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Abstract

We design a deterministic subexponential time algorithm that takes as input a multivariate

polynomial f computed by a constant-depth circuit over rational numbers, and outputs a list L

of circuits (of unbounded depth and possibly with division gates) that contains all irreducible

factors of f computable by constant-depth circuits. This list L might also include circuits that

are spurious: they either do not correspond to factors of f or are not even well-defined, e.g. the

input to a division gate is a sub-circuit that computes the identically zero polynomial.

The key technical ingredient of our algorithm is a notion of the pseudo-resultant of f and a

factor g, which serves as a proxy for the resultant of g and f /g, with the advantage that the

circuit complexity of the pseudo-resultant is comparable to that of the circuit complexity of f

and g. This notion, which might be of independent interest, together with the recent results

of Limaye, Srinivasan and Tavenas [LST21] helps us derandomize one key step of multivariate

polynomial factorization algorithms — that of deterministically finding a good starting point

for Newton Iteration for the case when the input polynomial as well as the irreducible factor

of interest have small constant-depth circuits.

1 Introduction

Algorithms for polynomial factorization is an area in which the field of computer algebra has

been remarkably successful. Unlike the analogous and notoriously hard problem of integer fac-

torization, a sequence of works in the last few decades provided clever and efficient algorithms

for factorizing polynomials. These algorithms work in many different settings: finite and infinite

fields, univariate and multivariate, white- vs. black-box, and so on [FS15, vzGG13].

One of the first questions in the design of factorization algorithms is how is the input repre-

sented (and, for that matter, what are the requirements regarding the representation of the output).
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An n-variate polynomial of degree d has potentially (n+d
d ) monomials, so representing it as a list

of coefficients under some ordering of the monomials (the so-called dense representation) would

cause the input to be of roughly that size. Even in this model, where the running time is allowed

to be polynomial in (n+d
d ), factorization is not a trivial task. Some polynomials, however, have

more efficient representations, the most natural of which being an algebraic circuit. Such a circuit is

a directed acyclic graph, whose inputs are labeled by variables x1, . . . , xn and field elements, and

internal nodes labeled by the arithmetic operations +,−,×,÷. Such a circuit naturally represents

(or computes) the polynomial(s) computed in its output gate(s).

A series of influential works culminated in efficient randomized algorithms by Kaltofen [Kal89]

and Kaltofen and Trager [KT88] for factorization of polynomials given by algebraic circuits. These

algorithms have found numerous applications in various fields (e.g., [KI04, DSY09, Sud97, GS99],

to name a few, and see [FS15] for more background) They also established the highly non-obvious,

and perhaps surprising fact, that factors of polynomials computed by small circuits themselves

have small circuits.1. Faced with this fact, it is natural to wonder how far this connection extends:

that is, suppose C is a class of algebraic circuits. Can we argue that factors of polynomials that

have circuits in C themselves have circuits in C? Such connections are known when C is a class

that is powerful enough to support the arguments used in Kaltofen’s proof, such as the class of

polynomial size algebraic circuits or polynomial size algebraic branching programs [ST21]. But

much less is known when C is a weaker class, even for classes that we understand pretty well. For

example, despite considerable effort [BSV20] such a statement isn’t known to hold when C is the

class of depth-2 circuits of polynomial size (that is, circuits that compute sparse polynomials).

Further, algorithms of Kaltofen [Kal89] and Kaltofen and Trager [KT88] are randomized, and

from a theoretical viewpoint this raises the intriguing problem of derandomizing them. However,

as observed by Shpilka and Volkovich [SV10], obtaining a deterministic algorithm for factorization

implies an efficient algorithm for the famous Polynomial Identity Testing (PIT) problem, which

in turn implies circuit lower bounds [KI04]. Indeed, f (x1, . . . , xn) is non-zero if and only if the

polynomial g(x1, . . . , xn, y, z) = f (x1, . . . , xn) + yz is irreducible, and given a circuit for f one can

easily obtain a circuit for g of nearly the same size, and further, for almost any non-trivial class C,

a C-circuit for f implies a C-circuit for g. Thus, we see that factorization of circuits from restricted

classes C is at least as hard as polynomial identity testing for circuits from the same class.

This motivates studying the factorization problem for restricted classes C for which we can

obtain non-trivial PIT algorithms. One can be even further encouraged by the fact that Kopparty,

Saraf and Shpilka [KSS14] proved an equivalence between derandomization of PIT and factor-

ization: namely, they proved that a polynomial time deterministic algorithm for PIT would im-

1A more accurate statement would be that if f is an n-variate polynomials of degree poly(n) that has a circuit of size
poly(n), then any factor g of f has a circuit of size poly(n). In general, however, n-variate polynomials with circuits of
size poly(n) can have exponential degree. For such polynomials, the questions of whether their factors are efficiently
computable is still open and known as the factor conjecture [Bür00, Conjecture 8.3]
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ply a polynomial time algorithm for factorization, by showing how to use PIT to derandomize

Kaltofen’s algorithm. However, as before (and for the same reason), their argument breaks down

when specialized to circuits from a restricted class C: even when trying to factorize polynomials

from a weak class C, Kaltofen’s algorithm (and consequentially, its conditional derandomization

by Kopparty, Saraf and Shpilka [KSS15]) is forced to solve PIT instances for strong classes, such

as the class of polynomial size algebraic branching program. This leaves open the interesting

question of deterministically factoring polynomials computed by limited classes of circuits.

In fact, even for simpler questions such as irreducibility testing of polynomials, or checking

whether one polynomial divides another, it is hard to obtain deterministic algorithms, even under

restricting assumptions on the complexity of the polynomials involved. A step in this direction

was taken by Forbes [For15], who showed how to deterministically test whether a quadratic poly-

nomial divides a sparse polynomial.

More recently, in [KRS23] the first three authors of this paper obtained a deterministic quasipoly-

nomial time algorithm that outputs all constant-degree factors of a sparse polynomial. Even more

generally, they showed how to use recent PIT results for constant-depth circuits [LST21] in order

to compute all constant-degree factors of constant-depth circuits, albeit in subexponential time.

Polynomials of constant degree are in particular sparse and hence as a natural possible gen-

eralization of this result, one would like to be to deterministically output all sparse factors of

constant-depth circuits, and even more generally, all constant-depth factors of constant-depth cir-

cuits. In this work, we make a step in this direction.

1.1 Our Results

Our main result in this work is the following theorem.

Theorem 1.1 (Subexponential list containing constant-depth factors of constant-depth circuits).

Let Q be the field of rational numbers and ε > 0, ∆1, ∆2 ∈ N be arbitrary constants.

Then, there is a deterministic algorithm that takes as input an algebraic circuit C ∈ (ΣΠ)(∆1) of

size s, bit-complexity t and degree D, along with a size parameter m, and outputs a list of circuits L =

{C1, . . . , Cr} with the following properties.

1. Each Ci ∈ L is an arithmetic circuit of size poly(s, m, D) and bit-complexity poly(t, s, D, m), with

division gates.

2. For every irreducible factor g of C with a size m (ΣΠ)(∆2)-circuit computing it, there exists a Ci ∈ L

such that Ci computes g.

The size of the list L as well as the running time of the algorithm are bounded above by O(smDt)O((smDt)ε).

We remark that indeed Theorem 1.1 doesn’t completely solve the problem of finding sparse

(or more generally, low depth) factors of low depth circuits. It merely outputs a “short” (subexpo-

nential) list L of candidate polynomials such that every irreducible factor of the input is contained
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in L. As explained in Section 2, for technical reasons, we currently do not know how to determin-

istically prune the list L to obtain the true factors.

Yet another technicality is that our algorithm needs a size bound on the size of a circuit for

the factors we care about because no structural guarantees are known for the factors of constant-

depth circuits. For instance, we do not know if the factors of a constant-depth circuit also have

small constant-depth circuits.

A slightly more general statement. Our techniques in the proof of Theorem 1.1 give a slightly

more general statement connecting the questions of deterministic polynomial factorization and

deterministic polynomial identity testing. Let C be a class of circuits that are somewhat rich in the

sense that if a circuit C is in C, then the circuit C′ obtained from C by a change of basis continues

to be in C, and for circuits C1, C2, . . . , Cn in C, and a circuit B(y1, y2, . . . , yn) of constant depth, the

circuit B(C1, C2, . . . , Cn) continues to be in C. For instance, the class of polynomials computable

by small constant-depth circuits, or by small formulas satisfy the above property. Our techniques

in the proof of Theorem 1.1 generalize to such classes and give a deterministic reduction from the

question of computing irreducible factors of a polynomial f ∈ C that are also computable in C

to the question of polynomial identity testing of polynomials (of slightly larger complexity) in C;

the major caveat being that the algorithm will only output a list containing all such irreducible

factors of interest, but might also contain some spurious circuits. Moreover, these circuits in the

output list are potentially of unbounded depth, can contain division gates and some of these spu-

rious circuits in the list might not even be well defined, i.e., they involve division by an identically

zero polynomial. In contrast to this, the prior known connections between PIT and polynomial

factorization, most notably in the work of Kopparty, Saraf and Shpilka [KSS15] gives a truly de-

terministic polynomial factorization algorithm, given access to an oracle for PIT. However, even

if the input to the polynomial factorization algorithm is very structured (for instance, is a sparse

polynomial), the PIT instances generated in the process appear to be very general.

