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Abstract

Analyzing refutations of the well known pebbling formulas Peb(G) we prove some new
strong connections between pebble games and algebraic proof system, showing that there is
a parallelism between the reversible, black and black-white pebbling games on one side, and
the three algebraic proof systems NS, MC and PC on the other side. In particular we prove:

• For any DAG G with a single sink, if there is a Monomial Calculus refutation for Peb(G)
having simultaneously degree s and size t then there is a black pebbling strategy on
G with space s and time t + s. Also if there is a black pebbling strategy for G with
space s and time t it is possible to extract from it a MC refutation for Peb(G) having
simultaneously degree s and size 2t(s − 1). These results are analogous to those proven
in [dRMNR21] for the case of reversible pebbling and Nullstellensatz. Using them we
prove degree separations between NS and MC as well as strong degree-size tradeoffs for
MC.

• We show that the variable space needed for the refutation of pebbling formulas in
Polynomial Calculus exactly coincides with the black-white pebbling number of the
corresponding graph. One direction of this result was known. We present an new
elementary proof of it.

• We show that for any unsatisfiable CNF formula F, the variable space in a Resolution
refutation of the formula is a lower bound for the monomial space in a PCR refutation
for the extended formula F [⊕]. VSpaceRes(F ⊢) ≤ MSpacePCR(F [⊕] ⊢). This implies
that for any DAG G, the monomial space needed in the refutation of an XOR pebbling
formulas is lower bounded by the black-white pebbling number of the corresponding
graph, MSpace(Peb(G)[⊕]) ≥ BW(G). This solves affirmatively Open Problem 7.11
from [BN21].

• The last result also proves a strong separation between degree and monomial space in
PCR of size Ω( n

log n ) with the additional property that it is independent of the field
characteristic. This question was posed in [FLM+13].
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1 Introduction
The use of pebble games in complexity theory goes back many decades. They offer a very clean
tool to analyze certain complexity measures, mainly space and time, in an isolated way on a
graph, which can then be translated to specific computational models. Very good overviews of
these results can be found in [Pip80, Sav98, Nor15].

We consider several versions of the game, defined formally in the preliminaries. Intuitively,
the goal of these games is to measure the minimum number of pebbles needed by a single player
in order to place a pebble on the sink of a directed acyclic graph (DAG) following certain rules
(this is called the pebbling price). Black pebbles can only be placed on a vertex if it is a source
or if all its direct predecessors already have a pebble on them, but these pebbles can be removed
at any time. White pebbles (modelling non-determinism) can be placed on any vertex at any
time but can only be removed if all its direct predecessors contain a pebble. In the reversible
pebble game, pebbles can only be placed or removed from a vertex if all the direct predecessors
of the vertex contain a pebble. These three games define a short hierarchy being reversible
pebbling weaker than black pebbling and this in turn weaker than the black-white pebble game.

Pebbling games have also become one of the most useful tools for proving results in proof
complexity. The reason for this is that one can often translate a certain measure for the pebbling
game, mainly number of pebbles or pebbling time, into a suitable complexity measure for a
concrete proof system. Very often the bounds for this measure in a graph translate accurately
to bounds in the different proof systems for a certain kind of contradictory formulas mimicking
the game, called pebbling formulas. These formulas were introduced in [BW01] and have been
extremely useful for proving separations, upper and lower bounds as well as tradeoff results in
basically all studied proof systems. See e.g. [Nor13].

In the present paper we will concentrate on algebraic proof system. In these systems
formulas are encoded as sets of polynomials over a field and the question of whether a formula
is unsatisfiable is translated to the question of whether the polynomials have a common root.
Powerful algebraic tools like the Gröbner Basis Algorithm can be used for this purpose. Several
algebraic proof systems have been introduced in the literature (defined formally bellow). Well
known are Nullstellensatz (NS) introduced in [BIK+94] and the more powerful Polynomial
Calculus (PC) defined in [CEI96]. The first one is usually considered as a static system in which
a “one-shot” proof has to be produced, while in PC there are certain derivation rules like in a
more standard proof system. A useful variation of PC defined in [ABRW02] to unify the PC
with Resolution is Polynomial Calculus with Resolution, PCR.

The best studied complexity measures for refutations in these systems are the degree
(maximum degree of a polynomial) and size (number of monomials counted with repetitions).
For studying the connections with the pebble games it is very useful to consider also space
measures. We will use variable space (number of variables that are simultaneously active in a
refutation) and monomial space (number of monomials kept simultaneously in memory, counted
with repetitions).

In [BG15] the Monomial Calculus system (MC) was identified. This system is defined by
limiting the multiplication rule in PC to monomials and its power lies between NS and PC.
Building on results from [AM13] for the Sherali-Adams proof system, the authors proved that
for any pair of non-isomorphic graphs, the MC degree for the refutation of the corresponding
isomorphism formulas exactly corresponds to the Weisfeiler-Leman bound for separating the
graphs, a very important method in graph theory and descriptive complexity.

As mentioned above, connections between pebbling games and algebraic systems hve been
known. Already in [BCIP02] it was proved that for any directed acyclic graph (DAG) G the
corresponding pebbling formula Peb(G) can be refuted with constant degree in PC but in NS
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it requires degree Ω(s), where s is the black pebbling price of G, Black(G). Using pebbling
results, this automatically proves a strong degree separation between NS and PC. As a more
recent example, the authors in [dRMNR21] proved a very tight connection between NS and
the reversible pebbling game. They showed that space and time in the game played on a DAG
exactly correspond to the degree and size measures in a NS refutation of the corresponding
pebbling formula. From this connection strong degree-size tradeoffs for NS follow.

We show in this paper that besides these results, there are further parallelisms between the
Reversible, Black, Black-White game hierarchy on one side, and the NS, MC and PC/PCR proof
systems on the other side.

1.1 Our results
In Section 3 we prove that very similar results to those given in [dRMNR21] for NS and reversible
pebbling are also true for the case of MC and black pebbling. More concretely we show in
Theorem 16 that for any DAG G with a single sink, if there is a MC refutation for Peb(G)
having simultaneously degree s and size t then there is a black pebbling strategy on G with
space s and time t + s. This is done by proving that any Horn formula has a very especial kind
of MC refutation, which we call input monomial refutation since it is the same concept as an
input refutation in Resolution. Horn formulas constitute an important class of formulas and it is
well known that input Resolution is complete for Horn formulas.

For the other direction, we show in Theorem 11 that from a black pebbling strategy for G
with space s and time t it is possible to extract a MC refutation for Peb(G) having simultaneously
degree s and size 2t(s − 1). The small loss in the time parameter compared to the results in
[dRMNR21] comes from the fact that size is measured in slight different ways in NS and MC.
Using these results we are able to show degree separations between NS and MC as well as strong
degree-size tradeoffs for MC in the same spirit as those in [dRMNR21].

The degrees of the refutation for pebbling formulas in NS and MS correspond exactly to the
space in reversible and black games respectively. It would be very nice if the same could be said
about PC degree and space in the black-white game. Unfortunately this is not the case since
as mentioned above in [BCIP02] it was proven that for any DAG the corresponding pebbling
formula can be refuted within constant PC degree. We notice however that if instead of the
degree we consider the complexity measure of variable space the connection still holds1. This
is not a new observation, in the first paper showing space-size tradeoffs for Resolution [Ben09]
where the black-white pebble game was used for the fist time in the context of proof complexity,
the author proved that for any DAG G and a Resolution refutation of Peb(G) with variable
space s, a black-white pebbling strategy for G with the same space can be extracted. This
result was strengthen in [BN11]. For the concrete case of Polynomial Calculus it was shown in
[BNT13] that for the variable space needed to refute Peb(G) is at least the black-white pebbling
price of G. Again this implies tradeoff results, in this case a degree-monomial space tradeoff as
well as time-space tradeoffs for PC. We give in Subsection 4.1 a new proof of the result showing
that for PC variable space for pebbling formulas is lower bounded by the black-white pebbling
number. Contrary to the proof in [BNT13] this proof is completely elementary and does use
random restrictions or space faithful projections. We complete the result showing that it also
holds in the other direction by proving that the variable space for the refutation of pebbling
formulas in PC is also an upper bound for the variable space.

