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Abstract

A Matching Vector (MV) family modulo a positive integer m ≥ 2 is a pair of ordered
lists U = (u1, · · · ,uK) and V = (v1, · · · ,vK) where ui,vj ∈ Zn

m with the following property:
for any i ∈ [K] , the inner product ⟨ui,vi⟩ = 0 (mod m) , and for any i ̸= j , ⟨ui,vj⟩ ≠ 0
(mod m) . An MV family is called r -restricted if inner products ⟨ui, vj⟩ , for all i, j , take at
most r different values. The r -restricted MV families are extremely important since the only
known construction of constant-query subexponential locally decodable codes (LDCs) are based
on them. Such LDCs constructed via matching vector families are called matching vector codes.
Let MV(m,n) (respectively MV(m,n, r)) denote the largest K such that there exists an MV
family (respectively r -restricted MV family) of size K in Zn

m . Such a MV family can be
transformed in a black-box manner to a good r -query locally decodable code taking messages
of length K to codewords of length N = mn .

For small prime m , an almost tight bound MV(m,n) ≤ O(mn/2) was first shown by Dvir,
Gopalan, Yekhanin (FOCS’10, SICOMP’11), while for general m , the same paper established
an upper bound of O(mn−1+om(1)) , with om(1) denoting a function that goes to zero when
m grows. For any arbitrary constant r ≥ 3 and composite m , the best upper bound till date
on MV(m,n, r) is O(mn/2) , is due to Bhowmick, Dvir and Lovett (STOC’13, SICOMP’14).In a
breakthrough work, Alrabiah, Guruswami, Kothari and Manohar (STOC’23) implicitly improve
this bound for 3 -restricted families to MV(m,n, 3) ≤ O(mn/3) .

In this work, we present an upper bound for r = 3 where MV(m,n, 3) ≤ mn/6+O(logn) ,
and as a result, any 3 -query matching vector code must have codeword length of N ≥ K6−o(1) .

1 Introduction

1.1 Locally Decodable Codes

A code C : ΣK → ΣN is said to be (r, δ, ε)-locally decodable if for every i ∈ [K] , the i-th coordinate
of the message xi ∈ Σ can be recovered with probability at least 1− ε by a randomized decoding
procedure that makes only r queries to the codeword, i.e., reads the codeword at r positions even
if the codeword is corrupted on up to δN locations.
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Locally decodable codes were formally introduced in [KT00] but had already been studied in-
formally in the context of the PCP theorem [ALM+98, AS98]. Locally decodable codes have found
applications in many areas of computer science such as worst-case to average-case reductions, pri-
vate information retrieval, secure multi-party computation, derandomization, matrix rigidity, data
structures, and fault-tolerant computation. See [Yek12] for a detailed survey.

A central research question is to understand the largest possible message length K (as a function
of N ) that can be achieved by a r -query locally decodable code. For the simplest non-trivial setting
of r = 2 , we have a nearly complete understanding – the Hadamard code achieves K = log2N ,
and it was shown in [Kd04, GKST06] that this is the best possible up to a constant factor, i.e.,
K = O(log2N) .

Much less is understood about the dependence between K and N for the number of queries
r ≥ 3 . In particular, the only known constructions for r -query locally decodable codes for a constant
r ≥ 3 are based on families of matching vector codes [Yek08, Efr09, DGY11]. These constructions
achieve K = (logN)Ω(log logN) . On the other hand, the known upper bounds on K are very far from
what is achieved by these constructions. In a series of works [KT00, Kd04, Woo07, Woo12, BCG20],
it has been shown that K = N1−2/(r+1) polylogN , when r is odd, and K = N1−2/r polylogN ,
when r is even. For the special case where r = 3 , it was shown that K = O(N1/3 log2N) in a
celebrated recent result [AGKM23].

1.2 Matching Vector Families and Application to Locally Decodable Codes

A matching vector (MV) family is a combinatorial object that has been used in different contexts
such as Ramsey graphs and weak representation of OR polynomials[FW81, Gro95, Alo98, Gop06],
but the most prominent application of matching vector families is in the construction of constant-
query locally decodable codes [DGY11, Yek12]. A matching vector family is defined by two ordered
lists U = (u1, . . . ,uK) and V = (v1, . . . ,vK) where for all i ∈ [K] , ui,vi are in Zn

m for some
positive integers m,n > 1 . An S -matching vector family can be defined as follows.

Definition 1.1 (Matching Vector Family). Let S ⊆ Zm \ {0} . An S -matching vector family is a set
of vectors U = {u1, . . . , uK} , V = {v1, . . . , vK} , U ,V ⊆ Zn

m such that:

• ∀i ∈ [K], ⟨ui, vi⟩ = 0.

• ∀i ̸= j , i, j ∈ [K], ⟨ui, vj⟩ ∈ S .

An S -matching vector family is often called (|S|+1)-restricted matching vector family, and such
a family gives a locally decodable code for messages of block length K , codeword length N = mn ,
and number of queries r = |S| + 1 . See Theorem 2.10 ([Yek12]) for the construction of a locally
decodable code from a matching vector family.

Finally, we denote MV(m,n) (respectively MV(m,n, r)), as the largest K such that there
exists an MV family (respectively r -restricted MV family) of size K in Zn

m .

1.3 Upper Bounds for Matching Vector Families

Since the only known approach that has led to constructions of constant-query locally decodable
codes is via constructing a large matching vector family, it is natural to ask what is the largest K
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as a function of m,n for which there is a r -restricted matching vector family of size K . This in
particular will give an upper bound for the rate of a r -query locally decodable code via matching
vector codes, i.e., any r -query locally decodable code achieving a better rate must be via some novel
approach that does not require a matching vector family.

This problem was first studied in [DGY11], where the authors showed that when m is a large
prime, MV(m,n) ≤ O(mn/2) . On the other hand, the same paper established a general upper
bound of O(mn−1+om(1)) , with om(1) denoting a function that goes to zero when a composite m
grows. In [CLWZ13], the authors improved this bound to poly(m) ·m.625n , for a very special case
when m = pq , for distinct primes p and q such that p ≈ q , and n ≪ m . On the other hand, when
m ≪ n is a prime, it can be shown via linear algebraic methods that MV(m,n) ≤ O(nm−1) [BF20].

Bhowmick, Dvir and Lovett [BDL14] showed how to extend the results of [DGY11] to the case
of m being a composite integer. They showed that MV(m,n, r) ≤ rO(r log r)mn/2 , i.e., for constant
query codes, they showed that K = O(

√
N) .

Additionally, in the same paper, Bhowmick, Dvir and Lovett also showed that under the (recently
proved) polynomial Freiman Ruzsa (PFR) theorem [GGMT24], for m constant, MV(m,n) ≤
mO(n/ logn) .

