(j)}(x) = \sum_{i=0}^{d} \frac{i!}{(i-j)!} a_i x^{i-j}$. There are at most d^2 such coefficients $\frac{i!}{(i-j)!}$, which can be precomputed and stored in the circuit. The multiplication of a_i and $\frac{i!}{(i-j)!}$ can be done in NC¹. Therefore, the formal derivative is computable in NC¹.

The polynomial evaluation consists of three operations: calculating the powering x^{i-j} , multiplication and summation. The powering can be implemented with two steps: O(n)-th powering and division by q, which are computable in NC¹ according to [BCH86]. The multiplication and iterated summation are both in NC¹.

Putting it together, we can obtain the following lemma:

Lemma 6.3. The condenser from Lemma 6.2 is computable in NC^1 .

Regard the output of the condenser as (X_1, X_2) , $|X_1| = |X_2| = \frac{1}{2}m(n)$. By Lemma 2.9, (X_1, X_2) is $\varepsilon(n)$ -close to a $(\frac{1}{2}m(n), \frac{1}{6}m(n), \frac{1}{2}m(n), \frac{1}{6}m(n))$ -source.

6.2 Error Reduction in NC^1

After condensing, we only need to handle an input (n, k) source X over $\{0, 1\}^n$ with constant entropy rate $\delta = \frac{k}{n}$. To extract a seed of length $O(\log n \log(n/\epsilon))$, we use almost the same procedure as in Section 4 despite some minor changes.

For the first step to convert the source to a somewhere source, we use the same extractors as in Section 4. We apply the extractors in parallel for $t = \frac{\log n}{\log(1/\varepsilon)} = O(\sqrt{k})$ times. Then the output is ε -close to a somewhere $(m_0, m_0 - \log(t))$ -source, where $m_0 = \Omega(k)$.

For the second step, we still apply the $(m_0 - \log(t), 0.9m_0, \varepsilon)$ -merger from Corollary 3.8 to the output of the first step as in Section 4. Since $\varepsilon \geq 2^{-O(\sqrt{k})}$ and t = poly(k), the merger is computable in NC¹.

After applying the merger, we obtain a block-source with exponentially increasing length. We require a modification to Theorem 2.3 for the NC¹ setting. The main difference is that the error is now $2^{-O(\sqrt{k})}$ instead of $2^{-\operatorname{poly}(\log n)}$. Also we setup the block length $m_j = 3^j \cdot 10 \log \frac{n}{\varepsilon}, j \in [l]$, where l can still be $O(\log n)$, since $\varepsilon = 2^{-O(\sqrt{k})}$.

To extract from the block source, we require the following extractor in NC^{1} .

Lemma 6.4. For every constant $\delta \in (0,1]$ and every $\varepsilon = 2^{-O(n)}$, there exists an explicit $(\delta n, \varepsilon)$ -extractor EXT : $\{0,1\}^n \times \{0,1\}^d \to \{0,1\}^m$ in NC¹, where $d = O(\log(n/\varepsilon))$, $m = \Theta(\log(n/\varepsilon))$.

We use the sample-then-extract technique with leftover hash lemma to construct the extractor. Vadhan [Vad04] shows how to generate a shorter source from a weak source.

Definition 6.5 (Averaging Sampler). A (μ_1, μ_2, γ) -averaging sampler is a function Samp : $\{0, 1\}^r \rightarrow [n]^t$ such that for every function $f : [n] \rightarrow [0, 1]$, if $\mathbb{E}_{i \in [n]} f(i) \geq \mu_1$, it holds that

$$\Pr_{s \leftarrow \operatorname{Samp}(U_r)} \left[\frac{1}{t} \sum_{i \in [t]} f(s_i) < \mu_2 \right] \le \gamma.$$

Lemma 6.6 (Sample a source [Vad04]). Let $0 < 3\tau \le \delta \le 1$. If Samp : $\{0,1\}^r \to [n]^t$ is a (μ_1, μ_2, γ) -averaging sampler for $\mu_1 = (\delta - 2\tau)/\log(1/\tau)$ and $\mu_2 = (\delta - 3\tau)/\log(1/\tau)$, then for every $(n, \delta n)$ source X, we have $\mathrm{SD}(U \circ X_{\mathrm{Samp}(U)}, U \circ W) \le \gamma + 2^{-\Omega(\tau n)}$. Here U is uniform distribution over $\{0,1\}^r$. For every $a \in \{0,1\}^r$, the random variable $W|_{U=a}$ is a $(t, (\delta - 3\tau)r)$ -source.

