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Abstract

The fundamental theorem of Goldreich, Micali, and Wigderson (J. ACM 1991) shows that the
existence of a one-way function is sufficient for constructing computational zero knowledge (CZK)
proofs for all languages in NP. We prove its converse, thereby establishing characterizations of
one-way functions based on the worst-case complexities of zero knowledge. Specifically, we prove
that the following are equivalent:

1. A one-way function exists.

2. NP ⊆ CZK and NP is hard in the worst case.

3. CZK is hard in the worst case and the problem GapMCSP of approximating circuit com-
plexity is in CZK.

The characterization above also holds for statistical and computational zero-knowledge argument
systems. We further extend this characterization to a proof system with knowledge complexity
O(log n). In particular, we show that the existence of a one-way function is characterized by
the worst-case hardness of CZK if GapMCSP has a proof system with knowledge complexity
O(log n). We complement this result by showing that NP admits an interactive proof system
with knowledge complexity ω(log n) under the existence of an exponentially hard auxiliary-input
one-way function (which is a weaker primitive than an exponentially hard one-way function). We
also characterize the existence of a robustly-often nonuniformly computable one-way function
by the nondeterministic hardness of CZK under the weak assumption that PSPACE ̸⊆ AM.

We present two applications of our results. First, we simplify the proof of the recent char-
acterization of a one-way function by NP-hardness of a meta-computational problem and the
worst-case hardness of NP given by Hirahara (STOC’23). Second, we show that if NP has a la-
conic zero-knowledge argument system, then there exists a public-key encryption scheme whose
security can be based on the worst-case hardness of NP. This improves previous results which
assume the existence of an indistinguishable obfuscation.
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1 Introduction

A one-way function [DH76] is a polynomial-time computable function that is hard to invert on
average. This is arguably the most fundamental cryptographic primitive because the existence of
a one-way function is equivalent to the existence of many other cryptographic primitives, such as
a pseudorandom generator [HILL99], a pseudorandom function generator [GGM86], a private-key
encryption [GM84], a commitment scheme [Nao91], and a digital signature [Rom90]. It is also
equivalent to the average-case hardness of various learning tasks, such as PAC learning [BFKL93],
learning adaptively changing distributions [NR06], agnostic learning [HN23], and distributional
learning [HN23]. Moreover, it is equivalent to the average-case hardness of meta-computational
problems, i.e., the problems that ask about computational complexity. Examples include the prob-
lems of computing time-bounded Kolmogorov complexity [LP20] and time-bounded universal prob-
ability [IL90] and the Minimum Circuit Size Problem (MCSP) [IRS22]. A one-way function is the
focal point at which cryptography, learning theory, and (meta-)complexity theory meet.

Despite the long list of cryptographic primitives whose existence is equivalent to the existence of
a one-way function, there is one exception — zero knowledge — whose relation to a one-way function
remains elusive. Goldwasser, Micali, and Rackoff [GMR89] introduced the notion of zero knowledge,
which has had fundamental impacts on complexity theory and cryptography. A zero-knowledge
proof system for a language L is a system in which a prover convinces an efficient verifier that
an input is in L without revealing any other information. The fundamental theorem of Goldreich,
Micali, and Wigderson [GMW91] shows that the existence of a one-way function is sufficient for
constructing zero-knowledge proof systems for all languages in NP, i.e., NP ⊆ CZK, where CZK
denotes the class of promise problems that admit zero-knowledge proof systems. It is a long-standing
open question whether a one-way function is necessary. Ostrovsky and Wigderson [OW93] showed
a partial converse of the theorem of [GMW91]: If CZK is worst-case hard (CZK ̸⊆ BPP), then
there exists an auxiliary-input one-way function (AIOWF), which has a conceptually weaker form
of one-wayness than the standard one. An auxiliary-input one-way function f = {fx}x∈{0,1}∗ is a
polynomial-time computable function such that for every efficient algorithm A, there exists some
auxiliary input x such that A(x, -) fails to invert fx. They also showed that if CZK is average-case
hard, then a (standard) one-way function exists. Their results leave as a major open problem the
gap between the worst-case complexity of zero-knowledge and the existence of a one-way function.
Indeed, Ostrovsky and Wigderson [OW93] noted that it seems impossible to close the gap between
worst-case and average-case complexities.1

2 Our Results

In this paper, we present new characterizations of the existence of a one-way function by worst-
case complexities of zero knowledge. There are four variants of zero knowledge: statistical zero-
knowledge proof systems (SZK), computational zero-knowledge proof systems (CZK), statisti-
cal zero-knowledge argument systems (SZKA), computational zero-knowledge argument systems
(CZKA). An argument system is a system in which the soundness is guaranteed only against effi-

1They wrote “We show that it is possible to obtain an average case complexity result assuming only the nonexis-
tence of uniform one-way functions. On the other hand, it seems that to obtain a worst case complexity result it is
impossible to avoid non-uniformity in the definition of one-way function, due to the (non-uniform) input to the proof
system.” [OW93, page 4]
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cient provers. This is in contrast to a proof system, in which the soundness is guaranteed to hold for
every prover. SZK is the smallest class among the four that is known to be in AM ∩ coAM [AH91;
For89] and thus unlikely to contain NP. For the other three types of proof systems, we characterize
the existence of a one-way function as follows.

Theorem 2.1. For any C ∈ {SZKA,CZK,CZKA} and any constant ϵ ∈ (0, 1/2), the following are
equivalent.

1. There exists a one-way function secure against P/poly, i.e., polynomial-size circuits.

2. NP ⊆ C and NP ⊈ i.o.P/poly.

3. GapϵMCSP ∈ C and C ̸⊆ i.o.P/poly.

4. (GapϵMCSP,U) ∈ AvgC and C ̸⊆ i.o.P/poly, where U denotes the uniform distribution.

Here, GapϵMCSP denotes the approximate version of the Minimum Circuit Size Problem: Given
the truth table of a function f : {0, 1}n → {0, 1}, the task is to decide whether there exists a circuit
of size at most 2ϵn or any circuit that computes f is of size at least 2(1−ϵ)n. AvgCZK is the class of
distributional problems that can be solved by an errorless average-case CZK scheme.

For C = CZK, Theorem 2.1 provides the converse of the aforementioned theorem of Goldreich,
Micali, and Wigderson [GMW91]. Note that the existence of a one-way function implies that NP
cannot be computed by polynomial-size circuits almost everywhere, i.e., NP ̸⊆ i.o.P/poly. This fact
together with [GMW91] shows Item 1 ⇒ Item 2. We prove its converse, thereby proving that a
one-way function is necessary to construct zero-knowledge proof systems for all languages in NP.

For C = SZKA, Nguyen, Ong, and Vadhan [NOV06] showed that a one-way function is sufficient
for constructing statistical zero-knowledge argument systems for all languages in NP, i.e., NP ⊆
SZKA. Theorem 2.1 shows the converse to their theorem.

A salient feature of Theorem 2.1 is that the statement of Item 2 only involves the fundamental
notions defined before the 1980s when the notion of computational zero knowledge was introduced
[GMR89], yet it characterizes the fundamental cryptographic primitive introduced by Diffie and
Hellman [DH76]. Previously, the existence of a one-way function was characterized in terms of
worst-case complexities by introducing new (somewhat artificial) problems based on the notion of
computational depth [HN23; LP23] or introducing a new meta-computational problem [Hir23].

We remark that our result and the prior work [OW93] are incomparable to each other. [OW93]
does not assume any structure for C ∈ {SZKA,CZK,CZKA} than the nontriviality (i.e., the worst-
case hardness) but show only a conceptually weak form of one-wayness (i.e., AIOWFs). By contrast,
we derive a standard one-way function from the nontriviality of C but require an additional structure
that C contains GapϵMCSP, which is satisfied in the context of the converse of [GMW91].

A key ingredient in the proof is worst-case to average-case reductions. It should be noted
that the equivalence between Items 1 and 2 does not involve the notion of meta-complexity, yet
the notion of meta-complexity plays an important role: We actually prove a stronger implication
from Item 4 to Item 1; that is, we construct a one-way function based on the worst-case hardness
of CZK and an average-case CZK scheme for GapϵMCSP. Note that Item 2 implies Item 3 just
because GapϵMCSP is a (promise) problem in NP, and that Item 3 implies Item 4 just because an
average-case problem is easier than its worst-case counterpart.

Items 3 and 4 elucidate that the gap between the existence of a one-way function and the
worst-case hardness of CZK is due to the lack of zero-knowledge proofs for meta-computational
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problems. In fact, there is evidence that proving (GapϵMCSP,U) ∈ AvgCZK unconditionally might
be within reach of current techniques. Ilango, Ren, and Santhanam [IRS22] showed that GapϵMCSP
is infinitely often in CZK on average with respect to any locally samplable distribution. Note that
the notion of average-case complexity in [IRS22] is error-prone, meaning that the zero-knowledge
proof system does not know when it makes a mistake. In contrast, (GapϵMCSP,U) ∈ AvgCZK refers
to the existence of an errorless average-case CZK scheme, meaning that the zero-knowledge proof
system knows when it makes a mistake; i.e., it must output either a correct answer or a special
symbol “⊥”, which indicates the failure of an algorithm. This gap between errorless and error-prone
average-case complexities can be closed if GapϵMCSP admits an average-polynomial-time instance
checker whose query distribution is locally samplable [HS22].

Currently, GapϵMCSP is an NP-intermediate status [AH19], though many variants ofMCSP have
been shown to be NP-complete (see [Hir22; Ila23] and references therein). Hirahara [Hir18] showed
that the worst-case and average-case complexities of GapϵMCSP are equivalent for polynomial-
time algorithms. This is proved by a non-black-box reduction and hence does not generalize to
AvgCZK. Theorem 2.1 shows that the worst-case and average-case complexities of GapϵMCSP are
equivalent for zero-knowledge proof systems under the assumption that CZK ̸⊆ i.o.P/poly. Even
more surprisingly, under the same assumption, it shows that the complexities of NP and GapϵMCSP
are equivalent for CZK in the sense that NP ⊆ CZK if and only if GapϵMCSP ∈ CZK.

2.1 An Unconditional Study of Computational Knowledge Complexity

Our results raise the following natural question: What is the weakest assumption for characterizing
the existence of a one-way function by the worst-case hardness of CZK? Theorem 2.1 identifies the
sufficient condition that GapϵMCSP ∈ CZK. A natural relaxation of zero knowledge is to consider
knowledge complexity not necessarily zero.

Definition 2.2 (Knowledge complexity [GP99]2). An interactive proof system (P, V ) for a promise
problem Π = (Πyes,Πno) has computational knowledge complexity k(n) if there exist a probabilistic
polynomial-time algorithm S and a function κ = {κn} where κn : {0, 1}n×{0, 1}poly(n) → {0, 1}k(n)
such that for every x ∈ Πyes, the distributions of S(x, κ|x|(x, r); r) for r ∼ {0, 1}poly(|x|) is com-
putationally indistinguishable from the verifier’s view of the interaction between P and V on the
common input x.

The case of knowledge complexity being zero corresponds to the standard notion of computa-
tional zero knowledge. We strengthen Theorem 2.1 to interactive proof systems with knowledge
complexity O(log n); i.e., we allow a prover to leak O(log n) bits of information to a verifier.

Theorem 2.3. The following are equivalent:

1. There exists a one-way function secure against P/poly.

2. NP ⊈ i.o.P/poly and NP has an interactive proof system of computational knowledge complex-
ity O(log n) with a negligible soundness error.

3. CZK ̸⊆ i.o.P/poly and GapϵMCSP has interactive proof systems of computational knowledge
complexity O(log n) with a negligible soundness error.

2Our definition is equivalent to that of [GP99] defined in the oracle sense, which is originally defined as the query
complexity of the simulator given access to an oracle that provides an advice bit for each access. The equivalence is
easily verified by identifying κ(x, r) with the (concatenated) answers from the oracle for S(x; r).
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Thus, constructing an O(log n)-knowledge proof system for GapϵMCSP is sufficient for charac-
terizing the worst-case hardness of CZK by the existence of a one-way function. We complement
this result by showing that it is possible to construct a proof system with non-trivial knowledge
complexity under an assumption weaker than the existence of a one-way function.

Theorem 2.4. If there exists an auxiliary-input one-way function secure against P/poly, then NP
has an interactive proof system of computational knowledge complexity nϵ (with negligible complete-
ness and soundness error) for every constant ϵ > 0.

Note that the worst-case hardness of CZK implies the existence of an auxiliary-input one-way
function [OW93]. Thus, if the knowledge complexity nϵ of Theorem 2.4 were smaller than the
knowledge complexity O(log n) of Theorem 2.3, then we would characterize the existence of a one-
way function by the worst-case hardness of CZK. If we assume the exponential hardness of an
auxiliary-input one-way function, the gap in the knowledge complexity becomes quite small.

Theorem 2.5. If there exist a constant ϵ > 0 and an auxiliary-input one-way function expo-
nentially secure against SIZE[2ϵn], then for every increasing function k(n) = ω(log n), NP has an
interactive proof system of computational knowledge complexity k(n) (with negligible completeness
and soundness error).

2.2 Nonuniform One-Way Functions and Nondeterministic Hardness of Zero
Knowledge

Next, we consider a weaker cryptographic primitive — a robustly-often P/poly-computable one-
way function, i.e., a one-way function computable by a polynomial-size circuit. This is an inter-
mediate notion between a one-way function and an auxiliary-input one-way function. Under the
weak assumption that PSPACE ̸⊆ AM, we characterize the existence of a robustly-often P/poly-
computable one-way function by the nondeterministic hardness of CZK, such as i.o.N·CZK ̸⊆
i.o.AM = i.o.N·BPP. Here, “N·” denotes the operator of adding an existential quantifier: For a
complexity class C, the class N·C is the class of promise problems that can be accepted by nonde-
terministic C-type algorithms. For example, N·P = NP (see Definition 7.2 for the formal definition
of “N·”). One can think of the hardness assumption that i.o.N·CZK ̸⊆ i.o.AM = i.o.N·BPP as the
nondeterministic version of the worst-case hardness of CZK. This assumption is stronger than the
worst-case hardness of CZK: i.o.N·CZK ̸⊆ i.o.N·BPP implies CZK ̸⊆ BPP. Yet, we characterize the
weaker primitive, a P/poly-computable one-way function, than a one-way function. In the following
result, we obtain equivalent statements not only for D = AM.

Theorem 2.6. For every complexity class D satisfying MA ⊆ D and PSPACE ⊈ D, the following
are equivalent:

1. There exists a robustly-often P/poly-computable one-way function.

2. PSPACE ⊆ i.o.CZK/poly

3. PSPACE ⊆ i.o.N·CZK

4. i.o.CZK ⊈ i.o.D/poly

5. i.o.N·CZK ⊈ i.o.D
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6. i.o.CZK ⊈ i.o.NP/poly

7. i.o.N·CZK ⊈ i.o.MA

An intriguing aspect of this result is that it shows the equivalence between the computational
power of non-uniform advice “/poly” and the nondeterministic operator “N·” in the sense that
PSPACE ⊆ i.o.CZK/poly and PSPACE ⊆ i.o.N·CZK are equivalent under the assumption that
PSPACE ̸⊆ MA.

Consider the case of D = PH. In this case, Theorem 2.6 shows the equivalence between
i.o.CZK ̸⊆ i.o.MA/poly and i.o.CZK ̸⊆ i.o.PH/poly under the plausible assumption that PSPACE ̸⊆
PH. That is, the computational power of i.o.MA/poly and i.o.PH/poly is equivalent for computing
i.o.CZK.

2.3 Simplifying Hirahara’s Characterization of One-Way Functions

Recently, Hirahara [Hir23] captured the existence of a one-way function by NP-hardness of a new
meta-complexity problem. The t-time-bounded distributional Kolmogorov complexity dKt,A

λ (x | D)
of a string x given a distribution D with respect to an oracle A is defined as the length of a shortest
A-oracle program that prints x in time t on input y with probability at least λ over a random string
y drawn from D. The existence of a one-way function was characterized by the worst-case hardness
of NP and “structured” NP-hardness of approximating distributional Kolmogorov complexity.

Theorem 2.7 ([Hir23]; informal). The following are equivalent.

1. There exists a one-way function secure against P/poly.

2. NP ̸⊆ i.o.P/poly and for some constant ϵ > 0, there exists a parametric-honest3 randomized
polynomial-time many-one4 reduction from NP to a (1+ ϵ)-factor approximation of dKτ,A for
all large polynomials τ and all oracles A ∈ P/poly.

The proof of Theorem 2.7 is quite involved, as it combines many ideas developed in the literature
of meta-complexity. As an application of our results, we present a simple proof of Item 2⇒ 1. The
key observation is that the NP-hardness of approximating distributional Kolmogorov complexity
implies the existence of a SZKA protocol for NP.

Theorem 2.8. If there exist a constant ϵ > 0 and a parametric-honest randomized polynomial-time
many-one reduction from NP to a (1+ ϵ)-factor approximation of dKτ,A for all large polynomials τ
and all oracles A ∈ P/poly, then NP ⊆ SZKA.

Together with Theorem 2.1, Theorem 2.8 immediately implies Item 2 ⇒ 1 in Theorem 2.7.
This clarifies that the ideas behind Theorem 2.7 are, in fact, the construction of statistical zero
knowledge argument systems for NP.

It is instructive to point out that we do not know how to construct SZKA systems for meta-
computational problems themselves, such as GapϵMCSP and the problem of approximating dK.
(Constructing SZKA systems for such meta-computational problems is sufficient for characterizing

3A reduction to dK is said to be parametric-honest if there exists a constant γ > 0 such that the size parameter s
in any query of the reduction on inputs of length n satisfies s ≥ nγ .

4The actual result of [Hir23] is stronger than one stated here: the equivalence holds even for nonadaptive reductions
that make polynomially many queries. We present a simplified proof for the weak version of the result of [Hir23].
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the existence of a one-way function by the worst-case hardness of SZKA because of Theorem 2.1.)
Nevertheless, (the proof of) Theorem 2.8 shows that a reduction from a problem Π to meta-
computational problems enables us to construct a SZKA system for Π.

2.4 Towards Basing Public-Key Cryptography on the Worst-Case Hardness of
NP

As another corollary of our results, we show that a laconic zero-knowledge argument system for
NP enables us to base the security of a public-key cryptosystem on the worst-case hardness of NP.
Informally, a zero-knowledge argument system is said to be laconic [GH98; BDRV18] if the number
of rounds and the total number of bits sent by a prover are sufficiently smaller than O(log n) on
inputs of length n (see [BDRV18] for the formal definition). Berman, Degwekar, Rothblum, and
Vasudevan [BDRV18] showed that constructing laconic zero-knowledge argument systems for NP
is sufficient for basing the security of a public-key encryption scheme on the existence of a one-way
function. Combining this result with Theorem 2.1, we obtain the following corollary:

Corollary 2.9. • If NP has a laconic zero-knowledge argument system, then there exists a
public-key encryption scheme whose semantic security is based on NP ̸⊆ i.o.P/poly.

• For every ϵ ∈ (0, 1/2), if GapϵMCSP has a laconic zero-knowledge argument system, then
there exists a public-key encryption scheme whose semantic security is based on GapϵMCSP ̸∈
i.o.P/poly.

In terms of Impagliazzo’s five worlds [Imp95], this shows an approach towards excluding Heuris-
tica, Pessiland, and Minicrypt simultaneously: Constructing a laconic zero-knowledge argument
system for an NP-complete problem suffices. Previously, it was known that the existence of an
indistinguishable obfuscation suffices. This follows from the work of Komargodski, Moran, Naor,
Pass, Rosen, and Yogev [KMNPRY14], which eliminates Heuristica and Pessiland, and Sahai and
Waters [SW21], which eliminates Minicrypt, respectively, under the existence of an indistinguisha-
bility obfuscation. Since a laconic zero-knowledge argument system can be constructed for NP
from an indistinguishability obfuscation [KMNPRY14], our results weaken the previous assump-
tion needed to base the security of a public-key encryption scheme on the worst-case hardness of
NP.

3 Proof Techniques

In this section, we mainly present the key ideas to show Theorems 2.1 and 2.3.
Notations. For a distribution D, we use the notation x ∼ D to refer to the sampling of x

according to D. For every promise problem Π = (Πyes,Πno) and every x ∈ Πyes ∪ Πno, we define
Π(x) as

Π(x) =

{
1 if x ∈ Πyes,

0 if x ∈ Πno.

