
Computing a Fixed Point of Contraction Maps

in Polynomial Queries

Xi Chen∗

Columbia University
xichen@cs.columbia.edu

Yuhao Li†

Columbia University
yuhaoli@cs.columbia.edu

Mihalis Yannakakis‡

Columbia University
mihalis@cs.columbia.edu

Abstract

We give an algorithm for finding an ε-fixed point of a contraction map f : [0, 1]k 󰀁→ [0, 1]k

under the ℓ∞-norm with query complexity O(k2 log(1/ε)).

∗Supported by NSF grants IIS-1838154, CCF-2106429 and CCF-2107187.
†Supported by NSF grants IIS-1838154, CCF-2106429 and CCF-2107187.
‡Supported by NSF grants CCF-2107187 and CCF-2212233.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 57 (2024)

xichen@cs.columbia.edu
yuhaoli@cs.columbia.edu
mihalis@cs.columbia.edu

1 Introduction

A map f : M 󰀁→ M on a metric space (M, d) is called a contraction map (or a (1− γ)-contraction
map) if there exists γ ∈ (0, 1] such that d(f(x), f(y)) ≤ (1 − γ) · d(x, y) for all points x, y ∈ M.
In 1922, Banach [Ban22] proved a seminal fixed point theorem which states that every contraction
map must have a unique fixed point, i.e., there is a unique x ∈ M that satisfies f(x) = x. Distinct
from another renowned fixed point theorem by Brouwer, Banach’s theorem not only guarantees the
uniqueness of the fixed point but also provides a method for finding it: iteratively applying the
map f starting from any initial point will always converge to the unique fixed point. Over the past
century, Banach’s fixed point theorem has found extensive applications in many fields. For example,
in mathematics it can be used to prove theorems such as the Picard–Lindelöf (or Cauchy-Lipschitz)
theorem on the existence and uniqueness of solutions to differential equations (see e.g. [CL55]),
and the Nash embedding theorem [Nas56, Gün89]. In optimization and machine learning, it is
used in the convergence and uniqueness analysis of value and policy iteration in Markov decision
processes and reinforcement learning [Bel57, How60]. Indeed, as pointed out by Denardo [Den67],
contraction mappings underlie many classical dynamic programming (DP) problems and sequential
decision processes, including DP models of Bellman, Howard, Blackwell, Karlin and others.

A particularly important metric space to study the problem of finding a Banach’s fixed point is
the k-cube [0, 1]k with respect to the ℓ∞-norm, since many important problems can be reduced to
that of finding an ε-fixed point (i.e., x ∈ [0, 1]k satisfying 󰀂f(x)−x󰀂∞ ≤ ε) in a (1− γ)-contraction
map under the ℓ∞-norm. Such problems arise from a variety of fields including stochastic anal-
ysis, optimization, verification, semantics, and game theory. For example, the classical dynamic
programming models mentioned above (Markov decision processes etc.) involve contraction maps
under the ℓ∞-norm. Furthermore, the same holds for several well-known open problems that have
been studied extensively and are currently not known to be in P. For instance, Condon’s simple
stochastic games (SSGs) [Con92] can be reduced to the problem of finding an ε-fixed point in
a (1 − γ)-contraction map over [0, 1]k under the ℓ∞-norm. A similar reduction from [EY10] ex-
tends to an even broader class of games, namely, Shapley’s stochastic games [Sha53], which lay the
foundation of multi-agent reinforcement learning [Lit94]. The same holds also of course for other
problems known to be subsumed by SSGs, like parity games, which are important in verification
(see e.g. [EJ91, CJK+22]), and mean payoff games [ZP96]. Crucially, in all these reductions, both
the approximation parameter ε and the contraction parameter γ are inversely exponential in the
input size. Therefore, efficient algorithms in this context are those with a complexity upper bound
that is polynomial in k, log(1/ε) and log(1/γ).

In this paper we consider general algorithms that access the contraction map in a black-box man-
ner (as an oracle), and study the query complexity of finding an ε-fixed point of a (1−γ)-contraction
map over the k-cube [0, 1]k under the ℓ∞-norm (which we denote by Contraction∞(ε, γ, k)). An
algorithm under this model is given k, ε, γ, and oracle access to an unknown (1 − γ)-contraction
map f over [0, 1]k. In each round the algorithm can send a point x ∈ [0, 1]k to the oracle to reveal
its value f(x). The goal of the algorithm is to find an ε-fixed point with as few queries as possible.

Prior work. Despite much ongoing interest on this problem (e.g., [EY10, DP11, DTZ18, FGMS20,
Hol21, FGHS23]), progress in understanding the query complexity of Contraction∞(ε, γ, k) has
been slow. Banach’s value iteration method needs Ω((1/γ) log(1/ε)) iterations to converge to
an ε-fixed point. For the special case of k = 2, [SS02] obtained an O(log(1/ε))-query algorithm.
Subsequently, [SS03] obtained an O(logk(1/ε))-query algorithm for general k by applying a non-
trivial recursive binary search procedure across all k dimensions. (Recently [FGMS20] obtained

1

similar upper bounds for all ℓp-norms with 2 < p < ∞, though the complexity grows to infinity as
p → ∞.) Note, however, that all known upper bounds so far are exponential in either k or log(1/γ),
and this is in sharp contrast with the ℓ2-norm case, for which [STW93, HKS99] gave an algorithm
with both query and time complexity polynomial in k, log(1/ε) and log(1/γ).

Our contribution. We obtain the first algorithm for Contraction∞(ε, γ, k) with polynomial
query complexity:

Theorem 1. There is an O(k2 log(1/ε))-query algorithm for Contraction∞(ε, γ, k).

The observation below explains why our upper bound does not depend on γ:

Observation 1. Let f : [0, 1]k 󰀁→ [0, 1]k be a (1−γ)-contraction map under the ℓ∞-norm. Consider
the map g : [0, 1]k 󰀁→ [0, 1]k defined as g(x) := (1− ε/2)f(x). Clearly g is a (1− ε/2)-contraction.
Let x be any point with 󰀂g(x)− x󰀂∞ ≤ ε/2. We have

ε/2 ≥ 󰀂g(x)− x󰀂∞ = 󰀂(1− ε/2)f(x)− x󰀂∞ ≥ 󰀂f(x)− x󰀂∞ − ε/2

This gives a black-box reduction from Contraction∞(ε, γ, k) to Contraction∞(ε/2, ε/2, k),
which is both query-efficient and time-efficient.

In Section 4, we give an O(k2 log(1/ε))-query algorithm for Contraction∞(ε/2, ε/2, k), from
which Theorem 1 follows. Indeed, note that Observation 1 holds even if f is a non-expansive map
(i.e., f has Lipschitz constant 1: 󰀂f(x)− f(y)󰀂∞ ≤ 󰀂x− y󰀂∞ for all x, y ∈ [0, 1]k). As a result, the
same query upper bound applies to NonExp∞(ε, k), the problem of finding an ε-fixed point in a
non-expansive map over [0, 1]k under the ℓ∞-norm:

Corollary 1. There is an O(k2 log(1/ε))-query algorithm for NonExp∞(ε, k).

Another corollary of Theorem 1 is about finding a strong ε-fixed point in a contraction map
f . We say x is a strong ε-fixed point of f if 󰀂x − x∗󰀂∞ ≤ ε, where x∗ is the unique fixed point of
f . The following observation leads to Corollary 2, where StrContraction∞(ε, γ, k) denotes the
problem of finding a strong ε-fixed point:

Observation 2. Let f be a (1− γ)-contraction map and x∗ be its unique fixed point. Let x be any
(εγ)-fixed point of f , i.e., x satisfies 󰀂f(x)− x󰀂∞ ≤ εγ. Then we have

󰀂x− x∗󰀂∞ ≤ 󰀂x− f(x)󰀂∞ + 󰀂f(x)− x∗󰀂∞ ≤ εγ + (1− γ)󰀂x− x∗󰀂∞,

which implies 󰀂x − x∗󰀂∞ ≤ ε. This gives a black-box reduction from StrContraction∞(ε, γ, k)
to Contraction∞(εγ, γ, k), which is both query-efficient and time-efficient.

Corollary 2. There is an O(k2 log(1/(εγ)))-query algorithm for StrContraction∞(ε, γ, k).

In sharp contrast with Corollary 2, however, we show that it is impossible to strongly approxi-
mate an exact fixed point in a non-expansive map over [0, 1]2 under the ℓ∞ norm.