We use the sampler from [Hea08].

Lemma 6.7 (Sampler in [Hea08]). For any $n \in \mathbb{N}$, any $\mu \in (0, 1]$, $\epsilon < \mu$, there exists an $(\mu, \mu - \epsilon, \gamma)$ averaging sampler Samp : $\{0, 1\}^r \rightarrow [n]^m$ with seed length $r = \log n + O\left(\frac{\log(1/\gamma)}{\epsilon^2}\right)$ and $m = O\left(\frac{\log(1/\gamma)}{\epsilon^2}\right)$ which can be computed by NC¹ circuits of size poly $(n, 1/\epsilon, \log(1/\gamma))$.

Note that Lemma 8.3 of [Vad04] shows that we can modify the sampler and get a new sampler with more than m samples with the same seed length.

Proof of Lemma 6.4. Let $\gamma = 0.8\varepsilon$, μ, ϵ_0 be small constants. We apply the $(\mu - \epsilon_0, \mu, \gamma)$ -sampler from Lemma 6.7 to the $(n, \delta n)$ -source X with seed U_1 . By Lemma 6.6, $X_1 = X_{\text{Samp}(U_1)}$ is $\gamma + 2^{-\epsilon n}$ -close to a $(m, (\delta - \epsilon)m)$ source.

Since $m = O(\log(n/\varepsilon))$, we can apply extractor EXT₁ from Lemma 2.4 to X_1 with independent seed U_2 . For any $(m, (\delta - \epsilon)m)$ -source $X_1, (U_2, \text{EXT}_1(X_1, U_2))$ is ε -close to uniform. Since $m = O(\log(n/\varepsilon))$, the seed length of EXT₁ is $O(\log(n/\varepsilon))$, The output length is $(\delta - \epsilon)m - 2\log(n/\varepsilon) = \Omega(\log(n/\varepsilon))$. The final extractor is $\text{Ext}(X, U_1, U_2) = \text{Ext}_1(X_{\text{Samp}(U_1)}, U_2)$. It satisfies the requirement of the lemma.

The extractor from leftover hash lemma performs a matrix multiplication, which is computable in NC^1 . The sampler is also computable in NC^1 . Therefore, the extractor EXT is computable in NC^1 .

Using the extractor to extract from the block source as in Section 4, we obtain a seed of length $O(\log n \log(n/\varepsilon))$.

One can use the iteration of Section 4 to stretch the output to $O(\log^2 n \log(n/\varepsilon))$.

This gives us the following lemma:

Lemma 6.8. For every $\delta \in (0,1), k = \delta n, \varepsilon = \varepsilon(n) = 2^{-O(\sqrt{k})}$, there exists a strong $(k(n), \varepsilon(n))$ -extractor EXT : $\{0,1\}^n \times \{0,1\}^r(n) \to \{0,1\}^{m(n)}$ computable in NC¹, with $r(n) = O(\log(n/\varepsilon)), m(n) = O(\log^2(n)\log(n/\varepsilon)).$

6.3 Improved Trevisan's Extractor in NC¹

With the seed of length $O(\log^2 n \log(n/\varepsilon))$, We apply the extractor from [RRV02] to the first block of the block source. Their extractor requires a family of sets called weak design.

Definition 6.9 (weak (m, l, ρ, r) -design [RRV02]). A family of set $S = S_1, \ldots, S_m \subset [r]$ is a called a weak (m, l, ρ, r) -design if

- 1. For all $i \in [m], |S_i| = l$,
- 2. For all $i \in [m], (\sum_{j < i} 2^{|S_j \cap S_i|})/m \le \rho$.

Hartman and Raz [HR03] give a space $O(\log m)$ construction of weak $(m, l, e^2, r = l^2)$ -design for any $m, l \in \mathbb{N}$

Theorem 6.10 (Improved Trevisan's Extractor [RRV02]). For every k = k(n), $\varepsilon = \varepsilon(n)$, there are explicit $(k(n), \varepsilon(n))$ -extractors $\operatorname{Ext}_{Trev} : \{0, 1\}^n \times \{0, 1\}^{r(n)} \to \{0, 1\}^{m(n)}$ with $r(n) = O(\log^2(n) \log(n/\varepsilon))$ and $m(n) = \Omega(k(n))$.

