
Near-Tight Bounds for 3-Query Locally Correctable Binary

Linear Codes via Rainbow Cycles

Omar Alrabiah∗ Venkatesan Guruswami†

Abstract

We prove that a binary linear code of block length n that is locally correctable with 3
queries against a fraction δ > 0 of adversarial errors must have dimension at most Oδ(log

2 n ·
log log n). This is almost tight in view of quadratic Reed-Muller codes being a 3-query locally
correctable code (LCC) with dimension Θ(log2 n). Our result improves, for the binary field
case, the Oδ(log

8 n) bound obtained in the recent breakthrough of [KM23a] (and the more
recent improvement to Oδ(log

4 n) for binary linear codes announced in [Yan24]).

Previous bounds for 3-query linear LCCs proceed by constructing a 2-query locally decodable
code (LDC) from the 3-query linear LCC/LDC and applying the strong bounds known for the
former. Our approach is more direct and proceeds by bounding the covering radius of the dual
code, borrowing inspiration from [IS20]. That is, we show that if x 7→ (v1 ·x, v2 ·x, . . . , vn ·x) is an
arbitrary encoding map Fk

2 → Fn
2 for the 3-query LCC, then all vectors in Fk

2 can be written as a

Õδ(log n)-sparse linear combination of the vi’s, which immediately implies k ⩽ Õδ((log n)
2). The

proof of this fact proceeds by iteratively reducing the size of any arbitrary linear combination of
at least Ω̃δ(log n) of the vi’s. We achieve this using the recent breakthrough result of [ABS+23]
on the existence of rainbow cycles in properly edge-colored graphs, applied to graphs capturing
the linear dependencies underlying the local correction property.

1 Introduction

Local correction refers to the notion of correcting a single bit of a received codeword by querying
very few other bits of the codeword at random. More concretely, a binary code, which is simply a
subset C ⊆ {0, 1}n, is said to be locally correctable using r ∈ N queries from a fraction δ ∈ (0, 1) of
errors, abbreviated (r, δ)-LCC, if it can recover any given bit of a codeword c ∈ C with probability
noticeably higher than 1/2 (say 2/3) by randomly reading r bits of a received codeword y ∈ {0, 1}n
that is at most δn away from c in Hamming distance. Usually, we are interested in the case when
δ is a fixed constant bounded away from 0 as the code length n → ∞, and in this case, we refer to
such a code as simply a r-LCC.

Throughout this paper, we will restrict our attention to only binary linear codes, particularly
binary linear r-LCCs. A binary linear code C of block length n is simply a subspace of Fn

2 , where
F2 is the field of two elements. If the dimension of C as a F2-subspace is k, then one refers to it as
an [n, k] code. A generator matrix of C is an n× k matrix whose columns form a basis of C. Let
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us fix one such choice of generator matrix M , and denote its rows by v1, v2, . . . , vn ∈ Fk
2. We then

have the encoding map M : Fk
2 → C given by Mx = [v1 · x, v2 · x, . . . , vn · x]⊤.

Among its many uses, locally correctable codes play a central role in PCP constructions, where
they allow to self-correct a function, purportedly a codeword, after a codeword test ascertains that
the function is close to a codeword. They thus allow effective noise-free oracle access to a noisy
function, with a small price in the number of queries. We refer the reader to the surveys [Tre04,
Yek12, Gop18] for more on the applications and connections of locally correctable codes.

Despite its slew of uses, the best known r-LCCs (even existentially) have n ≈ exp(k1/(r−1)),
which is achieved by the degree (r − 1) Reed-Muller code (evaluations of polynomials of degree
(r − 1) in m = Oq(log n) variables at all points in Fm

q ).1 This has remained the case for constant-
query local correction since their conception. Indeed, much of the progress on locally correctable
codes for a constant number of queries has focused on proving their limitations, specifically for
concrete values of r.2 For r = 1, it has long been known that 1-LCCs do not exist [KT00]. For
r = 2, it has also long been known that one must indeed have n ⩾ exp(Ωq(k)) [GKST06, KW04],
so the Hadamard code (and the degree one Reed-Muller code) is indeed optimal.

For r = 3 and larger, our understanding of r-LCCs is abysmal. The known limitations of
r-LCCs, which also apply to r-query locally decodable codes (which offer the weaker guarantee
of local correction only for the k message symbols encoded by the codeword), stood at the bound
k ⩽ Õ(n1−1/⌈2/r⌉) [KW04, Woo07, Woo12] for a long while. In particular, for 3-LCCs, the quadratic
bound k ⩽ O(

√
n) stood for more than a decade. This was recently improved to k ⩽ Õ( 3

√
n) in

[AGKM23] (with recent logarithmic factor improvements by [HKM+24b]), and this bound also
applied to 3-query locally decodable codes (LDCs). Then, in a tour de force breakthrough, Kothari
and Manohar [KM23a] gave an exponential improvement and showed that k ⩽ Oq(log

8 n) for 3-
query linear LCCs (over any field Fq). Since there are beautiful constructions of 3-query linear LDCs
of block length sub-exponential in k [Yek08, Rag07, Efr12, DGY11], their bound demonstrated a
strong separation between local decodability and local correctability with 3 queries for linear codes.
Nonetheless, their result left open the optimality of degree 2 Reed-Muller codes as binary linear
3-LCCs, which have dimension k = Θ(log2 n). Our main result is that they are (almost) optimal.

Theorem 1.1 (Main). If C is an [n, k] binary linear (3, δ)-LCC, then k ⩽ O(δ−2 log2 n · log logn).

Modulo the log log n factor, this settles the dimension versus block length trade-off of 3-query
binary linear LCCs. Recently, following [KM23a], an improved upper bound of k ⩽ O(log4 n)
was obtained for binary linear 3-LCCs in [Yan24]. Even more recently, an independent result
of [KM24] shows an optimal k ⩽ O(log2 n) bound for binary linear design 3-LCCs. Such 3-LCCs
have the additional property that the linear dependencies of length 4 formed by the query sets
(see Definition 2.2) cover each pair of indices in [n] exactly once. We note that a weaker bound of
k ⩽ O(log3 n) for binary linear design 3-LCCs was previously shown in [Yan24].

Our proof method additionally sheds some light on the structure of binary linear 3-LCCs.
Namely, we prove Theorem 1.1 by upper bounding the covering radius of the dual code.3 This offers

1This code requires q ⩾ r + 1, but one can also get say binary codes by picking q to be a power of 2 and
concatenating the Reed-Muller code over Fq with the binary Hadamard code.