3.1 Starting Point: The Case of Statistical Zero-Knowledge Arguments

First, we consider the special case of Theorem 2.1 in which C = SZKA, which is the starting point
of this work. In this special case, Item 2 ⇒ Item 1 of Theorem 2.1 can be shown by a careful
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combination of two previous results of Ostrovsky [Ost91] and Nanashima [Nan21].
Ostrovsky [Ost91] showed that the average-case hardness of SZK implies the existence of a one-

way function. This is proved by a reduction ROst from any problem in SZK on input x to the task of
inverting an auxiliary-input one-way function fx on auxiliary input x. Nanashima [Nan21] showed
that if NP is reducible to the task of inverting an auxiliary-input one-way function, then the security
of a one-way function can be based on the worst-case hardness of NP. Combining the ideas behind
these two results,5 it is possible to prove the following: If NP ⊆ SZK and NP ̸⊆ i.o.P/poly, then
there exists a one-way function. However, it is unlikely that SZK contains NP, and Theorem 2.1
differs from this in that we assume NP ⊆ SZKA instead of NP ⊆ SZK.

To prove Theorem 2.1 for C = SZKA, we need to extend the two results of [Ost91; Nan21] as
follows:

1. Applying the reduction ROst of Ostrovsky [Ost91] to SZKA, we show that if there exists a
worst-case hard problem Π in SZKA, then there exists an auxiliary-input one-way function
f . Note that this is not a (black-box) reduction from Π to inverting f anymore: We can still
prove that Π can be solved by the reduction RA

Ost together with an efficient algorithm A that
inverts f ; however, if A is not efficient, the reduction is not guaranteed to work correctly.
This is because we leverage the soundness of SZKA, which holds only for efficient provers.

2. To use the result of Nanashima [Nan21], we need a reduction from NP to the task of inverting
an auxiliary-input one-way function. In fact, as shown by Hirahara [Hir23], Nanashima’s
results can be extended to a certain type of non-black-box reductions, i.e., reductions that
are only guaranteed to work correctly if an oracle is efficient. In particular, the result of
Nanashima [Nan21] can be combined with the non-black-box reduction ROst of Ostrovsky
[Ost91] applied to SZKA.

3.2 Generalizing Nanashima’s Reduction

Extending the proof ideas in Section 3.1 to the case of C = CZK is highly nontrivial. A natural
attempt would be to replace [Ost91] with [OW93]: Ostrovsky and Wigderson [OW93] extended the
result of Ostrovsky [Ost91] to the case of CZK by showing that if CZK is worst-case hard, then
there exists an auxiliary-input one-way function. This is proved by a certain type of non-black-box
reductions, and if this could be combined with [Nan21], then we would be done. Unfortunately,
in [OW93], the assumption of efficient inversion was applied in various ways: For example, a
polynomial-time-computable function constructed from another efficient inverter needs to be in-
verted [OW93, Theorems B3 and 7]. Thus, the proof of [OW93] does not yield a reduction to
inverting a particular function f ; defining a function f to be inverted requires the assumption of
the nonexistence of one-way functions. It is unclear whether such a proof can be combined with
Nanashima’s result.

To prove Theorem 2.1 for C ∈ {CZK,CZKA} (as well as C = SZK), we generalize Nanashima’s
reduction in an instance-dependent fashion, as proposed in the unconditional study of computational
zero knowledge by Vadhan [Vad06]. For this purpose, we introduce two key properties of promise
problems, which are sufficient for Nanashima’s reduction to go through.

5The result of [Nan21] is stated only for nonadaptive reductions, whereas the reduction ROst is adaptive. However,
by inspecting the proof of [Nan21], one can observe that the reduction can be adaptive in the result of [Nan21], as
long as the reduction does not make adaptive queries to auxiliary inputs; thus, the result of [Nan21] is applicable to
the reduction ROst of [Ost91].
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To motivate the two properties, we briefly review the proof of Nanashima [Nan21], which consists
of the following three steps:

1. Reduce an NP-hard language L to the task of inverting an auxiliary-input function {fz}z∈{0,1}∗ ;

2. Reduce the task of inverting {fz}z∈{0,1}∗ to the task of solving a distributional problem (L,D)
in the errorless setting for a samplable distribution D;

3. Reduce the task of solving (L,D) on errorless average to the task of inverting a polynomial-
time-computable function f ′ on average.

The assumption that NP is reducible to inverting an auxiliary-input function is used in both steps 1
and 3. We introduce a new property, called a BBR/OWF property, that is sufficient for carrying out
these steps. We also introduce AIOWF-hardness in order to carry out step 2. These two properties
enable us to generalize Nanashima’s results. We now explain the key properties in detail.

Black-Box-Reduction/One-Way-Function Property

The first key property is inspired by the SZK/OWF-characterization for C ∈ {SZKA,CZK,CZKA}
presented by Vadhan [Vad06] and Ong and Vadhan [OV07]. Roughly speaking, it states that
if a promise problem Π = (Πyes,Πno) is in C, then there exists a subset I ⊆ Πyes ∪ Πno such
that (i) I represents OWF instances in the sense that there exists a one-way function indexed by
an arbitrary x ∈ I (where x is an auxiliary input) and secure almost everywhere on I; and (ii)
(Πyes ∪ Πno) \ I represents SZK instances in the sense that a promise problem (Πyes \ I,Πno \ I)
admits a statistical zero-knowledge proof system. Thus, every instance x of Π provides either (i) a
reduction ROst from solving Π on x to inverting an auxiliary-input function (if x is an SZK instance
[Ost91]) or (ii) a one-way function computable with nonuniform advice x (if x is an OWF instance).
This observation leads us to the following Black-Box-Reduction/One-Way-Function (BBR/OWF)
property of promise problems, which generalizes the SZK/OWF characterization.

Definition 3.1 (BBR/OWF property). A promise problem Π is said to have a BBR/OWF prop-
erty if there exist two polynomial-time-computable auxiliary-input functions f = {fx}x∈{0,1}∗,
g = {gx}x∈{0,1}∗, a subset I ⊆ Πyes ∪ Πno, and a polynomial-time oracle machine R satisfying
that

1. (OWF part) {fx}x∈I is one-way (secure against P/poly) almost everywhere on I;

2. (BBR part) there exists a polynomial p such that for every x ∈ (Πyes ∪ Πno) \ I and every
oracle A, if Prw[A(gx(w)) /∈ g−1

x (gx(w))] ≤ 1/p(|x|), then

Pr
R

[
RA(x) = Π(x)

]
≥ 2/3.

This property enables steps 1 and 3 of Nanashima’s reduction. In particular, step 3 is stated
as follows.

Lemma 3.2. Let Π be a promise problem that has the BBR/OWF property. If there exists a
samplable distribution family D = {Dn} on Πyes ∪ Πno such that (Π,D) /∈ i.o.AvgP/poly (i.e.,
(Π,D) is errorless average-case hard), then there exists a one-way function secure against P/poly.
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The proof outline of this lemma is as follows: let Π be a promise problem that has the
BBR/OWF property with auxiliary-input functions f = {fx}x and g = {gx}x and a subset I
satisfying the definition of the BBR/OWF property. Let D = {Dn} be an arbitrary samplable
distribution, and let D be its polynomial-time sampler (i.e., D(1n, r) ≡ Dn for random seed r). We
define a new polynomial-time-computable function h = {hn}n∈N as hn(w, r, r

′) = (x, fx(r), gx(r
′)),

where x = D(1n, w), for random inputs w, r and r′. Notice that inverting h requires inverting both
fx and gx simultaneously on average over x ∼ D.

We prove that h is one-way if (Π,D) is errorless average-case hard. When the event x ∈ I
occurs with noticeable probability over x ∼ D, then h is (weak) one-way because fx is one-way
on x ∈ I. Thus, we can assume that Prx∼Dn [x ∈ I] ≤ 1/p(n) for an arbitrarily small polynomial
p. In this case, Nanashima’s reduction from solving (Π,D) on errorless average to inverting h on
average works: for every inverting algorithm A implemented as a polynomial-size circuit family,
the reduction that is given x ∼ Dn tests whether A succeeds in inverting (x, fx(r), gx(r

′)) with high
probability over the choice of r and r′. If so, the reduction executes RAg , where R is the black-
box reduction in the BBR/OWF property, and Ag is an inverting algorithm for gx induced by A;
otherwise, the reduction outputs ⊥ and halts. By the assumption that Prx∼Dn [x /∈ I] ≥ 1−1/p(n),
for every A that successfully inverts h with high probability, RAg solves Π on errorless average
over x ∼ Dn conditioned on that x /∈ I. By contrast, when x ∈ I, the efficient adversary A
must fail to invert (x, fx(r), gx(r

′)) since fx is one-way. In this case, the reduction outputs ⊥, and
the probability is bounded above by 1/p(n) for an arbitrarily small polynomial p. Therefore, the
reduction solves (Π,D) on errorless average.

Next, we discuss when a promise problem Π has the BBR/OWF property. It is easy to see
that every Π ∈ CZKA has the BBR/OWF property because of the SZK/OWF characterization
[Vad06; OV07]. We can also show that any promise problem with an interactive proof system of
computational knowledge complexity O(log n) has the BBR/OWF property, as we explain later.
Thus, the class of promise problems with the BBR/OWF property can be larger than the classes
that admit SZK/OWF characterizations. In addition, we observe that, in Lemma 3.2, the reduction
R of the BBR/OWF property can be further weakened to an errorless average-case scheme because
the goal of step 3 is to solve a distributional problem on errorless average. This observation leads us
to an errorless average-case variant of BBR/OWF property. For a formal argument, see Section 5.4.

AIOWF-Hardness

The second key property is AIOWF-hardness, which is required for step 2. We define the AIOWF-
hardness of a distributional problem (Π,D) as the existence of an efficient reduction from the task of
inverting every auxiliary-input one-way function to the task of solving (Π,D) on errorless average.

Definition 3.3 (AIOWF-hard). A distributional problem (Π, {Dn}) is said to be AIOWF-hard
if for every polynomial-time-computable auxiliary-input function f = {fx}x∈{0,1}∗, there exists a

randomized polynomial-time oracle machine R?
f such that for every n ∈ N and for every oracle

A that solves Π on errorless average under Dn, the reduction RA
f successfully inverts fx for all

x ∈ {0, 1}n.

The BBR/OWF property and AIOWF-hardness enable steps 1 and 2, respectively. Namely,
they provide a (non-black-box) worst-case-to-average-case reduction.

9



Lemma 3.4. If a promise problem Π has the BBR/OWF property, and a distributional problem
(Γ,D) is AIOWF-hard, then Π /∈ i.o.P/poly implies (Γ,D) /∈ i.o.AvgP/poly, i.e., Γ is hard on
errorless average under Dn for all large n ∈ N.

The proof of Lemma 3.4 is outlined as follows: First, we use the BBR/OWF-property and
obtain two polynomial-time-computable auxiliary-input functions f = {fx}x and g = {gx}. Then,
we construct an auxiliary-input function h = {hx} defined as hx(r, r

′) := (fx(r), gx(r
′)) for each

x. Next, we use the AIOWF-hardness of (Γ,D) with respect to h. Suppose that there exists a
nonuniform polynomial-time algorithm A that solves Γ on errorless average under Dn on infinitely
many n for contraposition. Then, by the AIOWF-hardness, we obtain an algorithm B := RA

h ,
where Rh is the reduction in the definition of AIOWF hardness, that inverts hx for all x ∈ {0, 1}n.
Now, B is implemented as a nonuniform polynomial-time algorithm. Therefore, the set I of OWF
instances must satisfy I∩{0, 1}n = ∅; otherwise, B must fail to invert fx and hx for some x ∈ {0, 1}n
and infinitely many n ∈ N (where we use the efficiency of A, and thus our reduction is non-black-
box). For each n ∈ N with I ∩ {0, 1}n = ∅, the algorithm RBg , where R is the reduction of the
BBR/OWF property and Bg is the inverter for g induced by B, correctly solves Π on input size
n with high probability by the requirement for the BBR part. Since RBg is implemented as a
nonuniform polynomial-time algorithm, we conclude that Π ∈ i.o.P/poly.

In the previous work [Nan21], the AIOWF-hardness of (L,D) for an NP-hard problem and
a samplable distribution D was implicitly employed. We can also observe that (GapϵMCSP,U)
is AIOWF-hard because (intuitively) an errorless algorithm for GapϵMCSP can distinguish truth-
tables of random functions from ones of auxiliary-input pseudorandom functions, which are con-
structed from an auxiliary-input one-way function [GGM86; HILL99] and thus have small circuit
complexity (when the input length to the function is properly chosen). This is the reason why we
can replace an NP-hard language with GapϵMCSP in Theorem 2.1.

Putting It All Together

Theorems 2.1 and 2.3 are proved by combining the BBR/OWF property and the AIOWF-hardness.
Here, we show that if GapϵMCSP ∈ CZKA and CZKA ⊈ i.o.P/poly, then there exists a one-way
function secure against P/poly (Item 3 ⇒ Item 1 of Theorem 2.1). Let Π ∈ CZKA \ i.o.P/poly.
Since Π ∈ CZKA, the promise problem Π has the BBR/OWF property. By the AIOWF-hardness
of (GapϵMCSP,U) and Lemma 3.4, Π ̸∈ i.o.P/poly implies that (GapϵMCSP,U) /∈ i.o.AvgP/poly. By
Lemma 3.2, this implies the existence of a one-way function secure against P/poly.

3.3 Extension to O(log n) Computational Knowledge Complexity

In order to extend Theorem 2.1 to an interactive proof system with knowledge complexity O(log n),
it suffices to show that such a system admits the BBR/OWF property.

Theorem 3.5. If a promise problem Π has an interactive proof system (P, V ) of computational
knowledge complexity O(log n) and negligible soundness error, then Π has the BBR/OWF property.

At a high level, Theorem 3.5 is shown by extending the work of Petrank and Tardos [PT02], who
proved that every problem that has an interactive proof system of statistical knowledge complexity
O(log n) is contained in AM∩ coAM. We extend this to the case of computational knowledge in an
instance-dependent fashion, as in the work of Vadhan [Vad06].
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Petrank and Tardos [PT02] proved that for every problem Π that has an interactive proof system
(P, V ) of statistical knowledge complexity O(log n), if S is a simulator that guesses the knowledge
uniformly at random, then Π can be solved on an instance x by estimating the probability that the
quantity

log
Pr[S(x) produces τ ]

Pr[(PS , V ) produces τ on input x]

is small (with respect to the knowledge complexity) over a choice of τ ∼ S(x), where PS represents
the simulation-based prover that returns a message for a current history τhist of transcripts according
to the conditional distribution of S(x) given that the prefix is consistent with τhist. In [PT02], the
quantity above is estimated on average based on an AM ∩ coAM protocol that approximates the
Shannon entropy of a given sampler. In the proof of Theorem 3.5, we first introduce a measure that
determines whether S simulates the real conversation (i) statistically or (ii) computationally (and
not statistically), given the condition that the random prediction of knowledge is correct. In the
former case (i), we employ a strategy similar to [PT02], but instead of the AM∩ coAM protocol, we
use the average-case estimator of a probability that can be constructed by a black-box reduction
to inverting a one-way function [IL90; HN23]. In the latter case (ii), we show that the simulator S
yields false entropy [HILL99], which is known to imply the existence of a pseudorandom generator
and a one-way function. Thus, we obtain the BBR/OWF property for Π, where the BBR and OWF
parts correspond to the cases (i) and (ii), respectively. For the formal argument, see Section 5.7.

3.4 Quick Tours of Ideas for Remaining Theorems

In this section, we briefly present ideas for proving other results.

3.4.1 Theorems 2.4 and 2.5: Saving Computational Knowledge Complexity

We present the idea for saving computational knowledge complexity based on an auxiliary-input
one-way function.

In the first place, why is it difficult to construct zero-knowledge proof systems based on auxiliary-
input one-way function f = {fx}x? The main difficulty is that auxiliary inputs making f one-way
depend on adversaries. To deal with this issue, we may use the small-support Min-Max the-
orem [LY94] (Theorem 6.2), which ensures the existence of a uniform distribution P over an
exponential-size multi-set of auxiliary inputs such that fx is one-way for all polynomial-size ad-
versaries when x ∼ P.

This idea leads us to the following simple strategy: The prover first sends an auxiliary input
x ∼ P (by consuming unbounded computational resources) to the verifier and then both parties
execute the zero-knowledge protocol [GMW91] based on the auxiliary-input one-way function fx.
Then the knowledge complexity is bounded above by the length of the auxiliary input x, where
the knowledge mapping κ (from a pair of an instance and a random seed to advice) just returns
the auxiliary input indicated by the random seed. Moreover, when the auxiliary-input one-way
function is exponentially hard, the prover can use a shorter auxiliary input for polynomial security
in the length of the common input, which reduces the knowledge complexity. Using this idea, we
will show the following meta-theorem.

Theorem 3.6. Let s, k : N → N be functions satisfying that s(k(n)) = nω(1). If there exists
an auxiliary-input one-way function with sufficiently large security against SIZE[poly(s(m))] with
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success probability at most negl(s(m)) (where m represents the length of auxiliary inputs), then NP
has an interactive proof system of computational knowledge complexity k(n) and negligible soundness
error.

Theorems 2.4 and 2.5 are derived from this result by choosing s(n) and k(n) appropriately. For
details, see Section 6.

3.4.2 Theorem 2.6: Non-Deterministic Hardness of ZK

We present the idea for showing Theorem 2.6. We focus on the following implication.

Lemma 3.7 (Item 1⇒ Item 7). If there is no robustly-often P/poly-computable one-way function,
then i.o.N·CZK ⊆ i.o.MA.

Note that Item 1 ⇒ Item 6 can be proved in a similar way, and the other implications in
Theorem 2.6 follow from the known construction of zero-knowledge proof systems [GMW91] and
the hardness assumptions (see Section 7).

It is not difficult to prove a slightly weaker conclusion that i.o.N·CZK ⊆ i.o.AM. This follows
from the work of Vadhan [Vad06, Theorem 7.4], who proved that CZK ⊆ HV-CZK = HV-SZK ⊆ AM
under the non-existence of robustly-often P/poly-computable one-way functions. Thus, we obtain
i.o.N·CZK ⊆ i.o.N·AM = i.o.N·N·BPP = i.o.N·BPP.

To prove i.o.N·CZK ⊆ i.o.MA, we use nondeterminism to guess an adversary. First, we show that
the non-existence of robustly-often P/poly-computable one-way functions implies that there exists
a polynomial p such that every (multi-output) circuit C of size s can be inverted by a circuit IC of
size p(s). Under the the non-existence of robustly-often P/poly-computable one-way functions, for
every Π ∈ i.o.N·CZK, there exists a Γ ∈ CZK = HV-SZK such that for infinitely many n ∈ N and
for every x ∈ {0, 1}n,

• If x ∈ Πyes, then there exists w ∈ {0, 1}poly(n) such that (x,w) ∈ Γyes;

• If x ∈ Πno, then for all w ∈ {0, 1}poly(n), it holds that (x,w) ∈ Γno.

For every (x,w), determining whether (x,w) ∈ Γyes or (x,w) ∈ Γno is reducible to inverting an
auxiliary-input function fx,w (interpreted as a circuit embedded x and w) by the argument of
[Ost91]. Thus, for each x ∈ {0, 1}n, we use nondeterminism to guess w and an inverter Ix,w, check
whether Ix,w successfully inverts fx,w, and if so, we execute the reduction to determine whether
(x,w) ∈ Γyes or (x,w) ∈ Γno. This algorithm can be implemented in MA, and thus we conclude
that Π ∈ i.o.MA. For a formal proof, see Section 7.

3.4.3 Theorem 2.8: NP-Hardness of MdKP and Zero-Knowledge

We explain how to construct a statistical zero-knowledge argument system by using NP-hardness of
approximating the distributional Kolmogorov complexity dK(x | D). As in [Hir23], we use the k-wise
direct product generator DPk(x; z), which is defined as DPk(x; z) :=

(
z, ⟨x, z1⟩F2 ◦ · · · ◦ ⟨x, zk⟩F2

)
∈

{0, 1}|x|k × {0, 1}k, where z = z1 ◦ · · · ◦ zk, |zi| = |x| for each i, and ⟨,⟩F2 represents the inner
product in F2. Let R be a reduction from an NP-complete problem L to the problem GapMdKP of
approximating distributional Kolmogorov complexity.