The construction of their extractor is as follows:

Given k and ε , regard the source X and the seed U as distributions on alphabet F instead of $\{0,1\}$. F is a finite field such that $\log |F| = O(\log(1/\varepsilon))$. Take $n' = n/\log |F|, r' = r/\log |F|, m' = m/\log |F|$. Then the extractor has the form of.

$$EXT_{Trev}: F^{n'} \times F^{r'} \to F^{m'}, \tag{21}$$

where $m' = \Omega(k/\log(1/\varepsilon))$. Define $l = \log n'$.

Given the above parameters, the extractor from [RRV02] requires a weak (m', l, ρ, r') -design. Here $\rho = (k - r - 10 \log |F|)/m'$. We take the weak $(m, l, e^2, r' = l^2)$ -design from [HR03]. Notice that $\rho > e^2$.

To construct the extractor, the source $X = \{a_I\}_{I \subseteq [l]}$ is regarded as $n = 2^l$ coefficients of a multilinear function $f: F^l \to F$ on l variables,

$$f(x_1, \dots, x_l) = \sum_{I \subseteq [l]} a_I \prod_{i \in I} x_i.$$
⁽²²⁾

The seed U is regarded as r' characters on $F^{r'}$. Each S_i in the weak design selects l variables out of r from U, denoted as $U_{S_i} \in F^l$.

The first step applies the function f on each of U_{S_i} , which gives

$$(Y_1, Y_2, \dots, Y_{m'}) = (f(U_{S_1}), f(U_{S_1}), \dots, f(U_{S_{m'}}))$$
(23)

Next step of the extractor is to apply one universal hash function $h: F \to \{0,1\}^{O(\log(1/\varepsilon))}$ to each Y_i . The output is the concatenation of the hash values:

$$W = h(Y_1)h(Y_2)\dots h(Y_{m'}).$$
 (24)

The overall construction is

$$Ext_{Trev}(f, U, h) = h(f(U_{S_1}))h(f(U_{S_2}))\dots h(f(U_{S_{m'}}))$$
(25)

The seed for U is $r = r' \log |F| = l^2 \log |F| = O(\log^2 n \log(1/\varepsilon))$. The seed length for h is $O(\log(1/\varepsilon))$.

Lemma 6.11. The extractor Ext_{Trev} is computable in NC^1 .

Proof. Let F be a finite field of characteristic two satisfying $\log |F| = O(\log(1/\varepsilon))$. The weak design are m' subsets of [r'], which could be described using $O(m'r') = O(n^2)$ bits. Therefore, we can hardwire the weak design into the circuit. The design is logspace-uniform. So U_{S_i} is computable in NC¹.

Computing $f(x_1, \ldots, x_l) = \sum_{I \subseteq [l]} a_I \prod_{i \in I} x_i$ requires multiplication of $O(\log n)$ and summation of O(n) terms. Each term is in F with $\log |F| \leq O(n)$. By [HV06, Theorem 3], the evaluation $f(U|_{S_i})$ is computable in NC¹.

Using Toeplitz matrices as hash functions, h is computable in NC¹. Therefore, the extractor EXT_{Trev} is computable in NC¹.

6.4 Putting it together

Now we can prove Theorem 6.1.

Proof of Theorem 6.1. Take X as the input source. Let Cond : $\{0,1\}^n \times \{0,1\}^{r_1(n)} \to \{0,1\}^{m(n)}$ be the $(k, k+r_1, \varepsilon/4)$ -condenser from Lemma 6.2. Take $(X_1, X_2) = \text{Cond}(X, U_1)$, where U_1 is the seed of length $r_1 = O(\log(n/\varepsilon))$. By Lemma 2.9, (X_1, X_2) is $\varepsilon/2$ -close to a $(\frac{1}{2}m(n), \frac{1}{6}m(n), \frac{1}{2}m(n), \frac{1}{6}m(n))$ -source.

For X_2 , apply the $(\frac{1}{6}m(n), \varepsilon/4)$ -strong extractor EXT₁ from Lemma 6.8 with seed U_2 of length $r_2 = O(\log(n/\varepsilon))$. The output is $Y = \text{EXT}_1(X_2, U_2)$ of length $O(\log^2(n)\log(n/\varepsilon))$.

For X_1 , apply the $(\frac{1}{2}m(n), \varepsilon/4)$ -extractor Ext_{Trev} from Theorem 6.10 with seed Y, which outputs a distribution W of length $\Omega(k)$.

By the property of Ext_1 , (X_1, Y) is $3\varepsilon/4$ -close to (X_1, Y') such that Y' is a independent uniform distribution. Therefore $W = \text{Ext}_{Trev}(X_1, Y)$ is ε -close to uniform.

