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Abstract

We consider the query complexity of testing local graph properties in the bounded-degree
graph model. A local property is defined in terms of forbidden subgraphs that are augmented
by degree information, where the latter account also for neighbors that are not in the subgraph.
Indeed, this formulation yields a generalized notion of subgraph-freeness, which extends the
standard notions of induced and non-induced subgraph freeness.

While it is tempting to conjecture that every local graph property has a constant-query
proximity-oblivious tester (in the bounded-degree graph testing model), this conjecture was
refuted by Adler, Kohler and Peng (32nd SODA and 36th CCC, 2021). In fact, they showed
that there exist local graph properties that cannot be tested (in this model) within a number
of queries that does not depend on the size of the graph. However, their proof gives no explicit
lower bound on the dependence of the query complexity on the size of the graph.

In this paper, we provide such an explicit bound. This is done by studying the query
complexity of the specific local graph property presented by Adler et. al.. In a natural (but not
standard) model, in which the tester is not given the size of the graph but rather only a rough
approximation of this size, this property has logarithmic (in the graph’s size) query complexity.
In the standard model, we only obtain a quadruple-logarithmic lower bound.
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1 Introduction

The study of testing graph properties is one of the main sub-areas within property testing (see
textbook [4]). Within this subarea, the bounded-degree graph model (introduced by Goldreich and
Ron [8] and reviewed in [4, Chap. 9]) is one of the two main models (the other being the dense
graph model, introduced by Goldreich, Goldwasser and Ron [7] and reviewed in [4, Chap. 8]).

Loosely speaking, in the bounded-degree graph model, for a fixed degree bound b ∈ N, we
represent n-vertex graphs by an incidence function of the form g : [n] × [b] → [n] ∪ {⊥} such that
g(v, i) is the ith neighbor of v (and g(v, i) = ⊥ if v has less than i neighbors). Distance between
n-vertex graphs is defined as the fraction of entries on which their (mutually closest) incidence
functions differ. The tester (for a fixed graph property) is given oracle access to such an incidence
function and has to distinguish between the case that the graph has the property and the case that
it is ϵ-far from the property, where ϵ > 0 is called the proximity parameter.

Of special interest are testers that make a number of queries that does not depends on the size of
the graph, but rather only on the proximity parameter. Such testers are said to have size-oblivious
query complexity. A special case of testers of size-oblivious query complexity is that of (one-sided
error) testers that repeat a basic constant-query test for a number of times that depends on the
proximity parameter (and accept if and only if all invocations of the basic test accept). These basic
tests are called proximity oblivious testers, and the probability that they reject a graph (a.k.a their
“detection probability”’) is a function of the distance of the graph from the property.

The study of proximity-oblivious testers for the bounded-degree graph model leads naturally to
the notion of a local graph property. This notion was formulated by Goldreich and Ron [9] in terms
of forbidden subgraphs that are augmented by degree information, where the latter account also
for neighbors that are not in the subgraph. Indeed, this formulation yields a generalized notion
of subgraph-freeness, which extends the standard notions of induced and non-induced subgraph
freeness. Loosely speaking, for a finite set F marked graphs, where vertices are marked full or
undetermined, we say that a graph G is F-free if no graph F ∈ F can be embedded in G such that
F is isomorphic to the induced subgraph of G and full vertices of F are mapped to vertices of G
that have no neighbors in G outside this induced subgraph.

It was shown in [9] that only local graph properties have a proximity-oblivious tester (in the
bounded-degree graph testing model), and it is tempting to conjecture that every local graph
property has a proximity-oblivious tester. However, this conjecture was refuted by Adler, Kohler
and Peng [1]. In fact, they showed that there exist local graph properties that cannot be tested
(in the bounded-degree graph model) within a number of queries that does not depend on the size
of the graph. However, their proof gives no explicit lower bound on the dependence of the query
complexity on the size of the graph. This deficiency of Adler et. al. [1] is inherent, because they
rely on an non-explicit result of [3].

In this paper, we provide such an explicit bound. This is done by studying the query complexity
of the specific local graph property presented by Adler et. al. [1]. Actually, the property used by
Adler et. al. [1] contains at most one unlabeled n-vertex graph for each n ∈ N (equiv., all n-vertex
graphs that are in the property are isomorphic to one another). Specifically, these graphs are
expanders (whereas a result of [3] implies that a property consisting solely of expanders cannot be
tested within size-oblivious query complexity).
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1.1 The starting point and the question we study

As stated above, our starting point is the construction of locally-characterizable expander graphs
provided by Adler et. al. [1].

Theorem 1.1 (a locally-characterizable sequence of expander graphs [1]): There exists a finite
collection of marked graphs, denoted F , such that the set of F-free graphs is an infinite set of
(bounded-degree) expander graphs. Furthermore, all n-vertex graphs that are F-free are isomorphic
to one another, and for some d ∈ N and each m ∈ N there exists an Θ(d4m)-vertex F-free graph.

The fact that the set of F-free n-vertex graphs are isomorphic to one another is quite striking, let
alone the fact that they are expanders. In contrast, by a prior result of Fichtenberger, Peng, and
Sohler [3], every infinite property of graphs that has a tester of size-oblivious query complexity must
contain an infinite hyperfinite subproperty. The point is that hyperfinite graphs are the “extreme
opposite” of expander graphs; hence, the property asserted in Theorem 1.1 does not have a tester
of size-oblivious complexity.

We stress that the foregoing argument cannot possibly yield an explicit lower bound on the
query complexity of a tester for the graph property asserted in Theorem 1.1. Obtaining such an
explicit lower bound requires specifying a graph property that satisfies Theorem 1.1 and analyzing
it with reference to its details (rather than only relying on the fact that it is not hyperfinite).

The graph constructed in [1]. The proof of Theorem 1.1 is pivoted at the Zig-Zag construction
of Reingold, Vadhan, and Wigderson [10]. Recall that they presented a sequence of graphs, (Gi)i∈N,
such that G1 = H2 for some constant-size expander H (of degree d and second-eigenvalue d/4) and
Gi = G2

i−1⃝z H, where ⃝z denotes the Zig-Zag product (and squaring a graph corresponds to
squaring its adjacency matrix). Furthermore, each vertex in Gi−1 is replaced in Gi by a cloud of
vertices of the same size as H, and edges of G2

i−1 yield “connections” between the corresponding
clouds in Gi (where the edges of the Zig-Zag product correspond to three-step walks on a graph
that combine these connections with copies of H that are “placed” on each cloud).

Loosely speaking, for each m ∈ N, the proof of Theorem 1.1 (provided in [1]) identifies a graph
that consists of the graphs G1, ..., Gm along with edges that connect each vertex of Gi−1 to each
vertex in the corresponding cloud of Gi. In fact, the construction (as surveyed in [6])1 is first
presented in terms of directed edge-colored graphs, and gadgets are later used to yield undirected
graphs (with no colors). Let us sketch this (directed edge-colored) version in more detail.

Constuction 1.2 (the construction of [1], directed edge-colored version (as surveyed in [6])): For
d ∈ N, let H be a d-regular d4-vertex graph. For every m ∈ N, letting n =

∑m
i=0 d

4i, we consider
the following n-vertex directed graph, denoted Gm, that is obtained by superimposing a full d4-ary
directed tree of height m and a copy of each of the Gi’s such that a copy of Gi is placed on the
vertices at level i (i.e., the vertices at distance i from the root of the tree).

1. For each i ∈ [m] and each vertex v of level i− 1, there are d4 directed edges, colored 1, ..., d4,
going from v to d4 distinct vertices of level i. These edges are called the tree edges, and v is
called the parent of these d4 vertices.

1The main presentation in [1] is in terms of first-order definable structures (of finite model theory).
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2. The vertices of level 1 are ordered according to the colors of their incoming edges, and a copy
of H2 is superimposed on them. That is, the jth vertex of level 1 is connected by a pair of
anti-parallel edges to the kth vertex of level 1 if and only if {j, k} is an edge in H2 (i.e., there
is a path of length two between j and k in H).2

(These anti-parallel edges are colored according to the ports used for edge {j, k} in H2).3

3. For every i ∈ [m − 1], the vertices of level i + 1 are ordered according to the colors of their
incoming tree edges and the order of their parent in the tree, and a copy of Gi+1 is placed
between them. Specifically, for each vertex v at level i, its children in level i+ 1 are denoted
(v, 1), ..., (v, d4), and a pair of anti-parallel edges connects vertices of this level (i.e., (v, j) and
(w, k)) if and only if there is an edge between them in Gi+1. (These anti-parallel edges are
colored according to the ports used for this edge in Gi+1).