2This statement holds only for the classical constant query regime. Indeed, there have been some great works for
when the number of queries r grows with n [GKS13, KSY14, HOW15, KMRZS17, GKO+18] and for relaxed notions
of local corrections [GL19, GRR20, AS21, CY22, KM23b, CY23]. There is also a brighter landscape of lower bounds
for harsher error models [OPC15, BBG+20, BGGZ21, BCG+22, BBC+23, Gup23].

3The covering radius of a linear code C0 ⊆ Fn
2 is the minimum r such that every point in Fn

2 is within Hamming
distance r from some codeword c ∈ C0. If H ∈ Fm×n

2 is a parity check matrix of a linear code C0, then it is the
minimum r for which every s ∈ Fm

2 is the sum of at most r columns of H.
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a more direct understanding of the structure and limitations of binary linear 3-LCCs, which can
be harder to discern from recent developments [AGKM23, KM23a, HKM+24b, Yan24]. Indeed, all
such works proceed by constructing a much longer 2-query LDC from the 3-query locally correctable
linear code and appealing to the known exponential lower bounds for 2-LDCs [GKST06, KW04].4

Our main result on the covering radius of the dual code of a binary linear 3-LCC is the following.

Theorem 1.2. Let C be a binary linear (3, δ)-LCC with generator matrix M ∈ Fn×k
2 . Then every

x ∈ Fk
2 can be expressed as the sum of at most O(δ−2 log n · log logn) rows of M .

Since a generator matrix of C is also a parity check matrix of C⊥, Theorem 1.2 as stated upper
bounds the covering radius of C⊥. Note that Theorem 1.2 immediately implies Theorem 1.1, as it
shows 2k ⩽

∑T
j=0

(
n
T

)
⩽ nT+1 for T = O(δ−2 log n · log logn). We remark here that the degree 2

Reed-Muller code has a covering radius of Θ(log n), which makes our bound in Theorem 1.2 only
a log log n factor away from the optimal bound.

Our inspiration for Theorem 1.2 came from a work of Iceland and Samorodnitsky [IS20], who
prove that the dual C⊥ of a binary linear (2, δ)-LCC C has O(δ−1) covering radius (which then
immediately implies that |C| ⩽ nO(δ−1)).5 They prove this via analysis of the “discrete Ricci
curvature” of the “coset leader graph” associated with C. We develop a more elementary treatment
of their ideas and give a similar coupling argument to bound the diameter of the Cayley graph
Cay(Fk

2, {v1, v2, . . . , vn}), which is isomorphic to their coset leader graph. Note that this diameter
is precisely the covering radius of C⊥. Using our viewpoint, we produce a new proof of the previously
known k ⩽ O(log n) upper bound for linear 2-query LDCs over any finite field (the proof in [IS20]
only applied to LCCs); we present this proof in Appendix A.

Rainbow cycles in properly edge-colored graphs. Our proof of Theorem 1.2 crucially relies
on finding rainbow cycles in properly edge-colored graphs. Rainbow cycles are simply cycles where
each color appears at most once. There has been numerous works to that end [KMSV07, DLS13,
Jan23, JS22, Tom22, KLLT22, ABS+23], culminating in the recent breakthrough of [ABS+23]
showing that any properly edge-colored n-vertex graph with average degree Ω(log n · log logn) must
have a rainbow cycle. This bound is tight up to the O(log log n) factor—if one colors the edges of
the Boolean hypercube with their respective direction, then one obtains a properly edge-colored
log n-regular n-vertex graph that has no rainbow cycles.

Our O(log n · log log n) bound in our Theorem 1.2 is inherited in a black-box fashion from the
rainbow cycle bound of [ABS+23]. Should a tight Θ(log n) be established for the minimum average
degree guaranteeing a rainbow cycle, we would immediately get an asymptotically tight O(log2 n)
dimension upper bound for binary linear 3-LCCs in Theorem 1.1. In fact, in our application, the
concerned edge-colored graphs have the further property that each color class has Ω(n) edges. So
it would suffice to improve the rainbow cycle bound for such graphs.

LCC lower bounds from rainbow LDC lower bounds. Our 3-LCC result based on rainbow
cycles turns out to be a specific instance of a more general reduction from lower bounds for r-LCCs
to a “rainbow” form of lower bounds for binary linear (r−1)-query LDCs—a stronger form of LDC
lower bounds than usual binary linear (r−1)-LDC lower bounds. Our main result is the r = 3 case
of this phenomenon, where we have such strong “rainbow” bounds for binary linear 2-query LDCs.

4See Appendix B of [AGKM23] and Section 7.6 of [KM23a] for the proper formulation of their blocklength lower
bound proofs as reductions to 2-query LDCs.

5They also deduce a covering radius upper bound of O(n(r−2)/(r−1)) for the r-query case by reducing to the 2-query
case. Note that, for r ⩾ 3, the resulting bounds for LCCs are weaker than the best-known ones.
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As for bounds on the so-called “rainbow” binary linear r-LDC lower bounds problem, one can
prove the same bound of k ⩽ Õ(n1−2/r) for even r ⩾ 4 known for usual r-LDCs in nearly the same
fashion! As it turns out, the direct sum transformation of [KW04] from r-LDCs to 2-LDCs has the
additional property that it maintains rainbow cycles between the two LDCs. By using the strong
bounds of [ABS+23],6 we can therefore find a rainbow cycle in the 2-LDC and revert it to a rainbow
cycle in the r-LDC. From our general reduction, we can therefore deduce improved lower bounds
of the form k ⩽ Õ(n1−2/(r−1)) for binary linear r-LCCs for all odd r ⩾ 5, which were previously
conjectured by [KM23a] for all r ⩾ 4. This is the content of the following theorem.

Theorem 1.3. If C is an [n, k] binary linear (r, δ)-LCC for odd r ⩾ 5, then k ⩽ O
(
δ−2n1− 2

r−1 log3 n
)
.

Note that the previously best known bound for binary linear r-LCCs for odd r ⩾ 5 (which
also held for binary linear r-LDCs and even binary linear (r+1)-LDCs) was Õ(n1−2/(r+1)) [KW04,
Woo07, HKM+24b]. We outline our general reduction and the proof of Theorem 1.3 in Section 4.