1.4 Our Result

The main contribution of the paper is to give a better upper bound for 3-restricted matching vector
families.

Theorem 1.2. Let n,m ≥ 2 be positive integers with n > 10m3 . Suppose m has atleast two distinct
prime factors, then

MV(m,n, 3) ≤ m
n+2 log(n+1)

2q
+2m2

,

where q is the second-smallest prime dividing m .

We already know a polynomial bound for prime powers due to [Gop24] which we state below
and prove for completeness in Section 2.4.

Theorem 1.3. Suppose n,m ≥ 2 be positive integers where m is a constant prime power. Then
MV(m,n, 3) ≤ (2emn)m−1 .

This allows us to conclude an upper bound for arbitrary m :

Remark 1.4. When m has at least one factor which is not 2, that immediately gives a mn/6+O(logn)

upper bound, while if the constant m is a power of 2 , the bound is just poly(n) , as mentioned above.

Finally, we can also derive a lower bound for the 3-query LDCs derived from matching vector
families:

Corollary 1.5. Suppose C : ΣK → ΣN is a 3-query locally decodable code constructed from a 3-
restricted matching vector family in a black-box manner (as in Theorem 2.10), then N ≥ K6−oK(1)

where oK(1) vanishes as K increases.
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1.5 Concurrent Work

Concurrent to our work, the Polynomial Freiman Ruzsa conjecture was proven by Gowers, Green,
Manners and Tao [GGMT24] for all abelian groups with bounded torsion! As a corollary (via
Theorem 6.4 of [BDL14]), one could conclude that

MV(m,n) ≤ 21200c(m)m6 logmn/ logn ,

where c(m) is some explicit constant depending only on m . Infact, if we plug in the bound of
[GGMT24] to Lemma 6.3 from [BDL14], we can conclude that c(m) ≥ m3 . Note that this bound is

non-trivial (i.e., less than mn ) only when n ≥ 2
1200·63+6 log 6

log 6 > 22
56 (plugging in m = 6) and beats

our bound only when n ≥ 22
58 .

While this result supersedes ours in many parameter regimes, the techniques and approaches
are very different. And our approach might have the potential of breaking the 2n/ logn barrier. (See
discussions below.)

1.6 Our Techniques

In the discussion below, we want to prove upper bounds for a matching vector family U ,V of size
K over Zn

m for some positive integers m and n .

Techniques from [BDL14]. We begin by describing Bhowmick, Dvir, and Lovett’s ([BDL14]) ap-
proach towards getting an upper bound of mn/2 . They observe that if we consider the random vari-
ables U ,V as sampled independently and randomly from U = {u1, . . . ,uK} and V = {v1, . . . ,vK} ,
respectively, then we have that Pr[⟨U ,V ⟩ = 0] = 1

K , and hence ⟨U ,V ⟩ mod m is far from uniform.

If m is a prime, then standard properties of the inner product two-source extractor imply that
H∞(U) + H∞(V ) = 2 logK is not much bigger than n logm , else the inner product extractor’s
output would be very close to uniform. This straightaway yields the desired bound of K ⪅ mn/2 .

For composite m , this approach does not work directly, since Zm is not a field. In particular,
say for m = 6 , it is possible to have two random variables distributed uniformly over {0, 2, 4}n
such that their inner product is far from uniform modulo 6 , but the sum of the min-entropies is
2n log2 3 ≫ n log 6 . The authors overcome this by showing that this is essentially the only bad
case, i.e., it can be attributed to some ‘bad’ factor s | m (in the example above, s = 2). Hence,
with some careful inductive argument on the modulus m/s , one can still force out the fundamental
observation: H∞(U) +H∞(V ) = 2 logK , which cannot be too large due to the biased behavior of
⟨U ,V ⟩ , showing the desired upper bound on K .

Going beyond mn/2 . A natural attempt towards improving the upper bound for K would be to
consider the inner product ⟨U †,V †⟩ where U † = U1 + · · · +U ℓ for some integer ℓ with each U i

sampled uniformly and independently from U (and V † similarly defined), and hope for two nice
events:

a) H∞(U †) +H∞(V †) ≈ 2ℓ logK ≫ 2 logK ;

b) ⟨U †,V †⟩ remains far from uniform just like ⟨U ,V ⟩ . And hence H∞(U †) + H∞(V †) ⪅
m log n .
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In other words, we are trying to boost the lower bound on min-entropy by adding ℓ independent
samples of U , and at the same time maintain the upper bound on min-entropy. And if the above
is true, one would obtain a substantial improvement on the upper bound (e.g. K ≤ mn/4 even for
the smallest non-trivial ℓ = 2).

In the rest of this proof overview, we will walk through how we show the two events above are
true for any {α, β}-matching vector family. For simplicity, let m = pq for distinct primes p and
q , with q > p . And one could further assume that α = 0 (mod p), α ̸= 0 (mod q) , and β = 0
(mod q), β ̸= 0 (mod p) ; see Lemma 2.20 for more details.

Event (a) . In order to show that H∞(U †) ≈ ℓ logK , it is sufficient to show that U † =
∑ℓ

i=1U i

does not generate too many collisions.
Omitting most technical details, we show that if u1 + . . .+uℓ = u′

1 + . . .+u′
ℓ (i.e. a collision),

then it must be the case that ⟨u′
i,v1⟩ = α for all 1 ≤ i ≤ ℓ ≤ q , where v1 is the matching vector

for u1 . This is due to the heavy constraint that – (1) any inner product can only take values
from {0, α, β} , and (2) inner product with v1 gives an expression of the form x1α + x2β , on the
LHS, while y1α+ y2β , on the RHS, for nonnegative integers xi, yi such that x1 + x2 ≤ ℓ− 1 . and
y1 + y2 ≤ ℓ . (Remember ⟨u1,v1⟩ = 0 .)

This anomaly (that there is plausibly 1 less term in the LHS) is sufficient to conclude that if
there are too many collisions, one can easily extract a large {α}-matching vector family, which
would contradict a known linear upper bound, since a simple pigeon-hole principle argument shows
that MV(pq, n, 2) ≤ n+ 1 ; see Lemma 2.13.

In the actual proof, for technical reasons, we work with a slightly different distribution U⋆ ,
which adds up ℓ distinct random vectors from U . In other words, one may view U † as sampling
with replacement and U⋆ as sampling without replacement from U . These two distributions are so
close to each other that we are able to substitute one with the other without incurring much loss in
the final argument. Moreover, this distinction also helps us to argue that the sum of the coefficients
in LHS is exactly ℓ− 1 , while it is exactly ℓ in RHS. For the detailed proof on lower bounding the
min-entropy, see Section 3.2.

