Electronic Colloquium on Computational Complexity, Report No. 54 (2024)

On the Power of Adaptivity for Function Inversion

Karthik Gajulapalli* Alexander Golovnev' Samuel King?

Abstract

We study the problem of function inversion with preprocessing where, given a function
f :[N] = [N] and a point y in its image, the goal is to find an = such that f(z) = y using at
most T oracle queries to f and S bits of preprocessed advice that depend on f.

The seminal work of Corrigan-Gibbs and Kogan [TCC 2019] initiated a line of research
that shows many exciting connections between the non-adaptive setting of this problem and
other areas of theoretical computer science. Specifically, they introduced a very weak class of
algorithms (strongly non-adaptive) where the points queried by the oracle depend only on the
inversion point y, and are independent of the answers to the previous queries and the S bits of
advice. They showed that proving even mild lower bounds on strongly non-adaptive algorithms
for function inversion would imply a breakthrough result in circuit complexity.

We prove that every strongly non-adaptive algorithm for function inversion (and even for
its special case of permutation inversion) must have ST = Q(N log(N)log(T)). This gives the
first improvement to the long-standing lower bound of ST = Q(N log N) due to Yao [STOC 90].
As a corollary, we conclude the first separation between strongly non-adaptive and adaptive
algorithms for permutation inversion, where the adaptive algorithm by Hellman [TOIT 80|
achieves the trade-off ST = O(N log N).

Additionally, we show equivalence between lower bounds for strongly non-adaptive data
structures and the one-way communication complexity of certain partial functions. As an ex-
ample, we recover our lower bound on function inversion in the communication complexity
framework.

*Georgetown University. Email: kg816@georgetown. edu.
fGeorgetown University. Email: alexgolovnev@gmail.com.
tGeorgetown University. Email: sik29@georgetown.edu.

ISSN 1433-8092

1 Introduction

We study the fundamental problem of function inversion where, given oracle access to a function
f:[N] — [N] and a point y in the image of f, the goal is to find some x such that f(z) = y.

Clearly, to work for all functions, this would require any algorithm to make at least N — 1 oracle
calls. However, to make the problem more interesting, we consider a pair of algorithms (P, .A) that
work in two phases. In the first phase, using unlimited computational power, the pre-processing
algorithm P is allowed to analyze the function f and write down S bits of advice o € {0,1}°. Then
in the second phase, the online algorithm A, given inputs y and ¢ and at most T oracle queries
to f, is required to output x such that f(z) = y. We informally refer to S and T as space and time,
and the goal is to find algorithms (P, .A) for function inversion that minimize S and 7. Note that
the problem is trivial when S = Nlog N or T' = N. We are interested in the trade-offs between
time and space when in between these two cases.

This model has received a lot of attention, especially for its applications to cryptanaly-
sis [BS00,BSW01, Oec03,NS05], cryptography [Hel80, FN91, GT00, Wee05, Unr07, DTT10, DGK17,
CDG18, CDGS18, GGPS23], circuit and data structure lower bounds [Ya090, CK19, DKKS21],
algorithms [KP19, GGH'20], information theory [DKKS21], and most recently even meta-
complexity [MP24, HIW24].

Function inversion and permutation inversion, a special case of function inversion where f is a
permutation, were initially studied by Hellman [Hel80]. Hellman constructed an elegant algorithm
that inverts any permutation when ST = Q(Nlog N). Later Yao [Yao90] showed that this algo-
rithm was optimal by proving a tight lower bound of ST = Q(N log N) for permutation inversion
(assuming S = Q(log N)). For function inversion, Hellman gave an algorithm that inverts a random
function when S?T = Q(N?).! Fiat and Naor [FN91] extended Hellman’s construction, giving an
algorithm that inverts any function when S3T = Q(N3).

One key facet of all the upper bounds mentioned above is that the queries made to f are highly
adaptive; i.e., deciding which point A is going to query next depends on the inversion point y, the
advice string o, and the values of the points queried before. A long-standing open question has
been to see if any of the upper bounds could be made non-adaptive. This question was extensively
studied in [CK19], and they introduced the notion of strongly non-adaptive algorithms where the
points queried by A are a fixed set depending only on the inversion point y. This makes the model
much weaker compared to even the standard non-adaptive (weakly non-adaptive) setting where
the fixed set of points queried by A is allowed to depend on the inversion point y and the advice
string o. Upper bounds for non-adaptive algorithms would be really useful, as they would lead
to efficient parallelisation. Perhaps even more interestingly, lower bounds even in this very weak
model would already imply circuit and communication lower bounds [CK19] and data structure
lower bounds [CK19, GGH'20, DKKS21].