Theorem 2. There is no deterministic or randomized algorithm which, when given oracle access
to any non-expansive map f : [0, 1]2 󰀁→ [0, 1]2 under the ℓ∞-norm, computes in an expected bounded
number of queries a point that is within distance 1/4 of an exact fixed point of f .

2

The problem Contraction∞(ε, γ, k) is a promise problem, i.e., it is promised that the func-
tion f in the black-box (the oracle) is a (1 − γ)-contraction. In the various relevant applications
(stochastic games etc.), the corresponding function that is induced is by construction a contraction,
thus it is appropriate in these cases to restrict attention to functions that satisfy the contraction
promise.

For any promise problem, one can define a corresponding total search problem, where the
black-box can be any function f on the domain and the problem is to compute either a solu-
tion or a violation of the promise. In our case, the corresponding total search problem, denoted
T-Contraction∞(ε, γ, k), is the problem of computing for a given function f : [0, 1]k 󰀁→ [0, 1]k

either an ε-fixed point or a violation of the contraction property, i.e. a pair of points x, y ∈ [0, 1]k

such that 󰀂f(x) − f(y)󰀂∞ > (1 − γ)󰀂x − y󰀂∞. For any promise problem, the corresponding total
search problem is clearly at least as hard as the promise problem. For some problems it can be
strictly harder (and it may depend on the type of violation that is desired). However, we show that
in our case the two versions have the same query complexity.

Theorem 3. There is an O(k2 log(1/ε))-query algorithm for T-Contraction∞(ε, γ, k).

Similar results hold for NonExp∞(ε, k) and StrContraction∞(ε, γ, k): the total search ver-
sions have the same query complexity as the corresponding promise problems.

Remark. It is also important to note that while our algorithm in Theorem 1 is query efficient, it is
not time efficient for the current version. The algorithm guarantees that within polynomial queries
we can find a weak ε-fixed point, but each iteration requires a brute force procedure to determine
the next query point. We will explain more details of techniques in Section 1.1.

Other Related Work. We have already mentioned the most relevant works addressing the
query complexity of computing the fixed point of a contraction map. For continuous functions
f : [0, 1]k 󰀁→ [0, 1]k that have Lipschitz constant greater than 1 (i.e. are expansive), there are
exponential lower bounds on the query complexity of computing a (weak) approximate fixed point
[HPV89, CD08].

Contraction∞(ε, γ, k) when considered in the white-box model1 can be formulated as a to-
tal search problem so that it lies in the class TFNP. In fact, it is one of the motivating prob-
lems in [DP11] to define the class CLS for capturing problems that lie in both PLS [JPY88] and
PPAD [Pap94]. Later, it is placed in UEOPL [FGMS20]2, a subclass of CLS to capture problems with
a unique solution. It is not known that Contraction∞(ε, γ, k) is complete for any TFNP class.
Notably, to the best of our knowledge, for the known fixed point problems that are complete for some
TFNP class, their query complexity in the black-box model is exponential. Examples of such well-
known problems include PPAD-complete problems Brouwer and Sperner [Pap94, CD09], PPA-
complete problems Borsuk–Ulam, Tucker [Pap94, ABB20] and MöbiusSperner [DEF+21],
CLS-complete problems KKT [FGHS23] and MetricBanach3 [DTZ18], and UEOPL-complete
problem OPDC [FGMS20].

1The white-box model refers to the model where the function is explicitly given by a polynomial-size circuit, in
contrast to the black-box model where the function can only be accessed via an oracle as we studied in this paper.
When we talk about a computational problem under the white-box model, we measure the efficiency by the time
complexity.

2Technically speaking, they show that UEOPL contains the problem of computing an exact fixed point of contrac-
tion maps specified by LinearFIXP arithmetic circuits, where the unique fixed point is guaranteed to be rational. For
our more general version Contraction∞(ε, γ, k), the unique fixed point of the underlying map may be irrational.

3MetricBanach refers to the problem of computing an approximate fixed point of a contraction map where the
distance function d is also part of the input.

3

However, our results indicate that Contraction∞(ε, γ, k) is dramatically different from all
these fixed point problems above in terms of query complexity. Thus, we would like to interpret
our results as evidence supporting that Contraction∞(ε, γ, k) under white-box model might be
computationally tractable. Ideally, if it is in FP, it would imply many breakthroughs in the fields
of verification, semantics, learning theory, and game theory as we discussed before.

1.1 Sketch of the Main Algorithm

We give a high-level sketch of the main query algorithm for Theorem 1. We start by discretizing
the search space. Let g : [0, n]k 󰀁→ [0, n]k with g(x) := n · f(x/n) and n := ⌈16/(γε)⌉. It is easy to
show that g remains a (1− γ)-contraction over [0, n]k and it suffices to find a (16/γ)-fixed point of
g. Moreover, by rounding the unique fixed point x∗ of g to an integer point, we know trivially that
at least one integer point x in the grid [0 : n]k, where [0 : n] := {0, 1, . . . , n}, satisfies 󰀂x−x∗󰀂∞ ≤ 1
and it is easy to show that any such point x must be a (16/γ)-fixed point. So our goal is to find a
point x ∈ [0 : n]k that satisfies 󰀂x− x∗󰀂∞ ≤ 1 query-efficiently.

To this end, we use Candt to denote the set of [0 : n]k that remains possible to be close to the
unknown exact fixed point x∗ of g. Starting with Cand0 set to be the full grid [0 : n]k, the success
of the algorithm relies on whether we can cut down the size of Candt efficiently. For this purpose
we prove a number of geometric lemmas in Section 3 to give a characterization of the exact fixed
point x∗, which lead to the following primitive used by the algorithm repeatedly:

Given x ∈ [0, n]k, i ∈ [k] and φ ∈ {±1}, we write Pi(x,φ) to denote the set of points
y ∈ [0, n]k such that φ · (yi − xi) = 󰀂y − x󰀂∞, where P is a shorthand for pyramid.
Then after querying a point a ∈ [0, n]k, either a was found to be a (16/γ)-fixed point
(in which case the algorithm is trivially done), or one can find φi ∈ {±1} for each
i ∈ [k] such that no point in Pi(a,φi) can be close (within ℓ∞-distance 1) to x∗ (in
which case we can update Candt by removing all points in ∪i∈[k]Pi(a,φi)).

Given this, it suffices to show that for any set of points T ⊆ [0 : n]k (as Candt), there exists a
point a to be queried such that for any φi ∈ {±1}:

󰀏󰀏󰀏󰀏󰀏󰀏
T ∩

󰀳

󰁃
󰁞

i∈[k]
Pi(a,φi)

󰀴

󰁄

󰀏󰀏󰀏󰀏󰀏󰀏

is large relative to |T |, which is equivalent (up to a factor of k) to showing that there exists a point
a and i ∈ [k] such that

min
󰀃󰀏󰀏T ∩ Pi(a,+1)

󰀏󰀏,
󰀏󰀏T ∩ Pi(a,−1)

󰀏󰀏 󰀄 (1)

is large relative to |T |. This unfortunately turns out to be not true (see Example 1). However, it
turns out that such a point (which we will refer to as a balanced point) always exists if we replace
the integer grid [0 : n]k by the grid of odd-even points: OE(n, k), where y ∈ OE(n, k) iff y ∈ [0 : n]k

and its coordinates are either all odd or all even. To prove the existence of a balanced point, we
construct an infinite sequence of continuous maps {f t} that can be viewed as relaxed versions of
the search for a balanced point. Using Brouwer’s fixed point theorem, every map f t has a fixed
point pt and thus, by the Bolzano–Weierstrass theorem, there must be an infinite subsequence of
{pt} that converges. Letting p∗ be the point it converges to, we further round p∗ to q∗ ∈ OE(n, k)
and show that the latter is a balanced point in the grid. While we show such a point always exists,
the brute-force search to find q∗ ∈ OE(n, k) is the reason why our algorithm is not time-efficient.

4

2 Preliminaries

Definition 1 (Contraction). Let 0 < γ < 1 and (M, d) be a metric space. A map f : M 󰀁→ M is
a (1−γ)-contraction map with respect to (M, d) if d(f(x), f(y)) ≤ (1−γ) ·d(x, y) for all x, y ∈ M.

A map f : M 󰀁→ M is said to be non-expansive if d(f(x), f(y)) ≤ d(x, y) for all x, y ∈ M.