So far all the mentioned results deal with the pure pebbling formulas without extension
variables. For studying monomial space this is not enough since it is well known that the
standard pebbling formulas can be refuted in constant space. Our main results are proven when

1We observe that the results for MC can also be interpreted in terms of variable space.
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each variable in the pebbling formulas are substituted by the XOR or two new variables, also a
well known technique called XORification.

We show in that for any unsatisfiable CNF formula F , the variable space in a Resolution
refutation of F is a lower bound for the monomial space in a PCR refutation for the extended
formula F [⊕], in symbols VSpaceRes(F ⊢) ≤ MSpacePCR(F [⊕] ⊢) (Corollary 31). Since as
mentioned above it is known that the Resolution variable space for pebbling formulas is lower
bounded by the black-white pebbling number of the corresponding graph [Ben09], and the PC
degree of (the XOR version) of the pebbling formulas is constant, this immediately implies
for any DAG G, MSpace(Peb(G)[⊕]) ≥ BW(G) (Theorem 32). This solves affirmatively Open
Problem 7.11 from [BN21]. It also proves a strong separations between degree and monomial
space in PCR to be Ω( n

log n). The separation has the property that it is independent of the
field characteristic, a question that was posed in [FLM+13]. Previously know weaker space
degree separations for PCR with this property were shown in [GKT19]. Comparing degree and
monomial space for PCR with width and clause space in Resolution, our separation exactly
parallels that from [BN08] which is the strongest possible one for Resolution.

The bounds from Corollary 31 also improve those in Theorem 9 from [BNT13] by decreasing
the Resolution variable space needed from s log t to s. As a consequence of the improvement in
the parameters, also some of the size-space tradeoffs for PCR refutations of pebbling formulas
reported in [BNT13] can be also be improved.

2 Preliminaries
2.1 Pebble Games
Black pebbling was first mentioned implicitly in [PH70], while black-white pebbling was intro-
duced in [CS76]. Note, that there exist several variants of the (black-white) pebble game in
the literature. For differences between these variants, we refer to [Nor15]. For the following
definitions, let G = (V, E) be a DAG with a unique sink vertex z.
Definition 1 (Black and black-white pebble games). The black-white pebble game on G is
the following one-player game: At any time i of the game, there is a pebble configuration
Pi := (Bi, Wi), where Bi ∩ Wi = ∅ and Bi ⊆ V is the set of black pebbles and Wi ⊆ V is the
set of white pebbles, respectively. A pebble configuration Pi−1 = (Bi−1, Wi−1) can be changed
to Pi = (Bi, Wi) by applying exactly one of the following rules:
Black pebble placement on v: If all direct predecessors of an empty vertex v have pebbles

on them, a black pebble may be placed on v. More formally, letting Bi = Bi−1 ∪ {v} and
Wi = Wi−1 is allowed if v ̸∈ Bi−1 ∪ Wi−1 and predG(v) ⊆ Bi−1 ∪ Wi−1. In particular, a
black pebble can always be placed on an empty source vertex s, since predG(s) = ∅.

Black pebble removal from v: A black pebble may be removed from any vertex at any time.
Formally, if v ∈ Bi−1, then we can set Bi = Bi−1 \ {v} and Wi = Wi−1.

White pebble placement on v: A white pebble may be placed on any empty vertex at any
time. Formally, if v ̸∈ Bi−1 ∪ Wi−1, then we can set Bi = Bi−1 and Wi = Wi−1 ∪ {v}.

White pebble removal from v: If all direct predecessors of a white-pebbled vertex v have
pebbles on them, the white pebble on v may be removed. Formally, letting Bi = Bi−1 and
Wi = Wi−1 \ {v} is allowed if v ∈ Wi−1 and predG(v) ⊆ Bi−1 ∪ Wi−1. In particular, a white
pebble can always be removed from a source vertex.

A black-white pebbling of G is a sequence of pebble configurations P = (P0,P1, . . . ,Pt) such that
P0 = Pt = (∅, ∅), for some i ≤ t, z ∈ Bi ∪ Wi, and for all i ∈ [t] it holds that Pi can be obtained
from Pi−1 by applying exactly one of the above-stated rules.
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A black pebbling is a pebbling where Wi = ∅ for all i ∈ [t]. Observe that w.l.o.g. we can
always assume that Bt−1 = {z}. For convenience we will also use the dual notion of white
pebbling game. A white (only) pebbling is a pebbling where Bi = ∅ for all i ∈ [t]. Observe
that P = (P0,P1, . . . ,Pt) is a black pebbling of G if and only if P ′ = (P′

t, . . . ,P′
0) is a white

pebbling of G, where each configuration P′
i contains the same set of pebbled vertices as in Pi,

but with white pebbles instead of black pebbles. In a white pebbling we can always suppose
that W1 = {z}.

Definition 2 (Pebbling time, space, and price). The time of a pebbling P = (P0,P1, . . . ,Pt) is
time(P) := t and the space of it is space(P) := maxi∈[t] |Bi ∪ Wi|. The black-white pebbling price
(also known as the pebbling measure or pebbling number) of G, which we will denote by BW(G),
is the minimum space of any black-white pebbling of G. The black pebbling price of G, denoted
by Black(G), is the minimum space of any black pebbling of G. By the observation above, the
white pebbling price White(G) coincides with Black(G)

Finally, we mention the reversible pebble game introduced in [Ben89]. In the reversible
pebble game, the moves performed in reverse order should also constitute a legal black pebbling,
which means that the rules for pebble placements and removals have to become symmetric.
We omit the formal definition since they will not be used for the present results and refer the
interested reader to [dRMNR21]. The notions of reversible pebbling time, space, and price are
defined as in the other pebbling variants.

2.2 Formulas and polynomials
We will only consider propositional formulas in conjunctive normal form (CNF). Such a formula
is a conjunction of clauses and a clause is a disjunction of literals. A literal is a variable or its
negation. For a formula F , Var(F ) denotes the set of its variables.

A Horn formula in a special type of CNF formula in which each clause has at most one
positive literal. For a more detailed treatment of formulas as well as the well known Resolution
proof system we refer the interested reader to some of the introductory texts in the area like
[ST13]. We will basically only deal with pebbling formulas. These provide the connection
between pebbling games and proof complexity.

Definition 3 (Pebbling formulas). Let G = (V, E) be a DAG with a set of sources S ⊆ V
and a unique sink z. We identify every vertex v ∈ V with a Boolean variable xv. For a vertex
v ∈ V we denote by pred(v) the set of its direct predecessors. In particular, for a source vertex
v, pred(v) = ∅. The pebbling contradiction over G, denoted Peb(G), is the conjunction of the
following clauses:

• for all vertices v, the clause ∨
u∈pred(v) x̄u ∨ xv, (pebbling axioms)

• for the unique sink z, the unit clause x̄z. (sink axiom)

A well known method to make pebbling formulas harder to refute is to substitute some
suitable Boolean function f(x0, . . . , xd−1) of arity d for each variable x and expand the result
into CNF (x0, . . . , xd−1 are new variables). This general case is discussed in [Nor15]. We restrict
ourselves to the special case of the second degree XORification in which f(x0, x1) = x0 ⊕ x1.

Definition 4 (Substitution formulas). For a positive x define the XORification of x to be
x[⊕] := {x0 ∨ x1, x0 ∨ x1}. For a negative literal y, the XORification is y[⊕] := {y0 ∨ y1, y0 ∨ y1}.
The XORification of a clause C = a1 ∨ · · · ∨ ak is the CNF formula

C[⊕] :=
∧

C1∈a1[⊕]
· · ·

∧
Ck∈ak[⊕]

(C1 ∨ · · · ∨ Ck),
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and the XORification of a CNF formula F is F [⊕] := ∧
C∈F C[⊕].

Remark 5 ([BN08]). If G has n vertices and maximal in-degree ℓ, then Peb(G)[⊕] is an
unsatisfiable 2(ℓ + 1)-CNF formula with at most 2ℓ+1 · n clauses over 2n variables.