Indeed, as shown in [CK19], a lower bound of S = w(N log N/loglog N) when T" = N¢ would
imply a circuit lower bound against Boolean circuits of linear size and logarithmic depth, and
thus resolve a long-standing open question due to Valiant [Val77]. A similar argument shows that
even a lower bound of S = w(Nlog N/(loglog(T/log N))) for any T' = Q(log N) would imply a
super-linear circuit lower bound for series-parallel circuits [Val77, Cal08, Vio09].

The only known strongly non-adaptive algorithm is the trivial one where the pre-processing
algorithm stores the value of f at S/log N points as advice, and the online algorithm queries the

'The notation () and O(-) suppresses factors polynomial in log N.

remaining N — S/log N points, giving S/log N + T = N. On the other hand, the best known
lower bound for the non-adaptive setting is still ST > Q(N log N) obtained by Yao’s compression
argument [Yao90] that works even for adaptive algorithms. Hence, it might still be conceivable
that the algorithm by Hellman can be made non-adaptive, which leads us to the natural question:

Are non-adaptive algorithms for permutation inversion as efficient as adaptive algo-
rithms?

1.1 Owur Results

We answer this question in the negative by showing a lower bound of ST = Q(N log(N)log(T"))
for any strongly non-adaptive algorithm for permutation inversion (and, thus, for the more general
problem of function inversion).

Theorem 1. Every strongly non-adaptive algorithm that solves permutation inversion with S bits
of preprocessing and T < N/5 queries must have

g (Nlog(]\:;) 10g(T)> |

Since permutation inversion can be solved adaptively when ST = O(N log N) [Hel80], The-
orem 1 gives us the first separation between adaptive and strongly non-adaptive algorithms for
permutation inversion for every super-constant 7'. (No separation is possible for constant 7" as in
this case the problem is maximally hard, S = Q(N log V), even in the adaptive setting.)

We remark that the result of Theorem 1 comes tantalizingly close to the bound suffi-
cient for a super-linear lower bound for series-parallel circuits. For example, for the case
of T = O (log(N)loglog(N)), Theorem 1 gives us S = Q(N), whereas a bound of S =
w(N log(N)/loglogloglog(N)) would already imply a breakthrough in circuit complexity [CK19,
Val77, Cal08].

The proof of Theorem 1 goes in two steps. First, we show that a compression argument can be
used to get a lower bound on the amount of space required when, for a large enough set of inversion
points, the union of all points queried by the online algorithm is small. In the following, we abuse

notation when X is a set and define ¢(X) = |J ¢(z).
zeX

Theorem 2. For every T € N, ¢ : [N] — (Uj\{]), and X C [N] such that | X| < N — |p(X)|, every
strongly non-adaptive algorithm that solves permutation inversion with S bits of preprocessing and
the query function @ must have

S = [X[log(N — |p(X)| = |X]) -

We can now already recover Yao’s lower bound for strongly non-apdative algorithms by Theo-
rem 2. To see this, just consider the set X = {1,2,...N/(2T)}. Then |o(X)| < N/2, and we get
S =Q((NlogN)/T).

This result also achieves optimal lower bounds for a specific subclass of query functions of
interest: query functions which admit some X C [N] of size | X| = ©(N) with | X| < N — |p(X)].
For example, take the query function ¢ which queries p(z) = (z,z+1,...,2+7T —1 mod N) for
each x € [N]. When T' < N/4, X = {1,2,...,N/4} witnesses a lower bound of S = Q(Nlog N).

We note, however, that such query functions make up a small fraction of all possible query functions;
random ¢ do not have this property.

To get an improvement over Yao’s bound, our second step involves picking a large enough set
X of size ©((NlogT)/T) with a small enough ¢(X). We show the existence of such a set via the
probabilistic method. We start by viewing ¢ as a left T-regular bipartite graph, and prove the
following graph lemma, where N(X) denotes the neighborhood of the set of vertices X.

