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Abstract

Quantum computers are expected to revolutionize our ability to process information. The ad-
vancement from classical to quantum computing is a product of our advancement from classical to
quantum physics – the more our understanding of the universe grows, so does our ability to use it
for computation. A natural question that arises is, what will physics allow in the future? Can more
advanced theories of physics increase our computational power, beyond quantum computing?

An active field of research in physics studies theoretical phenomena outside the scope of explain-
able quantum mechanics, that form when attempting to combine Quantum Mechanics (QM) with
General Relativity (GR) into a unified theory of Quantum Gravity (QG). One expected phenomenon
in QG is quantum uncertainty in the structure of spacetime: QM and GR together may imply that
spacetime can be in superposition of curvatures. Under GR, gravitational time dilation asserts that
the geometry of spacetime determines the order of events occurring. Accordingly, a superposition
of curvatures is known to present the possibility of a superposition of event orderings.

In the literature of quantum information theory, the most natural model for a superposition of event
orders, is a superposition of unitary evolution orders: For unitaries U0, U1 and state |ψ⟩, execution
in a superposition of orders aims to generate the normalization of the state U1U0 · |ψ⟩+U0U1 · |ψ⟩.
Costa (Quantum 2022) proves that a model with such power cannot produce a valid process matrix
(a generalization of standard quantum processes), and leaves the analysis of any relaxation of the
model as an open question.
In this work we show a first example of a natural computational model based on QG, that provides
an exponential speedup over standard quantum computation (under standard hardness assumptions).
Formally, we define a relaxation of the previous model of superposition of unitary orders, where we
do allow the generation of the state U1U0 · |ψ⟩ + U0U1 · |ψ⟩, but with computational complexity
inversely proportional to the state’s norm (unlike the previous model, considering unconditional
generation). We further provide physical intuition and assumptions behind our model.

We show that a quantum computer with the ability to create a superposition of unitary orders
is able to solve in polynomial time two fundamental problems in computer science: The Graph
Isomorphism Problem (GI) and the Gap Closest Vector Problem (GapCVP), with gapO

(
n2
)
. These

problems are believed by experts to be hard to solve for a regular quantum computer. Interestingly, our
model does not seem overpowered, and we found no obvious way to solve entire complexity classes
that are considered hard in computer science, like the classes NP and SZK. As part of our work we
develop a new parameterization technique for the invertibility of classical circuits, which raises new
questions in the analysis of probability distributions and induces a new parameter for hardness inside
the complexity class SZK. These new techniques are independent of any non-classical computation.
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1 Introduction

Theoretical physics is in a quest to draw a blueprint for the universe. The constructed different theories,
which are sets of rules postulating how the universe works in certain scenarios, are our tool for predicting
what will be the next step of a physical process. The two most accurate theories to date are Quantum
Mechanics (QM) and General Relativity (GR). QM (along with Quantum Field Theory) describes the
interaction between three out of the four fundamental forces in nature: Strong nuclear force, weak nuclear
force and electromagnetism. GR describes the fourth force – gravity. Both QM and GR are immensely
successful theories, in understanding vastly different physical phenomena.

Formulating an experimentally-verified theory of physics that generalizes both QM and GR, is one of
the grand challenges of physics. Such a theory, usually referred to as a theory of Quantum Gravity, will
model the interaction between quantum effects and gravitational force; an interaction which is currently
ignored in most analyses. The two most popular candidates as theories of quantum gravity are String
Theory and Loop Quantum Gravity, however, numerous other proposals exist [dBDE+22].

Moving from physics to computer science, we observe an interconnectedness. On the one hand,
theories of physics dictate the potential computational power in humanity’s hand. If a theory of physics
allows for a machine with new information processing capabilities, this sometimes implies algorithmic
breakthroughs: For example, quantum mechanics allows for a quantum computer, which in turn is
needed to run Shor’s algorithm [Sho99]. Shor’s algorithm factors integers in polynomial time, whereas
our fastest (known) factoring algorithms on any classical computer run in sub-exponential time. In
practical terms, the meaning of these timescales is the difference between possible and impossible.

On the other hand, computational insights shed light back on physics. To see this, consider two
physical theories A and B, where B claims to be a more elaborate description of the universe and
generalize theory A. In that case, B can not only explain all physical processes that A can, but can
accurately describe processes which A cannot. There is a subtlety here; While we can encounter a
physical process that theory A currently does not know how to explain, it does not necessarily mean
that there is no explanation – it might exist, and we just haven’t found it yet. Proving that there is no
explanation, however, is a task of different magnitude. Turning to computer science for help, we can
construct two computational models corresponding to the two theories (i.e., a strongest computer CA
that can be constructed according to theory A and a computer CB that can be constructed according to
theory B). Now, if we find a computational problem P that CB can solve but CA cannot, this gives
strong evidence that theory B can explain physical phenomena that A cannot, namely, the solving of P !
Given the correspondence between algorithms and theoretical physics, a natural question which arises
is the following: Just like the progression from classical to quantum mechanics allowed computational
transcendence, how can a theory of quantum gravity transform our theory of computation?
Superposition of Spacetime Geometries. While a confirmed theory of quantum gravity remains elusive,
there are some physical phenomena expected to take place within any valid quantum gravity theory, in
some form or another. Arguably the most basic expected phenomenon unique to quantum gravity, is the
possibility of quantum uncertainty in the structure spacetime itself [Ash96]. More elaborately, according
to QM, all dynamic quantities are subject to quantum superposition. GR tells us that the geometry of
spacetime is not fixed, and a straightforward combination implies the possibility for a superposition of
spacetime geometries [Ash96, GCRB19, CR19, GB20, Gia21, GB22].
Structure of the Introduction. The goal of this paper is to suggest and define a computational model for
a quantum computer with the added ability of generating a superposition of spacetime geometries, and to
analyze its power. The rest of the Introduction is as follows. In Section 1.1 we provide a brief overview
of the physics literature on a superposition of spacetime geometries, and then explain how it serves as
inspiration for our computational model. We also provide the physical assumptions our model makes.
Section 1.1 of the introduction deals with physics, it is self contained and can be skipped for the readers
that are interested only in the complexity theoretical aspects of this work. In Section 1.2 we present our



computational model and its connection to both standard quantum computation and previous generalized
models of quantum information processing. In Section 1.3 we present our complexity theoretical results
for the model.

1.1 Gravity, Superposition and Entanglement

Before we explain what a quantum spacetime may be able to do, we refer to one ability of a classical
spacetime. GR postulates the effects of gravitational time dilation, where the structure of spacetime
determines the pace at which time flows. More precisely, gravitational time dilation is the effect of
time moving slower in a region of space with greater gravitational potential: For some location s ∈ R3

in space, the time in s slows down proportionally to how close s is to a massive object, and the mass
of that object. According to this logic, a quantum spacetime may enable a superposition of spacetime
curvatures, which in turn induces a superposition of time dilation effects, on the same set of events.
Gravitational Decoherence Versus Gravitationally-Induced Entanglement. Let us be more concrete,
by using (with small variations) a thought experiment by Zych, Costa, Pikovski and Brukner [ZCPB19]
(depicted in Figure 1 from [ZCPB19]). In the experiment there are two spatially isolated systems; one
contains a gravitationally significant object M , and the second has two clocked unitary circuits U0, U1.
More precisely,

• In system SM we can generate a uniform superposition of two possible locations L0, L1 of a mass
M . Note that we are using the fact that quantum theory does not prohibit superpositions of massive
objects.

• In system SU there is a quantum register R in some state |ψ⟩, two atomic clocks C0, C1, and a
central processing unit Cc that gets signals from the clocks. Cc always executes U0 and U1 on R,
and the order in which it executes the two unitary circuits depends on the signal from which clock,
C0 or C1, arrives first. For the sake of order, system SU is constructed such that clock C1 takes
a bit more time (i.e., needs to make more clock ticks), so that when no disturbances are applied
to system SU , the order in which Cc executes the unitaries is always U0 first and then U1. Such a
system should also be realizable by quantum mechanics.

• The last detail is the only one that uses effects from GR, specifically, gravitational time dilation.
The system SM is located with respect to the second system SU such that, even though the systems
are spatially disjoint in coordinates, if M is at location L0, which is closer to clock C1, then C1

ticks slower and C0 concludes first, and ifM is at location L1, which is closer to C0, then C0 ticks
slower and C1 concludes first.

Imagine we (1) execute SM and generate a uniform superposition of the two possible locations for
M , followed by (2) executing SU , the clocked execution of the unitaries U0, U1. We can analyze what
happens in each of the branches of the superposition, separately, assuming as if spacetime is classical and
there is no superposition of the locations of M . If M is at L0, the state in R at the end of the execution
is U1U0|ψ⟩, and if M is at L1 then the state in R at the end of execution is U0U1|ψ⟩. The question
becomes one in quantum gravity, when we ask what happens not in each branch of the superposition
separately, but as a full joint system, in superposition. Experimental physics does not know the answer
to this question.

The above question may translate to more basic questions about gravity, superposition and entan-
glement. Specifically, the first question is whether a massive object can be maintained in a quantum
superposition, and the second question is whether entanglement can be created through gravity alone. To
elaborate, on one side, the gravitational decoherence hypothesis [Dió89, Pen96, Dio14, Dio87] says that a
quantum superposition of a massive object will fundamentally decohere, turning into a probabilistic mix-
ture of classical states. On the other end, gravitationally-induced entanglement (GIE) [BMM+17, MV17]
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is hypothesizing that not only a massive object can be in a superposition, but that the gravitational field
can be used to mediate entanglement.

In the context of the thought experiment from [ZCPB19], gravitational decoherence says that when
executing the system SM , there will not be a coherent superposition for the locations of M , so with
probability 1

2 the mass will be at L0 and with the remaining probability at L1. The end result of the
execution of the two systems, in that case, is the probabilistic uniform mixture (or in other words, uniform
mixed state) between

|L0⟩SM ⊗ U1U0|ψ⟩SU , |L1⟩SM ⊗ U0U1|ψ⟩SU ,

where for b ∈ {0, 1}, |Lb⟩ is the state where the massM is at locationLb, and we assume that the states of
the different locations are orthogonal (that is, ⟨L0||L1⟩ = 0). If GIE is true, then the per-branch analysis
from before holds, only that we get the quantum state. Assuming GIE, at the end of the execution of the
joint system, the quantum state is the pure state

1√
2
· |L0⟩SM ⊗ U1U0|ψ⟩SU +

1√
2
· |L1⟩SM ⊗ U0U1|ψ⟩SU . (1)

As mentioned earlier, using the effects of gravitational time dilation, gravity can be used to create
correlations between two spatially isolated systems1. In the scope of this paper we call this phenomenon
Gravitational Correlation. In the case of executing the experiment under gravitational decoherence, we
can think of the result as a Classical Gravitational Correlation. In the case of executing the experiment
under GIE, we consider the result as a Quantum Gravitational Correlation. Up to date and despite
considerable efforts, no experiment exists that either proves or refutes gravitational decoherence or
gravitationally-induced entanglement (that is, a reproducible experiment with statistical significance).
A complexity theoretical perspective. Both classical and quantum gravitational correlations are ef-
ficiently simulatable in the quantum circuit model. This is a basic exercise in quantum information
processing: We require the information of the mass M (but not an actual massive body). By using
controlled versions of the unitary circuits U0, U1, we can create the same state from the GIE execution
1. Then, if we want the state from the case of gravitational decoherence, we only need to measure the
left register (containing the system SM ) in the computational basis.

Note that the two options of either a classical or quantum gravitational correlation (corresponding
to gravitational decoherence or GIE, respectively), do not cover the entire field of possibilities for
the outcome of the experiment. There is a possibility of quantum gravitational correlation without
entanglement (quantum correlations are known to be possible without entanglement, e.g., quantum
discord [OZ01]). That is, a massive object can be maintained in a coherent superposition, as opposed
to gravitational decoherence, but gravity alone cannot create entanglement, as opposed to GIE. Indeed,
some preliminary results suggest that even if spacetime is quantum, this does not necessarily implies it
has to mediate full entanglement [BWG+18, BWG+19, Ber19, DSW22, SMY23].
This work - quantum gravitational correlation without entanglement. The question we focus on in
this research is, what are the computational implications of the the last scenario? Assuming quantum
gravitational correlations without (full) entanglement, what happens when the system SU executes, while
the system SM finished executing and is in the state 1√

2
· |L0⟩SM + 1√

2
· |L1⟩SM ? Our computational

model makes the following assumptions. First, if quantum gravitational correlations are possible but do
not force entanglement, when executing the experiment, this should create a joint state that resembles
the un-normalized state

(|L0⟩+ |L1⟩)SM ⊗ (U1U0|ψ⟩+ U0U1|ψ⟩)SU .

1Recall that this is exactly what happens in the above experiment – depending on the location of M in the system SM , this
determines a different spacetime geometry in the system SU , which in turn cause the unitaries U0, U1 to be executed in one
order or the other. This in particular creates a correlation between the states of the two systems.

3



We observe that the norm of the stateU1U0|ψ⟩+U0U1|ψ⟩fluctuates as a function of all componentsU0,U1

and |ψ⟩. This means that (similarly to calculations stemming from general relativity in quantum gravity)
such transformation will not be linear, due to the need for a state re-normalization. Next, we imagine that
in case that the physical universe allows to execute transformations (U0, U1, |ψ⟩)→ U1U0|ψ⟩+U0U1|ψ⟩,
it is numerically intuitive that decoherence will be inversely proportional to the norm of the state, and
that energy could be invested to maintain coherence, which should also be inversely proportional to the
norm. Finally, while we assume the ability to invest energy to maintain coherence of a superposition
of spacetimes, we do not assume that matter-wave interference between different spacetimes to be
necessarily identical to quantum interference within a single spacetime2. Later when we define our
computational model, these assumptions will be more formally expressed.

1.2 Our Computational Model - Computable Order Interference

We now move from informal discussions in physics to a formal representation of our model. In the
literature of quantum information theory, the phenomenon of uncertainty of the background spacetime
is referred to as an indefinite causal structure (ICS) [Har07, Har05, MCH09, OCB12, CDPV13, LS13,
Bru14]. As the structure of spacetime determines the order of events happening (but not necessarily the
set of events happening), ICS studies the possibility of quantum uncertainty of event occurrence order.
In quantum information theory, an event is the time-evolution of a physical system, or equivalently,
the execution of a quantum circuit on a quantum register. Following these baselines, the most natural
interpretation of ICS is a quantum superposition of unitary execution orders [OCB12, CDPV13]. Given
two n-qubit unitary circuits U0, U1 and an n-qubit state |ψ⟩, execution in ICS can be imagined as a
superposition between two scenarios – one scenario where U0 is executed followed by an execution
of U1, generating the state U1U0 · |ψ⟩, and a second scenario with flipped execution order, generating
U0U1 · |ψ⟩. Executing U0, U1 on |ψ⟩ with indefinite causal structure should attempt to create the state
U1U0 · |ψ⟩+ U0U1 · |ψ⟩.

There is a crucial difference between a pure superposition of unitary orders, which takes the above
formU1U0 · |ψ⟩+U0U1 · |ψ⟩, and a mixed superposition, entangled with an auxiliary register, which takes
the form |0⟩U1U0 · |ψ⟩+ |1⟩U0U1 · |ψ⟩. First, the latter can be easily generated in the standard quantum
circuit model, using controlled versions of U0, U1. Second, the former is generally not even a unitary
transformation. More so, Costa [Cos22] shows that such transformation cannot produce a Process Matrix,
which is, in a nutshell, a non-causally ordered generalization of quantum states [CDPV13]. To elaborate,
the Process Matrix Formalism [CDPV13] (PMF) is a mathematical framework for defining quantum
processes that are not constrained by a causal execution order. The PMF defines what is a valid process
matrix W , and while the direct physical meaning of process matrices is currently not well understood3,
the formalism remains an important tool. In particular, as in the case of [Cos22], the formalism can be
used to exclude some transformations from being considered valid quantum transformations, in the more
broad sense that is free of causal restrictions (that is, a transformation which is not a process matrix is in
particular not a valid quantum process in standard quantum mechanics). Costa leaves open the question
of understanding the computational power of any relaxation of the model of superposition of unitary
orders.
Execution of superposition of unitary orders as a function of interference norm and phase align-
ment. We start our work by exploring more carefully the idea of a superposition of unitary orders, where
our goal is to define a natural relaxation of it. From hereon we call the state U1U0|ψ⟩ + U0U1|ψ⟩ the

2Some theoretical results show evidence that standard interference dynamics is not necessarily the case when considering
a superposition of spacetimes [FMZ21, FAZM22, FAZM23].

3In particular, the process matrix formalism is not known to be connected to gravitational interaction or general relativity,
and is written only in the language of quantum information processing.
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order interference state, or OI state for short4. We can think of order superposition generalized to an
arbitrary number m ∈ N of unitaries {Ui}i∈[m], and the OI state is defined as

OI
(
{Ui}i∈[m], |ψ⟩

)
:=

∑
σ∈Sm

∏
i∈[m]

Uσ−1(i)

 · |ψ⟩ , (2)

where Sm is the set of all permutations on the set [m] := {1, 2, 3, · · · ,m}, and the above product
notation

∏
i∈[m] creates multiplications between matrices enumerated from right to left, which is also

the convention for matrix multiplication in the rest of this work, that is:∏
i∈[m]

Uσ−1(i) := Uσ−1(m) · Uσ−1(m−1) · · ·Uσ−1(2) · Uσ−1(1) .

For m unitaries, observe that the norm of the OI state ranges in [0,m!]. We view the norm of the OI
state as a fundamental piece of information. As an example, in the case |ψ⟩ = |0⟩, m = 2, U0 = X ,
U1 = Z, the norm is 0:

X · Z|0⟩+ Z ·X|0⟩ = |1⟩+ (−1) · |1⟩ = 0 .

On the other hand, for every number of unitaries m ∈ N and state |ψ⟩, if U1 = U2 = · · · = Um, one can
verify that m! is the norm.

The previous work of [Cos22] checks whether (according to the PMF) it is possible to always and
unconditionally execute a superposition of unitary orders, for every unitaries {Ui}i∈[m] and state |ψ⟩. In
our relaxed model, we have the following main differences. We take into consideration computational
complexity, and specifically, the computational complexity of generating the OI state is determined
by two properties of the interference5: (1) The norm of the OI state, and (2) The amount of phase
alignment between execution orders (or spacetimes). More precisely, for every classical state |x⟩ (for
x ∈ {0, 1}n), we consider the phase and magnitude of |x⟩ in the resulting state

(∏
i∈[m] Uσ−1(i)

)
· |ψ⟩

of every execution order σ ∈ Sm. The amount of phase alignment is how similar are the phases of the
same |x⟩, between the results of differing execution orders, over all x ∈ {0, 1}n.
Connection to standard quantum computation. Our next observation is that when trying to execute
OI transformations in standard quantum mechanics, the consideration of the norm is in fact expressed (a
limited phase alignment implies reduced norm, thus phase alignment possibly also plays a role). More
formally, we show there is a quantum algorithm Q that given input unitary circuits {Ui}i∈[m] (all act on
the same number of qubits n) and an n-qubit state |ψ⟩, executes in time poly

(∑
i∈[m] |Ui|

)
, where |Ui|

is the circuit size of Ui, and outputs the normalized OI state OI
(
{Ui}i∈[m], |ψ⟩

)
with success probability(

∥OI({Ui}i∈[m],|ψ⟩)∥
m!

)2

. We elaborate formally on the above quantum procedure in Section 4.2. There

is no known way in quantum mechanics (and in particular, in the standard quantum circuit model) to
generally and efficiently amplify the success probability of executing an OI transformation.
Computable Interference of Unitary Orders - Definition. Rather than either the bounded interference
in quantum mechanics or an unconditional interference, in this work we investigate the computational
power of quantum computing with computable interference of unitary orders. In our model, while the
probability to succeed in executing order interference is proportional to the norm of the OI state (as per
standard quantum mechanics), we allow an investment of computational work (or energy) to amplify the

4As we mentioned before, generating the state |0⟩U1U0 · |ψ⟩+ |1⟩U0U1 · |ψ⟩, which can be thought of as a superposition
of evolution orders, is easy in quantum mechanics. However, while there is superposition, there is no interference between
different evolution orders. Unlike some of the previous work on the subject (e.g. Quantum Switch [CDPV13]), we view not
the superposition, but the interference between different evolution orders as a possibly unique idea to quantum gravity.

5These complexity measures are tied to the physical assumptions given at the end of Section 1.1.
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success probability arbitrarily close to 1 (up to phase misalignment). The ability to execute computable
order interference is formally captured by an object we define, called an Order Interference (OI) oracle
OOI. The full definition (Definition 4.4) of an OI oracle is given in Section 4.1, and for the sake of this
Section 1 and Section 2, it will be sufficient to focus on a relaxed variant of it (given in a Corollary 4.1
of the definition).

The relaxed definition of an OI oracle OOI is as follows. Let {Ui}i∈[m] a set of m ∈ N unitary
quantum circuits, all operating on the same number of qubits n ∈ N, let |ψ⟩ an n-qubit quantum state
and let λ ∈ N. An input to OOI is a triplet(

{Ui}i∈[m], |ψ⟩, λ
)
,

and takes time complexity O
(
λ+

∑
i∈[m] |Ui|

)
. For x ∈ {0, 1}n, σ ∈ Sm we write∏

i∈[m]

Uσ−1(i) · |ψ⟩ :=
∑

x∈{0,1}n
αx,σ|x⟩ .

At the end of execution, with probability(∑
x∈{0,1}n |

∑
σ∈Sm αx,σ|∑

x∈{0,1}n
∑

σ∈Sm |αx,σ|

) ∥OI({Ui}i∈[m],|ψ⟩)∥
m!

∥OI({Ui}i∈[m],|ψ⟩)∥
m! + 1

λ

, (3)

the process measures a ”success” signal for the transformation and obtains the normalization of
OI
(
{Ui}i∈[m], |ψ⟩

)
, and with the remaining probability the process measures a ”fail” signal and obtains

|0n⟩.

1.3 Results

We define a new complexity class named BQPOI (Definition 4.5), which stands for BQP (bounded-error
quantum polynomial-time) with access to an Order Interference oracle OOI. BQPOI is defined as the
class of problems for which there exists a quantum algorithm with access to an OI oracle, such that the
algorithm solves the problem (with bounded error) running in polynomial time in the input size.