Every non-expansive map has a fixed point, i.e., x∗ with f(x∗) = x∗, and it is unique when f is
a (1 − γ)-contraction map for any γ > 0. In this paper, we study the query complexity of finding
an ε-fixed point of a (1− γ)-contraction map f over the k-cube [0, 1]k with respect to the infinity
norm:

Definition 2 (Contraction∞(ε, γ, k)). In problem Contraction∞(ε, γ, k), we are given oracle
access to a (1− γ)-contraction map f over [0, 1]k with respect to the infinity norm, i.e., f satisfies

󰀂f(x)− f(y)󰀂∞ ≤ (1− γ) · 󰀂x− y󰀂∞, for all x, y ∈ [0, 1]k

and the goal is to find an ε-fixed point of f , i.e., a point x ∈ [0, 1]k such that 󰀂f(x)− x󰀂∞ ≤ ε.
We also write StrContraction∞(ε, γ, k) to denote the problem with the same input but the

goal is to find a strong ε-fixed point of f , i.e., x ∈ [0, 1]k such that 󰀂x− x∗󰀂∞ ≤ ε, where x∗ is the
unique fixed point of f .

We define similar problems for non-expansive maps over [0, 1]k:

Definition 3 (NonExp∞(ε, k)). In problem NonExp∞(ε, k), we are given oracle access to a non-
expansive map f : [0, 1]k → [0, 1]k with respect to the infinity norm, i.e., f satisfies

󰀂f(x)− f(y)󰀂∞ ≤ 󰀂x− y󰀂∞, for all x, y ∈ [0, 1]k

and the goal is to find an ε-fixed point of f .
We write StrNonExp∞(ε, k) to denote the problem with the same input but the goal is to find

a strong ε-fixed point of f .

Let f : [0, 1]k → [0, 1]k be a (1− γ)-contraction map. For convenience, our main algorithm for
Contraction∞(ε, γ, k) will work on g : [0, n]k 󰀁→ [0, n]k with

n :=

󰀛
16

γε

󰀜
and g(x) := n · f(x/n), for all x ∈ [0, n]k.

We record the following simple property about g:

Lemma 1. The map g constructed above is still a (1− γ)-contraction and finding an ε-fixed point
of f reduces to finding a (16/γ)-fixed point of g.

Proof. For any two points x, y ∈ [0, n]k, we have

󰀂g(x)− g(y)󰀂∞ = 󰀂n · f(x/n)− n · f(y/n)󰀂∞ ≤ n(1− γ) · 󰀂x/n− y/n󰀂∞ = (1− γ)󰀂x− y󰀂∞.

Suppose we found a (16/γ)-fixed point a of g. We show that x := a/n is an ε-fixed point of f :

󰀂f(x)− x󰀂∞ = 󰀂g(a)/n− a/n󰀂∞ =
1

n
· 󰀂g(a)− a󰀂∞ ≤ 1

n
· 16
γ

≤ ε.

This finishes the proof of the lemma.

5

Notation. Given a positive integer m, we use [m] to denote {1, . . . ,m}. For a real number t ∈ R,
we let sgn(t) = 1 if t > 0, sgn(t) = −1 if t < 0, and sgn(t) = 0 if t = 0. Given positive integers n
and k, we use OE(n, k) to denote the set of all integer points x ∈ [0, n]k such that either xi is odd
for all i ∈ [k] or xi is even for all i ∈ [k]. (OE is a shorthand for odd and even points.)

For a point x ∈ Rk (not necessarily in [0, n]k), a coordinate i ∈ [k], and a sign φ ∈ {±1}, we
use Pi(x,φ) to denote

Pi(x,φ) :=
󰁱
y ∈ [0, n]k : φ · (yi − xi) = 󰀂y − x󰀂∞

󰁲
,

where P is a shorthand for pyramid.
Given a (1− γ)-contraction map g over [0, n]k, we use Fix(g) to denote the unique fixed point

of g. For any point x ∈ [0, n]k, we use Around(x) to denote the set

Around(x) :=
󰀋
y ∈ OE(n, k) : 󰀂x− y󰀂∞ ≤ 1

󰀌
.

We note that 󰀂g(y) − y󰀂∞ ≤ 2 for all y ∈ Around(Fix(g)) and thus, any point in Around(Fix(g))
is a desired (16/γ)-fixed point (given that γ < 1). To see this, letting x = Fix(g), we have

󰀂g(y)− y󰀂∞ ≤ 󰀂g(y)− g(x)󰀂∞ + 󰀂x− y󰀂∞ ≤ 2, for any y ∈ Around(x).

3 Characterizing the Unique Fixed Point

Lemma 2. Let g : [0, n]k 󰀁→ [0, n]k be a (1− γ)-contraction map and let a ∈ [0, n]k be a point such
that 󰀂g(a)− a󰀂∞ > 16/γ and s ∈ {±1, 0}k be the sign vector such that si = sgn(g(a)i − ai). Then

Fix(g) ∈
󰁞

i:si ∕=0

Pi(a+ 4s, si).

Proof. Let c = a+ 4s and x∗ = Fix(g) be the unique fixed point.
First, we show that 󰀂x∗ − a󰀂∞ > 8/γ. Otherwise, we have

󰀂g(a)− a󰀂∞ ≤ 󰀂g(a)− g(x∗)󰀂∞ + 󰀂x∗ − a󰀂∞ ≤ (1− γ + 1) · 󰀂x∗ − a󰀂∞ ≤ 16

γ
,

which contradicts the assumption that 󰀂g(a)− a󰀂∞ > 16/γ. Now it suffices to show that g(x) ∕= x
for any point x ∈ [0, n]k that satisfies both

x /∈
󰁞

i,si ∕=0

Pi(c, si) and 󰀂x− a󰀂∞ >
8

γ
.

Let j be a dominating coordinate between x and c, i.e., a j ∈ [k] such that |xj − cj | = 󰀂x − c󰀂∞.
We divide the proof into two parts.

Part 1: sj = 0. Thus g(a)j = aj and cj = aj . Assume without loss of generality that xj ≥ cj ; the
case when xj ≤ cj is symmetric. On the one hand, we have xj − cj = 󰀂x− c󰀂∞, which gives

xj = cj + 󰀂x− c󰀂∞. (󰂏)

On the other hand, using that g is a (1− γ)-contraction and g(a)j = aj , we have

g(x)j − aj = g(x)j − g(a)j ≤ (1− γ) · 󰀂x− a󰀂∞.

6

Equivalently, g(x)j ≤ aj + 󰀂x− a󰀂∞ − γ󰀂x− a󰀂∞. Combining with 󰀂x− a󰀂∞ > 8/γ, this implies

g(x)j < aj + 󰀂x− a󰀂∞ − 8. (⋄)

Putting (󰂏) and (⋄) together and the facts that 󰀂c− a󰀂∞ = 4 and cj = aj , we have

xj − g(x)j > 󰀂x− c󰀂∞ − 󰀂x− a󰀂∞ + 8 ≥ −󰀂c− a󰀂∞ + 8 > 0,

which implies that g(x)j ∕= xj and g(x) ∕= x.

Part 2: sj ∕= 0. Assume without loss of generality that sj = +1; the case sj = −1 is symmetric.
Since we are considering points not in

󰁖
i:si ∕=0 Pi(c, si), it must be the case that x ∈ Pj(c,−sj)

and thus, xj ≤ cj . Since 󰀂x− a󰀂∞ > 8/γ, we have xj ≤ aj ; otherwise aj ≤ xj ≤ cj and thus,

󰀂x− a󰀂∞ ≤ 󰀂x− c󰀂∞ + 󰀂a− c󰀂∞ ≤ 8.

Given the (1− γ)-contraction of g, we have g(a)j − g(x)j ≤ (1− γ) · 󰀂x− a󰀂∞, which implies

g(x)j ≥ g(a)j − 󰀂x− a󰀂∞ + γ󰀂x− a󰀂∞ > g(a)j − 󰀂x− a󰀂∞ + 8. (2)

Next, we show an upper bound on 󰀂x− a󰀂∞. Recall that x ∈ Pj(c,−sj). Consider y = x− 4s. We
have y ∈ Pj(a,−sj). So

󰀂x− a󰀂∞ ≤ 󰀂x− y󰀂∞ + 󰀂y − a󰀂∞ = 4 + (aj − yj) = 4 + (aj − xj + 4) = 8 + (aj − xj).

Given this and plugging the upper bound in Equation (2), we will get

g(x)j > g(a)j + xj − aj .