Lemma 3. Let G = (LU R, E) be an undirected bipartite graph with |L| = |R| =n and |E| < dn,
where d < n/5. Then for large enough n, there exists a subset of vertices X C L, such that

|X| > (nlogd)/(30d) and
IN(X)| <n—mn/d>.

It is not hard to see that Lemma 3 is tight for a random left T-regular bipartite graph.

1.2 Related Work

In the case of adaptive algorithms, the tight upper bound of ST = O(N log N) for permutation in-
version is due to Hellman [Hel80]. Fiat and Naor [Hel80,FN91] gave upper bounds of ST = O(N?)
and S3T = O(N?) for inverting random and worst-case functions, respectively. It was recently ob-
served [GGPS23] that the algorithm of Fiat and Naor for the worst-case function inversion can
be extended to an upper bound of T'S? max {T, S} = O(N?). De, Trevisan and Tulsiani [DTT10]
extended [FN91] and gave better trade-offs when inverting on only e-fraction of the inputs.

The best known strongly non-adaptive algorithm is just the trivial one which achieves the
trade-off S/log N + T = N. For the case of weakly non-adaptive algorithms, where the online
algorithm gets to see the advice first, there is an algorithm that slightly outperforms the trivial
when S > N [GGPS23]. The preprocessing algorithm stores log(N/T) first bits of a preimage for
each y € [N], and the online algorithm queries all of the remaining 7' options, which results in
S = Nlog(N/T).

The best lower bound is due to Yao [Yao90], and it works for adaptive permutation inversion
and thus also for function inversion. Moreover, since it works in the adaptive setting, it also trivially
carries over to both the weakly and strongly non-adaptive settings. An alternate proof was given
by Impagliazzo [Impl1], and [GT00, Wee05, DTT10,DGK17] extend the lower bound to the setting
of randomized algorithms inverting on e-fraction of inputs.

Even in the case of strongly non-adaptive algorithms, the best known lower bound is still
Yao’s. While no unconditional improvement to Yao’s bound is known prior to this work, for
some restricted models there are better bounds. Barkan, Biham, and Shamir [BBS06] give a lower
bound of S?T = Q(N?/log N) for Hellman-type algorithms. Chawin, Haitner and Mazor [CHM20]
prove an adaptive lower bound of S + T'log N = Q(N) when the pre-processing algorithm P
computes a linear function. In the case of weakly non-adaptive algorithms they show that if
the online algorithm 4 is an affine function over the query points and advice then S = Q(NV).
Moreover they generalize these bounds to prove lower bounds in the case when A is an affine
decision tree. [GGPS23] gives tight bounds for guess-and-check algorithms for weakly non-adaptive
function inversion. These bounds are however incomparable to strongly non-adaptive function
inversion (strongly non-adaptive algorithms can’t look at the advice, but can output a point they
haven’t queried). Finally, Dvoidk, Koucky, Kral and Slivova [DKKS21] prove a conditional lower
bound of T'= Q(log N/loglog N), when S = N log N under the network coding conjecture.

In the quantum setting, [NABT15,HXY19, CLQ20,CGLQ20] give tight bounds even with quan-
tum advice showing that Grover’s search is optimal in the setting when S = O(v/N). Any improve-
ment on these bounds would imply circuit lower bounds as shown in [CK19].

Structure of the Paper. In Section 2, we provide the necessary definitions. In Section 3, we
prove the main results of this paper: Theorem 1, Theorem 2 and Lemma 3. We conclude this paper
with a discussion on the equivalence between function inversion and the communication complexity
of certain partial functions in Section 4.

2 Preliminaries

All logarithms are base 2. For a non-negative integer N, by [N] we denote the set {1,..., N}, and
by IIn we denote the set of all permutations of [N]. For an undirected graph G = (V, E) and a
subset of its vertices S C V', N(S) denotes its neighborhood; i.e.,

N(S)={veV:3Iue Sst {uv}ekFE}.
We will use the following Chernoff bound (see e.g., [MU17]):

Lemma 2.1. Let X,..., X, be independent random variables taking values in {0,1} and X denote
their sum with p = E[X]. Then for 0 <e <1,

Pr{X < (1 - &)u] < exp (‘f“) |

2.1 The Permutation Inversion Problem

In the following definitions, let (P,.4) be a pair of algorithms.