We focus on two very well-studied computational tasks in computer science: The Graph Isomorphism
problem (GI, Definition 3.9) and the Gap Closest Vector Problem (GapCVPg(n), Definition 3.11). Both
GI and GapCVPg(n) for g(n) := O(n2) are believed by experts to be unsolvable in quantum polynomial
time. In particular, GapCVPO(n2) is a key problem in the theory of computation and have an immense
practical significance: Solving GapCVPO(n2) means solving the Learning With Errors (LWE) problem
[Reg09], the computational hardness of which is the central pillar of post-quantum cryptography. We
prove the following theorems.

Theorem 1.1. GI ∈ BQPOI.

Theorem 1.2. There exists a positive absolute constant c ∈ R>0 such that GapCVPc·n2 ∈ BQPOI.

We find the precise computational power of BQPOI as an interesting open question. While computable
OI shows algorithmic results seemingly out of the reach of standard quantum computation, it is not
obviously overpowered, in the sense that we did not find a trivial way to solve computational problems
that cause major implications to the theory of computational complexity, e.g., problems complete for the
classes NP or SZK.

Scientific Contribution. As a high-level summary, this work shows a new connection between infor-
mation processing models in quantum gravity, and some of the fundamental computational problems in
computer science. More specifically, we make the following contributions to computational complexity
and quantum information theory (both are explained in length in Section 2).
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• In computational complexity, we show a novel parameterization technique for classical circuits
C : {0, 1}k′ → {0, 1}k, allowing to view invertibility of circuits as a spectrum rather than a
binary predicate. We define a new natural and relaxed variant of the known Statistical Difference
[SV03] problem (SD, Definition 3.5), called the Sequentially-Invertible Statistical Difference
problem (SISD, Definition 4.12). Previous work [GMW91], [GG98] shows how to reduce both
GI and GapCVP (respectively) to SD, and as a technical contribution we show new reductions
to the relaxed problem SISD. These results are in classical computational complexity theory,
independent of any non-classical physics or computation.

• In quantum information theory, we define a new computational model and complexity measure,
capturing a simple analogue of quantum computation with unitary order superposition. We observe
a connection between the model and the problem of Statistical DifferenceSD. As a further technical
step, we show a new algorithmic technique in the computational model, which in turn implies that
for some parameters, the SISD problem can be solved by a quantum computer with unitary order
superposition (in formal terms, that for some parameters, SISD ∈ BQPOI).

Under both disciplines, several open questions stem from our results.
The remaining of the paper is as follows. In Section 2 we give an overview of the techniques

we develop in this work, their connection to new computational problems and also the problems GI and
GapCVP. The Preliminaries are given in Section 3. In Section 4 we provide all of the new definitions from
this work, including the definition of the OI oracle, the complexity class BQPOI and the computational
problem SISD. Section 5 contains our main quantum algorithm, and in Sections 6, 7 we provide new
reductions for GI and GapCVP, which, together with the results in Section 5, show the containment of
the problems in BQPOI.

2 Technical Overview

In this section we give an overview of the main technical ideas in this work. In Section 2.1 we form
an understanding of computational abilities that computable OI has and a standard quantum computer
does not seem to posses. We also connect these understandings to the Statistical Difference problem.
In Section 2.2 we show a new technique to parameterize invertibility of classical circuits and define a
new computational problem, called the Sequentially Invertible Statistical Difference Problem SISD. In
Section 2.3 we show a polynomial-time quantum algorithm using an OI oracle, that solves SISD. In
Section 2.4 we show classical polynomial-time reductions from the Graph Isomorphism Problem GI and
the O(n2)-Gap Closest Vector Problem GapCVPO(n2) to the SISD problem.

2.1 Computable Order Interference and Quantum State Generation

Before we are trying to use computable OI to solve new problems, it is important to intuitively understand
what it enables that a standard quantum computer does not. In the introduction we saw that a standard

quantum computer successfully executes an OI transformation with probability
(
∥OI({Ui}i∈[m],|ψ⟩)∥

m!

)2

,

that is, in the order of the scaled norm of the OI state. In the setting of computable OI (modeled by an
OI oracle OOI), this probability can be amplified as described in 3, depending on the amount of phase
alignment (i.e., how much the non-amplifiable, first component in 3, is close to 1). One can verify that to
make the success probability 3 at least a constant using computable OI, the complexity of amplification

(captured by the parameter λ) has to be at least the inverse of the scaled norm Θ

(
m!

∥OI({Ui}i∈[m],|ψ⟩)∥

)
,
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depends on the wanted constant6. However, if we are already allowed to execute in the complexity scales
of m!

∥OI({Ui}i∈[m],|ψ⟩)∥ , a standard quantum computer can successfully generate the OI state with high
probability: Just by repeatedly trying to execute the OI transformation, where as we know, each attempt

succeeds with the bounded probability
(
∥OI({Ui}i∈[m],|ψ⟩)∥

m!

)2

. When an OI transformation fails in

either of the cases (computable OI or standard quantum computing) the state is considered as destroyed.
So, in both cases, the computational complexity of successfully executing a single OI transformation is
≈ m!

∥OI({Ui}i∈[m],|ψ⟩)∥ .
What is the complexity of executing 2 consecutive OI transformations? For two different sets of

unitaries {U0,i}i∈[m0], {U1,i}i∈[m1]. Assuming both transformations are successful, this will create a
state of different structure than what can be created by a single OI transformation. The gap in complexity
between standard quantum computation and computable OI, becomes more apparent when we think of
running ℓ consecutive OI transformations, for a general ℓ (assuming perfect phase alignment in both
cases). Computable OI lets us maintain a probability close to 1 in that case, using only complexity
≈ ℓ3 · m!

∥OI({Ui}i∈[m],|ψ⟩)∥ over all ℓ attempted transformations, while a standard quantum computer needs
all ℓ tries to succeed consecutively, which generally has a complexity increasing exponentially with ℓ.
One deduction is thus, that the power of computable OI is by executing OI transformations sequentially.
Assume we are starting from the state |0n⟩, and we sequentially execute ℓ OI transformations, for ℓ
different sets of unitaries {U1,i}i∈[m1], · · · , {Uℓ,i}i∈[mℓ]. The resulting quantum state is

∑
σ1∈Sm1 ,··· ,σℓ∈Smℓ

 ∏
iℓ∈[mℓ]

Uℓ,σ−1
ℓ (iℓ)

 · · ·
 ∏
i1∈[m1]

U1,σ−1
1 (i1)

 |ψ⟩ , (4)

and has a unique structure, corresponding to a uniform superposition over all partial execution orders,
where the partial order rule is that for i, j ∈ [ℓ], i < j, the execution of unitaries in the i-th set {Ui,k}k∈[mi]
always comes before the execution of unitaries in the j-th set {Uj,k}k∈[mj ].
The statistical difference problem and quantum state generation. When we think of the ability
to generate new quantum states, there comes to mind one of the most fundamental hard problems in
computer science – the Statistical Difference (SD) problem [SV03]. As an intuitive description, the
input to the SD problem is a pair of classically samplable distributions D0, D1, and the job of a solving
algorithm is to distinguish whether the total variation distance between the distributions is small or large.
Formally, for functions a, b : N → [0, 1] such that ∀n ∈ N : a(n) ≤ b(n), an input to the SDa(n),b(n)
problem is a pair (C0, C1) of classical circuits with the same output size, that is, Cb : {0, 1}kb → {0, 1}k
for some k0, k1, k ∈ N. For each of the two circuits, we consider the output distribution Db which is
generated by executing Cb on a uniformly random input z ∈ {0, 1}kb . The problem comes with the
promise that it is either the case that the total variation distance between D0, D1, is at most a(n), in
which case we denote (C0, C1) ∈

∏
YES, or the distance is more than b(n), in which case we denote

(C0, C1) ∈
∏

NO. Generally speaking, the larger the gap b(n) − a(n), the easier the problem. In this
work, our focus is on the family of problems SDa(n),b(n), for functions a(n), b(n) such that there exists
a polynomial poly(n) with b(n)2 − 2a(n) + a(n)2 ≥ 1

poly(n) . From hereon we drop the subscript a(n),
b(n) from SDa(n),b(n) and write SDpoly to implicitly refer to the family of problems SDa(n),b(n) for such
functions a(n), b(n). The SDpoly problem is a notoriously hard problem in computer science (also for
quantum computers), and it is at least as hard as some of the widely studied computational problems in
cryptography and in combinatorics, for example: Quadratic Residuosity, Lattice Isomorphism, Discrete
Logarithm, Decisional Diffie-Hellman, Graph Isomorphism, the Gap Closest Vector Problem and the
Gap Shortest Vector Problem.

6More generally, assuming perfect phase alignment, to get a success probability of 1 − 1
k

, executing the OI oracle with
λ = k · m!

∥OI({Ui}i∈[m],|ψ⟩)∥ suffices.
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The thing that connects SDpoly and the ability to generate non-trivial quantum states is a quantum
procedure called the Swap Test [BBD+97, BCWDW01]. It is observed in [ATS03] that the SDpoly

problem could be efficiently solved if we had the ability to efficiently generate the output distribution
states of classical circuits. If given input (C0, C1) we could efficiently generate the normalized k-qubit
quantum states,

|C0 (R)⟩ :=
∑

x∈{0,1}k0

|C0(x)⟩ ,

|C1 (R)⟩ :=
∑

x∈{0,1}k1

|C1(x)⟩ ,

then we can execute a Swap Test on the pair of states |C0 (R)⟩, |C1 (R)⟩. A Swap Test approximates
(with some inverse polynomial error) the inner product between the states as vectors, which in turn relates
to the total variation distance between the output distributions D0, D1 (by using the relations between
fidelity and total variation distance). Finally, as long as the gap b(n)2− 2a(n) + a(n)2 is at least inverse
polynomial, the error in the approximation of the Swap Test can be overcome and we can decide whether
the pair of circuits is in

∏
YES or

∏
NO. So, the SDpoly problem can be reduced to the quantum state

generation of |C0 (R)⟩, |C1 (R)⟩. With accordance to the hardness of the SDpoly problem, there is no
known way for a quantum computer to generate in polynomial time the output distribution state for a
general classical circuit C.

2.2 The Sequentially Invertible Statistical Difference Problem

It is a standard fact in quantum computing that for a classical circuit C : {0, 1}k′ → {0, 1}k there
is an (k′ + k)-qubit unitary Ux,C , of roughly the same computational complexity as C, that maps:
∀x ∈ {0, 1}k′ , y ∈ {0, 1}k : Ux,C · |x, y⟩ = |x, y ⊕ C(x)⟩. It is in particular easy to quantumly generate
the (k′ + k)-qubit state

|R,C (R)⟩ := 1√
2k′

∑
x∈{0,1}k′

|x,C(x)⟩ .

The above state is not a valid solution to the quantum state generation problem (and cannot be used to solve
SDwith Swap Test, as described in Section 2.1). The state we want is the output distribution state |C (R)⟩,
where only the output should appear in the superposition, excluding the input. Another known fact in
quantum computing is that if a circuitC : {0, 1}k → {0, 1}k is both efficiently computable and efficiently
invertible (i.e., there is a classically efficiently computable C−1 : {0, 1}k → {0, 1}k), then there is an
efficient unitaryUC on k (rather than k′+k) qubits, mapping ∀x ∈ {0, 1}k : UC · |x⟩ = |C(x)⟩ (possibly
using additional ancillary qubits). In particular, for efficiently computable and invertible circuits, the
quantum state generation is quantumly efficiently solvable. However, for all ”interesting” cases of the
SDpoly problem (in particular, all instances captured by important cryptographic hard problems), the
circuits C0, C1 are conjectured to not be efficiently invertible, and are sometimes known to be not
invertible at all (i.e., they are not injective). In first glance, it isn’t clear how computable OI can help
in generating the output distribution states for non-invertible circuits, in a way that a standard quantum
computer cannot.

We get a dichotomous situation, where if a circuit C : {0, 1}k′ → {0, 1}k is invertible then we
can generate the output distribution state |C (R)⟩ using a standard quantum computer, and if it is not
invertible, we don’t know a way to generate the state, even with computable OI. Could we look at
invertibility in a more high-resolution way? Could we think about invertible classical computation as a
numerical parameter, rather than binary?
Sequentially invertible distributions. Our next idea is to parameterize invertibility. Our parameteriza-
tion technique does not rely on any non-classical computation and may be of independent interest. Note
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that sampler circuits are equivalent to randomized circuits, which take the formC : {0, 1}k×{0, 1}k′ →
{0, 1}k, where the randomness z ∈ {0, 1}k′ is only considered as auxiliary input, and together with it
there’s a main input x ∈ {0, 1}k. We can thus consider sampler and randomized circuits interchangeably.

Our definition of parameterized invertibility of a circuit is as follows. Let C : {0, 1}k′ → {0, 1}k a
circuit. For r ∈ {0, 1, · · · , k′}, we say thatD is r-sequentially invertible if there is an r-invertible circuit
sequence that samples from the output distribution of C 7. An r-invertible circuit sequence on k bits is a
sequence of pairs of circuits (Ci,→, Ci,←)i∈[ℓ] such that for every i ∈ [ℓ],

• For every Y ∈ {→,←}, the circuit Ci,Y uses ri ≤ r random bits and maps from k to k bits, that
is,

Ci,Y : {0, 1}k × {0, 1}ri → {0, 1}k .

• The circuit directions are inverses of each other, per hard-wired randomness, that is:

∀z ∈ {0, 1}ri , x ∈ {0, 1}k : x = Ci,← (Ci,→ (x; z) ; z) .

Note that this also implies that for each hard-wired randomness, the circuits act as permutations
on the set {0, 1}k.

We say that the sequence samples from the output distribution of C if we have the following equivalence
of distributions, {

C(z) | z ← {0, 1}k′
}
≡{

Cℓ,→

(
· · ·C2,→

(
C1,→

(
0k; z1

)
; z2

)
· · · ; zℓ

) ∣∣∣ z1 ← {0, 1}r1 , · · · , zℓ ← {0, 1}rℓ} .

The intuition is that the smaller the parameter r is, ”the more the circuit is invertible”. We give a few
examples. For any invertible circuit C : {0, 1}k → {0, 1}k, C is 0-sequentially invertible (for ℓ = 1,
that is, by a single pair (C1,→, C1,←)). For any (arbitrary) function C : {0, 1}k′ → {0, 1}k, C is
k′-sequentially invertible (again for ℓ = 1). The function C⊕ : {0, 1}2·k → {0, 1}k, that for two strings
a, b ∈ {0, 1}k outputs their bit-wise logical XOR: C⊕(a, b) := a ⊕ b, is 1-sequentially invertible (by a
sequence of ℓ = k pairs), and C∧ : {0, 1}2·k → {0, 1}k, that for two strings a, b ∈ {0, 1}k outputs their
bit-wise logical AND: C∧(a, b) := a ∧ b, is 2-sequentially invertible (again, by a sequence of k pairs).
We leave it as an instructive exercise for the reader to verify the above claims.
Definition of the SISD problem. We combine the ideas of sequential invertibility with the SD problem,
and define the (a(n), b(n), r(n))-Sequentially Invertible Statistical Difference Problem

(
SISDa(n),b(n),r(n)

)
for functions a(n), b(n) : N → [0, 1], r(n) : N → N, such that for every n ∈ N, a(n) ≤ b(n) and
r(n) ∈ {0, 1, · · · , n}. An input is a pair of sequences,((

C0
i,→, C

0
i,←
)
i∈[ℓ] ,

(
C1
i,→, C

1
i,←
)
i∈[ℓ]

)
,

where for each b ∈ {0, 1},
(
Cbi,→, C

b
i,←

)
i∈[ℓ]

is an r(n)-invertible circuit sequence on k bits, where n is
the input size,

n :=

∣∣∣∣ ((C0
i,→, C

0
i,←
)
i∈[ℓ] ,

(
C1
i,→, C

1
i,←
)
i∈[ℓ]

) ∣∣∣∣ .
Similarly to the case of the regular Statistical Distance problem SDa(n),b(n), we have the following

promise on the gap of the statistical distance between the circuits. Formally, for b ∈ {0, 1} denote

Db :=

{
Cbℓ,→

(
· · ·Cb2,→

(
Cb1,→

(
0k(n); z1

)
; z2

)
· · · ; zℓ

)}
,

7The full definition of (r, t, ℓ, ε)-sequential invertibility, which takes into consideration more parameters and not only r, is
given in Section 4.3. For the needs for this overview, we give the minimal definitions.
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where the randomness sequence is sampled in both cases uniformly z1 ← {0, 1}rb1(n), · · · , zℓ ←
{0, 1}rbℓ(n) for the suitable b ∈ {0, 1}. We denote the statistical distance between the distributions
D0, D1 with d, and it is promised that either d ≤ a(n), in which case we say that the input belongs to∏

YES, or we have d > b(n), in which case we determine that the input belongs to
∏

NO. The goal of the
problem is to decide whether the input belongs to

∏
YES or to

∏
NO. As our previous convention for the

SD problem, we also drop the subscript a(n), b(n) to implicitly be any pair of functions with difference
b(n)2 − 2a(n) + a(n)2 lower-bounded inverse polynomially, and write SISDpoly, r(n).

2.3 How to Solve SISDpoly, O(log(n)) with Computable Order Interference

The SISDpoly, r(n) problem is a private case of the SDpoly problem (for any randomness r(n) ∈ [0, n]),
so a statement that holds for general circuits in SDpoly also holds for SISDpoly, r(n). In order to solve
SISDpoly, O(log(n)) we will show how to efficiently solve the quantum state generation problem for
sequentially invertible circuits with randomness O (log(n)). More precisely, given an input r(n)-
invertible circuit sequence C = (Ci,→, Ci,←)i∈[ℓ], such that r(n) = O(log(n)), we show how to
generate the output distribution state

|C(R)⟩ :=
∑

z1∈{0,1}r1 ,
...

zℓ∈{0,1}rℓ

|Cℓ,→
(
· · ·C2,→

(
C1,→

(
0k; z1

)
; z2

)
· · · ; zℓ

)
⟩ , (5)

by a quantum computer with access to a computable order interference oracle OOI, in polynomial time.
We can think of the superposition in the state |C(R)⟩ as a tree – in level i ∈ {0, 1, · · · , ℓ} we have a

superposition over the randomness of all i circuits C1,→, · · · , Ci,→, and the state |C(R)⟩ is simply the
full tree of depth ℓ. We can thus attempt to start from level 0, i.e., the state |0k⟩, and progress one level
at a time. Assume we have a superposition over level i ∈ {0, 1, · · · , ℓ− 1}, that is, we have the state,

|C1,··· ,i(R1,··· ,i)⟩ :=
∑

z1∈{0,1}r1 ,
...

zi∈{0,1}ri

|Ci,→
(
· · ·C1,→

(
0k; z1

)
· · · ; zi

)
⟩ , (6)

and we want to obtain the state of the next level of the distribution (with high probability),

|C1,··· ,i+1(R1,··· ,i+1)⟩ :=
∑

z1∈{0,1}r1 ,
...

zi+1∈{0,1}ri+1

|Ci+1,→

(
· · ·C1,→

(
0k; z1

)
· · · ; zi+1

)
⟩ . (7)

For each randomness zi+1 ∈ {0, 1}ri+1 , the circuit Ci+1,→ (·; zi+1) is efficiently computable and in-
vertible, which, as we know, means we have the efficient k-qubit unitary Ui+1,zi+1 , mapping for every
x ∈ {0, 1}k, Ui+1,zi+1 · |x⟩ = |Ci+1,→(x; zi+1)⟩. Given this structure, observe that the transformation
we want to apply to the state |C1,··· ,i(R1,··· ,i)⟩ is,∑

zi+1∈{0,1}ri+1

Ui+1,zi+1 ,

which will exactly turn the state into |C1,··· ,i+1(R1,··· ,i+1)⟩. An additional way to look at this is that we
want to apply a superposition over unitary choices, rather than orders, over the set {Uj}j∈[m], where we
changed notation by m = 2(ri+1), ∀j ∈ [m] : Uj := Ui+1,j . The amount of randomness ri+1 ≤ r(n) is

11



logarithmic in n, thus the number of unitaries in the set {Uj}j∈[m] is polynomial in n (and all of these
unitaries are of polynomial time complexity).

Our problem is reduced to a clean setting at this point. Given input a set of m unitaries {Ui}i∈[m]

and a state |ψ⟩, we want to execute an interference of choices rather than orders, that is, to obtain the
normalization of ∑

i∈[m]

Ui · |ψ⟩ .

For the solution to suffice, we need the success probability of choice interference to behave as the success
probability of order interference, in both components of the probability: (1) the scaled norm, and (2) the
phase alignment. The scaled norm should be the state’s norm divided by the number of choicesm, and the
phases should align between choices, rather than all orders. Formally, we want to construct an efficient
quantum algorithm that has access to the order interference oracle, and can execute an interference of
choices with success probability of:(∑

x∈{0,1}n |
∑

i∈[m] αx,i|∑
x∈{0,1}n

∑
i∈[m] |αx,i|

) ∥∑i∈[m] Ui·|ψ⟩∥
m

∥∑i∈[m] Ui·|ψ⟩∥
m + 1

λ

, (8)

where for i ∈ [m] we write,
Ui · |ψ⟩ :=

∑
x∈{0,1}n

αx,i · |x⟩ ,

Lastly, for the specific type of unitaries that we use for the algorithm for state generation (i.e., unitaries
that implement the action of invertible classical circuits), all amplitudes are real and non-negative in each
step, and thus in particular phases perfectly align. One can observe that in order to finish our algorithm
for state generation (which in turn will finish the proof for SISDpoly,O(log(n)) ∈ BQPOI), it remains to
only explain how to efficiently execute the above transformation with the target success probability.
Order interference plus small quantum memory implies choice interference. The observation at the
center of our solution is that we can make unitary paths converge, while paying with limiting the variety
of the superposition. For example, by taking all unitaries to be identical U1 = · · · = Um the norm of the
OI state ism! and the phases of all unitary evolution orders align, which makes the success probability 1.
However, this is equivalent to simply executing Um1 , which can be done by a standard quantum computer.
Our solution to this is as follows.