(In other words, the vertices of Gm are associated with sequences of length at most m over
[d4], such that the vertex (σ1, ..., σi, σi+1) is the σth

i+1 child of (σ1, ..., σi); that is, a tree-edge
colored σi+1 goes from (σ1, ..., σi) to (σ1, ..., σi, σi+1)).

Let G denote the set of all graphs that are isomorphic to one of the Gm’s; that is, for every
n =

∑m
i=0 d

4i, an n-vertex graph G is in G if and only if G is isomorphic to Gm.

Indeed, for every i ∈ [m−1], the tree edges identify individual vertices at level i (i.e., a vertex of Gi)
with the d4-vertex clouds associated with them at level i+1 (i.e., a cloud in Gi+1), and the vertices
of that cloud are ordered according to the colors of the relevant tree edges. This ordering combined
with the colors of the edges in the ith level (which represent the ports of the corresponding edges
of Gi) determines the edges in the next level (as well as their color). (This determination is based
on the fact that Gi+1 = G2

i⃝z H.)
The fact that the graph property G is locally characterizable is a key result of [1]; that is, it is

shown that there exists a finite set of marked graphs F such that the set of F-free graphs equals
G. The proof is based on the tree structure of the Gm’s as well as on the connectivity of the Gi’s.
The fact that the graphs in G are expanders follows from the fact that the Gi’s are expanders and
the d4-to-one connections of vertices in level i+ 1 to vertices in level i.

As mentioned above, the fact that G is a set of expander graphs implies that G does not have
a tester of size-oblivious complexity. Recall that this is due to the fact, proved by Fichtenberger,
Peng, and Sohler [3], that every infinite property of graphs that has a tester of size-oblivious query
complexity must contain an infinite hyperfinite subproperty. But this argument does not provide
an explicit lower bound on the query complexity of testing G. Indeed, the main question addressed
in the current paper is

What is the query complexity of testing G?
We note that G can be tested within logarithmic query complexity: Essentially, using a logarithmic
number of queries, we can reach any desired vertex in the graph (provided that the graph is in
G) and check whether this vertex satisfies all local conditions. (See Section 4.1 for details.) In
contrast, it seems that locating a random vertex in a graph that is in G (e.g., even determining its
distance to the root) requires a logarithmic number of queries, and that this observation should
yield a lower bound on the query complexity of testing G. We clarify this strategy next.

2This includes the case that j = k, in which case the 2-edge path is actaully a non-simple cycle.
3The port of an edge {u, v} at vertex u is the index of v in the incidence list of u. When representing the graph

by the incidence function g, we say that the jth port of vertex u is used to connect to v if g(u, j) = v holds.
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An important note: Our entire presentation is carried out in terms of directed edge-colored
graphs, where the number of colors is a constant. To obtain analogous results for undirected
graphs (with no edge-colors), we replace the directed colored edges by constant-size gadgets such
that a different gadget is used for each different type of edges (i.e., a color of directed edges). In
addition, we make sure that the vertices of these gadgets are easily distinguishable from the original
edges (e.g., they can be made to have a different range of degrees). Hence, algorithms in one model
can be emulated by algorithms in the other model with a constant factor overhead.

1.2 The basic approach

We take the king’s road for proving query complexity lower bounds, which means following the
“indistinguishability technique” (see [4, Sec. 7.2]). Specifically, we wish to define two distributions
that must be distinguished by a tester for G, but cannot be distinguished by an algorithm that
makes fewer queries than the desired lower bound. In our case, for each n ∈ {

∑m
i=0 d

4i : m ∈ N}, a
natural choice of two distributions is the followings.

1. A random n-vertex graph (with vertex set [n]) in G; that is, a random isomorphic copy of
Gm, where n =

∑m
i=0 d

4i.

2. An n-vertex graph consisting of an isolated vertex and d4 graphs such each of these graphs
is a random n−1

d4
-vertex graph in G (equiv., d4 random isomorphic copies of Gm−1, where

n =
∑m

i=0 d
4i).4

Note that every graph G in the support of the second distribution is far from being an n-vertex
expander, because G consists of connected components that are each smaller than n/2. It also
seems hard to distinguish these two distributions when making a sub-logarithmic number of queries
(because we are unlikely to reach a root of a tree). Indeed, this is the case if the distinguisher is
not given the size of the graph (i.e., n) but is rather given only a sampling access to the vertices of
the graph (on top of being given oracle access to its incidence function). The point is that, in that
case, a random isomorphic copy of Gm−1 is indistinguishable from d4 random isomorphic copies of
Gm−1. However, in the standard model of testing graph properties, the tester is given the size of
the graph as an explicit input. In contrast, a more flexible model, put forward in [5], does support
a natural version that can be used here.

We start with describing the relevant flexible model that supports the aforementioned logarith-
mic lower bound (see Section 1.3). We then adapt the argument to the standard model, but derive
a much weaker lower bound (see Section 1.4).

1.3 In the flexible model

Recall that in the standard model, the tester is given the size of the graph, denoted n, as an explicit
input, and it is assumed that the vertex set equals [n]. This allows the tester to sample vertices
in the input graph. Treating graphs with different vertex-sets requires either providing the tester
with the vertex-set as explicit input or providing it with a “vertex-sampling device” (that returns
a uniformly distributed vertex in each invocation).

In [5], the latter option is taken as a starting point for the introduction of a general framework
in which the tester is given access to such a vertex-sampling device along with partial information

4Indeed, for n =
∑m

i=0 d
4i, it holds that n−1

d4
=

∑m
i=1 d

4(i−1) =
∑m−1

i=0 d4i.
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on the vertex-set. This partial information may take various forms, and three natural choices were
outlined in [5]:

Exact size version: As mentioned above, in this case the tester is explicitly given the exact
number of vertices in the input graph. Recalling that, in all cases, the tester is also given a
vertex-sampling device, this model is essentially equivalent to the standard model [5, Obs. 2.2].

No information version: This version is not adequate in case the query complexity depends on
the size of the graph. Hence, we don’t discuss it here (and the interested reader is referred
to [5]).

Approximate size version: In this intermediate version, the tester is given an adequate approx-
imation on the number of vertices in the graph. It seems natural to allow this approximation
to suffice for determining the query complexity of the tester (as well as reject in case the
property contains no graph with a number of vertices that equals the one in the input graph).
In our case, when given an n-bit input graph, it is natural to provide the tester with Θ(log n)
(i.e., any number in the interval [Ω(log n), O(log n)]) as well as with a bit indicating whether
or not n ∈ {

∑m
i=0 d

4i : m ∈ N}.

Our logarithmic lower bound applies to the approximate version. Specifically, we rely on the
fact that an arbitrary value in the interval [logd4 n ± O(1)] does not allow to distinguish m from
m − 1. It follows that a sublogarithnmic-query tester cannot distinguish the second distribution
(i.e., essentially, an n-vertex graph consisting of d4 isomorphic copies of Gm−1) from a random

isomorphic copy of Gm−1, which has n′ def= (n− 1)/d4 vertices. The point is that the approximated
size of the graph, given to the tester, does not separate n from n′ (i.e., logd4 n

′ ∈ [logd4 n ± 2]).
Hence, we prove

Theorem 1.3 (a lower bound on the query complexity of testing G in the flexible model): Consider
the task of testing whether an n-vertex graph is in G in the flexible bounded-degree model when the
tester obtains a poly(d)-factor approximation of n, and is guaranteed that n ∈ {

∑m
i=0 d

4i : m ∈ N}.
Then, the tester must make Ω(log n) queries.

Note that the O(log n)-query tester laconically outlined in Section 1.1 can operate also in the flexible
model, because it needs only a constant-factor approximation of log2 n. See Section 4.1 for details.

