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Abstract

In this work we study oblivious complexity classes. Among our results:

• For each k ∈ N, we construct an explicit language Lk ∈ O2P that cannot be computed by
circuits of size nk.

• We prove a hierarchy theorem for O2TIME. In particular, for any function t : N → N we
show that: O2TIME[t(n)] ⊊ O2TIME[t(n)4 log9(t(n))].

• We prove new structural results connecting O2P and S2P.

• We make partial progress towards the resolution of an open question posed by Goldreich
and Meir (TOCT 2015).

• We identify the first natural problem in O2P, that is not expected to be in either P or even
BPP.

To the best of our knowledge, these results constitute the first explicit fixed-polynomial lower
bound, hierarchy theorem and hard natural problem for O2P. The smallest uniform complexity
class for which such lower bounds were previously known was S2P due to Cai (JCSS 2007). In
addition, this is the first uniform hierarchy theorem for a semantic class. All previous results
required some non-uniformity.

In order to obtain some of the results in the paper, we introduce the notion of uniformly-
sparse extensions which could be of independent interest.
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1 Introduction

Proving circuit lower bounds has been one of the holy grails of theory of computation with strong
connections to many fundamental questions in complexity theory. For instance, proving that there
exists a function in E1 that requires exponential-size circuits would entail a strong derandomization:
BPP = P and MA = NP [NW94, IW97]. And yet, while by counting arguments (i.e. [Sha49]) the
vast majority of Boolean functions/languages do require exponential-size circuits, the best ‘explicit’
lower bounds are still linear! (in fact the best known lower bound for any language in ENP is just
linear [LY22]). Indeed, although it is widely believed that NP requires super-polynomial-size circuits
(i.e. NP ̸⊆ P/poly) establishing the statement even for NEXP (i.e. NEXP ̸⊆ P/poly), the exponential
version of NP, has remained elusive for many years. The best known explicit lower bound is due to
a seminal work of Williams [Wil14], where it was shown that NEXP requires super-polynomial-size
circuits in a ‘very’ restricted model (NEXP ̸⊆ ACC0).

In the high-end regime, Kannan [Kan82] has shown that the exponential hierarchy requires
exponential-size circuits, via diagonalization2. More precisely, it was shown that the class Σ3E∩Π3E
contains a language that cannot be computed by a circuit family of size 2n/n. This result was later
improved to ∆3E = EΣ2P by Miltersen, Vinodchandran and Watanabe [MVW99]. Moreover, it was
shown that ∆3E actually requires circuits of ‘maximum possible’ size. Subsequently, the status
of the problem remained stagnant for more than two decades until very recently, Chen, Hirahara
and Ren [CHR24] and a follow-up work by Li [Li24] improved the result to S2E

3. In particular,
this result was obtained via solving the Range Avoidance (Avoid) problem with ‘single-valued,
symmetric polynomial-time’ algorithm. Indeed, the focus of our work is on ‘oblivious’ symmetric
polynomial time and related complexity classes.

1.1 Background

1.1.1 Symmetric Time

Symmetric polynomial time, denoted by S2P, was introduced independently by Canetti [Can96],
and Russell and Sundaram [RS98]. Intuitively speaking, this class captures the interaction between
an efficient (polynomial-time) verifier V and two all-powerful provers: the ‘YES’-prover Y and the
‘NO’-prover Z, exhibiting the following behaviour:

• If x is a yes-instance, then the ‘YES’-prover Y can send an irrefutable proof/certificate y to
V that will make V accept, regardless of the communication from Z.

• Likewise, if x is a no-instance, then the ‘NO’-prover can send an irrefutable proof/certificate
proof z to V that will make V reject, regardless of the communication from Y .

We stress that in both cases the irrefutable certificates can depend on x itself. One can also define
S2E - the exponential version of S2P, by allowing the verifier to run in linear-exponential time. For
a formal definition see Definition 2.2. A seminal result of [Cai07] provides the best known upper
bound S2P ⊆ ZPPNP. At the same time, S2P appears to be a very powerful class as it contains MA
and ∆2P = PNP.

1Deterministic time 2O(n).
2In fact, this argument could be viewed as solving an instance of the Range Avoidance problem. See below.
3Symmetric exponential time. Indeed, S2E ⊆ Σ2E ∩ Π2E ⊆ ∆3E. For a formal definition see Definition 2.2.
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1.1.2 Oblivious Complexity Classes

The study of oblivious complexity classes was initiated in [CR06] and has subsequently received
more attention [Aar07, FSW09, CR11, GM15]. Roughly speaking, let Λ be a complexity class such
that in addition to the input x, the machines M(x,w) of Λ also take a witness w (and possibly
other inputs). Examples of such classes include: NP,MA,S2P, etc. The corresponding oblivious
version of Λ is obtained by stipulating that the for every n ∈ N there exists a ‘common’ witness
wn for all the ‘respective’ inputs of length n. For instance, a language L belongs to ONP – the
oblivious version of NP, if there exists a polynomial-time machine M(x,w) such that:

1. ∀n ∈ N there exists wn such that ∀x ∈ {0, 1}n : x ∈ L =⇒ M(x,wn) = 1.

2. x ̸∈ L =⇒ ∀w : M(x,w) = 0.

Thus, in a similar manner, one can define the class O2P — the oblivious version of S2P, that
is referred to as ‘oblivious symmetric polynomial time’ in the literature. O2P has the additional
requirement that for every n ∈ N there exist an irrefutable yes-certificate y∗ and an irrefutable no-
certificate z∗ for all the yes-instances and the no-instances of length n, respectively. For a formal
definition, see Definition 2.4.