In spite of this slight generality, for a clean and complete presentation of the results, we only

work with constant-depth circuits in the rest of the paper.

Field dependence of our result. For our results, we work over the field of rational numbers due

to various technical reasons. Our proofs rely on derivative-based techniques like working with

the Taylor expansion of a polynomial, and working over fields of characteristic zero ensures that

derivatives do not inadvertently vanish. We also need a deterministic algorithm for univariate

factorization over the underlying field as a subroutine for our algorithms. Moreover, we also need

a non-trivial deterministic algorithm for polynomial identity testing of constant-depth circuits

over the underlying field [LST21]. The field of rational numbers satisfies all these requirements.
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1.2 Open Problems

We conclude this section with some open problems.

• Perhaps the most natural question here would be to prune the list output in Theorem 1.1 so

that it has no circuits that do not correspond to true factors. One possible approach to do

this would be to understand the complexity of the lifting process in polynomial factorization

algorithms better, and show improved upper bounds on the complexity of the roots and

factors and then do deterministic divisibility testing. At the moment, it is unclear to us if

this approach is feasible.

• One special case of Theorem 1.1 that is already very interesting is that of sparse polynomi-

als. It would be interesting to see if Theorem 1.1 can be improved for this case in any way.

For instance, can the time complexity of the algorithm be reduced to quasipolynomial time,

or can spurious factors in the output list be eliminated deterministically when the input is

sparse?

• In general, the question of what is the complexity of factors of simple polynomials (e.g.

sparse polynomials, constant-depth circuits) is of great interest, yet poorly understood. We

do not know whether such classes are closed under taking factors, and evidence in any

direction, either towards or against such closure results, would be very interesting.

Organization

The rest of the paper is organized as follows. We discuss a high level overview of the proof in

Section 2 and introduce and discuss the notion of pseudo-resultant in Section 4. In Section 5, we

build upon this notion to describe and present our final algorithms.

As with many of the papers on polynomial factorization, we have a somewhat elaborate pre-

liminaries section with many of the standard facts and results. To keep this paper self-contained,

we include this section in the paper; however, to avoid obstructing the flow of the paper, we have

moved most of the section to Appendix A and Appendix B.

2 Proof Overview

In this section, we give a brief overview of the main ideas in our proof. But first, we set up some

notation: f denotes the input polynomial of degree d that is given via a small algebraic circuit of

size s and depth ∆ computing it. Furthermore, we assume that f factors as f = gm · h, where g

is an irreducible polynomial and can be computed by a small constant-depth circuit, and g and

h do not have a non-trivial GCD. Throughout the underlying field is assumed to be the field Q

of rational numbers. We note that a priori, it is not clear if h can also be computed by a small
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constant-depth circuit. However, this follows immediately from an observation in a recent prior

work of Kumar, Saptharishi and Ramanathan [KRS23].

We now outline the sketch of our ideas. Our algorithm follows the general outline of a typical

factorization algorithms in the literature (e.g., [Kal89]). However, in their original formulations,

some of these steps rely on randomness, and we elaborate how we get around this and implement

the step in a deterministic way.

Making f monic: As the first step of the algorithm, we make the polynomial f monic in one of

the variables, which we denote by y here by applying an invertible linear transformation to the

variables. This is typically done by choosing field constants a = (a1, a2, . . . , an) ∈ Fn at random,

and replacing the variable xi in the circuit for f by the linear form xi + aiy. Since the underlying

field is large enough, via the Schwartz-Zippel lemma, we get that the coefficient of yd in f (x+ a · y)

is a non-zero field constant with high probability, and up to a scaling by this field constant, we

obtain a polynomial that is monic in y. For the ease of notation, we continue to denote this new

polynomial by f . To derandomize this step, we note that the coefficient of yd in f (x + a · y) is just

the evaluation of the homogeneous component of f (x) of degree d on the input a. But since f has

a size s, depth ∆ circuit, its degree d homogeneous component has a circuit of size s′ = poly(s, d)

and depth ∆′ = ∆ + O(1) (see Lemma A.2). Thus, if we try all possible inputs a from a hitting

set for size s′, depth ∆′ circuits, one of the vectors will have the desired property. A deterministic

subexponential time construction of such a hitting set for constant-depth circuits was shown by

Limaye, Srinivasan and Tavenas [LST21].

For the rest of the algorithm, we view f as a polynomial in Q[x][y]. We also note that since f is

monic in y, without loss of generality, g and h can be assumed to be monic in y (Lemma B.4).

Reducing the multiplicity of g in f : The remaining steps of the algorithm assume that the mul-

tiplicity of g in f , denoted by the parameter m here, is one. This can be assumed without loss of

generality. Indeed, to reduce to this case, we run our algorithm on all the partial derivatives of

f with respect to y, i.e. the polynomials { ∂i f

∂yi : i ∈ {0, 1, . . . , d − 1}}; the observation being that

g is an irreducible factor of multiplicity one of at least one of these polynomials. Moreover, all

these polynomials can be computed by a circuit of size poly(s, d) and depth ∆ (Lemma A.3). So, it

suffices to focus on recovering factors of multiplicity one of f . This observation was also used in

[KRS23].

Finding a good starting point for Newton Iteration: The goal now is to view f as a univariate in

y with coefficients from Q[x] and obtain a root Φ(x) of f in the ring Q[[x]] of power series in x.

Moreover, in order to recover the factor g of f using this root, it must be the case that this is a root

of g (and hence a root of f ). In fact, by standard techniques, it suffices to recover an approximation
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of Φ with high enough accuracy, i.e., to recover Φk(x) := Φ(x) mod 〈x〉k for some k > 2d2. This

is done via Newton iteration, where we start from the constant term (i.e. Φ0 := Φ(x) mod 〈x〉) of

such a Φ, and lift it to obtain Φk. While the lifting process is itself deterministic (see Lemma 3.1),

a crucial issue with respect to the starting point of the lifting process is the following: Φ0 must

be a root of f (x, y) mod 〈x〉 of multiplicity one, and in fact must come from g mod 〈x〉. This is

typically done by translating the x variables to x + a such that the univariate polynomials g(a, y)

and h(a, y) do not share a non-trivial GCD and g(a, y) is square-free. This ensures that every root

of f (a, y) = g(a, y)h(a, y) that comes from g(a, y) is a root of multiplicity one of f (a, y) and hence

is a good starting point for lifting via Newton Iteration.

In typical factorization algorithms, such a point a is found by first preprocessing the input f

such that it is square-free, and then setting a to be a non-zero of the discriminant of f . Since the

discriminant is an efficiently computable low-degree polynomial (assuming f is), by the Schwartz-

Zippel lemma a can be chosen at random. This guarantees that f (a, y) = g(a, y)h(a, y) is square-

free and hence g(a, y) and h(a, y) don’t have a non-trivial GCD. In our setting, we do not have

the guarantee that f (x, y) is square-free since h might not be square-free, but we know that g is

a multiplicity one irreducible factor of f . Moreover, we would like to find such a point a deter-

ministically. A serious quantitative issue with respect to derandomizing the application of the

Schwartz-Zippel lemma here is that even though f has a small constant-depth circuit, its discrim-

inant is the determinant of a matrix of dimension roughly 2d with polynomial entries, a powerful

model for which no non-trivial deterministic PIT algorithms are known. This is also the issue if

we try to look at the resultant of g and h instead.

One intriguing possibility here would be to show that the discriminant or the resultant of poly-

nomials with small constant-depth circuits have relatively small constant-depth circuits. However,

we do not know how to show this. Instead, we come up with an alternative polynomial R f ,g, re-

ferred to as the pseudo-resultant of f and g, and rely on its properties to arrive at our good starting

point for the lifting process. In particular, we note that the complexity of R f ,g is close to the com-

plexity of f and g. We then show that when g is an irreducible factor of f with multiplicity one,

R f ,g(x, y) 6≡ 0. Moreover, using ideas from a divisibility testing algorithm of Forbes [For15], we

can show that for any a ∈ Qn such that R f ,g(a, y) 6≡ 0, there is a root of multiplicity one of f (a, y)

that is a root of g(a, y) but not h(a, y). This root becomes a good starting point for the lifting pro-

cess. Furthermore, since R f ,g is computable by a small constant-depth circuit, such a point a can

be obtained deterministically in subexponential time using the results in [LST21].