1.4 In the standard model

In contrast, when given the exact size of the graph, the tester is not asked to distinguish between
the second distribution (i.e., essentially d4 random isomorphic copies of Gm−1) and a random
isomorphic copy of Gm−1, but rather between the second distribution and a random isomorphic
copy of Gm. Furthermore, here, the vertex set of Gm equals [n], where n =

∑m
i=0 d

4i, and a random
isomorphic copy of Gm is obtained by applying a random permutation to the vertex names.

We stress that in Section 1.3 we avoided the question of whether a sublogarithmic-query algo-
rithm can distinguish the two distributions presented in Section 1.2; that is, rather than asking
whether the second distribution (i.e., essentially, an n-vertex graph consisting of d4 isomorphic
copies of Gm−1) is distinguishable from a random isomorphic copy of Gm, we asked whether it is
distinguishable from a random isomorphic copy of Gm−1.

5



Returning to the original question (which refers to the two distributions on n-vertex graphs
presented in Section 1.2), we proceed in several steps. First, we follow [9] in considering a canonical
tester that selects uniformly q start vertices (in the n-vertex graph) and explores all vertices that are
at distance at most q from these start vertices. This canonical tester, which has query complexity

Q
def
= q ·O(d4)q = exp(O(q)), can emulate any q-query tester, but its queries are oblivious of the size

of the graph (i.e., n). The subgraph seen in each of the q explorations is called the q-neighborhoods
of the corresponding start vertex.

Next, we observe that the canonical tester can distinguish between a random isomorphic copy
of Gm and a graph consisting of d4 random isomorphic copies of Gm−1 (and an isolated vertex)
based either on a difference in the probabilities that two random explorations collide (where these
explorations are started at two different vertices) or on a difference between the distributions of
q-neighborhoods of random vertices in (random isomorphic copies of) Gm and Gm−1.

Assuming that q = o(m), the first event (i.e., collision of random explorations) occurs with neg-
ligible probability, and so the real issue is the possible difference between random q-neighborhoods
(in the two distributions of graphs). Fixing q, let Xi denote the distribution of a random q-
neighborhood in (a random isomorphic copy of) Gi (i.e., the distribution of the q-neighborhood of
a random vertex in Gi). Then, the problem we face is that the distribution of Xm may (i.e., unless
proved differently) be very different from the distribution of Xm−1. Of course, it is possible that
Xm and Xm−1 are statistically close due to their arising from a similar iterative process (i.e., the
definition of Gi), but we don’t know if that is the case. Instead, we show that there exist m′ < m′′

in [0.5m,m] such that Xm′ and Xm′′ are sufficiently close.

The key observation is thatXi ranges over at most s
def
= QO(d4)·Q = exp(Õ(Q)) = exp(exp(O(q)))

values. Seeking m′ < m′′ that are both in [0.5m,m] such that the total variation distance between

Xm′ and Xm′′ is at most δ
def
= o(1/q), we observe that such a choice exists whenever (s/δ)s < m/2

(i.e., exp(Õ(s)) = o(m)).5 Hence, for a given n = Θ(d4m), we may set q such that

exp(Õ(exp(exp(O(q))))) = o(log n) (1)

and obtain m′ < m′′ in [0.5m,m] such that the total variation distance between Xm′ and Xm′′ is
at most o(1/q). Before spelling out how this yields the desired indistinguishability, we note that
Eq. (1) is satified by q = Ω(log log log log n).

The actual argument. For each m ∈ N, letting q = Ω(log log logm), we determine m′ < m′′

in [0.5m,m] such that the total variation distance between Xm′ and Xm′′ is at most o(1/q), set

n =
∑m′′

i=0 d
4i, and consider the following two distributions.

1. A random n-vertex graph in G; that is, a random isomorphic copy of Gm′′ .

2. An n-vertex graph consisting of
∑m′′−m′−1

i=0 d4i < d4(m
′′−m′) isolated vertices and d4(m

′′−m′)

graphs such each of these graphs is a random isomorphic copy of Gm′ .

(Recall that each graph in this distribution is far from G.)

(In Section 1.2 we used m′′ = m and m′ = m′′ − 1.)

5This observation can be proved by approximating each distribution over [s] by a distribution in which all proba-
bilities are integer multiples of δ/s.
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As stated above, the execution of an arbitrary q-query tester can be emulated by a canonical
tester that selects uniformly at random q start vertices and explores their q-neighborhood. On
input drawn from the first (resp., second) distribution, this algorithm will get q samples of Xm′′

(resp., Xm′), whereas (by our choice of m′,m′′ ∈ [m/2,m]) these two samples are statistically
close. It follows that the tester cannot distinguish the two distribution of n-vertex graphs unless
q = Ω(log log logm), whereas a valid test must distinguish these distributions (because the first
distribution is supported by G and the second distribution is supported by graphs that are far from
G). Observing that m > 0.2 · logd n, we obtain –

Theorem 1.4 (a lower bound on the query complexity of testing G in the standard model): Testing
G in the standard bounded-degree model has query complexity Ω(log log log log n), where n is the
number of vertices in the input graph.

Note that the argument does not use the fact that the various Xi’s are related via a relatively
simple and local operation; the argument is totally generic and uses only an upper bound on the
support size of the Xi’s (akin the argument in [2]).

1.5 Discussion

Our focus on the graph property G is rooted in the fact that this is (essentially) the only local
property that is known to have no testers of size-oblivious query complexity.6 While we established
a tight logarithmic lower bounds on the query complexity of testing G in the flexible model, our
lower bound in the standard model is significantly weaker. We leave improving it as an open
problem, conjecturing that a logarithmic lower bound holds also in this model.

Open Problem 1.5 (improving the lower bound on the query complexity of testing G in the
standard model): For starters, prove that the query complexity of testing G in the standard bounded-
degree model is Ω(log log log n), where n is the number of vertices in the input graph. Ultimately,
is the query complexity of this task Ω(log n)?

Of course, one may be more adventurous and ask whether there exist local graph properties with
significantly higher query complexity. This question can be asked also for the flexible model where
one is given an approximation of the size of the graph.

Open Problem 1.6 (a lower bound on the query complexity of testing local properties): Is there
a local graph property such that testing it requires q(n) = ω(log n) queries, where n denotes the
number of vertices in the input graph? For starters, consider the flexible bounded-degree graph
model when the tester obtains an adequate approximation of n, and is guaranteed that the property
contains an n-vertex graph.7 Ultimately, what about query complexity q(n) = nΩ(1)?

1.6 Organization

In Section 2 we review the relevant background, which includes the flexible model outlined in
Section 1.3 and the notion of generalized subgraph freeness (which underlies Theorem 1.1). In
Section 3 we provide a more detailed discussion of the graph property G. Specifically, we provide

6Variations on Construction 1.2 are presented in [6, Sec. 4].
7Tentatively, fixing a query complexity bound q, we consider ñ an adequate approximation of n if q(ñ) = Θ(q(n)).
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some hints as to why G is locally characterizable. This discussion (i.e., Section 3) is not essential
for reading the rest of this paper.

The core of the current paper is presented in Sections 4 and 5, which detail the overviews
provided in Sections 1.3 and 1.4, respectively. Specifically, Section 4 refers to the flexible model,
whereas Section 5 refers to the standard model.

2 Preliminaries

Throughout this text, we focus on bounded-degree graphs. In Section 2.1 we review the flexible
framework of testing graph properties in the bounded-degree model. This framework was introduced
in [5], and extends the standard model (introduced in [8] and reviewed in [4, Chap. 9]), which is
viewed here as a special case. In Section 2.2, we review the notion of generalized subgraph freeness
(introduced in [9]). In both sections, we include generalizations for directed graphs with edge
coloring.

2.1 Testing in the Bounded-Degree Graph Model

The standard model was introduced in [8] and is reviewed in [4, Chap. 9]. Here we present the
more flexible framework of [5]. For sake of convenience, we denote the degree bound by b (rather
than by d as is more common).8 Recall that graph properties are sets of graphs that are closed
under isomorphism.