Follow-up questions. Two salient follow-up questions to our work are removing the linearity
assumption in Theorem 1.1 and extending Theorem 1.2 to arbitrary finite fields. Since the statement
of Theorem 1.2 crucially relies on considering rows of a generator matrix of the 3-LCC, it makes
it unclear how to remove the linearity assumption in Theorem 1.1. As for extending our main
results to arbitrary finite fields, it is easy to extend Theorem 1.2 to finite fields of characteristic 2
for a poly(|F|) loss in the upper bound on the size of the sum by considering the code defined in
Appendix A of [KM23a]. For finite fields of higher characteristic, the presence of negative signs
presents a tricky situation for the application of the result of [ABS+23] in the proof of Theorem 1.2.
We leave it as an interesting open problem to extend Theorem 1.2 to linear 3-LCCs over arbitrary
finite fields.

There is additionally the problem of extending Theorem 1.3 to all r ⩾ 4. In light of our proof
method of Theorem 1.3, it would seem that a cubic bound of k ⩽ Õ( 3

√
n) for binary linear [n, k]

4-LCCs is reasonable to hope for by extending the cubic 3-LDC lower bound of [AGKM23] to
their analogous “rainbow” version and applying our general reduction from binary linear r-LCC
lower bounds to “rainbow” binary linear (r − 1)-LDC lower bounds. However, the 3-LDC to 2-
LDC transformation in [AGKM23] creates new query sets by adding together the original query
sets, which disrupts the correspondence of the colors between the 3-LDC and the derived 2-LDC.
Nonetheless, it would still be interesting to show a cubic “rainbow” binary linear 3-LDC lower
bound using the techniques of [AGKM23].

1.1 Proof overview

While our proof of Theorem 1.1 is rather short (just 2 pages, and self-contained modulo the rainbow
cycle bound), we will nonetheless present a proof overview of it to showcase its key ideas. Consider
a (3, δ)-LCC whose generator matrix has v1, v2, . . . , vn ∈ Fk

2 as rows. It is well known that any
binary linear (3, δ)-LCC has a collection of hypergraphs H1, . . . ,Hn over [n] such that for each
i ∈ [n], the hypergraph Hi consists of at least (δ/3)n disjoint subsets of [n] of size 3 each such that
for any hyperedge {a, b, c} ∈ Hi, we have that vi = va + vb + vc (see Section 2.1). For simplicity,
suppose that δ ⩾ Ω(1) to ignore any δ dependencies. Our goal is to show that every x ∈ Fk

2 can be
represented as the sum of at most B vectors in {v1, . . . , vn} for some B := Θ(log n log log n).

6Note that this reduction crucially relies on the strong bound of k ⩽ O(logn log log n) by [ABS+23]. Indeed, if
one instead uses the previous state-of-the-art results of [JS22, KLLT22] on rainbow cycles of k ⩽ O(log2 n), then this
reduction would fail to yield any non-trivial bound.
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Since the vi’s span Fk
2, x can be written as the sum of at most k of the vi’s. Fix any such sum.

Our proof proceeds in an iterative fashion: whenever the current representation of x as a sum of the
vi’s is longer than B, we will exploit the many local checks expressing each vi as the sum of many
disjoint 3-tuples of other vj ’s to produce a shorter representation of x. Applying this compression
iteratively yields the desired conclusion.

Now, consider an arbitrary linear combination
∑

t∈T vt with |T | > B. For any t ∈ T , we can
locally modify

∑
t∈T vt by applying the substitution vt = va + vb + vc for any {a, b, c} ∈ Ht. This

will increase the length of the sum by (at most) 2, which defeats our initial goal. Nonetheless,
since |Ht| ⩾ Ω(n) for each t ∈ T , the abundance of choices for the triple {a, b, c} ∈ Ht presents a
possibility for producing cancellations between substituted sums of triples of vectors.

The simplest form of such a cancellation between two substitutions goes as follows: consider
any two distinct indices t1, t2 ∈ T such that there are triples {a1, b1, c1} ∈ Ht1 and {a2, b2, c2} ∈ Ht2

satisfying c1 = b2. Since each hypergraph is a matching of size Ω(n), such triples do occur whenever
|T | = ω(1). Now, by applying the substitutions vt1 = va1 + vb1 + vc1 and vt2 = va2 + vb2 + vc2 in∑

t∈T vt, we obtain a new sum of length at most |T | + 2 · 2 − 2 · 1 = |T | + 2 due to vc1 and vb2
canceling each other out.

We can further generalize this form of cancellation to multiple indices as follows: given distinct
indices t1, . . . , tm ∈ T such that there exists a “path” of hyperedges Es := {aEs , bEs , cEs} ∈ Hts

for s ∈ [m] satisfying cEs = bEs+1 for each s ∈ [m − 1], we can apply the substitutions vts =
vaEs

+ vbEs
+ vcEs

for each s ∈ [m] to the sum
∑

t∈T vt and obtain a new sum of length at most
|T |+2m− 2(m− 1) = |T |+2 due to vcEs

and vbEs+1
canceling each other out for each s ∈ [m− 1].

Thus the length of the new sum hardly deviates from the length of the original sum. Furthermore,
by a simple counting argument, one can show that there are such “paths” of length m = Ω(|T |).
However, the length of this new sum is not smaller or even equal to the length of the original sum.

Now, notice that if we had cEm = bE1 (i.e., the path ‘loops back’), then the length of the new
sum will now be at most |T |. This does not reduce the length of the original sum

∑
t∈T vt, but it

does ‘shift’ it to a new sum. In the sequel, we will exploit such ‘shifts’ to produce a new sum of
smaller length. For now, let us consider the feasibility of having cEm = bE1 .

To do so, we will cast our problem in the language of properly edge-colored graphs and rainbow
cycles. Indeed, consider the edge-colored graph GT with vertices [n] and edges {b, c} for {a, b, c} ∈
Ht (dropping an arbitrary vertex in each triple) forming the t’th color class of edges in GT for each
t ∈ T . As Ht is a matching, GT will therefore be a properly edge-colored graph. In this viewpoint,
the ‘path’ of hyperedges E1, . . . , Em is in fact a rainbow path in GT with edge colors t1, . . . , tm in
that order. To have cEm = bE1 , we need this rainbow path to be a rainbow cycle. Since the average
degree of GT equals Ω(|T |) = Ω(B) = Ω(logn log log n), we can therefore conclude the existence of
a rainbow cycle in GT by the recent breakthrough result of [ABS+23]. This rainbow cycle gives an
alternate representation

∑
t∈T ′ vt that equals

∑
t∈T vt with |T ′| ⩽ |T |. Call such an T ′ a “shift” of

T . Since the hypergraphs {Ht}t∈T are matchings of size Ω(n), we can in fact extract more from
this argument. Specifically, by a more careful selection of the edges of GT , we can show that the
collection of all “shifts” T ′ of T cover Ω(n) of the indices in [n]. This is the content of Lemma 3.2.