Intuitively, while the randomized algorithm for finding a good starting point for lifting uses

the resultant to find an a such that g(a, y) and h(a, y) do not have a non-trivial GCD, we observe

that this is a bit of an overkill, and it suffices to find an a such that the GCD of g(a, y) and h(a, y)

is not equal to g(a, y). Equivalently, it suffices to find an a such that g(a, y) does not divide h(a, y).

This happens to be a computationally easier condition to achieve deterministically via the pseudo-
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resultant. This is essentially the main technical idea in this work, and is formally discussed in

Section 4.

One undesirable quantitative issue here is that the circuits obtained for Φ via Newton iteration,

while being of polynomially bounded size, can have unbounded depth. This is one of the reasons

that the output list of our algorithm can have spurious circuits not corresponding to factors of f .

Solving a linear system to obtain g: Once we have obtained an approximate root Φk(x) of f (x, y),

we would like to recover the real factor g(x, y). If the y-degree of g is known to be d′, then this is

done via thinking of g as g(x, y) = yd′ + ∑
d′−1
i=0 gi(x)y

i, where gi is a formal variable, and imposing

the constraint that

g(x, Φk(x)) = ϕk(x)
d′ +

d′−1

∑
i=0

gi(x)Φk(x)
i ≡ 0 mod 〈x〉k .

Furthermore, each gi can be written as gi(x) = ∑
d
j=0 gi,j(x), where gi,j is the homogeneous com-

ponent of gi of degree j. The constraint above translates naturally into a linear system in the

variables gi,j, and the factor g does satisfy this system of equations. Furthermore, it can be shown

that if d′ equals the y-degree of g and k > 2d2, then g is the unique solution to this system of linear

equations. Moreover, if we set a similar system with the y-degree of the factor of interest being

set to something less than d′, then the resulting linear system has no solution. We rely on these

properties of the linear system to obtain an algebraic circuit for g. Essentially, the idea is that if we

know d′ and the resulting linear system is given by a square matrix, then uniqueness of solution

of degree d′ guarantees that this matrix is invertible, and the solution can then be expressed as an

algebraic circuit given by Cramer’s rule. However, the constraint matrix of the system might not

be square in general, and in this case, we first make the system square (deterministically) before

applying Cramer’s rule. The details can be found in Lemma 3.2.

One added subtlety here is that in general, we would not know the exact y-degree of g. In this

case, we try all values from 1 to d− 1, and for each one formally construct an algebraic circuit with

divisions and unbounded depth (as noted earlier, the circuit for Φ can already have unbounded

depth) and include all such circuits in our final list of solutions.

Differences with [KRS23]: Many of the high-level ideas in the algorithm outlined above are sim-

ilar to those in a prior work of Kumar, Ramanathan and Saptharishi [KRS23], where deterministic

subexponential time algorithms were given for computing constant-degree factors of constant-

depth circuits. The similarities include the motivation for the problems as well as the high-level

approach of understanding the structure of the PIT instances appearing in the randomized al-

gorithms for multivariate factorization for these special cases carefully and derandomizing those

steps. However, there are key technical differences. The main technical result of [KRS23] is an
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upper bound on the complexity of the resultant of a constant-depth circuit and a constant-degree

polynomial. However, we are unable to prove such an upper bound in our case. Instead, we de-

fine the pseudo-resultant and observe that its circuit complexity is comparable to that of the given

input polynomial and the factors we care about. Moreover, it helps us completely avoid working

with the resultant of g and h or the discriminant of f , and lets us find a good starting point for

Newton iteration in deterministic subexponential time. There are also some technical differences

in how we go from approximate power series roots to actual factors of f , but the main takeaway

from this work is perhaps the notion of pseudo-resultant and its properties.

Inability to prune the list: Unlike the results in [KRS23], where only true low degree factors of

the input polynomial are output, we end up with a list of circuits containing the circuits for all

irreducible factors with small constant-depth circuits, but perhaps much more. This difference

stems from the fact that in the algorithm of [KRS23], at an intermediate step a list of constant-

degree polynomials (essentially expressed as a sum of monomials) is constructed, where similar

to this work, the list contains all the true constant-degree factors, as well as some spurious fac-

tors. However, since in [KRS23] every polynomial in this intermediate list is a constant-degree

polynomial in the monomial basis, the list is pruned to true factors by checking if a polynomial in

the list divides the given input polynomial, and whether they are irreducible (which can be done

deterministically since the degree of the polynomial is a constant). However, in this work, the list

consists of unbounded depth algebraic circuits with division gates. For such circuits, we do not

even know how to test if the circuit is well-defined, i.e., that there are no denominators that are

identically zero. Hence, it is unclear to us if the list can be pruned to the true irreducible factors

in a non-trivial way deterministically. Addressing this issue seems like a very interesting open

problem.

3 Notations and preliminaries

We shall briefly describe our notation and some basic definitions. For a more detailed preliminar-

ies section, please refer to Appendix A and Appendix B.

• Throughout this paper, we work over the field Q of rational numbers. For some of the

statements that are used more generally, we use F to denote an underlying field.

• We use boldface lower case letters like x, y, a to denote tuples, e.g. x = (x1, x2, . . . , xn). The

arity of the tuple is either stated or will be clear from the context.

• For a polynomial f and a non-negative integer k, Homk( f ) denotes the homogeneous com-

ponent of f of degree equal to k. Hom≤k( f ) denotes the sum of homogeneous components
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of f of degree at most k, i.e.,

Hom≤k( f ) :=
k

∑
i=0

Homi( f )

• For a parameter k ∈ Z≥0, we will use (ΣΠ)(k) to refer to product-depth k circuits2 with

the root gate being + and the deepest layer of gates being ×. Since any constant-depth

algebraic circuit of depth k and size s can be converted to a formula of depth k and size sk+1

i.e. poly(s), we will use the terms circuits and formulas interchangeably, without any loss in

the final bounds we prove.

• Let f and g be multivariate polynomials such that g | f . Then, the multiplicity or factor

multiplicity of g in f is defined to be the greatest integer a such that ga divides f .

• The size of a circuit over Q is equal to the sum of the number of edges and the sum of the

bit-complexity of the constants appearing in the circuit.

• In our proofs, we encounter circuits over fields of the form Q(α) where α is some algebraic

number. For such circuits, we think of their description of each field constant as an element

of K = Q[u]
A(u)

where A(u) is its minimal polynomial of α. The bit-complexity of any element

of Q(α) is defined as the bit-complexity of the unique representation as a element of K. The

bit-complexity of such a circuit is the total description size of the circuit, which includes the

bit-complexity of any constants used internally.

3.1 Newton iteration

The following are some standard facts about Newton iteration and the proofs of these lemmas is

present in Appendix B.4.

Lemma 3.1 (Newton iteration). Let F(x, y) ∈ F[x, y] be monic in y. Suppose u ∈ F such that

F(0, u) = 0,

(∂yF)(0, u) 6= 0.

Then, for all k ≥ 0, there is an approximate root polynomial Φk ∈ F[x] that satisfies

F(x, Φk) = 0 mod 〈x〉k+1,

Φk(0) = u.

2We emphasize that this notation does not refer to the kth power of a polynomial computed by a ΣΠ circuit.
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Furthermore, if we are provided F a circuit of size and bit-complexity s, and also the element u ∈ F with

bit-complexity at most B, we can output an algebraic circuit for the approximate root Φk(x) of size at most

poly(s, k) and bit-complexity poly(s, B, k).

Lemma 3.2 (Computing minimal polynomials of approximate roots). Let Φk(x) ∈ F[x] be provided

by an algebraic circuit of size and bit-complexity at most s. Suppose there exists a polynomial G(x, y) =

∑
d
i=0 Gi(x)y

i that is monic in y and irreducible satisfying

G(x, Φk(x)) = 0 mod 〈x〉k+1,

deg G ≤ D,

degy G = d,

k ≥ 2Dd.

Then, given d and the circuit for Φk, for every i ∈ [d], we can compute an algebraic circuit (with only

x variables and no y), with divisions, of size and bit-complexity at most poly(s, d, D) for the polynomial

Gi(x). In particular, we can compute a circuit of size and bit-complexity poly(s, d, D) for G(x, y).