It is immediate from the definitions that ONP ⊆ NP, O2P ⊆ S2P and ONP ⊆ O2P. On the
other hand, by hard-codding the witnesses/certificates we get that ONP ⊆ O2P ⊆ P/poly. While
the oblivious classes seem to be more restricted than their non-oblivious counterparts, proving any
non-trivial upper bounds could still be challenging. In terms of lower bounds, the best known
non-oblivious containment is BPP ⊆ O2P. For more details and discussion see [CR06, GM15].
Nonetheless, to the best of our knowledge, no “natural” problem believed to lie outside BPP, but
in either ONP or O2P has been previously identified in the literature.

1.1.3 Sparsity

A language L is sparse, if for every input length n ∈ N the number of yes-instances of size n is
at most poly(n). We will denote the class of all sparse languages by SPARSE. Sparse languages
have seen many applications in complexity theory. Perhaps, the most fundamental one is known
as “Mahaney’s theorem” [Mah82] that implies that a sparse language cannot be NP-hard, unless
P = NP. In [FSW09] and [GM15], sparse languages were also studied in the context of oblivious
complexly classes. In particular, it was shown that NP ∩ SPARSE ⊆ ONP. That is, every sparse
NP language is also in ONP. The same argument also implies that NE = ONE, that is, equality
between the exponential versions of NP and ONP, respectively. Given the former claim we observe
that the Grid Coloring problem, defined in [AGL23], constitutes a natural ONP (and hence O2P)
problem. For a formal statement, see Observation 1.

Subsequently, Goldreich and Meir [GM15] posed an open question whether a similar relation
holds true for coNP and coONP. That is, whether every sparse coNP language is also in coONP4.
Motivated by this question, we observe that essentially the same issues arise when one attempts to
show that every sparse S2P language is also in O2P. While we do not accomplish this task, we make
a partial progress by introducing uniformly-sparse extensions. The intuition behind this definition
is to have a uniform ‘cover’ of the segments of the yes-instances for all input lengths. For a formal
definition see Definition 2.19. This is our main conceptual contribution. As a corollary, we obtain

4The original (equivalent) formulation of the question in [GM15] was w.r.t to NP and co-sparse languages.
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that S2E = O2E. Although this might not be a new result, to the best of our knowledge, this result
has not appeared in the literature previously.

1.1.4 Range Avoidance

The study of the Range Avoidance problem (Avoid) was initiated in [KKMP21]. The problem
itself takes an input-expanding Boolean Circuit C : {0, 1}n → {0, 1}n+1 as input and asks to
find an element y, outside the range of C. Since its introduction, there has been a steady line of
exciting work studying the complexity and applications of Avoid [Kor22, GLW22, RSW22, CHLR23,
GGNS23, ILW23, CHR24, Li24, CGL+23, CL23].

Informally, Avoid algorithmically captures the probabilistic method where the existence of an
object with some property follows from a union bound. In particular, Korten [Kor22] showed that
solving Avoid would result in finding optimal explicit constructions of many important combinatorial
objects, including but not limited to Ramsey graphs [Rad21], rigid matrices [GLW22, GGNS23],
pseudorandom generators [CT22], two-source extractors [CZ19, Li23], linear codes [GLW22], strings
with maximum time-bounded Kolmogorov complexity (Kpoly-random strings) [RSW22] and truth
tables of high circuit complexity [Kor22].

The connection between Avoid and hard truth table makes it relevant to the study of circuit lower
bounds. It has been observed and pointed out in many prior works (see, e.g. [CHR24]) that proving
explicit circuit lower bounds is effectively finding single-valued5 constructions of hard truth tables.
Indeed, this is the framework adopted for proving circuit lower bound in [CHLR23, CHR24, Li24]:
Designing a single-valued algorithm for solving Avoid.

1.1.5 Time Hierarchy Theorem

Time Hierarchy theorems are among the most fundamental results in computational complexity
theory, which (loosely speaking) assert that computation with more time is strictly more powerful.
Time hierarchy theorems are known for deterministic computation (DTIME) [HS65, HS66] and
non-deterministic computation (NTIME) [Coo72, SFM78, Žák83] which are syntactic classes. The
situation for semantic classes such as BPTIME is much more elusive as it is unclear how to enumerate
and simulate all BPTIME machines while ensuring that the simulating machine itself remains a
proper BPTIME machine. In fact, even verifying that a machine is a BPTIME machine is itself an
undecidable problem. For BPTIME, a time hierarchy theorem is only known for its promise version,
or when given one bit of advice [Bar02, FS04, FST05]. This was further generalized in [MP07],
where they show most semantic classes (e.g. MA, S2TIME) admit a time hierarchy theorem with
one bit of advice.

Along a different line of research, it was shown in [LOS21, DPWV22] that coming up with
a pseudo-deterministic algorithm (single-valued randomized algorithms) for estimating the accep-
tance probability of a circuit would imply a uniform hierarchy theorem for BPTIME.

1.2 Previous Results

A parallel line of work focused on the ‘low-end’ regime by proving the so-called ‘fixed-polynomial’
circuit lower bounds. That is, the goal is to show that for every k ∈ N there is a language Lk (that

5Roughly speaking, a single-valued algorithm on successful executions should output a fixed (canonical) solution
given the same input.
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may depend on k) which cannot be computed by circuits of size nk. The first result in this sequel
— fixed-polynomial lower bounds for the polynomial hierarchy, was obtained by Kannan [Kan82]
via diagonalization. In particular, it was shown that for every k ∈ N there exists a language
Lk ∈ Σ4P that cannot be computed by circuits of size nk. This result was then improved to Σ2P.
The key idea behind this and, in fact, the vast majority of subsequent improvements is a ‘win-win’
argument that relies on the Karp-Lipton collapse theorem [KL80]: if NP has polynomial-size circuits
(i.e NP ⊆ P/poly) then the (whole) polynomial hierarchy collapses to Σ2P. More specifically, the
argument proceeds by a two-pronged approach:

• Suppose NP ̸⊆ P/poly. Then the claim follows as NP ⊆ Σ2P.