Recall that sj = +1 implies that g(a)j > aj . So we have g(x)j > xj and g(x) ∕= x.
This finishes the proof of Lemma 2.

Lemma 3. Let b ∈ Rk and s ∈ {±1, 0}k such that s ∕= 0k. Then every x ∈
󰁖

i:si ∕=0 Pi(b + 2s, si)
must have Around(x) ⊆

󰁖
i:si ∕=0 Pi(b, si).

Proof. Let i∗ be such that si∗ ∕= 0 and x ∈ Pi∗(b+ 2s, si∗). Assume without loss of generality that
si∗ = +1. We have xi∗ − (bi∗ + 2) ≥ |xi − (bi + 2si)| for every i ∈ [k].

Fix an arbitrary y ∈ Around(x). We must have yi∗ − bi∗ ≥ 0, which follows from

0 ≤ xi∗ − (bi∗ + 2) ≤ yi∗ + 1− (bi∗ + 2)

and thus, yi∗ ≥ bi∗ + 1. Let
j ∈ argmax

i∈[k]

󰀋
si(yi − bi) | si ∕= 0

󰀌
.

Since si∗ = +1, we have
sj(yj − bj) ≥ yi∗ − bi∗ ≥ 0.

Our goal is to show y ∈ Pj(b, sj) and it suffices for us to show |yj − bj | ≥ |yi − bi| for all i ∈ [k].
Let’s consider first an arbitrary i ∈ [k] with si = 0. Recall that xi∗ − (bi∗ + 2) ≥ |xi − bi|. In

particular, this implies |xi∗ − bi∗ |− 2 ≥ |xi − bi|. Putting everything together, we have

|yj − bj | ≥ |yi∗ − bi∗ | ≥ |xi∗ − bi∗ |− 1 ≥ |xi − bi|+ 1 ≥ |yi − bi|.

Finally let’s consider an i ∈ [k] such that si ∕= 0. If si(yi − bi) > 0, by the definition of how we
picked j, we have |yj − bj | ≥ |yi − bi|. If si(yi − bi) < 0, then we have

|yi − bi| = |yi − (bi + 2si)|− 2 ≤ |xi − (bi + 2si)|− 1 ≤ xi∗ − bi∗ − 3 ≤ yi∗ − bi∗ − 2 < |yj − bj |.

This finishes the proof of the lemma.

7

Lemma 4. Let a ∈ [0, n]k and s ∈ {±1, 0}k such that s ∕= 0k. Then for every j ∈ [k], there exists
φ ∈ {±1} such that

Pj(a,φ) ∩

󰀳

󰁃
󰁞

i:si ∕=0

Pi(a+ 2s, si)

󰀴

󰁄 = ∅.

Proof. First we note that
󰀳

󰁃
󰁞

i:si ∕=0

Pi(a,−si)

󰀴

󰁄 ∩

󰀳

󰁃
󰁞

i:si ∕=0

Pi(a+ 2s, si)

󰀴

󰁄 = ∅.

This implies that

Pj(a,φ) ∩

󰀳

󰁃
󰁞

i:si ∕=0

Pi(a+ 2s, si)

󰀴

󰁄 = ∅

for all j with sj ∕= 0 by setting φ = −sj .
Now consider a j with sj = 0. Under this case, we show in fact that

Pj(a,φ) ∩

󰀳

󰁃
󰁞

i:si ∕=0

Pi(a+ 2s, si)

󰀴

󰁄 = ∅

for both φ ∈ {±1} . Consider any point x ∈
󰁖

i:si ∕=0 Pi(a + 2s, si) and we show that x /∈ Pj(a,−1)
and x /∈ Pj(a,+1). Let b = a+ 2s. As x ∈

󰁖
i:si ∕=0 Pi(b, si), there exists i∗ with si∗ ∕= 0 such that

si∗(xi∗ − bi∗) = 󰀂x− b󰀂∞ ≥ |xj − bj |.

Note also that |xi∗ − ai∗ | = si∗(xi∗ − bi∗ + 2si∗) = si∗(xi∗ − bi∗) + 2 and bj = aj , so we have

|xi∗ − ai∗ | = 󰀂x− b󰀂∞ + 2 > |xj − bj | = |xj − aj |.

Thus x /∈ Pj(a,−1) and x /∈ Pj(a,+1) . This finishes the proof of the lemma.

4 The Algorithm

We prove Theorem 1 in this section. Our algorithm for Contraction∞(ε, γ, k) is described in
Algorithm 1. Given oracle access to a (1− γ)-contraction map g : [0, n]k → [0, n]k, we show that it
can find a (16/γ)-fixed point of g within

O

󰀕
k2 log

󰀕
1

εγ

󰀖󰀖

many queries. This is sufficient given Lemma 1.
The analysis of Algorithm 1 uses the following theorem which we prove in the next section. In

particular, it guarantees the existence of the point at to be queried in round t that satisfies (3). We
will call a point q∗ with the property stated in Theorem 4 below a balanced point for T .

Theorem 4. For any T ⊆ OE(n, k), there exist a point q∗ ∈ OE(n, k) and an i∗ ∈ [k] such that

󰀏󰀏Pi∗(q
∗,φ) ∩ T

󰀏󰀏 ≥ 1

2k
· |T |, for both φ ∈ {±1}.

8

Algorithm 1 Query Algorithm for Contraction∞(ε, γ, k)

1: Let Cand0 ← OE(n, k)
2: for t = 1, 2, . . . do
3: Find and query an at ∈ OE(n, k) such that at is a balanced point of Candt−1 on some j ∈ [k]:

󰀏󰀏Pj(a
t,+1) ∩ Candt−1

󰀏󰀏,
󰀏󰀏Pj(a

t,−1) ∩ Candt−1
󰀏󰀏 ≥ 1

2k
·
󰀏󰀏Candt−1

󰀏󰀏 (3)

4: if 󰀂g(at)− at󰀂∞ ≤ 16/γ then return at as a (16/γ)-fixed point of g
5: Let s ∈ {±1, 0}k be such that si = sgn(g(at)i − ati) for all i ∈ [k], bt ← at + 2s, and

Candt ← Candt−1 ∩

󰀳

󰁃
󰁞

i:si ∕=0

Pi(b
t, si)

󰀴

󰁄 . (4)

At a high level, Algorithm 1 maintains a subset of grid points OE(n, k) as candidate solutions,
which is denoted by Candt after round t. We show the following invariants:

Lemma 5. For every round t ≥ 1, either the point at queried is a (16/γ)-fixed point of g (and the
algorithm terminates), or we have both Around(Fix(g)) ⊆ Candt and

󰀏󰀏Candt
󰀏󰀏 ≤

󰀕
1− 1

2k

󰀖
·
󰀏󰀏Candt−1

󰀏󰀏. (5)

Proof of Lemma 5. We start with the proof of (5). Suppose that at satisfies (3) with j ∈ [k]. Then
by Lemma 4, there must exist a sign φ ∈ {±1} such that

Pj(a
t,φ) ∩

󰀳

󰁃
󰁞

i:si ∕=0

Pi(b
t, si)

󰀴

󰁄 = ∅.

The inequality (5) follows directly from (3).
Next we prove by induction that Around(Fix(g)) ⊆ Candt for every t before the round that the

algorithm terminates. The basis is trivial given that Cand0 is set to be OE(n, k). For round t ≥ 1,
we assume that 󰀂g(at)− at󰀂∞ > 16/γ; otherwise a solution is found and the algorithm terminates.

Let bt = at + 2s and ct = bt + 2s. By Lemma 2, we know that

Fix(g) ∈

󰀳

󰁃
󰁞

i:si ∕=0

Pi(c
t, si)

󰀴

󰁄 .

Since bt is defined as ct − 2s, by Lemma 3, we know that

Around(Fix(g)) ⊆
󰁞

i:si ∕=0

Pi(b
t, si).

We finish the proof by using the inductive hypothesis Around(Fix(g)) ⊆ Candt−1 and (4).

9

Given Lemma 5 and that |Cand0| ≤ nk, within at most

O
󰀓
k log(nk)

󰀔
= O

󰀕
k2 log

󰀕
1

εγ

󰀖󰀖

many rounds, one of the points at queried by the algorithm must be a (16/γ)-fixed point of g. This
finishes the proof of Theorem 1.