3.2 Pseudo-quotients for preserving indivisibility

We define the pseudo-quotient of a pair of polynomials f and g, which will act as a proxy for the

quotient of f and g.

Definition 3.3 (Pseudo-quotients, [For15]). Let f , g ∈ Q[x] be non-zero polynomials with g(0) = β 6=

0. The pseudo-quotient of f and g is defined as

Hom≤D−d

((

f (x)

β

)

· (1 + g̃ + g̃2 + · · ·+ g̃D−d)

)

where D = deg( f ), d = deg(g) and g̃ = 1 − g
β .

More generally, if α ∈ Qn is such that g(α) 6= 0, the pseudo-quotient of f and g around α is

defined as Q̃(x −α, y) where Q̃(x, y) is the pseudo-quotient of f (x +α) and g(x +α). ♦

Forbes [For15] showed that the pseudo-quotient allows one to reduce divisibility testing to a

polynomial identity test.

Theorem 3.4 (Divisibility testing to PIT [For15]). Let f (x) and g(x) be non-zero polynomials over a

field F such that g(0) = β 6= 0. Then, g divides f if and only if f (x)− Q f ,g(x) · g(x) is identically zero,

where Q f ,g is the pseudo-quotient of f and g.
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4 Pseudo-resultant

In this section, we will define the pseudo-resultant of a polynomial f and a factor g. The pseudo-

resultant serves as a proxy for the resultant as it is easy to argue about its circuit complexity, and it

suffices for our applications. This definition and its applications to polynomial factorization that

we discuss later in the paper are essentially the main technical contributions of this paper.

For a polynomial f (x, y), let S f (x, y) denote (∂y f (x, y))2 and S f (a,y)(y) denotes (∂y f (a, y))2.

Definition 4.1 (Pseudo-resultant). Given f , g ∈ F[x, y], let Q(x, y) be the pseudo-quotient of S f and g

interpreted as univariates in y (with coefficients in F(x)). Then, the pseudo-resultant of f and g with

respect to y, denoted by R f ,g, is a polynomial in F[x, y] defined as

R f ,g := S f − Q · g. ♦

The variable y is special in the above definition, and will remain so throughout the paper.

We make the following simple observation that summarizes a natural property of the pseudo-

quotient and the pseudo-resultant under substitutions.

Observation 4.2 (Pseudo-quotients and pseudo-resultants under substitutions). Suppose

f (x, y), g(x, y) ∈ F[x, y] are monic in y, and suppose a ∈ F|x| such that g(a, 0) 6= 0. Let Q(x, y) be

the pseudo-quotient of S f and g interpreted as univariates in y (with coefficients in F(x)). Let Q′(y) be the

pseudo-quotient of S f (a,y) and g(a, y). Let R f (a,y),g(a,y) := S f (a,y) − Q′ · g(a, y) be the pseudo-resultant of

f (a, y) and g(a, y). Then:

1. Q(a, y) = Q′(y).

2. R f ,g(a, y) = R f (a,y),g(a,y)(y).

Proof. For the first part, let g(x, y) = g0(x) + g1(x)y + · · ·+ yd. By the definition of the pseudo-

quotient, we have

Q(x, y) = Hom≤D−d

[

S f (x, y)

g0(x)

(

1 + g̃(x, y) + g̃(x, y)2 + · · ·+ g̃(x, y)D−d
)

]

,

Q′(y) = Hom≤D−d

[

S f (a,y)(y)

g0(a)

(

1 + ĝ(y) + ĝ(y)2 + · · ·+ ĝ(y)D−d
)

]

where g̃(x, y) = 1 − g(x,y)
g0(x)

and ĝ(y) = 1 − g(a,y)
g0(a)

. It is evident that ĝ(y) = g̃(a, y). Since the

operations of taking partial derivatives with respect to y (in the definitions of S f and S f (a,y)), taking

homogeneous components with respect to y and evaluating the x variables commute with each

other, it follows that Q(a, y) = Q′(y) as claimed.

For the same reason, it follows that S f (x, y) = S f (a,y)(y). Combining this observation

with the first part, we get S f (a, y) − Q(a, y)g(a, y) = S f (a,y)(y) − Q′(y)g(a, y) i.e. R f ,g(a, y) =

12



R f (a,y),g(a,y)(y).

The following lemma tells us how to use the pseudo-resultant to find a suitable starting point

a for Newton iteration.

Lemma 4.3 (Properties of pseudo-resultant). Suppose F is a field, f ∈ F[x, y] is monic in y, and

f = g · h, where g is irreducible and g ∤ h. Let S f (x, y) = (∂y f (x, y))2, let R f ,g denote the pseudo-

resultant of f and g with respect to y, and let R f (a,y),g(a,y)(y) denote the pseudo-resultant of f (a, y) and

g(a, y) with respect to y. Then, the following properties hold.

1. g ∤ S f in F[x, y] and F(x)[y]. Equivalently, R f ,g(x, y) 6≡ 0 in F(x)[y].

2. For any a ∈ Fn such that R f ,g(a, y) 6≡ 0 in F[y], a satisfies the following property: there exists

u ∈ F such that f (a, u) = 0, h(a, u) 6= 0 and ∂y f (a, u) 6= 0. In particular, u is a multiplicity-1

root of f (a, y).

Proof. Since the polynomial f is monic in y, we have that g, h and S f are all monic in y as well.

Thus, by Gauss’ Lemma (Lemma B.4), we get that divisibility in F[x, y] is the same as that in

F(x)[y], so we focus on divisibility in F[x, y].

From f = g · h and the product rule for derivatives, we get

∂y f = h · ∂yg + g · ∂yh .

Now, since g is irreducible, we have that g divides (∂y f )2 if and only if g divides ∂y f . This, in

turn, happens if and only if g divides h · ∂yg. But from the hypothesis of the lemma, we know

that g is irreducible, and does not divide h. Moreover, since the y-degree of ∂yg is less than the

y-degree of g, we have that g does not divide ∂yg either. Thus, from the irreducibility of g, it

follows that g does not divide the product h · ∂yg, and hence, g does not divide (∂y f )2 (in the

ring F[x, y]). As mentioned earlier, it now follows from Gauss’ lemma (Lemma B.4) that g does

not divide (∂y f )2 (in the ring F(x)[y]) i.e. g ∤ S f . Combining the definition of R f ,g and Forbes’

reduction of divisibility testing to PIT (Theorem 3.4), it follows that R f ,g(x, y) 6≡ 0 in F(x, y). This

completes the proof of the first item.

We now proceed with the proof of the second item. Let a be a setting of the x-variables such

that R f ,g(a, y) = R f (a,y),g(a,y)(y) 6≡ 0 (where the equality follows from Observation 4.2) or equiva-

lently, g(a, y) ∤ S f (a, y) (by Theorem 3.4 and the fact that S f (a, y) = S f (a,y)(y)). Let g(a, y) factor

as g(a, y) = ∏i (y − αi)
ei over the algebraic closure F of the field F. Let g1(y) = ∏i:ei=1 (y − αi) be

the product of linear factors of multiplicity 1, and g2(y) = ∏i:ei≥2 (y − αi)
ei be the product of rest

of the factors. We first claim that for every root αi of g2(y) with multiplicity ei ≥ 2, it holds that

(y − αi)
ei | (∂yg(a, y))2. Indeed, denote by q(y), the polynomial g(a, y)/(y − αi)

ei . Then, by the
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product rule, we have

∂yg(a, y) = ei(y − α)ei−1q(y) + ∂yq(y) · (y − αi)
ei ,

Since ei ≥ 2, we have that 2(ei − 1) ≥ ei. Thus, (y− αi)
ei | (∂yg(a, y))2 and more generally, since

(y − αi)
ei and (y − αj)

ej are relatively prime whenever αi 6= αj, we get that g2(y) | (∂yg(a, y))2.

Furthermore, setting x to a in the expression for S f (x, y), we get that

S f (a, y) = (∂yg(a, y) · h(a, y))2 +(g(a, y) · ∂yh(a, y))2 + 2 · (∂yg(a, y)) · g(a, y) · h(a, y) · (∂yh(a, y)) .

We note here that all the partial derivatives in the above expression are taken with respect to

the variable y, whereas all the substitutions are happening with respect to the x-variables, and

thus these two operations commute with each other. From the form of the expression above, the

definition of g2 and our earlier observation that g2(y) | (∂yg(a, y))2, it immediately follows that

g2(y) | S f (a, y).