A way to prove that a CNF formula is unsatisfiable is by translating it into a set of polynomials
over a field F and then show that these polynomials do not have any common {0, 1}-valued root.
A clause C = ∨

x∈P x ∨
∨

y∈N ȳ can be encoded as the polynomial p(C) = ∏
x∈P (1 − x) ∏

y∈N y.
A set of clauses C1, . . . , Cm is translated as set of polynomials p(C1), . . . , p(Cm). Adding the
polynomials x2

i − xi (as axioms) for each variable xi, there is no common {0, 1}-valued root for
all these polynomials if and only if the original set of clauses is unsatisfiable. The intuition here
is to identify false with 1 and true with 0. A monomial is falsified by a Boolean assignment if all
its variables get value 1, while it is satisfied if one of its variables gets value 0. In this context
we will consider a monomial m as a set of variables and a polynomial p as a linear combination
of monomials. We denote by mon(p) the set of monomials of p and write m ∈ mon(p) or even
m ∈ p to indicate that m is a monomial of p. A monomial with its coefficient in F is called a
monomial term.

When encoding the pebbling formulas as polynomials, for a set U ⊆ V , we denote by mU the
monomial ∏

u∈U xu. For U = ∅, mU = 1. For every vertex v ∈ V the axiom ∨
u∈pred(v) x̄u ∨ xv

becomes the polynomial Av := mpred(v)(1 − xv), and the sink axiom x̄z is transformed into the
polynomial Asink := xz.

To avoid confusion we will denote the polynomial encoding of a CNF formula F by PF .
A (partial) assignment γ for a formula F is a (partial) mapping α : Var(F ) −→ {0, 1}. We

will denote by F |γ the result of appliying the assignment to F and reducing it in the standard
way. The same notation will be used when and Boolean assignment is applied to a polynomial
encoding PF . Here PF |γ is the polynomial resulting after substituting the assigned variables by
their values in γ and adding the terms of the resulting polynomial.

2.3 Algebraic Proof Systems
Several proof systems that work with polynomials have been defined in the literature. The
simplest one is Nullstellensatz, NS.

Definition 6. A Nullstellensatz refutation of the set of polynomials p1, . . . , pm in F[x1, . . . , xn]
consists of a set of polynomials g1, ..., gm, h1, . . . , hn such that∑

j=1,...,m

pjgj +
∑

i=1,...,n

hi(x2
i − xi) = 1.

As a consequence of Hilbert’s Nullstellensatz, the NS proof systems is sound and complete
for the set of encodings of unsatisfiable CNF formulas.

A stronger more dynamic algebraic refutational calculus also dealing with polynomials is
the Polynomial Calculus (PC). As in the case of Nullstellensatz, PC is intended to prove the
unsolvability of a set of polynomial equations.

Definition 7. The PC proof system uses the following rules:
1. Linear combination

p q

αp + βq
α, β ∈ F.

2. Multiplication
p

xip
i ∈ [n].
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A refutation in PC of an initial unsolvable set of polynomials P is a sequence of polynomials
{q1, . . . , qm} such that each qi is either a polynomial in P , a Boolean axiom x2

i − xi or is obtained
by previous polynomials in the sequence applying one of the rules of the calculus.

In order to avoid some technical problems that arise in PC and unify the strength of PC and
Resolution a slight modification of PC called Polynomial Calculus with Resolution (PCR) was
introduced in [ABRW02]. The polynomial equations are now in a ring F[x1, . . . , xn, x′

1, . . . , x′
n],

i.e. for each variable xi there is also a twin variable x′ representing its negation. We have the
same rules and axioms as in PC plus the axiom xi +x′

i −1 for each variable xi. Twin variables are
in principle independent from each other but the new axioms force them to take complementary
values.

In a similar way as for PC, a PCR refutation of an initial unsolvable set of polynomials P is
a sequence of polynomials {q1, . . . , qm} such that each qi is either a polynomial in P , a Boolean
axiom or is obtained by applying one of the rules of the calculus. In this case the Boolean axioms
are x2

i − xi, x′2
i − x′

i and 1 − xi − x′
i.

A less known algebraic proof system between NS and PC is Monomial Calculus, MC.
This system was introduced in [BG15] identifying exactly the complexity of refuting graph
isomorphism formulas. This proof system is defined like PC but the multiplication rule is only
allowed to be applied to a monomial, or to a monomial times an axiom.

Definition 8. The MC proof system uses the following rules:
1. Linear combination

p q

αp + βq
α, β ∈ F.

2. Multiplication

p

xip
i ∈ [n], p is a monomial or the product of a monomial and an axiom.

As is the case of PC/PCR, a refutation in MC of an initial unsolvable set of polynomials P is
a sequence of polynomials {q1, . . . , qm} where each one of them is either in P, an axiom or is
obtained by applying one of the rules of the calculus.

As pointed out in [BG15], an equivalent definition of the Nullstellensatz system, but a
dynamic one, would be to restrict the multiplication rule in the above definition even more, and
only allow to apply it to polynomials that are a monomial multiplied by an axiom. In this way,
the difference in the definition of the three systems NS, MC and PC is just a variation on how
the multiplication rule can be applied.

In order to analyze and compare refutations we will consider several complexity measures on
them.

Definition 9 (Complexity measures). Let C be one of the mentioned systems C ∈ {MC, PC, PCR}
Let π = {q1, . . . , qm} be a C refutation. The degree of a polynomial qi, deg(qi) is the maximum
degree of its monomials and the degree of π, degC(π) = maxi=1,...,n(deg(qi)). The size of (π),
denoted by SizeC(π) is the total number of monomials in π (counted with repetitions), when all
polynomials pi are fully expanded as linear combinations of monomials. For the space measures
we need to define configurational proofs. Such a proof π in the system C is a sequence of
configurations π = C0, . . . Ct in which each Ci is a set of polynomials with C0 = ∅ and Ct = 1.
Each configuration represents a set of polynomials that are kept simultaneously in memory
in the refutation, and for each i, 0 < i ≤ t, Ci is either Ci−1 ∪ {p} for some axiom p (axiom
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download) or Ci−1 \ {p} (erasure) or Ci−1 ∪ {p} for some p inferred by the rules of C by some
rule of the system (inference). The monomial space MSpaceC(π) is the maximum number of
monomials (counted with repetitions) appearing in any configuration in the proof. The variable
space VSpaceC(π) is defined as the maximum number of different variables appearing in any
configuration of the proof.

For any of the defined complexity measures Comp and proof systems C, and for every
unsatisfiable set of polynomials PF we denote by CompC(PF ⊢) the minimum over all C
refutations of PF of CompC(π).

It is often convenient to consider a multilinear setting in which the multiplications in the
mentioned algebraic systems are implicitly multilinearized. Clearly the degree and size measures
can only decrease in this setting.

Definition 10 (Semantic derivations). We refer to configurational derivations in which any
line that is a logical consequence of the current derivation can be derived in one single step as
semantic derivations.

3 Monomial Calculus and pebbling formulas
In [dRMNR21] it was shown that for any DAG G with a single sink, the reversible pebbling
space and time of G, exactly coincides with the degree and the size of a NS refutation of PebG.
We show that a very similar relation holds for the case of black pebbling and Monomial Calculus.

Theorem 11. Let G be a directed acyclic graph with a single sink z. There is a black pebbling
strategy of G with time t and space s then there is a MC refutation of PebG with degree s and
size 2t(s − 1). The variable space of this refutation coincides with its degree.

Proof. It is convenient to consider here the equivalent notion of white pebbling. Let P =
(P0, . . . ,Pt) be a white pebbling strategy for G with P1 = {z} and Pt = ∅ using s pebbles. We
show by induction on i, that for each Pi = {vi1 , . . . , viki

} the monomial mi = ∏
v∈Pi

xv can
be derived from PebG in MC within size 2i(s − 1) and degree s. This proves the result since
Pt−1 = {v} for some source vertex v and if the monomial mt−1 = xv can be derived in MC with
the required parameters, then adding the axiom 1 − xv we obtain the polynomial 1.

For the case i = 1, the result is clear since P1 = {z} and xz is an axiom. That is, for deriving
P1 we have used one monomial. For the induction step there are two cases:

Pebble placement: if the configuration at pebbling step i + 1 is reached after placing a
white pebble on vertex v and Pi = {ui1 , . . . , uiki

} with ki ≤ s − 1 then Pi+1 = {v, ui1 , . . . , uiki
}.