5 Existence of Balanced Point

We prove Theorem 4 in this section. Before that, we first illustrate why the structure of OE(n, k) is
necessary to guarantee the existence of a balanced point. In particular, for the standard grid [n]k,
we give an example of a set T ⊆ [n]k such that no point in [n]k can be a balanced point.

Example 1. Let p = (n/2, . . . , n/2) if n is odd and let p = (n+1
2 , · · · , n+1

2) if n is even. Note that
p /∈ [n]k. We construct the following T ⊆ [n]k such that p is the only choice of a balanced point:

T =
󰁱
x ∈ [n]k : |xi − pi| = 󰀂x− p󰀂∞ for all i ∈ [k]

󰁲
.

Precisely, it is easy to verify that for any point p′ ∕= p and any coordinate i ∈ [k], we have that

󰀏󰀏Pi∗(p
′,φ) ∩ T

󰀏󰀏 ≤ O
󰀓
|T |/2k

󰀔
, for some φ ∈ {±1}.

However, since p /∈ [n]k, we conclude that there is no balanced point for T in [n]k.

We restate Theorem 4:

Theorem 4. For any T ⊆ OE(n, k), there exist a point q∗ ∈ OE(n, k) and an i∗ ∈ [k] such that

󰀏󰀏Pi∗(q
∗,φ) ∩ T

󰀏󰀏 ≥ 1

2k
· |T |, for both φ ∈ {±1}.

Proof. For each positive integer t ≥ 4 we let

St := ∪x∈TB(x, 1/t) ⊂ [−1/4, n+ 1/4]k,

where B(x, 1/t) denotes the ℓ2-ball of radius 1/t centered at x. We write vol(St) to denote the
volume of St and vol(St ∩P) to denote the volume of the intersection of St and some pyramid P.

We apply Brouwer’s fixed point to prove the existence of a balanced (real) point for the balls:

Lemma 6. For every integer t ≥ 4, there exist p∗ ∈ [−1/4, n+1/4]k and a coordinate i∗ ∈ [k] such
that vol(Pi∗(p

∗,+1) ∩ St) = vol(Pi∗(p
∗,−1) ∩ St) ≥ vol(St)/2k.

Proof. We define a continuous map f : [−1/4, n+ 1/4]k 󰀁→ [−1/4, n+ 1/4]k and apply Brouwer’s
fixed point theorem on f to find a fixed point p∗ of f , and show that p∗ satisfies the property above.

We define f as follows: For every p ∈ [−1/4, n+ 1/4]k and i ∈ [k], let

fi(p) := pi +
vol

󰀃
Pi(p,+1) ∩ St

󰀄
− vol

󰀃
Pi(p,−1) ∩ St

󰀄

(n+ 0.5)k−1
.

10

It is clear that f is continuous. To see that it is from [−1/4, n+ 1/4]k to itself, we note that

0 ≤
vol

󰀃
Pi(p,+1) ∩ St

󰀄

(n+ 0.5)k−1
≤ n+

1

4
− pi and 0 ≤

vol
󰀃
Pi(p,−1) ∩ St

󰀄

(n+ 0.5)k−1
≤ pi +

1

4
.

As a result, one can apply Brouwer’s fixed point theorem on f to conclude that there exists a
point p∗ ∈ [−1/4, n+ 1/4]k such that f(p∗) = p∗, which implies that

vol
󰀃
Pi(p

∗,+1) ∩ St
󰀄
= vol

󰀃
Pi(p

∗,−1) ∩ St
󰀄

for all i ∈ [k]. On the other hand, we have

󰁛

i∈[k]

󰀓
vol

󰀃
Pi(p

∗,+1) ∩ St
󰀄
+ vol

󰀃
Pi(p

∗,−1) ∩ St
󰀄󰀔

= vol(St).

Therefore there must be an i∗ ∈ [k] such that

vol
󰀃
Pi∗(p

∗,+1) ∩ St
󰀄
= vol

󰀃
Pi∗(p

∗,−1) ∩ St
󰀄
≥ vol(St)

2k
.

This finishes the proof of the lemma.

By Lemma 6, we have that for every t, there exist pt ∈ [−1/4, n+ 1/4]k and it ∈ [k] such that

vol
󰀃
Pit(p

t,+1) ∩ St
󰀄
= vol

󰀃
Pit(p

t,−1) ∩ St
󰀄
≥ vol(St)

2k
.

Given that there are only k choices for it, there exists an i∗ ∈ [k] such that {pt} has an infinite
subsequence {ptℓ}ℓ≥1 with t1 < t2 < · · · such that

vol
󰀃
Pi∗(p

tℓ ,+1) ∩ Stℓ
󰀄
= vol

󰀃
Pi∗(p

tℓ ,−1) ∩ Stℓ
󰀄
≥ vol(Stℓ)

2k

for all ℓ ≥ 1. Given that [−1/4, n+ 1/4]k is compact, {ptℓ} has an infinite subsequence that
converges to a point p∗ ∈ [−1/4, n+ 1/4]k. For convenience, we still refer to the subsequence as
{ptℓ}ℓ≥1.

In Lemma 7, we show that both Pi∗(p
∗,+1) ∩ T and Pi∗(p

∗,−1) ∩ T are at least |T |/2k. After
this, in Lemma 8, we show how to round p∗ to q∗ ∈ OE(n, k) while making sure that

Pi∗(p
∗,+1) ∩ T ⊆ Pi∗(q

∗,+1) ∩ T and Pi∗(p
∗,−1) ∩ T ⊆ Pi∗(q

∗,−1) ∩ T.

Our goal then follows by combining these two lemmas.

Lemma 7. We have

min

󰀝
|Pi∗(p

∗,+1) ∩ T |
|T | ,

|Pi∗(p
∗,−1) ∩ T |
|T |

󰀞
≥ 1

2k
.

Proof. We write A to denote the following (potentially empty) set of positive real numbers defined
using p∗: a ∈ (0, 1) is in A if there are i ∕= j ∈ [k] such that either

1. p∗i + p∗j is an integer plus a; or

11

2. p∗i + p∗j is an integer minus a; or

3. p∗i − p∗j is an integer plus a; or

4. p∗i − p∗j is an integer minus a.

Consider the easier case when A is empty, i.e. p∗i +p∗j and p∗i −p∗j are integers for all i ∕= j ∈ [k].
Let ℓ be a sufficiently large integer such that 1/tℓ ≤ 0.1 and 󰀂ptℓ − p∗󰀂∞ ≤ 0.1. We show that

|Pi∗(p
∗,+1) ∩ T |
|T | ≥ vol(Pi∗(p

tℓ ,+1) ∩ Stℓ)

vol(Stℓ)
≥ 1

2k

and the same inequality holds for the −1 side. For this purpose it suffices to show that every point
x ∈ T satisfies that

Pi∗(p
tℓ ,+1) ∩B(x, 1/tℓ) ∕= ∅ =⇒ x ∈ Pi∗(p

∗,+1).

Let’s prove the contrapositive so take any x /∈ Pi∗(p
∗,+1). There exists a j ∕= i∗ such that either

xi∗ − p∗i∗ < xj − p∗j or xi∗ − p∗i∗ < p∗j − xj

For the first case we have xi∗ − xj < p∗i∗ − p∗j . Since both sides are integers we have

xi∗ − xj ≤ p∗i∗ − p∗j − 1 (6)

so intuitively x is far from Pi∗(p
∗,+1). From this we can conclude that B(x, 1/tℓ) ∩Pi∗(p

tℓ ,+1) is
empty. To see this is the case, for any y ∈ B(x, 1/tℓ), it follows from 󰀂x − y󰀂∞ ≤ 󰀂x − y󰀂2 ≤ 0.1
and 󰀂p∗ − ptℓ󰀂∞ ≤ 0.1 and (6) that

yi∗ − yj ≤ ptℓi∗ − ptℓj − (1− 0.4) < ptℓi∗ − ptℓj

and thus, y /∈ Pi∗(p
tℓ ,+1). The other case follows from a similar argument.

Now we consider the general case when A is not empty and let α > 0 be the smallest value in
A; note that α ≤ 1/2. In this case we let ℓ be a sufficiently large integer such that 1/tℓ ≤ 0.1α and
󰀂ptℓ − p∗󰀂∞ ≤ 0.1α. Similarly it suffices to show that every point x ∈ T satisfies that

Pi∗(p
tℓ ,+1) ∩B(x, 1/tℓ) ∕= ∅ =⇒ x ∈ Pi∗(p

∗,+1).