Let n ∈ N the number of qubits in the state |ψ⟩ (and the number of qubits that each of the unitaries
{Ui}i∈[m] act on), and consider adding an ancilla of ⌈logm⌉ qubits, so the state we are operating on is
|ψ⟩|0⌈logm⌉⟩. For each unitary Ui we make a slight change, and execute the modified unitary Ũi which
consists of two steps. (1) Execute the circuitU ci , which executesUi on the leftn qubits, conditioned on the
state of the ⌈logm⌉ right qubits being |0⌈logm⌉⟩. (2) Execute the unitaryU+1 on the right ⌈logm⌉ qubits,
which treats the qubits as a binary representation of a number in {0, 1, · · · ,m − 1, · · · , 2⌈logm⌉ − 1},
and increments by 1 modulo 2⌈logm⌉. For the Unitary U+1 we use the following fact, which we will also
use later:

Fact 2.1. For any pair of numbers a,N ∈ N such that a ≤ N , the function fa,N : {0, 1}⌈log(N)⌉ →
{0, 1}⌈log(N)⌉ that adds to the input a modulo N is efficiently computable and invertible. It follows there
is a unitary circuit Ua,N on ⌈log(N)⌉ qubits, executing in time poly (log (a ·N)) that maps

∀b ∈ {0, 1, · · · , N − 2, N − 1} : Ua,N · |b⟩ = |b+ a (mod) N⟩ .

That is, if we know the numbers a,N not as part of the computation but in advance, then it is possible
to efficiently add a modulo N , in superposition. The solution to executing choice interference is to

12



execute a call to the OI oracle with input
(
{Ũi}i∈[m], |ψ⟩|0⌈logm⌉⟩

)
, and then tracing out the rightmost

⌈logm⌉ qubits.
Let us analyze the result of the above suggestion. We consider what happens to the modified state

|ψ⟩|0⌈logm⌉⟩, in each of the unitary execution orders σ ∈ Sm, for the modified unitaries Ũi. Two things
can be verified by the reader.

• For i ∈ [m] and any permutation σ ∈ Sm such that σ−1 (i) = 1, the state in the left n qubits at
the end of the computation is Ui · |ψ⟩. In simple terms, the only unitary that effectively executes
on the side of the input state |ψ⟩ is the first one in the ordering σ.

• When we look at the state of the right ⌈log(m)⌉-qubit counter register at the end of the computation,
for any execution order σ ∈ Sm, the state is always m mod 2⌈log(m)⌉. This in particular means
that the rightmost ⌈logm⌉ qubits are disentangled from the rest of the left n qubits, and can be
traced out without damaging coherence of the rest of the state.

Together, this also means that for every i ∈ [m],

∑
σ∈Sm:σ−1(1)=i

 ∏
j∈[m]

Uσ−1(j)

 · |ψ⟩ = (m− 1)! · (Ui · |ψ⟩)⊗ |m mod 2⌈log(m)⌉⟩ .

Finally, since all m! permutations in Sm can be partitioned into m sets of equal size (m− 1)!, such that
for i ∈ [m], set i is all permutations σ ∈ Sm such that σ−1(1) = i, by calculation, we get exactly the
desired success probability in 8.

2.4 Reducing GI and GapCVP to SISDpoly,O(log(n))

In the last part of the Technical Overview we will show that two problems that are believed to be hard for
quantum computers, are solvable by a quantum computer with computable order interference, by reducing
to the SISDpoly,O(log(n)) problem. In the first part of this section we show the reduction from GI which
is more immediate, and in the second part we show the more involved reduction from GapCVPO(n2).
To this end, we will first review the existing reductions from each of the problems to the more general
SDpoly problem (which we don’t know how to solve), and then move to our new reductions, to the easier
problem of SISDpoly,O(log(n)).
The Graph Isomorphism Problem and Statistical Difference. An input to the GI problem is a
pair of (simple, undirected) graphs (G0, G1), and the problem is to decide whether the pair of graphs is
isomorphic or not. More formally, forn ∈ Nwe define a graph asG = ([n], E), whereE ⊆ [n]×[n] is the
set of edges. Two graphs are isomorphic iff there exists an isomorphism between them, that is, a bijection
(or, permutation) f on [n] such that for every pair u, v ∈ [n]: {u, v} ∈ E0 ⇐⇒ {f(u), f(v)} ∈ E1,
where for b ∈ {0, 1}, Eb is the set of edges in the graph Gb.

As stated earlier in Section 2.1, there is an existing reduction from GI to the standard statistical
difference problem SDpoly. More precisely, [GMW91] shows a statistical zero-knowledge protocol for
the GI problem, out of which there can be derived the reduction GI ≤p SDa,b, for a = 0, b = 1. The
reduction to SD0,1 means that for an input pair (G0, G1) to the GI problem, if the graphs are isomorphic
then the output pair of circuits (C0, C1) are such that the statistical distance (another term for total
variation distance) between their output distributions is 0, and if the graphs are not isomorphic, the
distance is 1, which means that the supports of the output distributions are disjoint.

The reduction is as follows. Given the input graphs (G0, G1), the first circuit C0 is defined such that
for input randomness r of polynomial length, it samples a uniformly random permutation σ ∈ Sn on the
elements [n], applies σ to the graphG0, and the output ofC0 is the σ-permuted graph σ (G0)8. The circuit

8Recall that permutingGmeans applying σ to the vertices ofG, but keeping the edges connecting the same vertex numbers.
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C1 is identical, only that it applies σ to the second graph, G1. To see the correctness of the reduction,
recall that for two isomorphic graphs, their sets of all isomorphic graphs are equal, thus in that case,
the circuits C0, C1 sample from the exact same distribution (uniform distribution over their isomorphic
graphs!) and the statistical distance is 0. In the other case where the graphs are not isomorphic, there
does not exist a permutation σ that will map one graph to the other (because such permutation will act as
an isomorphism between the graphs), and in particular, the sets of permutations of the two graphs will
never intersect, which will result in a statistical distance of 1.
Our reduction GI ≤p SISD(0,1,log(n)) . It remains to give a more fine-grained reduction for GI. The goal
of our reduction is to stick to the previous reduction of [GMW91], in the sense that the circuit Cb will
still aim to output a random permutation of the graph Gb (for b ∈ {0, 1}), but additionally, the sampling
will be done in a log(n)-sequentially invertible manner.

Our reduction follows by two arguments. The first step is that constant permutation mappings are
efficiently computable and invertible. Formally, assume that we use adjacency matrix representation of
a graph, so n2 bits are sufficient to represent any n-vertex graph. Then, for a fixed permutation σ ∈ Sn,
the circuitCσ : {0, 1}n2 → {0, 1}n2 that permutes a given input graphGwith the permutation σ, is both
efficiently computable and efficiently invertible. The second step is that a random permutation over [n],
which has n! options, can be sampled in many small steps, each having a small (that is, polynomially-
bounded) number of options, and crucially, each step is invertible. Specifically, the Fisher-Yates shuffle
[FY53], shows how to sample a random permutation in n − 1 steps, each step i = n, n − 1, · · · , 3, 2
having i options, and importantly, each step is a fixed permutation in of itself, which means the circuit that
implements it is efficiently computable and invertible. Formally, for a decreasing i = n, n− 1, · · · , 3, 2,
pick a random number j ∈ [i], and swap between i and j.

It remains to compile our observations into a log(n)-invertible circuit sequence. Consider n − 1
circuit pairs (Ci,→, Ci,←)i∈{n,n−1,··· ,3,2}, such that Ci,→ : {0, 1}n2 × {0, 1}⌈log(n)⌉ → {0, 1}n2 maps
between n-vertex graphs and uses the bits of randomness to pick a random element in j ∈ [i], and then
applies a swap between vertices i and j. Per fixed randomness j ∈ [i], the circuit Ci,→ (·, j) performs
a swap between vertices i, j, which one can observe to be a fixed permutation. By generating a circuit
sequence

(
Cbi,→, C

b
i,←

)
i∈{n,n−1,··· ,3,2}

to permute the graph Gb (for b ∈ {0, 1}), where both sequences
are generated as above according to the Fisher-Yates algorithm, the rest of the correctness of the reduction
then follows similar lines to that of [GMW91]. The full proof is given in Section 6.
The g(n)-Gap Closest Vector Problem. For a gap function g : N→ R≥1, an input to the GapCVPg(n)
problem is a triplet (B, t, d), such that

• B = {B1,B2, · · · ,Bn} is a basis for Rn with integer vectors, i.e., B ⊆ Zn.

• t ∈ Zn is an arbitrary integer vector.

• d ∈ R≥0 is a non-negative real number.

We define LB, the lattice given by the basis B, as the set of all integer linear combinations of the vectors
in B, that is:

LB :=
{
a ∈ Zn

∣∣∣ ∃s ∈ Zn : a = B · s
}
.

The input comes with a promise: It is either the case that the vector t is d-close to the lattice i.e.,
dist (LB, t) ≤ d, in which case we denote (B, t, d) ∈

∏
YES, or the vector is farther than d · g(n)

from the lattice i.e., dist (LB, t) > d · g(n), in which case we denote (B, t, d) ∈
∏

NO. In simple
words, a solving algorithm for GapCVPg(n) gets the promise that the vector t is either close or far
away from the lattice LB, and needs to decide which is the case. The bigger the gap g(n) is, the
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easier the problem becomes9. What we will show is that for g(n) = O
(
n2
)

there is a reduction
GapCVPg(n) ≤p SISDpoly,O(log(n)). The inspiration and starting point of our reduction is the reduction
GapCVP√

n
O(log(n))

≤p SDpoly by Goldreich and Goldwasser [GG98], which we recall next.

The Goldreich-Goldwasser reduction GapCVP√
n

O(log(n))

≤p SD(1− 1
nc
, 1) . The [GG98] reduction

shows how, for a gap
√

n
O(log(n)) , we can reduce the Gap Closest Vector Problem to the Statistical

Difference Problem SD. Given a GapCVPg(n) instance (B, t, d) (for g(n) =
√

n
O(log(n)) ), the reduction

executes in classical polynomial time and outputs (C0, C1), such that in case the GapCVP input is in∏
YES then the statistical distance between the output distributions of the circuits is bounded by 1 − 1

nc

(for some constant c ∈ N), and in case the GapCVP input is in
∏

NO then the statistical distance between
the output distributions of the circuits is the maximal 1. Given the input, the [GG98] reduction first
defines an upper boundM :=M(B,t) := 2n ·maxv∈{b1,··· ,bn,t} ∥v∥. The upper bound is used to treat an
inherently infinite lattice in a finite way, by considering only M -bounded coordinates. The definition of
the circuitsC0,C1 is as follows. The circuitC0 first samples a uniformly randomM -bounded coordinates
vector s ∈ ZnM and transforms the coordinates to a lattice vector v := B · s. The final output of C0 is
a uniformly random point p inside the n-dimensional ball of radius d·g(n)

2 around v. The circuit C1 is
the same, with one change: At the end, we add t to p. Note that if the distance of the vector t from the
lattice is d, then it can be written as t = a+ e, such that a ∈ LB and ∥e∥ = d, such that e is the shortest
vector which satisfies this equality.

The rationale behind the reduction is that when having a uniform distribution over a lattice, then
adding a lattice vector to the output keeps the distribution identical. This logic stays consistent for a
distribution that samples balls around the lattice points. So, when looking at the change between C0, C1,
the lattice component a in the vector t gets ”swallowed”, and the only vector that skews the distribution
is e. One can imagine how adding e pushes all n-balls around the lattice points in its direction and
length, and this is exactly the move from the output distribution of C0 to the output distribution of C1.
If (B, t, d) ∈

∏
YES then the skewing vector e has short length ≤ d compared to the radius d·g(n)

2 of
the balls, which makes the balls have significant intersection, which in turn implies an upper bounded
statistical distance between the output distributions of the two circuits (specifically, it can be proven
that the statistical distance is ≤ 1 − 1

nc for some constant c ∈ N) and thus (C0, C1) ∈
∏

YES. If
(B, t, d) ∈

∏
NO and e has length > d · g(n), one can observe how it pushes the n-balls (which have

radius d·g(n)
2 , which is in turn half of the distance to the vector e) to be completely disjoint from the

original ones, which implies a statistical distance of 1 and thus (C0, C1) ∈
∏

NO.
Our reduction GapCVPO(n2) ≤p SISD( 1

2
+ 1

2n
, 1, 1) . The [GG98] reduction maps to circuits (C0, C1)

that sample a uniform point p inside the radius-d·g(n)2 , n-dimensional ball, around a uniform lattice vector
v. While sampling a random lattice vector can be done in a sequentially-invertible manner, sampling a
uniform point inside the n-ball by a sequentially invertible algorithm seems like a fundamental problem.
More specifically (but still in a nutshell), the reason that sampling from the n-ball seems hard, is that
known algorithmic techniques to get a uniformly random sample from the n-ball rely on normalization.
That is, we sample from some large set S, vectors that are not necessarily inside the wanted radius of the
n-ball, and then normalize. The problem arises because normalization is a function of the entire vector,
and it is inherently a non-invertible function (for example, all vectors of the same direction but different
lengths, will map to the same normalized vector).

In our reduction we will still aim to sample from a distribution P around uniform lattice vectors, but
not from the uniform n-ball. We note that our distribution P should have two main characteristics.

9In particular, it is known that for an exponential g(n) ≈ 2n the GapCVP2n problem is solvable in classical polynomial
time [AKS01].
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• n-dimensional symmetry: The distribution P should not have a preferred direction, out of the n
directions in Zn. This requirement is to deal with arbitrary locations of the vector t with respect
to the lattice LB (that is, if the P we pick prefers some direction i ∈ [n], then the vector t can be
chosen as a function of that direction, tricking the reduction).

• Density: We imagine the support of P as an n-dimensional shape, by looking at the elements
that are farthest away from the origin and thinking on them as a boundary for the shape. The
distribution P should be as dense as possible in its shape. The density requirement emerges from
the case where (B, t, d) ∈

∏
YES – in that case we sample uniform samples from the shape around

the lattice vectors, and the more the shape is sparse, the less our ability to give a good upper bound
on the total variation distance between the output distributions of the circuits C0, C1.

It turns out that the distribution which maximizes the above two requirements is indeed the uniform
distribution inside the n-ball. The challenge in our reduction is to find a proper distribution P that
satisfies the above, and also has aO (log(n))-sequentially-invertible sampling algorithm. In fact, we will
show a distribution P with a 1-sequentially-invertible sampling algorithm.
A sequentially-invertible distribution P . The distribution P we choose is the n-dimensional discrete
truncated Gaussian distribution Dn

B (as per Definition 3.12, B ∈ N is the truncation parameter, assume
it to be≈ d·g(n)

2·
√
n

). It is a known fact thatDn
B is invariant under rotations in n-space, which exactly means

it does not prefer any direction of the n directions in Zn. In terms of density, the Gaussian distribution
is obviously less dense in its shape than the uniform n-ball, which is (part of) the reason that we need
a bigger gap g(n) = O

(
n2
)

for which we know how to reduce GapCVPg(n) to SISD, compared to the
better gap

√
n

O(log(n)) from the previous reduction. As part of the full proof of the reduction (given in
Section 7) we analyze the Gaussian distribution’s sparsity in this manner, and the loss of hardness (which
translates to the larger g(n) ≈ n2 >>

√
n

O(log(n)) ) that the sparsity incurs.
It remains to show a sequentially-invertible sampling algorithm for P := Dn

B . One of the basic
properties of the Gaussian distribution says that sampling from Dn

B can be done by sampling n i.i.d.
samples fromDB (one sample for each of the coordinates). All we need to find is a sequentially-invertible
algorithm to sample from the discrete truncated Gaussian distribution DB .

Sampling fromDB has a plethora of existing techniques and algorithms (e.g., [GPV08, Pei10, MP12,
Ros19]), but it is unclear how to show that these can be executed by a sequentially invertible algorithm. In
fact, we did not find any sequentially invertible algorithm that samples from a distribution with negligible
total variation distance toDB . Once we relax our needs to sample from the discrete Gaussian distribution
only approximately (that is, with a non-negligible total variation distance), we find a solution. We give
the intuitive steps behind our solution in the following.

• Recall one of the basic theorems of probability theory - The Central Limit Theorem (CLT). The
CLT says that when we take the average of a collection of κ i.i.d. random numerical variables
X1, · · · , Xκ, this average

∑
i∈[κ]Xi
κ approaches the Gaussian distribution as κ approaches infinity.

This helps us because now, instead of sampling from the Gaussian distribution (which we do
not know how to do with a sequentially invertible algorithm), we can repeatedly sample from
any distribution. While the CLT asserts closeness to the Gaussian distribution for some number
of summands, it does not guarantee a rate of convergence, as the rate depends on the chosen
distribution of the summands {Xi}i∈[κ].

• We observe that the uniform distribution has two properties that work in our favour, for the
summands {Xi}i∈[κ]. Using a strengthening of the CLT (a Berry-Esseen-type Theorem), it can
be shown that the uniform distribution gives a good convergence rate to the Gaussian distribution,
even in total variation distance and even in the discrete case. Formally, in Section 7 we show that
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summing κ i.i.d. samples of the uniform distribution over −2β, · · · ,−1, 0, 1, · · · , 2β for 2β ≈ B
κ

has total variation distance bounded by O
(

1√
κ

)
to the discrete Gaussian distribution DB .

• A second property of the uniform distribution is that it can be sampled by a sequentially-invertible
algorithm, in fact, by a 1-invertible circuit sequence. To see this, observe that to sample uniformly
at random from {0, 1, · · · , 2β+1 − 1}, all we need to do is to break the sampled number into
its summation as powers of 2, and in the i-th circuit for i ∈ [β], we add (or not) the number
2i. Summing random powers of 2 up to power β exactly gives a uniformly random sample in
{0, 1, · · · , 2β+1 − 1}. At the end we can deterministically move the distribution to center around
zero, by subtracting 2β .

• To see why the circuit sequence is invertible, observe that for every i ∈ [β], for every possible
randomness for the circuit Ci (which is just one bit bi ∈ {0, 1}), the fixed-randomness circuit
Ci (·; bi) always adds modulo 2β+1 the same number bi · 2i. By going back to Fact 2.1, it follows
that the fixed-randomness Ci (·; bi) is efficiently computable and invertible, as needed.

To conclude, the circuit sequence C0 samples a uniformly random lattice vector v, and then adds an
approximate discrete Gaussian vector e, where the approximation is done by summing i.i.d. samples
from the uniform distribution. The circuit sequence C1 is the same, only that we add t in the end. Both
circuit sequences are shown to be 1-sequentially invertible. We refer the reader to Section 7 for the full
details of the proof, including the analysis of the total variation distance between the output distributions
of the circuits.

3 Preliminaries

This section contains previously existing notions and definitions from the literature that are relevant to
this work, mostly from quantum computation and computational complexity theory.

• For n ∈ N, define [n] := {1, 2, 3, · · · , n}.

• When we use the notation log(·) we implicitly refer to the base-2 logarithm function log2(·).

• The only non-standard notation will be for iterated matrix multiplication. Specifically, our default
convention for iterated matrix multiplication, using the notation

∏
, will be by enumerating from

right to left (unlike the usual, left to right). Specifically, for a natural number m ∈ N and square
complex matrices {Mi}i∈[m] (∀i ∈ [m] :Mi ∈ Cn×n for some n ∈ N), we define:∏

i∈[m]

Mi :=Mm ·Mm−1 · · ·M2 ·M1 .

• We follow the standard Dirac notations for quantum states in quantum information processing. For
a variable x (i.e., notation) that denotes a classical binary string, i.e., x ∈ {0, 1}∗, the notation |x⟩
refers to the pure quantum state of |x| qubits, which equals the x-th standard basis element of the
space C2|x| . That is,

∀n ∈ N : ∀x ∈ {0, 1}n : |x⟩ := ex := (01, 02, · · · , 0x−1, 1x, 0x+1, · · · , 02n−1, 02n)T .

In case x ∈ Z is a natural number, the notation |x⟩ first translates x to its ⌈log2 (x)⌉-bit binary
representation, and then when x is now a binary string, applies the Dirac operator as above.

• For a natural number N ∈ N, the N -th complex root of unity is defined to be ωN := e
2iπ
N .
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• When we use the notation ∥·∥ for norm of a vector, we implicitly refer to the Euclidean, or ℓ2 norm
∥·∥2, unless explicitly noted otherwise.

• For two classical random variables (i.e., distributions) D0, D1 over binary strings of finite length
≤ k, the total variation distance (sometimes referred to as statistical distance) between D0 and D1

is defined as follows:

∥D0 −D1∥TV :=
1

2
∥D0 −D1∥1 :=

1

2

∑
i∈[k],x∈{0,1}i

|D0 (x)−D1 (x) | ,

where for b ∈ {0, 1}, i ∈ [k] and x ∈ {0, 1}i, the notation Db (x) is the probability to sample x in
the distribution Db.

• For two classical random variables (i.e., distributions) D0, D1 over binary strings of finite length
≤ k, the fidelity between D0 and D1 is defined as follows:

F (D0, D1) :=
∑

i∈[k],x∈{0,1}i

√
D0 (x) ·D1 (x) ,

where for b ∈ {0, 1}, i ∈ [k] and x ∈ {0, 1}i, the notation Db (x) is the probability to sample x in
the distribution Db.

• For every pair of classical random variables D0, D1 over binary strings of finite length ≤ k, the
following relation between the fidelity and total variation distance between distributions is known:

1− F (D0, D1) ≤ ∥D0 −D1∥TV ≤
√
1− F (D0, D1)

2 .

• Unless specifically noted otherwise, for any variable u (not necessarily denoting a binary string),
the notation |u⟩ denotes a unit vector in complex vector space, of some finite dimension. That
is, the notation usually refers to a quantum state and is thus a normalized vector, unless explicitly
noted otherwise. Also, for any n ∈ N, an n-qubit state is always a unit vector in C2n .

• A DPT algorithm is a classical deterministic polynomial-time Turing machine. It is a known fact in
computational complexity theory that a DPT is equivalent to a uniform family of polynomial-sized
classical deterministic circuits. We will use these two notions interchangeably throughout this
work as our model for efficient classical computation.