Event (b) . To show that ⟨U †,V †⟩ is far from uniform, we directly examine its bias
∣∣∣E[ω⟨U†,V †⟩]

∣∣∣
in terms of Fourier coefficients (where ω is a primitive m-th root of unity). Via standard Fourier-
analytic techniques, and using the ‘almost’ multiplicative property of the bias (Lemma 2.6), we can
almost show that ∣∣∣E[ω⟨U†,V †⟩]

∣∣∣ ⪆
∣∣∣E[ω⟨U ,V ⟩]

∣∣∣ℓ2 .

That is, adding ℓ independent samples of U (and V ) will not smooth out the inner product
for not too large ℓ (see Lemmas 2.6 and 2.8).

On the other hand, since ⟨U ,V ⟩ takes only 3 possible values with 0 showing up with negligible
probability 1

K , we can show that
∣∣E[ω⟨U ,V ⟩]

∣∣ has to be large! And this is essentially all we need.
For the detailed proof on upper bounding the min-entropy, see Section 3.1.

Combining all of the above and choosing ℓ = q , we get 2q logK ⪅ H∞(U⋆) + H∞(V ⋆) ⪅
n logm which gives us the desired upper bound of K ⪅ mn/2q . For a general m one can always
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reduce it to working with m = psqt , for primes p and q ; see Lemmas 2.19 and 2.20. And for
m = psqt , the argument is similar to the above.

Lastly, it is worth noting that via a more direct analysis on the min-entropy of carefully chosen
random variables, we are able to avoid the inductive argument in [BDL14], which was tailored for
composite m .

1.7 Conclusions and Open Questions

Our approach can be broadly summarized as considering U † := U1 + · · · + U ℓ , and similarly
V † := V 1 + · · ·+ V ℓ , and then proving that

1. ω⟨U†,V †⟩ is far from uniform, where ω is the m-th root of unity, and

2. H∞(U †) ≈ ℓ ·H∞(U) for ℓ = q .

The first item implies that H∞(U †)+H∞(V †) is not much larger than m log n , and this combined
with the second item implies that H∞(U) = H∞(V ) is small, giving an upper bound on K .

We prove these two items for ℓ = q , and for r -restricted families for r = 3 . Notice that the
approach is much more general, and it is just a shortcoming of our proof techniques that doesn’t allow
us to go beyond ℓ > q , or r > 3 . In particular, for r = 3 , the statement (1) above holds for ℓ ≫ q ,
and we leave it as an open question whether one can prove that for ℓ ≫ q , H∞(U †) ≫ qH∞(U) .
This will immediately imply a better upper bound on K for 3-query matching vector codes.

Similarly, we leave it as an open question whether the same approach can be extended to a
larger number of queries.

2 Preliminaries

2.1 Random Variable and Entropy

Definition 2.1 (Min-Entropy). Let X be a random variable over a set X , the Min-Entropy is defined
as:

H∞(X) = min
x∈X

− log(Pr[X = x]) .

Definition 2.2 (Collision Entropy). Let X and Y be independent and identically distributed random
variables, the Collision Entropy is defined as:

H2(X) = − log Pr[X = Y ] .

Alternatively,
H2(X) = − log

∑
x

(Pr[X = x])2.

Fact 2.3 (Relation Between Collision and Min-Entropy). For any random variable X , it holds that

H2(X) ≥ H∞(X) .
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Lemma 2.4. Let X and Y be independent random variables of the same domain X closed under
addition. It holds that

H∞(X) ≤ H∞(X + Y ) .

Proof. For any z ∈ X , we have:

Pr[X + Y = z] =
∑
y∈X

Pr[X = z − y|Y = y] Pr[Y = y]

=
∑
y∈X

Pr[X = z − y] Pr[Y = y]

≤
∑
y∈X

(max
x

Pr[X = x]) Pr[Y = y]

≤ max
x

Pr[X = x] .

Therefore,

H∞(X) = log
1

maxx Pr[X = x]
≤ log

1

maxz Pr[X + Y = z]
= H∞(X + Y ) ,

as desired.

Let ω be a primitive root of unity of order m . Let X and Y be two probability distributions
over Zn

m . The bias of the output distribution wrt ω , denoted E[ω⟨X,Y ⟩] , can be defined as follows:

E[ω⟨X,Y ⟩] = Ex∼X,y∼Y [ω
⟨x,y⟩] =

∑
x,y

X(x)Y (y)ω⟨x,y⟩ .

Lemma 2.5 (Lemma 2.14 from [BDL14]). Let ω be a primitive root of unity of order m . Let X
and Y be two probability distributions over Zn

m . If |E[ω⟨X,Y ⟩]| ≥ ϵ, then H2(X) + H2(Y ) ≤
n logm− 2 log(ϵ) .

Lemma 2.6 (Lemma 3.3 from [Rao07]). Let ω be a primitive root of unity of order m . Let X and Y
be two probability distributions over Zn

m . |E[ω⟨X−X,Y ⟩]| ≥ |E[ω⟨X,Y ⟩]|2 . Here X −X is shorthand
for taking the difference of two samples drawn independently according to the distribution X .

Remark 2.7. Lemma 2.6 was stated for distributions over Fn for any finite field F in [Rao07], but
the proof trivially extends to distributions over Zn

m . For completeness, we reproduce the proof from
[Rao07] in the appendix.

Lemma 2.8 ([Rao07]). Let ω be a primitive root of unity of order m. Let X and Y be two probability
distributions over Zn

m . For any integer x, y ≥ 0 , |E[ω⟨2x·X−2x·X,2y ·Y−2y ·Y ⟩]| ≥ |E[ω⟨X,Y ⟩]|2x+y+2 .
Here 2x ·X represents the distribution of adding 2x independent samples of X .

Proof. Notice that (X −X)− (X −X) = 2X − 2X . Hence this follows from applying Lemma 2.6
(x+ 1) + (y + 1) = x+ y + 2 times.
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2.2 Matching Vector Families and Codes

Much of these definitions follow the same notation as Yekhanin’s survey [Yek12].

Definition 2.9 (Locally Decodable Codes). A q -ary code C : ΣK → ΣN with |Σ| = q is (r, δ, ε)-
locally decodable if there exists a randomized decoding algorithm A such that

1. For all x ∈ ΣK , i ∈ [K] and all y ∈ ΣN such that ∆(C(x), y) ≤ δ :

Pr
A
[Ay(i) = x(i)] ≥ 1− ε

2. A makes atmost r queries to y .

The best-known constructions of locally decodable codes are derived from constructions of
matching vector families over Zm for composite m ’s. The following theorem demonstrates the
parameters of locally decodable codes obtained from given parameters of a matching vector family.

Theorem 2.10 ([Yek12]). Let U ,V be a S -matching vector family over Zn
m with |U| = |V| = K .

Suppose m | q − 1 for some prime power q , then there exists a linear code C : FK
q → Fmn

q that is
(|S|+ 1, δ, (|S|+ 1)δ)-locally decodable for every δ .