The SZKA system (P, V ) for L is extremely simple and operates as follows on input ξ:
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1. The verifier V runs the reduction R on input ξ to obtain a random instance (x,D) of GapMdKP
produced by R, and samples a string y from the distribution D. Next, V chooses a secret
bit b ∼ {0, 1}. If b = 0, then V sends (y, w) to the prover for a uniformly random string w.
Otherwise, V sends (y,DPk(x; z)) to the prover for a uniformly random string z.

2. The prover P receives (y, w) and sends back a bit b′ ∈ {0, 1} such that b′ = 1 if and only if
the conditional Kolmogorov complexity of w given y is small (i.e., w is compressible using y).

3. The verifier V accepts ξ if and only if b′ = b.

The intuition behind this argument system is as follows:

• If ξ ∈ L, then the reduction R produces a Yes instance (x,D) of GapMdKP; i.e., dKpoly(x | D)
is small. Thus, there exists a small program that prints x given y ∼ D, which implies that
the conditional Kolmogorov complexity of DPk(x; z) given y is also small.

• If ξ ̸∈ L, then the reduction R produces a No instance (x,D) of GapMdKP. If an efficient
prover P can distinguish (y, w) from (y,DPk(x; z)), then by the reconstruction property of
DPk, we would get an upper bound on dKpoly(x | D) using P , which is a contradiction.

Details can be found in Section 8.

4 Preliminaries

All logarithms are base 2 unless specified otherwise. We use ε to represent an empty symbol. We
distinguish ε from ϵ and often use ϵ for an accuracy parameter. Let ⟨, ⟩ be a (standard) paring
function that maps N× N to N.

We use the notation negl to represent some negligible function, i.e., for any polynomial p and
sufficiently large n ∈ N, it holds that negl(n) < 1/p(n). We also use the notation poly to refer to
some polynomial.

For each n ∈ N, let [n] := {1, 2, . . . , n}. For every x, y ∈ {0, 1}∗, let x◦y denote the concatenation
of x and y. For readability, we may omit ◦ from x ◦ y. For each x ∈ {0, 1}n and each i ∈ [n],
we let xi denote the i-th bit of x. For every f : {0, 1}n → {0, 1}, let tt(f) be the truth table of f
represented as the string of length 2n.

For each n ∈ N, we let Un denote the uniform distribution over {0, 1}n or a random variable
selected uniformly at random from {0, 1}n in context. For any distribution D, we use the notation
x ∼ D to refer to the sampling of x according to D. For any finite set S, we use the notation x ∼ S
to refer to the uniform sampling of x from S. For each distribution D and each x ∈ {0, 1}∗, let
D(x) = Pry∼D[y = x].

For a function f : {0, 1}n → {0, 1}m and y ∈ Imf , we define UnifInvf (y) as the uniform distri-
bution over f−1(y) = {x ∈ {0, 1}n : f(x) = y}.

For any distribution D, let H(D) denote the Shannon entropy of D. For any distributions D
and E , let ∆TV(D, E) denote the total variation distance between D and E . Let KL(D||E) represent
the KL divergence between two distributions D and E .

For an infinite set S ⊆ {0, 1}∗ and two distribution families D = {Dx}x∈S and E = {Ex}x∈S ,
we say that D and E are statistically indistinguishable if ∆TV((x,Dx), (x, Ex)) ≤ negl(|x|) for each
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x ∈ S. We say that D and E are computationally indistinguishable if for every polynomial-size
circuit A, every polynomial p, and for all but finitely many x ∈ S,∣∣∣∣ Prz∼Dx

[A(x, z) = 1]− Pr
z∼Ex

[A(x, z) = 1]

∣∣∣∣ ≤ 1/p(|x|).

For each t : N→ N, we say that a familyD = {Dn}n∈N of distributions (on binary strings) is t(n)-
time samplable if there exists a t(n)-time deterministic algorithm D (called a sampling algorithm or
a sampler for D) such that, for each n ∈ N, the distribution of D(1n,Ut(n)) is statistically identical
to Dn. We say that a family D = {Dn}n∈N of distributions is (polynomial-time) samplable if D is
p(n)-samplable for some polynomial p(n).

For every randomized algorithm A using s(n) random bits on an n-bit input, we use the notation
A(x; r) to refer to the execution of A(x) with a random tape r for each x ∈ {0, 1}n and r ∈ {0, 1}s(n).

For a promise problem Π, we use the notation Πyes (resp. Πno) to refer to the set of yes (resp.
no) instances, i.e., Π = (Πyes,Πno).

4.1 Computational Complexity

For each n ∈ N and x ∈ {0, 1}2n , we define the circuit complexity cc(x) of x as the minimum size
of an n-input circuit whose truth table corresponds to x. We define the language MCSP as

MCSP = {(x, 1s) : n, s ∈ N, x ∈ {0, 1}2n , cc(x) ≤ s}.

For a constant ϵ ∈ (0, 1/2), GapϵMCSP is a promise problem (ΠY ,ΠN ) defined as ΠY = {x ∈
{0, 1}2n : n ∈ N, cc(x) ≤ 2ϵn} and ΠN = {x ∈ {0, 1}2n : n ∈ N, cc(x) > 2(1−ϵ)n}. In this work, we
fix the constant ϵ ∈ (0, 1/2) arbitrarily and omit the subscript ϵ from GapϵMCSP.

We define a distributional problem as a pair of a promise problem Π and a distribution D =
{Dn}n∈N on instances. For simplicity, we always assume that supp(D) ⊆ Πyes ∪ Πno in this work.
Note that our results also hold when supp(D) ⊈ Πyes ∪ Πno, where we regard every output as
correct for an instance x /∈ Πyes∪Πno. For convenience, we omit the description “= {Dn}n∈N” from
D = {Dn}n∈N when the intention is clear in context.

We say that an algorithm A solves a promise problem Π on errorless average over D with failure
probability δ ∈ (0, 1) if (1) A outputs Π(x) or ⊥ (which represents “failure”) for every x ∈ supp(D),
and (2) the failure probability that A(x) outputs ⊥ over the choice of x ∼ D is bounded above by δ.
We say that a distributional problem (Π,D) has an infinitely-often errorless heuristic algorithm A
with failure probability δ : N→ (0, 1) if for infinitely many n ∈ N, the algorithm A solves a promise
problem Π on errorless average over Dn with failure probability δ(n). Let i.o.AvgδP/poly be the
class of distributional problems that have an infinitely-often errorless heuristic algorithm A with
failure probability δ implemented as a polynomial-size circuit family.

4.2 Zero-Knowledge Proofs and Arguments

We formally introduce zero-knowledge proof systems and its variants.
An interactive protocol (A,B) is a pair of algorithms that compute a next-message function

that maps a common input x and a transcript τ and auxiliary-input advice α to the next message
m. A transcript τ is initialized as the empty string ε, and the computation of each party is executed
alternatively. Whenever a message m is computed, it is added to the current transcript τ , and we
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regard this as that a party sends message m to the other party. One party can terminate the
interaction by outputting the resulting message (0 or 1 by default). For simplicity, we regard a
resulting message as a part of a transcript. We use the notation ⟨A(α), B(β)⟩(x) to represent the
resulting message when (i) A is given auxiliary-input advice α, (ii) B is given auxiliary-input advice
β, and (iii) both A and B are given the common input x. A party can be randomized. We define B’s
view (denoted by viewB(⟨A(α), B(β)⟩(x))) of the interaction ⟨A(α), B(β)⟩(x) as the 4-tuple of the
common input x, the auxiliary-input advice β, the final transcript τ , and the internal randomness
used by B.

Definition 4.1 (Interactive proof/argument systems). Let c, s : N → [0, 1] be functions satisfying
that 1 − c(n) ≥ s(n) + 1/poly(n). An interactive protocol (P, V ) is an interactive proof system
for a promise problem Π (with completeness error c(·) and soundness error s(·)) if the following
requirements are satisfied:

• (Efficiency) The round of (P, V ) is polynomially bounded in the length of common input, and
V is efficiently computable (in probabilistic polynomial time by default) and outputs a resulting
message.

• (Completeness) For every x ∈ Πyes, ⟨P, V ⟩(x) = 1 with probability at least 1− c(|x|).

• (Soundness) For every x ∈ Πno and every algorithm P ∗, ⟨P ∗, V ⟩(x) = 0 with probability at
least 1− s(|x|).

We also define an interactive argument system (P, V ) in the same manner except that the
soundness is relaxed as follows:

• (Computational soundness) For every x ∈ Πno and every nonuniform polynomial-time algo-
rithm P ∗, ⟨P ∗, V ⟩(x) = 0 with probability at least 1− s(|x|).

The party P (resp. V ) is referred to as a prover (resp. verifier). In this work, we consider
negligible completeness and soundness error unless otherwise stated.

Next, we introduce the formal definition of zero-knowledge discussed in this work.

Definition 4.2 (Zero-knowledge). An interactive proof (or argument) system (P, V ) for a promise
problem Π is said to be statistically (resp. computationally) zero-knowledge if for every polynomial-
time randomized verifier V ∗, there exists a polynomial-time randomized algorithm S∗ such that
{S(x, α)}x,α is statistically (computationally) indistinguishable from {viewV ∗(⟨P, V ∗(α)⟩(x))}x,α for
x ∈ Πyes and advice α ∈ {0, 1}poly(|x|).

Moreover, (P, V ) is said to be honest-verifier statistical (resp. computational) zero-knowledge
if it satisfies the condition for statistical (resp. computational) zero-knowledge for V (instead of
polynomial-time randomized verifiers V ∗). We call the simulator with respect to V an honest-
verifier simulator.

We define SZK, SZKA, CZK, and CZKA as the classes of promise problems that have a statistical
zero-knowledge interactive proof system, a statistical zero-knowledge interactive argument system,
a computational zero-knowledge interactive proof system, and a computational zero-knowledge
interactive argument system, respectively. For each C = {SZK,SZKA,CZK,CZKA}, we also define
HV-C in the same manner as C except that we consider honest-verifier zero-knowledge.

Theorem 4.3 ([OV07]). For every Π ∈ NP, Π ∈ HV-SZKA if and only if Π ∈ SZKA
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For zero-knowledge interactive proof (or argument) system and its honest-verifier simulator S,
we define the simulation-based prover (resp. verifier) as a specific prover PS (resp. verifier VS) that
computes a message m on common input x and a current transcript τ according to the distribution
of S(x) conditioned on the event that the prefix of S(x) corresponds to τ .

In this work, we assume that verifiers always send its internal randomness before making the
decision, which does not affect the completeness and soundness. This trick enables us to identify
the verifier’s view (containing the verifier’s internal randomness) with a transcript.

We say that a transcript τ is valid if it is consistent with some possible verifier’s view. In
addition, we say that τ is an accepting transcript if the verifier’s decision is acceptance in τ . In this
work, we assume that any simulator S always outputs a valid and accepting transcript; otherwise,
we slightly modify the verifier so that it accepts the input when its randomness is 0poly(n) and make
S output the trivial transcript for that randomness 0poly(n) whenever it produces invalid one (it
affects the soundness and the quality of the simulation only with negligible probability). In addition,
without loss of generality, for each input x, we assume that an interactive proof (argument) system
⟨P, V ⟩(x) exchanges exactly 2 · ℓ(|x|) = poly(|x|) messages, and P ’s (resp. V ’s) messages are sent
at odd (resp. even) rounds. Moreover, we assume that S(x) uses rS(|x|) = poly(|x|) random bits.

Finally, we introduce the notion of efficient provers in the case of Π ∈ NP.

Definition 4.4 (Efficient prover). Let (P, V ) be an interactive proof (or argument) system for Π ∈
NP, and let R be the NP-relation for Π (i.e., x ∈ Πyes if and only if ∃w ∈ {0, 1}poly(|x|) s.t. (x,w) ∈
R). The prover P is said to be efficient if for every x ∈ Πyes, the prover P halts in polynomial time
when x is given as common input and its witness w such that (x,w) ∈ R is given as auxiliary-input
advice for P .

4.3 Cryptography

In this work, we consider nonuniform randomized polynomial-time algorithms as a class of adver-
saries by default.

Definition 4.5 (One-way function). A polynomial-time-computable function f = {fn : {0, 1}poly(n) →
{0, 1}poly(n)}n∈N is said to be a one-way function secure against a class C of adversaries if for every
adversary A in C and for every sufficiently large n ∈ N,

Pr
[
fn(A(1n, fn(Upoly(n)))) = fn(Upoly(n))

]
< negl(n).

The parameter n in the definition above is often called a security parameter. We may omit the
subscript n from fn and 1n from the input to adversaries for readability.

Next, we introduce an auxiliary-input variant of one-way functions, introduced by Ostrovsky
and Wigderson [OW93]. Roughly speaking, auxiliary-input primitives are defined as a collection
of candidates for secure primitives indexed by an auxiliary input z ∈ {0, 1}∗ and have a relaxed
security condition that for each adversary A, there exists an auxiliary input zA ∈ {0, 1}∗ depending
on A such that the primitive indexed by zA is secure for A. In this work, we discuss the sufficiently
large security of auxiliary-input one-way functions.

We define an auxiliary-input function as a function family f = {fz}z∈{0,1}∗ indexed by binary
strings z. We say that f is polynomial-time computable if each fz(x) is polynomial-time computable
from (z, x).
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Definition 4.6 (Auxiliary-input one-way function). A polynomial-time-computable auxiliary-input
function f = {fz : {0, 1}poly(|z|) → {0, 1}poly(|z|)}z∈{0,1}∗ is said to be an auxiliary-input one-way
function secure against a class C of adversaries if for every adversary A in C and for every suffi-
ciently large n ∈ N, there exists z := zn,A ⊆ {0, 1}n such that

Pr
[
fz(A(z, fz(Upoly(n)))) = fz(Upoly(n))

]
< negl(n).

Moreover, we say that f is one-way almost everywhere on I ⊆ {0, 1}∗ if for every nonuniform
polynomial-time adversary A and for all but finitely many z ∈ I,

Pr
[
fz(A(z, fz(Upoly(|z|)))) = fz(Upoly(|z|))

]
< negl(|z|).

For simplicity, when we consider a circuit family {An}n∈N that tries to invert a polynomial-
time-computable function family {fz}z∈{0,1}∗ , we measure the circuit complexity of A as a function
in |z|, instead of the actual length of the pair of z and the output of fz.

We also define a public-key encryption scheme with semantic security.

Definition 4.7 (public-key encryption). A semantic secure public-key encryption scheme is a triple
(Gen,Enc,Dec) of polynomial-time randomized algorithms satisfying the following:

• (Syntax ) For every λ ∈ N, the algorithm Gen(1λ) outputs a pair (sk, pk) of strings.

• (Correctness) For every λ ∈ N and every m ∈ {0, 1}, and for (sk, pk) ∼ Gen(1λ),

Pr[Dec(1λ, sk,Enc(1λ, pk,m)) = m] ≥ 1− negl(λ),

where the probability is taken over the choice of randomness for Gen,Enc, and Dec.

• (Semantic security) For every nonuniform polynomial-time algorithm A and sufficiently large
λ ∈ N, ∣∣∣Pr[A(1λ, pk,Enc(1λ, pk, 0)) = 1]− Pr[A(1λ, pk,Enc(1λ, pk, 1)) = 1]

∣∣∣ ≤ negl(λ),

where the probability is taken over the choice of randomness for Gen and Enc.

4.4 Facts from Information Theory

We introduce some lemmas.

Lemma 4.8 ([cf. Vad06, Proof of Lemma 3.10]). Let {(Xx,Yx)}x{0,1}∗ be a family of efficiently
samplable joint distributions. For a subset I ⊆ {0, 1}∗, if there exists a polynomial p such that for
every x ∈ I, there exists a (possibly not efficiently samplable) joint distribution (X ′

x,Y ′
x) satisfying

H(X ′
x|Y ′

x)−H(Xx|Yx) ≥ 1/p(|x|),

then there exists a polynomial-time-computable function f = {fx}x∈{0,1}∗ that is one-way against
P/poly almost everywhere on I.

17



Lemma 4.9. For any joint distributions (X0,Y0) and (X1,Y1) over a universe U , and for any
(independent) Bernoulli trial E, define a joint distributions as

(X ,Y) =

{
(X0,Y0) if E = 0

(X1,Y1) if E = 1.

If supp(Y0) ∩ supp(Y1) = ∅, then

H(X|Y) = Pr[E = 0] ·H(X0|Y0) + Pr[E = 1] ·H(X1|Y1).

Proof. Since supp(Y0) and supp(Y1) are disjoint, D0 := supp(X0,Y0) and D1 := supp(X1,Y1) are
also disjoint. Thus,

H(X|Y) = −
∑

(x,y)∈D0

Pr[(X ,Y) = (x, y)] log
Pr[(X ,Y) = (x, y)]

Pr[Y = y]

−
∑

(x,y)∈D1

Pr[(X ,Y) = (x, y)] log
Pr[(X ,Y) = (x, y)]

Pr[Y = y]

= −Pr[E = 0]
∑

(x,y)∈D0

Pr[(X0,Y0) = (x, y)] log
Pr[E = 0]Pr[(X0,Y0) = (x, y)]

Pr[E = 0]Pr[Y0 = y]

− Pr[E = 1]
∑

(x,y)∈D1

Pr[(X1,Y1) = (x, y)] log
Pr[E = 1]Pr[(X1,Y1) = (x, y)]

Pr[E = 1]Pr[Y1 = y]

= Pr[E = 0] ·H(X0|Y0) + Pr[E = 1] ·H(X1|Y1).

5 On Transforming Worst-Case Hardness into Cryptography

In this section, we introduce two key properties of promise problems for transforming the worst-case
hardness into cryptography and prove Theorems 2.1 and 2.3.

5.1 Black-Box Reduction/One-Way Function Property

First, we introduce the BBR/OWF-property of a promise problem that enables a non-black-box
security reduction from errorless average-case hardness to one-wayness of a function.

Definition 5.1 (BBR/OWF-property). A promise problem Π is said to have a BBR/OWF prop-
erty if there exist two polynomial-time-computable auxiliary-input functions f = {fx}x∈{0,1}∗,
g = {gx}x∈{0,1}∗, a subset I ⊆ Πyes ∪ Πno, and a polynomial-time oracle machine R satisfying
that

1. (OWF part) {fx}x∈I is one-way (secure against P/poly) almost everywhere on I;

2. (BBR part) There exists a polynomial p such that for every x ∈ (Πyes ∪ Πno) \ I and every
oracle A, if Prw[A(gx(w)) /∈ g−1

x (gx(w))] ≤ 1/p(|x|), then

Pr
R
[RA(x) = Π(x)] ≥ 2/3.
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Lemma 5.2. Let Π be a promise problem that has the BBR/OWF property. If there exist a
samplable distribution family D = {Dn} on Πyes ∪ Πno and a polynomial γ such that (Π,D) /∈
i.o.Avg1/γP/poly, then there exists a one-way function secure against P/poly.

Proof. Suppose that Π is a promise problem that has the BBR/OWF property and (Π,D) /∈
i.o.Avg1/γP/poly for a samplable distribution family D = {Dn} on Πyes ∪ Πno and a polynomial γ.
Let D be the polynomial-time sampler for D (i.e., D(1n;w) ≡ Dn, where w is a uniformly random
seed).

Since Π has the BBR/OWF property, we have polynomial-time-computable functions f =
{fx}x∈{0,1}∗ and g = {gx}x∈{0,1}∗ , a subset I ⊆ Πyes ∪ Πno, a polynomial-time oracle machine R,
and a polynomial p that satisfy the conditions of Definition 5.1.

We construct a polynomial-time computable function f ′ = {f ′
n}n∈N as

f ′
n(w, r, r

′) = (x, fx(r), gx(r
′))

where x = D(1n, w), r is a random seed for f , and r′ is a random seed for g.
We show that f ′ is (weak) one-way under the assumption that (Π,D) /∈ i.o.Avg1/γP/poly by

contraposition. For this, we assume that there exists a polynomial-time adversary A that inverts
f ′ with failure probability at most 1/(4γ(n)p(n)) for infinitely many n ∈ N. Let N be the infinite
set of such n.

