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Abstract. Relaxations for the constraint satisfaction problem (CSP) include bounded width, lin-
ear program (LP), semidefinite program (SDP), affine integer program (AIP), and the combined
LP+AIP of Brakensiek, Guruswami, Wrochna, and Živný (SICOMP 2020). Tightening relaxations
systematically leads to hierarchies and stronger algorithms. For the LP+AIP hierarchy, a constant
level lower bound for approximate graph coloring was given by Ciardo and Živný (STOC 2023).

We prove the first linear (and hence optimal) level lower bound for LP+AIP and its stronger
variant, SDP+AIP. For each hierarchy, our bound holds for random instances of a broad class of
CSPs that we call τ -wise neutral. We extend to other hierarchies the LP lower bound techniques in
Benabbas, Georgiou, Magen and Tulsiani (ToC 2012) and Kothari, Mori, O’Donnell, and Witmer
(STOC 2017), and simplify the SDP solution construction in the latter.

1. Introduction

Promise constraint satisfaction problem (PCSP), originated from [AGH17], is a variant of con-
straint satisfaction problem. In PCSP, given the promise that a CSP instance has a solution
satisfying all the constraints, an algorithm is only required to find a solution satisfying all the con-
straints after each constraint is weakened; see [KO22] for a survey. An example is C-vs-K graph
coloring (C ⩽ K), where an input graph G is guaranteed to have a proper C-coloring, and our
algorithm only needs to find a proper K-coloring of G. The complexity of this problem when C = 3
and K = 6 is still open. 3-vs-K graph coloring was conjectured NP-hard for every constant K ⩾ 3.1
This conjecture holds under the d-to-1 conjecture [GS20]. C-vs-K graph coloring is NP-hard for
every constant C ⩾ 4 and K =

( C
bC/2c

)
− 1 [KOWŽ23].

Brakensiek, Guruswami, Wrochna, and Živný [BG19, BGWŽ20] proposed the combined linear
and affine integer program (LP+AIP) to unify many algorithms for (P)CSP.2 LP+AIP solves
all tractable Boolean CSPs and is quite powerful, leading [BGWŽ20, KO22] to ask if LP+AIP
strengthened into a hierarchy solves all tractable CSPs. A hierarchy is a relaxation systematically
tightened based on small variable subsets of an instance; level d of a hierarchy is tightened by
constraints induced on subsets of variables of size at most d. Hierarchies for LP and SDP include
Sherali–Adams, Lovász–Schrijver, Grigoriev, Lasserre, and Parrilo (e.g. [Lau09]).

For the LP+AIP hierarchy, Ciardo and Živný [CŽ23b] showed that constant level fails to solve
3-vs-K graph coloring, for any constant K. This was the only lower bound known for the LP+AIP
hierarchy, leaving open whether sublinear-level LP+AIP solves C-vs-K graph coloring for every
C ⩽ K, or other (P)CSPs. Since the level-d hierarchy can be solved in time roughly nO(d), sublinear-
level LP+AIP might still solve every (P)CSP in subexponential time.

In this paper, we give the first linear (and optimal) level lower bound for the LP+AIP hierarchy,
as well as the first average case lower bound for LP+AIP (with or without the hierarchy). Our
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lower bound applies to a broad class of CSPs different from graph coloring, by generalizing lower
bound techniques from other hierarchies. Here are some hierarchies of interest to us:

• Bounded width hierarchy (BW) in the local consistency algorithm, which is “dual” to
bounded-width resolution refutation.3

• Sherali–Adams linear programming (LP) hierarchy.
• Lasserre semidefinite programming (SDP) hierarchy, which is the Lagrangian dual of the

sum-of-squares SDP hierarchy.
• Affine integer programming (AIP) hierarchy.

Barto, Bulín, Krokhin, and Opršal [BBKO21, Section 7] pointed out the similarity of the BW, LP,
and AIP relaxations in terms of minions (i.e. minor-closed families of functions) representing the
relaxed values and their homomorphisms. Ciardo and Živný [CŽ23c] gave a common description
of the four hierarchies in terms of minions and tensors. This paper goes in a different direction,
giving a framework to prove lower bounds for these hierarchies that are optimal in terms of level.