In the low-query complexity regime, r = O(1) , the best-known matching vector families are
based on Grolmusz’s construction of set systems.

Theorem 2.11 ([Yek12, Lemma 4.8]). Let m =
∏t

i=1 pi be a product of distinct primes. Let w be a
positive integer. Let {ei}ti=1 be integers such that peii ≥ w1/t for all i. Let d = maxi p

ei
i and h ≥ w

be arbitrary. Then there exists an
(
h
w

)
-sized σm-bounded family of matching vectors in Zn

m where
n =

(
h
≤d

)
and σ is an arbitrary real larger than

∑
i∈[t] 1/pi .

Then, using Theorem 2.10, this matching vector family construction can be transformed into a
linear binary LDC with the following parameters:

Theorem 2.12 ([IS10], as stated in [Yek12], Theorem 3.11). For every integer t ≥ 2 and for all
K ≥ 2 , there exists an r = 3·2t−2 -query (binary) linear locally decodable code over F2t encoding K -

long messages to 2t
(logK)1/t(log logK)1−1/t

-long codewords and allowing δ = O(1/r) fraction of errors.

In particular, when r = 3, there exists a code with codeword length N = 22
Õ(

√
logK)

2.3 Upper Bounds for 2-restricted Matching Vector Families

In this section, we prove an upper bound on any {α}-matching vector family over Zn
m . Without

loss of generality, one can assume that m is a prime power ps , because otherwise if m = psqt , then
without loss of generality α ̸= 0 (mod ps) , and therefore the same set of vectors form a matching
vector family over Zn

ps .

Lemma 2.13. For any prime p and positive integer s, MV(ps, n, 2) ≤ ns+ 1 .
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Proof. Suppose α ̸= 0 (mod ps) . Assume towards contradiction that U ,V is a {α}-matching vector
family over Zn

ps with |U| = |V| = K ≥ ns+ 2 .

Define u′
i := uns+2 − ui for ui ∈ U . By definition of the {α}-matching vector family, for

i, j ≤ ns+ 1 we have:

⟨u′
i,vj⟩ =

{
α, i = j

0, i ̸= j
.

We claim that there exist integer coefficients c1, . . . , cns+1 , not all zero, such that −(p − 1) ≤
ci ≤ p− 1 , and

ns+1∑
i=1

ciu
′
i = 0 .

To see this, consider all possible sums
∑ns+1

i=1 diu
′
i ∈ Zn

ps , for di ∈ {0, 1, . . . , p − 1} . There are
pns+1 such sums that can each take one of (ps)n = pns values. By the pigeon-hole principle, there
exist two distinct sums that are equal, i.e.,

ns+1∑
i=1

diu
′
i =

ns+1∑
i=1

d′iu
′
i ,

for some tuples (d1, . . . , dns+1) ̸= (d′1, . . . , d
′
ns+1) . The claim follows by taking ci = di − d′i for

i ∈ {1, . . . , ns+ 1} .

We have that at least one of c1, . . . , cns+1 is non-zero. Without loss of generality, let cns+1 ̸= 0 .
Notice that cns+1 ∈ {−(p − 1), . . . ,−1} ∪ {1, . . . , p − 1} , and hence has a multiplicative inverse
modulo ps . Let c′i = c−1

ns+1ci (mod ps) for i ∈ [ns+ 1] . Thus, we have that

u′
ns+1 = −

ns∑
i=1

c′iu
′
i .

Now take the inner product on both sides with vns+1 . Note that, ⟨u′
ns+1,vns+1⟩ = α , while〈

ns∑
i=1

c′iu
′
i,vns+1

〉
=

ns∑
i=1

c′i⟨u′
i,vns+1⟩ = 0 .

Therefore, we obtain that α = 0 which is a contradiction.

Remark 2.14. By the above lemma, we get MV(m,n, 2) ≤ n logm + 1 , since trivially, s ≤
logm/ log p ≤ logm .

2.4 Upper Bounds for Prime Powers

In this section, we provide a polynomial upper bound for matching vector families over Zm where
m is a prime power. The sketch was personally communicated to us by Sivakanth Gopi. To prove
this, we need the following lemma from [Gop19]. We state it without proof, but it follows from
Lucas’ Theorem.
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Lemma 2.15. Let p be a prime and s ∈ Z+ . There exists a polynomial f(x1, . . . , xn) of degree
ps − 1 such that for x ∈ {0, 1}n , f(x) ̸= 0 (mod p) iff

∑n
i=1 xi is divisible by ps . Specifically,

f(x) =
∏s−1

j=1

(
1−

(∑n
i=1 xi

pj

)p−1)
.

Here
(∑n

i=1 xi

k

)
=
∑

i1<...<ik
xi1 . . . xik is always a valid integer polynomial for k ≤ n . Note that

in [Gop19], the lemma is technically stated with 1 − f as opposed to f . We are now ready to
show the upper bound. Also, note that f takes only 2 values 1 and 0 (mod p) , depending on the
divisibility property.

Theorem 2.16 (Upper bound for prime-power [Gop24]). Let m = ps for some prime p and s ∈ Z+ .
Then, for any matching vector family U ,V ⊆ Zn

m of size t = |U| = |V| we have that t ≤ (2emn)m−1 .

Proof. We will first convert the matching vector family U ,V into a matching vector family consisting
of vectors with only zero or one coordinates, we stress that the matching vector family is still
considered over Zm and 0, 1 are interpreted as elements of Zm , not F2 . Thereafter, we will argue
by showing an upper bound on the rank of a specially constructed matrix, via the polynomial defined
in Lemma 2.15.

Converting into a binary matching vector family. We will transform vectors in U ,V into vectors
in {0, 1}n′ ⊂ Zn′

m for n′ = nm2 , such that the pairwise inner-product ⟨u,v⟩ for u ∈ U ,v ∈ V is
preserved over Zm . For any u ∈ U (resp. v ∈ V) , map each coordinate ui (resp. vi ) into the
m ×m matrix1 u′

i (resp. v′
i ) with all 1 ’s in the first ui rows (resp. first vi columns). It is easy

to see that ui · vi = ⟨u′
i,v

′
i⟩ and

⟨u,v⟩ =
∑
i∈[n]

ui · vi =
∑
i∈[n]

⟨u′
i,v

′
i⟩ = ⟨u′,v′⟩

As a result, we can turn any matching vector family U ,V ⊆ Zn
m into one with only binary

vectors in Zmn2

m . For the rest of the argument, denote U ,V ⊆ Zn′
m to be the binary vectors obtained

like above from the original U ,V where n′ = nm2 .