We construct an errorless heuristic algorithm A′ that solves (Π,D) with failure probability at
most 1/γ(n). For a given x drawn from Dn, the algorithm A′ first examines whether A successfully
inverts f ′

x with failure probability at most 1/(2p(n)) by a randomized test T specified later. If x
passes the test, A′ executes R?(x) and outputs the same answer, where the oracle is simulated by
O(y) that outputs the third element of A(x, fx(r), y) (i.e., the inverse for gx) for uniformly random
r; otherwise, it outputs ⊥.

The randomized test T is based on the standard empirical estimation. For a given x, the test
T selects N := 8p(n)2n ln 2 independent random seeds r1, r

′
1, . . . , rN , r′N for fx and gx, executes

A(x, fx(ri), gx(ri
′)) for each i, and counts the number m of i ∈ [N ] for which A fails to invert f ′.

If m ≤ 3N/(4p(n)), then T accepts x; otherwise, T rejects x.
We show the following claims.

Claim 5.3. For all n ∈ N and all x ∈ supp(Dn), if

Pr
A,r

[
A(f ′

n(r)) /∈ f ′
n
−1

(f ′
n(r))

∣∣∣ the first element of f ′
n(r) is x

]
> 1/p(n),

then PrT [x passes the test T ] ≤ 2−n.

Claim 5.4. For all n ∈ N ,

Pr
x∼Dn

[
Pr
T
[x passes the test T ] ≥ 1− 2n

]
≥ 1− 1/γ(n).

First, we assume the claims above and complete the proof. For any n ∈ N and x ∈ supp(Dn)
that passes the test T with probability at least 1− 2−n, by Claim 5.3, A inverts f ′ given the first
element is x with failure probability at most 1/p(n), and O inverts gx with failure probability at
most 1/p(n). In addition, we observe that such x is not contained in I because such A also inverts
fx with probability at least 1− 1/p(n), which contradicts the property of I. Thus, by the property
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of R, the algorithm A outputs Π(x) with probability at least 3/4. By the union bound, A′ outputs
Π(x) with probability at least 1− (1/4 + 2−n) ≥ 2/3 in the case. By Claim 5.4, such x is selected
according to Dn with probability at least 1−1/γ(n) for any n ∈ N . By contrast, any x ∈ supp(Dn)
for which the failure probability of O is larger than 1/p(n) (such x may cause the error of R) passes
the test T only with negligible probability by Claim 5.3. Therefore, A outputs ⊥ with probability
at least 1 − 2−n for such x. Recall that the success probability of A (over the randomness for A)
can be enhanced to 1− 2−poly(n) by the standard repetition technique, and the randomness can be
fixed as a part of the nonuniform advice based on Adleman’s technique [Adl78]. Therefore, we have
(Π,D) ∈ i.o.Avg1/γP/poly.

It remains to prove the claims above. For convenience, we introduce the notation γx as

γx := Pr
A,r

[
A(f ′

n(r)) /∈ f ′
n
−1

(f ′
n(r))

∣∣∣ the first element of f ′
n(r) is x

]
.

Proof of Claim 5.3. Suppose that x satisfies

γx = Pr
A,r

[
A(f ′

n(r)) /∈ f ′
n
−1

(f ′
n(r))

∣∣∣ the first element of f ′
n(r) is x

]
> 1/p(n).

It is not hard to see that the test T examines the probability above by the empirical estima-
tion. By Hoeffding’s inequality, the probability that m /∈ [γxN ± N/4p(n)] is bounded above by
2 exp(−2(1/4p(n))2N) ≤ 2−n. Thus, with probability at least 1−2n, we havem ≥ γxN−N/4p(n) >
3N/(4p(n)), and T rejects x in this case. ⋄

Proof of Claim 5.4. Recall that for every n ∈ N ,

E
x∼Dn

[γx] = Pr
A,r

[A(f ′
n(r)) /∈ f ′

n
−1

(f ′
n(r))] ≤

1

2γ(n)p(n)

By Markov’s inequality, we have

Pr
x∼Dn

[γx ≤ 1/2p(n)] ≥ 1− 1/γ(n).

Fix x satisfying γx ≤ 1/2p(n) arbitrarily. By Hoeffding’s inequality, the probability that m /∈
[γxN ± N/4p(n)] is bounded above by 2 exp(−2(1/4p(n))2N) ≤ 2−n. Thus, with probability at
least 1 − 2−n, we have m ≤ γxN + N/4p(n) ≤ 3N/(4p(n)), and T accepts x in the case. Since
Prx∼D [γx ≤ 1/2p(n)] ≥ 1− 1/γ(n), we obtain the claim and complete the proof. ⋄

We also extend the BBR/OWF property to the errorless average-case setting.

Definition 5.5 (Average-case BBR/OWF-property). A distributional problem (Π,D) is said to
have an average-case BBR/OWF property if there exists a polynomial-time algorithm M such that

1. for every n, γ ∈ N, Prx∼Dn [M(x, 1n, 1γ) = ⊥] ≤ 1/γ;

2. for every polynomial γ, the promise problem Πγ has the BBR/OWF property, where Πγ =
(Πγ

yes,Π
γ
no) is defined as follows: for every n ∈ N,

(x, 1n, 1γ(n)) ∈ Πγ
yes ⇐⇒ x ∈ Πyes ∩

{
x ∈ supp(Dn) : M(x, 1n, 1γ(n)) ̸= ⊥

}
;

(x, 1n, 1γ(n)) ∈ Πγ
no ⇐⇒ x ∈ Πno ∩

{
x ∈ supp(Dn) : M(x, 1n, 1γ(n)) ̸= ⊥

}
.
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Intuitively, if a distributional problem (Π,D) satisfies the average-case BBR/OWF property,
then for every polynomial γ, there exists a subset S of instances that has at least 1−1/γ(n) weight
with respect to Dn for each n and satisfies that (i) the membership of S is efficiently determined (by
the algorithm M) and (ii) Π restricted onto S (i.e., Πγ) has the (worst-case) BBR/OWF property.

We obtain the analogue of Lemma 5.2 in the errorless average-case setting.

Lemma 5.6. Let D = {Dn}n∈N be a samplable distribution, and let (Π,D) be a distributional
problem that has the average-case BBR/OWF property. If there exists a polynomial γ such that
(Π,D) /∈ i.o.Avg1/γP/poly, then there exists a one-way function secure against P/poly.

Proof. LetM be the polynomial-time algorithm in the average-case BBR/OWF property for (Π,D).
Suppose that there exists a polynomial γ such that (Π,D) /∈ i.o.Avg1/γP/poly. For each n ∈ N, let
Gn =

{
x ∈ supp(Dn) : M(x, 1n, 12γ(n)) ̸= ⊥

}
.

For each n ∈ N, let D′
n be the conditional distribution of (x, 1n, 12γ(n)) for x ∼ D given x ∈ Gn.

Then, D′ = {D′
n}n∈N is samplable by using the sampler for D and M with negligible statistical

error. Let D′′ = {D′′
n}n be the modified samplable distribution family obtained from D′. Note that

supp(D′′) = Π2γ
yes ∪Π2γ

no, where Π2γ is the promise problem defined in Definition 5.5 for 2γ.
Since Π2γ has the BBR/OWF property, in the same way as the proof of Lemma 5.2, it is shown

that there exists a polynomial-time-computable function f = {fn : {0, 1}n → {0, 1}poly(n)}n∈N and
a polynomial-time oracle machine R such that for any nonuniform polynomial-time-computable
adversary A that breaks fn for infinitely many n, the algorithm RA solves Π on errorless average
under D′′

n with failure probability at most 1/4γ(n). Now we consider the algorithm B that is given
x ∼ Dn and then executes M(x, 1n, 12γ(n)). If M returns ⊥, then B also outputs ⊥; otherwise, B
executes RA(x, 1n, 12γ(n)) and answers the same answer. Since RA is errorless, B is also errorless.
In addition, over the choice of x ∼ Dn, the probability that B(x) outputs ⊥ is at most

Pr
x∼Dn

[x /∈ Gn] + Pr
x∼Dn

[
RA(x, 1n, 12γ(n)) = ⊥

∣∣∣ x ∈ Gn

]
≤ 1

2γ(n)
+ ∆TV(D′

n,D′′
n) + Pr

(x,1n,12γ(n))∼D′′
n

[
RA(x) = ⊥

]
≤ 3

4γ(n)
+ negl(n).

This contradicts (Π,D) /∈ i.o.Avg1/γP/poly when n is sufficiently large. Thus, f is one-way under
the assumption that (Π,D) /∈ i.o.Avg1/γP/poly.

5.2 AIOWF-Hardness

We define the AIOWF-hardness of a distributional problem (Π,D) as the existence of a reduction
from inverting auxiliary-input one-way functions to solving Π on average in errorless setting.

Definition 5.7 (AIOWF-hard). A distributional problem (Π,D) is said to be AIOWF-hard if for
every polynomial-time-computable auxiliary-input function f = {fz : {0, 1}poly(|z|) → {0, 1}poly(|z|)}z∈{0,1}∗
and every polynomial p, there exist a polynomial γ and a polynomial-time oracle machine R?

f such
that for every oracle A and every n ∈ N, if A solves (Π,Dn) on errorless average with failure
probability at most 1/γ(n), then RA

f inverts fz for all z ∈ {0, 1}n with failure probability at most
1/p(n), i.e.,

Pr
w,Rf

[
RA

f (z, fz(w)) ∈ f−1
z (fz(w))

]
≥ 1− 1/p(n).
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Theorem 5.8. If a promise problem Π has the BBR/OWF property, and a distributional problem
(Γ,D) is AIOWF-hard, then Π /∈ i.o.P/poly implies (Γ,D) /∈ i.o.Avg1/γP/poly for every polynomial
γ.

Proof. Suppose Π is a promise problem that has the BBR/OWF property, and (Γ,D) is an AIOWF-
hard distributional problem.

Since Π has the BBR/OWF property, we have a polynomial-time-computable functions f =
{fx}x∈{0,1}∗ and g = {gx}x∈{0,1}∗ , a subset I ⊆ Πyes ∪ Πno, a polynomial-time oracle machine R,
and a polynomial p that satisfy the conditions of Definition 5.1.

Next, we use the AIOWF-hardness of (Γ,D) for the auxiliary-input function

h = {hx : {0, 1}poly(|x|) → {0, 1}poly(|x|)}x∈{0,1}∗

defined as hx(r, r
′) = (fx(r), gx(r

′)) and for the polynomial p. Then, there exist a polynomial γ
and a polynomial-time oracle machine R?

h such that for every oracle A and every n ∈ N, if A solves
(Γ,Dn) on errorless average with failure probability at most 1/γ(n), then RA

h inverts hx for all
x ∈ {0, 1}n with failure probability at most 1/p(n).

Now we show that (Γ,D) ∈ i.o.Avg1/γP/poly implies Π ∈ i.o.P/poly (i.e., a worst-case-to-
average-case reduction). Suppose that there exists a nonuniform polynomial-time algorithm A that
solves (Γ,D) with failure probability at most 1/γ(n) for infinitely many parameters n. Then, by
the property of R?

h, the algorithm B := RA
h inverts hx for the same parameters n ∈ N and for

all x ∈ {0, 1}n with failure probability at most 1/p(n). We define Bf (resp. Bg) so that Bf (x, y)
outputs the first element of B(x, y, gx(r

′)) for a random seed r′ (resp. Bg(x, y) outputs the second
element of B(x, fx(r), y) for a random seed r). Then, Bf (x, -) (resp. Bg(x, -)) inverts fx (resp. gx)
with failure probability at most 1/p(n). Since A is a nonuniform polynomial-time algorithm, B,
Bf , and Bg are implemented as nonuniform polynomial-time algorithms. Thus, by the definition of
I, such x is not contained in I. Therefore, by the property of R, the algorithm RBg(x,-)(x) outputs
Π(x) with probability at least 2/3 for the same parameters n ∈ N and for all x ∈ {0, 1}n. Since RBg

is implemented as a nonuniform randomized polynomial-time algorithm, it is also implemented as
a circuit family based on Adleman’s technique [Adl78]. Therefore, we have Π ∈ i.o.P/poly.

5.3 Problems Having Two Properties

In this section, we study when the BBR/OWF property and AIOWF-hardness are satisfied.

5.3.1 AIOWF-Hardness

Lemma 5.9 ([cf. HS17]). For every ϵ ∈ (0, 1/2), (GapϵMCSP,U) is AIOWF-hard.

Proof (sketch). Let f = {fz}z∈{0,1}∗ be an arbitrary polynomial-time-computable auxiliary-input
function. For every polynomial p and every constant c ∈ N, based on the GGM construc-
tion [GGM86], there exists a constant d such that for each τ ∈ N, we can construct a polynomial-
time-computable auxiliary-input function g = {gz : {0, 1}|z| × {0, 1}c log |z| → {0, 1}|z|}z∈{0,1}∗ that

has a polynomial-time reduction R? such that for every z ∈ {0, 1}∗ and for every oracle machine
A? that distinguishes two cases (i) A is given access to O(·) := gz(w, ·) for w ∼ {0, 1}|z| and (ii) A
is given access to O(·) = h(·) for h ∼ Fc log |z|,|z| := {h′ : {0, 1}c log |z| → {0, 1}|z|} with non-negligible

advantage, RA inverts fz with failure probability at most 1/p(|z|). Moreover, for every z ∈ {0, 1}∗
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and every w ∈ {0, 1}|z|, each bit of the function gz,w := gz(w, ·)1 is computable by a circuit of size
(c log |z|) · d|z|d.

We select a sufficiently large constant c so that d(logN)Nd/c ≤ N ϵ for every N ≥ 2. Then, for
any z with |z| ≥ 2, each gz,w is computable by a circuit of size at most

(c log |z|) · d|z|d ≤ d · (log |z|c)(|z|c)d/c ≤ (|z|c)ϵ

Let n := c log |z| be the input length of gz,w. Then cc(gz,w) ≤ 2ϵn for every z ∈ {0, 1}∗ with |z| ≥ 2
and every w ∈ {0, 1}|z|.

By contrast, for Fn,1 := {h : {0, 1}n → {0, 1}},

Pr
h∼Fn,1

[cc(h) < 2(1−ϵ)n] ≤ 2poly(n)2
(1−ϵ)n

22n
≤ negl(2n) = negl(|z|).

Namely, for any z ∈ {0, 1}∗ with |z| ≥ 2 and any w ∈ {0, 1}|z|, it holds that tt(gz,w) is a
yes instance for GapϵMCSP, and tt(h) is a no instance for GapϵMCSP with probability at least
1 − negl(|z|). Therefore, if there exists a nonuniform polynomial-time algorithm A that solves
GapϵMCSP on errorless average under U|z|c with failure probability at most 1/poly(|z|), we can
distinguish every gz,w from a truly random function h by interpreting the case where A outputs ⊥
or 1 (resp. 0) as the case of pseudorandom functions (resp. random functions). Thus, based on R,
we obtain the reduction from inverting f = {fz}z to (GapϵMCSP,U).

Lemma 5.10. For any NP-hard problem Π, there exists a samplable distribution D such that (Π,D)
is AIOWF-hard.

Proof. Since Π is NP-hard, there exists a polynomial-time algorithm M such that for every x ∈
{0, 1}∗, (i) if x ∈ GapMCSPyes, then M(x) ∈ Πyes; (ii) if x ∈ GapMCSPno, then M(x) ∈ Πno. Then,
(Π,M(U)) is AIOWF-hard because for every γ : N → N, (Π,M(U)) ∈ i.o.Avg1/γP/poly implies
(GapMCSP,U) ∈ i.o.Avg1/γP/poly.

5.3.2 BBR/OWF Property

Theorem 5.11 ([OV07]). Any promise problem Π ∈ CZKA has the BBR/OWF property.

Proof. Ong and Vadhan [OV07] proved that every promise problem Π ∈ CZKA admits the SZK/OWF
characterization, which is stated as follows: there exists a subset I ⊆ Πyes ∪Πno and a polynomial-
time-computable function f = {fz}z∈{0,1}∗ such that (i) f is one-way against P/poly almost ev-
erywhere on I, and (ii) (Πyes \ I,Πno \ I) ∈ SZK. Furthermore, Ostrovsky [Ost91] showed that
every promise problem SZK admits a black-box reduction from solving Π for a given instance x to
inverting a function fx indexed by x (which is constructed from the simulator of the zero-knowledge
proof system). By applying [Ost91] for the second (i.e., SZK) case of the SZK/OWF property, we
also obtain the BBR/OWF property for Π.

Moreover, we show that a potentially larger class on computational knowledge complexity than
zero-knowledge yields the BBR/OWF property.

Theorem 5.12. If a promise problem Π has an interactive proof system (P, V ) that has compu-
tational knowledge complexity at most k(n) = O(log n) and negligible soundness error, then Π has
the BBR/OWF property.

We prove Theorem 5.12 in Section 5.7.
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5.4 Errorless Average-Case Zero-Knowledge

We extend the argument to the case of average-case zero-knowledge. First, we formally introduce
the notion of errorless average-case interactive proof/argument systems.

Definition 5.13 (Average-case interactive proof/argument). An average-case interactive proof sys-
tem (P, V ) for a distributional problem (Π,D) is an interactive proof system satisfying the following:

• (Completeness) For every n, δ−1 ∈ N and every x ∈ Πyes ∩ supp(Dn),

Pr
P,V

[⟨P, V (1δ
−1
)⟩(1n, x) ∈ {1,⊥}] ≥ 1− negl(n).

• (Soundness) For every n, δ−1 ∈ N, every x ∈ Πno ∩ supp(Dn), and every prover P ∗,

Pr
P,V

[⟨P ∗, V (1δ
−1
)⟩(1n, x) ∈ {0,⊥}] ≥ 1− negl(n).

• (Average-case requirement) For every δ−1 ∈ N, every prover P ∗, and for every sufficiently
large n ∈ N,

Pr
x∼Dn

[
Pr

P ∗,V
[⟨P ∗, V (1δ

−1
)⟩(x) = ⊥] ≥ 2/3

]
≤ δ.

An average-case interactive argument system is defined in the same manner as above except that
P ∗ is restricted to be a nonuniform polynomial-time prover.

We may omit 1n from the input for readability.
Next, we extend the notion of zero-knowledge to the errorless average-case setting.

Definition 5.14 (Average-case zero-knowledge proof/argument). An average-case interactive proof
system (P, V ) for a distributional problem (Π,D) is said to be statistically (resp. computationally)
zero-knowledge if it is statistically (resp. computationally) zero-knowledge on (Πyes∪Πno)∩supp(D)
with the following exception: For every δ−1 ∈ N, an honest-verifier simulator S outputs ⊥ (with a
negligible error) if and only if

Pr
P,V

[⟨P, V (1δ
−1
)⟩(x) = ⊥] ≥ 2/3.

Let AvgCZK denote the class of distributional problems that have computational zero-knowledge
average-case interactive proof systems.

We also define zero-knowledge statistical (resp. computational) average-case interactive argu-
ment systems in the same manner and the class AvgSZKA (resp. AvgCZKA) as the class of distri-
butional problems that have zero-knowledge statistical (resp. computational) average-case interactive
argument systems.

We show that every distributional problem (Π,D) in AvgCZKA (thus, every (Π,D) ∈ AvgSZKA
and every (Π,D) ∈ AvgCZK) has the average-case BBR/OWF property.

Theorem 5.15. Any promise problem (Π,D) ∈ AvgCZKA has the average-case BBR/OWF prop-
erty.
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Proof sketch. The theorem follows from Theorem 5.11. Let (P, V ) be the average-case compu-
tational zero-knowledge interactive argument system for (Π,D), and let S be its honest-verifier
simulator.

We define the polynomial-time algorithm M of the average-case BBR/OWF property as follows:
On input (x, 1n, 1γ), where n, γ ∈ N and x ∈ supp(Dn), the algorithm M executes S(x, 1γ) and
if S outputs ⊥, then M outputs ⊥; otherwise, M outputs 1. By the average-case requirement of
(P, V ), the algorithm M(x, 1n, 1γ) outputs ⊥ with probability at most 1/γ over x ∼ Dn.

It is easily observed that Πγ ∈ CZKA (where Πγ is the promise problem defined in Definition 5.5)
for every polynomial γ : N → N, where for a given input (x, 1n, 1γ(n)), the interactive argument
system executes ⟨P, V (1γ(n))⟩(1n, x). Thus, by Theorem 5.11, Πγ has the BBR/OWF property for
every polynomial γ.

5.5 Proofs of Main Theorems

Now, we show the main theorems.