Previously, Benabbas, Georgiou, Magen and Tulsiani [BGMT12] and Kothari, Mori, O’Donnell,
and Witmer [KMOW17] gave (optimal) linear level lower bounds for the LP and SDP hierarchies
respectively. We generalize their techniques to other hierarchies, including BW and AIP. They
considered CSPs that are τ -wise uniform, a notion introduced by Austrin and Mossel [AM09]
in the context of hardness of approximation. A CSP is τ -wise uniform if every constraint C
has a distribution η(C) of satisfying assignments, such that the marginal given η(C) of every
subset of τ variables is uniform. For example, the CSPs k-SAT and k-XOR are both (k − 1)-wise
uniform, because the satisfying assignments of their constraints support the uniform distribution
over assignments of even (or odd) parity, which is a (k − 1)-wise uniform distribution. Inspired
by τ -wise uniformity, we introduce an analogous property for each hierarchy: τ -wise neutrality
(Definition 4.3). Our first main result, proved in Section 8.2, is that most instances of any τ -wise
neutral CSP have linear-level hierarchy solutions.

Theorem 1.1. Let τ ⩾ 2. For each elementary hierarchy (BW, LP, SDP, and AIP), if a k-CSP
is τ -wise neutral for the hierarchy, then except with probability on;k(1), a random instance of the
CSP with n variables and ∆n constraints has a hierarchy solution of level Ωk(n/(∆2/(τ−1) log ∆)).

Most instances at large constraint density ∆ are far from satisfiable, unless the CSP is trivially
satisfiable by a single value (Lemma B.3). Yet Theorem 1.1 shows that many hierarchies fail to
certify these instances as unsatisfiable and are thus fooled.

While the LP and SDP parts of Theorem 1.1 were already known, the BW and AIP parts are
new. Previously BW/resolution hierarchy lower bounds for a broad class of CSPs were known
only for τ = 2 as a special case of [CM13, Theorem 1.4(a)] but not for larger τ . The AIP part of
Theorem 1.1 is also new. Part of our contribution is identifying a generalization of τ -wise uniformity
to AIP. τ -wise neutrality for AIP turns out to be fairly general and has a simple sufficient condition:
Satisfying assignments include a Hamming ball of radius τ (Proposition 4.5).

Consider LP+AIP lower bounds for k-SAT. Because k-SAT is (k − 2)-wise neutral for LP+AIP
(Theorem 8.21), Theorem 1.1 implies most k-SAT instances fool LP+AIP whenever k ⩾ 4. But
not for 3-SAT, the most important CSP in complexity theory. The LP+AIP algorithm looks for
distributions η(C) of satisfying assignments to constraints C, and affine integer weights w(C) :
supp(η(C)) → Z supported on the support of η(C), so that they both have consistent marginals
at variables. Previous works on LP and SDP hierarchies [Gri01, Sch08, Tul09, BGMT12, TW13,
Cha16, BCK15, MW16, KMOW17] constructed solutions whose distribution η(C) in each constraint
is the given τ -wise uniform distribution. The only pairwise uniform distribution supported on
3-SAT is the uniform distribution on 3-XOR. In other words, previous LP and SDP hierarchy

3“Dual” means that the BW hierarchy has no solution if and only if bounded-width resolution refutation exists
[AD08, Theorem 2].
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solutions strengthen every 3-SAT constraint into 3-XOR. However, the AIP algorithm can refute
every unsatisfiable 3-XOR instance [BG19, BGWŽ20].

We overcome this hurdle and construct new LP and SDP solutions that have full support. As
explained in Section 1.2, this allows us to construct LP solution and AIP solution separately, which
can be combined into an LP+AIP solution. Our second main result, proved in Section 12, gives
LP+AIP lower bounds for a broad class of CSPs that include 3-SAT. In fact our lower bounds also
hold for the stronger SDP+AIP hierarchy, which we introduce to generalize all the aforementioned
hierarchies.
Theorem 1.2. Let τ ⩾ 2. If a k-CSP is τ -wise neutral for both SDP and AIP (separately), then
except with probability on;k(1), a random instance of the CSP with n variables and ∆n constraints
has an SDP+AIP hierarchy solution of level Ωk(n/(∆2/(τ−1) log ∆)).
Remark 1.3. Our lower bound of level in Theorems 1.1 and 1.2 has the same dependency on n and
∆ as in [KMOW17, Theorem 7.1]. In particular, our lower bound matches the SDP level upper
bounds for CSPs of Boolean predicates [AOW15, RRS17, Ahn20] up to polylogarithmic factors in
n, for every τ ⩾ 2 and every ∆ = ∆(n), provided either ∆(n) is at least polylogarithmic in n
[RRS17] or τ + 1 is even [Ahn20]. See [KMOW17, Section 1.5] for a discussion on the optimality
of this bound.