Constructing a useful matrix. Suppose U = {u(1), . . . ,u(t)},V = {v(1), . . . ,v(t)} where all
u(i),v(j) ∈ {0, 1}n′ ⊂ Zn′

m . Recall m = ps , let f(x) be such a polynomial as defined in Lemma 2.15.
By the same lemma, ⟨u,v⟩ =

∑n′

i=1 uivi = 0 (mod m) iff f(u1v1, . . . ,un′vn′) ̸= 0 (mod p) . Now,
we define a matrix M ∈ Zt×t

p whose rows are indexed by vectors in U and whose columns are
indexed by vectors in V such that:

Mi,j = M(u(i),v(j)) := f(u
(i)
1 v

(j)
1 , . . . ,u

(i)
n′ v

(j)
n′ ) .

Note that M(u(i),v(j)) ̸= 0 iff i = j . Hence, M is full rank diagonal matrix (infact, it is the
identity matrix!).

On the other hand, by Lucas’ Theorem, f has degree at most ps − 1 = m− 1 and n′ variables.
Notice that there are at most

(
n′

m−1

)
+
(

n′

m−2

)
+. . .+

(
n′

0

)
≤
(
n′+m−1
m−1

)
possible monomials up to degree

m−1 . For any polynomial f of degree m−1 we can consider the vector f̃ ∈ Z(
n′+m−1

m−1 )
m , a vector of

1Matrix is interpreted as a vector simply by reading entries of the matrix row by row.
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coefficients of each of
(
n′+m−1
m−1

)
monomials. One can also take any input x1, . . . , xn′ and consider a

vector x̃ ∈ Z(
n′+m−1

m−1 )
m consisting of evaluations of each of the monomials on x1, . . . , xn′ . Notice that

then f(x1, . . . , xn′) = ⟨x̃, f̃⟩ . Similarly, for each u ∈ U ,v ∈ V we can find ũ, ṽ ∈ Z(
n′+m−1

m−1 )
m , such

that f(u1v1, . . . ,un′vn′) = ⟨ũ, ṽ⟩ , for example ũ consists of evaluations of monomials on input
u1, . . . , un′ while ṽ combines evaluations of monomials on v1, . . . , vn′ with coefficients of polynomial
f . Thus, an obvious counting argument gives the desired upper bound:

t = rank(M) ≤
(
n′ +m− 1

n′

)
=

(
nm2 +m− 1

m− 1

)
≤ (2enm)m−1 .

Note that the above proof fails immediately for composites. For one, we don’t have a version of
the Lucas’ Theorem. Moreover, there is no unified notion of rank that can be utilized, for example
by reducing it to working over a prime field.

Remark 2.17. For any constant m = ps for some prime p and positive integer s, Theorem 2.16
implies MV(m,n, r) ≤ (2emn)m−1 = O(poly(n)) for any 0 < r ≤ m .

2.5 Some properties of 3-restricted matching vector families

We will consider matching vector families in Zm where m is a composite positive integer. All
algebraic operations in this section, unless otherwise stated, are modulo Zm .

Let α, β ∈ Zm\{0} . Consider a matching vector family (U ,V) such that U = {u1, . . . , uK}, V =
{v1, . . . , vK} ⊆ Zn

m that satisfy the following properties:

• For all i ∈ [K] , ⟨ui,vi⟩ = 0 .

• For all i, j ∈ [K] with i ̸= j , we have that ⟨ui,vj⟩ ∈ {α, β} .

We call (U ,V) an {α, β}-matching vector family of size K .

Remark 2.18. For the rest of the paper until the end of Section 3.2, we will assume that (U ,V) is
not a matching vector family modulo m′ for any m′|m . We can make this assumption without loss
of generality. This is because we will prove an upper bound on K that increases as a function of
m , and we get a better bound if there exists such an m′ .

In our argument, it will be useful to work with composites that are exactly the product of two
prime powers. This is clearly the first non-trivial case since we have a polynomial upper bound
(in n) for the case of prime powers. In fact, for 3-restricted matching vector families, [BDL14]
demonstrated that this is the only non-trivial case. We include the proof below for completeness.

Lemma 2.19 ([BDL14]). Let (U ,V) be a S -matching vector family in Zn
m . Then m has at most |S|

prime factors.
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Proof. Suppose m =
∏

i p
ri
i for some primes pi ’s and corresponding positive integers ri ’s. Suppose

the possible non-zero values of inner products are α1, . . . , α|S| (mod m) . By the Chinese remainder
theorem we can view each alpha as a vector αi = (αi,j)j where αi,j = αi (mod p

rj
j ) . We can form

a matrix with entries
Mi,j = αi,j .

Since α1, . . . , α|S| are all different we get that the matrix M has full rank equal |S| . We can therefore
select |S| columns j1, . . . , j|S| such that this square matrix is of the same full rank |S| . This means

that α1, . . . , α|S| remain all different, and all non-zero, even taken modulo m′ = p
rj1
j1

· . . . · p
rj|S|
j|S|

.
Also notice that for any ui,uj ∈ U (and symmetrically for vectors in V ) it is not possible that
ui = uj (mod m′) since then 0 = ⟨ui,vi⟩ = ⟨uj ,vi⟩ ̸= 0 (mod m′) which is a contradiction since
⟨uj ,vi⟩ ∈ {α1, . . . , α|S|} (mod m) , and all αi are non-zero modulo m′ (and m′ divides m).

Thus the |S|-matching vector family in Zn
m induces (via modulo m′ operation) a matching

vector family in Zn
m′ of the same size, and with the same number of restrictions.

From the previous lemma, we can assume m = psqt for any {α, β}-matching vector family
(U ,V) where p, q are some primes and s, t are some positive integers. In the next lemma, we can
show some more restrictions on the values taken by α and β .

Lemma 2.20. Let m = psqt be a composite positive integer such that for any m′ which is a divisor of
m , (U ,V) is not a matching vector family modulo m′ . Then we have α = 0 (mod psqt−1) , α ̸= 0
(mod qt) , β = 0 (mod ps−1qt) , β ̸= 0 (mod ps) .

Proof. By the same argument as Lemma 2.19, we can assume without loss of generality that α ̸= 0
(mod qt) and β ̸= 0 (mod ps) . Now, suppose for a contradiction β ̸= 0 (mod ps−1qt) . Clearly,
α ̸= 0 (mod ps−1qt) Then (U ,V) is a {α, β}-matching vector family modulo m′ = ps−1qt | m
which is a contradiction. Similarly, we can show α = 0 (mod psqt−1) .

3 Upper Bound for 3-restricted Matching Vector Families

Let U ,V be a matching vector family of size K in Zn
m with non-zero residues α and β . By

Lemma 2.19, we have that m = psqt for primes p and q and integers s, t ≥ 1 with p < q . Further,
using Lemma 2.20, we have that α = 0 (mod psqt−1) , α ̸= 0 (mod qt) , β = 0 (mod ps−1qt) , β ̸= 0
(mod ps) . Define, a parameter τ (which is a small constant) as follows:

τ :=
1

2pq
.