• On the other hand, suppose NP ⊆ P/poly. Then by Karp-Lipton: Σ4P = Σ2P and in
particular for all k ∈ N : Lk ∈ Σ2P.

Indeed, by deepening the collapse, the result was further improved to ZPPNP [KW98, BCG+96],
PprMA [CR11] and S2P [Cai07]. By using different versions of the Karp-Lipton theorem, the result
has also been extended to PP [Vin05, Aar06] and MA/1 [San09].

Yet, despite the success of the ‘win-win’ argument, the obtained lower bounds are often non-
explicit due to the non-constructiveness nature of the argument. Different results [CW04, San09]
were required to exhibit explicit ‘hard’ languages in Σ2,PP and MA/1. Nonetheless, the last word
has been said yet about S2P. For instance, we know that there is a language in S2P that requires
circuits of size, say, n2. However, prior to our to result to the best of our knowledge, we could
not prove any super-linear lower bound for any particular language in S2P. Another limitation
of the ‘win-win’ argument stems from the fact that it only applies to complexity classes which
(provably) contain NP. In particular, in [CR06] it was actually shown that if NP ⊆ P/poly then the
polynomial hierarchy collapses all the way to O2P! Unfortunately, this result does not immediately
imply fixed-polynomial lower bounds for O2P

6 as it is unknown and, in fact, unlikely that O2P
contains NP. Furthermore, such a containment will be ‘self-defeating’. Recall that O2P ⊆ P/poly.
Hence, if NP ⊆ O2P then NP ⊆ P/poly which in and of itself already implies the collapse of the
whole polynomial hierarchy!

Finally, it is important to mention a result of [FSW09] that for any k ∈ N, NP has circuits
of size nk iff ONP/1 does. In that sense ONP already nearly captures the hardness of showing
fixed-polynomial lower bounds for NP.

1.3 Our Results

In our first result we extend the lower bounds for S2P and S2E, to their weaker oblivious counterparts
O2P and O2E, respectively. This result follows the recent line of research that obtains circuit lower
bounds by means of solving instances of the Range Avoidance problem [CHLR23, CHR24, Li24].

Theorem 1. For all k ∈ N, O2P ̸⊆ SIZE[nk]. Moreover, for each k there exists an explicit language
Lk ∈ O2P such that Lk ̸∈ SIZE[nk].

In fact we prove a stronger parameterized version of this statement (see Theorem 3.2, Corol-
lary 4.2, and Corollary 3.3). We now highlight three main reasons why such a result is fascinating:

6Indeed, the authors in [CR06] could only obtain fixed-polynomial lower bounds for NPO2P which was later sub-
sumed by the results of [San09].
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1. Our lower bound does not follow the framework of “win-win” style Karp-Lipton collapses.
As was mentioned above, since already O2P ⊆ P/poly the pre-requisite for proving the bound
via the “win-win” argument will be self-defeating.

2. Our proof is constructive and for every k ∈ N we define an explicit language Lk ∈ O2P for
which Lk ̸⊆ SIZE[nk].

3. O2P becomes the smallest uniform complexity class known for which fixed-polynomial lower
bounds are known. Moreover, after more than 15 years, this class coincides again with the
deepest known collapse result of the Karp-Lipton Theorem7.

Our second result gives a hierarchy theorem for O2TIME.

Theorem 2. For any function t : N → N it holds that: O2TIME[t(n)] ⊊ O2TIME[t(n)4 log9(t(n))].

We remark, that to the best of our knowledge, this is the first known hierarchy theorem for a
uniform semantic class (that contains BPTIME). At the same time, we observe that the proof of
the non-deterministic time hierarchy theorem (NTIME) (see e.g. [Žák83]) actually extends to the
oblivious non-deterministic time (ONTIME) since the hard language constructed in their proof is
unary and hence is contained in ONTIME. On the other hand, that same language also diagonalizes
against all NTIME machines which is a superset of all ONTIME machines.

In our time hierarchy theorem for O2TIME, which goes through a reduction to Avoid, one can
view Avoid as a tool for diagonalization against all circuits of fixed size, which in turn contains all
O2TIME machines with bounded time complexity. This (together with the time hierarchy theorem
for ONTIME) might suggest an approach for proving time hierarchy theorem for semantic classes in
general: diagonalize against a syntactic class that encompasses the semantic class in consideration.

Finally, we introduce the notion of uniformly-sparse extensions (for a formal definition, see
Definition 2.19) to get structural complexity results relating O2TIME and S2TIME. This relation
provides an alternate method of proving Theorem 1.

Theorem 3. Let L ∈ S2P. If L has a uniformly-sparse extension then L ∈ O2P.

While not much was known between the classes O2TIME and S2TIME, except that O2TIME ⊆
S2TIME, we show new connections between the two classes. In fact, we prove a stronger parame-
terized version of Theorem 3 that yields as a corollary a proof of the equivalence S2E = O2E (see
Corollary 4.3). Going back to the original motivation, by repeating the same argument, we make
a partial progress towards the resolution of the open question posed by Goldreich and Meir in
[GM15]. See Lemma 4.1 for more details.

Theorem 4. Let L ∈ coNP. If L has a uniformly-sparse extension then L ∈ coONP.

Finally, we observe that the Grid Coloring problem, defined in [AGL23], constitutes a natural
ONP (and hence O2P) problem. The problem emerges from the area of computational Ramsey
Theory. To the best of our knowledge, this is the first natural problem identified in the literature.

Definition 1.1 (Grid Coloring[AGL23]).
GC = {(1n01m01c) | the n×m grid can be c-colored and not have any monochromatic squares.}

7Indeed, in the universe of [Cai07] and [CR06] prior to our work, the smallest class has been S2P, while the deepest
known collapse was to O2P.
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Observation 1. GC ∈ ONP ⊆ O2P.

Below we make a few remarks. For a further discussion see [Gas10].