The bounded-degree graph model refers to a fixed (constant) degree bound, denoted b ≥ 2.
In this model, a graph G = (V,E) of maximum degree b is represented by the incidence function
g : V × [b] → V ∪ {⊥} such that g(v, j) = u ∈ V if u is the jth neighbor of v and g(v, j) = ⊥ ̸∈ V
if v has less than j neighbors.9 Distance between graphs is measured in terms of their foregoing
representation; that is, as the fraction of (the number of) different array entries (over b · |V |).

The tester is given oracle access to the representation of the input graph (i.e., to the incidence
function g) as well as to a device that returns uniformly distributed elements in the graph’s vertex-
set, which is viewed as a set of strings (i.e., a finite subset of {0, 1}∗). As usual, the tester is also
given the proximity parameter ϵ ∈ (0, 1]. In addition, the tester gets some partial information
about the vertex-set (i.e., V ) as auxiliary input, where this partial information is an element of
a set of possibilities, denoted p(V ). Two extreme possibilities are p(V ) = {V }, which is closely
related to the standard formulation (see [5, Obs. 2.2]) and p(V ) = {λ}, but one can also consider
natural cases such as p(V ) = {|V |, |V |+ 1, ..., O(|V |)}.

Definition 2.1 (property testing in the bounded-degree graph model, flexible version): For a fixed
b ∈ N, let Π be a property of graphs of degree at most b, and p : 2{0,1}

∗
→ 2{0,1}

∗
. A tester for

the graph property Π (in the bounded-degree graph model) with partial information p is a probabilistic
oracle machine T that is given access to two oracles, an incidence function g : V ×[d] → V ∪{⊥} and
a device denoted Samp(V ) that samples uniformly in V , and outputs a binary verdict that satisfies
the following two conditions:

8This is done in order to allow using d for the degree of the basis graph in the Zig-Zag construction.
9For simplicity, we adopt the standard convention by which the neighbors of v appear in arbitrary order in the

sequence (g(v, 1), ..., g(v,deg(v))), where deg(v)
def
= |{j ∈ [b] : g(v, j) ̸= ⊥}|.
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1. The tester accepts each graph G = (V,E) ∈ Π with probability at least 2/3; that is, for every
g : V × [b] → V ∪{⊥} representing a graph in Π and every ι ∈ p(V ) (and ϵ > 0), it holds that
Pr[T g,Samp(V )(ι, ϵ)=1] ≥ 2/3.

2. Given ϵ > 0 and oracle access to any graph G that is ϵ-far from Π, the tester rejects with
probability at least 2/3; that is, for every ϵ > 0 and g : V × [b] → V ∪ {⊥} that represents a
graph that is ϵ-far from Π and ι ∈ p(V ), it holds that Pr[T g,Samp(V )(ι, ϵ)=0] ≥ 2/3, where the
graph represented by g : V × [b] → V ∪ {⊥} is ϵ-far from Π if for every g′ : V × [b] → V ∪ {⊥}
that represents a graph in Π it holds that |{(v, j) ∈ V × [b] : g(v, j) ̸= g′(v, j)}| > ϵ · b · |V |.

The tester is said to have one-sided error probability if it always accepts graphs in Π; that is, for
every g : V × [b] → V ∪ {⊥} representing a graph in Π (and every ι ∈ p(V ) and ϵ > 0), it holds
that Pr[T g,Samp(V )(ι, ϵ)=1] = 1.

The query complexity of a tester for Π is a function (of the parameters b, n and ϵ) that represents
the number of queries made by the tester on the worst-case n-vertex graph of maximum degree b,
when given the proximity parameter ϵ. Fixing b, we typically ignore its effect on the complexity
(equiv., treat b as a hidden constant).

Generalization for directed graphs with edge coloring. Directed graphs with edge colors
are represented by two incidence functions, one representing outgoing edges (and their colors) and
the other representing incoming edges (and their colors). The degree bound, b, refers to both
outgoing and incoming edges. Thus, a directed graph G = (V,E) (of maximum degree b) with edge
coloring χ : E → C is represented by the incidence functions gin, gout : V × [b] → (V × C) ∪ {⊥}
such that gout(v, j) = (u, c) ∈ V × C (resp., gin(v, j) = (u, c) ∈ V × C) if the ith outgoing (resp.,
incoming) edge of v is colored c and is an incoming (resp., outgoing) edge of vertex u; if v has less
than j outgoing (resp., incoming) edges, then gout(v, j) = ⊥ (resp., gin(v, j) = ⊥). Needless to say,
that is, if gout(v, j) = (u, c), then there exists k ∈ [b] such that gin(u, k) = (v, c).

Properties of directed edge-colored graphs are defined as sets of such graphs that are preserved
under relabeling of vertices (while leaving the edge directions and colors intact). Hence, saying that
the directed edge-colored graph represented by gin, gout : V × [b] → (V × C) ∪ {⊥} is ϵ-far from a
property Π of such graphs means that for every g′in, g

′
out : V × [b] → (V ×C)∪ {⊥} that represents

a graph in Π it holds that |{(v, j) ∈ V × [b] : gout(v, j) ̸= g′out(v, j)}| > ϵ · b · |V |. (Needless to say,
in this case |{(v, j) ∈ V × [b] : gin(v, j) ̸= g′in(v, j)}| > ϵ · b · |V | holds too.)

2.2 Generalized Subgraph Freeness Properties

The notion of a generalized subgraph-freeness, which extends the standard notions of induced and
non-induced subgraph freeness, was introduced in [9]. It is aimed to capture what one can see
by exploring a constant-radius neighborhood of a vertex in a graph that has some predetermined
graph property. The issue is that some vertices are fully explored (i.e., the explorer sees all their
neighbors), whereas for other vertices (at the boundary of the exploration) the explorer may only
encounter them but not all their neighbors (since it has not traversed their incident edges).

We shall actually consider the set of subgraphs that the explorer cannot encounter when ex-
ploring a graph that has the property, where these forbidden subgraphs are represented by marked
graphs, which are graphs in which each vertex is marked either full or semi-full or partial.
Intuitively, the marking full represent a vertex that is not at the boundary of the exploration,
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which means that all its incident edges were traversed. In contrast, vertices at the boundary are
marked as partial, whereas the marking semi-full is inessential (and is included for sake of
greater flexibility (see Footnote 10)).

Definition 2.2 (marked graphs, embedding, and generalized subgraph freeness): A marked graph
is a pair consisting of a graph and a marking of its vertices such that each vertex is marked either
full or semi-full or partial. We say that a marked graph F = ([h], A) can be embedded in
a graph G = ([N ], E) if there exists a 1-1 mapping ϕ : [h] → [N ] such that for every i ∈ [h] the
following three conditions hold:

1. If i is marked full, then ϕ yields a bijection between the set of neighbors of i in F and the
set of neighbors of ϕ(i) in G; that is, ΓG(ϕ(i)) = ϕ(ΓF (i)), where ΓX(v) denotes the set of
neighbors of v in the graph X, and ϕ(S) = {ϕ(v) : v∈S}.

2. If i is marked semi-full, then ϕ yields a bijection between the set of neighbors of i in F
and the set of neighbors of ϕ(i) in the subgraph of G induced by ϕ([h]); that is, denoting this
induced subgraph by G|ϕ([h]), it holds that ΓG|ϕ([h])(ϕ(i)) = ϕ(ΓF (i)) (equiv., ΓG(ϕ(i))∩ϕ([h]) =
ϕ(ΓF (i))).

3. If i is marked partial, then ϕ yields an injection of the set of neighbors of i in F to the set
of neighbors of ϕ(i) in G; that is, ΓG(ϕ(i)) ⊇ ϕ(ΓF (i)).

The graph G is called F -free if F cannot be embedded in G (i.e., there is no embedding of F in G
that satisfies the foregoing conditions). For a set of marked graphs F , a graph G is called F-free if
for every F ∈ F the graph G is F -free.