Let Sq,K = {A ⊂ [K] | |A| = q} be the set of all subsets of [K] of size q . Let ω = e
2πi
m be a

primitive root of unity of order m .

For analysis, we define a few random variables as follows: Let U i be uniform and independent
vectors drawn from U . Let ℓ be the smallest integer such that q ≤ 2ℓ . We have:

1. U := U i .

12



2. U § :=
∑2ℓ

i=1U i −
∑2ℓ+1

i=2ℓ+1U i . That is, sample with replacement 2 · 2ℓ independent vectors
from U , add up the first 2ℓ vectors and subtract away the remaining 2ℓ vectors.

3. U † :=
∑q

i=1U i . That is, sample with replacement q independent vectors from U and add
them up.

4. U ‡ :=
∑2ℓ

i=q+1U i −
∑2ℓ+1

i=2ℓ+1U i . Here we define U ‡ such that U § = U † +U ‡ .

5. U⋆ is distributed as follows: pick a subset A ∼ Sq,K uniformly at random and U⋆ :=
∑

i∈A ui .
In other words, sample without replacement q vectors from U and add them up. This is in
contrast to U † which is sampling with replacement.

Random variables for V are defined similarly.

Sampling without replacement helps in lower bounding the min-entropy of U⋆ . On the other
hand, we upper bound the min-entropy of U † where sampling with replacement (and hence full
independence) is useful. And we are able to relate these two quantities as these two distributions
are really close to each other.

The introduction of U § (and hence U ‡ = U §−U † ) serves as a tool for lower bounding the bias
of U † via Lemma 2.8 because we are restricted to sums containing powers of 2 elements.

3.1 Upper Bound on Min-Entropy

In the following lemma, we prove that since U ,V constitute a 3-restriced MV family over Zn
m ,

then ⟨U ,V ⟩ has to be far from uniform. This is captured via Fourier analysis.

Lemma 3.1 (Large bias for MV family). Let K ≥ 10pq . Then, we have that
∣∣E[ω⟨U ,V ⟩]

∣∣ ≥ τ .

Proof. This proof relies on the fact that the random variable ω⟨U ,V ⟩ is essentially supported on two
values, {ωα, ωβ} , since the mass on ω0 (corresponding to ⟨U ,V ⟩ = 0) is very small. To complete
the argument, we show that α − β is an integer different from m/2 , and thus the mass on ωα

doesn’t cancel that on ωβ . The detailed argument is given below.

Recall that ⟨U ,V ⟩ ∈ {0, α, β} and Pr[⟨U ,V ⟩ = 0] = 1
K . Let λ := Pr[⟨U ,V ⟩ = α] , λ ∈[

0, 1− 1
K

]
. Then Pr[⟨U ,V ⟩ = β] = 1−λ− 1

K . Since α = 0 (mod psqt−1) and β = 0 (mod ps−1qt) ,

13



let α
m = c

q and β
m = d

p , for some 0 < c < q and 0 < d < p . By definition of the bias, we have

∣∣∣E[ω⟨U ,V ⟩]
∣∣∣ =

∣∣∣∣∣∣
∑

u,v∈Zn
m

U(u)V (v)ω⟨u,v⟩

∣∣∣∣∣∣
≥ min

λ∈[0,1− 1
K
]

∣∣∣∣ 1K + λωα + (1− 1/K − λ)ωβ

∣∣∣∣
≥ min

λ∈[0,1− 1
K
]

∣∣∣λωα + (1− 1/K − λ)ωβ
∣∣∣− 1

K

= min
λ∈[0,1− 1

K
]

∣∣∣λ+ (1− 1/K − λ)ωβ−α
∣∣∣− 1

K

= min
λ∈[0,1− 1

K
]

√
λ2 + (1− 1/K − λ)2 + 2λ(1− 1/K − λ) cos

(
2π

(
c

q
− d

p

))
− 1

K

≥ min
λ∈[0,1− 1

K
]

√
λ2 + (1− 1/K − λ)2 + 2λ(1− 1/K − λ) cos

(
(pq − 1)π

pq

)
− 1

K

≥
(
K − 1

K

)
· sin

(
π

2pq

)
− 1

K

≥ τ .

The third equality follows from the identity that for constants ci , and θ ,

|c1 + c2e
iθ|2 = |(c1 + c2 cos θ) + ic2 sin θ|2 = c21 + c22 + 2c1c2 cos θ .

The third last inequality follows from the observation (which we discuss below) that
∣∣∣2π cp−dq

pq − π
∣∣∣ ≥

π
pq , and that cos θ for θ ∈ (0, 2π) is minimized when |θ−π| is minimized. If pq is odd, the above is
trivially true since after multiplying left-hand-side by pq

π we obtain |2(cp− dq)− pq| and this is a
difference of odd and even number and thus the absolute value has to be at least 1 . Now, suppose
p = 2 , via similar argument we have ∣∣∣∣2c− dq

q
− 1

∣∣∣∣ ≥ 1

q
>

1

2q
,

since c ̸= 0 (mod q) and q is an odd prime.

The second last inequality follows from taking λ = K−1
2K which minimizes the expression, and

using 1− cos θ = 2 sin2(θ/2) , giving a value of the square root to be(
2

(
K − 1

2K

)2

− 2 ·
(
K − 1

2K

)2

cos

(
π

pq

))1/2

=

(
K − 1

K

)
sin

(
π

2pq

)
.

Finally, the last inequality follows from sinx ≥ x
2 for x ∈ [0, 1] and that K > 10pq .

Next, we will show that U⋆ has low min-entropy.
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Lemma 3.2.
∣∣∣E[ω⟨U†+ U‡,V †+ V ‡⟩]

∣∣∣ ≥ τ16q
2 .

Proof. Recall that ℓ is the smallest integer such that q ≤ 2ℓ . Thus, 2ℓ−1 < q , i.e., 2ℓ < 2q . By
Lemma 2.8, we can control the bias of U § :∣∣∣E[ω⟨U†+ U‡,V †+ V ‡⟩]

∣∣∣ =
∣∣∣E[ω⟨U§,V §⟩]

∣∣∣
≥
∣∣∣E[ω⟨U ,V ⟩]

∣∣∣22(ℓ+1)

≥
∣∣∣E[ω⟨U ,V ⟩]

∣∣∣4·(2q)2
= τ16q

2
.

Define the event EU (resp. EV ) where each U i (resp. V i ) is unique when U † (resp. V † ) is
sampled. Notice that U †|EU is distributed exactly as U⋆ . Also, Pr[¬EU ] = Pr[¬EV ] ≤ q2

K and so,
by the union bound Pr[¬(EU ∧ EV )] ≤ 2q2

K .

Lemma 3.3.
∣∣∣E[ω⟨U⋆+U‡,V ⋆+V ‡⟩]

∣∣∣ ≥ τ16q
2 − 2q2

K .