This now suffices for an actual compression of a somewhat larger sum. Suppose x =
∑

i∈I vi for
|I| > p · (B +1) for some large enough constant p (which will depend on δ). Splitting the sum into
p disjoint parts T1, T2, . . . , Tp, each with more than B terms, the constant fraction ‘coverage’ of [n]
by the “shifts” of each set Tℓ means (by some simple pigeonholing) that we can find two distinct
indices ℓ1, ℓ2 ∈ [p] and “shifts” T ′

ℓ1
and T ′

ℓ2
that intersect. By replacing the sets Tℓ1 and Tℓ2 with

their respective “shifts,” we end up with a representation of x with at most |I|−2 of the vi’s, which
concludes our iterative compression argument. See Figure 1 for an illustration.
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aEs

bEs

cEs

ts

T ′
ℓ1

T ′
ℓ2

Figure 1: This figure indicates the cancellations that occur in our proof of Theorem 1.2 via iterative
refinement of the representation of an arbitrary vector x ∈ Fk

2 as a sum more than p(B + 1) =
Ω(log n log log n) of the vi’s. The nodes represent indices in [n], with the gray nodes indicating
‘canceled’ nodes in the sum

∑
i∈I vi, while the black nodes represent the ‘active’ nodes in the sum.

The inner gray nodes in the pentagon and the square are cancellations resulting from Lemma 3.2.
The cancellation of the one outer gray node in common is the result of picking a common node
between two ‘shifts’ T ′

ℓ1
and T ′

ℓ2
of the sets Tℓ1 and Tℓ2 , which is key idea in the proof of Theorem 1.2

from Lemma 3.2. In the figure, a sum of 9 terms (the indices ts corresponding to each of the 9
colors) is compressed into a sum of 7 terms (the black nodes).

Proof comparison to [KM23a, Yan24]. One salient common feature in our work and the
works of [KM23a, Yan24] is the chaining of local checks. However, our implementation of chaining
differs fundamentally from [KM23a, Yan24]. In our work, we attempt to chain local checks to
form a “cyclical chain” (i.e., rainbow cycles) in order to establish Theorem 1.2, resulting in a much
shorter proof. On the other hand, [KM23a, Yan24] consider a technically involved hypergraph
decomposition of a superpolynomial number of chained local checks and then proceed to undertake
a highly intricate “row pruning” analysis to ensure that each hypergraph of chained local checks
is “spread-out.” Admittedly, our proof relies on black-boxing known results from the rainbow
cycle literature, some proofs of which are involved. Nonetheless, our proof offers modularity. In
particular, any improvement to the result of [ABS+23] would immediately yield better lower bounds
on binary linear 3-LCC via our proof of Theorem 1.2. On the other hand, improvements using the
methods of [KM23a, Yan24] would likely entail a re-do of their analysis (as was the case in [Yan24]).

1.2 Organization

In Section 2, we state the tools we need for locally correctable codes and edge-colored graphs.
In Section 3, we present the proof of Theorem 1.1 and Theorem 1.2. In Section 4, we define the
notion of a “rainbow” LDC lower bound along with a generalization of Theorem 1.1 and use them
to prove Theorem 1.3. Finally, in Appendix A, we present a covering radius upper bound for linear
2-LDCs and discuss how to obtain the exponential blocklength lower bound from our proof.
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2 Preliminaries

Let N := {0, 1, 2, . . .}, and let F2 = {0, 1} denote the finite field of size 2. For any positive integer
n ∈ Z+, we denote [n] := {1, 2, . . . , n}. For any set X and number k ∈ N, denote

(
X
k

)
:= {A | A ⊆

X , |A| = k}. Given two sets A and B, let A ⊕ B := (A \ B) ∪ (B \ A) denote their symmetric
difference. Given a vector x ∈ Fk

2, let wt(x) denote its Hamming weight (i.e., number of nonzero
entries). For any two vectors x, y ∈ Fn

2 , let d(x, y) denote their Hamming distance (i.e., the number
of entries that they differ on). We will consider multi-sets in this work, which are simply sets that
allow elements to repeat. For any multi-set A, the cardinality of A, denoted |A|, is the number of
elements in A (including repeated elements).

A hypergraph is simply a collection of sets H ⊆ 2[n]. We call the sets in the hypergraph
hyperedges For any ℓ ∈ Z+, we say that H is an ℓ-uniform hypergraph if |A| = ℓ for all A ∈ H.
We also say that H is a matching if A ∩ B = ∅ for all distinct A,B ∈ H. If H is an ℓ-uniform
hypergraph and a matching, then we simply call it an ℓ-uniform matching.

2.1 Locally correctable codes

The following is the usual definition of a linear 3-query locally correctable code C as having a local
decoder.

Definition 2.1 (Binary Linear LCC, local decoder definition). Given a binary linear code C ⊆ Fn
2 ,

we say that it is a (r, δ)-locally correctable code (abbreviated (r, δ)-LCC) for r ∈ N and δ ∈ (0, 1) if
the following holds: for any received codeword y ∈ Fn

2 there exists a randomized algorithm Dy with
oracle access to y that takes an index i ∈ [n] as input and satisfies the following properties: (1)
Dy(i) makes at most r queries to y, and (2) if there exists a codeword c ∈ C satisfying d(x, c) ⩽ δn,
then Dy(i) outputs ci with probability at least 2/3.

While Definition 2.1 is the typical definition of LCCs, we will instead be working with a more
combinatorial definition that is amenable to lower bounds.

Definition 2.2 (Binary Linear LCC, combinatorial definition). Given a linear code C with gen-
erator matrix M ∈ Fn×k

2 whose columns form a basis for C, let vi ∈ Fk
q be the i’th row of M for

i ∈ [n]. The code C is said to be a (r, δ)-locally correctable code (abbreviated (r, δ)-LCC) for r ∈ N
and δ ∈ (0, 1) if there exists r-uniform matchings H1, . . . ,Hn over [n] such that |Hi| ⩾ δn for all
i ∈ [n], and for any i ∈ [n] and {a1, . . . , ar} ∈ Hi, we have that vi =

∑r
s=1 vas.