• A PPT algorithm is a classical probabilistic polynomial-time Turing machine. It is a known fact in
computational complexity theory that a PPT is equivalent to a uniform family of polynomial-sized
classical probabilistic circuits. We will use these two notions interchangeably throughout this work
as our model for efficient probabilistic classical computation.

• A QPT algorithm is a quantum polynomial-time Turing machine. It is a known fact in computational
complexity theory that a QPT is equivalent to a uniform family of polynomial-sized quantum
circuits. We will use these two notions interchangeably throughout this work as our model for
efficient quantum computation.

• Unitary transformations are the transformations which quantum mechanics allows, when excluding
measurements (and adding ancilla qubits). Throughout this work we will consider unitaries
as matrices, transformations or circuits, interchangeably, depending on the context, using the
following conventions.

• For n ∈ N, an n-qubit unitary is a unitary matrix U ∈ C2n×2n .
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• For n ∈ N, an n-qubit general circuit (or n-qubit quantum algorithm) is a quantum circuit C that
can perform the constant-sized quantum gates {X,Z, P,H, T, CNOT, SWAP, Tof}, execute
measurement gates and add ancillary qubits registers containing |0k⟩.

• For n ∈ N, an n-qubit unitary circuit is a quantum circuit on n qubits that only uses quantum gates
{X,Z, P,H, T, CNOT, SWAP, Tof}, adds no ancilla and uses no measurement gates.

• For n, k ∈ N, an n-qubit, k-ancilla unitary circuit C is a quantum circuit on n qubits that first con-
catenates ak-qubit ancilla |0k⟩ to the input, then executes only quantum gates{X,Z, P,H, T, CNOT, SWAP, Tof}.
C satisfies that the ancillary qubits start and (crucially) return to 0k, that is, there exists an n-qubit
unitary UC such that,

For every n-qubit state |ψ⟩ : C
(
|ψ⟩|0k⟩

)
= (U |ψ⟩) |0k⟩ .

In that case, we say that the quantum circuit C implements the unitary UC .

• For n ∈ N and an n-qubit unitary transformationU , a unitary circuit forU , denotedCU (or denoted
U by overloading notation, when it is clear from the context whether we are referring to the matrix
or circuit version of U ) is an n-qubit, k-ancilla (for some k ∈ (N ∪ {0})) unitary quantum circuit
that implements the unitary U .

• Representing permutations: Form ∈ N, our way for presenting a permutation σ ∈ Sm in the form
of a binary string in this paper, is by using m · ⌈log(m)⌉ bits, interpreted as a list of m numbers
in [m] – an ordering of the set [m] according to the permutation σ. Specifically, the number in the
i-th packet of ⌈log2(m)⌉ bits, is σ−1(i).

• In this work we assume that quantum systems have finite dimensions. Formally, for every quantum
register R of n ∈ N qubits we assume there exists a quantum register R′ of finite size containing
n′ ∈ N qubits such that the quantum state of the joint system (R,R′) is in a pure state, that is, the
joint system is not entangled with any other outside quantum system.

• For natural numbers N0, N1 ∈ N, the set Z(−N0,N1) is defined as the set of integers between (and
including) −N0 and N1, that is,

Z(−N0,N1) := {−N0, · · · ,−1, 0, 1, · · · , N1} .

3.1 Standard Notions from Computational Complexity Theory

In this work we study generalization of decision problems, which are called promise problems. Promise
problems are defined as follows.

Definition 3.1 (Promise Problem). Let {0, 1}∗ :=
⋃
i∈(N∪{0}){0, 1}i the set of all binary strings, of all

lengths. A promise problem
∏

:=
(∏

YES,
∏

NO
)

is given by two (possibly infinite) sets
∏

YES ⊆ {0, 1}∗,∏
NO ⊆ {0, 1}∗ such that

∏
YES ∩

∏
NO = ∅.

A decision problem, which is a private case of promise problems, is defined as follows. It basically
means a promise problem where the input can be any string, and is not promised to be in any particular
set.

Definition 3.2 (Decision Problem). Let
∏

:=
(∏

YES,
∏

NO
)

a promise problem. We say that
∏

is a
decision problem if

∏
YES ∪

∏
NO = {0, 1}∗.

We next define languages, which are derived from decision problems.

19



Definition 3.3 (Language). Let
∏

:=
(∏

YES,
∏

NO
)

a decision problem. We say that L is the language
induced by the decision problem

∏
if
∏

YES = L.

The complexity class BQP represents all computational problems that have a feasible solution on
a quantum computer, and more broadly (and informally), BQP represents humanly-feasible quantum
computation. The writing BQP stands for Bounded-Error Quantum Polynomial-Time, and defined as
follows (which is one out of many equivalent definitions of this class).

Definition 3.4 (The Complexity Class BQP). The complexity class BQP is the set of promise problems∏
:=
(∏

YES,
∏

NO
)

that are solvable by a quantum polynomial-time algorithm. Formally, such that
there exists a QPT M such that for every x ∈

∏
YES, M(x) = 1 with probability at least p(x), and if

x ∈
∏

NO, M(x) = 0 with probability at least p(x), such that

∀x ∈

(∏
YES

∪
∏
NO

)
: p(x) ≥ 1− 2−poly(|x|) ,

for some polynomial poly(·).

We next discuss computational problems (that is, promise problems) on arbitrary mathematical
objects. As in the standard conventions in computational complexity theory, arbitrary mathematical
objects can be represented by binary strings, and thus promise problems capture any problem.
The Statistical Difference Problem. We next define the Statistical Difference (SD) problem [SV03], a
well-known promise problem in computer science.

Definition 3.5 (The Statistical Difference Problem). Let a, b : N → [0, 1] functions such that ∀n ∈
N : a(n) ≤ b(n). The (a(n), b(n))-gap Statistical Difference problem, denoted SDa(n),b(n) is a promise
problem, where the input is a pair of classical circuits (C0, C1)with the same output size,C0 : {0, 1}k0 →
{0, 1}k, C1 : {0, 1}k1 → {0, 1}k. For a pair of circuits we define their output distributions:

∀b ∈ {0, 1} : Db := {Cb (x) |x← {0, 1}kb} .

The problem is defined as follows.

•
∏

YES is the set of pairs of circuits (C0, C1) such that ∥D0 −D1∥TV ≤ a(n),

•
∏

NO is the set of pairs of circuits (C0, C1) such that ∥D0 −D1∥TV > b(n),

such that n is the description size of the pair of circuits,

n := | (C0, C1) | .

In this work we mainly care about the statistical difference problem where the gap is not too small,
and formally, lower-bounded inverse-polynomially. To this end we define the family of problems SDpoly

as follows.

Definition 3.6 (The Polynomial-Gap Statistical Difference Problem). The polynomially-bounded statis-
tical difference problem, denoted SDpoly is in fact a set of promise problems (and not a promise problem
by itself). It is defined as follows.

SDpoly :=
⋃

a(n),b(n):N→[0,1],

∃ a polynomial poly:N→N such that ∀n∈N:b(n)2−2a(n)+a(n)2≥ 1
poly(n)

{SDa(n),b(n)} .
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The Graph Isomorphism Problem. As part of this work we show how a strengthening of the model
of quantum computation solves the graph isomorphism problem. To this end, we define (simple and
undirected) graphs and then the graph isomorphism problem. First, a (simple and undirected) graph with
n vertices is a set of n points, implicitly numbered [n], where some pairs of points have edges between
them. The edges are directionless lines, or connections, between a pair of points i, j ∈ [n], i ̸= j. In this
work when we refer to graphs, they are implicitly simple and undirected.

Definition 3.7 (Simple and Undirected Graph). For n ∈ N, an n-vertex (simple and undirected) graph
G is given by the pair ([n], E), such that E contains size-2 subsets of [n].

Observe that the maximal amount of edges, that is, the maximal size ofE for an n-vertex graphG, is(
n
2

)
:= n(n−1)

2 . This means that a graph can be represented by a binary string of length O(n2). Next, we
define isomorphic graphs. The intuition behind graph isomorphism is that isomorphic graphs G0, G1

are essentially the exact same graph (they contain the same information on connections), and visually,
by moving the vertices of (any embedding of) one of the graphs Gb, we get a picture of an embedding of
the other G¬b.

Definition 3.8 (Isomorphic Graphs). Let n ∈ N and let G0 = ([n], E0), G1 = ([n], E1) a pair of
n-vertex graphs. We say that G0 and G1 are isomorphic and denote G0 ≃ G1 if there exists a bijection
(or equivalently, permutation) f on the set [n] such that,

∀i, j ∈ [n] : {i, j} ∈ E0 ⇐⇒ {f(i), f(j)} ∈ E1 .

The Graph Isomorphism (GI) problem is the computational problem of deciding whether a pair of
input graphs are isomorphic or not. The GI problem has a long history of attempted solutions using
polynomial-time algorithms, both classically and quantumly.

Definition 3.9 (The Graph Isomorphism Problem). The Graph Isomorphism problem, denoted GI is a
decision problem, where the input is a pair of graphs (G0, G1) with the same number of vertices n. The
problem is defined as follows.

•
∏

YES is the set of pairs of graphs (G0, G1) such that G0 ≃ G1.

•
∏

NO is {0, 1}∗ \
∏

YES.

As a final comment, the GI is a decision problem (and not only the more general, promise problem)
since if it had a promise, this promise would turn out to be computationally trivial. That is, the set∏

NO is the sets of strings that either (1) just don’t represent a pair of graphs, or (2) represent a pair
of graphs (G0, G1), but this pair is not isomorphic. Checking whether an input string has the correct
format and indeed represents a pair of graphs can be done in classical polynomial-time, and thus the
graph isomorphism problem is usually thought of as a decision problem and not just a promise problem.

We use the following known facts about the distributions of random permutations of isomorphic
graphs, and also on known algorithmic techniques for sampling a uniformly random permutation.

Fact 3.1 (Permutations of isomorphic and non-isomorphic graphs). Let (G0, G1) a pair of graphs on
n ∈ N vertices each.

In case the pair is isomorphic, then for a permutation σ ∈ Sn on the set [n], denote by σ (G) the
graph generated by rearranging the vertices of G with accordance to the permutation σ. Then, the
following distributions are identical:

{σ (G0) |σ ← Sn} ≡ {σ (G1) |σ ← Sn} .

In case the pair of graphs is not isomorphic, then the above distributions have disjoint supports.
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Fact 3.2 (The Fisher-Yates permutation-sampling algorithm [FY53]). Let n ∈ N, the following process
produces a uniformly random permutation σ ∈ Sn. Start with any permutation of (1, 2, · · · , n− 1, n),
and for a decreasing i = n, n − 1, · · · , 3, 2, for every i, make a swap between the element currently in
slot i and the element currently in slot ri, where ri is a uniformly random element in [i].

The Gap Closest Vector Problem. We turn to the definition of the gap closest vector problem (GapCVP).
We define lattices and then the GapCVP problem. For a basis B of Rn, a lattice with basis B is the
infinite set of all integer linear combinations of the basis vectors in B. In this work, in order to not deal
with real-valued vectors and finite precision, we consider only lattice bases with integer coordinates, i.e.,
bases of Rn from Zn. The computational hardness of these problems are polynomially equivalent.

Definition 3.10 (An Integer Lattice). Let n ∈ N and let B := {b1,b2, · · · ,bn} a basis for Rn with
integer vectors, that is, B ⊆ Zn. The lattice of B, denoted LB, is defined as follows.

LB :=
{
a ∈ Zn

∣∣∣ ∃s ∈ Zn : a = B · s
}
.

For a latticeL and a vector t ∈ Zn, the distance∆(L, t) betweenL and t is the minimum (Euclidean,
ℓ2) distance between v and t, where the minimum is taken over v ∈ L. Next, we define the Gap Closest
Vector Problem.

Definition 3.11 (The Gap Closest Vector Problem). Let g : N→ R≥1 a function. The g(n)-Gap Closest
Vector Problem, denoted GapCVPg(n) is a promise problem, where the input is a triplet (B, t, d) such
that B ⊆ Zn is a basis for Rn, t ∈ Zn is an integer vector and d ∈ N. For an input triplet, the promise
problem is defined as follows.

•
∏

YES is the set of triplets (B, t, d) such that ∆(LB, t) ≤ d.

•
∏

NO is the set of triplets (B, t, d) such that ∆(LB, t) > d · g(n).

3.2 Statistical and Algorithmic Tools

We use numerous algorithmic and statistical results in this work.
Quantum Swap Test. We use the Swap Test [BBD+97, BCWDW01] algorithm, which, among other
things, can be used to distinguish between quantum states as a function of their inner product as vectors.

Theorem 3.1 (Swap Test Algorithm). There exists a quantum algorithm QST (·) that gets as input a
2 · n-qubit register R and outputs a bit b ∈ {0, 1}, and executes in complexity O(n). If R is in the
separable state of n qubits each |ψ⟩ ⊗ |ϕ⟩, then the algorithm outputs 1 with probability 1

2 + |⟨ψ||ϕ⟩|2
2 ,

and with the remaining probability outputs 0.

Deviation Bounds. We use the following known formulation of Chernoff’s bound, which shows an
exponentially fast (in the number of samples) decaying probability for the deviation of the average of
many binary i.i.d. samples. One of the main usages of the below statement in repetition theorems in
computer science, is that the repetition parameter n ∈ N in the below statement can be chosen as a
function of both ε ∈ [0, 1] and p ∈ [0, 1].

Theorem 3.2 (Chernoff’s Bound for an Average of i.i.d. Samples). Let n ∈ N, let X a random variable
over {0, 1} (that is, X = 1 with probability p ∈ [0, 1] and X = 0 with probability 1 − p) and let
{Xi}i∈[n] n i.i.d. samples from X . Let AX,n :=

∑
i∈[n]Xi
n the average of the sum of samples, and let

E (AX,n) the expectation of the average. Then for every ε ∈ (0, 1),

Pr
X1,··· ,Xn

[∣∣AX,n − E (AX,n)
∣∣ ≥ ε · p] ≤ 2 · e−n·

p·ε2
3 .
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Gaussian distribution variants. As part of the reduction GapCVP ≤p SISDpoly,1, which is resented in
Section 7, we will approximate the discrete truncated Gaussian distribution, which is defined as follows.

Definition 3.12 (Discrete truncated Gaussian distribution). For B ∈ N, we define the discrete truncated
Gaussian distribution DB as the distribution with sample space {−B, · · · ,−1, 0, 1, · · · , B} defined as,

∀x ∈ {−B, · · · ,−1, 0, 1, · · · , B} :

DB (x) :=
e−

π·|x|2

B2∑
y∈{−B,··· ,−1,0,1,··· ,B} e

−π·|y|
2

B2

.

As part of the approximation of the discrete Gaussian distribution we will use a closely related
variant, which is the rounded truncated Gaussian distribution. To this end we first define the continuous
Gaussian distribution, then rounded Gaussian distribution, and then the truncated version of the rounded
distribution.

Definition 3.13 (Continuous Gaussian distribution). Let µ ∈ R and σ ∈ R≥0. The continuous Gaussian
(or normal) distribution with mean µ and standard deviation σ, denotedN (µ, σ) is the distribution with
sample space R such that,

∀x ∈ R : N (µ, σ) (x) :=
1

σ
√
2π
· e−

1
2(

x−µ
σ )

2

.

Definition 3.14 (Rounded Gaussian distribution). Let µ ∈ R and σ ∈ R≥0. The rounded Gaussian
distribution with mean µ and standard deviation σ, denoted N Z (µ, σ) is the distribution with sample
space Z such that,

∀x ∈ Z : N Z (µ, σ) (x) :=

∫ x+ 1
2

x− 1
2

N (µ, σ) (x) ,

where N (µ, σ) is the probability density function of the continuous Gaussian distribution (Definition
3.13) with mean µ and standard deviation σ.

Definition 3.15 (Rounded truncated Gaussian distribution). Let µ ∈ R, σ ∈ R≥0 and B ∈ N. The
rounded B-truncated Gaussian distribution with mean µ and standard deviation σ, denoted NB (µ, σ)
is the distribution with sample space {−B, · · · ,−1, 0, 1, · · · , B} such that,

∀x ∈ {−B, · · · ,−1, 0, 1, · · · , B} :

NB (µ, σ) (x) :=
N Z (µ, σ) (x)∑

y∈{−B,··· ,1,0,1,··· ,B}N Z (µ, σ) (y)
,

where N Z (µ, σ) is the probability density function of the rounded Gaussian distribution (Definition
3.14) with mean µ and standard deviation σ.

We use the following fact on the total variation distance between the two versions (discrete and
rounded) of the truncated Gaussian distributions.

Fact 3.3 (Distance between rounded and discrete Gaussians). Let B ∈ N, then,

∥∥(NB (0, B)
)
− (DB)

∥∥
TV
≤ O

(
1

B

)
.
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Strengthening of the central limit theorem. The central limit theorem (CLT), one of the fundamental
theorems in statistics, tells us that when we take N ∈ N independent and continuous random variables
X1, · · · , XN , the uniform average of the samples approaches the Gaussian distribution, as N goes to
infinity. The CLT does not tell us the rate at which the samples approach the Gaussian distribution,
as this depends, among other things, on the probability density functions of the summed variables
{Xi}i∈[N ]. The Berry-Esseen Theorem is a quantified version of the central limit theorem – it bounds
the Wasserstein-1 distance between the sum S :=

∑
i∈[N ]Xi and the Gaussian distribution, as a function

of N and the density functions of the variables {Xi}i∈[N ]. The original formulation of the Berry-Essen
Theorem is insufficient for our needs, because (1) In this paper we are working with discrete random
variables and not continuous, and (2) We want a bound on the total variation distance which implies
physical statistical indistinguishability, and for this, the Wasserstein-1 distance is not enough. We will
use the following strengthening Theorem from [CGS10]:

Theorem 3.3 (Discrete Berry-Esseen bound for total variation – Theorem 7.4 from [CGS10]). Let
N ∈ N and let {Xi}i∈[N ] independent random variables with finite supports contained in Z, and denote
S :=

∑
i∈[N ]Xi. Denote,

• For every i ∈ [N ], the expectation of Xi, µi := E (Xi).

• For every i ∈ [N ], the variance of Xi, σ2i := Var (Xi) := E
(
X2
i

)
− E (Xi)

2.

• The variance of the sum S, σ2 := Var (S), which equals
∑

i∈[N ] σ
2
i , due to the random variables

being independent.

• For every i ∈ [N ], the third moment of Xi, γi :=
EXi(|Xi−µi|

3)
σ3 .

• The expectation of S, µ :=
∑

i∈[N ] µi.

• The sum of third moments γ :=
∑

i∈[N ] γi.

• The sum of the maximal values that the variables can take, B :=
∑

i∈[N ] (maxx∈Xi |x|).

• For every i ∈ [N ], the random variable S(i) := S −Xi, that is, the original full sum S, excluding
the i-th variable.

Then we have the following upper bound on the total variation distance,∥∥S −NB (µ, σ)
∥∥
TV

≤ 3

2
· σ ·

∑
i∈[N ]

((
γi +

2 · σ2i
3 · σ3

)
·
∥∥∥(S(i)

)
−
(
S(i) + 1

)∥∥∥
TV

)

+

(
5 + 3

√
π

8

)
· γ +

1

σ · 2
√
2π

.

4 New Notions and Definitions

In this section we define the new notions that this work presents. We start with the computational model
and then a comparison to standard quantum computation. We then proceed to defining sequentially
invertible circuits and the sequentially invertible statistical difference problem SISD.
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4.1 Quantum Computation with Computable Order Interference

At the heart of our model is the order interference (OI) oracle, which gets as input an amplification
parameter λ ∈ N, a set of m ∈ N unitaries {Ui}i∈[m] (all acting on the same number of qubits, n ∈ N)
and an n-qubit state |ψ⟩. The oracle then makes an attempt to execute an OI transformation, and if the
OI transformation succeeds, we get the OI state. The relevant definitions follow.

Definition 4.1 (The Uniform Order Interference State). Let {Ui}i∈[m] a set of m ∈ N unitary trans-
formations which all operate on the same number of qubits n ∈ N and let |ψ⟩ an n-qubit quantum
state.

The uniform order interference state of the pair
(
{Ui}i∈[m], |ψ⟩

)
is

OI
(
{Ui}i∈[m], |ψ⟩

)
:=

∑
σ∈Sm

∏
i∈[m]

Uσ−1(i)

 · |ψ⟩ .
After defining the uniform OI state, we define the uniform OI oracle as follows.

Definition 4.2 (Computable Uniform Order Interference Oracle). The computable uniform order inter-
ference oracle, denoted OOI, is an oracle with input triplet

(
{Ui}i∈[m], R, λ

)
, such that,

• {Ui}i∈[m] is a set ofm ∈ N unitary circuits which all operate on the same number of qubits n ∈ N,

• R is an n-qubit quantum register, and

• λ ∈ N is a natural number.

Given valid input
(
{Ui}i∈[m], R, λ

)
, let R′ a n′-qubit register such that the joint system (R,R′) is in

a pure state, written as, ∑
y∈{0,1}n′

αy · |ψy⟩R|y⟩R′ .

The oracle call takes time complexity
∑

i∈[m] |Ui|+ λ. At the end of the oracle execution it returns
a success/failure bit b ∈ {0, 1}, where the success probability is

min
y∈{0,1}n′

(∑x∈{0,1}n |
∑

σ∈Sm αy,x,σ|∑
x∈{0,1}n

∑
σ∈Sm |αy,x,σ|

)
·
∥OI({Ui}i∈[m],|ψy⟩)∥

m!

∥OI({Ui}i∈[m],|ψy⟩)∥
m! + 1

λ

 ,

where for y ∈ {0, 1}n′ , σ ∈ Sm we write∏
i∈[m]

Uσ−1(i) · |ψy⟩ :=
∑

x∈{0,1}n
αy,x,σ|x⟩ .

If the call succeeded, the state in (R,R′) is the normalization of,∑
y∈{0,1}n′

αy · OI
(
{Ui}i∈[m], |ψy⟩

)
R
|y⟩R′ ,

and if it failed, the state in (R,R′) may be arbitrary.
- The unitaries {Ui}i∈[m] can also be given in the form of controlled oracle access. In that case, the

complexity |Ui| for i ∈ [m] is the complexity of making an oracle call to the (n+1)-qubit unitary which
is the controlled Ui.
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To make using an OI oracle easier, when the n-qubit input register R to the oracle is in a pure state,
the outcome of an oracle access is simplified.