Let’s prove the contrapositive so take any x /∈ Pi∗(p
∗,+1). There exists a j ∕= i∗ such that either

xi∗ − p∗i∗ < xj − p∗j or xi∗ − p∗i∗ < p∗j − xj

For the first case we have xi∗ − xj < p∗i∗ − p∗j . Since p∗i∗ − p∗j is either an integer or an integer ±
something that is between α and 1− α, we have

xi∗ − xj ≤ p∗i∗ − p∗j − α.

The rest of the proof is similar.

Given p∗, we round it to an integer point q∗ ∈ OE(n, k) as follows. First let q∗i∗ ∈ [0, n] be
an integer such that |p∗i∗ − q∗i∗ | ≤ 1/2 (note that q∗i∗ may not be unique but we can break ties
arbitrarily). It is clear that q∗i∗ ∈ {0, . . . , n}. Assume without loss of generality that q∗i∗ is even (so
we need to set q∗j to be even for every other j, in order to have q∗ ∈ OE(n, k)). Then for each j ∕= i∗:

12

1. q∗j = 0 if p∗j ∈ [−1/4, 0);

2. q∗j is set to be the even number in {n− 1, n} if p∗j ∈ (n, n+ 1/4]; and

3. Otherwise, set q∗j to be an even number in {0, . . . , n} such that |p∗j − q∗j | ≤ 1 (again breaking
ties arbitrarily).

Note that we have q∗ ∈ OE(n, k) and it satisfies |p∗j − q∗j | ≤ 5/4 for all j ∕= i∗.

Lemma 8. The point q∗ satisfies q∗ ∈ OE(n, k) and

Pi∗(p
∗,+1) ∩ T ⊆ Pi∗(q

∗,+1) ∩ T and Pi∗(p
∗,−1) ∩ T ⊆ Pi∗(q

∗,−1) ∩ T.

Proof. Let’s prove the first part since the other part is symmetric.
Let x ∈ OE(n, k) be a point in Pi∗(p

∗,+1) ∩ T . So for every j ∕= i∗ we have

xi∗ − p∗i∗ ≥ xj − p∗j and xi∗ − p∗i∗ ≥ p∗j − xj ,

or equivalently
xi∗ − xj ≥ p∗i∗ − p∗j and xi∗ + xj ≥ p∗i∗ + p∗j .

It suffices to show that

xi∗ − xj ≥ q∗i∗ − q∗j and xi∗ + xj ≥ q∗j + q∗i∗

To see the first part, we have

xi∗ − xj ≥ p∗i∗ − p∗j ≥ (q∗i∗ − 1/2)− (q∗j + 5/4) = (q∗i∗ − q∗j)− 7/4.

But given that x ∈ OE(n, k) and q∗ ∈ OE(n, k), both xi∗ − xj and q∗i∗ − q∗j are even numbers and
thus, the inequality above implies xi∗ − xj ≥ q∗i∗ − q∗j . The other part can be proved similarly.

This finishes the proof of Theorem 4.

Remark on Theorem 4. We note that the (possibly off-grid point) p∗ in the proof already satisfies
the desired property and our algorithm can proceed by querying p∗. However, p∗ as defined here is
the limit of fixed points found in an infinite sequence of maps. In contrast, Lemma 8 shows that,
after rounding, a grid balanced point always exists, which can be found by brute-force enumeration.

6 Impossibility of Strong Approximation under Non-expansion

We consider functions f on the plane with bounded domain and range, e.g. the unit square, that
are non-expansive under the ℓ∞ metric. We will show the following impossibility result.

Theorem 2. There is no deterministic or randomized algorithm which, when given oracle access
to any non-expansive map f : [0, 1]2 󰀁→ [0, 1]2 under the ℓ∞-norm, computes in an expected bounded
number of queries a point that is within distance 1/4 of an exact fixed point of f .

13

In the proof it will be more convenient to use as the domain a square that is tilted by 45◦. We
call a rectangle whose sides are at 45◦ and −45◦, a diamond. Let D be the diamond whose vertices
are the midpoints of the sides of the unit square. Any function g over D can be extended to a
function g′ over the unit square, by defining for every point p ∈ [0, 1]2 the value of the function as
g′(p) = g(π(p)), where π(p) is the projection of p onto D. Clearly, for any two points p, q ∈ [0, 1]2,
󰀂π(p)−π(q)󰀂∞ ≤ 󰀂p− q󰀂∞, hence if the function g over D is non-expansive, then so is the function
g′ over [0, 1]2. Furthermore, the fixed points of g′ are exactly the fixed points of g.

We will prove the statement of the theorem for the domain D. The claim then follows for the
unit square. To see this, restrict attention to the non-expansive functions g′ on the unit square that
are extensions of functions g on the diamond D. If we have an algorithm for the unit square, then
we can use the algorithm also for the diamond D: when the algorithm queries a point p ∈ [0, 1]2

then we query instead its projection π(q) ∈ D. If the algorithm outputs at the end a point that is
close to a fixed point of g′, then its projection on D is a valid output for g.

For any δ ∈ (0, 1/2) and any point s on the SW or NE side of the diamond D that is at least
at Euclidean distance δ from the vertices of D, we will define a non-expansive function fδ,s with
unique fixed point s. The function is defined as follows. Draw the line l0 through s at 45◦ and let t
be the point of intersection with the opposite side of D. Let l1 and l2 be the two lines parallel to l0
that are left and right of l0 respectively at Euclidean distance δ, and let D0 be the strip of D that is
strictly between the lines l1 and l2. Let D

′ = D \D0. Every point p ∈ D′ is mapped by fδ,s to the
point that is at Euclidean distance δ towards the line l0; i.e., if p = (p1, p2) is left and above l0 then
fδ,s(p) = (p1+δ/

√
2, p2−δ/

√
2), and if p is right and below l0 then fδ,s(p) = (p1−δ/

√
2, p2+δ/

√
2).

For a point p in D0 we define fδ,s(p) as follows. Let p′ be the projection of p onto the line l0.
Then fδ,s(p) is the point on l0 that is at Euclidean distance (δ− |pp′|) · |p′s| from p′ in the direction
of s, where |pp′|, |p′s| are the (Euclidean) lengths of the segments pp′ and p′s. Thus for example, if
p = s then p′ = s and fδ,s(s) = s. If p = t then p′ = t and (δ− |pp′|) · |p′s| = δ/

√
2, so t moves along

l0 distance δ/
√
2 towards s. Note that if p is on line l1 or l2 (i.e. on the boundary sides between

D0 and D′), then (δ − |pp′|) · |p′s| = 0, since |pp′| = δ, thus p is mapped to p′ whether we treat p
as a member of D′ or as a member of D0. It follows that fδ,s(p) is continuous over D.

As we noted above, s is a fixed point of fδ,s(p). We claim that it is the only fixed point. Clearly,
any fixed point p must be in D0 and must lie on the line l0, thus p = p′. It must satisfy also
(δ − |pp′|) · |p′s| = 0, hence |p′s| = 0, and thus, p = s.

We will show now that fδ,s is a non-expansive function, i.e. that 󰀂fδ,s(p)−fδ,s(q)󰀂∞ ≤ 󰀂p−q󰀂∞
for all p, q ∈ D. We show first that it suffices to check pairs p, q that are diagonal to each other,
i.e. such that the line connecting them is at 45◦ or −45◦. Note that such points have the property
that the L∞ distance is tight in both coordinates, 󰀂p− q󰀂∞ = |p1 − q1| = |p2 − q2|.

Lemma 9. If a function f on the diamond D satisfies 󰀂f(p)− f(q)󰀂∞ ≤ 󰀂p− q󰀂∞ for all diagonal
pairs of points p, q, then f is non-expansive.

Proof. Let x, y be any two points that are not diagonal. Consider the diamond with opposite
vertices x, y, i.e. draw the lines through x, y at 45◦ and −45◦ and considered the rectangle enclosed
by them. Let z, w be the other two vertices of this diamond. Suppose without loss of generality
that 󰀂x − y󰀂∞ = x1 − y1 > |x2 − y2|. Then x1 > z1 > y1, and similarly for w. We have
󰀂x − y󰀂∞ = x1 − y1 = (x1 − z1) + (z1 − y1) = 󰀂x − z󰀂∞ + 󰀂z − y󰀂∞. Since f is non-expansive
on diagonal pairs, 󰀂f(x) − f(z)󰀂∞ ≤ 󰀂x − z󰀂∞ and 󰀂f(z) − f(y)󰀂∞ ≤ 󰀂z − y󰀂∞. Therefore,
󰀂f(x)− f(y)󰀂∞ ≤ 󰀂f(x)− f(z)󰀂∞ + 󰀂f(z)− f(y)󰀂∞ ≤ 󰀂x− z󰀂∞ + 󰀂z − y󰀂∞ = 󰀂x− y󰀂∞.