Definition 2.2. We say that
1. (P, A) uses S bits of pre-processing if for all inputs, the output of P has bit-length at most S.
2. (P, A) makes T queries if for all inputs, .Af makes at most T' queries to f.

In this paper, we provide lower bounds on permutation inversion, a subproblem of function
inversion. Hence, our lower bounds extend to function inversion as well.

Definition 2.3. We say that (P,.A) solves the permutation inversion problem if for all = € Iy
and y € [N],
AT(P(m),y) =7 (y) -

We call P the preprocessing algorithm and A the online algorithm.

We say that (P, A) is strongly non-adaptive if the T queries to m made by A™ depend only on y
and not on the output of P(7) nor the results of previous queries. In such a case, we can define
the query function of A™ to be ¢ : [N] — ([]j\ﬂ).

For any set X C [N], we let o(X) = U ¢(z).
zeX

3 Non-Adaptive Function Inversion

In this section, we prove our improved lower bound on non-adaptive permutation inversion and
hence function inversion. We start by showing a generic space bound (Theorem 2) that follows via
a compression argument. This already allows us to recover Yao’s lower bound. We next introduce
a special graph lemma (Lemma 3) on sparse bipartite graphs that guarantees the existence of a
large enough subset of vertices with a small neighborhood. Finally, combining these two together,
we get our improved lower bound (Theorem 1).

Theorem 2. For every T € N, ¢ : [N] — (U:\F[]), and X C [N] such that | X| < N — |p(X)|, every
strongly non-adaptive algorithm that solves permutation inversion with S bits of preprocessing and
the query function @ must have

S = [X[log(N — |p(X)| = |X]) -

Proof. Let (P, .A) be a strongly non-adaptive algorithm for permutation inversion with query func-
tion ¢ that uses S bits of preprocessing. Let X C [N] be such that | X| < N — |p(X)|. For ease of
notation, we define o(X) := [N]\ ¢(X). Because | X| < N — |¢(X)| = |p(X)|, there exist injective
functions from ¢(X) to [N]\ X. Fix 7 to be any such function, and let P = {7 € Iy : 7|,x) = 7};
in particular, for any two 71, m2 € P, mi|,(x) = m2|,(x)- Then by construction, we have that for
each m € P, 77 1(X) C ¢(X). We now pick a maximal subset Q C P such that for every distinct
m, T € Q, 7rf1|X + W;1|X. Thus,

(PN oy X)) — X
a1 = (1)) 1= B e - 1)

Assume for the sake of contradiction that 2° < |@Q|. Then by the pigeon hole principle, there exist
two distinct 71, m2 € @ such that P(m) = P(m2). This implies that for all i € X, A™(P(m1),7) =
A™2(P(7z), 1), since by construction 71],(x) = m2|,(x). This is a contradiction, as we know there
exists some i € X for which 77 '(i) # 75 (7). Hence, 2° > |Q| > (|p(X)| — |X|)¥], and § >
| X [log(Jp(X)| = [X1). 0

From this, we can get a lower bound on the size of the preprocessed advice for any query
function ¢ which has a large X with small p(X). In the following lemma, we show that all query
functions (viewed as bipartite graphs) admit such a subset X.

Lemma 3. Let G = (LU R, E) be an undirected bipartite graph with |L| = |R| =n and |E| < dn,
where d < n/5. Then for large enough n, there exists a subset of vertices X C L, such that

|X| > (nlogd)/(30d) and
IN(X)| < n—n/d*>.

Proof. When d < 32, we can take X C L simply to be the subset of (nlogd)/(30d) vertices on the
left with the smallest degrees. Then we have |[N(X)| < d-|X| = (nlogd)/30 < n —n/d*®. Thus,
in the following, assume d > 33.

To prove the existence of such a subset X, we will first pick a random subset X of vertices
from L. We will then bound the probability of X being small or having a large neighborhood away
from 1. This will imply the existence of a set of X that satisfies both conditions of our lemma.

Let p = (logd)/(3d) € (0,1), and let each vertex a € L be in X independently with probability
p. We now compute the probability of our two bad events. First, to bound the probability of picking
a small X, we can apply a Chernoff Bound (Lemma 2.1) to get that Pr [|X| < 5] < e 040%m <
e—pn/3.