Proof of Theorem 2.1. Fix C ∈ {SZKA,CZK,CZKA} arbitrarily. Note that C ⊆ CZKA in any case.
Item 1 =⇒ Item 2 follows from (i) NP ⊆ C under the existence of one-way functions [GMW91;

NOV06] and (ii) NP ⊈ i.o.P/poly under the existence of one-way functions (secure against P/poly).
Item 1 =⇒ Item 3 also follows from (i) GapMCSP ∈ C under the existence of one-way func-

tions [GMW91; NOV06] and (ii) GapMCSP /∈ i.o.P/poly under the existence of one-way functions
(secure against P/poly). Item 3 =⇒ Item 4 is trivial.

Item 2 =⇒ Item 1. Suppose that NP ⊆ C (⊆ CZKA) and NP ⊈ i.o.P/poly. Then, SAT ∈ CZKA,
and SAT has the BBR/OWF property by Theorem 5.11. In addition, by Lemma 5.10, there
exists a samplable distribution D such that (SAT,D) is AIOWF-hard. Thus, the assumption that
NP ⊈ i.o.P/poly implies that (SAT,D) /∈ i.o.Avg1/γP/poly for every polynomial γ by Theorem 5.8,
and this implies the existence of a one-way function secure against P/poly by Lemma 5.2.

Item 4 =⇒ Item 1. Suppose that (GapMCSP,U) ∈ AvgC (⊆ AvgCZKA) and C ⊈ i.o.P/poly. Let
Π ∈ C \ i.o.P/poly. Since Π ∈ C ⊆ CZKA, the promise problem Π has the BBR/OWF property
by Theorem 5.11. By Lemma 5.9, (GapMCSP,U) is AIOWF-hard; thus by Theorem 5.8, Π ⊈
i.o.P/poly implies that (GapMCSP,U) /∈ i.o.Avg1/γP/poly for every polynomial γ. By Lemma 5.6
and Theorem 5.15, this implies the existence of a one-way function secure against P/poly.

Proof of Theorem 2.3. Item 1 =⇒ Items 2 and 3 follows from Item 1 =⇒ Items 2 and 3 of Theo-
rem 2.1 and the fact that soundness error of zero-knowledge proof can be reduced by the parallel
executions.

Item 2 =⇒ Item 1. If NP has an interactive proof system (P, V ) that has computational
knowledge complexity at most O(log n), then by Theorem 5.12, SAT has the BBR/OWF property.
By Lemma 5.10, there exists a samplable distribution D such that (SAT,D) is AIOWF-hard. Thus,
the assumption that NP ⊈ i.o.P/poly implies that (SAT,D) /∈ i.o.Avg1/γP/poly for every polynomial
γ by Theorem 5.8, and this implies the existence of a one-way function secure against P/poly by
Lemma 5.2.

Item 3 =⇒ Item 1. If GapMCSP has an interactive proof system (P, V ) that has computational
knowledge complexity at most O(log n), then by Theorem 5.12, GapMCSP has the BBR/OWF
property. Since CZK ⊈ i.o.P/poly, there exists Π ∈ CZK \ i.o.P/poly. Since Π ∈ CZK, the promise
problem Π has the BBR/OWF property by Theorem 5.11. By Lemma 5.9, (GapMCSP,U) is
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AIOWF-hard; thus by Theorem 5.8, Π ⊈ i.o.P/poly implies that (GapMCSP,U) /∈ i.o.Avg1/γP/poly
for every polynomial γ. By Lemma 5.2, this implies the existence of a one-way function secure
against P/poly.

5.6 Towards Basing Public-Key Cryptography on Worst-Case Hardness

As a corollary to our main result, we improve the consequence following from laconic zero-knowledge
argument systems, presented in [BDRV18].

First, we review some terminologies.

Definition 5.16 (Laconic prover). Let (P, V ) be an interactive proof (or argument) system. For
q : N → N, the prover P is said to be q-laconic if P sends at most q(·)-bit message (as a function
in the length of input and auxiliary advice) for each round.

Definition 5.17 (Cryptographic hardness). Let Π ∈ NP be a promise problem with an NP-relation
R ⊆ {0, 1}∗×{0, 1}∗. Let DY = {DY

n }n and DN = {DN
n }n be samplable distributions. We say that

(Π,DY ,DN ) is cryptographically hard if for every n ∈ N,

• Pr(x,w)∼DY
n
[(x,w) ∈ R] ≤ negl(n);

• Prx∼DN
n
[x ∈ Πno] ≤ negl(n);

• DN and the distribution family of the first half element of DY are computationally indistin-
guishable.

Berman, Degwekar, Rothblum, and Vasudevan [BDRV18] proved the following theorem.

Theorem 5.18 ([BDRV18, Theorem 3.6]). For every cryptographic hard (Π,DY ,DN ), if Π has
a statistical zero-knowledge argument system6 with an efficient and q-laconic prover with ℓ(n)2 ·
q(n)3 = O(log n) (where 2 · ℓ(·) is the round complexity), then there exists a semantic secure public-
key encryption scheme.

Now, we restate Corollary 2.9 more formally and prove it.

Corollary 5.19. • If NP has a statistical zero-knowledge argument system with an efficient and
q-laconic prover with ℓ(n)2 ·q(n)3 = O(log n) (where 2·ℓ(·) is the round complexity), then there
exists a public-key encryption scheme whose semantic security is based on NP ̸⊆ i.o.P/poly.

• If GapMCSP has a statistical zero-knowledge argument system with an efficient and q-laconic
prover with ℓ(n)2 · q(n)3 = O(log n) (where 2 · ℓ(·) is the round complexity), then there exists
a public-key encryption scheme whose semantic security is based on GapMCSP ̸∈ i.o.P/poly.

Proof. We only show the case of GapMCSP. Note that the case of NP is shown by replacing
GapMCSP with SAT in the proof.

We assume that GapMCSP has a statistical zero-knowledge argument system with an efficient
and q-laconic prover with ℓ(n)2 · q(n)3 = O(log n) and GapMCSP ̸∈ i.o.P/poly and then derive the
existence of a semantic secure public-key encryption scheme.

Since GapMCSP ∈ SZKA and GapMCSP ̸∈ i.o.P/poly, we have SZKA ⊈ i.o.P/poly. By Theo-
rem 2.1, there exists a one-way function secure against P/poly.

6The theorem in [BDRV18] and Theorem 2.1 actually hold for honest-verifier zero-knowledge.
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We apply the same reduction from inverting function to distinguishing truth-tables of pseudo-
random functions as Lemma 5.9. More precisely, we define a distribution (family) DY as a distribu-
tion of truth-tables of pseudorandom functions, which is samplable along with the witness (i.e., the
description of the pseudorandom function itself), and define DN as the uniform distribution over all
truth tables. As in the proof of Lemma 5.9, we choose the input length of pseudorandom functions
properly so that (i) every element in supp(DY ) is contained in GapMCSPyes with a valid witness
and (ii) Prx∼DN [x ∈ GapMCSPno] ≤ negl. Then, (GapMCSP,DY ,DN ) is cryptographically hard,
where the computational indistinguishability follows from the security of pseudorandom functions.
Therefore, by Theorem 5.18, there exists a semantic secure public-key encryption scheme.

5.7 Proof of Theorem 5.12

To prove Theorem 5.12, we introduce some notations.
For an interactive proof system (P, V ) for Π of knowledge complexity k(n) and its simulator

S, we assume that S guesses the knowledge κ(x, r) uniformly at random (instead of obtaining it
as input), and S uses rS(n)-bit randomness for each input size n. Then, for each x ∈ Πyes with
|x| = n, there exists a set Kx ⊆ {0, 1}rS(n) such that |Kx|/|{0, 1}rS(n)| = 2−k(n) and S(x; r) is
computationally indistinguishable from ⟨P, V ⟩(x) given r ∼ Kx. We call such a subset Kx a useful
seed set. Note that a useful seed set is not efficiently recognizable since κ can be not efficiently
computable in general. We also use rV (n) to refer to the number of random bits V requires for
each input size n.

For any subset K ⊆ {0, 1}rS(n) of seeds, for each valid transcript τ with respect to the common
input x, and for each i ∈ [2ℓ]∪ {0}, where 2ℓ := 2ℓ(|x|) is the round complexity of (P, V ), we let τi
denote the prefix of τ that corresponds to the first i messages in τ (for simplicity, let τ0 = ε). For
s ∈ {0, 1}∗, we define Ts and Ks as follows

• Ts = |{w ∈ {0, 1}rS(|x|) : the prefix of S(x;w) is s}|;

• Ks = |{w ∈ K : the prefix of S(x;w) is s}|.

In addition, we let S|K denote the simulator given that its randomness is selected uniformly at
random from K. Namely, for each valid transcript τ ,

Pr
S|K

[τ ← S|K(x)] =
Kτ

Kε
=

Kτ2ℓ

Kτ0

.

Let PS and VS be the simulation-based prover and the simulation-based verifier, respectively. We
also consider an S|K-based prover PS|K that returns a message m with respect to the history h
with probability Kh◦m/Kh (if Kh = 0, the S|K-based prover PS|K halts with an error message).

The following is a key lemma.

Lemma 5.20. Let (P, V ) be an interactive proof system, and let S be its simulator that uses rs(n)
random bits. For every input x ∈ {0, 1}∗, every subset K ⊆ {0, 1}r(|x|), and every ∆ ≥ 0 and
δ ∈ (0, 1], if KL(S|K(x)||⟨PS|K , V ⟩(x)) ≤ ∆, then

Pr
τ∼S(x)

[
log

PrS [τ ← S(x)]

PrPS ,V [τ ← ⟨PS , V ⟩(x)]
≤ 2δ−1(∆ + e−1 log e) + log 2δ−1

]
≥ (1− δ) · |K|

2rs(|x|)
.

Proof. We use the following inequalities.
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Claim 5.21. For every δ ∈ (0, 1],

Pr
τ∼S|K

[
log

PrS [τ ← S(x)]

PrPS ,V [τ ← ⟨PS , V ⟩(x)]
≤ log

PrS|K [τ ← S|K(x)]

PrPS|K ,V [τ ← ⟨PS|K , V ⟩(x)]
+ log δ−1

]
≥ 1− δ.

Claim 5.22. For every ∆ ≥ 0 and δ ∈ (0, 1], if KL(S|K(x)||⟨PS|K , V ⟩(x)) ≤ ∆, then

Pr
τ∼S|K

[
log

PrS|K [τ ← S|K(x)]

PrPS|K ,V [τ ← ⟨PS|K , V ⟩(x)]
≤ δ−1(∆ + e−1 log e)

]
≥ 1− δ.

We assume the claims above and first complete the proof of the lemma. By Claim 5.21,
Claim 5.22, and the union bound, we have

Pr
τ∼S|K

[
log

PrS [τ ← S(x)]

PrPS ,V [τ ← ⟨PS , V ⟩(x)]
≤ 2δ−1(∆ + e−1 log e) + log 2δ−1

]
≥ 1− δ.

Thus, we have

Pr
τ∼S

[
log

PrS [τ ← S(x)]

PrPS ,V [τ ← ⟨PS , V ⟩(x)]
≤ 2δ−1(∆ + e−1 log e) + log 2δ−1

]
≥ (1− δ) · Pr

w∼{0,1}rs(|x|)
[w ∈ K]

= (1− δ) · |K|
2rs(|x|)

.

Therefore, it suffices to show Claim 5.21 and Claim 5.22.

Proof of Claim 5.21.

E
τ∼S|K

[
PrS [τ ← S(x)]

PrPS ,V [τ ← ⟨PS , V ⟩(x)]
·
PrPS|K ,V [τ ← ⟨PS|K , V ⟩(x)]

PrS|K [τ ← S|K(x)]

]

=
∑
τ

PrS|K [τ ← S|K ]

PrS|K [τ ← S|K ]
· Pr

S
[τ ← S(x)] ·

PrPS|K ,V [τ ← ⟨PS|K , V ⟩(x)]
PrPS ,V [τ ← ⟨PS , V ⟩(x)]

=
∑
τ

1 · Tτ2ℓ

Tτ0

·
2−rV (|x|) · Kτ1

Kτ0
· Kτ3
Kτ2
· · · · · Kτ2ℓ−1

Kτ2ℓ−2

2−rV (|x|) · Tτ1
Tτ0
· Tτ3
Tτ2
· · · · · Tτ2ℓ−1

Tτ2ℓ−2

=
∑
τ

Kτ1

Kτ0

· Tτ2

Tτ1

· Kτ3

Kτ2

· · · · ·
Kτ2ℓ−1

Kτ2ℓ−2

· Tτ2ℓ

Tτ2ℓ−1

=
∑
τ

Pr
PS|K ,VS

[
τ ← ⟨PS|K , VS⟩(x)

]
≤ 1,

where τ is taken over valid transcripts such that Tτi ̸= 0 and Kτi ̸= 0 for each i ∈ [2ℓ].
By Markov’s inequality,

Pr
τ∼S|K(x)

[
PrS [τ ← S(x)]

PrPS ,V [τ ← ⟨PS , V ⟩(x)]
·
PrPS|K ,V [τ ← ⟨PS|K , V ⟩(x)]

PrS|K [τ ← S|K(x)]
≤ δ−1

]
≥ 1− δ.
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By the assumption that S always outputs a valid transcript, it holds that Pr[τ ← ⟨PS|K , V ⟩(x)] > 0
for every transcript τ produced by S|K . Thus, by arranging the above, we have

Pr
τ∼S|K(x)

[
log

PrS [τ ← S(x)]

PrPS ,V [τ ← ⟨PS , V ⟩(x)]
− log

PrS|K [τ ← S|K(x)]

PrPS|K ,V [τ ← ⟨PS|K , V ⟩(x)]
≤ log δ−1

]
≥ 1− δ.

⋄

Proof of Claim 5.22. Let X = {τ : PrS|K [τ ← S|K(x)] > 0}, and let A ⊆ X be a set of transcripts
τ such that

log
PrS|K(x)[τ ← S|K(x)]

PrPS|K ,V [τ ← ⟨PS|K , V ⟩(x)]
> δ−1(∆ + e−1 log e).

We show Prτ∼S|K(x)[τ ∈ A] ≤ δ by contradiction. Let η := δ−1(∆ + e−1 log e) for readability.

Suppose that Prτ∼S|K(x)[τ ∈ A] > δ. Let Ā = X \A. We also define KA := {w ∈ K : S(x;w) ∈
A} and KĀ := {w ∈ K : S(x;w) ∈ Ā}.

Now, we estimate the KL divergence as follows:

KL(S|K(x)||⟨PS|K , V ⟩(x))

= Pr
τ∼S|K(x)

[τ ∈ A] · E
τ∼S|KA (x)

[
log

PrS|K(x)[τ ← S|K(x)]

PrPS|K ,V [τ ← ⟨PS|K , V ⟩(x)]

]

+ Pr
τ∼S|K(x)

[τ ∈ Ā] · E
τ∼S|KA (x)

[
− log

PrPS|K ,V [τ ← ⟨PS|K , V ⟩(x)]
PrS|K(x)[τ ← S|K(x)]

]

> Pr
τ∼S|K(x)

[τ ∈ A] · η + Pr
τ∼S|K(x)

[τ ∈ Ā] · E
τ∼S|KA (x)

[
− log

PrPS|K ,V [τ ← ⟨PS|K , V ⟩(x)]
PrS|K(x)[τ ← S|K(x)]

]

≥ Pr
τ∼S|K(x)

[τ ∈ A] · η + Pr
τ∼S|K(x)

[τ ∈ Ā] ·

(
− log E

τ∼S|KĀ (x)

[
PrPS|K ,V [τ ← ⟨PS|K , V ⟩(x)]

PrS|K(x)[τ ← S|K(x)]

])
= Pr

τ∼S|K(x)
[τ ∈ A] · η

+ Pr
τ∼S|K(x)

[τ ∈ Ā] ·

(
− log E

τ∼S|KĀ (x)

[
PrPS|K ,V [τ ← ⟨PS|K , V ⟩(x)]

PrS|KĀ (x)[τ ← S|KĀ(x)] Prτ ′∼S|K(x)[τ ′ ∈ Ā]

])

= Pr
τ∼S|K(x)

[τ ∈ A] · η + Pr
τ∼S|K(x)

[τ ∈ Ā] ·

(
− log E

τ∼S|KĀ (x)

[
PrPS|K ,V [τ ← ⟨PS|K , V ⟩(x)]
PrS|KĀ (x)[τ ← S|KĀ(x)]

])

− Pr
τ∼S|K(x)

[τ ∈ Ā] log
1

Prτ ′∼S|K(x)[τ ′ ∈ Ā]

≥ Pr
τ∼S|K(x)

[τ ∈ A] · η + Pr
τ∼S|K(x)

[τ ∈ Ā] · (− log 1)− Pr
τ∼S|K(x)

[τ ∈ Ā] log
1

Prτ∼S|K(x)[τ ∈ Ā]

= Pr
τ∼S|K(x)

[τ ∈ A] · η − Pr
τ∼S|K(x)

[τ ∈ Ā] log
1

Prτ∼S|K(x)[τ ∈ Ā]

≥ Pr
τ∼S|K(x)

[τ ∈ A] · η − e−1 log e
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> δ · η − e−1 log e

= ∆+ e−1 log e− e−1 log e

= ∆,

where the first inequality holds by the definition of A and Prτ∼S|K(x)[τ ∈ A] > δ > 0, the second
inequality follows from Jensen’s inequality, the third inequality follows from

E
τ∼S|KĀ (x)

[
PrPS|K ,V [τ ← ⟨PS|K , V ⟩(x)]
PrS|KĀ (x)[τ ← S|KĀ(x)]

]
≤
∑
τ

Pr
PS|K ,V

[τ ← ⟨PS|K , V ⟩(x)] ≤ 1,

the fourth inequality holds because p log p−1 ≤ e−1 log e for every p ∈ (0, 1], and the last inequality
follows from Prτ∼S|K(x)[τ ∈ A] > δ.

The above contradicts the assumption that KL(S|K(x)||⟨PS|K , V ⟩(x)) ≤ ∆. Thus, we have
Prτ∼S|K(x)[τ ∈ A] ≤ δ. ⋄

By selecting K as the useful seed set for the simulator, we obtain the following.

Lemma 5.23. Let (P, V ) be an interactive proof system for a promise problem Π of computational
knowledge complexity k(n). Let S be its simulator whose useful seed set is K := Kx for x ∈ Πyes.
Then, for every ∆ ≥ 1, for every input x ∈ Πyes satisfying KL(S|K(x)||⟨PS|K , V ⟩(x)) ≤ ∆, and for
every δ ∈ (0, 1],

Pr
τ∼S(x)

[
log

PrS [τ ← S(x)]

PrPS ,V [τ ← ⟨PS , V ⟩(x)]
≤ 3δ−1 + 2δ−1∆

]
≥ (1− δ) · 2−k(n).

We also show the following lemma.

Lemma 5.24. Let (P, V ) be an interactive proof system for a promise problem Π of computa-
tional knowledge complexity k(n) = O(log n), and let S be its simulator whose useful seed set is
K := Kx for x ∈ Πyes. Then, there exists a polynomial-time-computable auxiliary-input func-
tion fY = {fY

x }x∈{0,1}∗ such that fY is one-way almost everywhere on IY := {x ∈ Πyes :
KL(S|K(x)||⟨PS|K , V ⟩(x)) > 3k(|x|)}.

Proof. The lemma follows from Lemma 4.8, in which we (implicitly) construct a false entropy
generator almost everywhere on IY , and it implies a secure pseudorandom generator and thus a
one-way function almost everywhere on IY [cf. HILL99; Vad06, Appendix B].

Let 2ℓ := 2 · ℓ(n) be the round complexity. For each i ∈ [2ℓ], let S|K(x)i denote the prefix of
S|K(x) up to the i-th message. We also define ⟨P, V ⟩(x)i in the same manner.
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For every τ ∈ supp(S|K(x)),

log
Pr[τ ← S|K(x)]

Pr[τ ← ⟨PS|K , V ⟩(x)]
= log

Kτ1
Kτ0
· Kτ2
Kτ1
· · · · · Kτ2ℓ

Kτ2ℓ−1

2−rV (|x|) · Kτ1
Kτ0
· Kτ3
Kτ2
· · · · · Kτ2ℓ−1

Kτ2ℓ−2

= rV (|x|) + log
Kτ2

Kτ1

Kτ4

Kτ3

· · · Kτ2ℓ

Kτ2ℓ−1

= rV (|x|) +
ℓ∑

i=1

log
Kτ2i/Kτ0

Kτ2i−1/Kτ0

= rV (|x|) +
ℓ∑

i=1

log Pr
[
τ2i ← S|K(x)2i

∣∣τ2i−1 ← S|K(x)2i−1

]
.