Indeed, the standard notion of (non-induced) subgraph freeness is a special case of generalized
subgraph freeness, obtained by considering the corresponding marked graph in which all vertices are
marked partial. Similarly, the notion of induced subgraph freeness is a special case of generalized
subgraph freeness, obtained by considering the corresponding marked graph in which all vertices
are marked semi-full.10

Marking vertices as full introduces a new type of constraint; specifically, this constraint man-
dates the non-existence of neighbors that are outside the subgraph that constitutes the image of the
embedding (of a marked graph). For example, using vertices that are marked full, it is possible to
disallow certain degrees in the graph (see Example 2.3). Thus, the generalized notion of subgraph
freeness includes properties that are not hereditary (e.g., regular graphs), whereas induced and
non-induced subgraph freeness are hereditary.

Example 2.3 (disallowing certian degrees via generalized subgraph freeness): For every d ∈
{0, 1, ..., b}, we can disallow vertices of degree d by using a (d + 1)-vertex star in which the center
is marked full and the d leaves are marked partial.

10Indeed, the semi-full marking (resp., the partial marking) can be avoided by emulating marked graphs by
sets of mark graphs that use only full and partial (resp., semi-full) marking. Emulating the partial marking by
semi-full marking is analogous to the emulation of non-induced subgraph freeness by induced subgraph freeness. As
for emulating the semi-full marking, here we replace each marked graph F by a set of marked graphs F ′ such that
each F ′ ∈ F ′ consists of a copy of F in which all semi-full-marked vertices are replaced by full-marked vertices
and are connected to some auxiliary vertices, which are all marked partial. We stress that F ′ reflects all possible
ways of connecting the newly full-marked vertices with the auxiliary vertices.
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The foregoing example as well as the next one are actually used in the proof of Theorem 1.1. The
following example refer to the case that we want to mandate that if the graph contains some fixed
subgraph H ′ then it actually contains additional edges (i.e., H \H ′) on the same vertices.

Example 2.4 (mandating some subgraph via generalized subgraph freeness): Let H ′ = ([h], A′)
be a subgraph of H = ([h], A), and suppose that we want to enforce that every induced subgraph of
G that contains H ′ also contains H. This can be obtained by requiring G to be F-free, where F is
the set of all marked h-vertex graphs that are consistent with H ′ but not with H. Specifically, F is
in F if F is embedded in every h-vertex graph that contains H ′ but not H.

For sake of completeness, we present the following definition, which we actually use only in informal
discussions and headings.

Definition 2.5 (locally characterizable properties): A graph property Π is called locally character-
izable if there exists a finite set of marked graphs F such that Π equals the set of F-free graphs.

We stress that Definition 2.5 is more restricted than [9, Def. 5.2]. The latter definition allows a
different set of marked graphs to be used for each graph size (as long as there is a uniform bound
on the size of all marked graphs used).

Generalization for directed graphs with edge coloring. The notions of marked graphs,
embedding, and generalized subgraph freeness extend naturally to the context of directed edge-
colored graphs. Specifically, we only need to redefine the function ΓX such that ΓX(v) describes
the set of (out-)neighbors of v in the graph X along with the corresponding edges; that is, (u, σ, c) ∈
ΓX(v) if and only if there exists an edge colored c that goes from v to u. Plugging this revised
definition in Definition 2.2, we obtained the desire definition of F-freeness, where F is a set of
marked directed graphs with edge colors.

3 On the graph property G
(The current section, which is not essential for the results of this paper, is reproduced from [6].)

Recall that the property G is defined by superimposing the graphs obtained in the Zig-Zag con-
struction with a directed tree of fixed arity. The local characterization of G is define by constraints
that capture the relation between Gi and Gi+1, where G1, G2, ... is the sequence defined by the
Zig-Zag construction (i.e., G1 = H2 and Gi+1 = G2

i⃝z H), which in turn is based on the Zig-Zag
product. Hence, we start with a description of the Zig-Zag product, which was introduced and first
studied in [10]. With these preliminaries in place, we provide some hints regarding the proof that
G is locally characterizable (see Section 3.2).

3.1 Preliminaries: The Zig-Zag Product

Given a (big)D-regular graphG = (V,E), and a (small) d-regular graphH = ([D], F ), their Zig-Zag
product, denoted G⃝z H, consists of the vertex set V × [D], which is partitioned to D-vertex clouds
such that the cloud that corresponds to vertex v ∈ V is the set of vertices Cv = {(v, i) : i∈ [D]},
and edges that correspond to certain 3-step walks (as detailed next).
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Actually, it is instructive to first consider the graph, denoted G⃝r H, in which copies of H
are placed on the clouds (i.e., for every v ∈ V and {i, j} ∈ F we place the intra-cloud edge
{(v, i), (v, j)}), and edges of G connect the corresponding clouds by using corresponding edges;
that is, if {u, v} ∈ E is the ith (resp., jth) edge incident at u (resp., at v), then we place the
inter-cloud edge {(u, i), (v, j)}. Note that each vertex in G⃝r H has d intra-cloud edges and a single
inter-cloud edge. Now, the edges of G⃝z H correspond to 3-step walks in G⃝r H that start with an
intra-cloud edge, then take the (only available) inter-cloud edge, and lastly take some intra-cloud
edge; that is, such a generic walk has the form (v, i)→(v, j)→(w, k)→(w, ℓ), where {i, j}, {k, ℓ} ∈ F
and {(v, j), (w, k)} is an inter-cloud edge in G⃝r H (i.e., {v, w} ∈ E is the jth edge incident at v
and the kth edge incident at w).

We shall assume that both G and H are connected and are not bipartite. In that case, it is clear
that the graph G⃝r H is also connected and non-bipartite, and it can be shown that also G⃝z H has
these properties. The main technical result of [10] asserts that the convergence rate of a random
walk on G⃝z H (a.k.a the relative second eigenvalue of the graph) can be upper-bounded in terms
of the convergence rates of random walks on G and on H. A simple form of their bound asserts
that λ(G⃝z H) ≤ λ(G) + λ(H), where λ(X) denotes the convergence rate of a random walk on the
graph X. Using λ(H) ≤ 1/4, it follows that if λ(G) ≤ 1/2, then λ(G2⃝z H) ≤ 1/2.

Note: For sake of simplicity, we assume that the edges of H can be colored using d colors. This
assumption can be met (since we are quite free in our choice of H).

3.2 On the local characterization of G

As stated in Section 1.1, Construction 1.2 describes a property of directed graphs with edge-
colors such that the property is local and the corresponding underlying graphs are expanders. The
construction will be presented in terms of local conditions that the edges of the graph are required
to satisfy, where the local conditions are enforced by forbidden neighborhoods of constant size (akin
those in Examples 2.3 and 2.4). Indeed, the forbidden neighborhoods correspond to directed and
edge-colored versions of marked graphs, which are defined analogously to the Definition 2.2.

Recall that, for each m ∈ N, Construction 1.2 identifies a graph that consists of the graphs
G1, ..., Gm (of the Zig-Zag construction) along with edges that connect each vertex of Gi−1 to each
vertex in the corresponding cloud of Gi. Hence, the construction consists of two parts: (1) edges
that represent the edges of G1, ..., Gm, and (2) edges that form a d4-ary tree in which each vertex
in Gi−1 is connected to all vertices of the corresponding cloud of Gi. Below, we show how this
structure is enforced by postulates that can be expressed by local conditions.

The main part of the construction will be directed edges that represents the edge-rotation
functions of the graphs G1, ..., Gm. Recall that the edge-rotation function of an undirected graph
extend its incidence function such that the pair (u, α) is mapped to the pair (v, β) if the αth edge
of u equals the βth edge of v (equiv., the αth port of vertex u is connected to the βth port of vertex
v). In such a case, we shall color the directed edge (u, v) with the color (α, β).