Now, to get a bound on the probability that the size of the neighborhood N(X) is close to n,
let us first compute the expected size of N(X):

E[[N(X)[] =) Prlb € N(X)]
beR
=n—Y Prb¢ N(X)]. (1)
beR

The probability that b ¢ N(X) is the probability that none of the vertices a € N(b) were picked
in X;ie., Prib ¢ N(X)] = (1 — p)NOI. Substituting into Equation (1) we get

E[NX)]=n->_ 1-pN?

beR
<n—n(l—p)sZsINOI 2)
§n—n(1—p)d, (3)

where Equation (2) follows from the AM-GM inequality and Equation (3) follows from the fact
that G has at most dn edges. Note that for d > 1 and p = (logd)/(3d), we have 0 < p < 1/4. From
this, we get for all d > 33
(1 —p)? > e~deHr?)
> e~ dlp+5)

_ 5pd
= e 4

5loge
=d 12

2

Now we can conclude E [|N(X)|] < n—2n/d*/>. With an upper bound on the expected size of N (X),
we apply Markov’s inequality to get

n n—2n/d*/5

Pr|IN(X)| >n——z] < n_n//&/5
T A1 —1/d2)

<1—d*°.

A union-bound over the probability of the two bad events happening gives
pn _n _ g—4/5 —pn/3
Pr ||X| < 15 or [N ()| > n d4/5]<1 A5 4 ¢/ (4)
Now, because d < n/5, d < (5loge)n/36 and hence 4/5 < (nloge)/(9d). This gives us d*® <
d(nloge)/(9d) — ¢pn/3 From this, we can conclude that the probability in Equation (4) is strictly less
than 1. This implies that there exists some X C L with |X| > pn/10 and |N(X)| < n—n/d*/>. O

Now by combining Theorem 2 and Lemma 3, we get our main result.

Theorem 1. Every strongly non-adaptive algorithm that solves permutation inversion with S bits
of preprocessing and T < N/5 queries must have

S_q (Nlog(N) log(T)> .

T

Proof. If T' < 3, then take T' = 3 by making more queries, and the following lower bound still holds.
So, without loss of generality assume that 3 <7 < N/5.

Consider the bipartite graph of left-degree T' defined by ¢ on (LUR, E), where L = {{1,...,¢n},
R ={r1,...,rn}, and for every ¢ € [N] and j € ¢(i) we have {{;,7;} € E. Now let X C [N] be the
set guaranteed to exist by Lemma 3, so |X| = [Nlog(T)/(30T)] and |¢(X)| < N — N/T*5. Note
that for all T > 0, logT < 15T'/5, so NlogT/(15T) < N/T*®. Thus, |X| < |¢(X)|. Therefore,
by Theorem 2, S > | X|log(|¢(X)| — | X|). Note that

S N Nlog(T)
_ > _
)| = X1 2 s — o

N . log(T)
T o4/5 3071/

N
>
2T/
for T' > 0. Thus, we have
N log(T) N N log(T) N5 N log(N) log(T)
> I > = .
52 Top 108 <2T4/5> = 3or 8| 3 & T -

4 Connections to Communication Complexity

In this section, we discuss an alternate approach to proving lower bounds for strongly non-adaptive
function inversion via communication complexity. This approach generalizes to other strongly
non-adaptive data structure problems.

Let (P, .A) be a strongly non-adaptive algorithm for permutation inversion. We say that two
permutations conflict under a query function ¢ if there exists an i such that 7=1(i) # 771(4) and
for every j € (i), m(j) = 7(j). Hence, to distinguish two conflicting permutations, we must have
P(m) # P(7). Now consider the following promise equality problem (PromEQ,,).

Definition 4.1. For a given query function ¢ : [N] — ([]j\ﬂ), PromEQ,, is the following promise
decision problem. Given two permutations 7,7 € Il such that either 7 = 7 or # and 7 conflict
under ¢, decide which one of the two conditions holds.