By taking the expectation over τ ∼ S|K(x), we have

KL(S|K(x)||⟨PS|K , V ⟩(x)) = rV (|x|)−
ℓ∑

i=1

H
(
S|K(x)2i

∣∣S|K(x)2i−1

)
Thus, for every x ∈ IY ,

ℓ∑
i=1

H
(
S|K(x)2i

∣∣S|K(x)2i−1

)
< rV (|x|)− 3k(|x|). (1)

By contrast, since V outputs its internal randomness as the final message, we have

ℓ∑
i=1

H (⟨P, V ⟩(x)2i|⟨P, V ⟩(x)2i−1) = rV (|x|). (2)

We exploit the additive gap 3k(|x|) between Eqs. (1) and (2) as false entropy.
For each i ∈ [ℓ], we consider the following two joint distributions:

• (X i
x,Y i

x): a joint distribution selected according to (S(x;w)2i, S(x;w)2i−1) for w ∼ {0, 1}rS(|x|).

• (X̄ i
x, Ȳ i

x): a joint distribution selected according to the following procedure: Select w ∼
{0, 1}rS(|x|). If w /∈ K, then (X̄ i

x, Ȳ i
x) = (S(x;w)2i, S(x;w)2i−1); otherwise (if w ∈ K),

(X̄ i
x, Ȳ i

x) = (⟨P, V ⟩(x)2i, ⟨P, V ⟩(x)2i−1).

It is easily observed that (X i
x,Y i

x) is efficiently samplable (note that (X ′
x,Y ′

x) is not efficiently
samplable in general). In addition, since (i) Prw[w ∈ K] ≥ 2−k(|n|) = 1/poly(|x|) and (ii) S|K(x)
and ⟨P, V ⟩(x) are computationally indistinguishable, (X i

x,Y i
x) and (X̄ i

x, Ȳ i
x) are also computationally

indistinguishable.
We define a random variable E as an indicator for the event that w ∈ K. Then, by Lemma 4.9,

H(X i|E,Y i) = Pr
w
[w ∈ K]H(S|K(x)2i|S|K(x)2i−1) + Pr

w
[w /∈ K]H(S|K̄(x)2i|S|K̄(x)2i−1);

H(X̄ i
x|E, Ȳ i

x) = Pr
w
[w ∈ K]H(⟨P, V ⟩(x)2i|⟨P, V ⟩(x)2i−1) + Pr

w
[w /∈ K]H(S|K̄(x)2i|S|K̄(x)2i−1).
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Thus, by Eqs. (1) and (2),

ℓ∑
i=1

H(X̄ i
x|E, Ȳ i

x)−
ℓ∑

i=1

H(X i
x|E,Y i

x)

= Pr
w
[w ∈ K]

(
ℓ∑

i=1

H(⟨P, V ⟩(x)2i|⟨P, V ⟩(x)2i−1)−
ℓ∑

i=1

H(S|K(x)2i|S|K(x)2i−1)

)

>
1

2k(|x|)
· 3k(|x|).

For now, we assume the following claim shown by a simple calculation and continue the proof.

Claim 5.25.
ℓ∑

i=1

H(X i
x|E,Y i

x) ≥
ℓ∑

i=1

H(X i
x|Y i

x)−H(E).

Claim 5.25 implies that

ℓ∑
i=1

H(X̄ i
x|E, Ȳ i

x)−
ℓ∑

i=1

H(X i
x|E,Y i

x) ≤
ℓ∑

i=1

H(X̄ i
x|Ȳ i

x)−
ℓ∑

i=1

H(X i
x|E,Y i

x)

≤
ℓ∑

i=1

H(X̄ i
x|Ȳ i

x)−
ℓ∑

i=1

H(X i
x|Y i

x) +H(E).

From the two inequalities above,

ℓ∑
i=1

H(X̄ i
x|Ȳ i

x)−
ℓ∑

i=1

H(X i
x|Y i

x) ≥
ℓ∑

i=1

H(X̄ i
x|E, Ȳ i

x)−
ℓ∑

i=1

H(X i
x|E,Y i

x)−H(E)

>
3k(|x|)
2k(|x|)

−H(E)

=
3k(|x|)
2k(|x|)

− 1

2k(|x|)
log 2k(|x|) − (1− 1

2k(|x|)
) log

1

1− 2−k(|x|)

≥ 3k(|x|)
2k(|x|)

− 1

2k(|x|)
log 2k(|x|) − 1

2k(|x|)
log 2k(|x|)

=
k(|x|)
2k(|x|)

.

where the third inequality holds because p log p−1 ≥ (1− p) log(1− p)−1 for p ∈ (0, 1/2].
For a random variable I selected according to the uniform distribution over [ℓ],

H(X̄ I
x |ȲI

x)−H(X I
x |YI

x) ≥
1

ℓ(|x|)
· k(|x|)
2k(|x|)

≥ 1

poly(|x|)
,

where the last inequality follows from k(|x|) = O(log(|x|)).
The joint distribution (X I

x ,YI
x) is efficiently samplable for given x and computationally indis-

tinguishable from (X̄ I
x , ȲI

x) because (X i
x,Y i

x) and (X̄ i
x, Ȳ i

x) are computationally indistinguishable for
all i ∈ [ℓ]. Thus, by Lemma 4.8, we can construct a one-way function fx from (X I

x ,YI
x) (i.e., S(x))

which is secure almost everywhere on IY .
Finally, we present the proof of Claim 5.25.
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Proof of Claim 5.25. The claim is verified as the following calculation:

ℓ∑
i=1

H(X i
x|E,Y i

x) =
ℓ∑

i=1

H(S(x)2i|E,S(x)2i−1)

=

ℓ∑
i=1

H(S(x)2i|E,S(x)1, . . . , S(x)2i−1)

= H(E,S(x)1, . . . , S(x)2ℓ)−H(E)−
ℓ∑

i=1

H(S(x)2i−1|E,S(x)1, . . . , S(x)2i−2)

≥ H(S(x)1, . . . , S(x)2ℓ)−H(E)−
ℓ∑

i=1

H(S(x)2i−1|S(x)1, . . . , S(x)2i−2)

=
ℓ∑

i=1

H(S(x)2i|S(x)1, . . . , S(x)2i−1)−H(E)

=

ℓ∑
i=1

H(S(x)2i|S(x)2i−1)−H(E)

=
ℓ∑

i=1

H(X i
x|Y i

x)−H(E),

where the third and fourth equality follows from the chain rule. ⋄

We also use the following theorem.

Theorem 5.26 ([IL90; HN23]). For every polynomial-time computable function f = {fz : {0, 1}poly(|z|) →
{0, 1}poly(|z|)}z∈{0,1}∗ and every polynomials q and q′, there exist a polynomial-time randomized ora-

cle machine Rest, a polynomial-time computable function f̃ = {f̃z : {0, 1}poly(|z|) → {0, 1}poly(|z|)}z∈{0,1}∗,
and a polynomial p such that for every z ∈ {0, 1}∗ and every oracle A, if Prw[A(f̃z(w)) /∈ f̃−1

z (f̃z(w))] ≤
1/p(|z|), then

Pr
R,w

[
− log pfz(w) − q(|z|) ≤ RA

est(z, fz(w)) ≤ − log pfz(w) + q(|z|)
]
≥ 1− 1/q′(|z|),

where pfz(w) := Prw′ [fz(w) = fz(w
′)].

Now, we complete the proof of Theorem 5.12.

Proof of Theorem 5.12. Let Π be a promise problem that has an interactive proof system of com-
putational knowledge complexity at most k(n) = O(log n) and negligible soundness error, where n
represents the length of an instance. By Lemma 5.24, there exists a polynomial-time-computable
auxiliary-input function fY = {fY

x }x∈{0,1}∗ secure almost everywhere on IY := {x ∈ Πyes :
KL(S|K(x)||⟨PS|K , V ⟩(x)) > 3k(|x|)}. Let ℓ := ℓ(|x|).

It suffices to construct a polynomial-time-computable function and a black-box reduction from
solving (Πyes \ IY ,Πno) to inverting a function on average.
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By Lemma 5.23, for every x ∈ Πyes \ IY ,

Pr
τ∼S(x)

[
log

PrS [τ ← S(x)]

PrPS ,V [τ ← ⟨PS , V ⟩(x)]
≤ 6 + 12k(n)

]
≥ 1

2
· 2−k(n). (3)

By contrast, we can observe the following.

Claim 5.27. For every x ∈ Πno,

Pr
τ∼S(x)

[
log

PrS [τ ← S(x)]

PrPS ,V [τ ← ⟨PS , V ⟩(x)]
> 9 + 12k(n)

]
≥ 1− negl(n). (4)

We assume the claim above for now and continue the proof.
Recall that for any τ ∈ supp(S(x)),

log
PrS [τ ← S(x)]

PrPS ,V [τ ← ⟨PS , V ⟩(x)]
= log

Tτ1
Tτ0
· Tτ2
Tτ1
· · · · · Tτ2ℓ

Tτ2ℓ−1

2−rV (|x|) · Tτ1
Tτ0
· Tτ3
Tτ2
· · · · · Tτ2ℓ−1

Tτ2ℓ−2

= rV (|x|) + log

(
Tτ2

Tτ1

· · · Tτ2ℓ

Tτ2ℓ−1

)
.

We employ Theorem 5.26 to reduce estimating Tτ0 , . . . , Tτ2ℓ to inverting a function. We define
a polynomial-time-computable function g = {gx}x as follows:

gx(i, w) = (i, S(x;w)≤i),

where i ∼ [2ℓ], w ∼ rS(|x|), and S(x;w)≤i represents the first i messages in the transcript pro-
duced by S(x;w). Since ℓ = ℓ(n) = poly(n) and 2k(n) = poly(n), by Theorem 5.26, there ex-
ist a polynomial-time randomized oracle machine Rest, a polynomial-time computable function
g̃ = {g̃x}x∈{0,1}∗ , and a polynomial p such that for every x ∈ {0, 1}∗ and every oracle A, if
Prw[A(g̃x(w)) /∈ g̃−1

x (g̃x(w))] ≤ 1/p(|x|), then

Pr
Rest,i,w

[
− log pgx(i,w) −

1

2ℓ
≤ RA

est(x, gx(i, w)) ≤ − log pgx(i,w) +
1

2ℓ

]
≥ 1− 1

16ℓ
· 2−k(n).

Recall that pgx(i,w) := Pri′,w′ [gx(i
′, w′) = gx(i, w)]. Since i is selected from [2ℓ] uniformly at random,

it holds that

Pr
Rest,w

[
∀i ∈ [2ℓ] − log pgx(i,w) −

1

2ℓ
≤ RA

est(x, i, S(x;w)≤i) ≤ − log pgx(i,w) +
1

2ℓ

]
≥ 1− 1

8
· 2−k(n).

(5)
For each τ ∈ supp(S(x)) and i ∈ [2ℓ],

pgx(i,τi) = Pr
i′,w

[i′ = i and S(x;w)≤i = τi] =
1

2ℓ
· Tτi

rS(|x|)
;

thus,

log Tτi = log pgx(i,τi) + log 2ℓ+ log rS(|x|),
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and

log

(
Tτ2

Tτ1

· · · Tτ2ℓ

Tτ2ℓ−1

)
=

ℓ∑
i=1

(
(− log pgx(2i−1,τ2i−1))− (− log pgx(2i,τ2i))

)
.

We consider the case where Rest and w satisfy the event in Eq. (5). Then, for

∆(x) :=

ℓ∑
i=1

(
RA

est(x, 2i− 1, τ2i−1)−RA
est(x, 2i, τ2i)

)
,

we have

∆(x) ≤
ℓ∑

i=1

(
(− log pgx(2i−1,τ2i−1))− (− log pgx(2i,τ2i))

)
+

2ℓ∑
i=1

1

2ℓ

= log

(
Tτ2

Tτ1

· · · Tτ2ℓ

Tτ2ℓ−1

)
+ 1, (6)

and

∆(x) ≥
ℓ∑

i=1

(
(− log pgx(2i−1,τ2i−1))− (− log pgx(2i,τ2i))

)
−

2ℓ∑
i=1

1

2ℓ

= log

(
Tτ2

Tτ1

· · · Tτ2ℓ

Tτ2ℓ−1

)
− 1. (7)

Now, we specify the black-box reduction R? from solving (Πyes\IY ,Πno) to inverting g̃ based on
the argument above. For given oracle access to A that inverts g̃, the reduction RA(x) executes RA

est

to estimate the probability that rV (|x|)+∆(x) < 7.5+12k(n) holds over the choice of randomness
for Rest and S(x) by empirical estimation of accuracy error ±(1/16)2−k(n) and confidence error 1/3.
If the estimated probability is greater than (7/32)2−k(n), the reduction R outputs 1; otherwise, R
outputs 0.

It is not hard to verify that R is polynomial-time computable because the empirical estimation
is done by at most O(22k(n)) = poly(n) trials. We show the correctness of R. Suppose that A
inverts g̃ successfully with failure probability at most 1/p(|x|).

In the case where x ∈ Πyes \ IY , by Eqs. (5) and (6),

Pr
Rest,w

[
rV (|x|) + ∆(x) ≤ rV (|x|) + log

(
Tτ2

Tτ1

· · · Tτ2ℓ

Tτ2ℓ−1

)
+ 1

]
≥ 1− 1

8
· 2−k(n).

Moreover, by Eq. (3),

Pr
τ∼S(x)

[
rV (|x|) + log

(
Tτ2

Tτ1

· · · Tτ2ℓ

Tτ2ℓ−1

)
≤ 6 + 12k(n)

]
≥ 1

2
· 2−k(n).

Thus, we have

Pr
Rest,w

[rV (|x|) + ∆(x) ≤ 7 + 12k(n)] ≥ 3

8
· 2−k(n).
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By contrast, in the case where x ∈ Πno, Eqs. (5) and (7) imply that

Pr
Rest,w

[
rV (|x|) + ∆(x) ≥ rV (|x|) + log

(
Tτ2

Tτ1

· · · Tτ2ℓ

Tτ2ℓ−1

)
− 1

]
≥ 1− 1

8
· 2−k(n).

Moreover, by Eq. (4),

Pr
τ∼S(x)

[
log

PrS [τ ← S(x)]

PrPS ,V [τ ← ⟨PS , V ⟩(x)]
> 9 + 12k(n)

]
≥ 1− negl(n).

Thus, by the union bound,

Pr
Rest,w

[rV (|x|) + ∆(x) ≥ 8 + 12k(n)] ≥ 1−
(
negl(n) +

1

8
· 2−k(n)

)
,

and

Pr
Rest,w

[rV (|x|) + ∆(x) < 7.5 + 12k(n)] ≤ negl(n) +
1

8
· 2−k(n).

Thus, by approximating the probability that rV (|x|) + ∆(x) < 7.5 + 12k(n) with additive
accuracy error ±1/16 · 2−k(n), the reduction RA can distinguish the cases where (i) x ∈ Πyes \ IY
and x ∈ Πno with probability at least 2/3.

In the reminder, we show Claim 5.27.

Proof of Claim 5.27. Let B ⊆ suppS(x) be the subset of transcripts τ that satisfies

log
PrS [τ ← S(x)]

PrPS ,V [τ ← ⟨PS , V ⟩(x)]
≤ 9 + 12k(n).

Then, we have ∑
τ∈B

Pr
S
[τ ← S(x)] ≤ 29+12k(n) Pr

PS ,V
[τ ← ⟨PS , V ⟩(x)]

However, by the assumption that S always outputs an accepting transcript, the soundness
implies that

Pr
PS ,V

[τ ← ⟨PS , V ⟩(x)] ≤ negl(n).

Thus, we conclude that

Pr
τ∼S(x)

[
log

PrS [τ ← S(x)]

PrPS ,V [τ ← ⟨PS , V ⟩(x)]
≤ 9 + 12k(n)

]
≤ 29+12k(n) · negl(n)

≤ negl(n),

which implies Eq. (4). ⋄
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6 Nontrivial Savings of Computational Knowledge Complexity

In this section, we show the following theorem.

Theorem 6.1. Let s, k : N → N be functions satisfying that s(k(n)) = nω(1). If there exists
an auxiliary-input one-way function with sufficiently large security against SIZE[poly(s(m))] with
success probability at most negl(s(m)) (where m represents the length of auxiliary input), then NP
has an interactive proof system of computational knowledge complexity k(n) and negligible soundness
error.

The proof of Theorem 6.1 is based on two key theorems.
The first one is the small support min-max theorem. We introduce some notions. Let M be an

r× c [−1, 1]-valued matrix. We regard M as a description of a zero-sum game, where a row player
selects a row i ∈ [r], a column player selects a column j ∈ [c], and then the row (resp. column)
player loses (resp. wins) the reward Mi,j . We call i ∈ [r] and j ∈ [c] a pure strategy of the row and
column player, respectively. A mixed strategy of the row (resp. column) player is a distribution
over [r] (resp. [c]). Let R and C be a set of all mixed strategies of the row and column players,
respectively. Then, the standard min-max theorem states that

v(M) := min
p∈R

max
j∈[c]

E
i∼p

[Mi,j ] = max
q∈C

min
i∈[r]

E
i∼q

[Mi,j ].

We call v(M) above the value of game M .
The small-support min-max theorem [LY94] states that the value of a game M is accomplished

by a mixed strategy defined as a uniform distribution over a relatively small support with respect
to the number of opponent’s pure strategy. For any k ∈ N, let Rk (resp. Ck) be a set of uniform
distributions over a multi-set S ⊆ [r] (resp. S ⊆ [c]) with |S| = k. Note that Rk ⊆ R and Ck ⊆ C.
The small-support zero-sum game is stated as follows.

Theorem 6.2 (Small-support min-max theorem [LY94]). Let M be an r× c [−1, 1]-valued matrix.
For every δ > 0, let kr = 10 ln c/δ2 and kc = 10 ln r/δ2. Then,

(v(M) ≤) min
p∈Rkr

max
j∈[c]

E
i∼p

[Mi,j ] ≤ v(M) + δ

and
v(M)− δ ≤ max

q∈Ckc
min
i∈[r]

E
i∼q

[Mi,j ] (≤ v(M)) .

The second one is the construction of zero-knowledge proof for NP based on one-way func-
tions [GMW91]. Particularly, we use the previous work as a building block in the following form.

Theorem 6.3 ([GMW91]). Let f = {fz}z∈{0,1}∗ be a polynomial-time-computable auxiliary-input
function. For every Π ∈ NP, there exist an interactive proof system (Pz, Vz) for Π (with negligible
completeness and soundness error), a polynomial-time randomized algorithm Sz, where z is an
auxiliary input, a polynomial-time randomized oracle machine R?, and a constant c > 0 such that
for every x ∈ Πyes, every γ−1 ∈ N, and every z ∈ {0, 1}∗, if there exists a nonuniform randomized
polynomial-time algorithm A such that∣∣∣∣ Pr

Pz ,Vz ,A
[A(z, viewVz(⟨Pz, Vz⟩(x))) = 1]− Pr

Sz ,A
[A(z, Sz(x)) = 1]

∣∣∣∣ ≥ γ
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then
Pr

w,R,A
[RA(1γ

−1
, z, fz(w)) ∈ f−1

z (fz(w))] ≥ γc.

Now, we prove Theorem 6.1.

Proof of Theorem 6.1. Let s, k : N → N be functions satisfying that s(k(n)) = nω(1). Let f =
{fz}z∈{0,1}∗ be a polynomial-time-computable auxiliary-input function with sufficiently large secu-
rity against SIZE[poly(s(|z|))]. For Π ∈ NP, we construct an interactive proof system of computa-
tional knowledge complexity k(n) (with negligible soundness error).

By Theorem 6.3, there exist an interactive proof system (Pz, Vz) for Π (with negligible com-
pleteness and soundness error), a polynomial-time randomized algorithm Sz, and a polynomial-time
randomized oracle machine R? satisfying the properties of Theorem 6.3.