The extractor EXT is defined as $EXT(X, U_1, U_2) = W$. Cond, EXT_1, EXT_{Trev} are all computable in NC¹. Therefore, EXT is computable in NC¹.

7 Entropy lower bound for AC^0 dispersers

In the context of AC^0 computation, not all sources are extractable. A well-known result of [GVW15] shows that extracting even one bit of randomness is impossible for sources with entropy less than $\frac{n}{\text{poly}(\log n)}$. Similar result from [CL18] shows that extracting randomness with error less than $2^{-\text{poly}(\log n)}$ is impossible for AC^0 extractors.

In this section, we will extend the bound from extractors to dispersers. Dispersers are functions that take a source and a seed and output a distribution like extractors. The only difference is that the output distribution is not necessarily uniform, but rather supported on all but a small fraction of the codomain. We will show that strong AC^0 dispersers for sources with entropy less than $\frac{n}{\text{poly}(\log n)}$ do not exist.

Definition 7.1 (Disperser). A function Disp : $\{0,1\}^n \times \{0,1\}^r \to \{0,1\}^m$ is a (k,ε) -disperser if for every k-source X on $\{0,1\}^n$ and uniformly random variable Y on $\{0,1\}^r$, $|\operatorname{Supp}(\operatorname{Disp}(X,Y))| \ge (1-\varepsilon)2^m$.

Furthermore, Disp is a strong (k, ε) -disperser if for every k-source X on $\{0, 1\}^n$ and uniformly random variable Y on $\{0, 1\}^r$, $|\operatorname{Supp}(Y, \operatorname{Disp}(X, Y))| \ge (1 - \varepsilon)2^{r+m}$.

We remark that the requirement for X to have entropy $\geq k$ can be replaced by a weaker requirement, which only requires $\operatorname{Supp}(X) \geq 2^k$, without changing the definition.

Our proof is based on the new switching lemma for AC^0 circuits by Rossman in [Ros]. Their original result says that every AC^0 circuit can be reduced to a decision tree of arbitrary depth under a random restriction for all but a small fraction of the inputs. By restricting the inputs for the second time, it is reduced to a constant function.

Definition 7.2 (Restrictions). A restriction ρ is a string on $\{0, 1, *\}^n$. We denote the application of ρ to $x \in \{0, 1\}^n$ by $\rho \circ x$, which is defined as:

$$(\rho \circ x)_i = \begin{cases} \rho_i & \text{if } \rho_i \neq *, \\ x_i & \text{if } \rho_i = *. \end{cases}$$
(26)

The restriction on a function $f: \{0,1\}^n \to \{0,1\}^m$ is defined as:

$$f|_{\rho}(x) = f(\rho \circ x). \tag{27}$$

We use R_p to denote the independent uniform random restriction with star probability p. That is, for every $i \in [n]$, $\Pr[R_p(i) = *] = p$, $\Pr[R_p(i) = 0] = \Pr[R_p(i) = 1] = \frac{1-p}{2}$.

The switching lemma for AC^0 circuits is stated as follows:

Lemma 7.3 (Switching Lemma for AC⁰ circuits [Ros]). For every $\delta \in (0, 1), d > 0, s = s(n)$, there exists $p = \frac{\delta}{\Theta(\log s)^{d-1}}$ such that for every AC⁰ circuit C of size s and depth d,

$$\Pr_{\rho \sim R_p} [C|_{\rho} \text{ is not constant}] \le \delta.$$
(28)

We give the following negative result for strong dispersers using the switching lemma:

Theorem 7.4. For every d > 0, s = s(n), every constant $\delta \in (0, 1)$, if $C : \{0, 1\}^n \times \{0, 1\}^r \to \{0, 1\}$ is a $(k, \frac{1}{2} - \delta)$ -disperser that can be computed by a non-uniform AC circuit of size s and depth d, then $k \ge \Theta(\frac{\delta n}{\log^{d-1} s})$. Proof. Define the sub-circuit $C_y(x) = C(x, y)$ for every $y \in \{0, 1\}^r$. Let R'_p the random restriction that $R'_p = R_p|_{R_p}$ assigns at least $\frac{p}{2}$ fraction of the inputs as *. The event that R_p assigns at least $\frac{p}{2}$ fraction of the inputs as * is less than $\binom{n}{pn}/(\sum_{i < \frac{pn}{2}} \binom{n}{i} \leq (\sqrt{2ep})^{pn} = 2^{-\Omega(n)}$. Therefore, R'_p is $2^{-\Omega(n)}$ -close to R_p .