Recall that H is a d-regular d4-vertex graph and that G1 = H2 and Gi = G2
i−1⃝z H are d2-

regular d4i-vertex graphs. The edges of these d2-regular graphs (i.e., G1, ..., Gm) will be represented
by d4 edge sets such that each edge set represents edges between a pair of indices of possible ports.
Specifically, for every α, β ∈ [d2], we consider the edge-set Eα,β such that (u, v) ∈ Eα,β if for some
i there exists an edge in Gi that connects the αth port of vertex u to the βth port of vertex v.
Indeed, Eα,β is viewed as a set of directed edges that are colored (α, β), and we postulate that
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(u, v) ∈ Eα,β if and only if (v, u) ∈ Eβ,α. Letting E
def
=

⋃
α,β∈[d2]Eα,β, we refer to (u, v) ∈ E as

an E-edge (and to (u, v) ∈ Eα,β as an Eα,β-edge). The E-edges represent the edges of G1, ..., Gm

without distinguishing the different Gi’s.
We stress that the foregoing anti-parallel postulate is a very minimal one; far more substantial

conditions will be postulated about the E-edges by referring also to other edges that will induce
a layered directed acyclic graph win which Gi is identified with the ith layer. Indeed, the actual
structure of the graphs G1, ..., Gm will be enforced by relating each Gi to Gi−1.

As a warm-up, suppose that we want to augment the graph with auxiliary (colored) edges
that will capture 2-step walks on the original graph. In such a case, we introduce, for every
α, β, γ, δ ∈ [d2], an edge-set E′

(α,γ),(δ,β) such that (u,w) ∈ E′
(α,γ),(δ,β) if and only if there exists v

such that (u, v) ∈ Eα,β and (v, w) ∈ Eγ,δ. (We stress that the latter condition is a local condition
about the edge-sets Eα,β, Eγ,δ and E′

(α,γ),(δ,β); actually, we will use E′ only as a shorthand.)11

As stated above, the structure of the graphs G1, ..., Gm is enforced by relating each Gi to Gi−1,
where we define G0 to be the graph consisting of a single vertex. The first step in enforcing this
relation is the association of vertices in Gi−1 with clouds of vertices in Gi such that each cloud
contains d4 vertices that are identified (equiv., ordered) within the cloud; that is, the d4 ports of each
vertex in G2

i−1 are associated with distinct vertices of the corresponding cloud. This association is
enforced by using edges that are directed from each vertex of Gi−1 to the corresponding cloud of Gi

such that these d4 edges are assigned different colors. Specifically, for each σ ∈ [d4], we introduce a
set of directed edges, denoted Pσ, and postulate that each vertex has at most one outgoing Pσ-edge

and at most one incoming P -edge, where P
def
=

⋃
σ∈[d4] Pσ. Indeed, (u, v) ∈ Pσ implies that v is the

σth vertex in the cloud associated with u, where u is the “parent” of v in the directed tree induced
by P . Additional postulates are added to identify the vertices of G0 and Gm; specifically:

1. Intuitively, we postulate that there exists a single vertex with no incoming P -edges; the graph
G0 will consist of this vertex.

Actually, we postulate that there exists at most one vertex with no incoming P -edges; the
existence of such a vertex will follows from the tree structure of the P -edges (see below).

2. We postulate that the P -outdegree of each vertex is either 0 or d4 (equiv., each vertex either
has no outgoing P -edges or has at least d4 outgoing P -edges).

3. Intuitively, we postulate that all vertices that have no outgoing P -edges belong to the same
Gi, and that i = m.

Actually, we postulate that vertices that are connected by E-edges have the same number of
outgoing P -edges (equiv., the same number of outgoing Pσ-edges, for every σ ∈ [d4]). The
fact that vertices with no outgoing P -edges are in Gm follows from the first item (i.e., for
i ≥ 1, the graph Gi cannot contain vertices with no incoming P -edges).

Combining the foregoing postulates with additional postulates that refer to E-edges, this implies
that the P -edges form a directed d4-ary tree such that all leaves are at the same distance from the

11An alternative presentation may use E′ explicitly. In such a presentation Gi = G2
i−1⃝z H is decomposed into

G′
i−1 = G2

i−1 and Gi = G′
i−1⃝z H. In this case (assuming we keep G1 = H2 at level 1), odd (resp., even) levels of the

tree will consist of copies of the Gi’s (resp., G
′
i’s), and tree edges of a different color will be used to connect vertices

of Gi to their copy in G′
i. Such an alternative presentation makes the postulates that related Gi to Gi−1 simpler,

but this comes at a cost of a slightly more complicated postulates regarding the tree edges (which are treated next).
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root. We warn that establishing this tree structure is the most complex part of the proof of [1,
Thm. 3.1].

Next, we postulate that the E-edges between the d4 vertices that neighbor the single vertex of
P -indegree 0 (i.e., the vertex of G0) form a copy of H2. Specifically, recalling that these vertices
are identified by their incoming P -edges, we postulate that (u, v) ∈ E if and only if there exist
σ, τ ∈ [d4] such that u (resp., v) has an incoming Pσ-edge (resp., Pτ -edge) from G0 and {σ, τ} is
an edge in H2. Furthermore, in this case (u, v) ∈ Eα,β if and only if the foregoing edge in H2 uses
the αth port of u and the βth port of v (for some α, β ∈ [d2]).

Figure 1: Vertex u (resp., v) is the σth (resp., τ th) vertex in the cloud Cu′ (resp., Cv′) that replaces
u′ (resp., v′); these clouds are connected by an edge colored σ′, τ ′.

The main issue is relating the E-edges of Gi = G2
i−1⃝z H to those of Gi−1, for i > 1. We stress

that i itself cannot and is not referred to in this enforcement. Instead, we refer to any (x, y) ∈ E
such that x and y have outgoing P -edges and introduce conditions on the opposite endpoints of
these P -edges; that is, we mandate E-edges among d of the P -neighbors of x (which reside in
the cloud that replaces x) and d vertices of the P -neighbors of y (which reside in the cloud that
replaces y). Specifically (as depicted in Figure 1 (while ignoring c1, c2)), for (c1, c2) ∈ [d]2 ≡ [d2], we
postulate that (u, v) ∈ E(c1,c2),(c2,c1) if and only if there exist σ, τ, σ′, τ ′ ∈ [d4] and (u′, v′) ∈ E′

σ′,τ ′

(i.e., u′ and v′ are connected by a 2-path colored (σ′, τ ′) (see warm-up)) such that

1. {σ, σ′} is an edge colored c1 in H.12

2. {τ, τ ′} is an edge colored c2 in H.

3. (u′, u) ∈ Pσ and (v′, v) ∈ Pτ .

Intuitively, these conditions imply that, for some i, the vertices u′ and v′ are connected in G2
i−1,

whereas u and v are vertices in the corresponding clouds of Gi. Furthermore, u (resp., v) is
associated with the σth (resp., τ th) vertex of H, which in turn neighbor vertex σ′ (resp., τ ′) of H

12Recall that we assumed, for sake of simplicity, that the edges of H can be colored using d colors.
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(see Figure 1). Moreover, for σ ≡ (α, γ) ∈ [d2]2, vertices u′ and v′ are connected in Gi−1 by a
2-path that uses the port α ∈ [d2] of u′ and the port γ ∈ [d2] of the intermediate vertex (whereas
τ ′ = (δ, β) such that δ and β are the ports used in walking this 2-path in the opposite direction).

Indeed, the 2-paths referred to here are the edges of E′ def=
⋃

σ′,τ ′∈[d4]E
′
σ′,τ ′ , which were defined in

the warm-up.
The foregoing description suggests that the P -edges of a graph that satisfies the listed postulates

form a d4-ary directed tree such that all leaves are at the same distance from the root, and that the
subgraph (of E-edges) induced by the set of vertices that are at distance i from the root equals Gi.
This is indeed the case, but proving the former fact (which refers to the P -edges) requires using
also the postulates that refer to the E-edges.13 This is core of the analysis provided in [1, Sec. 3.1].
Hence, we have

Lemma 3.1 (the postulated conditions determine a unique unlabeled directed n-vertex graph):
For n =

∑m
i=0 d

4i, an n-vertex (unlabeled edge-colored) directed graph satisfies the foregoing condi-
tions14 if and only if it consists of the graphs G0, G1, ..., Gm (such thatG1 = H2 andGi = G2

i−1⃝z H)
that are connected by P -edges as outlined above (i.e., each vertex in Gi−1 is connected by an Pσ-edge
to the σth vertex in the corresponding cloud of Gi). If n > 1 is not of the foregoing form, then no
n-vertex graph satisfies these conditions.