Fix n ∈ N arbitrarily. Let m := k(n). We define a zero-sum game M as follows: Each row is
indexed by z ∈ {0, 1}m, each column is indexed by circuits C of size s(m), and each entry of M is
defined as

Mz,C :=

∣∣∣∣ PrPz ,Vz

[C(z, viewVz(⟨Pz, Vz⟩(x))) = 1]− Pr
Sz

[C(z, Sz(x)) = 1]

∣∣∣∣ .
We also define v(m) ∈ [0, 1] as

v(m) = min
z

max
C

∣∣∣∣ PrPz ,Vz

[C(z, viewVz(⟨Pz, Vz⟩(x))) = 1]− Pr
Sz

[C(z, Sz(x)) = 1]

∣∣∣∣ .
By the definition of the value of M , we have v(M) ≤ v(m). Note that v(m) is uniformly com-

putable in the time-unbounded setting. In addition, v(m) ≤ negl(s(m)); otherwise, by Theorem 6.3,
there exists a poly(s(m))-size circuit that inverts fz for all z ∈ {0, 1}m with success probability at
least 1/poly(s(m)).

Next, we apply the small support min-max theorem (Theorem 6.2). Then, there exists a multi-
set Sm ⊆ {0, 1}m of size km = O(s(m)2 log s(m) log(s(m))) such that for every circuit C of size
s(m),

E
z∼Sm

[∣∣∣∣ Pr
Pz ,Vz ,A

[A(z, viewVz(⟨Pz, Vz⟩(x))) = 1]− Pr
Sz ,A

[A(z, Sz(x)) = 1]

∣∣∣∣] ≤ v(m) + s(m)− log s(m)

Now, we present an interactive proof system (P ′, V ′) of computational knowledge complexity
k(n) (with negligible soundness error) for Π. Let x ∈ {0, 1}n be a common input for (P ′, V ′), and
let m = k(n). First, by exhaustive search, P ′ finds the lexicographically first multi-set S0 of size
km satisfying

E
z∼S0

[∣∣∣∣ Pr
Pz ,Vz ,A

[A(z, viewVz(⟨Pz, Vz⟩(x))) = 1]− Pr
Sz ,A

[A(z, Sz(x)) = 1]

∣∣∣∣] ≤ v(m) + s(m)− log s(m)

≤ negl(s(m)). (8)

Recall that such an S0 must exist because of the argument above. Next, P ′ sends z ∼ S0 to V ′.
Then, (P ′, V ′) executes (Pz, Vz) for the common input x and V ′ makes the same decision as Vz.

The completeness and soundness of (P ′, V ′) follows from that of (P, V ). We show that the
knowledge complexity of (P, V ) is k(n) by constructing a simulator S′ for (P ′, V ′). Let S0 =
{z1, . . . , zkm}, and let κ : {0, 1}n × {0, 1}poly(n) → {0, 1}k(n) be a function defined as

κ(x,w) = zi,
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where i ∈ [km] is an index indicated by w[⌈log km⌉]. The simulator S′, given a common input

x ∈ {0, 1}n, a randomness w ∈ {0, 1}poly(n), and advice z = κ(x,w), simulates Sz(x) by using
suffix of w not used in κ and outputs the same transcript. Suppose that there exists a nonuniform
polynomial-time adversary A such that∣∣∣∣ Pr

z∼S0,Pz ,Vz ,A
[A(z, viewVz(⟨Pz, Vz⟩(x))) = 1]− Pr

z∼S0,Sz ,A
[A(z, Sz(x)) = 1]

∣∣∣∣∣∣∣∣ Pr
P ′,V ′,A

[A(z, viewV ′(⟨P ′, V ′⟩(x))) = 1]− Pr
S′,A

[A(z, S′(x)) = 1]

∣∣∣∣ ≥ 1

poly(n)

Then,

E
z∼S0

[∣∣∣∣ Pr
Pz ,Vz ,A

[A(z, viewVz(⟨Pz, Vz⟩(x))) = 1]− Pr
Sz ,A

[A(z, Sz(x)) = 1]

∣∣∣∣] ≥ 1

poly(n)
≥ 1

s(k(n))
=

1

s(m)
,

which contradicts Eq. (8), where we used the assumption that s(k(n)) = nω(1). Thus, S′ is a
computational simulator for (P ′, V ′) with κ, and its knowledge complexity is k(n).

Next, we prove Theorems 2.4 and 2.5 by choosing k(·) and s(·) above properly.

Corollary 6.4 (Theorem 2.5). If there exists an exponentially secure auxiliary-input one-way func-
tion with sufficiently large security, then for every increasing function k(n) = ω(log n), NP has an
interactive proof system of computational knowledge complexity k(n) (with negligible soundness er-
ror).

Proof. Let k(n) = ω(log n) be an increasing function. We define an increasing function s(n) as

s(n) := max
m∈N:k(m)≤n

m

√
k(m)
logm .

Note that s(k(n)) = n

√
k(n)
logn for every n ∈ N. Since k(n) = ω(log n), we have s(k(n)) = nω(1).

We also observe that log s(k(n)) =
√

k(n) log n = o(k(n)). Thus, s(m) = 2o(m), and the assump-
tion implies that there exists an auxiliary-input one-way function secure against SIZE[poly(s(m))]
with success probability at most negl(s(m)). By Theorem 6.1, we conclude that NP has an interac-
tive proof system of computational knowledge complexity k(n) and negligible soundness error.

Corollary 6.5 (Theorem 2.4). If there exists an auxiliary-input one-way function secure against
P/poly with sufficiently large security, then there exists a function k(n) such that NP has an inter-
active proof system of computational knowledge complexity k(n) (with negligible soundness error)
and k(n) ≤ nϵ for every constant ϵ > 0 and every large enough n.

Proof. Let f = {fz}z∈{0,1}∗ be an auxiliary-input one-way function. We can fix an increasing

function γ(m) = mω(1) such that every polynomial-size (family of) inverters successfully inverts fz
with probability at most 1/γ(|z|) for any large enough z ∈ {0, 1}∗ [cf. Bel02]. We define an increase
function c(m) so that for each m ∈ N, the minimum circuit size that inverts fz for all z ∈ {0, 1}≤m

with probability greater than 1/γ(|z|) is c(m) + 1. By the choice of γ, we have that c(m) = mω(1).

Let s(m) = min{m
√

log γ(m)/ logm,m
√

log c(m)/ logm} = mω(1). Then, we have that f is secure
against SIZE[poly(s(m))] with success probability at most negl(s(m)) since poly(s(m)) < γ(m) and
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poly(s(m)) < c(m) for large enough m. Without loss of generality, we assume that there exists a
function f : N → N such that s(ma) = O(s(m)f(a)) for any a > 0 by selecting γ(m) and c(m) as
sufficiently small superpolynomials.

We define a function k(n) as

k(n) := max

{
m ∈ N : s(m) ≤ n

√
log s(n)
logn

}
.

Note that s(k(n) + 1) > n

√
log s(n)
logn for each n ∈ N. Since log s(n) = ω(log n), we have s(k(n) + 1) =

nω(1). We also observe that, for every a > 0,

log s(k(na)) ≤
√
log s(na) log na ≤

√
O(log s(n) log n) = o(log s(n)),

where we used s(ma) = O(s(m)f(a)) and log s(m) = ω(log n). Therefore, for every constant ϵ > 0,
we have k(n) < nϵ and k(n) + 1 ≤ nϵ for large enough n; otherwise, k(n) ≥ nϵ for large enough n,
and

log s(k(n1/ϵ)) ≥ log s(n),

which contradicts the above.
By Theorem 6.1, we conclude that NP has an interactive proof system of computational knowl-

edge complexity k(n) + 1 and negligible soundness error, and it holds that k(n) + 1 ≤ nϵ for every
constant ϵ > 0 and every large enough n.

7 Non-Triviality with Nondeterminism and Robustly-Often Secu-
rity

In this section, we characterize the following primitive, which is a natural intermediate notion
between (standard) one-way functions and auxiliary-input one-way functions.

Definition 7.1 (Robustly-often one-way function). A robustly-often P/poly-computable one-way
function is a polynomial-time-computable function family f = {fz : {0, 1}poly(|z|) → {0, 1}poly(|z|)}z∈Z ,
where Z ⊆ {0, 1}∗ is an infinite set, satisfying that for every non-uniform polynomial-time algorithm
A and for every polynomial p, for all enough large z ∈ Z,

Pr
w,A

[
A(z, fz(w)) ∈ f−1

z (fz(w))]
]
< 1/p(|z|),

where w is a uniform random seed for fz.

For this purpose, we introduce the classes i.o.N·CZK and i.o.CZK/poly.

Definition 7.2 (io-N·CZK). The class i.o.N·CZK is defined to be the set of promise problems Π
satisfying the following property: There exists a promise problem Π̄ ∈ CZK and a polynomial p such
that for infinitely many n ∈ N, and for every x ∈ {0, 1}n,

1. (Completeness) x ∈ Πyes =⇒ ∃z ∈ {0, 1}p(n) s.t. (x, z) ∈ Π̄yes.

2. (Soundness) x ∈ Πno =⇒ ∀z ∈ {0, 1}p(n) (x, z) ∈ Π̄no.
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Definition 7.3 (io-CZK/poly). The class i.o.CZK/poly is defined to be the set of promise problems
that have a computational zero-knowledge interactive proof system (P, V ) in the same manner as
CZK except that (i) the verifier V is a nonuniform polynomial-time algorithm (and the nonuniform
advice is also given to the simulator), and (ii) the correctness, soundness, computational zero-
knowledgeness holds simultaneously only for infinitely many lengths of an instance.

The main theorem we show in this section is stated as follows.

Theorem 7.4. For every complexity class D satisfying MA ⊆ D and PSPACE ⊈ D, the following
are equivalent:

1. There exists a robustly-often P/poly-computable one-way function.

2. PSPACE ⊆ i.o.CZK/poly

3. PSPACE ⊆ i.o.N·CZK

4. i.o.CZK ⊈ i.o.D/poly

5. i.o.N·CZK ⊈ i.o.D

6. i.o.CZK ⊈ i.o.NP/poly

7. i.o.N·CZK ⊈ i.o.MA

Proof. Item 1 =⇒ Item 2 follows from the black-box construction of a commitment scheme that
has computational hiding and statistical binding based on one-way functions [Nao91], and the
construction of a zero-knowledge proof system for PSPACE problems [GMW91; BGGHKMR88].
More precisely, the nonuniform advice is used to specify the indices of the robustly-often P/poly-
computable one-way function.

The high-level idea to show Item 1 =⇒ Item 3 is the same as above, but we need some additional
observations. Let Π ∈ PSPACE (= IP), and let Z ⊆ {0, 1}∗ be an index set for a robustly-often
P/poly-computable one-way function. Then we define a promise problem Π̄ = (Π̄yes, Π̄no) as follows:

Π̄yes := {(x, z) : x ∈ Πyes and z ∈ Z}
Π̄no := {(x, z) : x ∈ Πno}.

Since Π ∈ IP, the problem Π has a public coin interactive proof system (P, V ). It is not hard to
verify that (P, V ) also recognizes Π̄. We construct a zero-knowledge proof system for Π̄ based on
(P, V ), as presented in [BGGHKMR88] (roughly speaking, the prover first simulates the original
protocol (P, V ) but sends the commitment of proper’s messages, and then the prover proves in
zero-knowledge that there is a transcript that V accepts and is consistent with the commitments
at the first stage), where we use the second element z in the given instance as a candidate for an
index of a robustly-often P/poly-computable one-way function and employ the commitment scheme
presented in [Nao91] base on the function indexed by z. For every (x, z) ∈ Π̄yes, since z ∈ Z, the
modified prover demonstrates the protocol on a secure one-way function; thus, the computational
zero-knowledgeness follows from that of the original protocol. The completeness is also follows from
that of the original protocol and the syntax of the reveal phase of the commitment scheme. To
see soundness, we observe that the soundness of the modified interactive proof system (based on
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[GMW91; BGGHKMR88]) is derived only from the statistical biding of the commitment scheme.
Moreover, the statistical biding property of the commitment scheme presented in [Nao91] does not
depend on the one-wayness (and it follows only from the stretch of underlying generators). Thus,
for every (x, z) ∈ Π̄no (recall that z may not be contained in Z), the soundness follows from that
of the original interactive proof and the statistical biding (that does not depend on z). Therefore,
Π̄ ∈ CZK and Π ∈ i.o.N·CZK, where i.o. is due to the fact that Z is guaranteed only to be infinite.

Item 3 =⇒ Item 5 follows from PSPACE ⊈ D. We also prove Item 2 =⇒ Item 4. By PSPACE ⊈
D and Item 2, we have i.o.CZK/poly ⊈ i.o.D/poly. Thus, it suffices to observe that i.o.CZK ⊆
i.o.D/poly implies that i.o.CZK/poly ⊆ i.o.D/poly. For every Π ∈ i.o.CZK/poly, there exist another
promise problem Π̃ ∈ CZK and an infinite set N ⊆ N such that for each n ∈ N , there exists
zn ∈ {0, 1}poly(n) such that (i) x ∈ Πyes ∩ {0, 1}n ⇒ (x, zn) ∈ Π̃yes and (ii) x ∈ Πno ∩ {0, 1}n ⇒
(x, zn) ∈ Π̃no. Let ℓ(n) be the length of the encoding for (x, zn) for each n ∈ N. We define a
promise problem Γ as follows: for each m ∈ N,

Γ ∩ {0, 1}m =

{
(Π̃yes, Π̃no) if m = ℓ(n) for some n ∈ N
Lhard ∩ {0, 1}m otherwise,

where Lhard is an arbitrary language such that Lhard /∈ i.o.D. Since Π̃ ∈ CZK and N is infinite,
Γ ∈ i.o.CZK. Thus, if i.o.CZK ⊆ i.o.D/poly, we have Γ ∈ i.o.D/poly. Since Lhard /∈ i.o.D, the
algorithm inD/polymust solve Π̃ for infinitely many n ∈ N . Thus, we conclude that Π ∈ i.o.D/poly.

Both Item 4 =⇒ Item 6 and Item 5 =⇒ Item 7 follows from MA ⊆ D. We prove Item 6 =⇒
Item 1 and Item 7 =⇒ Item 1 in Section 7.1.

7.1 Extended Non-Triviality of ZK Implies Robustly Often One-Way Functions

In this subsection, we show Item 6 =⇒ Item 1 and Item 7 =⇒ Item 1.

Theorem 7.5. If there is no robustly-often P/poly-computable one-way function, then i.o.N·CZK =
i.o.MA.

Theorem 7.6. If there is no robustly-often P/poly-computable one-way function, then i.o.CZK/poly ⊆
i.o.NP/poly.

First, we introduce a slight modification of a robustly-often P/poly-computable one-way func-
tion.

Definition 7.7 (Semi-robustly-often one-way). Let Z ⊆ {0, 1}∗ be an infinite subset. A polynomial-
time-computable function f = {fz : {0, 1}poly(|z|) → {0, 1}poly(|z|)}z∈Z is semi-robustly-often one-way
if for every polynomials σ(·) and p(·), there exists an infinite subset Zσ,p ⊆ Z such that for every
z ∈ Zσ,p and every circuit A of size at most σ(|z|),

Pr
A,w

[
A(z, fz(w)) ∈ f−1

z (fz(w))
]
< 1/p(|z|),

where w is a uniform random seed for fz.

In fact, the existence of semi-robustly-often one-way is equivalent to that of a robustly-often
P/poly-computable one-way function.

42



Lemma 7.8. A semi-robustly-often one-way function exists if and only if a robustly-often P/poly-
computable one-way function exists.

Proof. It is not hard to verify that any robustly-often P/poly-computable one-way function is also
a semi-robustly-often one-way function by the definitions, where the infinite subset Zσ,p for the
security of the semi-robustly-often one-way function is a subset obtained from Z by removing a
finite number of small indices. Thus, we will only show the converse.

Let f = {fz : {0, 1}poly(|z|) → {0, 1}poly(|z|)}z∈Z be a secure semi-robustly-often one-way function
defined on the infinite index set Z ⊆ {0, 1}∗. From the security condition, for each c ∈ N, there
exists an infinite subset Zc ⊆ Z such that for every z ∈ Zc and every circuit A of size |z|c,

Pr
A,w

[
A(z, fz(w)) ∈ f−1

z (fz(w))
]
≤ |z|−c.

Without loss of generality, we assume that Zc does not contain two strings of the same length.
We construct an infinitely-often one-way function. For each n = ⟨m, c⟩ (where ⟨,⟩ represents the

standard one-to-one pairing function), we define z′n := zm,c ◦ 10n−m−1 if there exists zm,c ∈ Zc such
that |zm,c| = m; otherwise, z′n = 0n. Let Z ′ = {z′n : n ∈ N} and define g = {gz : {0, 1}poly(|z|) →
{0, 1}poly(|z|)}Z as follows

gz′n(w) =

{
fzm,c(w) if z′n = zm,c ◦ 10n−m−1

0n otherwise.

Since |z′n| = n and f is polynomial-time computable, the function g is also polynomial-time com-
putable.

We show the security of g. Let A = {An}n∈N be a circuit family of size σ(n), where σ is an
arbitrary polynomial. In addition, let p(n) be an arbitrary polynomial. We select a large enough
constant c so that for all large enough n, it holds that p(n) ≤ nc and σ(n) ≤ nc. By the property
of Zc, for every large enough z ∈ Zc and n = ⟨|z|, c⟩, the circuit An succeeds in inverting fz only
with probability at most |z|−c ≤ 1/p(n). Since every index in z ∈ Zc is used in g on the security
parameter n = ⟨|z|, c⟩, the circuit A fails to invert g on infinitely many indices corresponding to
Zc.

The purpose of introducing semi-robustly-often one-way functions is to obtain the following
lemma.

Lemma 7.9. If there is no robustly-often P/poly-computable one-way function, then for every
polynomial-time auxiliary-input function f = {fz : {0, 1}poly(|z|) → {0, 1}poly(|z|)}z∈{0,1}∗, every infi-
nite set Z ⊆ {0, 1}∗, and every polynomials p(·) and q(·), there exist a polynomial-time randomized
algorithm M , a polynomial-time randomized oracle machine R, and a polynomial σ(·) such that for
every z ∈ Z and every circuit I of size σ(|z|) such that if

Pr[M(I) = 1] ≥ 1/q(|z|),

then
∆TV

(
RI

z(fz(Upoly(|z|))),UnifInvfz(fz(Upoly(|z|)))
)
≤ 1/p(|z|),

where Rz(·) := R(z, ·).
Moreover, for every z ∈ Z, there exists a circuit Iz of size σ(|z|) such that

Pr[M(Iz) = 1] ≥ 1− 1/q(|z|).
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Proof. The polynomial-time randomized oracle machine R is the efficient black-box reduction from
distributional inverting f to (standard) inverting f̃ [IL89], where f̃ is a polynomial-time auxiliary-
input function on the same index set Z. The polynomial-time algorithm M is the polynomial-time
randomized test based on the testability of inverting f̃ , which is the same argument as the proof of
Lemma 5.2. The first property follows from the testability of inverting and the correctness of the
reduction R. Note that the first property holds for every polynomial σ.

We show the existence of Iz by contraposition. If for every polynomial σ, there exist infinitely
many z1, z2, · · · ∈ Z such that for every i ∈ N and every σ(|zi|)-size circuit I, the circuit I fails
to invert f̃zi with probability at least 1 − 1/poly(|zi|), then f̃ is a semi-robustly-often variant of
a weak one-way function, which implies the existence of a semi-robustly-often one-way function
based on the proof of equivalence between a (standard) weak one-way function and a (strong) one-
way function [Yao82]. By Lemma 7.8, there also exists a secure robustly-often P/poly-computable
one-way function, which contradicts the assumption of the non-existence. Thus, there exists a
polynomial σ such that for every z ∈ Z, there exists a circuit Iz of size σ(|z|) that inverts f̃z
successfully. The randomized test M accepts such an Iz with high probability.

We also use the following theorem presented in [Vad06].

Theorem 7.10 ([Vad06, Theorem 7.4]). If there is no robustly-often P/poly-computable one-way
function, then HV-CZK = HV-SZK.

Now, we prove Theorem 7.5.

Proof of Theorem 7.5. Fix Π ∈ i.o.N·CZK arbitrarily. For contraposition, we assume the non-
existence of robustly-often P/poly-computable one-way functions and show that Π ∈ i.o.MA.