Corollary 4.1 (Corollary - Uniform OI on pure states). Let
(
{Ui}i∈[m], R, λ

)
such that {Ui}i∈[m] is a

set of m ∈ N unitary circuits which all operate on the same number of qubits n ∈ N, λ ∈ N is a natural
number and R is an n-qubit register in some pure state |ψ⟩.

Then, the oracle call OOI
(
{Ui}i∈[m], R, λ

)
succeeds with probability,(∑

x∈{0,1}n |
∑

σ∈Sm αx,σ|∑
x∈{0,1}n

∑
σ∈Sm |αx,σ|

) ∥OI({Ui}i∈[m],|ψ⟩)∥
m!

∥OI({Ui}i∈[m],|ψ⟩)∥
m! + 1

λ

,

where for σ ∈ Sm we write ∏
i∈[m]

Uσ−1(i) · |ψ⟩ :=
∑

x∈{0,1}n
αx,σ|x⟩ .

and with (at least) the same probability, the state in R after the oracle call is the normalization of the
uniform OI state, OI

(
{Ui}i∈[m], |ψ⟩

)
. In case the call fails, the state in R may be arbitrary.

General form of OI states and oracles. While this work studies only the the computational power of a
quantum computer having the ability to generate uniform superpositions of unitary execution orders, it
is an interesting mathematical question for future work to understand what’s possible to compute when
the superposition of orders is not necessarily uniform. To this end, we next define the generalized OI
state and generalized OI oracle. Both of the latter have a fourth parameter UO, a unitary circuit which
determines the superposition of orders. We are overloading notations and still use OI, such that when
we are dropping the parameter for UO, we are automatically referring to the uniform definitions of OI
state and OI oracle.

Definition 4.3 (The Order Interference State). Let {Ui}i∈[m] a set of m ∈ N unitary transformations
which all operate on the same number of qubits n ∈ N, let |ψ⟩ an n-qubit quantum state, and let UO a
k-qubit unitary circuit on registers (O,A) where O has m · ⌈log (m)⌉ qubits and A has the rest.

Write the generated state byUO in the following way (recall that we usem ·⌈log (m)⌉ bits to represent
a permutation in Sm):

UO · |0k⟩ =
∑
σ∈Sm

ασ · |σ⟩O|ψσ⟩A .

The order interference state of the triplet
(
{Ui}i∈[m], |ψ⟩, UO

)
is defined as follows.

OI
(
{Ui}i∈[m], |ψ⟩, UO

)
:=

∑
σ∈Sm

ασ ·

∏
i∈[m]

Uσ−1(i)

 · |ψ⟩ .
- When the notation OI (·) is used with 2 parameters instead of 3, we automatically refer to the

uniform OI state, as in definition 4.1.

We next define the generalized OI oracle. One thing to notice is that unlike in the case of the uniform
OI state, the general OI state is such that amplitudes are taken into consideration. The consideration
makes a shorter vector. This is taken into consideration when calculating the norm of the general OI
state, which is relevant for the success probability of an oracle call. Formally, this pops up in the below
definition of a general OI oracle, where the success probability of the call scales down the OI state by a
factor of

√
m! rather than by a factor of m!, as in the uniform case.
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Definition 4.4 (Computable Order Interference Oracle). A computable order interference oracle, denoted
OOI, is an oracle with input quadruple

(
{Ui}i∈[m], R, UO, λ

)
, such that,

• {Ui}i∈[m] is a set ofm ∈ N unitary circuits which all operate on the same number of qubits n ∈ N,

• R is an n-qubit quantum register,

• UO is a unitary on registers (O,A) where O has m · ⌈log (m)⌉ qubits and A has some number of
qubits k ∈ N,

• and λ ∈ N is a natural number.

Given valid input
(
{Ui}i∈[m], R, UO, λ

)
, let R′ a n′-qubit register such that the joint system (R,R′)

is in a pure state, written as, ∑
y∈{0,1}n′

αy · |ψy⟩R|y⟩R′ .

The oracle call takes time complexity |UO|+
∑

i∈[m] |Ui|+ λ. At the end of the oracle execution it
returns a success/failure bit b ∈ {0, 1}, where the success probability is

min
y∈{0,1}n′

(∑x∈{0,1}n |
∑

σ∈Sm αy,x,σ|∑
x∈{0,1}n

∑
σ∈Sm |αy,x,σ|

) ∥OI({Ui}i∈[m],|ψy⟩,UO)∥√
m!

∥OI({Ui}i∈[m],|ψy⟩,UO)∥√
m!

+ 1
λ

 ,

where for y ∈ {0, 1}n′ , σ ∈ Sm we write∏
i∈[m]

Uσ−1(i) · |ψy⟩ :=
∑

x∈{0,1}n
αy,x,σ|x⟩ .

If the call succeeded, the state in (R,R′) is the normalization of,∑
y∈{0,1}n′

αy · OI
(
{Ui}i∈[m], |ψy⟩, UO

)
R
|y⟩R′ ,

and if it failed, the state in (R,R′) may be arbitrary.
- When the notation of an oracle callOOI (·) is used with 3 parameters instead of 4, we automatically

refer to the computable uniform OI oracle, as in definition 4.2.
- The unitaries {Ui}i∈[m] can also be given in the form of controlled oracle access. In that case, the

complexity |Ui| for i ∈ [m] is the complexity of making an oracle call to the (n+1)-qubit unitary which
is the controlled Ui.

Remark 4.1 (General computable OI implies uniform computable OI). The explanation for why the
uniform versions of the OI notions are indeed private cases of the general cases, and formally, why the
general computable OI oracle can simulate the uniform OI oracle, is as follows. By using the unitary UR
from Claim 4.1, followed by the unitary UFY from Claim 4.2, we have a unitary Uuni on 2 ·m · ⌈log (m)⌉
qubits (possibly using extra ancillary qubits) that generates,

Uuni · |02·m·⌈log(m)⌉⟩ = 1√
m!

∑
σ∈Sm

|rσ⟩|σ⟩ .

More elaboration on this is given as part of the proof of Lemma 4.2. Thus, in order to apply uniform OI
transformations using the general OI oracle, we execute a call to the general OI oracle with UO := Uuni.
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Throughout we use the following lemma, which compiles the definition of a uniform OI oracle and
the needed amplification parameter to make the success probability arbitrarily close to 1.

Lemma 4.1 (Amplification of Success Probability of OI Transformations). Let n,m ∈ N, let {Ui}i∈[m]

a set of n-qubit unitaries, and let |ψ⟩ an n-qubit quantum state. Let k ∈ N and let

λ := ⌈k · m!∥∥OI
(
{Ui}i∈[m], |ψ⟩

)∥∥⌉ .
Then,

∥OI({Ui}i∈[m],|ψ⟩)∥
m!

∥OI({Ui}i∈[m],|ψ⟩)∥
m! + 1

λ

≥ 1− 1

k
.

Proof. To prove the claim, all that is needed is to calculate the success probability, with accordance to
the definition of the OI oracle.

∥OI({Ui}i∈[m],|ψ⟩)∥
m!

∥OI({Ui}i∈[m],|ψ⟩)∥
m! + 1

λ

=

∥OI({Ui}i∈[m],|ψ⟩)∥
m! + 1

λ −
1
λ

∥OI({Ui}i∈[m],|ψ⟩)∥
m! + 1

λ

= 1−
1
λ

∥OI({Ui}i∈[m],|ψ⟩)∥
m! + 1

λ

= 1− 1

λ · ∥OI({Ui}i∈[m],|ψ⟩)∥
m! + 1

≥ 1− 1

λ · ∥OI({Ui}i∈[m],|ψ⟩)∥
m!

≥
(Definition of λ)

1− 1

k
.

Quantum Computation with Order Interference - Complexity Class. We give the definition of the
set of computational problems solvable in polynomial time, by a quantum computer with the ability to
create superposition of unitary execution orders. The class BQPOI capturing the computational power
of a polynomial-time quantum computer with access to a (generalized) OI oracle.

Definition 4.5 (The Complexity Class BQPOI). The complexity class BQPOI is the set of promise
problems

∏
:=
(∏

YES,
∏

NO
)

such that there exists MOI a QPT with access to an OI oracle OOI (as
in Definition 4.4), such that for every x ∈

∏
YES, MOI(x) = 1 with probability at least p(x), and if

x ∈
∏

NO, MOI(x) = 0 with probability at least p(x), such that

∀x ∈

(∏
YES

∪
∏
NO

)
: p(x) ≥ 1− 2−poly(|x|) ,

for some polynomial poly(·).
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Remark 4.2 (Stronger versions of the OI oracle). The definition of the success probability we use in
Definitions 4.2, 4.4 is restrictive in two regards. First, the non-amplifiable component,∑

x∈{0,1}n |
∑

σ∈Sm αx,σ|∑
x∈{0,1}n

∑
σ∈Sm |αx,σ|

is intended to restrict the success probability, proportionally to how much the phases of states in different
spacetimes (or, unitary evolution orders) are misaligned, as we do not assume a particular destructive
interference dynamics between the same states from different spacetimes. The below Definition 4.6
is equivalent to the original definition of the OI oracle, without the phase alignment restriction. This
definition was used as the main definition for the OI oracle in an earlier version of this work.

Second, the amplifiable norm component

∥OI({Ui}i∈[m],|ψ⟩)∥
m!

∥OI({Ui}i∈[m],|ψ⟩)∥
m! + 1

λ

is intended to restrict the ability to arbitrarily execute OI transformation, ignoring the norm of the OI
state to-be-generated. The below Definition 4.7 is equivalent to the original definition of the OI oracle,
without the norm amplification restriction. Note that in the case of Definition 4.7, the OI oracle’s input
consists of one less parameter, as the amplification parameter λ is dropped.

As noted in [Aar, Car] following an earlier version of this work, a quantum computer with access
to a strengthened OI oracle as in Definition 4.6 allows for a polynomial time solution for the entire
complexity class NP (and even QCMA). We leave it as an open problem what is the computational
power of quantum computers with access to oracles as in Definitions 4.6, 4.7.

Definition 4.6 (Computable Order Interference Oracle without Phase Alignment). A computable or-
der interference oracle with no phase alignment, denoted OωOI, is an oracle with input quadruple(
{Ui}i∈[m], R, UO, λ

)
, such that,

• {Ui}i∈[m] is a set ofm ∈ N unitary circuits which all operate on the same number of qubits n ∈ N,

• R is an n-qubit quantum register,

• UO is a unitary on registers (O,A) where O has m · ⌈log (m)⌉ qubits and A has some number of
qubits k ∈ N,

• and λ ∈ N is a natural number.

Given valid input
(
{Ui}i∈[m], R, UO, λ

)
, let R′ a n′-qubit register such that the joint system (R,R′)

is in a pure state, written as, ∑
y∈{0,1}n′

αy · |ψy⟩R|y⟩R′ .

The oracle call takes time complexity |UO|+
∑

i∈[m] |Ui|+ λ. At the end of the oracle execution it
returns a success/failure bit b ∈ {0, 1}, where the success probability is

min
y∈{0,1}n′

 ∥OI({Ui}i∈[m],|ψy⟩,UO)∥√
m!

∥OI({Ui}i∈[m],|ψy⟩,UO)∥√
m!

+ 1
λ

 .

If the call succeeded, the state in (R,R′) is the normalization of,∑
y∈{0,1}n′

αy · OI
(
{Ui}i∈[m], |ψy⟩, UO

)
R
|y⟩R′ ,
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and if it failed, the state in (R,R′) may be arbitrary.
- The unitaries {Ui}i∈[m] can also be given in the form of controlled oracle access. In that case, the

complexity |Ui| for i ∈ [m] is the complexity of making an oracle call to the (n+1)-qubit unitary which
is the controlled Ui.

Definition 4.7 (Computable Order Interference Oracle without Norm Amplification). A computable
order interference oracle without norm amplification, denoted O∥OI∥, is an oracle with input triplet(
{Ui}i∈[m], R, UO

)
, such that,

• {Ui}i∈[m] is a set ofm ∈ N unitary circuits which all operate on the same number of qubits n ∈ N,

• R is an n-qubit quantum register,

• UO is a unitary on registers (O,A) where O has m · ⌈log (m)⌉ qubits and A has some number of
qubits k ∈ N,

Given valid input
(
{Ui}i∈[m], R, UO

)
, let R′ a n′-qubit register such that the joint system (R,R′) is

in a pure state, written as, ∑
y∈{0,1}n′

αy · |ψy⟩R|y⟩R′ .

The oracle call takes time complexity |UO|+
∑

i∈[m] |Ui|. At the end of the oracle execution it returns
a success/failure bit b ∈ {0, 1}, where the success probability is

min
y∈{0,1}n′

(∑
x∈{0,1}n |

∑
σ∈Sm αy,x,σ|∑

x∈{0,1}n
∑

σ∈Sm |αy,x,σ|

)
,

where for y ∈ {0, 1}n′ , σ ∈ Sm we write∏
i∈[m]

Uσ−1(i) · |ψy⟩ :=
∑

x∈{0,1}n
αy,x,σ|x⟩ .

If the call succeeded, the state in (R,R′) is the normalization of,∑
y∈{0,1}n′

αy · OI
(
{Ui}i∈[m], |ψy⟩, UO

)
R
|y⟩R′ ,

and if it failed, the state in (R,R′) may be arbitrary.
- The unitaries {Ui}i∈[m] can also be given in the form of controlled oracle access. In that case, the

complexity |Ui| for i ∈ [m] is the complexity of making an oracle call to the (n+1)-qubit unitary which
is the controlled Ui.

4.2 Comparison to Standard Quantum Computation

In this section we give a brief comparison between quantum computation with and without computable OI.
Specifically, we show techniques in (standard) quantum computation to simulate a computable uniform
OI oracle. First, we show a quantum polynomial-time algorithm for the generation of an entangled
uniform superposition of permutation states.

Claim 4.1 (Factorial transformation). For every m ∈ N there exists a polynomial size (in m) unitary
circuit UR on m · ⌈log (m)⌉ qubits (possibly using ancillary qubits) that maps

∀xm ∈ [m], xm−1 ∈ [m− 1], · · · , x2 ∈ [2] : UR · |xm, xm−1, · · · , x2⟩ =

∑
im∈[m],im−1∈[m−1],··· ,i2∈[2]

1√
m!

 ∏
j∈[m]

ω
xj ·ij
j

 |im, im−1, · · · , i2⟩
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Proof. The proof follows readily by recalling the ability to execute the quantum Fourier transform QFTN
for any number N (where N is not necessarily a power of 2), using a ⌈log2 (N)⌉-qubit unitary quantum
circuit UQFT,N (which possibly uses ancillary qubits) [Kit95, MZ04] that executes in polynomial time
in log2 (N).

Finally, by executing in parallel, m Fourier transforms of different orders, that is, the i-th transform
is QFTi, we get our wanted transformation. Formally, define UR :=

⊗
j=m,m−1,··· ,3,2 UQFT,j , and we

get,
UR · |xm, xm−1, · · · , x2⟩ =

⊗
j=m,m−1,··· ,3,2

UQFT,j · |xj⟩

=
⊗

j=m,m−1,··· ,3,2

∑
ij∈[j]

ω
xj ·ij
j

1√
j
|ij⟩


=

∑
im∈[m],im−1∈[m−1],··· ,i2∈[2]

 ⊗
j=m,m−1,··· ,3,2

1√
j
ω
xj ·ij
j |ij⟩


=

∑
im∈[m],im−1∈[m−1],··· ,i2∈[2]

1√
m!

 ∏
j∈[m]

ω
xj ·ij
j

 |im, im−1, · · · , i2⟩ ,
as needed.

We next state a claim, part of the proof for which, is part of the proof of correctness of the Fisher-Yates
sampling algorithm. The FY algorithm samples a uniformly random permutation σ ∈ Sm by having
access to randomness of specific structure.

Claim 4.2 (Fisher-Yates Permutation Sampler). Let m ∈ N, let Rm := [m]× [m− 1]× · · · × [2] and let
Sm the set of all permutations on [m]. An element from each of the sets Rm, Sm can be represented by
m · ⌈log (m)⌉ bits.

• There exists a bijection BFY : Rm → Sm. Note that this means that a uniformly random input
from Rm produces a uniformly random permutation from Sm.

• There exists a polynomial size (in m) unitary circuit UFY on 2 ·m · ⌈log (m)⌉ qubits (possibly
using extra ancillary qubits), such that,

∀r ∈ Rm, y ∈ {0, 1}m·⌈log(m)⌉ : UFY · |r, y⟩ = |r, y ⊕BFY (r)⟩ .

Proof. The bijection BFY is the mapping from the Fisher-Yates [FY53] algorithm. Basically, BFY
operates as follows: It starts from the identity permutation: σI := (1, 2, 3, · · · ,m), which keeps every
element in its place. Then, for every i = 1, 2, · · ·m−1, take ri the i-th coordinate in r, and swap element
1 with element ri.

Finally, the unitary UFY follows as a standard fact in quantum computing: Since the function BFY
is classically efficiently computable, there is a unitary that computes it in particular.

Given the correspondence between elements r ∈ Rm and permutations σ ∈ Sm, for r ∈ Rm we
denote σr := BFY (r), and for σ ∈ Sm we denote rσ := B−1FY (σ). Next, we state without proof a trivial
fact in quantum computation, namely, that if we are given (even only an oracle) access to controlled
versions of unitaries {Ui}i∈[m] and any superposition of permutations over the set Sm, we can generate
an entangled superposition of unitary execution orders, where the entanglement is between the order
register (holding the order information, in the form of the permutation σ ∈ Sm) and the target register
(holding the result of the chosen order of execution).
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Fact 4.1. For every m,n ∈ N, there exists a polynomial size (in m,n) unitary circuit UO on m ·
⌈log (m)⌉+ n qubits (possibly using extra ancillary qubits), that for every set of m unitaries {Ui}i∈[m]

all act on the same number of qubits n, given oracle access to controlled versions of the unitaries in the
set, executes the following unitary transformation:

∀σ ∈ Sm, x ∈ {0, 1}n : U
(Uc1 ,Uc2 ,··· ,Ucm)
O · |σ⟩|x⟩

|σ⟩

∏
i∈[m]

Uσ−1(i)

 · |x⟩ .
As a brief explanation, the above fact follows by conditioning the execution of unitaries at each step,

going (from left to right) on the elements of σ, and the unitary Ui executes if and only if the current
element of σ is i. Finally, we put the above pieces together in order to simulate an execution of an OI
oracle, using a regular quantum computer. The simulation of the OI oracle is without the amplification
part.

Lemma 4.2. There is a quantum polynomial time (in its input size) algorithmQ, that for input {Ui}i∈[m]

a set of m unitary circuits, such that all of them act on the same number of qubits n, and |ψ⟩ an n-qubit
state, outputs the normalization of the OI state OI

(
{Ui}i∈[m], |ψ⟩

)
with probability at least(∥∥OI

(
{Ui}i∈[m], |ψ⟩

)∥∥
m!

)2

.

Proof. The algorithm Q is as follows. First, take the unitary UR from Claim 4.1 and execute it on
|0m·⌈log(m)⌉⟩, to obtain ∑

im∈[m],im−1∈[m−1],··· ,i2∈[2]

1√
m!
|im, im−1, · · · , i2⟩ .

Next, apply the unitary UFY from Claim 4.2 on the above state concatenated with |0m·⌈log(m)⌉⟩, to obtain∑
im∈[m],im−1∈[m−1],··· ,i2∈[2]

1√
m!
|im, im−1, · · · , i2⟩|σ(im,im−1,··· ,i2)⟩

=
∑
r∈Rm

1√
m!
|r⟩|σr⟩ =

1√
m!

∑
σ∈Sm

|rσ⟩|σ⟩ ,

where the first equality above follows because the function BFY from Claim 4.2 is a bijection, so a sum
over Rm can be switched with a sum over Sm.

Next, we execute the unitary UO (from Fact 4.1) on the right register (containing σ) of the above
state, concatenated with the input register containing the state |ψ⟩, where the oracle access of the unitary
UO comes from the fact that the algorithm Q has the unitaries {Ui}i∈[m] as part of its input. We get the
state

1√
m!

∑
σ∈Sm

|rσ⟩|σ⟩

∏
i∈[m]

Uσ−1(i)

 · |ψ⟩ .
We now un-compute in two steps. In the first step we execute UFY once again, to uncompute the

information of the permutation, and leave only the information of the element in Rm. After executing
UFY and tracing out the middle register that contained σ, the state is

1√
m!

∑
σ∈Sm

|rσ⟩

∏
i∈[m]

Uσ−1(i)

 · |ψ⟩ .
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Finally, the only probabilistic step of the algorithm is forgetting the information in the left register,
containing the information r ∈ Rm. This is done by executing the projective measurement that tries
to project the left register on |0m·⌈log(m)⌉⟩. Formally, we execute the unitary UR once again on the left
register. Let us calculate what is the result of the execution.

∑
σ∈Sm

1√
m!

(UR · |rσ⟩)

∏
i∈[m]

Uσ−1(i)

 · |ψ⟩

=
∑
σ∈Sm

1√
m!

∑
r∈Rm

1√
m!

 ∏
j∈[m]

ω
(rσ)j ·(r)j
j

 |r⟩
∏

i∈[m]

Uσ−1(i)

 · |ψ⟩
=

1

m!

∑
r∈Rm

|r⟩

∑
σ∈Sm

 ∏
j∈[m]

ω
(rσ)j ·(r)j
j

∏
i∈[m]

Uσ−1(i)

 · |ψ⟩
=

1

m!

∑
r∈Rm\{0Rm}

|r⟩

∑
σ∈Sm

 ∏
j∈[m]

ω
(rσ)j ·(r)j
j

∏
i∈[m]

Uσ−1(i)

 · |ψ⟩
+

1

m!
|0m·⌈log(m)⌉⟩

∑
σ∈Sm

∏
i∈[m]

Uσ−1(i)

 · |ψ⟩ .
Now, note that the last state in the above summation is

1

m!
|0m·⌈log(m)⌉⟩

∑
σ∈Sm

∏
i∈[m]

Uσ−1(i)

 · |ψ⟩
=

∥∥OI
(
{Ui}i∈[m], |ψ⟩

)∥∥
m!

|0m·⌈log(m)⌉⟩ 1∥∥OI
(
{Ui}i∈[m], |ψ⟩

)∥∥OI
(
{Ui}i∈[m], |ψ⟩

)
,

which means that the probability to measure the left register to be |0m·⌈log(m)⌉⟩ and obtain the normalized

OI state in the right target register is exactly
(
∥OI({Ui}i∈[m],|ψ⟩)∥

m!