Feige’s Hypothesis [Fei02, Hypothesis 1] says no sound polynomial-time algorithm refutes most
3-SAT instances at any constant constraint density ∆ (a refutation algorithm is sound if declares
every satisfiable instance to be satisfiable). Many such algorithms, such as constant-level resolution
[BSW01] and SDP [Sch08], cannot refute most 3-SAT instances for any ∆(n) ⩽ n1/2−o(1), let alone
constant ∆. It was unknown whether LP+AIP (with or without the hierarchy) refutes most 3-SAT
instances at constant ∆; Theorem 1.2 now rules out this possibility. A similar Random Exponential
Time Hypothesis of Razenshteyn, Song, and Woodruff [RSW16, Assumption 1.3] states that sound
algorithms refuting at least half of 4-SAT instances at constant ∆ must take exp(Ω∆(n)) time.
Again, Theorem 1.2 lends weight to RSW’s Hypothesis, by ruling out sublinear-level LP+AIP that
runs in subexponential time. See [KMOW17, Section 1.2] and [RSW16] for the importance of these
hypotheses and their applications to cryptography and learning theory.

Surprisingly, Feige, Kim, and Ofek [FKO06] showed that polynomial-time-verifiable refutation
exists for most 3-SAT instances when ∆(n) = O(n0.4), even though no polynomial-time algorithm
is known to find their refutation. They combined spectral strong refutation for 3-NAE and parity
strong refutation for 3-XOR. Are there better combinations of spectral/SDP and parity argument
that disprove Feige’s Hypothesis? We consider such a refutation based on the SDP+AIP hierarchy.
Theorem 1.2 shows that constant-level SDP+AIP poses no harm to Feige’s Hypothesis, and is
fooled by most 3-SAT instances whenever ∆(n) ⩽ n1/2−o(1), just like the SDP hierarchy. This
shows Feige–Kim–Ofek refutation cannot be captured by constant-level SDP+AIP.

Algorithms for CSPs, independently by Bulatov [Bul17, Bul20] and by Zhuk [Zhu20], are intricate
combinations of local consistency and Gaussian elimination, the two main techniques for CSPs.
LP+AIP is a much simpler combination.
Question 1.4. Can constant-level LP+AIP solve all tractable (i.e. polynomial-time solvable)
CSPs?

Question 1.4 was asked in [BGWŽ20, Section 6] and [KO22, Section 3]. Similar questions were
also asked for two related relaxations: CLAP in [CŽ22] and cohomological k-consistency in [Con22,
Question 13]. See also a related conjecture [DO23, Conjecture 4.10] about Z-affine k-consistency.
Little was known about the limitation of combined relaxations and hierarchies; the only LP+AIP
hierarchy lower bound was [CŽ23b] for approximate graph coloring, a likely intractable problem due
to d-to-1 hardness. Theorem 1.2 may make progress on Question 1.4, by giving LP+AIP hierarchy
lower bounds to many CSPs, including plausibly tractable ones:
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Question 1.5. Is there a tractable CSP pairwise neutral for both SDP and AIP but not trivially
satisfiable by a single value?

If the answer to Question 1.5 is Yes, then the answer to Question 1.4 is No, by Theorem 1.2
and Lemma B.3. Even if the answer to Question 1.5 turns out to be No, we believe the question
itself is a step towards understanding the power and limitation of combined hierarchies.

Remark 1.6. Our results also apply to PCSP, including many cases whose computational complexity
is open. Consider the PCSP(A, B) with relational structures A, B such that A → B (see [KO22]
for the definitions). Suppose CSP(A) is pairwise neutral for both SDP and AIP, and CSP(B) is not
trivially satisfiable by a single value. Then most instances of this PCSP have a linear level SDP+AIP
lower bound at large enough constant constraint density, by Theorem 1.2 and Lemma B.3.

Remark 1.7. Concurrently, Ciardo and Živný [CŽ24] propose a new hierarchy called SDA combining
SDP and AIP. SDA is equivalent to the SDP+AIP hierarchy introduced in this paper, up to a factor
of two in level. [CŽ24] prove constant-level worst-case lower bounds for approximate graph coloring
and approximate graph homomorphism. Their results and ours are incomparable:

• Their lower bounds are for constant level only. Ours are for linear level, which is optimal.
• Their lower bounds are for the worst case. Ours are average-case, and hence also worst-case.
• Our lower bounds apply to a class of CSPs that excludes approximate graph coloring or

approximate graph homomorphism. Via reduction (Appendix C), Theorem 1.2 implicitly
implies lower bounds for C-vs-K graph coloring at other parameter regimes than theirs.