By induction hypothesis there is a MC derivation of degree s and size 2i(s − 1) of the monomial
mi = ∏

u∈Pi
xu. By multiplying this monomial times the variable xv we obtain mi+1. We have

just added one more monomial of degree at most s to the proof.
Pebble removal: if the configuration at pebbling step i + 1 is reached after removing a

white pebble from vertex v and Pi = {v, ui1 , . . . , uiki
} with ki ≤ s − 1 then all predecessors

u1, . . . uk of v are in the set {ui1 , . . . , uiki
}. For the derivation of mi+1 we can multiply the

axiom (1 − xv) ∏
u∈pred(v) xu by the variables in Var(mi) \ (⋃

u∈pred(v) xu ∪ {xv}), and add this
polynomial to mi obtaining mi+1. The number of intermediate monomials added to the proof is
at most 2(s − 1).

Observe that in all the steps in the refutation, at most two different monomials are active
and the number of different variables in these monomials coincides with the largest of their
degrees. This shows that the variable space of the MC refutation is also bounded by s.
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Observation 12. The size bound 2t(s − 1) in the above proof comes from the way the MC
rules are defined. As is the case of PC, in the multiplication rule only one variable at at time
is allowed, even when multiplying the axiom polynomials. When an axiom is multiplied by a
monomial with several variables, all the intermediate polynomials contribute to the size of the
MC refutation. This is asymmetric to the NS case, in which the intermediate monomials are not
counted. Defining the MC rules as those in NS would avoid the s factor in the pebbling time, as
in the NS simulation of pebbling from [dRMNR21].

In order to prove a result in the other direction we consider a very restricted kind of refutation
in MC, similar to what is known as an input refutation in Resolution. It this kind of refutation
in every Resolution step one of the parent clauses must be an axiom. Input Resolution is not
complete, but it is complete for Horn formulas. We will show that the same is true for MC input
refutations.

Definition 13. A MC refutation π of a contradictory set of polynomials F is called an input
refutation if there is a sequence of monomials M0, . . . , Mt such that M0 is the product of a
monomial and an axiom, Mt = 1 and for each i Mi is obtained by multiplying Mi−1 times a
variable, or by the linear combination rule from Mi−1 and a monomial multiplied by an axiom
polynomial. We will call the sequence of monomials M0, . . . , Mt the backbone of the proof.

Lemma 14. Let F be an unsatisfiable Horn formula and let PF be the encoding of F as a set
of polynomials. Let π be any MC refutation of PF . There is an input MC refutation π′ of PF

with at most the same size and degree as π.

Proof. Let d and t be the degree and size of π. We can suppose that π is multilinear. We
prove the result by induction on k, the number of times the multiplication rule is applied to
a monomial derived in π. In the base case k = 0 π is just a NS refutation of PF . This means
that there is a linear combination of a set of polynomials S that adds up to 1. Each of these
polynomials has the form of a polynomial axiom multiplied by a monomial and since F was
a Horn formula, each polynomial has either one or two monomials. We will represent such a
polynomial p = αmm + αm′m′ by the pair (m, m′). In all these polynomials the monomial terms
have some coefficients αm and αm′ with αm, αm′ ∈ {1, −1}, αm = −αm′ because the axiom
polynomials with two monomials are polynomial encodings of Horn clauses with one negated
variable. Clauses without negated variables are encoded as single monomials. Some polynomial
in S has a single monomial otherwise the whole set S would have a common root by setting all
variables to 1. Moreover, there has to be a sequence of polynomials p1, . . . , pℓ represented by the
monomials (∅, m1), (m1, m2), (m2, m3) . . . , (mℓ−1, m) 2. This is because the linear combination
adds up to 1 and for this there has to be a polynomial (∅, m1) in the linear combination since
otherwise all monomials would have variables. Also the monomial m1 in (∅, m1) has to be
cancelled and there has to be some other polynomial of the form (m1, m2) and so on. It must
also hold that some polynomial in the sequence must have the form (mℓ−1, m) that can cancel
with one of the polynomials with a single monomial m. We suppose that p1, . . . , pℓ is a minimal
sequence with these properties. Now we can define the input monomial refutation π starting at
M0 = m and applying then ℓ linear combinations with axioms multiplied by monomials and
deriving all the monomials mℓ, . . . , m1 until 1 is derived. Observe that the monomials M0, . . . Mt

are exactly those appearing in p1, . . . , pℓ. By the minimality of the sequence we also know that
the monomials in the backbone are all different.

All the monomials in π′ belong also to π, therefore the degree of the new refutation is not
larger than that in π. In fact all the polynomials in p1, . . . , pℓ are already in π. Besides these

2Since we are representing monomials by their set of variables, the monomial 1 is represented by ∅
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polynomials π′ contains also the ℓ new monomials in the backbone. Since the p1, . . . , pℓ and
m belong to π and in each linear combination of two polynomials at the most one monomial
vanishes, there are at least ℓ intermediate polynomials in π until 1 is reached. This means that
the size of π′ is bounded by t.

For the case k > 0 let m′ be the first monomial in the proof that is the result of a multiplication
from a derived monomial m and a variable x, m′ = xm in π. The same argument as above
shows that there is a sequence of polynomials p1, . . . , pℓ, m̂ in π from which an input monomial
refutation that starts at M0 = m̂ and derives at some point i Mi = m can be extracted. In
the next step the multiplication rule is applied to obtain Mi+1 = m′. Observe that the set of
polynomials m′ ∪ PF still has the Horn property and that there is sub-proof of π that refutes
this set to the monomial 1 applying the multiplication rule at most k − 1 times. By induction
hypothesis we know that there is a sequence of polynomials p′

1, . . . , p′
ℓ′ in π represented by the

monomials (∅, m′
1), (m′

1, m′
2), . . . , (m′

r, m′) from which an input refutation of PF ∪ m′ can be
extracted. We can put together both input MC refutations M0 . . . Mi and Mi+1, . . . , 1. Again
we can assume that all the monomials in the backbone are different since if Mi = Mj for i < j,
we could shorter π′ by connecting Mi with Mj+1. By the same argument as in the base case the
size and degree of the input MC refutation cannot be larger than that of π.

Since pebbling formulas are Horn formulas we immediately obtain:

Corollary 15. Let G be a directed acyclic graph with a single sink vertex z and let π be a MC
refutation of Peb(G). There is an input MC refutation π′ of Peb(G) with at most the same size
and degree as π.

Theorem 16. Let G be a directed acyclic graph with a single sink. Let π be a MC refutation of
Peb(G) with degree s and size t. There is a black pebbling strategy with s pebbles and time t + s.

Proof. Because of Corollary 15 we can suppose that there exits an input MC refutation with
monomials M0, . . . Mt starting with M1 = mxsink for some monomial m and with Mt = 1. We
describe a strategy for a white pebbling of G following π. At each step i only the vertices
corresponding to variables in Mi have a pebble on them. In a multiplication step a new pebble
is added, which is always possible in a white pebbling strategy. We only have to show that
when going from Mi to Mi+1 variables disappear, this is a correct pebbling move. But in this
case, the step from i to i + 1 is a linear combination of Mi with the axiom for some variable v
pred(v)(1 − xv) multiplied by some monomial m. The only variable that can disappear in Mi+1
is xv and in this case Mi = pred(v)xv. Therefore all the vertices in pred(v) have pebbles on
them and the pebble in xv is removed. At the end of the refutation, when the 1 monomial is
reached there are no pebbles left on G. The number of pebbles present at any moment is the
number of variables in any of the monomials and this is the degree of π. The number of pebbling
steps needed is at most d steps to place a pebble in each variable of M1 = mxsink and then t
more pebbling steps.

3.1 Degree separations
The given relationships between MC and the black pebbling game allow for the immediate
translation of pebbling results to Monomial Calculus. We start with some degree separations.
In [BCIP02] it was shown that pebbling formulas have constant PC degree and that for any
directed acyclic graph G the formula Peb(G) requires NS refutations with degree Ω(B(G)). Since
it is known that there are graph families {Gn}∞

n=0 with Θ(n) vertices and B(Gn) = Ω( n
log n)

[PTC77], this implies a degree separation of Ω( n
log n) between PC and NS. From Theorem 16

follows that this is in fact a degree separation between MC and PC.

10



Theorem 17. There is an unsatisfiable family of formulas {Fn}∞
n=0 with Θ(n) variables each,

that have PC refutations of constant degree but require MC refutations of degree Ω( n
log n).