Since Π ∈ i.o.N·CZK, there exist a promise problem Π̄ ∈ CZK, a polynomial p, and an infinite
subset N ⊆ N such that for every n ∈ N and every x ∈ {0, 1}n, if x ∈ Πyes, then ∃z ∈ {0, 1}p(n)
such that (x, z) ∈ Π̄yes; and if x ∈ Πno, then ∀z ∈ {0, 1}p(n) (x, z) ∈ Π̄no. Below, we fix n ∈ N
arbitrarily.

Under the assumption that there is no robustly-often P/poly-computable one-way functions,
Π̄ ∈ CZK ⊆ HV-CZK = HV-SZK by Theorem 7.10. Let (P, V ) denote the honest-verifier statistical
zero-knowledge interactive proof system for Π̄, where the completeness error c(·) and the soundness
error s(·) satisfy (1− c(n))− s(n) ≥ 1/γ(n) for a polynomial γ(n), and let S be the honest-verifier
statistical simulator. Note that for every x ∈ Πyes ∩{0, 1}n and every w ∈ {0, 1}p(n), the statistical
difference between the verifier’s view on the transaction ⟨P, V ⟩(x, z) and the outcome of S(x, z) is
at most negl(n).

We define a polynomial-time-computable auxiliary-input function f = {fx,z : {0, 1}poly(|x|) →
{0, 1}poly(|x|)}x∈Πyes∪Πno,z∈{0,1}p(|x|) as, for each (x, z),

fx,z(i, w) = (i, S(x, z;w)≤i),

where i ∼ [2ℓ(|x|)], w ∼ {0, 1}rS(|x|), and S(x, z;w)≤i represents the first imessages in the transcript
produced by S(x, z;w).

We assume that
⋃

n′∈N (Πyes ∪ Πno) ∩ {0, 1}n
′
is infinite: otherwise, Π is solvable in i.o.P (on

N ). Thus, by Lemma 7.9, there exist a polynomial-time oracle machine R and a polynomial σ(·)
such that for every x ∈ (Πyes ∪ Πno) ∩ {0, 1}n and every z ∈ {0, 1}p(n), there exists a randomized
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circuit Ix,z of size σ(n) such that

∆TV((fx,z(i, w), R
Ix,z
x,z (x, z, fx,z(i, w))), (fx,z(i, w),UnifInvfx,z(fx,z(i, w))) ≤

1

2ℓ(|x|)q(|x|)
, (9)

where Rx,z(·) := R(x, z, ·), and q is a large enough polynomial we will specify later.
Now, we consider a randomized algorithm A that is given input x ∈ {0, 1}∗ and attempts to

determine x ∈ Πyes with a nondeterministic guess of (z, I) as follows, where z ∈ {0, 1}p(|x|), and
I is a description of σ(|x|)-size circuit: the algorithm A first checks whether the given I satisfies
Eq. (9) by the test algorithm M in Lemma 7.9 with failure probability at most 1/(4γ(n)). If I
does not pass the test, A outputs 0. If I passes the test, A simulates the interaction with the
simulator-based prover and the honest verifier on (x, z) by using I. More precisely, A constructs
a simulator-based prover PS from I as follows: On input (x, z), a given 2i-th massage m2i sent
by a verifier, and the previous transaction (m1, . . . ,m2i−1), the simulator-based prover PS sends

back S(x, z;R
Ix,z
x,z (x, z, 2i, (m1, . . . ,m2i−1,m2i)))=2i+1 as the (2i+1)-th message, where the notation

S(x, z;w)=i represents the i-th message in the transcript produced by S(x, z;w). Then, A executes
⟨PS , V ⟩(x, z) and outputs 1 if V accepts at the end; otherwise, outputs 0.

Let Cσ ⊆ {0, 1}≤poly(σ) be a set of valid descriptions of all σ-size circuits. We show that for
every large enough x ∈ {0, 1}n (recall that n ∈ N ),

• if x ∈ Πyes, then there exist z ∈ {0, 1}p(n) and I ∈ Cσ(n) (in fact, I = Ix,z) such that

Pr
A
[A(x, z, I) = 1] ≥ 1− c(n)− 1

2γ(n)
;

• if x ∈ Πno, then for all z ∈ {0, 1}p(n) and all I ∈ Cσ(n)

Pr
A
[A(x, z, I) = 1] ≤ 1− c(n)− γ(n),

which implies Π ∈ i.o.MA.
First, we consider the cases of x ∈ Πno. In the case, for all z ∈ {0, 1}p(n), (x, z) ∈ Π̄no. For each

choice of I ∈ Cσ(n), there are two cases: (i) I does not pass the test, and (ii) I passes the test. In the
former case, A outputs 0. By contrast, in the latter case, A constructs the simulation-based prover
PS based on I and outputs the decision of ⟨PS , V ⟩(x, z). By the soundness property of (P, V ), the
verifier outputs 1 with probability at most s(n) ≤ 1 − c(n) − γ(n). Thus, in any case, A(x, z, I)
outputs 1 with probability at most 1− c(n)− γ(n).

Next, we consider the cases of x ∈ Πyes. In the case, there exists z := zx ∈ {0, 1}p(n) such that
(x, zx) ∈ Π̄yes. For I := Ix,zx , there are two cases; (i) I does not pass the test in A, or (ii) I passes
the test in A. Recall that the probability that case (i) occurs is at most 1/(4γ(n)).

We consider the case (ii). Recall that I satisfies Eq. (9) in this case. Since the random input
i ∼ [2ℓ(n)] for fx,z is selected uniformly at random, it is not hard to verify that for all i ∈ [2ℓ(n)],

∆TV((S(x, z;w)≤i, R
I
x,z(x, z, i, S(x, z;w)≤i)), (S(x, z;w)≤i,UnifInvfx,z(fx,z(i, w))) ≤

1

q(n)
. (10)

Let P ∗
S be the ideal simulation-based prover, which is that same as PS except that P ∗

S uses the
ideal distributional inverting UnifInvfx,z(-) instead of RI

x,z. Let V ∗
S be the ideal simulation-based

verifier, which is a verifier that returns

S(x, z;UnifInvfx,z(x, z, 2(i− 1)− 1, (m1, . . . ,m2(i−1),m2i−1)))=2i
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as the 2i-th message for an input (x, z), given (2i − 1)-th massage m2i−1 from a prover, and the
previous transaction (m1, . . . ,m2(i−1)). Moreover, we introduce the following inequality proved
in [OV07] (where we used Eq. (10)).

Claim 7.11 ([proved in OV07, Proposition 3.11]).

∆TV(⟨PS , V ⟩(x, z), S(x, z)) ≤ ℓ(n)

(
1

q(n)
+ 2 ·∆TV(⟨P ∗

S , V ⟩(x, z), S(x, z))
)
.

Recall that S simulates the verifier’s private coin, and let R be the distribution of the verifier’s
private coin obtained by S(x, z) = ⟨P ∗

S , V
∗
S ⟩(x, z). Then, ∆TV(R,UrS(n)) = negl(n) since S simulates

viewV (⟨P, V ⟩(x, z)) with a negligible statistical error. Since S always outputs valid transcripts, the
statistical difference between the verifier’s messages sent by V ∗

S and V is at most negl(n) when they
interact with P ∗

S . Thus, we have ∆TV(⟨P ∗
S , V ⟩(x, z), S(x, z)) = ∆TV(⟨P ∗

S , V ⟩(x, z), ⟨P ∗
S , V

∗
S ⟩(x, z)) =

negl(n) and by Claim 7.11,

∆TV(⟨PS , V ⟩(x, z), S(x, z)) ≤
ℓ(n)

q(n)
+ negl(n).

This implies that

Pr[⟨PS , V ⟩(x, z) = “accept”] ≥ Pr[S(x, z) is an accepting script]− ℓ(n)

q(n)
− negl(n)

≥ Pr[⟨P, V ⟩(x, z) = “accept”]− negl(n)− ℓ(n)

q(n)
− negl(n)

≥ 1− c(n)− ℓ(n)

q(n)
− negl(n),

where the second inequality follows from the property of the honest-verifier simulator, and the last
inequality follows from the completeness of (P, V ).

Now, we select a polynomial q sufficiently large so that

ℓ(n)

q(n)
+ negl(n) ≤ 1

4γ(n)
.

Then, under the condition that I passes the test (case (ii)), A outputs 1 with probability at least
1− c(n)− (1/4γ(n)) Thus, by the union bound, we have

Pr[A(x, z, I) = 1] ≥ 1− c(n)− 1

4γ(n)
− 1

4γ(n)
= 1− c(n)− 1

2γ(n)
.

We also present the proof of Theorem 7.6, which is almost the same as that of Theorem 7.5; so
we only highlight the differences.

Proof of Theorem 7.6. For contraposition, we assume the non-existence of robustly-often P/poly-
computable one-way functions and derive i.o.CZK/poly ⊆ i.o.MA/poly (= i.o.NP/poly [cf. FF93]).
For this, we fix Π ∈ i.o.N·CZK arbitrarily and will show that Π ∈ i.o.MA/poly.

The construction of the function family {fx,z} and the nondeterministic algorithm A for solving
Π is the same as that of Theorem 7.5 except that z is now nonuniform advice for the verifier and
is passed to A as nonuniform advice (namely, A uses its nondeterminism only on the inverter I).
By the same argument as Theorem 7.5, we can show that A solves Π for infinitely many instance
sizes. Thus, we conclude that Π ∈ i.o.MA/poly.
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8 NP hardness of Meta-Complexity and Zero-Knowledge

In this section, we show that the NP-hardness of the meta-computational problem called GapMdKP
via a BPP-reduction (with plausible properties) yields NP ∈ SZKA, which simplifies Hirahara’s
reduction presented in [Hir23].

First, we introduce the problem GapMdKP.

Definition 8.1 (Distributional Kolmogorov complexity). For a string x ∈ {0, 1}∗, a time bound
t ∈ N, and a parameter λ ∈ (0, 1], a randomized oracle A, and a distribution over D over {0, 1}∗,
the A-oracle t-time-bounded distributional Kolmogorov complexity of x given D is defined as

dKt,A
λ (x|D) := min

{
p ∈ N | ∃Π ∈ {0, 1}p such that Pr

A,y∼D

[
UA(Π, y) outputs x in time t

]
≥ λ

}
.

For a function τ : N→ N, we define

dKτ,A
λ (x|D) := dK

τ(n+m),A
λ (x|D),

where n = |x| and m = max{|y| : y ∈ supp(D)}. We omit the superscript A if A = ∅.

Definition 8.2 (GapMdKP). For a polynomial τ : N→ N, a constant ϵ > 0, and an oracle A, we
define Gapτ,ϵMdKPA = (ΠA

yes,Π
A
no) as

ΠA
yes :=

{
(x,D, 1s) | dKτ,A

1−negl(|x|)(x|D) ≤ s
}

ΠA
no :=

{
(x,D, 1s) | dKτ,A

1−1/|x|(x|D) > (1 + ϵ)s
}
.

In this work, we fix the parameter ϵ > 0 arbitrarily and omit the subscript ϵ from Gapτ,ϵMdKPA.
For a promise problem Π and a set of promise problems S, we use the expression that Π ≤m S

via BPP-reduction whose error probability is negligible to refer to the existence of a many-one
reduction from Π to S in the sense that there exists a polynomial-time randomized algorithm R
such that for every x ∈ Πyes (resp. x ∈ Πno) and for every Γ ∈ S, it holds that R(x) ∈ Γyes (resp.
R(x) ∈ Γno) with probability 1− negl(|x|) over the choice of the randomness for R. Particularly we
use the notation NP ≤m S to refer to the statement that Π ≤m S for all Π ∈ NP.

Previously, Hirahara [Hir23] proved the equivalence between the NP-hardness of GapMdKP and
the existence of one-way functions, one of which is stated as follows.

Theorem 8.3 (See [Hir23, Section 6]). If a one-way function secure against P/poly exists, then
NP ≤m {GapτMdKPA : τ ∈ poly and A ∈ P/poly} via a nonadaptive parametric-honest BPP-
reduction whose error probability is negligible over the randomness for the reduction.

We show that every NP-hard problem Π reducible GapMdKPP/poly via a nonadaptive BPP-
reduction (with negligible error probability) indeed admits a statistically zero-knowledge interactive
argument system.

Theorem 8.4. If an NP-hard problem Π satisfies Π ≤m {GapτMdKPA : τ ∈ poly and A ∈ P/poly}
via a nonadaptive parametric-honest BPP-reduction whose error probability is negligible over the
randomness for the reduction, then Π ∈ HV-SZKA.
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As a corollary, we obtain the converse of Theorem 8.3, which simplifies the original proof
presented in [Hir23].

Corollary 8.5. If NP ≤m {GapτMdKPA : τ ∈ poly and A ∈ P/poly} via a nonadaptive BPP-
reduction satisfying the conditions of Theorem 8.4, then NP /∈ i.o.P/poly implies the existence of
one-way functions secure against P/poly.

Proof. Since SAT ≤m {GapτMdKPA : τ ∈ poly and A ∈ P/poly} via a nonadaptive BPP-reduction
satisfying the conditions of Theorem 8.4, it holds that SAT ∈ HV-SZKA. Since HV-SZKA is closed
by many-one reductions, NP ⊆ HV-SZKA. Thus, by Theorems 2.1 and 4.3, NP /∈ i.o.P/poly implies
the existence of one-way functions secure against P/poly.

Now, we formally prove Theorem 8.4, where we use the following direct product generator DP
and its property.

Theorem 8.6 ([Hir23, Theorem 7.6 and Lemma 8.15]). For any k ∈ N and any x, z ∈ {0, 1}∗ with
|z| = k|x|, let DPk(x; z) := z ◦⟨x, z1⟩F2 ◦ · · · ◦ ⟨x, zk⟩F2 ∈ {0, 1}|z|+k, where z = z1 ◦ · · · ◦zk, |zi| = |x|
for each i, and ⟨,⟩F2 represents the inner product in F2.

There exists B ∈ P/poly such that for every ϵ ∈ (0, 1], every k ∈ N, every x ∼ {0, 1}∗, every
distribution D, and every distinguisher D ∈ P/poly satisfying

Pr
z∼{0,1}k|x|,y∼D

[D(DPk(x; z), y) = 1]− Pr
w∼{0,1}k|x|+k

[D(w, y) = 1] ≥ ϵ,

it holds that
dKpoly(|x|/ϵ),B,D(x|D) ≤ k +O(log(|x|/ϵ)).

Proof of Theorem 8.4. Let τ be an arbitrary polynomial. Let σ(n) = ω(log n) be a polynomial-
time-computable function satisfying σ(n) ≤ 2n, and let R be the nonadaptive parametric-honest
BPP-reduction from a promise problem Π to {Gapτ,σMdKPA : τ ∈ poly and A ∈ P/poly} in the

assumption. Let ξ > 0 be the constant such that R(z) always outputs (x,D, 1s) with s ≥ |z|ξ. In
addition, we can assume that ξ ≥ 2 when Π is NP-hard [cf. Hir23, Proposition 11.2].

We construct an honest-verifier statistical zero-knowledge argument system (P, V ) for Π as
follows:

Common input: z ∈ {0, 1}∗.

Verifier 1: V selects (x, y, s, w) according to (x,D, 1s) ∼ R(z), y ∼ D, and w ∼ {0, 1}|x|(s+σ(|z|ξ)/2).
Next, V selects a secret bit b ∼ {0, 1}. If b = 0, then V sends (y, w,w′), where w′ ∼
{0, 1}s+σ(|z|ξ)/2, to the prover. If b = 1, then V computes w ◦w′ = DPs+σ(|z|ξ)/2(x;w) (where

|w′| = s+ σ(|z|ξ)/2) and sends (y, w,w′, s) to the prover.

Prover 1: P is given (y, w,w′, s), where y, w,w′ ∈ {0, 1}∗ and then examines whether Kτ ′(w′|y, w, z, s) ≤
s+σ(|z|ξ)/4 by exhaustive search (recall that s is contained in the conditional string y by the
assumption), where τ ′ is a large enough polynomial. If so, P sends 1 to the verifier; otherwise,
P sends 0.

Verifier 2: V is given b′ ∈ {0, 1} and then checks whether b = b′. If so, V outputs “accept”;
otherwise, V outputs “reject”.
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It is easily verified that V ’s messages are computable in polynomial time in the input size since
the size of the distribution D (encoded as a circuit) and s are bounded by the running time of the
polynomial-time reduction R, and σ(n)(≤ 2n) is polynomial-time-computable.

For the honest-verifier V above, we construct a statistical simulator S as follows:

Common input: z ∈ {0, 1}∗.

Simulator: S executes V ’s first step and obtains the first message m and the internal randomness
r for V used for generating m. Note that the internal secret bit b ∈ {0, 1} is contained in r.
Then S produces the following transcript with the verifier’s randomness r:

m, b, “accept”.

We claim the completeness, soundness, and zero-knowledgeness as follows.

Claim 8.7 (Completeness). For every large enough polynomial polynomial τ ′ and for every z ∈
Πyes,

Pr
V
[⟨P, V ⟩(z) = “accept”] ≥ 1− negl(|z|).

Claim 8.8 (Soundness). For every nonuniform polynomial-time prover P ′, for all but finite z ∈
Πno,

Pr
V
[⟨P ′, V ⟩(z) = “accept”] ≤ 1− 1/poly(|z|).

Claim 8.9 (Zero-knowledgeness). For every large enough polynomial τ ′ and for every z ∈ Πyes,

∆TV(S(z), viewV (⟨P, V ⟩(z))) = negl(|z|).

Proof of Claim 8.7. For the completeness, we verify the event b′ ̸= b occurs only with negligible
probability when z ∈ Πyes is given. Since z is a yes instance, R(z) produces (x,D, 1s) such that

dK
τ ′/2
1−negl(|x|)(x|D) ≤ s with probability at least 1− negl(|z|). Thus, (x, y, s, w) selected by V (at the

first round) satisfies that Kτ (x|y) ≤ s with probability at least 1 − negl(|z|). Below we consider
only this case.

We show the correctness by case analysis on the choice of the secret bit b.
(i) The case of b = 0. In this case, recall that V selects w′ uniformly at random and sends

it. Thus, the probability that K(w′|y, w, z, s) ≤ s + σ(|z|ξ)/4 = |w′| − σ(|z|ξ)/4 is at most

2−(σ(|z|ξ)/4)+1 = negl(|z|) since σ(n) = ω(log n). Thus, P returns b′ = 1 (̸= b) with probability
at most negl(n).

(ii) The case of b = 1. In this case, V selects w ◦ w′ = DPs+σ(|z|ξ)/2(x;w) and sends it. Thus,
we can observe that

Kτ ′(w′|y, w, z, s) ≤ Kτ ′/2(x|y) +O(1) ≤ s+O(1) < s+ σ(|z|ξ)/4.

Thus, P returns b′ = 1 (= b) with probability at least 1− negl(|z|). ⋄

Proof of Claim 8.8. For the soundness, we show that the distribution of w produced by the verifier
when b = 1 is computationally indistinguishable from the uniform distribution (i.e., the distribution
of w produced by the verifier when b = 0). Below we consider the case where b = 1.

Since z is a no instance, for every polynomial τ and every A ∈ P/poly, the reduction R(z)
produces (x,D, 1s) such that dKτ,A

1−1/|x|(x|D) > (1 + ϵ)s ≥ s + ϵ|z|2 with probability at least 1 −
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negl(|z|). Under this condition, we observe that w ◦ w′ = DPs+σ(|x|)/2(x;w) (given y ∼ D) is
computationally indistinguishable from a uniformly random string (for nonuniform polynomial-
time distinguishers); otherwise, by the reconstruction property (Theorem 8.6), we have

dKτ ′,B,D(x|D) ≤ dKτ ′,B,D(x|D, z, s) +O(|z|) ≤ s+ σ(|x|)/2 +O(log |z|) +O(|z|) < s+ ϵ|z|2

for a sufficiently large polynomial τ ′, a P/poly-computable distinguisher D, and B ∈ P/poly in
Theorem 8.6. ⋄

Proof of Claim 8.9. The proof is based on that of Claim 8.7, where we proved that, for every
z ∈ Πyes, the prover’s message b′ is equal to the verifier’s random bit b with probability at least
1 − negl(n). Since the simulator S follows the protocol except that S outputs b instead of b′,
the produced view is statistically equivalent to that of the actual interaction only with negligible
statistical error. ⋄
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