Since g(a, y) does not divide S f (a, y) but g2(y) does, it must be the case that g1(y) does not

divide S f (a, y). Thus, g1(y) has degree at least one and at least one of its roots in F is not a root of

S f (a, y). We claim that this root satisfies the requirements of being the u ∈ F from the claim. To

this end, we note that

• S f (a, u) 6= 0 or equivalently, ∂y f (a, u) 6= 0

• f (a, u) = g(a, u) · h(a, u) = g1(u) · g2(u) · h(a, u) = 0 since we chose u so that g1(u) = 0

• ∂y f (a, u) = ∂g(a, u) · h(a, u) + ∂h(a, u) · g(a, u) = ∂yg(a, u) · h(a, u) by the previous bullet.

But ∂y f (a, u) 6= 0 and hence h(a, u) 6= 0.

This completes the proof of the second item.

4.1 A starting point for Newton iteration

The next lemma proves that in the setting of constant-depth circuits, the complexity of the pseudo-

resultant of f and g is comparable to the complexity of f and g. Hence, if we want to find a point

a that will help us start Newton iteration using the sufficient condition from Lemma 4.3 (property

2), then it is enough to consider points in a hitting set for constant-depth circuits.

Lemma 4.4. Suppose f ∈ F[x, y] is a polynomial of degree D with the following properties.

• f is monic in y.

• f = g · h, where g = ∑i gi(x)y
i is a monic irreducible polynomial of degree d such that g ∤ h, and

g0(x) 6= 0.

14



• f can be computed by a circuit in (ΣΠ)(∆1) of size at most s1 and g can be computed by a size s2

circuit in (ΣΠ)(∆2) for some constants ∆1, ∆2 ∈ N.

Let R f ,g(x, y) ∈ F(x)[y] be the pseudo-resultant of f and g with respect to y. For ∆ = max(∆1, ∆2), let

H be a hitting set for (n + 1)-variate (ΣΠ)(∆+2)-circuits of size at most 11s1s2D5 and degree at most 5D2.

Then, there exists a point ã = (a1, . . . , an, an+1) = (a, an+1) ∈ H such that R f ,g(a, y) 6≡ 0.

Proof. Let Q(x, y) be the pseudo-quotient of S f and g as univariates in y. Let the numerator and the

denominator of R f ,g(x, y) = S f (x, y)− Q(x, y) · g(x, y) be Pnum(x, y) and Pden(x) respectively. The

proof proceeds by bounding the complexity of the numerator and the denominator, and observing

that the given hitting set suffices to find a non-zero for both of them.

Bounding the complexity of the denominator Pden(x) : S f (x, y) and g(x, y) do not contribute to

the denominator. The only contributions to Pden(x) (from Q(x, y)) are g0(x) by the
S f (x,y)

g0(x)
term, and

g0(x)D−d from the powers of g̃. Thus, Pden(x) = g0(x)D−d+1. Since g(x, y) has a (ΣΠ)(∆2)-circuit

of size s2, so does g0(x) (obtained by just setting y to zero). Thus, Pden(x) has a (ΣΠ)(∆2+1)-circuit

of size at most s2 + D ≤ s2D. The degree of Pden is clearly upper bounded by D2.

Bounding the complexity of the numerator Pnum(x, y) : The numerator of Q(x, y), denoted by

Qnum(x, y), is

Qnum(x, y) = HomD−d

[

S f (x, y)

(

D−d

∑
i=0

gD−d−i
0 (g0 − g)i

)]

.

From the definition of S f and standard computation of partial derivatives (see Lemma A.3),

S f (x, y) has a (ΣΠ)(∆1)-circuit of size (10s1D3). ∑
D−d
i=0 gD−d−i

0 (g0 − g)i has a (ΣΠ)(∆2+1)-circuit

of size s2D3. Taking its product with S f (x, y) and using interpolation to get the homogeneous

components of degree at most D − d (Lemma A.2) gives us a (ΣΠ)(∆+1)-circuit of size (10s1D5)

for Qnum. Thus, Pnum(x, y) = Pden(x)S f (x, y) − Qnum(x, y)g(x, y) has a (ΣΠ)(∆+1)-circuit of size

10s1s2D5. From the expression of the numerator, we have that a crude bound on its degree is at

most 2D + D2 + D2 ≤ 4D2.

The hitting set H suffices : Since Pnum(x, y) and Pden(x) have relatively small (ΣΠ)(∆+1)-circuits,

then their product has a (ΣΠ)(∆+2)-circuit of size at most 10s1s2D5 + s2D ≤ 11s1s2D5 and its

degree is at most D2 + 4D2 = 5D2. Thus, a hitting set H for this class will contain a point ã =

(a1, . . . , an, an+1) = (a, an+1) such that Pnum(ã) · Pden(a) is non-zero. In particular,
Pnum(a,y)

Pden(a)
=

R f ,g(a, y) 6≡ 0.
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5 Generating a list of candidate factors

Algorithm 1: Computing a list of candidate irreducible factors of multiplicity-1, degree d

and computable by a depth ∆′ circuit of size m, when the input polynomial has depth ∆

Input : A size parameter m in unary; degree parameter d ∈ N; a (ΣΠ)∆-circuit of size s,

bit-complexity t, total degree D, computing a polynomial f (x, y) ∈ Q[x1, . . . , xn, y] that is

monic in y.

Output: A list L = {C1, . . . , Cr} of algebraic circuits (with division gates) such that for every

irreducible factor g(x, y) of f (x) s.t. g2 ∤ f and g has a size m circuit of depth ∆′, y-degree

equal to d, there exists i ∈ [r] such that Ci ≡ g(x).

1 Set the list L′ = ∅.

2 Compute hitting-set H1 for (n + 1)-variate (ΣΠ)(max(∆,∆′)+2)-circuits of size (11smD5) and degree

(5D2) using Theorem A.4.

3 Let H2 be the projection of the points in H1 on the first n coordinates.

4 for a = (a1, . . . , an) ∈ H2 do

5 F(x, y) := f (x1 + a1, . . . , xn + an, y)

6 Factorise the polynomial F(0, y) ∈ Q[y] into irreducible factors as

F(0, y) = σ · F1(y)
e1 · · · Fl(y)

el .

where 0 6= σ ∈ Q and each Fi(y) is monic.

7 forall Fi s.t. ei = 1 do

8 Set K := Q[u]
〈Fi(u)〉

.

9 if ∂yF(0, u) = 0 then

10 Skip to the next Fi.

11 Use Lemma 3.1 to obtain a circuit for Φk(x) such that F(x, Φk) = 0 mod 〈x〉k+1 for k = 2D2.

12 Use Lemma 3.2 to obtain a circuit (with divisions) C for the minimal polynomial G(x, y) for

Φk modulo the ideal 〈x〉k+1.

13 Apply the transformation xi → xi − ai on C to get a circuit C′.

14 Update L′ := L′ ∪ {C′}.

15 return L′

Remark (Obtaining circuits over the base field Q). Although the above algorithm outputs circuits over

algebraic extensions of Q of the form K = Q[u]
A(u)

, they can be transformed syntactically to circuits over the

base field Q, with only a polynomially large blow-up in size, via standard techniques (Lemma B.8). ♦

For simplicity, Algorithm 1 deals with the special case when the factors we care about have

multiplicity one and a fixed degree d. Later, we will describe the final algorithm that will iterate

over the values of the degree and multiplicity parameters, and run Algorithm 1 as a subroutine.

We now bound the running time of the above algorithm, and prove its correctness. In the

following subsection, we use this algorithm to prove the main theorem Theorem 1.1.
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5.1 Proof of correctness of Algorithm 1

Theorem 5.1 (Correctness of Algorithm 1). Let Q be the field of rational numbers and ε > 0, ∆, ∆′ ∈ N

be arbitrary constants. Let f (x, y) ∈ Q[x, y] be any polynomial that is monic in y, is computed by a

(ΣΠ)(∆)-circuit of size s, bit-complexity B, degree D and let g be an irreducible factor of multiplicity one of

f with y-degree exactly d such that g is computable by a (ΣΠ)(∆
′)-circuit of size m.

If Algorithm 1 is invoked on input m, d, a circuit for f with size s, bit-complexity t, D, then the output

is a list L of circuits of size poly(s, m, D) and bit-complexity poly(s, t, m, D) such that L contains at least

one circuit that computes g.

Moreover, the algorithm terminates in time (O(smD5)O(∆̃) · n)Oε((smD7)ε) · poly(s, D, B), where ∆̃ =

max(∆, ∆′) + 2.

Proof. We start with the proof of correctness. Suppose f = g · h where g is one of the irreducible

factors of interest. Let R f ,g be the pseudo-resultant of f and g with respect to y. From Lemma 4.4,

we get that there exists a point (a1, a2, . . . , an, an+1) in the hitting set H1 defined in the algorithm

such that R f ,g(a1, . . . , an, y) 6≡ 0. In other words, there is an a = (a1, a2, . . . , an) ∈ H2 such that

R f ,g(a, y) 6≡ 0; let us fix such an a.