• GC ∈ NP since the coloring itself is a witness.

• GC is not known to be in P or even BPP.

• GC ∈ SPARSE. In fact, GC has a uniformly-sparse extension.

• Therefore, by the results of [FSW09, GM15], GC ∈ ONP.

• On the other hand, by Mahaney’s theorem GC is unlikely to be NP-complete.

1.4 Proof Overview

Our work builds on the recent line of work on Range Avoidance. [Kor22] provides a reduction of
generating hard truth tables from Avoid, and [CHR24, Li24] give a single-valued S2P time algorithm
for Avoid.

Avoid Framework for Circuit Lower bounds Let TTn,s : {0, 1}s log s → {0, 1}2n be the truth
table generator circuit (see Definition 2.13), i.e. TTn,s take as input an encoding of a n-input s-size
circuit and outputs the truth table of the circuit. By construction, TTn,s maps all circuits of size s
(encoded using s log s bits) to their corresponding truth tables. Then, Avoid(TTn,s) will output a
truth-table not in the range of TTn,s and hence not decided by any s-sized circuit (a circuit lower
bound!!). For correctness we only need to ensure that s log s < 2n, so the TTn,s is input-expanding,
and hence a valid instance of Avoid.

While the above construction gives us a way of getting explicit exponential lower bounds against
even SIZE[2n/n], the input to Avoid is also exponential in input length n. As a result, the lower
bounds we get are for the exponential class S2E and not S2P. Note that one can scale down this
lower bound in a black-box manner to get fixed-polynomial lower bounds for S2P, but will lose
explicitness in the process.

To fix this we modify the above reduction to take as input the prefix truth table generator circuit,
PTTn,s : {0, 1}s log s → {0, 1}s log s+1, where instead of evaluating the input circuit on the whole truth
table, PTTn,s evaluates on the lexicographically first (s log s + 1) inputs (see Definition 2.14). Let
fn,s = Avoid(PTTn,s), and define the truth table of the hard language to be L := fn,s||02

n−s log s−1.
By construction, L cannot be decided by any n-input s-size circuit. Moreover, when s is polynomial,
the size of PTTn,s is also polynomial8 (Lemma 2.15). Hence the single-valued9 algorithm computing
fn,s is in S2P and the explicit fixed-polynomial bounds follow.

To see that the language L ∈ O2P, observe that the S2P time algorithm is oblivious to x, since
for any x of length n, fn,s is the same. One important observation here is that, for the purpose of
obtaining circuit lower bound, it suffices to solve Range Avoidance on one specific family of circuits
(the truth table generating circuit that maps another circuit to its truth table). Hence, while it is
unclear whether Range Avoidance can be solved in FO2P, we could still obtain circuit lower bound
for O2P.

8In literature the complexity of computing PTTn,s (Circuit-Eval) is often left as poly, however for our application
of getting explicit lower bounds it is crucial to get its fine-grained complexity (see Lemma 2.10 and Lemma 2.15).

9For the language to be well defined it is essential for the output of our algorithm to be single-valued.
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Hierarchy Theorems for O2TIME To get a hierarchy theorem for O2TIME, we first get an upper
bound on O2TIME computation via a standard Cook-Levin argument that converts the O2TIME
verifier into a circuit (SAT-formula) for which we can hard code the “YES” and “NO” irrefutable
certificates at every input length (Lemma 3.4). A lower bound follows via the Avoid framework
discussed above (Theorem 3.2). We can now lift the hierarchy theorem on circuit size (Theorem 2.8)
to get a hierarchy on O2TIME (see Theorem 3.5).

Sparsity and Lower Bounds We begin by introducing the notion of uniformly-sparse exten-
sions. Roughly speaking a sparse language L has a uniformly-sparse extension if there is a language
L′ ∈ P, such that L ⊆ L′ and L′ is also sparse (for formal definitions see Section 2.4).

We show that if a language L ∈ S2P has a uniformly-sparse extension, then L ∈ O2P. Let L′

be the uniformly-sparse extension of a language L ∈ S2P and let X = {x ∈ L′}. Since L′ ∈ P, we
first apply the polynomial time algorithm for L′ which let us filter out most inputs, i.e. x /∈ L′, and
hence x /∈ L. We are now left with deciding membership in L over the set X, where |X| ≤ poly.

Let V ∗ be the polynomial time S2-verifier for L, then for every x ∈ X there exists either
an irrefutable YES certificate (yx) s.t. V ∗(x, yx, ·) = 1, or an irrefutable NO certificate (zx) s.t.
V ∗(x, ·, zx) = 0. Let Y be the set of all such yx’s and Z be the set of all such zx’s. Now for any
x ∈ X, it suffices to find the correct yx from Y (or zx from Z) and apply V ∗(x, yx, zx) to decide x.

In Lemma 4.1 we prove a more efficient parameterized version of this argument. In addition,
we are able to apply this in the exponential regime to show the equivalence O2E = S2E (see
Corollary 4.3).

2 Preliminaries

Let L ⊆ {0, 1}∗ be a language. For n ≥ 1 we define the n-th slice of L, L|n := L∩{0, 1}n as all the
strings in L of length n. The characteristic string of L|n, denoted by XL|n , is the binary string of
length 2n which represents the truth table defined by L|n.

2.1 Complexity Classes

We assume familiarity with complexity theory and notion of non-uniform circuit families (see for
e.g. [AB09, Gol08]).

Definition 2.1 (Deterministic Time). Let t : N → N. We say that a language L ∈ TIME[t(n)],
if there exists a deterministic time multi-tape Turing machine that decides L, in at most O(t(n))
steps.