By Lemma 7.3, there exists $p = \frac{\delta}{\Theta(\log s)^{d-1}}$ such that $C_y|_{R_p}$ is constant with probability at least $1 - \delta$. Then $C|_{R'_p}$ is constant with probability at least $1 - 2\delta$. Define a restriction ρ to be bad for y if $C_y|_{\rho}$ is constant. Then for every y, $\Pr_{\rho \sim R'_p}[\rho$ is bad for $y] \geq 1 - 2\delta$. By averaging, we have

$$\Pr_{\rho \sim R'_p, y \sim \{0,1\}^r} [\rho \text{ is bad for } y] \ge 1 - 2\delta.$$
(29)

Therefore, there exists a restriction ρ from R'_p such that for at least $1 - \delta$ fraction of $y \in \{0, 1\}^r$, ρ is bad for y.

Define a source X to be the bit-fixing source on $\{0,1\}^n$ such that $X = \rho \circ U$, where U is a uniformly random variable on $\{0,1\}^n$. Then X is a k-source for $k = \frac{2n}{p} = \Theta(\frac{\delta n}{\log^{d-1}s})$. Since ρ is bad for at least $1 - 2\delta$ fraction of $y \in \{0,1\}^r$, $C_y(X)$ is constant for at least $1 - 2\delta$ fraction of $y \in \{0,1\}^r$. Therefore $(Y, C(X, Y)) = (Y, C_Y(X))$ covers at most $2\delta(2 \cdot 2^r) + (1 - 2\delta)2^r = (\frac{1}{2} + \delta)2^{r+1}$ points in its sample space, a contradiction to the definition of the strong disperser. So the theorem follows. \Box

8 Open Questions

We mention the following open questions.

- For extractors in AC⁰, can we further improve the circuit depth? The current depth is $O(a + c + 1)^2$. Is it possible to be linear in a + c + 1, while maintaining other parameters to be roughly the same?
- For extractors in NC¹, can we improve the plausible range of k and ε ? For example is it possible to give an NC¹ construction that can work for all k, ε , matching the parameters in [GUV09]?
- Some components of our NC¹ computable extractors are actually in AC⁰[2]. Is it possible to give an extractor in AC⁰[2], with parameters optimal up to constant factors?
- For weak dispersers, we do not have a similar negative result to that of Section 7. The reason is that a single good seed in the seed space can make the disperser good enough, regardless of other seeds. So it remains an open question whether weak dispersers can constructed in AC^0 , specifically for sources with entropy less than $\frac{n}{\operatorname{poly}(\log n)}$.

References

[AB09]	Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach
	Cambridge University Press, 2009.
[Bar86]	David A Barrington. Bounded-width polynomial-size branching programs recognize exactly those languages in nc. In Proceedings of the eighteenth annual ACM symposium
	on Theory of computing, pages 1–5, 1986.
[BCH86]	Paul Beame, Stephen A. Cook, and H. James Hoover. Log depth circuits for division

and related problems. SIAM J. Comput., 15(4):994–1003, 1986.