Also from Theorem 11 and the equivalence between reversible pebbling price and NS degree
from [dRMNR21] follows that a separation between reversible and black pebbling price for a
graph family implies a degree separation between NS and MC for the corresponding pebbling
formulas. For example it is known that a directed path graphs with n vertices can be black
pebbled with 2 pebbles but requires reversible pebbling number ⌈log n⌉ [Ben89]. Translated to
pebbling formulas this means:

Theorem 18. There is an unsatisfiable family of formulas {Fn}∞
n=0 with Θ(n) variables each,

that have MC refutations of degree 2 but require NS refutations of degree ⌈log n⌉.

Another graph family for which such a separation is know is the class of path graphs from
[CLNV15]. The separation between reversible and black pebbling for these graphs is translated
into the next result.

Theorem 19. For any function s(n) = O(n1/2−ϵ) for constant 0 < ϵ < 1
2 there is an unsatisfiable

family of formulas {Fn}∞
n=0 with Θ(n) variables each, that have MC refutations of degree O(s(n))

but require NS refutations of degree Ω(s(n) log n).

It is an open question of whether the separation between reversible and black pebbling
space can be larger than a logarithmic factor in the number of nodes. The best known degree
separation between NS and and MC is slightly better. It was obtained in [GP17] with very
different methods. Using a classic result from descriptive complexity [Imm81], the authors show
that for for every constant c ≥ 1 there are families of formulas Fn with O(n) variables that have
a degree 3 MC refutation but require NS degree at least logc(

√
n). It is also open whether this

degree separation between NS and MC is optimal.

3.2 Size-degree tradeoffs for MC
The close connections between black pebbling space and monomial calculus expressed in The-
orems 11,16 make it possible to translate space-time tradeoffs for pebbling into degree-size
tradeoffs for MC. The is a slight loss of the time parameter that comes from the extra space
factor in the the MC refutation from Theorem 11. We present two such results as examples.
The first one is an extreme tradeoff result that shows how decreasing the degree by one can
make the size increase exponentially.

Theorem 20. [Sav98] There is a family of directed graphs {Gn}∞
n=0 having Θ(n2) vertices each

and with Black(Gn) = Θ(n) for which any black pebbling strategy with Black(Gn) pebbles requires
at least 2Ω(n log n) steps while there is a pebbling strategy with Black(Gn) + 1 pebbles and O(n2)
steps.

Corollary 21. There is a family of unsatisfiable formulas {Fn}∞
n=0 with Fn having O(n2)

variables and dn ∈ O(n) such that Fn has a MC refutation of degree dn but any MC refutation
with this degree requires size 2Ω(n log n). On the other side there is a MC refutation of Fn with
degree dn + 1 and size O(n3).

As a second example we present a robust time-space result from [Nor15].

Theorem 22. There is a family of directed graphs {Gn}∞
n=0 having Θ(n) vertices each and with

Black(Gn) = O(log2 n), with a black pebbling strategy in space O(n/ log n) and time O(n). There
is there is also a constant c > 0 for which any pebbling strategy using less than cn/ log n pebbles
requires at least nΩ(log log n) steps.
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Corollary 23. There is a family of unsatisfiable formulas {Fn}∞
n=0 with Fn having O(n) vari-

ables, and a constant c > 0 such that Fn has a MC refutation of degree O(n/ log n) and size
O(n2/ log n) but for which any MC refutation with degree smaller than cn/ log n requires size at
least nΩ(log log n).

4 Polynomial Calculus and pebbling formulas
4.1 PC variable space and black-white pebbling
We start this section showing for any single sink DAG G the variable space in PC for refuting
Peb(G) exactly coincides with the black-white pebbling number for G. Since they are not
important for our results, we do not consider the time bounds here. We give first the upper
bound for variable space in terms of pebbling. For the case of Resolution this result was shown
by [Her08].

Theorem 24. Let G be DAG with a single sink z. If there is a black-white pebbling strategy of
G with space s then there is a PC refutation of PebG with variable space s.

Proof. Let P = (P0, . . . ,Pt) be a black-white pebbling strategy for G with Pi = (Bi, Wi),
P0 = (∅, ∅) and Pt = ({z}, ∅). Assume further that s = maxi |Pi|. We show how to extract a PC
refutation from it. For this, let Li = {xv | v ∈ Bi ∪ Wi} and let Pebi be the set of polynomials
in PebG with all variables in Li. For each step i we define the set of polynomials Ci. C0 := ∅ and
for all i > 0 let Ci be the set of polynomials that can be PC-derived from Ci−1 ∪ Pebi and all
variables are in Li. It follows that |VSpace(Ci)| ≤ s. We prove the following claims:

• For every pebbling configuration Pi = (Bi, Wi) and every vertex v ∈ Bi, there is a set
Av

i ⊆ Wi such that
(1 − xv)

∏
w∈Av

i

xw ∈ Ci.

This type of polynomial will be called a polynomial pointing to v at step i.
• Let j be the first step in which the sink z has a pebble on it. Then for any pebbling

configuration Pi = (Bi, Wi) with i ≥ j there is a subset Ai ⊆ Wi such that∏
w∈Ai

xw ∈ Ci.

For the case i = t we can see that Wi = ∅ and from the second part of the claim it follows that
there is a PC-refutation of 1 with variable space s. Both claims will be shown by induction.
For the first claim, the case for P0 is trivial. For each i > 0 there are four possible pebbling
steps that could be performed. In the case that a black pebble was removed in step i nothing
has to be shown because Ci ⊂ Ci−1. If a white pebble was added, the claim also follows directly
because there is no change in Bi. Assume now that a black pebble was added on vertex v. If
v is a source then 1 − xv lies in Ci. Else, all predecessors of v are pebbled, say b1, . . . , bl and
w1, . . . , wm respectively with black and white pebbles on them. It holds

(1 − xv)
l∏

j=1
xbj

m∏
k=1

xwk
∈ Ci

and by induction for all predecessor b of v there is a set Ab
i−1 ∈ Wi−1 such that

(1 − xb)
∏

w∈Ab
i−1

xw ∈ Ci−1.

12



Combining those polynomials one can derive

(1 − xv)
l∏

j=1

∏
w∈A

bj
i−1

m∏
k=1

xwk
.

This is a polynomial pointing to v at step i. The last possible pebbling step is removing a white
pebble from v at step i. We have to prove that there is no vertex u for which the polynomial
pointing to u in Ci−1 contains the variable xv. If v is a source vertex 1 − xv belongs to Ci−1 an
thus all polynomials that contain xv can be resolved to polynomials without xv in Ci. Assume
now that v is an internal vertex, then all predecessors of v have pebbles on them, say b1, . . . , bl

and w1, . . . , wm for the vertices with black and white pebbles, respectively. We now have

(1 − xv)
l∏

j=1
xbj

m∏
k=1

xwk
∈ Ci−1

and for all bj there is a polynomial pointing to bj in Ci−1. Similarly as before we can derive a
polynomial p pointing to v. Assume u is a vertex with a black pebble and there is a polynomial
pointing to u in Ci−1 that contains the variable xv. Combining with p one can derive a polynomial
pointing to u in Ci.

For the second part of the claim, if z is pebbled at step j, then xz is in Cj . For i > j we only
have to consider the case that a white pebble is removed. Removing a black pebble or adding a
(black or white) pebble does not change the existence of a polynomial like the one claimed. The
proof for removing a white pebble v is similar as the one for the first part of the claim. We need
to show that there is a subset Ai ⊆ Wi such that v /∈ Ai and ∏

w∈Ai
xw ∈ Ci. For this we assume

v ∈ Ai−1. If v is a source vertex, then 1 − xv ∈ Ci−1 and ∏
w∈Ai\{v} xw can be derived. Assume

now that v is an internal vertex. Similarly as in the first case we can derive a polynomial of
the form (1 − xv) ∏

w∈B xw for some B ⊆ Wi. Because ∏
w∈Ai\{v} xw ∈ Ci−1 we get the desired

polynomial and the proof is complete.

We show next the result in the other direction proving that the black white pebbling number
of a graph G is a lower bound for the variable space needed for refuting Peb(G) in PC. The
proof is similar to the one given for the case of Resolution given in [Ben09]. For this we use
the concept of essential refutation from the mentioned reference, a refutation that only has
polynomials that contribute towards reaching the contradiction 0 = 1.