)2

, as needed.

To conclude the comparison between quantum computation with and without computable OI, it
seems that the only difference is the ability of the OI oracle to amplify the success probability of OI
transformations - while a single call to the OI oracle can be simulated efficiently by a quantum computer,
for ℓ ∈ N queries, this complexity increases exponentially. This relation, between quantum computation
with and without computable OI is somewhat reminiscent of the relationship between quantum and
classical computation.

Specifically, an ℓ-qubit quantum circuit can be broken down (without the loss of generality) into
2-qubit quantum gates. A classical computer can efficiently simulate the action of one step of a quantum
computer, which is a single 2-qubit unitary. However, the more gates the classical computer needs to
simulate, the complexity of simulation increases exponentially with the number of gates and qubits ℓ.
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4.3 Sequentially Invertible Distributions and Statistical Difference

As part of this work we define numerous new notions, with no dependence on any non-classical computing
or information. Specifically, we define sequentially invertible distributions, and a new computational
problem, called the Sequentially Invertible Statistical Difference (SISD) problem. We start with the
definitions of sequential invertibility.

Definition 4.8 ((r, t, ℓ)-invertible circuit sequence). For r, t, ℓ, k ∈ N, an (r, t, ℓ)-invertible circuit
sequence on k bits, is a sequence of ℓ pairs of randomized circuits (Ci,→, Ci,←)i∈[ℓ] such that for every
i ∈ [ℓ],

• For every Y ∈ {→,←}, the circuit Ci,Y is of size at most t, uses ri ≤ r random bits and maps
from k to k bits, that is,

Ci,Y : {0, 1}k × {0, 1}ri → {0, 1}k .

• The circuit directions are inverses of each other, per hard-wired randomness, that is:

∀z ∈ {0, 1}ri , x ∈ {0, 1}k : x = Ci,← (Ci,→ (x; z) ; z) .

Note that this also implies that for each hard-wired randomness, the circuits act as permutations
on the set {0, 1}k.

For r ∈ N, an r-invertible circuit sequence, is an (r, t, ℓ)-invertible circuit sequence, for finite and
but unbounded t, ℓ.

Definition 4.9 (Invertible circuit sequence sampling from D). Let r, t, ℓ, k ∈ N, ε ∈ [0, 1], let S :=
(Ci,→, Ci,←)i∈[ℓ] an (r, t, ℓ)-invertible circuit sequence on k bits, and let D a distribution on {0, 1}k.

We say that S samples ε-close to D if for the following distribution DS we have ∥DS −D∥TV ≤ ε,

DS =

{
Cℓ,→

(
· · ·C2,→

(
C1,→

(
0k; z1

)
; z2

)
· · · ; zℓ

) ∣∣∣ z1 ← {0, 1}r1 , · · · , zℓ ← {0, 1}rℓ} .

If ε = 0, we simply say that S samples from D.

Definition 4.10 ((r, t, ℓ, ε)-sequentially invertible distribution). Let D a distribution, let r, t, ℓ ∈ N and
let ε ∈ [0, 1]. We say that D is (r, t, ℓ, ε)-sequentially invertible if there exists an (r, t, ℓ)-invertible
circuit sequence S that samples ε-close to D.

Definition 4.11 ((r(n), t(n), ℓ(n), ε(n))-sequentially invertible distribution family). LetD = {Dn}n∈N
a family of distributions. Let r, t, ℓ : N → N functions and let ε : N → [0, 1]. We say that the family
of distributions D is (r(n), t(n), ℓ(n), ε(n))-sequentially invertible if for every n ∈ N, there exists an
(r(n), t(n), ℓ(n))-invertible circuit sequence Sn that samples ε(n)-close to Dn.

Note that when considering sequential invertibility, we can interchange between considering the
sequential invertibility of distributions and circuits.
Remark 4.3 (Interchanging between sequentially invertible circuits and distributions). While we define
sequential invertibility for a distributionD over a set {0, 1}k, we sometimes refer to sequential invertibility
for circuits C : {0, 1}k′ → {0, 1}k. This extension is natural, as circuits are in particular distributions
– we can consider the output distributions a circuit C : {0, 1}k′ → {0, 1}k given a uniformly random
k′-bit string. Additionally, a circuit contains not only the information of the distribution it computes, but
a way to sample from the distribution, using the standard set of classical gates {NOT,OR,AND}.

34



The Sequentially Invertible Statistical Difference Problem SISDa(n),b(n),r(n). Our last new definition
in this work is for a new computational problem. We combine the notions of sequential invertibility
presented here above, with the computational problem of Statistical Difference SD, to define the Se-
quentially Invertible Statistical Difference (SISD) Problem. We take the same steps as we took when we
defined the problem SD.

Definition 4.12 (The Sequentially Invertible Statistical Difference Problem). Let a, b : N → [0, 1],
r : N → N ∪ {0} functions, such that for every n ∈ N, a(n) ≤ b(n) and r(n) ∈ {0, 1, · · · , n}. The
(a(n), b(n), r(n))-gap Sequentially Invertible Statistical Difference problem, denoted SISDa(n),b(n),r(n)
is a promise problem, where the input is a pair of sequences,((

C0
i,→, C

0
i,←
)
i∈[ℓ] ,

(
C1
i,→, C

1
i,←
)
i∈[ℓ]

)
,

where for each b ∈ {0, 1},
(
Cbi,→, C

b
i,←

)
i∈[ℓ]

is an r(n)-invertible circuit sequence on some (identical)

number of bits k (as in Definition 4.8), where n is the input size,

n :=

∣∣∣∣ ((C0
i,→, C

0
i,←
)
i∈[ℓ] ,

(
C1
i,→, C

1
i,←
)
i∈[ℓ]

) ∣∣∣∣ .
For a pair of circuit sequences, we define their output distributions:

Db :=

{
Cbℓ,→

(
· · ·Cb2,→

(
Cb1,→

(
0k(n); z1

)
; z2

)
· · · ; zℓ

)}
.

The problem is defined as follows.

•
∏

YES is the set of pairs of sequences such that ∥D0 −D1∥TV ≤ a(n),

•
∏

NO is the set of pairs of sequences such that ∥D0 −D1∥TV > b(n).

Note that in the above definition, while we consider sequentially invertible sampler sequences as the
input to the problem, we focus only on r-invertibility, and ignore the parameters t ∈ N, ℓ ∈ N, ε ∈ [0, 1]
from the original definition. The reason is that all parameters, except r, are implicit in the problem input
and problem definition. More precisely, the parameters t, ℓ are meaningless as the problem input is the
sampler sequence (which defines t, ℓ), and the total variation distance bound parameter ε is ignored, as
the total variation distance demands depend on a(n) and b(n).

Finally, as in the case of the (standard) Statistical Difference problem SD, we define the family of
problems where the gap is not too small, and formally, lower-bounded inverse-polynomially. To this end
we define the family of problems SISDpoly as follows.

Definition 4.13 (The Polynomial-Gap Sequentially Invertible Statistical Difference Problem). Let r :
N → N ∪ {0} a function such that for every n ∈ N, r(n) ∈ {0, 1, · · · , n}. The polynomially-bounded
sequentially invertible statistical difference problem, denoted SISDpoly, r(n) is a set of promise problems.
It is defined as follows.

SISDpoly, r(n) :=
⋃

a(n),b(n):N→[0,1],

∃ a polynomial poly:N→N such that ∀n∈N:b(n)2−2a(n)+a(n)2≥ 1
poly(n)

{SISDa(n),b(n),r(n)} .
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5 SISDpoly,O(log(n)) ∈ BQPOI

In this section we prove that a quantum computer with access to an order interference (OI) oracle is able
to solve SISDpoly,O(log(n)) in polynomial time. For the result in this section, a uniform computable OI
oracle (Definition 4.2) suffices, and more so, the simplified Corollary 4.1 of the definition.

We first prove a general lemma about an ability of an OI oracle. Basically, the lemma says that
an OI oracle can allow an interference between unitary execution choices and not only between unitary
execution orders.

Definition 5.1 (Choice Interference State). Let {Ui}i∈[m] a set of m ∈ N unitary circuits, all operating
on the same number of qubits n ∈ N. Let |ψ⟩ an n-qubit quantum state. The choice interference state of(
{Ui}i∈[m], |ψ⟩

)
is denoted OIc

(
{Ui}i∈[m], |ψ⟩

)
and defined to be

OIc
(
{Ui}i∈[m], |ψ⟩

)
:=
∑
i∈[m]

Ui · |ψ⟩ .

We are using the following standard fact from quantum computing.

Fact 5.1. For every c,N ∈ N there exists an ⌈log (N)⌉-qubit quantum circuit U(+c,N) that executes in
polynomial-time (in its input size) and possibly uses additional ancillary qubits, such that,

∀a ∈ {0, 1, 2, · · · , N − 1} : U(+c,N) · |a⟩ = |a+ c mod N⟩ .

The next lemma says that an OI oracle can be used in order to simulate oracle access to choice
interference with a factorial reduction in needed complexity, for successfully executing the transformation.

Lemma 5.1 (Choice interference from order interference). Let OOI (·, ·, ·) a uniform order interference
oracle as in Definition 4.2. We define the procedure QCI , which is a quantum algorithm with oracle
access to OOI. The procedure’s input is triplet

(
{Ui}i∈[m], |ψ⟩, λ

)
as in the case of the oracle OOI.

For every i ∈ [m] define the unitary circuit Ũi that acts on n + ⌈log (m)⌉ qubits, and is defined as
follows:

• Execute the circuit U ci , which executes Ui on the left n qubits, conditioned on the state of the
⌈log(m)⌉ qubits on the right being |0⌈log(m)⌉⟩.

• Execute the unitary U(+1,2⌈log(m)⌉) on the right ⌈log(m)⌉ qubits.

QCI
(
{Ui}i∈[m], |ψ⟩, λ

)
executes the oracle call

OOI

(
{Ũi}i∈[m], |ψ⟩|0⌈log(m)⌉⟩, λ

)
,

returns the success/fail bit of the oracle’s output and the output state, after tracing out the rightmost
⌈log (m)⌉ qubits. The procedure QCI executes in time O

(
λ+ log (m) ·

(∑
i∈[m] |Ui|

))
and with

probability at least (∑
x∈{0,1}n |

∑
i∈[m] αx,i|∑

x∈{0,1}n
∑

i∈[m] |αx,i|

) ∥OIc({Ui}i∈[m],|ψ⟩)∥
m

∥OIc({Ui}i∈[m],|ψ⟩)∥
m + 1

λ

,

outputs the normalization of the choice interference state OIc
(
{Ui}i∈[m], |ψ⟩

)
, where for i ∈ [m], we

define Ui · |ψ⟩ :=
∑

x∈{0,1}n αx,i · |x⟩.
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Proof. Let σ ∈ Sm an execution order of the unitaries in {Ũi}i∈[m] on the state |ψ⟩|0⌈log(m)⌉⟩. We
consider what happens to the state in each of the unitary execution orders σ ∈ Sm. Recall that executing
the unitary Ũi means executing U ci and then executing U(+1,2⌈log(m)⌉). Two things can be easily verified.

• For i ∈ [m] and any execution order σ ∈ Sm such that σ−1 (i) = 1, the state in the left n qubits at
the end of the computation is Ui · |ψ⟩. In simple terms, the only unitary that effectively executes
on the side of the input state |ψ⟩ is the first one in the ordering.

• When we look at the state of the right ⌈log(m)⌉-qubit counter register, for any permutationσ ∈ Sm,
the state is always m mod 2⌈log(m)⌉.

For σ ∈ Sm we write ∏
i∈[m]

Uσ−1(i) · |ψ⟩ :=
∑

x∈{0,1}n
αx,σ|x⟩ ,

and for i ∈ [m], we define Ui · |ψ⟩ :=
∑

x∈{0,1}n αx,i · |x⟩. The above observations imply∑
x∈{0,1}n |

∑
σ∈Sm αx,σ|∑

x∈{0,1}n
∑

σ∈Sm |αx,σ|
=

∑
x∈{0,1}n |

∑
i∈[m] αx,i|∑

x∈{0,1}n
∑

i∈[m] |αx,i|
.

Also, the above observations imply,

OI
(
{Ũi}i∈[m], |ψ⟩|0⌈log(m)⌉⟩

)
=

(as we explained above)

∑
σ∈Sm,i∈[m] such that σ−1(i)=1

Ui · |ψ⟩|0⌈log(m)⌉⟩

=
∑
i∈[m]

 ∑
σ∈Sm such that σ−1(i)=1

Ui · |ψ⟩|m mod 2⌈log(m)⌉⟩


= (m− 1)!

∑
i∈[m]

(Ui · |ψ⟩)⊗ |m mod 2⌈log(m)⌉⟩

:= (m− 1)! ·
(

OIc
(
{Ui}i∈[m], |ψ⟩

)
⊗ |m mod 2⌈log(m)⌉⟩

)
,

which conclude our proof.

Main Theorems. At this point we are ready to prove the two main theorems of this section. We will use
the following standard fact from quantum computing.

Fact 5.2 (Unitary circuits for Classical Bijections). LetC→ : {0, 1}k → {0, 1}k,C← : {0, 1}k → {0, 1}k
two classical circuits that are inverses of each other, that is,

∀x ∈ {0, 1}k : C← (C→ (x)) = x .

Then, there exists a k-qubit unitary circuit UC with complexity O (|C→|+ |C←|) such that,

∀x ∈ {0, 1}k : UC · |x⟩ = |C→ (x)⟩ .

Moreover, there is a classical polynomial-time deterministic Turing Machine M that computes the
classical description of the unitary: (C→, C←)→ UC .

We will use the following claim in the proof.
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Claim 5.1 (Minimal norm of choice interference for classical positive operations). Let |ψ⟩ =
∑

x∈{0,1}k αx·
|x⟩ a k-qubit state such that for all x ∈ {0, 1}k, the amplitude αx is real and non-negative. Let {Ui}i∈[m]

a set of m unitary transformations, all act on the same number of qubits k, and such that all unitaries
map from classical to classical states, formally:

∀i ∈ [m], x ∈ {0, 1}k ∃yi,x ∈ {0, 1}k : Ui · |x⟩ = |yi,x⟩ .

Then, we have the following lower bound on the norm of the choice interference state∥∥∥∥∥∥
∑
i∈[m]

Ui · |ψ⟩

∥∥∥∥∥∥ ≥ √m .

Proof. We calculate the squared norm of the choice interference state for the proof.∥∥∥∥∥∥
∑
i∈[m]

Ui · |ψ⟩

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑
i∈[m]

Ui · ∑
x∈{0,1}k

αx · |x⟩

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑
i∈[m]

 ∑
x∈{0,1}k

αx · |yi,x⟩

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑

x∈{0,1}k

αx ∑
i∈[m]

|yi,x⟩

∥∥∥∥∥∥
2

=

 ∑
x∈{0,1}k,i∈[m]

αx⟨yi,x|

 ·
 ∑
z∈{0,1}k,j∈[m]

αz|yj,z⟩


=

∑
x,z∈{0,1}k,i,j∈[m]

αxαz⟨yi,x||yj,z⟩

≥
(all summands are non-negative)

∑
x∈{0,1}k,i∈[m]

αxαx⟨yi,x||yi,x⟩

=
∑

x∈{0,1}k
α2
x ·m = m .

We next prove the first main theorem of this section.

Theorem 5.1 (Quantum State Generation for Invertible Circuit Sequences). There exists QOI (·, ·) a
quantum algorithm with oracle access to a uniform OI oracle (as in Definition 4.2), that gets as input (1)
an amplification parameter δ ∈ N and (2) an r-invertible circuit sequence C := (Ci,→, Ci,←)i∈[ℓ] on k
bit strings, such that the total description size of the sequence is denoted with n.

The algorithm QOI executes in time O (δ · poly(n) · 2r) for some polynomial poly(·), and outputs a
success/fail bit b ∈ {0, 1} together with a k-qubit quantum state |ϕ⟩. The algorithm succeeds (outputs
b = 1) with probability ≥ 1 − 1

δ and in that case the state |ϕ⟩ is the (normalization of the) output
distribution state of the circuit sequence:

|C(R)⟩ :=
∑

z1∈{0,1}r1 ,
...

zℓ∈{0,1}rℓ

|Cℓ,→
(
· · ·C2,→

(
C1,→

(
0k; z1

)
; z2

)
· · · ; zℓ

)
⟩ . (9)
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Proof. Let k ∈ N the output size of the invertible circuit sequence. For every i ∈ [ℓ], for every
zi ∈ {0, 1}ri , since this is an invertible circuit sequence, the two circuits Ci,→ (·; zi), Ci,← (·; zi) are
inverses of each other. It follows from Fact 5.2 that we can efficiently compute a description of the
unitary Ui,zi that acts on k qubits, has complexity O (|Ci,→ (·; zi) |+ |Ci,← (·; zi) |) and maps,

∀x ∈ {0, 1}k : Ui,zi · |x⟩ = |C (x; zi)⟩ .

Next, observe that for every i ∈ [ℓ], for every k-qubit state |ϕ⟩ such that all of its amplitudes are
real and non-negative, the vector

∑
zi∈{0,1}ri Ui,zi · |ϕ⟩ has only real and non-negative amplitudes. This

follows because for every i ∈ [ℓ], the unitaries in {Ui,zi}zi∈{0,1}ri all map classical to classical states. It
follows that the normalization of the choice interference state

∑
zi∈{0,1}ri Ui,zi · |ϕ⟩ is a quantum state

with only real and non-negative amplitudes.
According to Claim 5.1, for every i ∈ [ℓ] and every such |ϕ⟩ as above,∥∥∥∥∥∥

∑
zi∈{0,1}ri

Ui · |ϕ⟩

∥∥∥∥∥∥ ≥ √2ri .
It thus follows that for every k-qubit state |ϕ⟩ such that all of its amplitudes are real and non-negative,
we have, ∥∥OIc

(
{Ui,zi}zi∈{0,1}ri , |ϕ⟩

)∥∥
2ri

≥ 1√
2ri
≥ 1√

2r
. (10)

By induction on i, one can verify that for every i ∈ [ℓ], executing the choice interference oracle (the
algorithmQCI from Lemma 5.1) on the triplet

(
{Ui,zi}zi∈{0,1}ri , |C1,··· ,i−1(R1,··· ,i−1)⟩, δ · ℓ ·

√
2r
)
, has

the following properties.

• The oracle call takes time complexity O
(
δ · ℓ ·

√
2r + ri ·

∑
zi∈{0,1}ri |Ui,zi |

)
, which is bounded

by O
(
δ · n2 · 2r

)
, because ℓ ≤ n and ri ·

∑
zi∈{0,1}ri |Ui,zi | ≤ n · 2

ri ≤ n · 2r.

• The choice interference transformation succeeds with probability ≥ 1 − 1
δ·ℓ , due to Lemma 4.1

together with Equation 10.

• After a successful transformation, the output state is

|C1,··· ,i(R1,··· ,i)⟩ :=
∑

z1∈{0,1}r1 ,
...

zi∈{0,1}ri

|Ci,→
(
· · ·C1,→

(
0k; z1

)
· · · ; zi

)
⟩ ,

which follows based on the equality,

OIc
(
{Ui,zi}zi∈{0,1}ri , |C1,··· ,i−1(R1,··· ,i−1)⟩

)
= |C1,··· ,i(R1,··· ,i)⟩ .

It can be verified that if all ℓ executions of the algorithm QCI succeed, then by the correctness of the
induction, the state we get at the end is the desired normalization of |C(R)⟩. Finally, all ℓ calls together
take time complexity ℓ · O

(
δ · n2 · 2r

)
= O

(
δ · n3 · 2r

)
, and the probability that all calls succeed is

1− p where p is the probability that one of the calls fail. As we saw, for each call, the probability to fail
is bounded by 1

δ·ℓ . By union bound, we have p ≤ ℓ · 1
δ·ℓ =

1
δ , which finishes the proof.

Finally, we conclude with the second main theorem, that says that a quantum computer with com-
putable order interference can be used to solve the sequentially invertible statistical difference problem
in quantum polynomial time, whenever the sequential invertibility parameter r is at most logarithmic in
the input size.
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Theorem 5.2 (SISDpoly,O(log(n)) ∈ BQPOI). Let SISDa,b,r :=
(∏

YES,
∏

NO
)

an SISD promise problem,
such that SISDa,b,r ∈ SISDpoly, O(log(n)). Then, there is MOI a QPT algorithm with oracle access to a
computable uniform order interference oracleOOI (Definition 4.2), that for everyx ∈

∏
YES,MOI(x) = 1

with probability at least p(x) and for every x ∈
∏

NO, MOI(x) = 0 with probability at least p(x), such
that

∀x ∈

(∏
YES

∪
∏
NO

)
: p(x) ≥ 1− 2−poly(|x|) ,

for some polynomial poly(·).

Proof. Let the following pair of sequences an input for the SISDa,b,r problem:((
C0
i,→, C

0
i,←
)
i∈[ℓ] ,

(
C1
i,→, C

1
i,←
)
i∈[ℓ]

)
.

Denote by n the description size of the pair of sequences, and since SISDa,b,r ∈ SISDpoly, O(log(n)) it
follows that

• There exists a polynomialpoly : N→ N such that for everyn ∈ N, b(n)2−2a(n)+a(n)2 ≥ 1
poly(n) .

• There exists a constant c ∈ N such that for every n ∈ N, r(n) ≤ c · log (n).

Generating many copies of the output distribution states of the two circuits. Note that for b ∈ {0, 1},

if we execute the algorithm QOI
((

Cbi,→, C
b
i,←

)
i∈[ℓ]

, 2

)
from Theorem 5.1, the call takes complexity

O
(
2 · poly′(n) · 2r

)
and succeeds with probability≥ 1− 1

2 = 1
2 . If we execute 3n tries, then we have at

least a single successful state generation, with probability ≥ 1− 2−3n. For each b ∈ {0, 1} we execute
N := 16 · poly(n)2 · 12 · n times the previous procedure (where you execute 3n tries, and if one of them
succeeds, you take the state), and if one of the 2 ·N attempts fails, the algorithm halts and outputs ⊥.