For a (promise) problem f, let CC!(f) denote the one-way deterministic communication com-
plexity of f. We then observe that CCl(PromEQSﬂ) is the minimum amount of space needed for
preprocessing to solve permutation inversion using the query function ¢. On one hand, given a
strongly non-adaptive algorithm (P,.A4), in the communication protocol Alice can send Bob P(m).
To verify, Bob just checks if P(7) = P(7). When 7 = 7, equality is preserved. Otherwise, when
7w and 7 conflict we are guaranteed to have P(m) # P(7). On the other hand, assume that we

have a one-way communication protocol for PromEQ,,, and let o be the message Alice sends to
Bob when she receives 7w as input. We can then construct an algorithm (P, A) for permutation
inversion, where P(m) = o,. By the correctness of our communication protocol, we are guaranteed
that there are no two conflicting permutations which share the same message o,. Hence, A can
identify the inverse of the given point from o, and the points it queries. In particular, the question
of understanding the complexity of strongly non-adaptive function inversion is equivalent to the
following question.

Open Problem 4.2. Find the minimum one-way deterministic communication complexity of
PromEQ,, among all p: [N] — ([]:\F”),

min CCY(PromEQ,) .
o V= (1) ?

Note that each PromEQ,, problem is a “suproblem” of equality (the accept sets of PromEQ,,
and equality are identical, and the reject set of PromEQ,, is a subset of the reject set of equality).
Recall that while equality admits an efficient randomized communication protocol, it has maximum
deterministic communication complexity. Thus, to prove a polynomial lower bound for PromEQ,,
via a reduction from some known problem, the reduction must be deterministic. Moreover, the
problem we reduce from must admit an efficient randomized communication protocol, while being
sufficiently hard for any deterministic protocol.

Recovering our improved bound To illustrate this approach, we now demonstrate how our
main result (Theorem 1) can be obtained in this communication complexity framework. Given
the discussion above, Theorem 1 is equivalent to proving a lower bound of CCI(PromEQg}) =

Q(N log(N)log(T)/T) for all p: [N] — ([1}7]). In order to do this, we first introduce an auxiliary
promise problem PermEQ), y; which checks equality of k-permutations over an alphabet 3.

Definition 4.3. For a given alphabet ¥ and £ < |X|, PermEQy, 5, is the following promise decision
problem. Given two k-permutations of ¥ (strings of length & with distinct characters), decide if
they are equal or not.

In order to get a lower bound on CCI(PromEQV,), we reduce PermEQy, 5. to PromEQ,; then
known lower bounds on CCI(PermEQk’E) extend to CCl(PromEQ¢). The following is a sketch of
this reduction: Given some ¢, we use Lemma 3 to get a large X C [N] with small ¢(X). Then we
take ¥ = ¢(X) and k = | X|. Now given «, a k-permutation of ¥, we construct 7, a permutation
of [N], where m, maps a to X and ¢(X) to [N]\ X. In particular, ma|,(x) does not depend on a.
Then it is not hard to see that for distinct k-permutations o and 3 of X, m, and mg conflict. Thus,
in the reduction from PermEQy, 5, to PromEQ,,, Alice and Bob first construct 7, and 7g from their
inputs o and 8 and then run the protocol for PromEQ,. The lower bound then follows from the
known lower bound of CC'(PermEQy, ;) > Q(klog [X]).

Acknowledgements

We would like to thank Spencer Peters for fruitful discussions on this topic. This research is
supported by the National Science Foundation CAREER award (grant CCF-2338730).

References

[BBS06]

[BSOO]

[BSWO1]

[Cal0g]

[CDG18]

[CDGS18]

[CGLQ20]

[CHM?20]

[CK19]

[CLQ20]

[DGK17]

[DKKS21]

[DTT10]

[FNO1]

[GGH™'20]

[GGPS23)

Elad Barkan, Eli Biham, and Adi Shamir. Rigorous bounds on cryptanalytic
time/memory tradeoffs. In CRYPTO, 2006. 4

Alex Biryukov and Adi Shamir. Cryptanalytic time/memory/data tradeoffs for stream
ciphers. In ASIACRYPT, 2000. 2

Alex Biryukov, Adi Shamir, and David Wagner. Real time cryptanalysis of A5/1 on a
PC. In FSE, 2001. 2

Chris Calabro. A lower bound on the size of series-parallel graphs dense in long paths.