From this and the second item of Lemma 4.3, we get that there is a u ∈ Q such that g(a, u) = 0,

h(a, u) 6= 0 and ∂y( f )(a, u) 6= 0. If G(x, y) = g(x + a, y) and H(x, y) = h(x + a, y), this u must be a

root of one of the Fi’s obtained in Line 6. Hence, F(0, u) = f (a, u) = 0 and ∂yF(0, u) = ∂y f (a, u) 6=

0. We now satisfy the hypothesis for Newton Iteration (Lemma 3.1) and we can obtain a circuit for

the approximate root Φk for F satisfying Φk(0) = u. Since F(x, Φk) = G(x, Φk) · H(, Φk) = 0 mod

〈x〉k+1 and H(0, Φk(0)) = h(a, u) is a nonzero scalar in K, we have that G(x, Φk) = 0 mod 〈x〉k+1.

Therefore, Lemma 3.2 will yield a circuit (with divisions) for G. Undoing the initial translate via

xi → xi − ai yields a circuit for g(x, y).

From the description of the algorithm, we get that time complexity is at most

T0 + |H2| · D · (T1 + T2 + T3)

where, T0 is the time taken to computing an appropriate hitting set in Line 2, T1 ≤ poly(D, B) is

the time taken to factorize the polynomial F(0, y) (Theorem B.1), T2 ≤ poly(s, D, B) is the time

taken for computing the approximate root (Lemma 3.1) and computing the minimal polynomial

(Lemma 3.2). The size of H2 is at most the size of H1, and Theorem A.4 tells us that |H1| ≤

((11smD5)O(∆̃) · n)Oε((44smD7)ε) (where ∆̃ = max(∆, ∆′) + 2); moreover, Theorem A.4 tells us that

T0, the time-complexity of computing H1 at Line 2, has the same expression as the size of H1.

Thus, the total running time is ((11smD5)O(∆̃) · n)Oε((55smD7)ε) · poly(s, D, B). The bit-complexity

bound follows as the only nontrivial constant added to each circuit is the algebraic number u

whose minimal polynomial is one of the factors of F(0, y) and hence has small bit-complexity as

well.
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5.2 Proof of Theorem 1.1

We now describe our final algorithm, and its analysis to complete the proof of Theorem 1.1.

Algorithm 2: Computing a list of candidate irreducible factors computable by a depth ∆′

circuit of size m, when the input polynomial has depth ∆

Input : A size parameter m in unary; a (ΣΠ)∆-circuit of size s, bit-complexity t, degree D,

computing a polynomial f (x) ∈ Q[x1, . . . , xn].

Output: A list L = {C1, . . . , Cr} of algebraic circuits (with division gates) such that for every

irreducible factor g(x) of f (x) s.t. g has a size m circuit of depth ∆′, there exists i ∈ [r] such

that Ci ≡ g(x).

1 Set the output list L′ = ∅.

2 Compute hitting-set H1 for n-variate (ΣΠ)(∆)-circuits of size (sD3) and degree D using

Theorem A.4.

3 for α ∈ H1 do

4 Define f̃ (x, y) := f (x +α · y) = f (x1 + α1y, . . . , xn + αny)

5 for i = 0 . . . D − 1 do

6 Compute a circuit Ci for the polynomial f̃i(x, y) := ∂i f̃

∂yi

7 for d = 1 . . . D − 1 do

8 Compute a list Li,d of candidate degree d irreducible factors of multiplicity one of

f̃i(x, y) using Algorithm 1

9 Set L′ := L′ ∪ Li,d

10 Let L be the list of circuits obtained by setting y to 0 in circuits in L′.

11 return L

Theorem 5.2 (Correctness of Algorithm 2). Let Q be the field of rational numbers and ε > 0, ∆, ∆′ ∈ N

be arbitrary constants. Let f (x) ∈ Q[x1, . . . , xn] be a polynomial computed by a (ΣΠ)(∆)-circuit of size s,

bit-complexity t, degree D and let g be an irreducible factor of f such that g is computable by a (ΣΠ)(∆
′)-

circuit of size m.

If Algorithm 2 is invoked on input m, a circuit for f with size s, bit-complexity t, D, then the output is a

list L of circuits of size poly(s, m, D) and bit-complexity poly(s, t, m, D) such that L contains at least one

circuit that computes g. Moreover, the algorithm terminates in time
(

((O(smD8))O(∆̃) · n)
)Oε(smD10)ε

·

poly(s, D, T), where ∆̃ = max{∆, ∆′}+ 2.

Proof. Let D be the total degree of f . If we view f (x +α · y) as a formal polynomial in y, we get

that the coefficient of yD in it is equal to the evaluation of the degree D homogeneous component

of f on input (α). Moreover, from Lemma A.1, we get that this homogeneous component has a

(ΣΠ)(∆)-circuit of size at most sD3. Therefore, there exists an α in the hitting set H1 for which the

polynomial f̃ (x, y) = f (x +α · y) has y degree equal to D, and hence (up to multiplication by a

non-zero field constant) is monic in y.
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We will focus on an arbitrary fixed irreducible factor g | f and prove that there exists a circuit

in the final output list L that computes g. Let i∗ be the multiplicity of g in f . Let the degree of g

be d. Then, g̃(x, y) = g(x +α · y) will be a degree-d factor of multiplicity one of f̃i∗−1(x, y) := ∂i f̃

∂yi .

By Lemma A.3, f̃i∗−1(x, y) has a (ΣΠ)(∆)-circuit of size at most sD3. Moreover, the transformation

x 7→ x + α · y maintains the irreducibility of g by Lemma B.7. Thus, in the (i∗ − 1)th iteration

of Line 5 and the dth iteration of Line 7, Line 8 will compute a list of candidate factors that will

include g̃ as guaranteed by Theorem 5.1. Setting y = 0 (which can be done because Lemma 3.2

guarantees that only the x variables show up in the denominators) to go from the list L′ to L will

give us a list that contains g̃(x, 0) = g.

From the description of the algorithm, the running time of Algorithm 2 is at most

T0 + |H1| · D2 · T1 · poly(s, D, t)

where T0 is the time taken to compute the hitting set H1, T1 is the time taken to invoke Algo-

rithm 1 in Line 8, H1 is the hitting set computed in Line 2 using Theorem A.4, the D2 factor

is to account for the two loops in Line 5 and Line 7, and the poly(s, D, t) factor is to account

for the rest of the steps such as computing f̃ from f , computing circuits for derivatives, ob-

taining a list of circuits by setting y = 0, etc. T1 is the running time of the first algorithm

on f̃i∗−1 which has a (ΣΠ)(∆)-circuit of size s′ = sD3. Thus, from Theorem 5.1, T1 is at most

((11smD8)O(∆̃) · n)Oε((55smD10)ε) · poly(s, D, t). Applying Theorem A.4 for a (ΣΠ)(∆)-circuit of size

sD3 and degree D tells us that ((sD3)O(∆) · n)Oε((sD4)ε) will be a bound on both T0 as well as the

size of H1. Thus, the final time complexity is
(

(11smD8)O(∆̃) · n
)Oε(55smD10)ε

· poly(s, D, T). The

bit-complexity bound follows from Theorem 5.1.
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A Preliminaries

A.1 Standard preliminaries using interpolation

Lemma A.1 (Univariate interpolation (Lemma 5.3 [Sap15])). Let f (x) = f0 + f1x + · · ·+ fdxd be a

univariate polynomial of degree at most d. Then, for any 0 ≤ r ≤ d and there are3 field constants α0, . . . , αd

and βr0, . . . , βrd such that

fr = βr0 f (α0) + · · ·+ βrd f (αd).

Furthermore, the bit-complexity of all field constants is bounded by poly(d).

Lemma A.2 (Computing homogeneous components (Lemma 5.4 [Sap15])). Let f ∈ Q[x] be an n-

variate degree d polynomial. Then, for an 0 ≤ i ≤ d, there are field constants α0, . . . , αd and βi0, βid of

bit-complexity poly(d) such that

Homi( f ) = βi0 f (α0 · x) + · · ·+ βid f (αd · x).

In particular, if f is computable by (ΣΠ)(k)-formulas of size / bit-complexity at most s then Homi( f ) is

computable by (ΣΠ)(k)-formulas of size / bit-complexity at most poly(s, d).