It is well-known from standard reductions [KT00, Yek12, DSW14] that any code satisfying
Definition 2.1 also satisfies Definition 2.2 for a multiplicative loss of 1/r in δ. Therefore, without
loss of generality. we will assume throughout the paper that the notion of a binary linear (r, δ)-LCC
refers to Definition 2.2 rather than Definition 2.1.

Remark 2.1. The definition of a linear (r, δ)-LCC in Definition 2.2 is invariant of the choice of
generator matrix M for the code C. Indeed, any generator matrix for C is of the form MB for
some invertible matrix B ∈ Fk×k

q . The rows of MB are B⊤vi for i ∈ [n]. By linearity, it therefore

follows that B⊤vi =
∑r

s=1B
⊤vas for any i ∈ [n] and {a1, . . . , ar} ∈ Hi.

2.2 Edge-colored graphs

An undirected graph G = (V,E) consists of a set V and a multi-set E ⊆
(
V
2

)
.7 Given two edges

e1, e2 ∈ E, we say that e1 is incident to e2 if they share a common vertex. A subset of edges

7Note that G does not necessarily have to be simple. That is, edges are allowed to repeat.
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E0 ⊆ E is said to be a matching if no two different edges in E0 are incident to each other. Given
a set of colors T , we say that a graph G is edge-colored if it has an associated function c : E → T ,
which we call an edge coloring. For graphs with an associated edge coloring, we write them as
G = (V,E, c). Given a color t ∈ T , the color class of t of G is the multi-set of edges c−1(t). We say
that c is a proper edge coloring if any two different incident edges e1, e2 ∈ E have different colors.
Equivalently, c is a proper edge coloring if c−1(t) is a matching for all t ∈ T .

With all this terminology at hand, we can now define a rainbow cycle.

Definition 2.3 (Rainbow Cycle). Given an edge-colored graph G = (V,E, c), a rainbow cycle is
a tuple of vertices (i1, i2, . . . , iℓ, iℓ+1 = i1) ∈ V ℓ such that {ij , ij+1} ∈ E for all j ∈ [ℓ] and the
multi-set of edges {{ij , ij+1} : j ∈ [ℓ]} is each assigned a different color by c.

We will now rely on the following theorem of [ABS+23]. Note that when the graph is not simple,
one can easily find a rainbow cycle of length 2 in the graph (as it is properly edge-colored).

Theorem 2.1 ([ABS+23], Theorem 1.1). There exists a universal constant c0 > 0 such that the
following holds: any properly edge-colored n-vertex graph G with at least c0n log n log logn edges
contains a rainbow cycle.

3 Proof of main 3-LCC result

Let C be an [n, k] binary linear (3, δ)-LCC. Throughout this section, fix a generator matrix M ∈
Fn×k
2 for C with row vectors v1, . . . , vn ∈ Fk

2 and associated 3-uniform matchings H1, . . . ,Hn over
[n]. Our main result for this section is the following theorem, which is just Theorem 1.2 restated.

Theorem 3.1. For any vector x ∈ Fk
2, there exists a set of indices I ⊆ [n] satisfying x =

∑
i∈I vi

and |I| ⩽ O(δ−2 log n log logn).

Indeed, from Theorem 3.1, our main result Theorem 1.1 immediately follows.

Proof of Theorem 1.1 from Theorem 3.1. By Theorem 3.1, for each x ∈ Fk
2, we know of a set Ix ⊆

[n] of size at most O(δ−2 log n log log n) satisfying x =
∑

i∈Ix vi. Now, for distinct x, y ∈ Fk
2, it

follows from the definition of Ix that Ix ̸= Iy. Since |Ix| ⩽ O(δ−2 log n log logn), then there are

at most nO(δ−2 logn log logn) possibilities for any Ix. Thus 2k ⩽ nO(δ−2 logn log logn), from which we
conclude that k ⩽ O(δ−2 log2 n log log n).

It therefore suffices to establish Theorem 3.1. For that, we will rely on the following key lemma.

Lemma 3.2. Let c0 be the absolute constant from Theorem 2.1. For any set T ⊆ [n] of size at least
2c0δ

−1 log n log logn, let W ⊆ [n] be the set of indices j ∈ [n] such that there exists a multi-set T ′

of indices in [n] with j ∈ T ′ satisfying |T ′| ⩽ |T | and∑
t∈T

vt =
∑
t∈T ′

vt .

Then |W | ⩾ (δ/2)n.

Indeed, assuming Lemma 3.2, Theorem 3.1 follows as argued below.
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Proof of Theorem 3.1 from Lemma 3.2. Let I ⊆ [n] be a set of minimal cardinality satisfying x =∑
i∈I vi. Such a set exists as the vectors v1, . . . , vn span Fk

2 (as M is full rank). Assume (for the
sake of a contradiction) that |I| ⩾ 10c0δ

−2 log n log logn. Randomly partition I into p := ⌈4/δ⌉
sets T1 . . . , Tp of equal size. Then |Tℓ| ⩾ 2c0δ

−1 log n log log n for all ℓ ∈ [p]. Thus we can apply
Lemma 3.2 to find sets W1, . . . ,Wp of size at least (δ/2)n each satisfying the property stated
in Lemma 3.2. Observe that

∑p
ℓ=1 |Wℓ| ⩾ (4/δ) · (δ/2)n = 2n > n. Thus, we can find distinct

ℓ1, ℓ2 ∈ [p] such that there is an index j ∈ Wℓ1∩Wℓ2 . Without loss of generality, say (ℓ1, ℓ2) = (1, 2).
Then by Lemma 3.2, we can find multi-sets T ′

1, T
′
2 ⊆ [n] with j ∈ T ′

1 ∩ T ′
2 satisfying |T ′

1| ⩽ |T1|,
|T ′

2| ⩽ |T2|, and ∑
i∈T1

vi =
∑
i∈T ′

1

vi , as well as
∑
i∈T2

vi =
∑
i∈T ′

2

vi . (1)

Now, define the multi-set I ′ := (T ′
1 \ {j}) ∪ (T ′

2 \ {j}) ∪ ∪p
ℓ=3Tℓ. From (1), we find that

x =
∑
i∈I

vi =
∑
i∈T1

vi +
∑
i∈T2

vi +

p∑
ℓ=3

∑
i∈Tℓ

vi

=
∑
i∈T ′

1

vi +
∑
i∈T ′

2

vi +

p∑
ℓ=3

∑
i∈Tℓ

vi

=
(
vj +

∑
i∈T ′

1\{j}

vi

)
+
(
vj +

∑
i∈T ′

2\{j}

vi

)
+

p∑
ℓ=3

∑
i∈Tℓ

vi

=
∑
i∈I′

vi .