In ECCC, 2008. 2, 3

Sandro Coretti, Yevgeniy Dodis, and Siyao Guo. Non-uniform bounds in the random-
permutation, ideal-cipher, and generic-group models. In CRYPTO, 2018. 2

Sandro Coretti, Yevgeniy Dodis, Siyao Guo, and John Steinberger. Random oracles
and non-uniformity. In Furocrypt, 2018. 2

Kai-Min Chung, Siyao Guo, Qipeng Liu, and Luowen Qian. Tight quantum time-space
tradeoffs for function inversion. In FOCS, 2020. 5

Dror Chawin, Iftach Haitner, and Noam Mazor. Lower bounds on the time/memory
tradeoff of function inversion. In T'CC, 2020. 4

Henry Corrigan-Gibbs and Dmitry Kogan. The function-inversion problem: Barriers
and opportunities. In TCC, 2019. 2, 3, 5

Kai-Min Chung, Tai-Ning Liao, and Luowen Qian. Lower bounds for function inversion
with quantum advice. In ITC, 2020. 5

Yevgeniy Dodis, Siyao Guo, and Jonathan Katz. Fixing cracks in the concrete: Random
oracles with auxiliary input, revisited. In FUROCRYPT, 2017. 2, 4

Pavel Dvoidk, Michal Koucky, Karel Kral, and Veronika Slivova. Data structures lower
bounds and popular conjectures. In ESA, 2021. 2, 4

Anindya De, Luca Trevisan, and Madhur Tulsiani. Time space tradeoffs for attacks
against one-way functions and PRGs. In CRYPTO, 2010. 2, 4

Amos Fiat and Moni Naor. Rigorous time/space tradeoffs for inverting functions. In
STOC, 1991. 2, 4

Alexander Golovnev, Siyao Guo, Thibaut Horel, Sunoo Park, and Vinod Vaikun-
tanathan. Data structures meet cryptography: 3SUM with preprocessing. In STOC,
2020. 2

Alexander Golovnev, Siyao Guo, Spencer Peters, and Noah Stephens-Davidowitz. Re-
visiting time-space tradeoffs for function inversion. In CRYPTO, 2023. 2, 4

10

[GT00] Rosario Gennaro and Luca Trevisan. Lower bounds on the efficiency of generic crypto-
graphic constructions. In FOCS, 2000. 2, 4

[Hel80] Martin Hellman. A cryptanalytic time-memory trade-off. IEEFE Trans. Inf. Theory,
26(4):401-406, 1980. 2, 3, 4

[HIW24] Shuichi Hirahara, Rahul Ilango, and Ryan Williams. Beating brute force for compression
problems. In STOC, 2024. 2

[HXY19] Minki Hhan, Keita Xagawa, and Takashi Yamakawa. Quantum random oracle model
with auxiliary input. In ASTACRYPT, 2019. 5

[Imp11] Russell Impagliazzo. Relativized separations of worst-case and average-case complexities
for NP. In CCC, 2011. 4

[KP19] Tsvi Kopelowitz and Ely Porat. The strong 3SUM-INDEXING conjecture is false.
arXiv:1907.11206, 2019. 2

[MP24] Noam Mazor and Rafael Pass. The non-uniform perebor conjecture for time-bounded
Kolmogorov complexity is false. In ITCS, 2024. 2

[MU17] Michael Mitzenmacher and Eli Upfal. Probability and computing: Randomization and
probabilistic techniques in algorithms and data analysis. Cambridge university press,
2017. 5

[NABT15] Aran Nayebi, Scott Aaronson, Aleksandrs Belovs, and Luca Trevisan. Quantum lower
bound for inverting a permutation with advice. Quantum Inf. Comput., 15(11-12):901—
913, 2015. 5

[NS05] Arvind Narayanan and Vitaly Shmatikov. Fast dictionary attacks on passwords using
time-space tradeoff. In C'CS, 2005. 2

[Oec03] Philippe Oechslin. Making a faster cryptanalytic time-memory trade-off. In CRYPTO,
2003. 2

[Unr07] Dominique Unruh. Random oracles and auxiliary input. In CRYPTO, 2007. 2

[Val77] Leslie G. Valiant. Graph-theoretic arguments in low-level complexity. In MFCS, 1977.
2,3

[Vio09] Emanuele Viola. On the power of small-depth computation. Found. Trends Theor.
Comput. Sci., 5(1):1-72, 2009. 2

[Wee05] Hoeteck Wee. On obfuscating point functions. In STOC, 2005. 2, 4

[Yao90] Andrew Chi-Chih Yao. Coherent functions and program checkers. In STOC, 1990. 2,
3,4

11

ECCC ISSN 1433-8092
https://eccc.weizmann.ac.il