3In fact, for any choice of distinct α0, . . . , αd, there are appropriate βr0, . . . , βrd satisfying the equation. If the αi’s are
chosen to have small bit-complexity, we can obtain a poly(d) bound on the bit-complexity of the associated βri’s.
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Lemma A.3 (Computing partial derivatives in one variable). Let f ∈ Q[x] be an n-variate degree d

polynomial. Then, for an 0 ≤ r ≤ d, there are field elements αi’s and βij’s in Q of bit-complexity poly(d)

such that

∂r f

∂xr
1

=
d

∑
i=0

xi
1 · (βi0 f (α0, x2, . . . , xn) + · · ·+ βid f (αd, x2, . . . , xn))

In particular, if f is computable by (ΣΠ)(k)-formulas of size / bit-complexity at most s then
∂r f
∂xr

1
is com-

putable by (ΣΠ)(k)-formulas of size at most 8sd3 and bit-complexity at most poly(s, d).

Proof. We may consider the polynomial f as a univariate in x1, and extract each coefficient of xi
1

using Lemma A.1 and recombine them to get the appropriate partial derivative. That justifies the

claimed expression.

As for the size, note that multiplying a (ΣΠ)(k)-formula of size s by xi
1, by using distributivity

of the top addition gate, results in a (ΣΠ)(k)-formula of size at most s · d. Thus, the overall size of

the above expression for the partial derivative is at most 8sd3.

A.2 Deterministic PIT for constant-depth circuits

Theorem A.4 (PIT for constant-depth formulas (modification of Corollary 6 [LST21])). Let ε >

0 be a real number and F be a field of characteristic 0. Let C be an algebraic formula of size and bit-

complexity s ≤ poly(n), depth k = o(log log log n) computing a polynomial on n variables, then there is

a deterministic algorithm that can check whether the polynomial computed by C is identically zero or not in

time (sO(k) · n)Oε((sD)ε).

B Building blocks

B.1 Univariate factorization over rational numbers

The following classical theorem of Lenstra, Lenstra and Lovász gives us an efficient algorithm for

factoring univariate polynomials over the field of rational numbers.

Theorem B.1 (Factorizing polynomials with rational coefficients [LLL82, vzGG13]). Let f ∈ Q[x]

be a monic polynomial of degree d. Then there is a deterministic algorithm computing all the irreducible

factors of f that runs in time poly(d, t), where t is the maximum bit-complexity of the coefficients of f .
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B.2 Resultant

Definition B.2 (The Resultant). Let R be a commutative ring. Given polynomials g and h in R[y], where:

g(y) = g0 + · · ·+ yd · gd

h(y) = h0 + y · h1 + · · ·+ yD · hD

with gd and hD 6= 0 the Resultant of g and h, denoted by Resy(g, h), is the determinant of the (D + d)×

(D + d) Sylvester matrix Γ of g and h, given by:

Γ =





























h0 h1 . . . hD

. . .
. . .

. . .
. . .

h0 h1 . . . hD

g0 . . . gd

g0 . . . gd

. . .
. . .

. . .

g0 . . . gd





























♦

Lemma B.3 (Resultant and gcd (Corollary 6.20 [vzGG13])). Let R be a unique factorization domain

and g, h ∈ R[y] be non-zero polynomials. Then:

degy(gcd(g, h)) ≥ 1 ⇐⇒ Resy(g, h) = 0

where gcd(g, h) ∈ R[y] and Resy(g, h) ∈ R.

Moreover, there exist polynomials A, B ∈ R[y] such that Resy(g, h) = Ag + Bh.

B.3 Irreducible polynomials in the field of fractions of a UFD

Lemma B.4 (Gauss’ Lemma (Corollary 6.10 [vzGG13])). Let R be a unique factorization domain with

field of fractions K. Suppose a polynomial f ∈ R[y] is monic in y. Then f is irreducible in K[y] if and only

if f is irreducible in R[y].

As a corollary, the factorization of any monic polynomial f into its irreducible factors in R[y] is exactly

the factorization of f into its irreducible factors in K[y].

B.4 Newton iteration

Lemma 3.1 (Newton iteration). Let F(x, y) ∈ F[x, y] be monic in y. Suppose u ∈ F such that

F(0, u) = 0,

(∂yF)(0, u) 6= 0.
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Then, for all k ≥ 0, there is an approximate root polynomial Φk ∈ F[x] that satisfies

F(x, Φk) = 0 mod 〈x〉k+1,

Φk(0) = u.

Furthermore, if we are provided F a circuit of size and bit-complexity s, and also the element u ∈ F with

bit-complexity at most B, we can output an algebraic circuit for the approximate root Φk(x) of size at most

poly(s, k) and bit-complexity poly(s, B, k).

Proof. The approximate roots are given by the following recursive definition:

Φ0 = u

For all k ≥ 0, Φk+1 = Φk −
F(x, Φk)

∂yF(0, u)
.

It is clear from the above definition that Φk+1 is a polynomial in x and its circuit complexity is at

most an additive O(s) larger than the circuit size of Φk. Since the only constant introduced in the

circuit is
(

∂yF(0, u)
)−1

, the bit-complexity is bounded by an additive poly(s, B).

We now show that Φk+1 satisfies the requirement by induction (the base case of Φ0 is trivial).

By Taylor expansion around (x, Φk), if z ∈ 〈x〉k+1, we have

F(x, Φk + z) = F(x, Φk) + z · ∂yF(x, Φk)

+

(

z2

2!

)

∂y2 F(x, Φk) + · · ·

= F(x, Φk) + z · ∂yF(x, Φk) mod 〈x〉k+2 (since z2 ∈ 〈x〉2(k+1) ⊆ 〈x〉k+2).

Furthermore, since z ∈ 〈x〉k+1, we have that

z · ∂yF(x, Φk) = z · ∂yF(0, Φk(0)) mod 〈x〉k+2

since the other terms from the second multiplicand only contribute higher degree terms in x. Thus,

F(x, Φk + z) = F(x, Φk) + z · ∂yF(0, u) mod 〈x〉k+2,

= 0 mod 〈x〉k+2 when z = −
F(x, Φk)

∂yF(0, u)
,

=⇒ F(x, Φk+1) = 0 mod 〈x〉k+2.

Lemma B.5 (Mininum polynomials of approximate roots). Let F be a field of characteristic zero. Let

ϕ(x) ∈ F[x] and G(x, y) ∈ F[x, y] be polynomials such that G is irreducible of y-degree dy, x-degree d, is
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monic in y and satisfies

G(x, ϕ) ≡ 0 mod 〈x〉k ,

for some natural number k greater than 2dyd. If H(x, y) ∈ F[x, y] is a non-zero polynomial of y-degree at

most dy, x-degree d, is monic in y and satisfies

H(x, ϕ) ≡ 0 mod 〈x〉k ,

then, H must be equal to G.

Proof. We consider both G and H as univariates in y with coefficients in F(x). Let R be their

resultant with respect to the variable y. Clearly, from the definition of the resultant, we have that

R is a polynomial in F[x] of degree at most 2dyd. If R is identically zero, then we have from

Lemma B.3 that G and H have a non-trivial GCD as polynomials in F(x, y). But then, since G and

H are monic in y, it follows from Lemma B.4 that they must have a non-trivial GCD in F[x, y].

Now, since G is irreducible, this can happen only if G divides H. Since the degree of H is at most

d, we get that they must be a non-zero constant multiple of each other. But they are both monic in

y and hence they must be equal to each other. Thus, if R is identically zero, then we are done. It

now remains to show that R is indeed identically zero.

We have from Lemma B.3 that there exist polynomials A(x, y), B(x, y) such that

A(x, y)G(x, y) + B(x, y)H(x, y) = R(x) .

Now, plugging in y = ϕ(x) on both sides of the above equation, we get

A(x, ϕ(x))G(x, ϕ(x)) + B(x, ϕ(x))H(x, ϕ(x)) = R(x) .

But from the hypothesis of the lemma, we know that G(x, ϕ) ≡ 0 mod 〈x〉k and H(x, ϕ) ≡ 0

mod 〈x〉k. Moreover, k > 2dyd. Thus, the left-hand side of the identity above vanishes modulo

〈x〉2dyd+1. So, the resultant R vanishes modulo 〈x〉2dyd+1. But since its degree is less than 2dyd,

this means that R is identically zero as a polynomial in F[x]. This completes the proof of the

lemma.

Lemma 3.2 (Computing minimal polynomials of approximate roots). Let Φk(x) ∈ F[x] be provided

by an algebraic circuit of size and bit-complexity at most s. Suppose there exists a polynomial G(x, y) =
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∑
d
i=0 Gi(x)y

i that is monic in y and irreducible satisfying

G(x, Φk(x)) = 0 mod 〈x〉k+1,

deg G ≤ D,

degy G = d,

k ≥ 2Dd.