If all attempts succeed, then for each b ∈ {0, 1}, we now have N copies of |Cb (R)⟩. Note that all
attempts together take complexityN ·O

(
2 · poly′(n) · 2r

)
which is≤ ˜poly (n) for some polynomial ˜poly

(this follows because r ≤ c · log(n) for a constant c ∈ N, and thus 2r ≤ nc is bounded by a polynomial in
n as well). Also, by union bound, all attempts together succeed with probability ≥ 1− 2·N

23n
≥ 1− 1

22n
.

This step of the algorithm is the only one that uses computable order interference and the OI oracle. The
next steps use only standard quantum computation.
Repeated swap tests and decision. Let us list the N copies of each of the quantum states as

|C0 (R)⟩Reg0,1 , |C0 (R)⟩Reg0,2 , · · · , |C0 (R)⟩Reg0,N ,

|C1 (R)⟩Reg1,1 , |C1 (R)⟩Reg1,2 , · · · , |C1 (R)⟩Reg1,N .

For each j ∈ [N ], we now execute a swap test (the algorithm QST from Theorem 3.1) on the pair of
k-qubit states |C0 (R)⟩Reg0,j , |C1 (R)⟩Reg1,j . For every execution of the swap test the complexity is
O(k) ≤ O(n), and over all N executions the complexity is polynomial in n.

Let {bi}i∈[N ] the N results of the swap test executions. We take an average of the results, that is

A :=

∑
i∈[N ] bi

N
.

The algorithm decides where the input belongs by a threshold: We take T := 1− b(n)2+2·a(n)−a(n)2
4 , and

if A > T we output 1, and otherwise (i.e., A ≤ T ), we output 0.
Final analysis. The first thing to verify is that the total execution time of the algorithm is polynomial in
n, as both steps are polynomial in n. We next explain why the probability to output the correct answer
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(i.e., output 1 when the input is in
∏

YES and output 0 when the input is in
∏

NO) is exponentially (in the
input size n) close to 1.

By the correctness of the swap test, for every i ∈ [N ] of the swap test executions, the probability for
bi = 1 is p := 1+|⟨C0(R)||C1(R)⟩|2

2 . Observe that the inner product ⟨C0 (R)||C1 (R)⟩ equals the fidelity
between the output distributions of C0, C1, thus |⟨C0 (R)||C1 (R)⟩|2 = F

(
C0 (R) , C1 (R)

)2. Recall
the following known relation between total variation distance and fidelity of classical distributions:

1− F (D0, D1) ≤ ∥D0 −D1∥TV ≤
√
1− F (D0, D1)

2 .

We have the following conclusions.

• If the input pair of sequences is in
∏

YES, then
∥∥C0 (R)− C1 (R)

∥∥
TV
≤ a(n) ≤ 1 and,

p =
1 + F

(
C0 (R) , C1 (R)

)2
2

≥
1 +

(
1−

∥∥C0 (R)− C1 (R)
∥∥
TV

)2
2

≥ 1 + (1− a(n))2

2

=
1 + 1− 2a(n) + a(n)2

2
= 1− 2a(n)− a(n)2

2
.

• If the input pair of sequences is in
∏

NO, then
∥∥C0 (R) , C1 (R)

∥∥
TV

> b(n) ≥ 0 and,

p =
1 + F

(
C0 (R) , C1 (R)

)2
2

≤
1 + 1−

∥∥C0 (R)− C1 (R)
∥∥2
TV

2
<

1 + 1− b(n)2

2

= 1− b(n)2

2
.

Next, for each of the N executions of the swap test, note we have a binary random variable bi that is
1 with probability p = 1+|⟨C0(R)||C1(R)⟩|2

2 . It follows that the expectation of the average of executions of
the swap test (that is, the expectation of A) is the same, p. By Chernoff’s bound 3.2 it follows that for
every ε ∈ (0, 1),

Pr
b1,··· ,bN

[∣∣A− p∣∣ ≥ ε · p] ≤ 2 · e−N ·
p·ε2
3 .

Note that the threshold T := 1− b(n)2+2·a(n)−a(n)2
4 is exactly the average between two numbers: One is

the lower bound B∏
YES

:= 1− 2a(n)−a(n)2
2 on p in case the input is in

∏
YES, and the second number is

the upper bound B∏
NO

:= 1− b(n)2

2 on p in case the input is in
∏

NO. This means that T sits on the real
number line exactly in the middle between B∏

YES
and B∏

NO
. In order to complete the proof, it will be

sufficient to (1) understand a lower bound L on the distance |B∏
YES
− B∏

NO
| (half of this lower bound

acts as a lower bound for |B∏
YES
−T | and |B∏

NO
−T |), and (2) show that the probability forA to deviate

from the average p by more than L/2 is exponentially small, in each of the cases.
The first part is easy: We know

|B∏
YES
−B∏

NO
| = 1− 2a(n)− a(n)2

2
− 1 +

b(n)2

2
=
b(n)2 − 2a(n) + a(n)2

2
≥ 1

2 · poly(n)
.

This means that by taking half of the above, which is 1
4·poly(n) , we have a lower bound from both

|B∏
YES
− T | and |B∏

NO
− T |.

Finally, by the above stated instance of the Chernoff bound, for ε := 1
4·poly(n) , the probability for A

to deviate from p with an amount ε · p ≤ ε = 1
4·poly(n) , is bounded by

2 · e−N ·
p·ε2
3 ≤

(p≥ 1
2
)

2 · e−N ·
ε2

6 = 2 · e−
N

6·16·poly(n)2
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= 2 · e−
16·poly(n)2·12·n
6·16·poly(n)2 = 2 · e−2n .

To conclude, recall that the probability for the first part of the algorithm to succeed is at least 1−2−2n,
and the probability for the second part of the algorithm to be correct, conditioned on the first part being
successful, is at least 1− 2 · e−2n. Overall, if both parts succeed, which happens with probability at least(
1− 2−2n

)
·
(
1− 2 · e−2n

)
≥ 1 − 2−n = 1 − 2−|x|, the algorithm outputs the correct answer for the

input, as desired.

6 GI ≤p SISDpoly,O(log(n))

In this section we prove our main theorem regarding the computational problem of Graph Isomorphism
GI.

Theorem 6.1 (Reduction from GI to SISD n
2n
, 1− n

2n
, log(n)). There exists a classical deterministic poly-

nomial time Turing machine M that computes the reduction,

GI ≤p SISDa(n),b(n),r(n) ,

for a(n) := n
2n , b(n) := 1− n

2n , r(n) := log (n).

Note that for the values of a(n), b(n) above we have b(n)2 − 2a(n) + a(n)2 is at least inverse poly-
nomially large, and also r(n) = log (n) = O (log(n)), and thus SISDa(n),b(n),r(n) ∈ SISDpoly,O(log(n)).
We proceed to the proof of the theorem.

Proof. Let (G0, G1) an input for the GI problem, and let n ∈ N denote the number of vertices in each of
the graphs, and assume that the input graphs are represented by adjacency matrices. So, the description
size of the input is

| (G0, G1) | = 2 · n2 .

The reduction executes in classical deterministic polynomial time and will output a pair
(
C0, C1

)
of

invertible circuit sequences (as in Definition 4.8). Let ℓ := (n− 1) · n.
Definition of the invertible circuit sequence C and then the pair of sequences

(
C0, C1

)
. We define

an invertible circuit sequence C := (Ci,→, Ci,←)i∈[ℓ] below, where all ℓ circuit pairs have input/output
size n2 (which we think of as an adjacency matrix for a graph with n vertices) and randomness of exactly
log (n) bits (formally, we use ⌈log (n)⌉ bits). We will later define the circuits C0, C1, as a function of
the circuit sequence C.

1. For i = n, n− 1, · · · , 3, 2 (that is, starting from i = n and moving down to i = 2), we define,

(a) For j ∈ [n], the circuit C(i,j),→ acts as follows. The circuit’s main input is a graph G =
([n], EG) (in the data structure of adjacency matrix of n2 bits) and auxiliary input is the
randomness zi,j ∈ {0, 1}⌈log(n)⌉.

• Define di := ⌈log (i)⌉, and the circuit computes only on the first di bits of randomness in
zi,j , and ignores the rest. Denote by z′i,j ∈ {0, 1}di the first di digits of the randomness.

• The circuit interprets the string z′i,j ∈ {0, 1}di as a uniformly random number in [2di ]
(by adding 1 to the number derived from the binary representation of the string), denote
this number by ki,j ∈ [2di ]. In case ki,j > i the circuit does nothing and its function is
the identity.

• In case ki,j ≤ i the fixed-randomness circuit C(i,j),→ (·; zi,j) computes the graph
σ(i,ki,j) (G) as its output, where σ(i,ki,j) ∈ Si is a swap between elements i and ki,j , that
is, it is a permutation on the elements [i], that acts trivially on all elements that are in
[i] \ {i, ki,j}, and swaps between i and ki,j .
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We defined what are the forward computations, and the definition of the inverse circuits follows: For
every i ∈ {n, n− 1, · · · , 3, 2}, j ∈ [n], the circuit C(i,j),← is exactly identical to the circuit C(i,j),→. It
can be verified by the reader that indeed for every i ∈ {n, n− 1, · · · , 3, 2}, j ∈ [n], the circuits C(i,j),→,
C(i,j),← are inverses of each other for every fixed randomness zi,j ∈ {0, 1}⌈log(n)⌉, because making the
same swap twice leads to the identity permutation.

Regarding the output of the reduction, which should be a pair of invertible circuits sequences(
C0, C1

)
: For b ∈ {0, 1}, the sequence Cb is the same as the above sequence C, with one adding: In

the beginning, there is a deterministic (randomness-free) circuit Cb0,→ that adds the description of the
graph Gb, by simply adding the bits (modulo 2, also known as XOR-ing) of the adjacency matrix of
Gb. Accordingly, the inverse Cb0,← of that first circuit Cb0,→, is subtracting the description of Gb (which
makes the circuits equal, because subtracting and adding modulo 2 is identical). To conclude, it can be
easily verified that both C0 and C1 are legal (log(n))-invertible circuit sequences.
Properties of the output distributions of the circuits C0, C1. For b ∈ {0, 1}, one can observe that the
output distribution of Cb (when starting from a string of n2 zeros) is as follows.

• For every i ∈ {n, n− 1, · · · , 3, 2}, if for all j ∈ [n], the randomness zi,j ∈ {0, 1}log(n) was such
that the number ki,j (which is derived from z′i,j ∈ {0, 1}di , the first di := ⌈log (i)⌉ bits of zi,j)
is > i, then the graph stays the same after passing the entire outer iteration i. However, note that
2di ≤ 2 · i, which means that a uniformly random ki,j ∈ [2di ] is bounded by i with probability
at least 1

2 . Thus, the probability that for all j ∈ [n], the sample ki,j > i, is bounded by 2−n. By
union bound, the probability that there exists an index i ∈ {n, n− 1, · · · , 3, 2} such that for every
j ∈ [n], ki,j caused no change, is bounded by n

2n .

• In the other case, that happens with probability ≥ 1 − n
2n , for every i ∈ {n, n − 1, · · · , 3, 2},

there is at least a single try j ∈ [n] such that ki,j ≤ i. Observe that in this second case the output
distribution ofCb is as follows. For an iteratively decreasing i = n, n−1, · · · , 3, 2, apply σ(i,ri) to
the graph, for a uniformly random ri ∈ [i]. The above distribution is exactly the description of the
Fisher-Yates algorithm, and thus by Fact 3.2, generates a uniformly random permutation σ ∈ Sn,
and applies it to the input graph Gb.

The above means that the output distribution of Cb is statistically close (has total variation distance
bounded by n

2n ) to σ (Gb), for a uniformly random permutation σ ∈ Sn.
Soundness and completeness of the reduction. The last step of our proof is to show that the reduction is
correct, that is, that when (G0, G1) ∈

∏
YES then the output distributions of the circuits, denotedD

(
C0
)
,

D
(
C1
)

respectively, are statistically close, and when the input is in
∏

NO, then the output distributions
are statistically far.

Both soundness and completeness follow rather easily at this point. For soundness, in case (G0, G1) ∈∏
NO, it means the graphs are non-isomorphic, which, by Fact 3.1, means that the supports of the

distributions σ (G0), σ (G1) are disjoint, and thus
∥∥C0 − C1

∥∥
TV
≥ 1 − n

2n . For completeness, in
case (G0, G1) ∈

∏
YES, it means the graphs are isomorphic, which again by Fact 3.1, means that the

distributions σ (G0), σ (G1) are identical, and thus
∥∥C0 − C1

∥∥
TV
≤ n

2n .

7 GapCVPO(n2) ≤p SISDpoly,O(log(n))

In this section we prove our main theorem regarding GapCVP.

Theorem 7.1 (Reduction from GapCVPO(n2) to SISD( 1
2
+ 1

2n
, 1, 1)). There exists a positive absolute

constant c ∈ R>0 and a classical deterministic polynomial time Turing machine M that computes the
reduction,

GapCVPc·n2 ≤p SISD(a(n),b(n),r(n)) ,
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for a(n) := 1
2 + 1

2n , b(n) := 1, r(n) := 1.

Note that for the values of a(n), b(n) above we have b(n)2 − 2a(n) + a(n)2 is at least inverse
polynomially large, and also r(n) = 1 = O (log(n)), and thus SISDa(n),b(n),r(n) ∈ SISDpoly,O(log(n)).
We proceed to the proof of the theorem.

Proof. Let (B, t, d) an input for the GapCVPg(n) problem, for g(n) = cg · n2 where cg := 256 · c0c1 · π,
where c0, c1 ∈ R>0 are two positive absolute constants we will specify later, n ∈ N is the dimension of
the lattice basis B and the vector t, and b ∈ N is the size of the binary representation of the largest (in
absolute value) number in B and the vector t. So, the description size of the input is

| (B, t, d) | = n2 · b+ n · b+ log2(d) .

The reduction executes in classical deterministic polynomial time and will output a pair
(
C0, C1

)
of

1-invertible circuit sequences (as in Definition 4.8). Let ℓ := ℓL +1+ ℓG +1, where ℓL := (m+ 1) · n
and ℓG := κ · (β + 1) · n, such that,

• m := ⌈log2 (M)⌉ for M := 2n ·
(∑

i∈[n] ∥bi∥+ ∥t∥+ d
)

,

• κ := cκ · n2 for cκ := c20 · 64 (as in the case of cg, the constant c0 will be specified later).

• β := ⌊log2 (B)⌋, for B := g(n)·d
2·κ·
√
n

.

Let s := ⌈b+m+ log (n · g(n) · d)⌉ and note that a binary string of size s+ 1 can be used to represent
any integer of absolute value bounded by

2s − 1 ≥ 2b ·M · n · g(n) · d− 1 ,

by using the first bit as a decider for the sign of the number, and the rest of the s bits as the binary
representation of the absolute value of the number (the representation is not necessarily bijective, of
course). In the following proof we thus use binary strings of size s + 1 to represent numbers in the set
Z(−(2s−1),2s−1).
Definition of the circuit sequence C and an pair

(
C0, C1

)
. We define an invertible circuit sequence

C := (Ci,→, Ci,←)i∈[ℓ] below, where all ℓ circuit pairs have input/output size n · (s+ 1) (which we think
of as an integer vector v ∈ Zn(−(2s−1),2s−1)) and randomness bounded by 1 (that is, each circuit either
uses a single bit of randomness or it is deterministic, and does not use randomness at all). In the below
circuits, all arithmetic (which comes down to additions and multiplications) is modulo in absolute value
of 2s − 1.

1. First ℓL circuits: Constructing a random lattice vector with a uniform coordinates vector in
Zn(0,2m+1−1). For i ∈ [m+1], j ∈ [n], the circuit C(1,i,j),→, given main input v ∈ Zn(−(2s−1),2s−1)
and auxiliary input randomness z1,i,j ∈ {0, 1}, adds the vector z1,i,j · 2i−1 ·Bj , where Bj is the
j-th column of the basis B.

2. Circuit ℓL + 1: Stabilizing the coordinate vectors to Zn(−2m,2m−1), by subtraction. The circuit
C(2,1),→, which is deterministic and does not use randomness, given input v ∈ Zn(−(2s−1),2s−1),
outputs v − 2m ·

∑
j∈[n]Bj . This step uses a single deterministic circuit.

3. Circuits ℓL + 1 + i for i ∈ [ℓG]: Adding approximated Gaussian noise. For i1 ∈ [κ], i2 ∈
[β + 1], i3 ∈ [n], the circuit C(3,i1,i2,i3),→, given input v ∈ Zn(−(2s−1),2s−1) and randomness
z(3,i1,i2,i3) ∈ {0, 1}, adds the vector

z(3,i1,i2,i3) · 2
i2−1 · ei3 ,

where for j ∈ [n], the vector ej is the j-th standard basis vector, i.e., ej := (01, · · · , 0j−1, 1j , 0j+1, · · · , 0n)T .
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4. Circuit ℓL + 1 + ℓG + 1: Stabilizing the Gaussian noise by subtraction. The circuit C(4,1),→,
which is deterministic and does not use randomness, given input v ∈ Zn(−(2s−1),2s−1), outputs

v −
(κ
2
·
(
2β+1 − 1

)
(11, 12, · · · , 1n)T

)
.

This step uses a single deterministic circuit. Note that κ is even and κ/2 is an integer.
We defined what are the forward computations (that is, for every i ∈ [ℓ], the circuit Ci,→), and the

definition of the circuits Ci,← follows:

1. Inverses of first ℓL circuits. For i ∈ [m+1], j ∈ [n], the circuit C(1,i,j),←, given main input v and
auxiliary input randomness z1,i,j ∈ {0, 1}, subtracts the vector z1,i,j · 2i−1 ·Bj instead of adding
it.

2. Inverse of circuit ℓL + 1. The circuit C(2,1),←, given input v, adds the vector 2m ·
∑

j∈[n]Bj

instead of subtracting it.

3. Inverses of the circuits ℓL + 1 + i, for i ∈ [ℓG]. For i1 ∈ [κ], i2 ∈ [β + 1], i3 ∈ [n], the circuit
C(3,i1,i2,i3),←, given main input v and auxiliary input randomness z(3,i1,i2,i3) ∈ {0, 1}, subtracts
the vector z(3,i1,i2,i3) · 2i2−1 · ei3 , instead of adding it.

4. Inverse of circuit ℓL + 1 + ℓG + 1. The circuit C(4,1),←, given input v, adds the vector(κ
2
·
(
2β+1 − 1

)
(11, 12, · · · , 1n)T

)
,

instead of subtracting it.

Regarding the output of the reduction, which is a pair of invertible circuits sequences
(
C0, C1

)
: The

first circuit sequence C0 is exactly the circuit sequence C. As for the second circuit sequence C1, it is
the same as C = C0 only that we add the vector t in the end, and formally, we make the following single
change to C = C0: The last circuit pair C(4,1),→, C(4,1),← is changed as follows to the pair C ′(4,1),→,
C ′(4,1),←.

• C ′(4,1),→ is the same as C(4,1),→, only that it further adds t in the end of its computation.

• The inverseC ′(4,1),← acts the same asC(4,1),←, but further subtracts t in the end of its computation.

It can be easily verified that both C0 and C1 are legal 1-invertible circuit sequences.
Properties of the output distributions of the circuitsC0,C1. We next observe the following properties
of the output distribution of the circuit sequence C, and then for the circuits C0, C1.

• Note that in step 1 of the circuit C, for every j ∈ [n], it samples a uniformly random number
Mj ∈ {0, 1, · · · , 2m+1 − 1}, and adds Mj ·Bj to the input. This means that at the end of step 1,
we have the sum

∑
j∈[n]Mj ·Bj .

• The next step 2 of the algorithm is intended to move the distribution of the coordinates vector
(M1, · · · ,Mn) be uniform with expectation ≈ 0, and to this end the circuit CℓL+1,→ subtracts
2m·
∑

j∈[n]Bj . At the end of this step the output distribution is accordingly
∑

j∈[n] (Mj − 2m)·Bj ,
where for every j ∈ [n], the variables Mj − 2m are i.i.d. samples from the uniform distribution
over {−2m, · · · ,−1, 0, 1, · · · , 2m − 1}. In other words, at the end of step 2 we have a random
lattice vector, over a uniformly random coordinates vector in the restricted set Zn(−2m,2m−1).
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• The next step 3 of the algorithm is intended to add positive approximated Gaussian noise. Observe
that at the end of this step, for each j ∈ [n] we add κ uniformly random i.i.d. samples β̄j,i1 ∈
{0, 1, · · · , 2β+1 − 1} (for i1 ∈ [κ]) to the distribution from before.

• The next step is intended to stabilize the Gaussian noise to center around 0 (in expectation). To
this end, step 4 subtracts κ

2

(
2β+1 − 1

)
(κ/2 is an integer) from each of the n coordinates of v.

Since this is exactly the expectation of the random variable we add to each coordinate, the average
of Gaussian noise becomes zero.

To conclude what we saw so far,

• The output distribution of C0 is the variable (v + e) ∈ Zn
(−(2m+b·n+κ·2β),2m+b·n+κ·2β)

, where
v ∈ Zn

(−(2m+b·n),2m+b·n)
is a random lattice vector with a uniformly random coordinates vector

a ∈ Zn(−2m,2m−1), and e ∈ Zn
(−κ·2β ,κ·2β)

such that for each j ∈ [n], the coordinate ej is a random

variable defined as follows. Since we subtracted at the end κ
2 ·
(
2β+1 − 1

)
, it is equivalent to

subtracting 2β , κ
2 times followed by subtracting

(
2β − 1

)
, κ

2 times. We can thus consider the
variable ej as the sum of κ/2 i.i.d. uniformly random samples from Z(−2β ,2β−1) and κ/2 i.i.d.
uniformly random samples from Z(−(2β−1),2β).

• The output distribution of C1 is the same as that of C0 only that the vector t is added in the end,
that is, the output distribution of C1 is v + e+ t.