Remark. The lemma can be shown to hold more generally in any dimension. That is, if f : [0, 1]k 󰀁→

14

[0, 1]k has the property that 󰀂f(p) − f(q)󰀂∞ ≤ 󰀂p − q󰀂∞ for all diagonal pairs of points p, q (i.e.
such that |pi − qi| = 󰀂p− q󰀂∞ for all i ∈ [k]), then f is non-expansive.

Lemma 10. The function fδ,s is non-expansive.

Proof. The function fδ,s was defined according to which region of the domain D a point lies in.
There are three regions: the part of D′ left of l1, the middle region D0, and the part of D′ right of
l2. It suffices to check the non-expansiveness for diagonal pairs of points p, q that lie in the same
region. If p, q are both in the region left of l1, or if they are both right of l2, then from the definition
we have 󰀂f(p)− f(q)󰀂∞ = 󰀂p− q󰀂∞.

So suppose p, q are both in D0. Assume first that the line pq has angle 45◦, i.e. pq is parallel to
the line l0. Then 󰀂p−q󰀂∞ = |pq|/

√
2. Let p′, q′ be the projections of p, q on l0, and let p” = fδ,s(p),

q” = fδ,s(q). Then |p′p”| = (δ − |pp′|) · |p′s|, |q′q”| = (δ − |qq′|) · |q′s|. Since pq is parallel to
l0, (δ − |pp′|) = (δ − |qq′|) and |pq| = |p′q′|. Assume without loss of generality that |p′s| > |q′s|.
Then |p”q”| = |p′q′| − (δ − |pp′|)(|p′s| − |q′s|) ≤ |p′q′| = |pq|. Since 󰀂p − q󰀂∞ = |pq|/

√
2 and

󰀂f(p)− f(q)󰀂∞ = |p”q”|/
√
2, it follows that 󰀂f(p)− f(q)󰀂∞ ≤ 󰀂p− q󰀂∞.

Assume now that the line pq has angle −45◦, i.e., pq is perpendicular to l0. Again 󰀂p− q󰀂∞ =
|pq|/

√
2. Now p and q have the same projection p′ = q′ on l0. Let p” = fδ,s(p), q” = fδ,s(q).

We have |p′p”| = (δ − |pp′|) · |p′s|, and |q′q”| = |p′q”| = (δ − |qp′|) · |p′s|. Therefore, |p”q”| =
|(|pp′| − |qp′|)| · |p′s|. If p, q are on the same side of l0 then |(|pp′| − |qp′|)| = |pq|. If p, q are on
opposite sides of l0 then |(|pp′| − |qp′|)| < |pq|. In either case, we have |p”q”| ≤ |pq| · |p′s| < |pq|,
since |p′s| ≤ |st| = 1/

√
2. Again, since 󰀂p − q󰀂∞ = |pq|/

√
2 and 󰀂f(p) − f(q)󰀂∞ = |p”q”|/

√
2, it

follows that 󰀂f(p)− f(q)󰀂∞ ≤ 󰀂p− q󰀂∞.

We are ready now to prove the theorem. Intuitively, if the given function is fδ,s for some s on
the NE or SW side of D and some small δ, then for an algorithm (deterministic or randomized) to
find a point that is within L∞ distance 1/4 of s, it must ask a query within the central region D0

around s, because otherwise it cannot know whether the fixed point s is on the NE or the SW side
of D0.
Proof of Theorem 2. Recall that binary search is an optimal algorithm for searching for an unknown
item in a sorted array A, both among deterministic and randomized algorithms. If the array has
size N , then any randomized comparison-based algorithm requires expected time at least logN − 1
to look up an item in the array whose location is not known.

Suppose there is a (randomized) algorithm B that computes a point that is within 1/4 of a
fixed point of a non-expansive function f over the domain D within a finite expected number n of
queries (the expectation is over the random choices of the algorithm). We will show how to solve
faster the array search problem. Partition the diamond D into N = 22n strips by drawing N − 1
parallel lines at 45◦, spaced at distance 1/(N

√
2) from each other, between the NW and SE side

of D. Let S1, . . . , SN be the N strips. Fix a δ < 1/(N2
√
2). For each x ∈ [N], let sx be the point

on the SW side of Sx at Euclidean distance δ from the S vertex of Sx, and tx the point on the NE
side of Sx at Euclidean distance δ from the N vertex. Note that 󰀂sx − tx󰀂∞ > 1/2. Let F be the
family of non-expansive functions {fδ,sx , fδ,tx |x ∈ [N]}.

Consider the execution of algorithm B for a function f ∈ F . Note that the central region D0

for the functions fδ,sx and fδ,tx is contained in the strip Sx. If B queries a point p in another
strip Sj , the answer f(p) only conveys the information whether j < x or j > x. If some execution
of B returns a point q without ever having queried any point in Sx, then all the answers in the
execution are consistent with both fδ,sx and fδ,tx . Since 󰀂sx − tx󰀂∞ > 1/2, either 󰀂q − sx󰀂∞ > 1/4

15

or 󰀂q − tx󰀂∞ > 1/4. Therefore, a correct algorithm B cannot terminate before querying a point in
the strip Sx that contains the fixed point of the function.

We can map now the algorithm B to an algorithm B′ for the problem of searching for an item
in a sorted array A of size N . A choice of an index x in the array A corresponds to a choice of
the strip Sx that contains the fixed point of the function f ∈ F , i.e. choosing one of fδ,sx , fδ,tx .
Since B terminates in expected number n of queries, it asks within n steps a query within the
strip Sx of the fixed point, hence the expected time of the algorithm B′ is at most n = logN/2, a
contradiction.

7 Promise Problem versus Total Search Version

The problem Contraction∞(ε, γ, k) is a promise problem, where we want to compute an ε-fixed
point of a given function f with promise that f is a (1−γ)-contraction. For a promise problem, one
can define its total search version by asking to find a desired solution as in the promise problem,
or a short violation certificate indicating that the given function doesn’t satisfy the promise. The
total search version of Contraction∞(ε, γ, k), denoted T-Contraction∞(ε, γ, k) is naturally
defined as the following search problem.

Definition 4 (Total search version T-Contraction∞(ε, γ, k)). Given a function f : [0, 1]k 󰀁→
[0, 1]k, find one of the following:

• a point x ∈ [0, 1]k such that 󰀂f(x)− x󰀂∞ ≤ ε;

• two points x, y ∈ [0, 1]k such that 󰀂f(x)− f(y)󰀂∞ > (1− γ)󰀂x− y󰀂∞.

In the black-box setting, the function f is given by an oracle access.

Our theorem in this section shows T-Contraction∞(ε, γ, k) admits the same query bounds
as Contraction∞(ε, γ, k).

Theorem 3. There is an O(k2 log(1/ε))-query algorithm for T-Contraction∞(ε, γ, k).

Theorem 3 follows from Lemma 11 below.

Lemma 11. Let
󰀋
q1, · · · , qm

󰀌
be a set of points in [0, 1]k and

󰀋
a1, · · · , am

󰀌
be the corresponding

answers from the black-box oracle. There is a (1 − γ)-contraction f that is consistent with all the
answers if and only if there is no pair t1, t2 such that 󰀂at1 − at2󰀂∞ > (1− γ)󰀂qt1 − qt2󰀂∞.

Proof. If there is some pair t1, t2 such that 󰀂at1 −at2󰀂∞ > (1−γ)󰀂qt1 −qt2󰀂∞, then obviously there
is no (1− γ) contraction that is consistent with the answers.

Now suppose that no such pair exists. We define a function f : [0, 1]k 󰀁→ [0, 1]k as follows: For
every point x ∈ [0, 1]k and coordinate i ∈ [k], we let f(x)i = mint∈[m]

󰀋
(1− γ)󰀂x− qt󰀂∞ + ati

󰀌
; if

the minimal value of this set is larger than 1, then we set f(x)i = 1.
We show first that f is consistent with all the query answers, i.e. f(qj) = aj for all j ∈ [m].