Then, given d and the circuit for Φk, for every i ∈ [d], we can compute an algebraic circuit (with only

x variables and no y), with divisions, of size and bit-complexity at most poly(s, d, D) for the polynomial

Gi(x). In particular, we can compute a circuit of size and bit-complexity poly(s, d, D) for G(x, y).

Proof. By Lemma B.5, we know that G must be the lowest degree polynomial of degree at most

D and y-degree at most d that satisfies G(x, Φk) = 0 mod 〈x〉k+1. We shall express this as a linear

system in terms of the coefficients of G.

G(x, y) = G0 + G1 · y + G2 · y2 + · · ·+ Gdyd

=
d

∑
i=0

Giy
i

=
d

∑
i=0

(

D

∑
j=0

Gij

)

· yi

where each Gij is the degree-j homogeneous part of the coefficient of yi in G. We will treat each

Gij as an indeterminate and express the condition G(x, Φk(x)) as a system of linear equations in

Gij’s.

For r = 0, . . . , k, let Φr
k = Φ

(r,0)
k + · · ·+ Φ

(r,k)
k where Φ

(r,ℓ)
k is the degree-ℓ homogeneous part of

Φr
k. Given a circuit of size s for Φk, we can obtain poly(s)-sized circuits for each of Φ

(r,ℓ)
k .

G(x, Φk) =
d

∑
i=0

D

∑
j=0

GijΦ
i
k =

d

∑
i=0

D

∑
j=0

k

∑
ℓ=0

GijΦ
(i,ℓ)
k

=
D+k

∑
m=0

(

d

∑
i=0

D

∑
j=0

GijΦ
(i,m−j)
k

)

where the last equality is just grouping the terms in terms of the x-degree. Thus, the condition
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that G(x, Φk(x)) = 0 mod 〈x〉k+1 can be expressed as

(

d

∑
i=0

D

∑
j=0

GijΦ
(i,m−j)
k

)

= 0 for all m = 0, . . . , k,

Gd,0 = 1,

Gd,j = 0 for all j > 0.

From the uniqueness of solution, it follows that the column rank of the constraint matrix M of this

linear system is full. Now, if the coefficient vector of G is a solution of M · z = b, then it is also a

solution of the linear system M† · Mz = M† · b, where M† denotes the conjugate transpose of M.

Moreover, from Lemma B.6, we have that M† · M is a square matrix of full rank. Thus, this unique

solution of M† · Mz = M† · b can be written in closed form as (M† M)−1(M† · b).

Now, by expressing the inverse (M† M)−1 = adj(M† M)
det(M† M)

, where adj refers to the ‘adjugate matrix’,

we get a circuit of size (and bit-complexity) poly(s, d, D) for each Gij, and hence, for G(x, y) =

∑
d
i=0

(

∑
D
j=0 Gij

)

· yi.

B.5 A basic linear algebra fact

We use the following basic fact in the proof of correctness of our algorithm.

Lemma B.6. Let M be an r × c matrix with entries in C[x] such that r ≥ c and the rank of M over the

field C(x) equals c.

Then, the rank of the c × c matrix M† M over the field C(x) is also equal to c. Here, M† denotes the

conjugate transpose of M.

Proof. Since the rank of M over C(x) equals c, there is a substitution a ∈ Cn for the variables such

that N = M(a) has rank c over C. To show that M† M is full rank over C(x) it suffices to show that

N†N is full rank over C. We do this by arguing that the kernel of N†N does not contain a non-zero

vector.

Let u ∈ Cn be an arbitrary non-zero vector. We now argue that any such u cannot be in the

kernel of N†N. To see this, consider the inner product 〈u, N†Nu〉 where 〈u, v〉 := u†v. Clearly,

this equals 〈Nu, Nu〉, which equals the square of the ℓ2 norm of the vector Nu. Since N has full

column rank and u us non-zero, we have that Nu is a non-zero vector in Cn, and thus its ℓ2 norm

is non-zero. Thus, N†Nu must be non-zero, and N†N must be full rank.

B.6 Irreducibility under a shift of variables

Since the final step of solving a linear system after Newton iteration works only when the candi-

date factor is irreducible, we need to ensure that the initial shift of variables does not affect the

irreducibility of the factors; this is guaranteed by the following lemma.
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Lemma B.7. Let F be a field and g(x) ∈ F[x] be an n-variate irreducible polynomial. Then, for every

a ∈ Fn, the polynomial G(x, y) := g(x + a · y) is also irreducible.

Proof. We will interpret the polynomial g(x) ∈ F[x] as g(x, y) ∈ F[x, y] with the property that

it does not depend on the variable y. The mapping (x, y) 7→ (x + α · y, y) is an invertible linear

transformation M on the vector of variables (x1, . . . , xn, y) = (x, y).

We shall prove the contrapositive of the claim: if the polynomial G(x, y) := g(M(x, y))

has a non-trivial factorization, then so does g. Formally, if g(M(x, y)) = g1(x, y) · g2(x, y) for

some non-constant polynomials g1 and g2, then g(x, y) = g1(M−1(x, y)) · g2(M−1(x, y)) such that

g1(M−1(x, y)) and g2(M−1(x, y)) are also non-constant polynomials. Observe that the operation

of taking a product of two polynomials commutes with the operation of applying a linear trans-

formation on the variables; it is easy to see for monomials, and it follows for polynomials by

linearity of M. Thus, applying M−1 on both sides of g(M[x, y]) = g1(x, y) · g2(x, y) gives us

that g(x, y) = g1(M−1(x, y)) · g2(M−1(x, y)). Here, g1(M−1(x, y)) and g2(M−1(x, y)) will be non-

constants since M is invertible. Thus, if G has a non-trivial factorization, then so does g.

B.7 Converting a circuit over a number field to a circuit over Q

Lemma B.8 (Constructing a circuit over the base field). Given as input an irreducible polynomial A(u)

of degree r and bit-complexity B, and a C, with divisions, of size and formal-degree at most s over a field
Q[u]
A(u)

that computes a polynomial g(x) ∈ Q[x]. There is a deterministic algorithm that can output another

circuit C′ with size poly(s, r, B) over the field Q computing the polynomial g(x).

Proof. For any polynomial p(u) ∈ Q[u], we will use (p mod A(u)) to denote the unique polyno-

mial p′(u) of degree less than A(u) such that A(u) | p(u)− p′(u).

We may assume without loss of generality4 that the input circuit C only has a division gate at

the root, i.e. it computes g in the form g(x) = Cnum(x)
Cden(x)

where Cnum and Cden are circuits without

divisions over Q[u]/A(u). Let s, d be bounds on the size and degree of the circuits, respectively,

of Cnum and Cden.

By interpreting u as a formal variable, let C′
num, C′

den ∈ Q[x] be the resulting polynomials (so

4The standard ‘division-elimination’ approach keeps tracks of numerators and denominators in gate of the original
circuit. This transformation only increases the size by a polynomial factor.
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that C′
num mod A(u) = Cnum and similarly for C′

den). We may write C′
num, C′

den as

C′
num = C

′(0)
num + C

′(1)
numu + · · ·+ C

′(d)
numud ∈ Q[x, u]

C′
den = C

′(0)
den + C

′(1)
denu + · · ·+ C

′(d)
den ud ∈ Q[x, u].

Cnum = (C′
num mod A(u)) = C

(0)
num + C

(1)
numu + · · ·+ C

(r−1)
num ur−1

=
d

∑
i=0

C
′(0)
num(ui mod A(u))

Cden = (C′
den mod A(u)) = C

(0)
den + C

(1)
denu + · · ·+ C

(r−1)
den ur−1

=
d

∑
i=0

C
′(0)
den(u

i mod A(u))

Using Lemma A.1, we can obtain circuits for each C
′(i)
den, C

′(i)
den of size at most poly(s, d), and thus

we can compute circuits for C
(i)
num and C

(i)
den as well.

To ‘invert’ Cden, we consider indeterminates b0, b1, . . . , br−1 such that

(C
(0)
den + · · ·+ C

(r−1)
den ur−1) · (b0 + b1u + · · ·+ br−1ur−1) = 1 mod A(u),

which is once again a linear system over the indeterminate bj’s, with coefficients being linear

combinations of the circuits C
(i)
den’s. We can therefore express the bj’s as efficient rational functions

using the circuits C
(i)
den’s via Cramer’s rule.

Finally, if Cnum
Cden

was indeed a polynomial g(x) ∈ Q[x], we must have that

((Cnum · (b0 + b1u + · · · br−1ur−1)) mod A(u)) = g(x).

Thus, we can once again compute the LHS above and return the circuit for the coefficient of u0 in

the above expression. The size and bit-complexity bounds follow readily from the description.
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