Thus x =
∑

i∈I′ vi. On the other hand, since |T ′
1| ⩽ |T1| and |T ′

2| ⩽ |T2|, then we find that

∣∣I ′∣∣ = ∣∣T ′
1 \ {j}

∣∣+ ∣∣T ′
2 \ {j}

∣∣+ p∑
ℓ=3

|Tℓ| ⩽ (|T1| − 1) + (|T2| − 1) +

p∑
ℓ=3

|Tℓ| = |I| − 2 .

This contradicts the minimality of I, which is what we wanted to show.

We now turn to the proof of Lemma 3.2. For this part, we introduce some notations. For any
hyperedge E ∈ ∪k

i=1Hi, write E = {aE , bE , cE} for aE , bE , cE ∈ [n], and let eE := {bE , cE}.

Proof of Lemma 3.2. Assume (for the sake of a contradiction) that |W | < (δ/2)n. Consider the
graph G consisting of [n] as vertices, T as edge colors, and for each t ∈ T , the set {eE : E ∈ Ht, aE /∈
W} as the edges of the color class t. Because {Ht}t∈T are 3-uniform matchings, any color class of
edges in G will form a matching of edges, meaning that G is properly edge-colored. Furthermore,
because {Ht}t∈T are each of size at least δn, each color class has at least |Ht|−|W | > δn−(δ/2)n =
(δ/2)n edges. Thus G has at least (δ/2)n · |T | ⩾ c0n log n log log n edges.

By Theorem 2.1, there exists a positive integer m ⩾ 2, distinct indices t1, . . . , tm ∈ T , and
hyperedges Es ∈ Hts for s ∈ [m] such that the edges (eE1 , . . . , eEm) form a rainbow cycle in G.
This implies that ⊕m

s=1eEs = ∅. Now, define the set T0 := T \ {t1, . . . , tm}. Then we have that

∑
t∈T

vt =
m∑
s=1

vts +
∑
t∈T0

vt =
m∑
s=1

(
vaEs

+ vbEs
+ vcEs

)
+
∑
t∈T0

vt
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=

m∑
s=1

(
vbEs

+ vcEs

)
+

m∑
s=1

vaEs
+
∑
t∈T0

vt

=
∑

i∈
⊕m

s=1 eEs

vi +
m∑
s=1

vaEs
+
∑
t∈T0

vt

=
m∑
s=1

vaEs
+
∑
t∈T0

vt .

Thus if we define the multi-set T ′ := T0∪{aE1 , . . . , aEm}, then we see that |T ′| = |T | and
∑

t∈T vt =∑
t∈T ′ vt. However, since eEs is an edge in G for each s ∈ [m], then from the definition of G, we

see that aEs /∈ W for all s ∈ [m]. This yields a contradiction by the definitions of W and T ′.

4 Rainbow LDC bounds and higher query LCCs

In this section, we develop the notion of “rainbow” LDC lower bounds and use the direct sum
transformation of [KW04] and the result of [ABS+23] to prove Theorem 1.3.

One salient feature of the proof of Theorem 1.2 is that it crucially relies on the results of [ABS+23]
(Theorem 2.1) regarding the existence of rainbow cycles in properly edge-colored graphs, which was
only feasible due to the 3-uniformity of the query sets. For higher query complexities, we remedy
this obstacle by introducing a hypergraph generalization of Theorem 2.1, stated below.

Definition 4.1 (Rainbow LDC Lower Bound). For δ > 0 and r, n ∈ N with r ⩾ 2, let k
(r)
rainbow(δ, n)

be the smallest natural number such that the following holds: for any arbitrary r-matchings H1, . . . ,Hk

over [n] with k ⩾ k
(r)
rainbow(δ, n) satisfying |Hi| ⩾ δn for all i ∈ [k], there exists a nonempty collection

of hyperedges E ⊆ ∪k
i=1Hi such that

⊕
E∈E E = ∅ and |E ∩ Hi| ⩽ 1 for all i ∈ [k].

We dub Definition 4.1 as the rainbow LDC lower bound problem. Our choice of naming comes

from the fact that upper bounds on k
(r)
rainbow(δ, n) formally prove limitations for binary linear r-

LDCs. This can be seen from the viewpoint of LDC lower bounds as finding “odd even covers,”
formally shown in [HKM+24b].

Proposition 4.1. [HKM+24b, Lemma 2.7] For δ > 0 and r, n ∈ N with r ⩾ 2, let k
(r)
odd(δ, n) ∈ N be

the smallest natural number such that the following holds: for any arbitrary r-matchings H1, . . . ,Hk

over [n] with k ⩾ k
(r)
odd(δ, n) satisfying |Hi| ⩾ δn for all i ∈ [k], there exists a nonempty collection

of hyperedges E ⊆ ∪k
i=1Hi such that

⊕
E∈E E = ∅ and |E ∩ Hi| is odd for some i ∈ [k]. Then any

binary linear (r, δ)-LDC8 of block length n has dimension less than k
(r)
odd(δ, n).

Note that k
(r)
odd(δ, n) ⩽ k

(r)
rainbow(δ, n) as the property in Definition 4.1 implies the property

in Proposition 4.1. Now, with Definition 4.1 at hand, we can state our generalization of Theorem 1.1.

Theorem 4.2. Let δ ∈ (0, 1) and r, n ∈ N with r ⩾ 3. Then for any [n, k] binary linear (r, δ)-LCC,
we have that

k ⩽ O(δ−1 · log n · k(r−1)
rainbow(δ/2, n)) .

The proof of Theorem 4.2 follows almost identically the proof of Theorem 1.1 in Section 3.
Indeed, the main property we needed from the rainbow cycle we found via Theorem 2.1 was that

8See Definition A.1 for a formal definition of a linear (r, δ)-LDC.
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the symmetric difference of the edges was the empty set and that every color appeared at most
once. Thus if we generalize properly edge-colored graphs to properly edge-colored (r − 1)-uniform
hypergraphs9 and use Definition 4.1 in place of Theorem 2.1 in Section 3, the proof of Theorem 4.2
would then follow. To avoid redundancy, we leave the full proof of Theorem 4.2 as an exercise for
the reader.