Definition 2.2 (Symmetric Time). Let t : N → N. We say that a language L ∈ S2TIME[t(n)], if
there exists a O(t(n))-time predicate P (x, y, z) that takes x ∈ {0, 1}n and y, z ∈ {0, 1}t(n) as input,
satisfying that:

1. If x ∈ L , then there exists a y such that for all z, P (x, y, z) = 1.

2. If x /∈ L, then there exists a z such that for all y, P (x, y, z) = 0.

Moreover, we say L ∈ S2P, if L ∈ S2TIME[p(n)] for some polynomial p(n), and L ∈ S2E, if
L ∈ S2TIME[t(n)] for t(n) ≤ 2O(n).
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Definition 2.3 (Single-valued FS2P algorithm). A single-valued FS2P algorithm A is specified by a
polynomial ℓ(·) together with a polynomial-time algorithm VA(x, π1, π2). On an input x ∈ {0, 1}∗,
we say that A outputs yx ∈ {0, 1}∗, if the following hold:

1. There exists a π1 ∈ {0, 1}ℓ(|x|) such that for every π2 ∈ {0, 1}ℓ(|x|), VA(x, π1, π2) outputs yx.

2. For every π1 ∈ {0, 1}ℓ(|x|) there exists a π2 ∈ {0, 1}ℓ(|x|), such that VA(x, π1, π2) outputs either
yx or ⊥.

And we say that A solves a search problem Π if on any input x it outputs a string yx and yx ∈ Πx,
where a search problem Π maps every input x ∈ {0, 1}∗ into a solution set Πx ⊆ {0, 1}∗.

We now formally define O2TIME - the oblivious version of the class S2TIME. The key difference
is that unlike S2TIME, where each irrefutable yes/no certificate can depend on the input x itself,
in O2TIME the yes/no certificates can only depend on |x|, the length of x. In other words, for
every input length n, there exist a common YES-certificate y∗ and a common NO-certificate z∗ for
checking membership of x ∈ L|n.

Definition 2.4 (Oblivious Symmetric Time). Let t : N → N. We say that a language L ∈
O2TIME[t(n)], if there exists a O(t(n))-time predicate P (x, y, z) such that for every n ∈ N there
exist y∗ and z∗ of length O(t(n)) satisfying the following for every input x ∈ {0, 1}n :

1. If x ∈ L, then for all z, P (x,y∗, z) = 1.

2. If x /∈ L, then for all y, P (x, y, z∗) = 0.

Moreover, we say L ∈ O2P, if L ∈ O2TIME[p(n)] for some polynomial p(n), and L ∈ O2E, if
L ∈ O2TIME[t(n)] for t(n) ≤ 2O(n).

2.2 Nonuniformity

We recall certain circuit properties:

Definition 2.5. A boolean circuit C with n inputs and size s, is a Directed Acyclic Graph (DAG)
with (s+n) nodes. There are n source nodes corresponding to the inputs labelled 1, . . . , n and one
sink node labelled (n+ s) corresponding to the output. Each node, labelled (n+ i), for 1 ≤ i ≤ s
has an in-degree of 2 and corresponds to a gate computing a binary operation over its two incoming
edges.

Definition 2.6. Let s : N → N. We say that a language L ∈ SIZE[s(n)] if L can be computed by
circuit families of size O(s(n)) for all sufficiently large input size n.

Definition 2.7. Let s : N → N. We say that a language L ∈ i.o.-SIZE[s(n)] if L can be computed
by circuit families of size O(s(n)) for infinitely many input size n.

By definition, we have SIZE[s(n)] ⊆ i.o.-SIZE[s(n)]. Hence, circuit lower bounds against
i.o.-SIZE[s(n)] are stronger and sometimes denoted as almost-everywhere circuit lower bound in
the literature.

We now state the hierarchy theorem for circuit size. The standard proof of this result is
existential and goes through a counting argument (see e.g. [AB09]). However, we comment that
using the framework of Avoid, we can now actually get a constructive size hierarchy theorem, albeit
with worse parameters.
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Theorem 2.8 (Circuit Size Hierarchy Theorem[AB09]). For all functions s : N → N with n ≤
s(n) < o(2n/n):

SIZE[s(n)] ⊊ SIZE[10s(n)] .

For our applications, it will be essential to have a tight encoding scheme for circuits. In fact,
we will also need the fine-grained complexity of the Turing machine computing Circuit-Eval (i.e.
given as input a description of a circuit C and a point x, computes C(x)).

Lemma 2.9. For n, s ∈ N, and s ≥ n ≥ 12 , any n-input, s-size circuit C, there exists an encoding
scheme En,s which encodes C using 5s log s bits.

Proof. Let C be an n-input, s-size circuit, we now define En,s. Each gate label from 1, . . . , n + s
can be encoded using log(n + s) bits. First encode the n inputs using n log(n + s) bits. Next fix
a topological ordering of the remaining gates. For each gate we can encode its two inputs (two
previous gates) with 2 log(n + s) bits and the binary operation which requires 4 bits (since there
16 possible binary operations). So the length of our encoding is n log(n+ s)+ s(2 log(n+ s)+ 4) ≤
3s log(2s) + 4s ≤ 5s log s for all n ≥ 12.

Lemma 2.10. For n, s ∈ N, and s ≥ n, let En,s be an encoding of an n-input, s-size circuit C
using Lemma 2.9. Then there exists a multi-tape Turing machine M such that M(En,s, x) = C(x)
and it runs in O(s2 log s) time.

Proof. We utilize one tape (memory tape) to store all the intermediate values computed at each
gate gi using n+ s cells, and a second tape (evaluation tape) using 6 cells to compute the value at
each gi. We process each gate sequentially as it appears in the encoding scheme, and let gil and
gir be the two gates feeding into gi. Since Lemma 2.9 encodes the gates in a topological order, we
can assume that when computing gi, both gil and gir have already been computed. First copy the
value of input bits of x onto the memory tape, and move the head of the input tape to the right by
n log(n + s) steps in O(s log s) time. Now to compute a gate gi we write the values of gil and gir
along with the binary operation onto the evaluation tape. We can compute any binary operation
with just constant overhead and write its value onto the ith cell of the memory tape. To output
the evaluation of the circuit we output the value on the (n + s)th cell of the memory tape. The
cost of evaluating each gate is dominated by the 2 read and 1 write operations on the memory tape
that take O(s) time. Since the size of the input upper bounds the number of gates we have that
the simulation takes O(s|En,s|) = O(s2 log s) time.