Definition 25. Let π = M0, . . . ,Mt be a configurational PC refutation of an unsatisfiable CNF
formula F . The essential polynomials in π are defined by backwards induction:

• If the polynomial 1 appears for the first time in a configuration Mi, then this polynomial is
essential at time i.

• If p is an essential polynomial at time i and p is inferred at time i by a rule applied to
polynomials p1 and p2, (or just to p1 in case of a multiplication) then p1 and p2 are essential
at time i − 1.

• If p is essential at time i and p belongs to Mi−1 (the polynomial has been copied from the
previous configuration) then p is also essential at time i − 1.

From a PC refutation π one can always extract an essential one π′ by deleting the polynomials
that are not essential, and merging together some linear combination or multiplication steps
with deletion steps in π. For example if in a configuration Mi in π two polynomials p1, p2 are
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combined producing the polynomial p and p1 or p2 (or both) are not essential at step i + 1 in
π we include in π′ p and only the parent polynomials that are still essential in Mi+1. (Same
thing for a multiplication step). Such a step can merge together two or three steps in a standard
configurational proof. We will call such a step, LC/Deletion step (or a Multiplication/Deletion
step) in π′. Since a deletion in π can always happen direct after a LC or multiplication step, there
are no pure deletion steps in π′, only axiom download and LC/Deletion, Multiplication/Delation
steps. Pure LC steps in which no deletion happen are also considered to be LC/Deletion
steps (same for the multiplication steps). We will call such a proof an essential configurational
refutation. Observe that the variable space in an essential refutation cannot be larger than that
in the original sequence of configurations from which it has been extracted. We simplify even
more the refutations by considering only direct ones

Definition 26. A PC refutation π := M0, . . . ,Mt is called direct if at every step in which
the linear combination rule is applied to two polynomials p and q, the polynomials have some
common monomial.

Lemma 27. Let F be a contradictory set of polynomials over a field F and let π be a PC
refutation of F. There is an direct PC refutation π′ of F with at most the same degree, and
variable space as π.

Proof. Let F be a contradictory formula and π = p1, . . . pt be a PC refutation for F . We show
how to extract from π a direct refutation π′. This is done by avoiding each linear combination
step in the proof when the rule is applied to two polynomials pi, pj without common monomials.
We will derive inductively for each polynomial p in the refutation a set of polynomials Lp, with
the following properties:

• p is the sum of the polynomials in Lp,

• the polynomials in Lp partition the monomials in p. That is, two different polynomials in
Lp are monomial disjoint, and every monomial in p belongs to some polynomial in Lp.

This would prove the result since at the end of the refutation pt = 1, and Lpt has to be {1}. Lp

is defined inductively in the following way: If p is an axiom, then Lp = {p}. If p is obtained
by multiplying x times a polynomial q, then Lp = {xq′ | q′ ∈ Lq}. If p is obtained by a linear
combination of two polynomials p = αipi + αjpj in which pi and pj do not have any common
monomials then Lp = L′

pi
∪ L′

pj
where L′

pi
is the list of the polynomials in Lpi multiplied by

the coefficient αi (same for L′
pj

). Finally, we show how to construct a set of polynomials Lq

with the desired properties when p is the linear combination of two polynomials pi and pj with
at least some common monomial. By hypothesis there are sets of polynomials Lpi and Lpj for
pi and pj and since p is a linear combination of these two polynomials, p can be expressed as∑

q∈Lpi ∪Lpj
αq · q, where the α’s are coefficients in the field. We can consider the (bipartite)

graph Gp with vertices Lpi ∪ Lpj and with the edges E = {(q, r)| q and r have some common
monomial}. Observe that each monomial in the set of polynomials can contribute by at most
one edge to E since at most one polynomial in Lpi and at most one in Lpj contain this monomial.
Also, every connected component in Gp corresponds to a subset of of the polynomials that does
not have any common monomial with the polynomials in other connected components of the
graph. Multiplying all the polynomials times the coefficients in the linear combination for p we
obtain that for every connected component c, the addition of the corresponding polynomials
produces a polynomial pc that is a sum of monomial terms of p. Lp is defined as the set of the
polynomials {pc | c is a connected component in Gp}. Clearly p is the sum of the polynomials in
Lp and all these polynomials are pairwise monomial disjoint. Lp contains the monomials in p
exactly once. Also, the polynomials in Lp can be derived as the sum of some polynomials with
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common monomials in the previous lists. This can be done by adding each time two polynomials
sharing an edge (monomial) in Gp until only one polynomial for each connected component is
left. Observe that all the monomials in Lp are included in p and therefore the direct proof has
the same degree and variable space.

We show next that a black-white pebbling strategy can be extracted from a PC refutation.

Theorem 28. For every DAG G with a single sink, and for every PC configurational refutation
π of Peb(G) with VSpace(π) = s there is a black-white pebbling strategy for G with space s.

Proof. Let G be a DAG with a unique sink z, and let π be a direct PC refutation of Peb(G)
given by a sequence of configurations π := M0, . . . ,Mt. We show how to extract a strategy for
the black-white pebbling game on G with a number of pebbles bounded by the variable space
in an essential refutation π′ := N0, . . . ,Nt extracted from π. For a configuration Ni, let B(Ni)
be the set of variables x for which there is some polynomial p in Ni with x ∈ Var(p) that has
some monomial not containing x. We define a pebbling strategy for G that keeps the following
invariant:

1. At each step i only the vertices corresponding to the variables in Var(Ni) have a pebble on
them, and

2. if xv ∈ B(Ni) there is a black pebble on v. If xv ∈ Var(Ni) \ B(Ni) then the pebble on v
can be black or white.

It should be clear that such a strategy does not use more pebbles that Var(π′). We prove
that there is a correct pebbling strategy satisfying these invariants. This is done by induction
on the step i in the refutation. For i = 0 the configuration Ni is empty and no pebbles are being
used. For the induction step, we consider several cases, corresponding to the possibilities for
going from configuration Ni to Ni+1.

Case 1: Axiom download. Let p be the axiom in Peb(G) downloaded in the configuration at
step i + 1. This can correspond to either a source vertex, an intermediate vertex, or a target
vertex. If it is the target vertex z and xz ̸∈ Var(Ni) then xz ̸∈ B(Ni+1) and z can be pebbled
with a white pebble. If xv ∈ Var(Ni) then vertex z keeps the pebble from step i, which by
induction is black if xz ∈ B(Ni). If p is an axiom ∏

u∈pred(v) xu(1 − xv) corresponding to a vertex
v in G, then one can place a pebble in each of the predecessors of v that do not have a pebble
on them. This pebble is white in case the variable does not belong to B(Ni+1). xv ∈ B(Ni+1),
and v can be pebbled with a black pebble (maybe replacing a white pebble placed before) since
all its predecessors have a pebble on them or v is a source vertex.

Case 2: Linear Combination/Deletion. Let p be the polynomial introduced in Ni+1 in π′,
obtained by a linear combination of two polynomials p1, p2 in Ni. Since we started from a direct
refutation, p1 and p2 must have some common monomial m.

Case 3: Multiplication/Deletion. Let p = xvp′ be the polynomial introduced at Ni+1 in
π′, obtained by multipying variable xv times the polynomial p′ ∈ Ni. The set of variables in
Var(Ni+1) can differ from that in Var(Ni) at most in variable xv. But this variable belongs to
all monomials in p and therefore xv ̸∈ B(Ni). Depending on whether xv appears in Ni+1 or not,
an existing pebble is kept on v or a white pebble is placed on the vertex.

We show first that there cannot be any variable xv that belongs to B(Ni+1) but not to
B(Ni). By contradiction, if this were true then xv would belong to Var(p) but it is not part of
some monomial m′ ∈ p, and at the same time xv is in all the monomials of p1 and xv ̸∈ Var(p2)
(or the other way around). But we have supposed that there is some monomial m common to p1
and p2, so this would not be possible.
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In case Var(Ni+1) ⊂ Var(Ni) for every variable xv ∈ Var(Ni) \ Var(Ni+1) it must hold that
xv ∈ B(Ni) and therefore the pebble on v must be black and can be removed. This is so because
if xv ̸∈ B(Ni) then xv must belong to each of the monomials of p1 and p2 and since we are
supposing p is not the zero polynomial, xv ∈ Var(p) contradicting the fact that xv ̸∈ Var(Ni+1).
In case Var(Ni) = Var(Ni+1) and B(Ni) ⊂ B(Ni+1) then nothing has to be done. If a variable
that was in B(Ni) is not in B(Ni+1) its corresponding vertex keeps the black pebble that had at
step i.