Computational complexity of the reduction. For each b′ ∈ {0, 1}, i ∈ [ℓ], Y ∈ {→,←}, it is easy
to verify that the circuit Cb′i,Y executes in polynomial time in its input size, which is in turn n · (s+ 1).
The construction of the circuit Cb′i,Y given the input (B, t, d) also takes polynomial time in the input size.
Finally, the amount of circuits is ℓ and each circuits size is polynomial in n · (s+ 1), which are both
polynomial in the input size. It follows that the reduction is implemented by a classical deterministic
polynomial time Turing machine.
Soundness of the reduction. We show that the reduction is correct, that is, that when (B, t, d) ∈

∏
YES

then the output distributions of the circuits, denotedD
(
C0
)
, D
(
C1
)

respectively, are statistically close,
and when the input is in

∏
NO, then the output distributions are statistically far.

We start with soundness: In case (B, t, d) ∈
∏

NO, then ∆(LB, t) > d · g(n). Recall e ∈
Zn
(−κ·2β ,κ·2β)

and thus ∥e∥ ≤
√
n · κ · 2β . Next, due to β := ⌊log2 (B)⌋ we have

2β ≤ B :=
g(n) · d
2 · κ ·

√
n
,

which implies ∥e∥ ≤ g(n)·d
2 . It follows that for any v ∈ LB, ∆(LB,v + e) ≤ g(n)·d

2 . Also, since
∆(LB, t) > d · g(n) and ∆(LB,v) = 0 then

∆(LB,v + e+ t) = ∆ (LB, e+ t) ≥ ∆(LB, t)− ∥e∥ > d · g(n)− g(n) · d
2

=
g(n) · d

2
.

It follows that the output distributions D
(
C0
)
, D

(
C1
)

of the circuits don’t intersect at all, that is,∥∥D (C0
)
−D

(
C1
)∥∥
TV

= 1, as needed for soundness.
Completeness of the reduction, first part (reducing the analysis to analyzing total variation distance
of the noise vector e). We now turn to the part where (B, t, d) ∈

∏
YES, and we would like to give an

upper bound on the total variation distance between the output distributions of the two circuits. We have,∥∥D (C0
)
−D

(
C1
)∥∥
TV

= ∥D (v + e)−D (v + e+ t)∥TV .
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We would like to use the fact that adding a lattice vector to a uniform distribution over that lattice, does
not change the distribution. However, the lattice is infinite and we cannot sample a uniformly random
vector over the entire lattice. Formally, since (B, t, d) ∈

∏
YES then ∆(LB, t) ≤ d, thus there exist

s ∈ LB and e0 ∈ Zn such that t = s+ e0 and ∥e0∥ ≤ d. It follows that,

∥D (v + e)−D (v + e+ t)∥TV

≤
(triangle inequality)

∥D (v + e)−D (v − s+ e+ t)∥TV + ∥D (v + e+ t)−D (v − s+ e+ t)∥TV

= ∥D ((v) + e)−D ((v) + e+ e0)∥TV + ∥D (v + (e+ t))−D (v − s+ (e+ t))∥TV
≤

(adding variables can only reduce TV distance)
∥D (e)−D (e+ e0)∥TV + ∥D (v)−D (v − s)∥TV .

We use the fact that we took the bound M (which is effectively the sample space of our coordinates for
the vector v) to be exponentially (in the input dimension n) larger than the vectors in B and t. Formally,
note that since the norm of s is ≤ ∥t∥ + ∥e0∥ ≤ ∥t∥ + d, then ∥s∥ · 2n ≤ M . Since the variable
v has a uniformly random coordinates vector in Zn(−2m,2m−1), the length s is tiny compared to v with
overwhelming probability. It follows that the distribution v − s has total variation distance bounded by
2−n to v, and the above sum of total variation distances is bounded by

∥D (e)−D (e+ e0)∥TV + 2−n .

It remains to bound the total variation distance between D (e) and D (e+ e0) for any e0 such that
∥e0∥ ≤ d.
Completeness of the reduction, second part (moving to discrete Gaussians). We have,

∥D (e)−D (e+ e0)∥TV ≤
(triangle inequality)

∥∥∥D (e)−D
(
Dn
B̃

)∥∥∥
TV

+
∥∥∥D (Dn

B̃

)
−D

(
Dn
B̃
+ e0

)∥∥∥
TV

+
∥∥∥D (Dn

B̃
+ e0

)
−D (e+ e0)

∥∥∥
TV

,

where B̃ := ⌈
√
κ · σ̃⌉, σ̃ :=

√
22β+2+2β+2

12 , and the distribution Dn
B̃

is the n-dimensional discrete
truncated Gaussian distribution, as defined in Definition 3.12. We use once again the fact that adding a
numerical random variable to a pair of sums does not make it easier to distinguish the sums, and thus∥∥∥D (Dn

B̃
+ e0

)
−D (e+ e0)

∥∥∥
TV
≤
∥∥∥D (Dn

B̃

)
−D (e)

∥∥∥
TV

, and overall we have,

∥D (e)−D (e+ e0)∥TV

≤ 2 ·
∥∥∥D (e)−D

(
Dn
B̃

)∥∥∥
TV

+
∥∥∥D (Dn

B̃

)
−D

(
Dn
B̃
+ e0

)∥∥∥
TV

.

To bound the left element, note that each of the distributions D (e), D
(
Dn
B̃

)
is n i.i.d. samples of some

distribution, and thus, ∥∥∥D (e)−D
(
Dn
B̃

)∥∥∥
TV
≤ n ·

∥∥D (e1)−D
(
DB̃

)∥∥
TV

,

where e1 is the distribution of the first coordinate of the vector e (which distributes identically for all of
its coordinates i ∈ [n]). Recall that e1 is a random variable that’s the sum of κ/2 i.i.d. uniformly random
samples from Z(−2β ,2β−1) and κ/2 i.i.d. uniformly random samples from Z(−(2β−1),2β). By Lemma
7.1, there exists a positive absolute constant c0 ∈ N such that

∥∥D (e1)−D
(
DB̃

)∥∥
TV
≤ c0 · 1√

κ
.

47



Completeness of the reduction, third part (Discrete Gaussians with close centers are close in total
variation distance). So far in the proof of completeness, we saw that the total variation distance between
the output distributions of the circuits C0 and C1 is bounded by

2−n +
c0 · 2 · n√

κ
+
∥∥∥D (Dn

B̃

)
−D

(
Dn
B̃
+ e0

)∥∥∥
TV

,

and it remains to give an upper bound for the last summand. Lemma 7.2 tells us that,∥∥∥D (Dn
B̃

)
−D

(
Dn
B̃
+ e0

)∥∥∥
TV
≤
√
1− e−

π·(∥e0∥2+2·∥e0∥·
√
n·B̃)

B̃2 .

Now, recall that ∥e0∥ ≤ d and B̃ := ⌈
√
κ · σ̃⌉ for σ̃ :=

√
22β+2+2β+2

12 . By further remembering that

2β = Θ(B), we get B̃ = Θ
(
g(n)·d√
n
√
κ

)
. This means that there exists a positive absolute constant c1 ∈ R>0

such that B̃ ≥ c1·g(n)·d√
n
√
κ

. We get the following lower bound,

e−
π·(∥e0∥2+2·∥e0∥·

√
n·B̃)

B̃2

= e−
π·∥e0∥

2

B̃2 · e−
π·(2·∥e0∥·

√
n·B̃)

B̃2

≥ e
− π·n·κ
c21·g(n)

2 · e−
π·2·∥e0∥·

√
n

B̃

≥ e
− π·n·κ
c21·g(n)

2 · e−
π·2·n·

√
κ

c1·g(n) .

To summarize, in case (B, t, d) ∈
∏

YES, we got that the total variation distance between the output
distributions of the circuits C0, C1 is bounded by

2−n +
c0 · 2 · n√

κ
+

√
1− e

− π·n·κ
c21·g(n)

2 · e−
π·2·n·

√
κ

c1·g(n) .

Now, going back to how we defined g(n) and κ, we took

• κ := cκ · n2 and g(n) := cg · n2, for

• cκ := c20 · 64, cg := 256 · c0c1 · π (this choice of g(n) and κ that depends on c0, c1 is legal, as c0, c1
are both positive absolute constants in R>0).

It follows that for these parameter choices we get,

2−n +
c0 · 2 · n√

κ
+

√
1− e

− π·n·κ
c21·g(n)

2 · e−
π·2·n·

√
κ

c1·g(n)

= 2−n +
c0 · 2 · n
8 · c0 · n

+

√
1− e

−
π·n3·64·c20
c21·g(n)

2 · e−
π·2·n2·8·c0
c1·g(n)

= 2−n +
1

4
+

√
1− e

−
π·n3·64·c20
c21·g(n)

2 · e−
π·2·n2·8·c0
c1·g(n)

= 2−n +
1

4
+

√
1− e

−
π·n3·64·c20

c21·(256·
c0
c1

·π·n2)
2

· e
− π·2·n2·8·c0
c1·256·

c0
c1

·π·n2

= 2−n +
1

4
+

√
1− e−

1
210·π·n · e−

1
16

≤
(for any n∈N)

1

2
+ 2−n .
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Lemma 7.1 (Discrete uniform sum is indistinguishable from discrete Gaussian). For a, b ∈ N let U(−a,b)
the discrete uniform distribution on the set {−a, · · · ,−1, 0, 1, · · · , b}. For β, κ ∈ N such that β is an
even number, let the following variables:

• S0 :=
∑

i∈[κ/2] U
(i)

(−2β ,2β−1)
the random variable which is the sum of κ/2 i.i.d. samples from

U(−2β ,2β−1).

• S1 :=
∑

i∈[κ/2] U
(i)

(−(2β−1),2β)
the random variable which is the sum of κ/2 i.i.d. samples from

U(−(2β−1),2β).

• We define the total sum of the two cases S := S0 + S1.

Then, ∥∥D (S)−D
(
DB̃

)∥∥
TV
≤ O

(
1√
κ

)
,

for σ̃ :=
√

22β+2+2β+2

12 , B̃ := ⌈
√
κ · σ̃⌉.

Proof. We use Theorem 3.3. We have the following parameters:

• The expectation of U (i)

(−2β ,2β−1)
is µi,0 = −1

2 and the expectation of U (i)

(−(2β−1),2β)
is µi,1 = 1

2 .

• The variance of bothU (i)

(−2β ,2β−1)
,U (i)

(−(2β−1),2β)
is the same: σ2i,b =

(2β+1+1)
2−1

12 = 22β+2+2β+2

12 =

Θ
(
22β
)
.

• The variance of the sum S is σ2 =
∑

i∈[κ] σ
2
i = κ · σ2i = Θ

(
κ · 22β

)
, since we are dealing with

i.i.d. random variables.

• The third moment of both U (i)

(−2β ,2β−1)
, U (i)

(−(2β−1),2β)
is of the same order:

γi,0 :=

Eu←U(−2β,2β−1)

(
|u− µi,0|3

)
σ3

= Θ

(
1

κ
√
κ

)
,

γi,1 :=

Eu←U(−(2β−1),2β)

(
|u− µi,1|3

)
σ3

= Θ

(
1

κ
√
κ

)
.

• The expectation of S is µ :=
∑

i∈[κ/2],b∈{0,1} µi,b = 0.

• The sum of third moments is γ :=
∑

i∈[κ/2],b∈{0,1} γi,b = Θ
(

1√
κ

)
.

• The maximal absolute value that S can take is B := κ · 2β .

• For every i ∈ [κ/2], b ∈ {0, 1}, the random variable S(i,b) := S−U (i,b) is summing all κ2 variables
from S0 and S1, except variable number i from Sb.

The theorem’s upper bound on the total variation distance implies,∥∥∥D (S)−D
(
N κ·2β (0,√κ · σ̃))∥∥∥

TV
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≤ 3

2
· σ ·

∑
i∈[κ/2],b∈{0,1}

((
γi,b +

2 · σ2i,b
3 · σ3

)
·
∥∥∥D (S(i,b)

)
−D

(
S(i,b) + 1

)∥∥∥
TV

)

+

(
5 + 3

√
π

8

)
· γ +

1

σ · 2
√
2π

,

where σ̃ :=
√

22β+2+2β+2

12 . We analyze each of the three summands separately, from last to first. As for

the third (and last) summand, 1
σ·2
√
2π
≤ O

(
1√
κ·2β

)
because σ = Θ

(√
κ · 2β

)
. The second summand is(

5 + 3
√

π
8

)
· γ ≤ O

(
1√
κ

)
because γ = Θ

(
1√
κ

)
. Overall the sum of the third and second summands

together is O
(

1√
κ

)
.

The first summand is a sum by itself, and we have

3

2
· σ ·

∑
i∈[κ/2],b∈{0,1}

((
γi,b +

2 · σ2i,b
3 · σ3

)
·
∥∥∥D (S(i,b)

)
−D

(
S(i,b) + 1

)∥∥∥
TV

)

=
∑

i∈[κ/2],b∈{0,1}

((
3

2
· σ · γi,b +

σ2i,b
σ2

)
·
∥∥∥D (S(i,b)

)
−D

(
S(i,b) + 1

)∥∥∥
TV

)

=
(∗)
κ ·Θ

((
3

2
· σ · γ1,0 +

σ21,0
σ2

)
·
∥∥∥D (S(1,0)

)
−D

(
S(1,0) + 1

)∥∥∥
TV

)

= Θ

(
κ · 3

2
· σ · γ1,0 ·

∥∥∥D (S(1,0)
)
−D

(
S(1,0) + 1

)∥∥∥
TV

)

+Θ

(
κ ·

σ21,0
σ2
·
∥∥∥D (S(1,0)

)
−D

(
S(1,0) + 1

)∥∥∥
TV

)

≤ O
(
2β ·

∥∥∥D (S(1,0)
)
−D

(
S(1,0) + 1

)∥∥∥
TV

)
+O

(∥∥∥D (S(1,0)
)
−D

(
S(1,0) + 1

)∥∥∥
TV

)
≤ O

(
2β ·

∥∥∥D (S(1,0)
)
−D

(
S(1,0) + 1

)∥∥∥
TV

)
,

where the equality (∗) follows because for every i ∈ [κ/2], b ∈ {0, 1}, γi,b = Θ(γ1,0), σi,b = σ1,0, and∥∥∥D (S(i,b)
)
−D

(
S(i,b) + 1

)∥∥∥
TV

= Θ
(∥∥∥D (S(1,0)

)
−D

(
S(1,0) + 1

)∥∥∥
TV

)
.

Finally, by Fact 7.1,

2β ·
∥∥∥D (S(1,0)

)
−D

(
S(1,0) + 1

)∥∥∥
TV
≤ O

(
1√
κ

)
,

and overall we showed so far,∥∥∥D (S)−D
(
N κ·2β (0,√κ · σ̃))∥∥∥

TV
≤ O

(
1√
κ

)
.

To move to the desired distribution DB̃ , we use the triangle inequality and Fact 3.3, to get,∥∥∥D (N κ·2β (0,√κ · σ̃))−D (DB̃

)∥∥∥
TV
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≤
∥∥∥D (N κ·2β (0,√κ · σ̃))−D (N κ·2β

(
0, B̃

))∥∥∥
TV

+
∥∥∥D (N κ·2β

(
0, B̃

))
−D

(
N B̃

(
0, B̃

))∥∥∥
TV

+
∥∥∥D (N B̃

(
0, B̃

))
−D

(
DB̃

)∥∥∥
TV
≤ O

(
1√
κ

)
.

In the proof above we used the following known fact about the distance between uniform sums.

Fact 7.1 (Moving a large uniform sum has little difference). Let S and S(i,b) as defined in the statement
and proof of Lemma 7.1. Then,∥∥∥(S(i,b)

)
−
(
S(i,b) + 1

)∥∥∥
TV
≤ O

(
1

2β ·
√
κ

)
.

As part of this work we prove a lemma analogous to that about spheres from [GG98]. That is,
discrete Gaussian distributions with (1) sufficiently close centers of mass, and (2) sufficiently large
standard deviations, have the following upper bound on their total variation distance.

Lemma 7.2 (Close discrete Gaussians have bounded total variation distance). Let n ∈ N, let B > 0 and
let e0 ∈ Zn, then,

∥D (Dn
B)−D (Dn

B + e0)∥TV ≤
√
1− e−

π·(∥e0∥2+2·∥e0∥·
√
n·B)

B2 .

Proof. We calculate a lower bound for the fidelity between the distributions, and then draw our conclu-
sions for the total variation distance. Let us denote by

P :=
∑

e∈Zn
(−B,··· ,−1,0,1,··· ,B)

e−
π·∥e∥2

B2 ,

the normalization factor of the n-dimensional discrete truncated Gaussian distribution. With accordance
to Definition 3.12,

• The probability density function of D (Dn
B) is

∀e ∈ Zn(−B,··· ,−1,0,1,··· ,B) : D
n
B (e) :=

e−
π·∥e∥2

B2

P
.

• The probability density function of D (Dn
B + e0) is

∀e ∈ Zn(−B,··· ,−1,0,1,··· ,B) : (D
n
B + e0) (e) :=

e−
π·∥e−e0∥

2

B2

P
= Dn

B (e− e0) .

The fidelity between D (Dn
B) and D (Dn

B + e0) is as follows.

F (D (Dn
B) ,D (Dn

B + e0)) :=
∑

e∈Zn
(−B,··· ,−1,0,1,··· ,B)

√
Dn
B (e) ·Dn

B (e− e0)

=
∑

e∈Zn
(−B,··· ,−1,0,1,··· ,B)

√
e−

π·∥e∥2
B2

P
· e
−π·∥e−e0∥2

B2

P
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=
∑

e∈Zn
(−B,··· ,−1,0,1,··· ,B)

1

P
· e−

π·(∥e∥2+∥e−e0∥
2)

2·B2

≥
(triangle inequality)

∑
e∈Zn

(−B,··· ,−1,0,1,··· ,B)

1

P
· e−

π·(∥e∥2+(∥e∥+∥e0∥)
2)

2·B2

=
∑

e∈Zn
(−B,··· ,−1,0,1,··· ,B)

1

P
· e−

π·(∥e∥2+∥e∥2+∥e0∥
2+2·∥e0∥∥e∥)

2·B2

≥(
∀e∈Zn

(−B,··· ,−1,0,1,··· ,B)
:∥e∥≤

√
n·B

) ∑
e∈Zn

(−B,··· ,−1,0,1,··· ,B)

1

P
· e−

π·(2·∥e∥2+∥e0∥
2+2·∥e0∥·

√
n·B)

2·B2

= e−
π·(∥e0∥2+2·∥e0∥·

√
n·B)

2·B2 ·
∑

e∈Zn
(−B,··· ,−1,0,1,··· ,B)

1

P
· e−

π·2·∥e∥2

2·B2

=
(by definition of P )

e−
π·(∥e0∥2+2·∥e0∥·

√
n·B)

2·B2 .

Our proof ends by using the known relation between fidelity and total variation distance,

∥D (Dn
B)−D (Dn

B + e0)∥TV ≤
√
1− F

(
D
(
Dn
B

)
,D
(
Dn
B + e0

))2
.
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Mauro Paternostro, Andrew A Geraci, Peter F Barker, MS Kim, and Gerard Milburn.
Spin entanglement witness for quantum gravity. Physical review letters, 119(24):240401,
2017.
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Brukner, and Markus Aspelmeyer. Quantum superposition of massive objects and the
quantization of gravity. Physical Review D, 98(12):126009, 2018.

[BWG+19] Alessio Belenchia, Robert M Wald, Flaminia Giacomini, Esteban Castro-Ruiz, Časlav
Brukner, and Markus Aspelmeyer. Information content of the gravitational field of a
quantum superposition. International Journal of Modern Physics D, 28(14):1943001,
2019.

[Car] Joseph Carolan. Personal communication.

[CDPV13] Giulio Chiribella, Giacomo Mauro D’Ariano, Paolo Perinotti, and Benoit Valiron. Quan-
tum computations without definite causal structure. Physical Review A, 88(2):022318,
2013.

[CGS10] Louis HY Chen, Larry Goldstein, and Qi-Man Shao. Normal approximation by Stein’s
method. Springer Science & Business Media, 2010.

[Cos22] Fabio Costa. A no-go theorem for superpositions of causal orders. Quantum, 6:663, 2022.

[CR19] Marios Christodoulou and Carlo Rovelli. On the possibility of laboratory evidence for
quantum superposition of geometries. Physics Letters B, 792:64–68, 2019.

[dBDE+22] Jan de Boer, Bianca Dittrich, Astrid Eichhorn, Steven B Giddings, Steffen Gielen, Stefano
Liberati, Etera R Livine, Daniele Oriti, Kyriakos Papadodimas, Antonio D Pereira, et al.
Frontiers of quantum gravity: shared challenges, converging directions. arXiv preprint
arXiv:2207.10618, 2022.

[Dio87] Lajos Diosi. A universal master equation for the gravitational violation of quantum
mechanics. Physics letters A, 120(8):377–381, 1987.

[Dió89] Lajos Diósi. Models for universal reduction of macroscopic quantum fluctuations. Phys-
ical Review A, 40(3):1165, 1989.

[Dio14] Lajos Diosi. Gravitation and quantummechanical localization of macroobjects. arXiv
preprint arXiv:1412.0201, 2014.

[DSW22] Daine L Danielson, Gautam Satishchandran, and Robert M Wald. Gravitationally medi-
ated entanglement: Newtonian field versus gravitons. Physical Review D, 105(8):086001,
2022.

[FAZM22] Joshua Foo, Cemile Senem Arabaci, Magdalena Zych, and Robert B Mann. Quantum
signatures of black hole mass superpositions. Physical Review Letters, 129(18):181301,
2022.

53



[FAZM23] Joshua Foo, Cemile Senem Arabaci, Magdalena Zych, and Robert B Mann. Quantum
superpositions of minkowski spacetime. Physical Review D, 107(4):045014, 2023.

[FMZ21] Joshua Foo, Robert B Mann, and Magdalena Zych. Schrödinger’s cat for de sitter space-
time. Classical and Quantum Gravity, 38(11):115010, 2021.

[FY53] Ronald Aylmer Fisher and Frank Yates. Statistical tables for biological, agricultural, and
medical research. Hafner Publishing Company, 1953.
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