Finally, we recall the famous Cook-Levin theorem that lets us convert a machineM ∈ TIME[t(n)]
into a circuit C ∈ SIZE[t(n) log t(n)].

Theorem 2.11 (Cook-Levin Theorem [AB09]). Let t : N → N be a time constructible function.
Then any multi-tape Turing machine running in TIME[t(n)] time can be simulated by a circuit-
family of SIZE[t(n) log t(n)].

2.3 Range Avoidance

Definition 2.12. The Range Avoidance (Avoid) problem is defined as follows: given as input the
description of a Boolean circuit C : {0, 1}n → {0, 1}m, for m > n, find a y ∈ {0, 1}m such that
∀x ∈ {0, 1}n : C(x) ̸= y.
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An important object that connects Avoid and circuit lower bound is the truth table generator
circuit.

Definition 2.13. [CHR24, Section 2.3] For n, s ∈ N where n ≤ s ≤ 2n, the truth table generator
circuit TTn,s : {0, 1}Ln,s → {0, 1}2n maps a n-input size s circuit using Ln,s = (s+1)(7+log(n+s))
bits of description10 into its truth table. Moreover, such circuit can be uniformly constructed in
time poly(2n).

For the purpose of obtaining fixed polynomial circuit lower bound, we generalise the truth table
generator circuit above into one that outputs the prefix of the truth table. We also use a different
encoding scheme (with constant factor loss in the parameter) for the convenience of presentation.

Definition 2.14. For n, s ∈ N where 12 ≤ n ≤ s ≤ 2n and |En,s| = 5s log s < 2n, the prefix
truth table generator circuit PTTn,s : {0, 1}|En,s| → {0, 1}|En,s|+1 maps a n-input circuit of size s
described with |En,s| bits into the lexicographically first |En,s|+ 1 entries of its truth table.

Since we want to prove lower bounds not just in the exponential regime, but also in the poly-
nomial regime for any fixed polynomial, we need a more fine-grained analysis for the running time
of uniformly generating PTTn,s

Lemma 2.15. The prefix truth table generator circuit PTTn,s : {0, 1}|En,s| → {0, 1}|En,s|+1 has size
O(|En,s|3) and can be uniformly constructed in time O(|En,s|3).

Proof. Let M be the multi-tape Turing machine from Lemma 2.10 that takes as input an encoding
of a circuit and a bitstring, and evaluates the circuit on that bitstring. Let C be the circuit generated
from Theorem 2.11 that simulates M . Then SIZE(C) = O(s2 log2 s) = O(|En,s|2). Making |En,s|+1
copies of C for each output gate gives a circuit of size O(|En,s|3).

Theorem 2.16 ([Li24, CHR24]). There exists a single-valued FS2P algorithm for Avoid. Moreover,
on input circuit C : {0, 1}n → {0, 1}n+1, the algorithm runs in time O(n|C|)11.

Theorem 2.17 ([Li24, CHR24]). There exists an explicit language L ∈ S2E \ i.o.-SIZE[2n/n].

Proof. For any n ∈ Z, let TTn : {0, 1}2n−1 → {0, 1}2n be the truth table generator circuit. Let
fn ∈ {0, 1}2n be the canonical solution output by the single-valued algorithm from Theorem 2.16
on input TTn.

The hard language L is defined as follows: for any x ∈ {0, 1}∗, x ∈ L if and only if the (x+1)-th
bit of f|x| = 1, treating x as an integer from 0 to 2n − 1.

2.4 Sparse Languages

We define some notions of sparsity below, we first introduce natural definitions of sparsity and
sparse extensions in the polynomial regime, and then give their generalizations in the fine-grained
setting.

10in fact, it maps a stack program of description size Ln,s and it is known that every n-input size s circuit has an
equivalent stack program of size Ln,s [FM05].

11the running time was implicit in the proof of [Li24], but easy to verify.

10



Definition 2.18. A language L ∈ SPARSE if for all n, |L ∩ {0, 1}n| ≤ poly(n). Moreover, L is
called uniformly-sparse if L ∈ P ∩ SPARSE.

It is easy to see that SPARSE ⊆ P/poly. That is, one can identify the yes-instances efficiently,
albeit in non-uniform fashion. The purpose of introducing the uniform-sparsity is to be able
to identify these inputs efficiently in a uniform fashion. Unfortunately, we cannot expect any
such language L to lie even in a modestly hard class as, by definition, L ∈ P. The purpose
of the uniformly-sparse extensions, on the other hand, is to bridge this gap. One can observe
that unlike the uniformly-sparse languages, which are contained in P, languages with uniformly-
sparse extension can even be undecidable! In particular, any unary language has uniformly-sparse
extension in form of 1∗.

Definition 2.19. A language L has a uniformly-sparse extension, if there exists a L′ s.t. :

1. L ⊆ L′

2. L′ is uniformly-sparse

Generalizing the above definitions in the fine-grained setting, we get:

Definition 2.20. Let t : N → N be a computable function, then a language L is t(n)-SPARSE if for
all n, |L ∩ {0, 1}n| = O(t(n)). Moreover we say that L is t(n)-uniformly-sparse if L ∈ TIME[t(n)]∩
t(n)-SPARSE.

Definition 2.21. L has a t(n)-uniformly-sparse extension, if there exists a L′ s.t.:

1. L ⊆ L′

2. L′ is t(n)-uniformly-sparse.

Observe that every binary language L is 2n-SPARSE. Furthermore, every such L has a trivial
2n-uniformly-sparse extension: {0, 1}∗.