As for upper and lower bounds on k
(r)
rainbow(δ, n), we know for r = 2 that k

(2)
rainbow(δ, n) ⩾ Ω(log n)

by considering the canonical coloring of the edges of the hypercube. Furthermore, by Theorem 2.1,

we also know that k
(2)
rainbow(δ, n) ⩽ O(δ−1 log n log logn). Now, as for r ⩾ 3, it follows from con-

sidering random r-uniform matchings that k
(r)
rainbow(δ, n) ⩾ Ωδ(n

1−2/r) [HKM24a], which is a much

higher lower bound than the bound k
(r)
odd(δ, n) ⩾ exp(Ωδ((log logn)

2)) for r ⩾ 3 obtained from
known constructions of binary linear r-LDCs [Yek08, Efr12].

Now, for the remainder of this section, we will prove the following proposition.

Proposition 4.3. For any even r ⩾ 4 and δ ∈ (0, 1), we have k
(r)
rainbow(δ, n) ⩽ O(δ−1n1−2/r log2 n).

Note that by combining Proposition 4.3 and Theorem 4.2, we immediately deduce Theorem 1.3.
Thus it suffices for us to prove Proposition 4.3.

Proof of Proposition 4.3. We proceed by applying the direct sum transformation of [KW04] to
produce an edge-colored graph from the r-uniform matchings. Then using a deletion process similar
to what was done in [GKM22, HKM23, AGKM23], we will delete a sub-constant fraction of the
edges from the graph to produce a properly edge-colored graph. We then apply Theorem 2.1 to
obtain a rainbow cycle and thus recover a rainbow even cover from it. The formal details follow.

Let c0 be the absolute constant from Theorem 2.1. We will show that for every choice of r-
uniform matchings H1, . . . ,Hk over [n] with k ⩾ 2r

2+1c0δ
−1n1−2/r log2 n and |Hi| ⩾ δn for all i ∈

[k], there is a nonempty subset of hyperedges E ⊆ ∪k
i=1Hi satisfying ⊕E∈EE = ∅ and |E ∩ Hi| ⩽ 1

for all i ∈ [k]. This will imply k
(r)
rainbow(δ, n) ⩽ 2r

2+1c0δ
−1n1−2/r log2 n = O(δ−1n1−2/r log2 n).

Define ℓ := 4−rn1−2/r and N :=
(
n
ℓ

)
. Consider an edge-colored (not necessarily simple) graph G

over
([n]

ℓ

)
where two vertices A,B ∈

([n]
ℓ

)
share an edge of color i ∈ [k] if and only if A⊕B ∈ Hi. Fix

any index i ∈ [k] and hyperedge E ∈ Hi. Observe that the number of sets A,B ∈
([n]

ℓ

)
satisfying

A⊕B = E is (
r

r/2

)(
n− r

ℓ− r/2

)
⩾ N ·

(
ℓ

n

)r/2

= N · 2
−r2

n
. (2)

Now, let us upper bound the number of edges {A,B} in G of color i satisfying A⊕B = E such that

one of A or B is incident to another edge in G of color i. Consider a set A′ ∈
([n]

ℓ

)
different from B

such that {A,A′} is an edge in G of color i. Define E′ := A⊕A′ ∈ Hi. Because |A| = |B| = |A′| = ℓ,
then we deduce that |A ∩ E| = |B ∩ E| = |A ∩ E′| = |A′ ∩ E′| = r/2. Furthermore, because A′ ̸= B
and Hi is a matching, we have E ̸= E′ and hence E∩E′ = ∅. Thus we find that |A ∩ (E ∪ E′)| = r.
Now, since Hi is an r-uniform matching, then |Hi| ⩽ n/r. Thus there are at most n/r choices for
E′ and hence at most n/r choices for E ∪ E′. For each such choice, there are at most

(
2r
r

)(
n−2r
ℓ−r

)
choices for A′. By repeating the same argument for B, we therefore deduce that the number of
such edges {A,B} is at most

2n

r
·
(
2r

r

)(
n− 2r

ℓ− r

)
⩽ n · 4r ·

(
ℓ

n

)r

·
(
n

ℓ

)
= N · 4

r(4−rn1−2/r)r

nr−1
⩽ N · 2

−2r2+2r

n
. (3)

9We say that an edge coloring of a hypergraph H is proper if for any distinct hyperedges e1, e2 ∈ H satisfying
e1 ∩ e2 ̸= ∅, e1 and e2 are assigned different colors.
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Now, let G′ be the edge-colored subgraph of G consisting of all edges in G that are not incident
to any other edge of the same color. By definition, it follows that G′ is properly edge-colored.
Furthermore, by combining (2) and (3), we find that the number of edges in G′ is at least(

N · 2
−r2

n
−N · 2

−2r2+2r

n

)
k∑

i=1

|Hi| ⩾ N · 2
−r2−1

n
· k · δn

= N · 2−r2−1δk

⩾ N · 2−r2−1δ(2r
2+1δ−1c0n

1−2/r log2 n)

= c0N · n1−2/r log n · log n
⩾ c0N · logN · log logN .

Thus by Theorem 2.1, we can find a rainbow cycle in G′. That is, there exists m ∈ N and distinct
indices i1, . . . , im ∈ [k] and sets A1, A2, . . . , Am, Am+1 = A1 ∈

([n]
ℓ

)
such that As ⊕ As+1 ∈ His for

all s ∈ [m]. Now, define Es := As ⊕As+1 ∈ His for each s ∈ [m]. Then we find that

m⊕
s=1

Es =
m⊕
s=1

(As ⊕As+1) =
m⊕
s=1

As ⊕
m⊕
s=1

As = ∅ .

Thus if we define the set E := {E1, . . . , Em}, then we see that ⊕E∈EE = ∅ and |E ∩ Hi| ⩽ 1 for all
i ∈ [k], which is what we wanted to show.
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A A new proof of the exponential linear 2-LDC lower bound

In this appendix, we present a new proof of the well-known exponential lower bound for linear
2-query locally decodable codes [KW04, GKST06] à la [IS20]. We begin by stating the definition
of a linear 2-query LDC for general finite fields Fq. Note that this is usually referred to as a linear
2-LDC in normal form, but by known reductions [Yek12], the existence of a linear 2-LDC implies
the existence of a linear 2-LDC in normal form. In what follows, the vectors e1, . . . , ek ∈ Fk

q denote
the standard basis.