- [BYRST02] Z. Bar-Yossef, O. Reingold, R. Shaltiel, and L. Trevisan. Streaming computation of combinatorial objects. In <u>Proceedings of the 17th Annual IEEE Conference on</u> Computational Complexity, pages 165–174, 2002.
- [CDST23] Gil Cohen, Dean Doron, Ori Sberlo, and Amnon Ta-Shma. Approximating iterated multiplication of stochastic matrices in small space. In Barna Saha and Rocco A. Servedio, editors, <u>Proceedings of the 55th Annual ACM Symposium on Theory of</u> <u>Computing, STOC 2023, Orlando, FL, USA, June 20-23, 2023</u>, pages 35–45. ACM, 2023.
- [CL18] Kuan Cheng and Xin Li. Randomness extraction in ac0 and with small locality. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and <u>Techniques (APPROX/RANDOM) 2018</u>. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.
- [CT21] Lijie Chen and Roei Tell. Hardness vs randomness, revised: Uniform, non-black-box, and instance-wise. In <u>62nd IEEE Annual Symposium on Foundations of Computer</u> Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 125–136. IEEE, 2021.
- [CW79] J. L. Carter and M. N. Wegman. Universal classes of hash functions. <u>Journal of</u> Computer and System Sciences, 18:143–154, 1979.
- [DKSS13] Zeev Dvir, Swastik Kopparty, Shubhangi Saraf, and Madhu Sudan. Extensions to the Method of Multiplicities, with Applications to Kakeya Sets and Mergers. <u>SIAM</u> Journal on Computing, 42(6):2305–2328, January 2013.
- [GGH⁺07] Shafi Goldwasser, Dan Gutfreund, Alexander Healy, Tali Kaufman, and Guy N. Rothblum. Verifying and decoding in constant depth. In <u>Proceedings of the thirty-ninth</u> annual ACM symposium on Theory of computing, pages 440–449. ACM, 2007.
- [GUV09] Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. Unbalanced expanders and randomness extractors from Parvaresh–Vardy codes. <u>Journal of the ACM</u>, 56(4):1– 34, June 2009.
- [GVW15] Oded Goldreich, Emanuele Viola, and Avi Wigderson. On randomness extraction in AC0. In <u>Proceedings of the 30th Conference on Computational Complexity</u>, CCC '15, pages 601–668, Dagstuhl, DEU, June 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
- [GW94] Oded Goldreich and Avi Wigderson. Tiny families of functions with random properties (preliminary version) a quality-size trade-off for hashing. In <u>Proceedings of the</u> twenty-sixth annual ACM symposium on Theory of computing, pages 574–584, 1994.
- [Hea08] Alexander D Healy. Randomness-efficient sampling within nc1. <u>Computational</u> Complexity, 17(1):3–37, 2008.
- [HR03] Tzvika Hartman and Ran Raz. On the distribution of the number of roots of polynomials and explicit weak designs. Random Struct. Algorithms, 23(3):235–263, 2003.
- [HV06] Alexander Healy and Emanuele Viola. Constant-Depth circuits for arithmetic in finite fields of characteristic two. In Proceedings of the 23rd Annual Conference on

<u>Theoretical Aspects of Computer Science</u>, STACS'06, pages 672–683, Berlin, Heidelberg, February 2006. Springer-Verlag.

- [ILL89] Russel Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation from one-way functions. In <u>Proceedings of the 21st Annual ACM Symposium on</u> Theory of Computing, pages 12–24, 1989.
- [Imp95] Russell Impagliazzo. Hard-core distributions for somewhat hard problems. In Foundations of Computer Science, 1995. Proceedings., 36th Annual Symposium on, pages 538–545. IEEE, 1995.
- [IW97] Russell Impagliazzo and Avi Wigderson. P=BPP unless E has sub-exponential circuits: Derandomizing the xor lemma. In <u>Proceedings of the 29th Annual ACM Symposium</u> on Theory of Computing, 1997.
- [KT22] Itay Kalev and Amnon Ta-Shma. Unbalanced expanders from multiplicity codes. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and <u>Techniques (APPROX/RANDOM) 2022</u>, volume 245 of <u>LIPIcs</u>, pages 12:1–12:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
- [LRVW03] Chi-Jen Lu, Omer Reingold, Salil Vadhan, and Avi Wigderson. Extractors: Optimal up to Constant Factors. <u>Proceedings of the thirty-fifth annual ACM symposium on</u> Theory of computing, June 2003.
- [NT99] Noam Nisan and Amnon Ta-Shma. Extracting randomness: A survey and new constructions. Journal of Computer and System Sciences, 58:148–173, 1999.
- [NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of Computer and System Sciences, 49(2):149–167, October 1994.
- [NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of Computer and System Sciences, 52(1):43–52, 1996.
- [Ros] Benjamin Rossman. An entropy proof of the switching lemma and tight bounds on the decision-tree size of AC0.
- [RRV99] Ran Raz, Omer Reingold, and Salil P. Vadhan. Error reduction for extractors. In <u>40th</u> <u>Annual Symposium on Foundations of Computer Science, FOCS '99</u>, pages 191–201. IEEE Computer Society, 1999.
- [RRV02] Ran Raz, Omer Reingold, and Salil P. Vadhan. Extracting all the randomness and reducing the error in trevisan's extractors. J. Comput. Syst. Sci., 65(1):97–128, 2002.
- [RSW00] Omer Reingold, Ronen Shaltiel, and Avi Wigderson. Extracting randomness via repeated condensing. In <u>41st Annual Symposium on Foundations of Computer Science</u>, FOCS 2000, pages 22–31. IEEE Computer Society, 2000.
- [RTS00] Jaikumar Radhakrishnan and Amnon Ta-Shma. Bounds for dispersers, extractors and depth-two superconcentrators. Siam Journal on Discrete Mathematics, 13:2–24, 2000.
- [Sha02] Ronen Shaltiel. Recent developments in explicit constructions of extractors. <u>Bulletin</u> of the European Association for Theoretical Computer Science, 77:67–95, 2002.