3 Lower Bounds & Hierarchy Theorem

In this section, we first present (Theorem 3.1) a fine-grained, parameterised version of Theorem 2.17.
This allows us to use the Avoid framework and get circuit lower bounds in S2TIME[t(n)] instead of
S2E. We then observe that our S2TIME[t(n)] witness is oblivious of the input, and hence the lower
bounds we get are actually in O2TIME[t(n)] as highlighted in Theorem 3.2.

In Theorem 3.5 we present the first time hierarchy theorem for O2P. In fact, we note to the
best of our knowledge that this is the first known time hierarchy theorem for a semantic class.

Theorem 3.1. For n ∈ N, let t : N → N be a time-constructible function, s.t. t(n) > n ≥ 12 then

S2TIME[t(n)] ̸⊆ i.o.-SIZE

[
t(n)1/4

log(t(n))

]
.
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Proof. We construct a language Lt ∈ S2TIME[t(n)] and Lt ̸⊆ i.o.-SIZE
[

t(n)1/4

log(t(n))

]
.

For any n ∈ N, let s = ⌊ t(n)1/4

log(t(n))⌋ and |En,s| = ⌈5s log s⌉. Let PTTn,s : {0, 1}|En,s| → {0, 1}|En,s|+1

be the prefix truth table generator circuit as in Definition 2.14. Let fn ∈ {0, 1}|En,s|+1 be the
canonical solution to Avoid(PTTn,s) as outputted by the single-valued algorithm from Theorem 2.16.

The hard language Lt is defined as follows: for any n ∈ Z, the characteristic string of Lt|n is
set to be XLt|n := fn||02

n−|En,s|−1.
By definition of PTTn,s and the fact that fn /∈ Image(PTTn,s), we have that Lt /∈ i.o.-SIZE [s].

On the other hand, the single-valued algorithm for finding fn runs in time O(|En,s| · |PTTn,s|) =
O(t(n)). Hence, Lt ∈ S2TIME[t(n)].

We make the observation that the witness in the S2TIME machine above is oblivious to the
actual input x.

Theorem 3.2. For n ∈ N, let t : N → N be a time-constructible function, s.t. t(n) > n ≥ 12 then

O2TIME[t(n)] ̸⊆ i.o.-SIZE

[
t(n)1/4

log(t(n))

]
.

Proof. Consider the same language Lt in the proof of Theorem 3.1. Notice that for any input x of
the same length n, the FS2P algorithm is run on the same circuit PTTn,s and hence the witness is
the same for inputs of the same length. Thus, it follows that Lt ∈ O2TIME[t(n)].

We now get as a corollary a proof of Theorem 1.

Corollary 3.3. For all k ∈ N, there exists an explicit language Lk ∈ O2P s.t. Lk ̸⊆ SIZE[nk].

Proof. Fix t(n) = n5k. Then there is an explicit hard language Lt as defined in the proof of
Theorem 3.1, such that Lt ̸⊆ SIZE[nk]. Moreover, by Theorem 3.2 we have that Lt ∈ O2P.

Before proving our hierarchy theorem for O2TIME, we prove a simple lemma that bounds from
above the size of a circuit family computing languages in O2TIME.

Lemma 3.4. O2TIME[t(n)] ⊆ SIZE[t(n) log(t(n))].

Proof. Consider any language L ∈ O2TIME[t(n)], and let V (·, ·, ·) be its t(n)-time verifier. For any
integer n ∈ Z, let yn, zn ∈ {0, 1}t(n) be the irrefutable proofs for input size n. By Theorem 2.11 we
can convert V (·, ·, ·) into a circuit family {Cn} ⊆ SIZE[t(n) log(t(n)]. The values yn and zn can be
hard-coded into Cn, and hence this circuit will decide L on all inputs of size n.

Having both an upper bound on the size of circuits simulating an O2TIME computation, and
also a lower bound for O2TIME against circuits, we can use the circuit size hierarchy (Theorem 2.8)
to define a time hierarchy on O2TIME.

Theorem 3.5. For n ∈ N, let t : N → N be a time constructible function, s.t. t(n) > n ≥ 12 then:
O2TIME[t(n)] ⊊ O2TIME[t(n)4 log9(t(n))].
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Proof. Combining Theorem 3.2, Lemma 3.4, and Circuit Size Hierarchy (Theorem 2.8) we have:

O2TIME[t(n)] ⊆ SIZE[t(n) log t(n)] ⊊ SIZE[t(n) log
5
4 t(n)] ,

and

O2TIME[t(n)4 log9(t(n))] ̸⊆ SIZE[t(n) log
5
4 t(n)] .

4 Sparsity

In this section, we use sparse extensions to get various structural complexity results. We prove a
more fine-grained statement of Theorem 3 which states that any language in S2TIME[t(n)] with a
uniformly-sparse extension is actually in O2TIME[t(n)2]. This lets us extract as a corollary another
proof of S2E = O2E. As another application of sparse extensions, we are able to recover the fixed
polynomial lowerbounds for O2P from the previous section as stated in Theorem 1. Finally we
show connections between sparse extensions and open problems posed by [GM15].

Lemma 4.1. Let L ∈ S2TIME[t(n)]. If L has a t(n)-uniformly-sparse extension then L ∈
O2TIME[t(n)2].

Proof. For any n, let L′ be the t(n)-uniformly-sparse extension of L, and let F be the TIME[t(n)]
predicate that decides membership in L′. We will now design an O2TIME[t(n)2] verifier V for L|n.
Since both L and L′ are t(n)-SPARSE, we have that for most x ∈ {0, 1}n: L|n(x) = L′|n(x) = 0. V
will first use F to efficiently filter out most non-membership in L′|n, and hence L|n in TIME[t(n)].
Now V only has to decide membership in L over t(n) many inputs X = {x ∈ {0, 1}n : F(x) = 1}.
We will use the fact that since L ∈ S2TIME[t(n)], for all x ∈ X, if x ∈ L there is an irrefutable
YES certificate yx and if x /∈ L there is an irrefutable NO certificate zx and a verifier V ∗, running
in TIME[t(n)] s.t.