Proof. The proof uses the above observation that U †|EU (resp. V †|EV ) is distributed exactly as
U⋆ (resp. V ⋆ ), and that both EU and EV hold simultaneously with probability at least 1− 2q2

K .
In particular,∣∣∣E[ω⟨U†+U‡,V †+V ‡⟩]

∣∣∣ = ∣∣∣E[ω⟨U†+U‡,V †+V ‡⟩ | EU ∧ EV ] · Pr[EU ∧ EV ]

+ E[ω⟨U†+U‡,V †+V ‡⟩ | ¬(EU ∧ EV )] Pr[¬(EU ∧ EV )]
∣∣∣

≤
∣∣∣E[ω⟨U†+U‡,V †+V ‡⟩ | EU ∧ EV ]

∣∣∣Pr[EU ∧ EV ]

+
∣∣∣E[ω⟨U†+U‡,V †+V ‡⟩ | ¬(EU ∧ EV )]

∣∣∣Pr[¬(EU ∧ EV )]

=
∣∣∣E[ω⟨U⋆+U‡,V ⋆+V ‡⟩]

∣∣∣Pr[EU ∧ EV ]

+
∣∣∣E[ω⟨U†+U‡,V †+V ‡⟩ | ¬(EU ∧ EV )]

∣∣∣Pr[¬(EU ∧ EV )]

≤
∣∣∣E[ω⟨U⋆+U‡,V ⋆+V ‡⟩]

∣∣∣+ 2q2

K
.

It follows that
∣∣∣E[ω⟨U⋆+U‡,V ⋆+V ‡⟩]

∣∣∣ ≥ τ16q
2 − 2q2

K .

Lemma 3.4. H∞(U⋆) +H∞(V ⋆) ≤ n logm− 2 log(τ16q
2 − 2q2

K ) .

Proof. By Lemma 3.3 and Lemma 2.5, we have that

H2(U
⋆ +U ‡) +H2(V

⋆ + V ‡) ≤ n logm− 2 log(τ16q
2 − 2q2

K
) .
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Finally, notice that U⋆ is independent of U ‡ and V ⋆ is independent of V ‡ . By Lemma 2.4,
we have:

H∞(U⋆) +H∞(V ⋆) ≤ H∞(U⋆ +U ‡) +H∞(V ⋆ + V ‡) ≤ n logm− 2 log

(
τ16q

2 − 2q2

K

)
,

where H∞(X) ≤ H2(X) for any random variable X .

3.2 Lower Bound on Min-Entropy

In this subsection, we will talk about sums of vectors from U ,V . For each A ⊆ [K] , we can
naturally associate a sum of vectors

∑
i∈A ui from U (and similarly for V ). Note that we only care

about unique sums where each vector from U (or V ) appears only once. In this view, a collision
corresponds to pair of sets A,B,A ̸= B such that

∑
i∈A ui =

∑
j∈B uj (or similarly for vectors

from V ). In the following we give a lower bound on the min-entropy of U⋆ . By symmetry, the
statement holds for V ⋆ as well.

We start with a lemma that discusses the behaviour of a collision.

Lemma 3.5. Let m = psqt where q > p and U ,V be a {0, α, β}-restricted matching vector family of
size K such that α = 0 (mod psqt−1) , α ̸= 0 (mod qt) and β = 0 (mod ps−1qt) , β ̸= 0 (mod ps) .
Let A,B ∈ Sq,K , A ̸= B be such that

∑
i∈A ui =

∑
i∈B ui where each ui ∈ U Then:

(i) For each i ∈ A, j ∈ B , ui ̸= uj (A ∩B = ∅).

(ii) For each i ∈ A, j ∈ B , ⟨uj ,vi⟩ = α (mod qt).

Proof. Proof of Part (i). For any i ∈ A , we can write
∑

j∈B⟨uj ,vi⟩ −
∑

j∈A⟨uj ,vi⟩ as a linear
combination of α ’s and β ’s such that

aiα+ biβ =
∑
j∈B

⟨uj ,vi⟩ −
∑
j∈A

⟨uj ,vi⟩ = ⟨
∑
j∈B

uj −
∑
j∈A

uj ,vi⟩ = 0 (mod m) (1)

for some integers ai, bi .

As ⟨ui,vi⟩ = 0 (mod m) , there are q terms in the first sum and q − 1 terms in the second
sum; this is where we use the fact that ui were picked without replacement. Therefore, we have the
obvious inequalities: −(q − 1) ≤ ai, bi ≤ q . Since, β = 0 (mod qt) , and aiα+ biβ = 0 (mod m) , it
follows that aiα+ biβ = 0 (mod qt) =⇒ aiα = 0 (mod qt) . Since α is divisible by qt−1 , and not
qt , and ai is between −(q − 1) and q , it must happen that either ai = 0 or ai = q .

Suppose for a contradiction that i ∈ A ∩B . Let k ∈ A\B (non-empty since A ̸= B ). Then,

akα+ bkβ =
∑
j∈B

⟨uj ,vk⟩ −
∑
j∈A

⟨uj ,vk⟩ =
∑

j∈B\A

⟨uj ,vk⟩ −
∑

j∈A\(B∪{k})

⟨uj ,vk⟩ .

By our choice of uk , fact that all inner products on the right-hand side above are non-zero, and
since |A| = |B| = q , we know that:

1. |B\A| = |A\(B ∪ {k})|+ 1 , and therefore ak + bk = |B\A| − |A\(B ∪ {k})| = 1 .

16



2. −(q − 1) ≤ −|A\(B ∪ {k})| ≤ bk ≤ |B\A| ≤ q − 1

If ak = 0 , then bk = 1 implies that akα+bkβ = β ̸= 0 (mod m) , a contradiction to Equation (1).
Also, notice that ak ̸= q since for the same reason as above ak ≤ |B\A| ≤ q − 1 . This completes
the proof of Part (i).

Proof of Part (ii). Now, consider any i ∈ A , clearly i ̸∈ B from our proof above. From a similar
argument as above, we know ai + bi = 1 . And further ai = q and bi = 1− ai = −(q− 1) . However
the only way we can have ai = q is if each term in the sum

∑
j∈B⟨uj ,vi⟩ is α which completes the

proof. Note that we can trivially reduce from mod m to mod qt , since ⟨uj ,vi⟩ = α ̸= 0 (mod qt) .

Theorem 3.6. Let m = psqt where q > p and let U⋆ be defined as in the beginning of this section.
Then H∞(U⋆) ≥ q log

(
K
q

)
− log(nt+ 1) .

Proof. We will upper bound the probability PrU⋆ [U⋆ = u] , where u ∈ Zn
m is an arbitrary vector.

Let

Cu :=

{
A ∈ Sq,K |

∑
i∈A

ui = u

}
,

be the set of sums of length q from Sq,K such that its sum is equal to u . Note that each term in
the sum is unique by how we sample U⋆ .