- [Sha11] Ronen Shaltiel. An introduction to randomness extractors. In <u>Proceedings of the 38th</u> International Colloquium on Automata, Languages, and Programming, 2011.
- [SZ99] A. Srinivasan and D. Zuckerman. Computing with very weak random sources. <u>SIAM</u> Journal on Computing, 28:1433–1459, 1999.
- [Ta-96] Amnon Ta-Shma. On extracting randomness from weak random sources. In <u>Proceedings</u> of the 28th Annual ACM Symposium on Theory of Computing, pages 276–285, 1996.
- [Ta-98] Amnon Ta-Shma. Almost optimal dispersers. In <u>Proceedings of the Thirtieth Annual</u> ACM Symposium on the Theory of Computing, 1998, pages 196–202. ACM, 1998.
- [Tel19] Roei Tell. Improved bounds for quantified derandomization of constant-depth circuits and polynomials. computational complexity, 28(2):259–343, 2019.
- [Tre01] Luca Trevisan. Extractors and pseudorandom generators. Journal of the ACM, 48(4):860–879, 2001.
- [TSU12] Amnon Ta-Shma and Christopher Umans. Better condensers and new extractors from parvaresh-vardy codes. In <u>2012 IEEE 27th Conference on Computational Complexity</u>, pages 309–315. IEEE, 2012.
- [Vad04] Salil P. Vadhan. Constructing locally computable extractors and cryptosystems in the bounded-storage model. J. Cryptology, 17(1):43–77, 2004.
- [Vad07] Salil Vadhan. The unified theory of pseudorandomness. SIGACT News, 38, 2007.
- [Vad12] Salil Vadhan. Pseudorandomness. <u>Foundations and Trends® in Theoretical Computer</u> Science, 7(1–3):1–336, 2012.
- [Vio05] Emanuele Viola. The complexity of constructing pseudorandom generators from hard functions. computational complexity, 13(3-4):147–188, 2005.
- [WZ99] Avi Wigderson and David Zuckerman. Expanders that beat the eigenvalue bound: Explicit construction and applications. Combinatorica, 19(1):125–138, 1999.
- [Zuc97] David Zuckerman. Randomness-optimal oblivious sampling. <u>Random Structures and</u> Algorithms, 11(4):345–367, December 1997.

A Omitted proofs of preliminaries

Proof of Lemma 2.9. We prove by induction.

For l = 2, we have $X = (X_1, X_2)$. Assert that $\Pr[X_1 = x_1] \leq 2^{-(n_1-k)}$ for every $x_1 \in \{0, 1\}^{n_1}$. Suppose not, then there exists $x_1 \in \{0, 1\}^{n_1}$ such that $\Pr[X_1 = x_1] > 2^{-(n_1-k)}$. Then there exists $x_2 \in \{0, 1\}^{n_2}$ such that $\Pr[X_1 = x_1, X_2 = x_2] > 2^{-(n_1+n_2-k)}$. This contradicts the assumption that X is a k-source.

Fix any $x_1 \in \{0,1\}^{n_1}$, suppose that $X_2|_{X_1=x_1}$ is not a $(n_2, n_2 - k - s)$ -source. Then there exists $x_2 \in \{0,1\}^{n_2}$ such that $\Pr[X_2 = x_2|X_1 = x_1] > 2^{-n_2+k+s}$. Since $\Pr[X_1 = x_1, X_2 = x_2] \le 2^{-n+k}$ and $\Pr[X_1 = x_1, X_2 = x_2] = \Pr[X_1 = x_1] \Pr[X_2 = x_2|X_1 = x_1]$, we have $\Pr[X_1 = x_1] \le 2^{-n_1-s}$. Therefore $\Pr_{x_1 \leftarrow X_1}[X_2|_{X_1=x_1}$ is not a $(n_2, n_2 - k)$ -source] $\le 2^{-s}$. The lemma follows.