In all the cases we have shown that the pebbling strategy defined above follows the rules of
the black-white pebbling game. Also at some point the axiom xz has to belong to a configuration
(without it the formula is satisfiable) and therefore at some point there is a pebble on vertex z.
Since the last configuration in the essential proof only contains the polynomial 1, at this point
there are no pebbles on G. Therefore the described strategy is a legal black white pebbling using
at most Var(Peb(G)) pebbles.

4.2 Monomial space and PCR refutations of extended pebbling formulas
We prove a lower bound on monomial space of pebbling formulas analyzing the space needed
for the refutation of the substitution formulas Peb(G)[⊕]. This substitution is necessary since
standard pebbling formulas can be refuted within constant space. We will relate monomial and
variable space. For this we use the characterization of the variable space measure in terms of
contradicting lists from [GTT18] as a tool.

Definition 29 (Contradicting list). Let F be an unsatisfiable formula in CNF, L be a list of
sets of variables L = L0, . . . , Lt, Li ∈ Var(F ), and α = α0, . . . , αt be a list of assignments for the
variables in the sets, αi : Li → {0, 1}. We say that α is a locally consistent assignment sequence
if for 0 ≤ i ≤ t − 1, and x ∈ Li ∩ Li+1 it holds that αi(x) = αi+1(x).

L is called a (w, t)-contradicting list for F if the following conditions hold:
i) L0 = ∅ and for 1 ≤ i ≤ t, Li contains at most w variables,
ii) two consecutive lists differ in at most one variable; for 0 ≤ i ≤ t − 1, |Li△Li+1| ≤ 1 and
iii) any locally consistent sequence of assignments α0, . . . , αt for L0, . . . , Lt, falsifies at some

point some axiom clause of F .

The concept of contradicting list characterizes variable space. In [GTT18] it is implicitly
shown that a formula has a semantic Resolution refutation in variable space w and time t if and
only if it has a (w, t) contradicting list. It can be noticed that the condition ii) in the definition
can be replaced by the weaker condition that in going from Li to Li+1 only new variables can
be added to Li or some variables can be removed, but not both things at the same time. Even
with this weaker condition it still holds that a formula has a semantic Resolution refutation
in variable space w and time t if and only if it has a (w, t) contradicting list. We will use this
observation in the next result in which we show that the monomial space of a PCR refutation of
an extension formula F [⊕] is upper bounded by its variable space. The same result was proven
in [BN11] for the case of Resolution, with a different method.

Theorem 30. Let F be an unsatisfiable formula in CNF and π be a configurational PCR
refutation for PF [⊕] with MSpace(π) = w and size t. Then there exists a (w, 2t)-contradicting
list L0 . . . L2t for F.

Proof. Let π = M0, . . . ,Mr be the configurational PCR refutation for PF [⊕]. In a step in π a
polynomial p is either added or removed from a configuration in π. In the XORirfied formula
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F [⊕] each variable x in F is substituted by two new variables x0 and x1. Also since we are
dealing with a PCR refutation, for each variable xa, a ∈ {0, 1} in PF [⊕] there is a twin variable
x′

a. We will call x0, x1, x′
0, x′

1 the expansion variables to x and x is the projection of any of these
variables.

In a first step in the proof we will construct for each configuration Mi in π a set of variables
Li ⊆ Var(F ) and define a partial assignment γi assigning some expansion of variables in Li. In a
second step we will show that L0, . . . , Lr is a contradicting list for L by proving that any locally
consistent sequence of assignments for this list, defines for each step i an extension of γi that
would give value 0 to all polynomials in Mi

3, which is a contradiction since Mr = 1.
If we count each time a monomial is added to a configuration in π or deleted from it we it

get twice the number of monomials in π (counted with repetitions) and therefore the number
of steps is at most twice the size of π, since in each step π is modified by adding or deleting a
whole polynomial, the number of list Li is at most r ≤ 2t.

Li has at most as many variables as there are monomials in Mi. The partial assignment
γi : Var(PF [⊕]) → {0, 1} assigns at each point exactly one of the expansions xa, a ∈ {0, 1}, of a
variable x ∈ Li and it also automatically assigns the twin variables of xa with the complementary
value.

For some monomials m ∈ Mi, we will distinguish one of its variables, denoted d(m), assign
γi(d(m)) = 0 and include the projection of this variable in Li. The idea is that a monomial
m ∈ Mi with a distinguished variable is always given value 0 by γi through this variable. At
most one variable is distinguished in a monomial.

Given a list of variables Li, a partial assignment γi as above, and a monomial m, we
will say that m is covered by Li, γi, if m does not have a distinguished variable but all its
variables are expansions of variables in Li. For example if m = x0y1z′

1 and x, y, z ∈ Li and
γi(x1) = γi(y0) = γi(z0) = 0 then m is covered by Li. Concretely, L0 := ∅, γ0 := ∅ and for i > 0
if for all j < i there is an extension of γj that satisfies Mj the following conditions hold for Li

and γi:

i) ||Li|| ≤ ||{monomials in Mi}||,
ii) γi assigns exactly one of the two expansion variables of each variable in Li and its twin

variable and
iii) every monomial remaining in Mi|γi is covered by Li, γi.

Construction of Li and γi: L0 := ∅ and we define Li inductively. Each set Li+1 coincides
with the previous one Li or can be obtained by either adding one variable to Li or deleting
some. If Mi+1 is an axiom download step, the axiom polynomial p can be either a complement
axiom (xa + x′

a − 1) or a monomial m. For a complement axiom, if x ∈ Li then nothing has
to be done, Li+1 := Li and γi+1 := γi. In this case p|γi+1 = 0 or all the monomials of p are
covered. If x ̸∈ Li then Li+1 := Li ∪ {x} and γi+1 := γi ∪ {xa = 0}. If the downloaded axiom
is a monomial m then there are three possibilities: In case one of the variables of m is given
value 0 by γi then this variable (any particular one if there is more than one) is defined to be
the distinguished variable of m, Li+1 := Li and γi+1 := γi. If this is not the case but all the
variables in m are extensions of some variable in Li, (m is covered) then nothing is done and
Li+1 := Li, γi+1 := γi. Otherwise let xa be some variable in m whose projection x is not in Li.
We set xa to be the distinguished variable of m, d(m) = xa, we add {x} to Li+1 and the values
{xa = 0, x′

a = 1} are assigned in γi+1. Observe that in all axiom download cases at least a new
monomial is added to Mi+1 and at most one variable is added to Li+1.

3Since we are talking about a PCR refutation, we say that a partial assignment satisfies a monomial if some
variable in it is assigned value 0, while the monomial is falsified if every variable in it receives value 1 from the
assignment
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If Mi+1 adds the linear combination p of two polynomials p1, p2 ∈ Mi then since there aren’t
any new monomials nothing has to change in Li+1 or γi+1 and the conditions still hold.

If Mi+1 is a multiplication step of p times a variable xa, if p|γi = 0 then nothing has to be
done. Otherwise, by induction all the monomials remaining after applying the partial assignment
γi are covered. In case x ∈ Li then the monomials in xap|γi are either 0 or covered and nothing
needs to be done to Li. Otherwise we let Li+1 := Li ∪ {x} and γi+1 := γi ∪ {xa = 0}.

If Mi+1 is obtained by deletion of a polynomial p we start a deletion phase by letting at the
beginning of the phase Li+1 := Li and γi+1 := γi. Then for each monomial m ∈ p (in any order)
if m is covered by Li+1 or it has some distinguished variable d(m) and there is another monomial
in Mi+1 with the same distinguished variable, then there are no changes in Li+1 or γi+1. We
have deleted one monomial, but for all variables in Li+1 there is a monomial in Mi+1 having an
expansion of this variable as distinguished variable and this assures that ||Li+1|| ≤ ||Mi+1||.