Since the query points satisfy the contraction property, we have 󰀂aj − at󰀂∞ ≤ (1 − γ)󰀂qj − qt󰀂∞
for all t ∕= j. Therefore, for every coordinate i ∈ [k], aji ≤ (1 − γ)󰀂qj − qt󰀂∞ + ati. Hence,

f(qj)i = mint∈[m]

󰀋
(1− γ)󰀂qj − qt󰀂∞ + ati

󰀌
= aji . Thus, f(q

j) = aj .
We show now that the function f constructed above is a (1− γ)-contraction. Consider any two

points x, y ∈ [0, 1]k and a coordinate i ∈ [k]. Suppose without loss of generality that f(y)i ≤ f(x)i.

16

If f(y)i = 1, then also f(x)i = 1 and |f(x)i − f(y)i| = 0 ≤ (1 − γ)󰀂x − y󰀂∞. So suppose f(y)i =
(1−γ)󰀂y−qt󰀂∞+ati for some t ∈ [m]. By the triangle inequality, 󰀂x−qt󰀂∞ ≤ 󰀂x−y󰀂∞+󰀂y−qt󰀂∞.
Hence f(x)i ≤ (1−γ)󰀂x−qt󰀂∞+ati ≤ (1−γ)(󰀂x−y󰀂∞+󰀂y−qt󰀂∞)+ati = (1−γ)󰀂x−y󰀂∞+f(y)i.
Therefore, 0 ≤ f(x)i − f(y)i ≤ (1− γ)󰀂x− y󰀂∞. Thus, 󰀂f(x)− f(y)󰀂∞ ≤ (1− γ)󰀂x− y󰀂∞.

It follows from Lemma 11 that we can use any algorithm that can solve the promise problem
Contraction∞(ε, γ, k) to solve the total search version T-Contraction∞(ε, γ, k) within the
same number of queries: If all pairs among the queries generated satisfy the contraction property,
then there is a contraction that is consistent with all the queries, hence the algorithm will find an
approximate fixed point within the same number of queries as in the promise version. If on the
other hand there is a pair of queries that violate the contraction property, then the algorithm can
return the pair and terminate. Theorem 3 follows.

8 Conclusions

We gave an algorithm for finding an ε-fixed point of a contraction (or non-expansive) map f :
[0, 1]k 󰀁→ [0, 1]k under the ℓ∞ norm in polynomial query complexity. Contraction maps under the
ℓ∞ norm are especially important because several longstanding open problems from various fields
can be cast in this framework. The main open question is whether our algorithm can be implemented
to run also with polynomial time complexity, or alternatively if there is another general-purpose
(black-box) algorithm for contraction maps that finds an approximate fixed point in polynomial
time. Resolving positively this question would have tremendous implications.

Another natural open question is whether similar polynomial query bounds can be obtained for
contraction maps under the ℓ1-norm or norms ℓp with p > 2. Although ℓ∞ seems to arise more in
applications, understanding better contractions under other norms would also be useful.

Acknowledgements

We thank STOC anonymous reviewers for their feedbacks on improving the presentation.

References

[ABB20] James Aisenberg, Maria Luisa Bonet, and Sam Buss. 2-d Tucker is PPA-complete.
Journal of Computer and System Sciences, 108:92–103, 2020. 1

[Ban22] Stefan Banach. Sur les opérations dans les ensembles abstraits et leur application aux
équations intégrales. Fundamenta mathematicae, 3(1):133–181, 1922. 1

[Bel57] Richard Bellman. A Markovian decision process. Journal of mathematics and
mechanics, pages 679–684, 1957. 1

[CD08] Xi Chen and Xiaotie Deng. Matching algorithmic bounds for finding a brouwer fixed
point. Journal of the ACM (JACM), 55(3):1–26, 2008. 1

[CD09] Xi Chen and Xiaotie Deng. On the complexity of 2D discrete fixed point problem.
Theoretical Computer Science, 410(44):4448–4456, 2009. 1

17

[CJK+22] Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan.
Deciding parity games in quasi-polynomial time. SIAM J. Comput., 51(2):17–152,
2022. 1

[CL55] E. A. Coddington and N. Levinson. Theory of Ordinary Differential Equations.
McGraw Hill, 1955. 1

[Con92] Anne Condon. The complexity of stochastic games. Information and Computation,
96(2):203–224, 1992. 1

[DEF+21] Xiaotie Deng, Jack R Edmonds, Zhe Feng, Zhengyang Liu, Qi Qi, and Zeying Xu.
Understanding PPA-completeness. Journal of Computer and System Sciences,
115:146–168, 2021. 1

[Den67] Eic V. Denardo. Contraction mappings underlying dynamic programming. SIAM
Review, 9(2):165–177, 1967. 1

[DP11] Constantinos Daskalakis and Christos H. Papadimitriou. Continuous local search. In
Dana Randall, editor, Proceedings of the Twenty-Second Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA,
January 23-25, 2011, pages 790–804. SIAM, 2011. 1, 1

[DTZ18] Constantinos Daskalakis, Christos Tzamos, and Manolis Zampetakis. A converse to
Banach’s fixed point theorem and its CLS-completeness. In Ilias Diakonikolas, David
Kempe, and Monika Henzinger, editors, Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA,
June 25-29, 2018, pages 44–50. ACM, 2018. 1, 1

[EJ91] E. A. Emerson and C. Jutla. Tree automata, µ-calculus and determinacy. In
Proceedings IEEE Symp. on Foundations of Computer Science, pages 368–377, 1991. 1

[EY10] Kousha Etessami and Mihalis Yannakakis. On the complexity of Nash equilibria and
other fixed points. SIAM J. Comput., 39(6):2531–2597, 2010. 1

[FGHS23] John Fearnley, Paul Goldberg, Alexandros Hollender, and Rahul Savani. The
complexity of gradient descent: CLS = PPAD ∩ PLS. J. ACM, 70(1):7:1–7:74, 2023.
1, 1

[FGMS20] John Fearnley, Spencer Gordon, Ruta Mehta, and Rahul Savani. Unique end of
potential line. J. Comput. Syst. Sci., 114:1–35, 2020. 1, 1

[Gün89] Matthias Günther. Zum einbettungssatz von J. Nash. Mathematische Nachrichten,
144(1):165–187, 1989. 1

[HKS99] Z. Huang, Leonid G. Khachiyan, and Christopher (Krzysztof) Sikorski. Approximating
fixed points of weakly contracting mappings. J. Complex., 15(2):200–213, 1999. 1

[Hol21] Alexandros Hollender. Structural results for total search complexity classes with
applications to game theory and optimisation. PhD thesis, University of Oxford, UK,
2021. 1

[How60] Ronald A Howard. Dynamic programming and Markov processes. John Wiley, 1960. 1

18

[HPV89] Michael D. Hirsch, Christos H. Papadimitriou, and Stephen A. Vavasis. Exponential
lower bounds for finding Brouwer fixpoints. J. Complex., 5(4):379–416, 1989. 1

[JPY88] David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. How easy is
local search? J. Comput. Syst. Sci., 37(1):79–100, 1988. 1

[Lit94] Michael L Littman. Markov games as a framework for multi-agent reinforcement
learning. In Machine learning proceedings 1994, pages 157–163. Elsevier, 1994. 1

[Nas56] John Nash. The imbedding problem for Riemannian manifolds. Annals of
mathematics, 63(1):20–63, 1956. 1

[Pap94] Christos H Papadimitriou. On the complexity of the parity argument and other
inefficient proofs of existence. Journal of Computer and system Sciences,
48(3):498–532, 1994. 1

[Sha53] L. Shapley. Stochastic games. Proc. Nat. Acad. Sci., 39(10):1095–1100, 1953. 1

[SS02] Spencer D. Shellman and Kris Sikorski. A two-dimensional bisection envelope
algorithm for fixed points. J. Complex., 18(2):641–659, 2002. 1

[SS03] Spencer D. Shellman and Christopher (Krzysztof) Sikorski. A recursive algorithm for
the infinity-norm fixed point problem. J. Complex., 19(6):799–834, 2003. 1

[STW93] Christopher (Krzysztof) Sikorski, Chey-Woei Tsay, and Henryk Wozniakowski. An
ellipsoid algorithm for the computation of fixed points. J. Complex., 9(1):181–200,
1993. 1

[ZP96] Uri Zwick and Mike Paterson. The complexity of mean payoff games on graphs.
Theor. Comput. Sci., 158(1&2):343–359, 1996. 1

19 ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