For l > 2, assume our lemma holds for l - 1. Consider $X = (X_1, \ldots, X_l)$. Let $X'_2 = (X_1, X_2)$. By the induction hypothesis, we have that $X = (X'_2, \ldots, X_l)$ is $(l - 1)2^{-s}$ -close to a $(n_1 + n_2, n_1 + n_2)$. $n_2 - k, \ldots, n_{l-1}, n_{l-1} - k - s$)-source. Denote that source by $Y = (Y_2, \ldots, Y_l)$. The l = 2 case shows that Y_2 is ε -close to a $(n_1, n_1 - k, n_2, n_2 - k - s)$ -source (Y'_1, Y'_2) . Construct random variables Y'_3, \ldots, Y'_l such that $(Y'_3, \ldots, Y'_l)|_{Y'_1 = y'_1, Y'_2 = y'_2}$ has the same distribution as $(Y_3, \ldots, Y_l)|_{Y_1 = y'_1, Y_2 = y'_2}$. Then $(Y_1, Y_2, Y_3, \ldots, Y_l)$ is 2^{-s} -close to $(Y'_1, Y'_2, Y'_3, \ldots, Y'_l)$. The distribution $(Y'_1, Y'_2, Y'_3, \ldots, Y'_l)$ is a $(n_1, n_1 - k, n_2, n_2 - k - s, \ldots, n_l, n_l - k - s)$ -source. The lemma follows.

Proof of Lemma 2.10. We prove by induction.

Claim A.1. For every $i \in [l]$, $(Y, X_1, \ldots, X_{i-1}, Z_i, \ldots, Z_l)$ is $(l-i+1) \cdot \varepsilon$ -close to $(Y, X_1, \ldots, X_{i-1}, U_i, \ldots, U_l)$ where U_j are independent uniformly random variables on $\{0, 1\}^{m_j}$ for each $i \leq j \leq l$.

Proof of Claim A.1. For $i = l, X_l|_{X_1=x_1,\dots,X_{l-1}=x_{l-1}}$ is a (n_l, k_l) -source. Therefore $(Y, Z_l)|_{X_1=x_1,\dots,X_{l-1}=x_{l-1}}$ is ε -close to uniform. The claim follows.

For other *i*, we apply the previous argument to (Y, X_1, \ldots, X_i) . Then $(Y, X_1, \ldots, X_{i-1}, Z_i) = (Y, X_1, \ldots, X_{i-1}, \text{Ext}(Y, X))$ is ε -close to $(Y, X_1, \ldots, X_{i-1}, U_i)$. Here U_i is a uniform random variable independent of X_i 's and Y. We also let it be independent of (U_{i+1}, \ldots, U_l) .

By concatenating an independent random variable on both string, we do not increase statistical distance. Therefore, $(Y, X_1, \ldots, X_{i-1}, Z_i, U_{i+1}, \ldots, U_l)$ is ε -close to $(Y, X_1, \ldots, X_{i-1}, U_i, \ldots, U_l)$.

From the induction hypothesis, we have that $(Y, X_1, \ldots, X_{i-1}, X_i, Z_{i+1}, \ldots, Z_l)$ is $(l-i) \cdot \varepsilon$ -close to $(Y, X_1, \ldots, X_{i-1}, X_i, U_{i+1}, \ldots, U_l)$. Applying $Z_i = \text{Ext}(Y, X_i)$ gives $(Y, X_1, \ldots, X_{i-1}, Z_i, Z_{i+1}, \ldots, Z_l)$ is $(l-i) \cdot \varepsilon$ -close to $(Y, X_1, \ldots, X_{i-1}, Z_i, U_{i+1}, \ldots, U_l)$. The claim follows from triangular inequality. \Box

By Claim A.1, we have that (Y, Z_1, \ldots, Z_l) is $l \cdot \varepsilon$ -close to (Y, U_1, \ldots, U_l) . Since U_1, \ldots, U_l are independent uniformly random variables on $\{0, 1\}^{m_1 + \cdots + m_l}$, the lemma follows.

Proof of Lemma 2.12. Let $X = (X_1, X_2)$ be a (k_1, k_2) -block-source, and U_r be a uniform random distribution on $\{0, 1\}^r$. Then $\text{Exr}_2(X_2, U_r)$ is ε_2 -close to W. W is a uniform random distribution on $\{0, 1\}^{m_1}$, independent of both X_1 and U_r . Then $\text{Exr}_1(X_1, W)$ is ε_1 -close to uniform distribution V on $\{0, 1\}^{m_2}$, where V is independent of W and U_r .

Therefore, (U_r, V) is ε_1 -close to $(U_r, \operatorname{Ext}_1(X_1, W))$. $(U_r, \operatorname{Ext}_1(X_1, W))$ is ε_2 -close to $(U_r, \operatorname{Ext}_1(X_1, \operatorname{Ext}_2(X_2, U_r)))$. Therefore, (U_r, V) is $\varepsilon_1 + \varepsilon_2$ -close to $(U_r, \operatorname{Ext}(X_1, X_2, U_r))$. \Box

ECCC

ISSN 1433-8092

https://eccc.weizmann.ac.il