We note that the foregoing conditions can be enforced by forbidden neighborhoods of constant
distance (akin those in Examples 2.3 and 2.4). Indeed, the forbidden neighborhoods correspond
to directed and edge-colored versions of marked graphs, which are defined analogously to the
Definition 2.2.

The foregoing n-vertex graph (consisting of G0, G1, ..., Gm and the P -edges) has constant degree.
We also observe that the corresponding undirected graph is an expander, by using the combinatorial

13Specifically, the postulates that refer to P -edges only enforce that the corresponding graph consists of at most
one directed tree and a collection of directed cycles such that each vertex on each cycle is a root of a directed tree.
However, the postulates that refer to E-edges imply that no such cycles exist, and so the graph consists of a single
directed tree.

14Following is a compilation of all the conditions.

� The edge-rotation (i.e., anti-parallel) condition: (u, v) ∈ Eα,β if and only if (v, u) ∈ Eβ,α

� The parental (i.e., P -edges) conditions:

– For every σ ∈ [d4] and every u, there exists at most one v such that (u, v) ∈ Pσ.

– For every v, there exists at most one u such that (u, v) ∈ P .

– There exists at most one v such that for every u it holds that (u, v) ̸∈ P .

– For every u, the set {v : (u, v) ∈ P} is either empty or has size d4, where in the latter case it holds that,
for every σ ∈ [d4], there exists a unique v such that (u, v) ∈ Pσ.

– For every (u, u′) ∈ E it holds that |{v : (u, v) ∈ P}| = |{v′ : (u′, v′) ∈ P}|.

� The base graph (“level one”) condition: Let r denote the vertex that has no incoming P -edges, and vσ be such
that (r, vσ) ∈ Pσ (for σ ∈ [d4]). Then, (vσ, vτ ) ∈ E(c1,c2),(c2,c1) if and only if there exists ρ ∈ [d4] such that
{σ, ρ} is an edge colored c1 in H and {ρ, τ} is an edge colored c2 in H.

� The Zig-Zag condition: For (c1, c2) ∈ [d]2 ≡ [d2], we postulate that (u, v) ∈ E(c1,c2),(c2,c1) if and only if there
exist σ, τ, σ′, τ ′ ∈ [d4] and (u′, v′) ∈ E′

σ′,τ ′ (i.e., u′ and v′ are connected by a 2-path colored (σ′, τ ′) (see
warm-up)) such that {σ, σ′} is an edge colored c1 in H, {τ, τ ′} is an edge colored c2 in H, (u′, u) ∈ Pσ, and
(v′, v) ∈ Pτ .
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notion of expansion. This is the case because each of the Gi’s is an expander, whereas each vertex
in Gi−1 is connected to d4 different vertices in Gi. Hence, for every set of vertices S and each
i, letting Si denote the vertices of S that reside in the d4i-vertex graph Gi, we observe that if
|Si−1| ≤ d4(i−1)/2 then Si−1 contributes to the expansion inside Gi−1 and otherwise Si−1 neighbors
d4 · |Si−1| > d4i/2 vertices in Gi.

Lastly, we observe that the foregoing construction can be converted to the context of (simple)
undirected graphs (with no edge-colors). This is done by replacing each color class and edge-
direction by a different gadget such that the gadgets are non-isomorphic and their vertices can be
distinguished from the original ones. In particular, we may use gadgets that contain vertices of
higher degree than the degree of the original vertices. The same transformation is applied to the
(directed and edge-colored) forbidden neighborhoods that enforce the conditions imposed on the
(directed and edge-colored) construction. This yields a corresponding finite set of marked graphs,
denoted F , that satisfies the following –

Proposition 3.2 (a locally-characterizable property of expander graphs): The set of F-free graphs
is an infinite set of expander graphs. Furthermore, this set contains a single unlabeled Θ(d4m)-vertex
graph for every m ∈ N.

We mention that, by using additional constraints, one can force these expanders to be regular
graphs. In fact, this is done in [1].

4 In the Flexible Model

We shall consider a flexible version of the bounded-degree graph model in which the tester is
provided with an O(b)-factor approximation of n (i.e., the number of vertices in the input graph)
along with an indication of whether or not n is in {

∑m
i=0 d

4i : m ∈ N}. Actually, we shall only
consider inputs that are n-vertex graphs such that n ∈ {

∑m
i=0 d

4i : m ∈ N}. In addition, as usual,
the tester is provided with uniformly and independently distributed samples of the vertex-set and
oracle access to the incidence function of the graph.

4.1 The tester

Following the laconic outline in Section 1.1, we first present a tester for G. We stress that this tester
uses the approximation to the number of vertices in the input graph only in order to determine a
bound on the number of levels in the tree (which exists in the input graph in case the input graph
is in G). Using the colors of edges, it is easy to determine which edges are tree edges, and to reach
the root of the tree by making a logarithmic number of steps. This also determines a candidate
for the number of levels in the tree, denoted m. Furthermore, the colors of the tree edges allow to
identify each vertex in each of the Gi’s that reside in the levels of any graph that is isomorphic to
Gm.

Algorithm 4.1 (the tester for the directed edge-colored version): On input a proximity parameter
ϵ > 0 and an approximation ñ to n ∈ {

∑m
i=0 d

4i : m ∈ N}, when given oracle access to an n-vertex
directed edge-colored graph G, the algorithm sets ℓ = O(log ñ) and proceeds as follows.

1. It selects uniformly O(1/ϵ) random vertices, and checks whether the same vertex is reached
from each of these vertices when taking at most ℓ steps against the direction of the tree edges
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(i.e., at each step, the algorithm traverses the incoming tree edge, and if this edge is not
unique, then the algorithm rejects).

If not all walks reached the same vertex, the algorithm reject. Otherwise, the reached vertex
is declared ti be the tentative root of the tree, and m is defined to be the maximal number of
steps taken in one of these walks (till reaching the root).

2. For each i ∈ [m], the algorithm repeats the following check for ti
def
= ⌊O(2−(m−i)/ϵ)⌋ times.

(a) The algorithm takes a random walk of length i from the root towards the leaves, where an
i-step random walk is determined by selecting a sequence of i colors of tree edges (i.e., a
random element of [d4]i) and traversing the corresponding edges in the forward direction.

(b) For each vertex reached, the algorithm checks whether its neighborhood (at the same
level) matches the neighbors of the corresponding vertex in Gi.

Recall that the vertex in the input graph G is identified by the sequence of the colors of
the tree edges leading to it, and that the vertices in Gi are identified analogously (via the
iterative process Gj = G2

j−1⃝z H, where G1 = H2).15 By the neighborhood of a vertex
we mean the set of its neighbors along with the color of each of the corresponding edges.

3. The algorithm takes O(1/ϵ) random walks of length m from the root towards the leaves and
checks that the vertices reached have no outgoing tree edges.

If any of the checks performed in Steps 2 and 3 fails, then the algorithm rejects. Also, if during
any of the walks the algorithm encounters a vertex with more than a single incoming tree edge or
two or more outgoing tree edges that have the same color, then it rejects. Otherwise, the algorithm
accepts.

Algorithm 4.1 makes
∑

i∈[m] ti = O(ϵ−1 · log ñ) queries, which means that the query complexity

is O(ϵ−1 · log n), provided that ñ ≤ poly(n). Note that the foregoing description presumes that
n ∈ {

∑m
i=0 d

4i : m ∈ N}. Recall that in the model that we consider, the tester also gets an indication
of whether or not n is in {

∑m
i=0 d

4i : m ∈ N}. Indeed, in the case of a negative indication, the
tester may reject without even looking at the input graph.

Claim 4.2 (Algorithm 4.1 accepts inputs in G): If G = Gm and ñ ≥ n
def
=

∑m
i=0 d

4i, then Algo-
rithm 4.1 accepts with probability at least 2/3.

The two-sided error of Algorithm 4.1 is due to Step 3, and arises from the fact that this algorithm
does not get n. Hence, m is determined based on the empirical evidence (rather than derived from
n), and may be smaller than the actual value (as determined by n).16

Proof: We first observe that Step 1 never rejects, and that, with very high probability, at least
one of the vertices selected in Step 1 is at level m of G = Gm. In this case, Step 1 determines m
correctly. Consequently, none of the checks performed in Steps 2 and 3 fails, and the algorithm
accepts.