The remaining case is when a deleted monomial m ∈ p has a distinguished variable d(m) = xa

and there is no other monomial with this variable in Mi+1. By the hypothesis of the construction,
there is an extension of γi to the expansions of the variables in Li that satisfies Mi. This
extension of γi assigns xa = 0. Let yā be the variable in {xā, x′

ā} assigned 0 in the extension
of γi satisfying Mi. If yā does not appear in a monomial in Mi+1 covered by Li, then we can
delete x from Li+1. If yā appears in some monomial in Mi+1 covered by Li+1, then we consider
yā to be the distinguished variable of the covered monomials in which it appears, and update
γi+1 := γi+1 ∪ {yā = 0} \ {xa = 0}. An extension of γi+1 satisfies Mi+1. Moreover, it does not
matter what the value for xa in this extension is, since xa does not appear in any monomial in
Mi+1. Also for every variable x in Li+1 there is some monomial in Mi+1 having an extension of
x as distinguished variable.

This ends the construction of the variable lists Li and partial assignments γi.

Let j ≤ r be the first point in the construction in which no extension of γj to the expansion
variables of Lj satisfies Mj . Such a j must exist since at some point Mj is unsatisfiable. We
show that the list of variable sets L0, . . . , Lj is a contradicting list for F. This is done by proving
the following claim:
Claim: If there is a locally consistent sequence of partial assignments β0, . . . , βj of the variables
in L0, . . . , Lj , that do not negate any axiom of F then there is a sequence of assignments
γ̂1, . . . , γ̂j with the following properties for 0 ≤ i ≤ j:

• γ̂i assigns all expansion variables of Li,
• γ̂i is consistent with γi,
• γ̂i satisfies all the polynomials in the configuration Mi and does not falsify any axiom of

PF [⊕].

The existence of such sequence of assignments would be a contradiction since we are supposing
that no extension of γj satisfies Mj . This proves that L is a (w, j) contradicting list.

To clarify things, let us recall that we are dealing with three different sequences of partial
assignments in the proof: γi is the assignment constructed while creating the list L, βi is the
assignment of the projected variables in the list, whose existence we are supposing in order
to reach a contradiction, and γ̂i is the extension of γi based on βi that would satisfy Mi, thus
creating a contradiction.

Proof of the claim. Suppose there is a locally consistent sequence of assignments β0, . . . , βj

of L0, . . . , Lj that do not falsify any axiom in F. We show inductively on i, 0 ≤ i ≤ j that
for every variable x ∈ Li, there is a way to translate βi(x) to the extension variables x0, x1
obtaining an assignment γ̂i satisfying the properties above. This is done by defining γ̂i fulfilling
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the condition γ̂i(x0) ⊕ γ̂i(x1) = ¬βi(x)4. Observe that once the assignment βi(x) is set, there
are two ways to define γ̂i on the expansion variables of x that satisfy the condition. It also
holds that if βi does not falsify any axiom in F , then γ̂i cannot falsify an axiom in PF [⊕]. This
is because if γ̂i would falsify a polynomial axiom A in PF [⊕], since A ∈ B[⊕] for some clause
axiom B from F and γ̂i(A) = 1 then for every variable x ∈ B, γ̂i(x0 ⊕ x1) = 1. But since
¬βi(x) = γ̂i(x0) ⊕ γ̂i(x1) = γ̂i(x0 ⊕ x1) this means that for every variable x ∈ B, βi(x) = 0 and
βi would falsify axiom B, which is a contradiction.

We show inductively for every step i that the claim holds. Initially γ̂0 and β0 are the empty
assignment. At each step one polynomial is added or deleted from a configuration.
Case 1: At step i + 1 a new polynomial p is added to the configuration. We consider the different
possibilities:

• If i + 1 is an axiom download step and a new complement polynomial p = (xa + x′
a − 1) is

added, then by the way the partial assignment γi+1 is defined, giving always complementary
values to twin variables, it must satisfies p (and therefore Mi+1).

• If i + 1 is an axiom download step and the downloaded axiom is a monomial m, again there
can be several cases.

– If m has some distinguished variable xa with γi(xa) = 0 then Li+1 = Li, and therefore
βi+1 = βi and γi+1 = γi By induction hypothesis γ̂i(xa) = 0. Defining γ̂i+1 := γ̂i all
properties are satisfied.

– If m is covered by Li, γi then again Li+1 = Li, γi+1 = γi, and βi+1 = βi. We can define
γ̂i+1 := γ̂i. The induction hypothesis implies that γ̂i satisfies Mi and it does not falsify
any axiom in PF [⊕].

– The third possibility is that m has a new distinguished variable d(m) = xa and its
projection x is not in Li. In this case, x is assigned by βi+1 in this step. It is always
possible to translate βi+1(x) to x0 and x1 in one of the two possible ways, so that γ̂i+1
satisfies xa and therefore also m.

• If i + 1 is a linear combination step of polynomials in Mi introducing a new polynomial p,
then Li+1 = Li and defining γ̂i+1 := γ̂i the assignment satisfies p and Mi+1.

• If Mi+1 is a multiplication step of a polynomial p ∈ Mi introducing a new polynomial
xap for some variable xa, by hypothesis γ̂i satisfies Mi and therefore also p and xap. If
Li+1 = Li then γ̂i+1 = γ̂i satisfies xap. Otherwise Li+1 has a new variable xa and γ̂i+1
assigns value to it, but it also satisfies Mi+1

Case 2: If in step i + 1 a polynomial p is removed from the configuration, then for every deleted
monomial m ∈ p the only problem could come when a variable xa ∈ m is not deleted going
from Li to Li+1 but the assignment γ changes from assigning xa in γi to assigning xā in γi+1
and γi+1(xa) might be different from γi(xā). We have βi+1 = βi and by induction γ̂i satisfies Mi

and therefore also Mi+1 since i + 1 is a deletion step. Also γ̂i is consistent with γi. One can
define γ̂i+1(xā) = γi+1(xā) and γ̂i+1(xa) = γi+1(xā) ⊕ ¬βi(x). Observe that the sequence of γ̂
assignments might not be locally consistent on M at this point, but γ̂i+1 still satisfies Mi+1 since
as argued before, changing the value of xa cannot falsify any monomial in Mi+1. All the other
values are as in γ̂i. Also since the property γ̂i+i(xa) ⊕ γ̂i+i(xā) = ¬βi+i(x) is kept, γ̂i+1 cannot
falsify any axiom in PF [⊕].

4We have a negation here in frot of β since we are supposing F is a CNF and PF is its encoding as a set of
polynomials.
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Theorem 30 shows that for any unsatisfiable formula F , and any configurational proof π with
clause space w and size t of F [⊕] there is a (w, 2t)-contradicting list for F. The contradicting
list L we have constructed in the theorem does not necessarily fulfill the second condition of
Definition 29 since when deleting variables from the list, several variables can be deleted while
going form one variable list to the next one. As noticed in the observation under Definition 29,
this however does not affect the property that from the contradicting list a semantic Resolution
refutation with the same number of variable space and time can be obtained [GTT18]. Using
this fact, the result can be restated as:

Corollary 31. Let F be an unsatisfiable formula in CNF and π be a configurational PCR
refutation for PF [⊕] with MSpace(π) = w and size t. Then there exists a semantic Resolution
refutation for F with variable space w and time 2t.

This improves the parameters from Theorem 9 in [BNT13] and can be used to slightly improve
the time-space tradeoffs for pebbling formulas given in the reference. For pebbling formulas,
using the correspondence between variable space and black-white pebbling from Subsection 4.1
it follows:

Theorem 32. For any single sink DAG G, MSpacePCR(Peb(G)[⊕]) ≥ BW(G).

This solves Open Problem 7.11 from [BN21]. It is known that for any DAG with constant
in-degree, Peb(G)[⊕] can be refuted in PCR within constant degree [BN11]. It is also well known
that there are explicitly constructible graph families {Gn}∞

n=0 having Θ(n) vertices and in-degree
2 and with BW(Gn) = Ω( n

log n) [GT78]. Since the results in this paper are independent of the
field used, this also implies:

Corollary 33. There is a family {Fn}∞
n=0 of formulas in 6-CNF having Θ(n) variables that

have PCR refutations with constant degree and require monomial space Ω( n
log n) and this is

independent of the characteristic of the field.
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