Definition A.1 (Linear LDC). Given a generator matrix M ∈ Fn×k
q , let vi the i’th row of M for

i ∈ [n]. For r ∈ N and δ > 0, we say that M forms a (r, δ)-locally decodable code (abbreviated (r, δ)-
LDC) if there exist r-uniform matchings H1, . . . ,Hk over [n] such that |Hi| ⩾ δn for all i ∈ [k],
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and for any i ∈ [k] and E = {a1, . . . , ar} ∈ Hi, there exist αE
s ∈ Fq \ {0} for s ∈ [r] satisfying

ei =
∑r

s=1 α
E
s vas.

Remark A.1. While the LCC property (Definition 2.2) is a property of the code, the LDC property
is a property of the generator matrix of the code and not an inherent property of the code. That is,
a different choice of generator matrix for the same code would not necessarily fulfill Definition A.1.

We now state the key result driving this section, which is the following weight contraction
lemma.

Lemma A.1. For any x ∈ Fk
q , there exist a1, a2 ∈ [n] and γ1, γ2 ∈ Fq \ {0} satisfying

wt(x+ γ1va1 + γ2va2) ⩽ (1− 2δ/q)wt(x) .

Proof. The proof proceeds via a “path coupling” style argument on the Cayley graph Cay(Fk
q , {αvi :

α ∈ Fq \{0}, i ∈ [n]}) but with the Hamming distance acting as the contracted distance. For q = 2,
if we have y, z ∈ Fk

2 with y + z = ei, then by evolving (y, z) to (y + va, y + vb) where a ∈ [n] is
uniform, and b is a’s matched vertex in Hi if it exists and b = a otherwise, we can reduce the
Hamming distance between y and z with probability Ω(δ). For arbitrary y, z ∈ Fk

q , we consider

their shortest path in Cay(Fk
q , {αei : α ∈ Fq \ {0}, i ∈ [k]}) and couple the vertices of each pair of

edges along that path accordingly. We now proceed with the formal argument for general q below.

Let S := supp(x) and w := |S|. Write S = {i1, . . . , iw} and x = β1ei1 + . . . + βweiw for
βt ∈ Fq \{0}. Consider a uniformly randomly and independently chosen γ0 ∈ Fq \{0} and a0 ∈ [n].
For each t ∈ [w], define γt ∈ Fq \ {0} and at ∈ [n] as

(γt,at) =

{
(−γt−1(α

E
at−1

)−1αE
b , b) if ∃ b ∈ [n] such that E := {at−1, b} ∈ Hit ,

(γt−1,at−1) otherwise.

Note that b is well-defined in the first case as H1, . . . ,Hk are matchings. Furthermore, by a simple
induction on t, it follows that (γt,at) is uniformly random on (Fq \{0})×[n] for all t ∈ {0, 1, . . . , w}.
Now, for each t ∈ [w], define

β′
t =

{
βt + γt−1(α

E
at−1

)−1 if ∃ b ∈ [n] such that E := {at−1, b} ∈ Hit ,

βt otherwise.

Then from the definitions, it follows that

γt−1vat−1 + βteit = β′
teit + γtvat (4)

for all t ∈ [w]. Thus by iteratively applying (4), we deduce that

γ0va0 + x = γ0va0 + β1ei1 + . . .+ βweiw = β′
1ei1 + . . .+ β′

weiw + γwvaw .

Thus we find that
x+ γ0va0 − γwvaw = β′

1ei1 + . . .+ β′
weiw . (5)

Now, for each t ∈ [w], let Et denote the event that there exists b ∈ [n] such that {at−1, b} ∈ Hit .
Because at−1 is uniformly random over [n] and Hit is a matching of size at least δn, it therefore
follows that Pr [Et] ⩾ 2δ. Furthermore, in the event that Et occurs, β′

t will be uniformly random
over Fq \ {βt} as γt−1 is uniformly random over Fq \ {0}. This implies that Pr

[
β′
t = 0 | Et

]
⩾ 1/q.

Hence we find that Pr
[
β′
t = 0

]
⩾ Pr

[
β′
t = 0 | Et

]
Pr [Et] ⩾ 2δ/q. Now, let X be the number of
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β′
1, . . . ,β

′
w that are equal to zero. By linearity of expectation, we find that E [X] ⩾ (2δ/q)w. Thus,

there exist γ0, γw ∈ Fq \ {0} and a0, aw ∈ [n] such that X ⩾ (2δ/q)w. From (5), we find that

wt(x+ γ0va0 − γwvaw) = wt(β′
1ei1 + . . .+ β′

weiw) ⩽ w −X ⩽ (1− 2δ/q)w ,

which completes our proof.

By iteratively applying the above lemma an appropriate number of times, one can immediately
deduce the following.

Theorem A.2. Suppose that a generator matrix M ∈ Fn×k
q with rows v1, v2, . . . , vn ∈ Fk

q forms a

(2, δ)-LDC. Then, for some absolute constant c > 0, the following holds for every x ∈ Fk
q :

• There exists I ⊆ [n] with |I| ⩽ cqδ−1 log k such that x is in the Fq-span of {vi}i∈I

• There exist J ⊆ [n] with |J | ⩽ cqδ−1 and y in the Fq-span of {vj}j∈J such that the Hamming
distance between x and y is at most k/4.

The exponential lower bound for 2-LDC now follows by essentially a covering radius argument.

Theorem A.3. Let M ∈ Fn×k
q be a generator matrix that forms a (2, δ)-LDC. Then k ⩽ Oq,δ(log n).

Proof. Let v1, . . . , vn ∈ Fk
q be the n rows of M , and c be the absolute constant from Theorem A.2.

Define W ⊆ Fk
q to be the set of vectors which are in the span of at most cqδ−1 vectors amongst the

vi’s. Clearly
|W | ⩽ (qn)cqδ

−1
. (6)

Let U ⊆ Fk
q consist of all vectors within Hamming distance k/4 from some element of W . By

Theorem A.2, U = Fk
q . On the other hand,

qk = |U | ⩽ |W | · qhq(1/4)k . (7)

where hq(x) := x logq(q−1)−x logq x− (1−x) logq(1−x) is the q-ary entropy function. Combining
(6) and (7), we conclude that (1−hq(1/4))k ⩽ cqδ−1 logq(qn) so that k ⩽ Oq,δ(log n) as desired.
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