Now, consider any pair of collisions A,B ∈ Cu . From Lemma 3.5, we know that for each i ∈
A, j ∈ B , i ̸= j and ⟨uj ,vi⟩ = α , and all the sets in Cu are disjoint. In particular, if we pick exactly
one vector from each sum in Cu (and their corresponding matching vectors in V ), the set of vectors
form a {α}-matching vector family in Zn

qt . Formally, U ′ := {ui | i = min(A), A ∈ Cu} ⊆ U , and
V ′ ⊆ V with the corresponding matching vectors forms a {α}-matching vector family in Zn

qt of size
|Cu| .

By Lemma 2.13, we have |Cu| ≤ nt+ 1 . Therefore, we have

H∞(U⋆) ≥ log

( (
K
q

)
nt+ 1

)
≥ q log

(
K

q

)
− log(nt+ 1) .

3.3 Main Theorem

We are now ready to prove our main theorem.

Theorem 3.7. Let n,m ≥ 1 be positive integers with n > 10m3 . Suppose U ,V is a 3-restricted
MV family of size K over Zn

m . Then K ≤ (2emn)m−1 if m is a prime power, and otherwise

K ≤ m
n+2 log(n+1)

2q
+2m2

,

where q is the second-smallest prime dividing m .

17



Proof. Let m′ be the smallest factor of m such that U ,V is a 3-restricted MV family of size K
over Zn

m′ . If m′ is a prime power, then by Theorem 2.16,

K ≤ (2em′n)m
′−1 ≤ (2emn)m−1 .

Suppose m is not a prime power, then K ≤ (2emn)m−1 ≤ m
n+2 log(n+1)

2q
+2m2

; the second
inequality follows, since n > 10m3 .

Now we consider the case when m′ is not a prime power. Then, by Lemma 2.19, we have that
m′ = ps1 · pt2 for primes p1 and p2 and integers s, t ≥ 1 with p1 < p2 . Further, using Lemma 2.20,
we have that α = 0 (mod ps1p

t−1
2 ) , α ̸= 0 (mod pt2) , β = 0 (mod ps−1

1 pt2) , β ̸= 0 (mod ps1) .

Let q be the second-smallest prime dividing m , and we assume that K > m
n+2 log(n+1)

2q
+2m2

,
since otherwise we are already done. Also, note that by assumption, p2 ≥ q . Since n ≥ 10m3 , and
2 ≤ p1p2 ≤ m , this implies that

K ≥ m7m2 ≥ m2 · (2m)4m
2 ≥ 4p22 · (2p1p2)16p

2
2 .

By Lemma 3.4, we have without loss of generality (between U⋆ and V ⋆ ) that

H∞(U⋆) ≤ n logm′

2
− log

((
1

2p1p2

)16p22

− 2p22
K

)

≤ n logm

2
− log

(
1

2
·
(

1

2p1p2

)16p22
)

≤ n logm

2
+ 16p22 · log(2p1p2) + 1

≤ n logm

2
+ 4m2 logm+ 4m2 + 1 .

Here we used that 2p2 ≤ p1p2 ≤ m . On the other hand, by Theorem 3.6, we know that

H∞(U⋆) ≥ p2 log

(
K

p2

)
− log(nt+ 1) .

Putting them together we have:

p2 log

(
K

p2

)
− log(nt+ 1) ≤ n logm

2
+ 4m2 logm+ 4m2 + 1 .
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This gives us that

K ≤ p2 ·m
n

2p2 ·m
4m2

p2 · 2
4m2+1

p2 · 2
log(nt+1)

p2

≤ m
n

2p2 ·m
4m2

p2
+1 ·m

1.9m2

p2 · 2
log(nt+1)

p2

≤ m
n

2p2 ·m
6m2

p2 · 2
log(nt+1)

p2

≤ m
n

2p2 ·m2m2 · 2
log(nt+1)

p2

≤ m
n
2q ·m2m2 · 2

log(nt+1)
p2

= m
n
2q ·m2m2 ·m

log(nt+1)
p2·logm ;

≤ m
n
2q ·m2m2 ·m

log(nt+1)
p2·t·log p2 ;

≤ m
n
2q ·m2m2 ·m

log(nt+1)
p2·t

≤ m
n
2q ·m2m2 ·m

log(nt+1)1/t

p2

≤ m
n
2q ·m2m2 ·m

log(n+1)
p2

≤ m
n+2 log(n+1)

2q ·m2m2
.

In the second inequality, we used p2 ≤ m , and also, 24m
2+1 < m1.9m2 , which is true since m ≥ 6 .

In the third inequality, we used the fact that 6m2

p2
≥ 5.9m2

p2
+ 1 , which is equivalent to showing

m2

10p2
≥ 1 , which is true since m2

10p2
=
(

m
2p2

)
·
(
m
5

)
> 1 , because m ≥ 2p2 ≥ 2q ≥ 6 . In the seventh

inequality, we used that m ≥ pt2 . Finally, the second to last inequality follows from Bernoulli’s
inequality: (nt+ 1) ≤ (n+ 1)t .

This is a contradiction to our assumption that K > m
n+2 log(n+1)

2q
+2m2

. This finishes the proof.

Corollary 3.8. For an arbitrary positive integer m, consider a 3-query matching vector codes
C : ΣK → ΣN constructed from 3-restricted matching vector families using the construction in
Theorem 2.10, then N ≥ Ω(K6−oK(1)) .

The proof follows straightforwardly from the Theorem 2.10 combined with Theorem 3.7.
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A Proof of Lemma 2.6

We include the proof of completeness.

Proof.

|E[ω⟨X,Y ⟩]| =

∣∣∣∣∣∣
∑
y∈Zn

m

Y (y)
∑
x∈Zn

m

X(x)ω⟨x,y⟩

∣∣∣∣∣∣
≤
∑
y∈Zn

m

Y (y)

∣∣∣∣∣∣
∑
x∈Zn

m

X(x)ω⟨x,y⟩

∣∣∣∣∣∣ .
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On the other hand, since the square function is convex, by Jensen’s inequality, one have

|E[ω⟨X,Y ⟩]|2 ≤
∑
y∈Zn

m

Y (y)

∣∣∣∣∣∣
∑
x∈Zn

m

X(x)ω⟨x,y⟩

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
∑
y∈Zn

m

Y (y)
∑

x1,x2∈Zn
m

X(x1)X(x2)ω
⟨x1,y⟩ω−⟨x2,y⟩

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
y∈Zn

m

Y (y)
∑

x1,x2∈Zn
m

X(x1)X(x2)ω
⟨x1−x2,y⟩

∣∣∣∣∣∣
=
∣∣∣E[ω⟨X1−X2,Y ⟩]

∣∣∣ .
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