• if x ∈ L, ∃yx, ∀z s.t. V ∗(x, yx, z) = 1

• if x /∈ L, ∃zx, ∀y s.t. V ∗(x, y, zx) = 0

Consider the string Y ∗ which encodes a table of YES witnesses y∗x for every input x ∈ X. When
x ∈ L we set y∗x = yx, and when x /∈ L we will set y∗x = 0t(n). The size of Y ∗ is O(t(n)2), since
there are at most t(n) entries in the table each of length t(n) + n. For every x ∈ X ∩ L, let zx be
the irrefutable NO-certificate corresponding to x for V ∗. We set Z∗ to be the concatenation of all
such zx. The size of Z∗ is also at most t(n)2.

We now show that Y ∗ and Z∗ will serve as oblivious irrefutable “YES” and “NO” certificates
respectively for V . On input (x, Y ∗, Z∗), V first parses Y ∗ to find the corresponding y∗x in time
TIME[t(n)2]. Then for each zi ∈ Z∗ we run V ∗(x, y∗x, zi). If for all zi, V ∗(x, y∗x, zi) = 1 then
V outputs 1, otherwise V will output 0. Since we are making at most t(n) calls that each cost
TIME[t(n)], V runs in TIME[t(n)2].

To see correctness, we first analyze the case when x ∈ L, then by construction Y ∗ includes
y∗x = yx and V will output 1. On the other hand if x /∈ L then there is an irrefutable no-certificate
zx in Z∗ so there is no yi such that V (x, yi, zx) = 1. Hence V outputs 0.
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V (x, Y ∗, Z∗) :

(1) Set output = 1.

(2) If F(x) = 0, return 0.

(3) Parse Y ∗ to get y∗x.

(4) For zi ∈ Z∗, do:

(a) output = output ∧ V ∗(x, y∗x, zi).

(5) Return output.

Figure 1: O2TIME[t(n)2] Verifier for Language in S2TIME[t(n)] with t(n)-uniformly-sparse extension

By taking t(n) to be a polynomial in Lemma 4.1 we directly get Corollary 4.2 (also Theorem 3)
relating O2P and S2P.

Corollary 4.2. If L ∈ S2P and L has an uniformly-sparse extension, then L ∈ O2P

Similarly, one can prove Theorem 4 by showing the same consequence for coNP vs coONP, thus
making a partial progress towards the open questions posed by Goldreich and Meir in [GM15]. In
the exponential regime, since all languages have the trivial 2n-uniformly-sparse extension we get
the equivalence between O2E and S2E as seen in Corollary 4.3.

Corollary 4.3. S2E = O2E

Proof. As noted in Section 2.4, every language is 2n-SPARSE, and has the trivial 2n-uniformly-
sparse extension: {0, 1}∗. When t(n) = 2n, by Lemma 4.1 we get that S2TIME[2n] ⊆ O2TIME[22n].

In particular, the following lemma shows that the hard language in S2TIME[t(n)] defined in
Theorem 3.1 admits a t(n)-uniformly-sparse extension, giving another proof of Corollary 3.3.

Lemma 4.4. For n ∈ N, let t : N → N be a time-constructible function, s.t. t(n) > n ≥ 12

then, there is an explicit language Lt ∈ S2TIME[t(n)] s.t. Lt /∈ SIZE
[

t(n)1/4

log(t(n))

]
. Moreover, Lt has a

t(n)-uniformly-sparse extension L′
t.

Proof. Let Lt be the S2TIME[t(n)] language defined in the proof Theorem 3.1 with the characteristic
string XLt|n := fn||02

n−|En,s|−1. We now define the language L′
t whose characteristic string XL′

t|n :=

1|En,s|+1||02n−|En,s|−1. To see that this L′
t is a t(n)-uniformly-sparse extension of Lt, clearly Lt ⊆ L′

t.
Moreover membership of x ∈ L′

t can be decided by checking if the binary value of x is less than or
equal to |En,s|+ 1 which can be done in TIME[n] ⊆ TIME[t(n)].

Equipped with this lemma we have an alternative proof of fixed polynomial lower bounds for
O2P as stated in Theorem 1.
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Corollary 4.5. (Theorem 1) For every k ∈ N, O2P ̸⊆ SIZE[nk]. Moreover, for every k there is an
explicit language Lk in O2P s.t. Lk /∈ SIZE[nk].

Proof. Fix t(n) = n5k. Then by Lemma 4.4 there is an explicit language Lk such that Lk ̸⊆ SIZE[nk],
and Lk has an uniformly-sparse extension. Applying Lemma 4.1 we have that Lk ∈ O2TIME[n10k] ⊆
O2P.

5 Open Problems

We conclude with a few interesting open problems:

• Can we show that every sparse S2P language is also in O2P?

• Can we tighten the gap in the O2TIME hierarchy theorem (Theorem 2)?

• Can we show a non-trivial upper bound for O2P, for example PNP,MA,PP? This would imply
explicit fixed-polynomial lower bounds for such classes. On the other hand, we do note that
under reasonable derandomization assumptions, O2P ⊆ S2P = PNP.

• Can we arrive at something interesting about time hierarchy theorem for semantic classes
where fixed-polynomial lower bounds are known e.g. S2P, ZPPNP, assuming NP ̸⊆ P/poly?
For instance, if NP ⊆ P/poly, then it follows that S2P ⊆ P/poly. One could then invoke the
circuit size hierarchy theorem (Theorem 2.8) to establish a hierarchy theorem for S2TIME,
similar to how we obtain the hierarchy theorem for O2TIME.
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