15For more details, see Construction 1.2 and Section 3.2.
16Indeed, an analogous algorithm for the standard model, where the tester gets the exact value of n, has one-sided

error.
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Lemma 4.3 (Algorithm 4.1 rejects inputs that are far from G): If G is ϵ-far from G, then Algo-
rithm 4.1 rejects with probability at least 2/3.

Proof: We actually prove the contrapositive; that is, assuming that G is accepted with probability
greater than 1/3, we shall prove that G is ϵ-close to Gm such that n =

∑m
i=0 d

4i. Recall that n
denotes the actual number of vertices in G, and let m be such that n =

∑m
i=0 d

4i holds.
We first observe that if Step 1 determines a wrong value of m, denoted m′, then (with high

probability) the algorithm rejects. Specifically, if m′ > m, then (with high probability) a random
m′-step walk towards the leaves of the tree gets stuck, because the tentative root of G along with
the tree edges determine a tree with at most d4m leaves. On the other hand, m′ < m is unlikely
because if most vertices reside at distance at most m′ from some root, then Step 1 rejects (with

high probability), and otherwise Step 3 rejects. (In the first case at most
∑m′

i=0 d
4i < n/d4 vertices

reside in the sub-tree that is rooted in any specific vertex.)
Next, based on the checks performed in Step 2, we infer that, for every i ∈ [m], at least a

(1 − 2m−i−2 · ϵ) fraction of the i-step walks from the declared root (towards the leaves) reach
vertices with a neighbourhood that matches the neighbourhood of the corresponding vertex in Gi.
(Recall that the vertices in G are identified by the colors of the sequence of tree edges leading to
them from the root, whereas vertices in Gi are identified via the iterative process Gj = G2

j−1⃝z H.)
It follows that, for every i ∈ [m], the subgraph of G induced by the set of vertices that are at
distance i from the declared root is 2m−i−2 · ϵ-close to Gi.

Lastly, by Step 3 all but at most ϵd4m/4 vertices at distance m from the root have outgoing tree
edges. Likewise, all but at most ϵd4i/4 vertices at distance i ∈ [m] from the root have more than
a single incoming tree edge or more that a single outgoing tree edge per each color. Removing the
possible excessive tree edges, whose total number is smaller than ϵbn/4, we obtain a graph that is
ϵ/2-close to Gm.

4.2 The lower bound (i.e., proof of Theorem 1.3)

The proof of Theorem 1.3 reduces to proving the following.

Claim 4.4 (indistinguishability claim): Let A be an arbitrary (m−ω(logm))-query algorithm that
explores an input graph when given the parameter m ∈ N. Then, for any m ∈ N, algorithm A
cannot distinguish a random isomorphic copy of Gm−1 from a graph consisting of an isolated vertex
and d4 random isomorphic copies of Gm−1; that is, denoting the two distributions by Y and Z,
respectively, it holds that

|Pr[AY (m)=1]− Pr[AZ(m)=1]| = o(1).

Note that a tester for G (in the current model) may be given ñ
def
=

∑m
i=0 d

4i in both cases (i.e., we
may think of it as being given m), since ñ is an O(d4)-approximation of the size of the graph in
both cases.17 Recalling that a tester for G (in the current model) must accept (with probability at
least 2/3) any graph in the support of the first distribution and reject (with probability at least 2/3)
any graph in the support of the second distribution, the theorem follows.

Proof: Letting q = m− ω(logm) denote the query complexity of the algorithm, we observe that
the algorithm can distinguish the two distributions only if one of the following event occurs:

17Actually, ñ equals the size of the graph in the second case (i.e., the size of Z).
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1. The algorithm reached a vertex with no incoming tree edges.

2. The algorithm reached the same vertex by two different explorations that started at different
sampled vertices (i.e., different vertices provided by the vertex sampling device).

The first event may occur only if the algorithm got a sample that is at distance ℓ
def
= (m−1)−q from

the leaves, but such an event may occur with probability at most q ·2 ·d−4ℓ < m ·exp(−ω(logm)) =
o(1). Turning to the second event, we observe that it occurs with probability at most

(
q
2

)
·d−4(m−1) =

o(1). The claim follows.

5 In the Standard Model: Proof of Theorem 1.4

Recall that a random isomorphic copy of Gm is obtained by relabeling the vertices of the graph
(which are elements of [n]) by using a uniformly distributed permutation of [n], where n =

∑m
i=0 d

4i.
In continuation to the outline in Section 1.4, we prove the following claim

Claim 5.1 (indistinguishability claim): For any m ∈ N and some q = Θ(log log logm), there exists

m′ < m′′ ∈ [0.5m,m] such that no q-query algorithm, when given n =
∑m′′

i=0 d
4i, can distinguish the

following two distributions over n-vertex graphs.

1. (Distribution 1): A random n-vertex graph in G; that is, a random isomorphic copy of Gm′′.

2. (Distribution 2): A n-vertex graph consisting of
∑m′′−m′−1

i=0 d4i isolated vertices and d4(m
′′−m′)

graphs such each of these graphs is a random isomorphic copy of Gm′.

Observing that n = O(d4m) and that the graphs in the second distribution are all far from being
in G, it follows that a tester for n-vertx graphs in G must make more than q queries. Hence,
Theorem 1.4 follows.

Proof: Following [9], we consider a canonical tester that, on input n and oracle access to an
n-vertex graph G, selects uniformly q start vertices in G and explores their q-neighborhoods (i.e.,
the subgraphs induced by all vertices that are at distance at most q from each of these start
vertices). Such a canonical tester can emulate the execution of any q-query, and its decision depends
only on n and on the q samples of q-neighborhoods of G, where a sample of a q-neighborhood is
the q-neighborhood of a uniformly distributed vertex in G. Letting Y (resp., Z) denote the q-
neighborhood of a random vertex in a graph selected from Distribution 1 (resp., Distribution 2),
it follows that the distinguishing gap of the canonical tester equals the total variation distance
between q independent samples of Y and q independent samples of Z.

In light of the fact that the probability that different samples of Y collide (i.e., the intersection
between q-neighborhoods is not empty) is different from the probability of collision among samples
of Z, we first upper-bound the probability of such collisions. Recalling that the number of vertices

in each of these q-neighborhoods is Q
def
= exp(O(q)), we upper-bound the probability of collision by(

2
q

)
·Q2 · d−4m′

= o(1), since q = o(m′). Hence, it suffices to show that the total variation distance
between a single sample of Y and a single sample of Z is o(1/q).

Fixing q, let Xi denote the distribution of a random q-neighborhood in (a random isomorphic
copy of) Gi (i.e., the distribution of the q-neighborhood of a random vertex). We show that there
exist m′ < m′′ in [0.5m,m] such that the total variation distance between Xm′ and Xm′′ is o(1/q).

19



The key observation is that Xi ranges over at most s
def
= QO(d4)·Q = exp(Õ(Q)) = exp(exp(O(q))

values. Now, for δ = o(1/q), let X ′
i be a distribution that is δ-close to Xi such that Pr[X ′

i =x] is
an integer multiple of δ/s. Then, the number of possible distributions of the latter form (called
s/δ-grained in [4, Sec. 11.2.2]) is smaller than (s/δ)s < exp(Õ(s)) = exp(exp(exp(q))), which is
smaller than m/2 by a suitable choice of q. The claim follows

A possible avenue towards addressing Problem 1.5. For every m, q ∈ N and Xm as defined
in the proof of Claim 5.1, it is tempting to conjecture that the total variation distance between Xm

and Xm−1 is exp(−(m−O(q))). If this is indeed the case, then the query complexity of testing G
(in the standard bounded-degree model) is Ω(log n), where n is the number of vertices in the input
graph. In general, an upper bound of the form exp(−(m− f(q))) would yield a lower bound of the
form Ω(f−1(log n)). Hence, we suggest the following open problem.

Open Problem 5.2 (relatingXm andXm−1): For every m, q ∈ N, let Xm denote the q-neighborhood
of a random vertex in a random isomorphic copy of Gm. Provide an upper bound on the total vari-
ation distance between Xm and Xm−1.
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