1.1. Proof overview: First main theorem.
We lay a common framework for proving lower bounds for various hierarchies. The framework

consists of the following high-level steps: For each hierarchy,
(A) Identify a subinstance WS for each small subset S of variables. Further show that WS is sparse

and small on random instances.
(B) Identify a property shared by certain “nice” CSPs, so that when restricted to any subset of τ

variables of a constraint C, C enforce no constraints.
(C) Using the property in (B), construct a local relaxed solution to WS for every S.
(D) Again using the property in (B), combine the local solutions in (C) into a hierarchy solution.

We now illustrate the above four steps using LP as an example.
Building on [BGMT12, TW13, MW16], Kothari, Mori, O’Donnell, and Witmer [KMOW17] used

closure (Definitions 5.1 and 5.5) to track constraints in an instance that may affect the local LP
solution to a subset S of variables. The closure of S is the subinstance WS in step (A) above.

Example 1.8. Consider a 3-XOR instance I with two constraints: an even parity constraint C1 on
{v1, v2, v3} and an odd parity constraint C2 on {v3, v4, v5}. Naturally, the local distribution η(C)
on each constraint C is the uniform distribution conditioned satisfying the constraint, e.g. η(C1)
is the uniform distribution over even parity assignments on {v1, v2, v3}. As in previous works, the
local LP solution to a small and sparse subinstance J is the canonical distribution (Definition 10.2),
where an assignment is independently drawn from a distribution η(C) for each constraint C in J ,
conditioned on agreement at common variables. The canonical distribution on {C1, C2} induces a
nonuniform marginal distribution on S

def= {v1, v2, v4, v5}, namely the uniform distribution over odd
assignments to S. Therefore C1 and C2 are included in the closure of S, as they affect the local
distribution on S, even though they involve variable(s) outside S.

Example 1.9. Continuing with the previous example, add an extra even parity constraint C3 on
{v5, v6, v7} to I. The canonical distribution on {C1, C2, C3} induces the same marginal distribution
on S = {v1, v2, v4, v5} as before. Therefore C3 plays no role in the local distribution on S and is
excluded from the closure of S.



HOW RANDOM CSPS FOOL HIERARCHIES 5

As in Example 1.9, if a subinstance J has a constraint C having too many boundary variables
(i.e. variables belonging to C but not other constraints in J) outside S, C does not belong to the
closure of S. [KMOW17] defined closure to capture this intuition.

For step (B), the property of shared by a class of nice CSPs was identified in [BGMT12] to be
pairwise uniform (and generalized to τ -wise uniform in [KMOW17]).

For steps (C) and (D), constructing a hierarchy solution amounts to a scheme σ of assigning
a distribution of satisfying assignments to every small and sparse subinstance J , so that σ is
“compatible with closure” (Definition 5.7), which means J and the closure clS(J) of S in J receive
distributions with identical marginals on S:

πS(σ(J)) = πS(σ(clS(J))) for variable subset S of subinstance J.

Here πS means taking the marginal on S given a joint distribution of assignments. We can easily
build a hierarchy solution s from a scheme σ compatible with closure: When defining the local
distribution s(S) on S, take into account the constraints and variables in the local closure cltS(I)
for S, and finally take the marginal on S given the distribution σ(cltS(I)) of satisfying assignments
to the closure. Therefore s(S) def= πS(σ(cltS(I))). Compatibility with closure ensures our hierarchy
solution is consistent with projection (Proposition 8.15), which is crucial for step (D).

Provided the CSP is τ -wise uniform, a scheme σ compatible with closure can be built as follows
[BGMT12, Lemma 3.2]: Starting with the null subinstance J0 (that has no variable), keep adding
a constraint Ci in J to the current subinstance Ji iteratively for i = 0, . . . , |C(J)| − 1, such that Ci

has at most τ variables shared with previous constraints. At the same time, starting with a local
solution σ(J0) for the null subinstance, extend our current local solution σ(Ji) iteratively, until we
have constructed the local solution σ(J) for the whole subinstance J (assuming J has no isolated
variables). This works as long as J is small and sparse enough so that J can be decomposed in the
said manner (Definition 5.6), completing step (C).

We apply the same framework to BW and AIP. For each hierarchy, we identify a class of “nice”
CSPs from which a scheme can be built as above. We call such CSPs τ -neutral (Definition 4.3).
For BW, the definition of τ -wise neutrality is hinted at in [CM13]: the set satisfying assignments R
of each constraint needs to have full projection on any subset of τ variables. For AIP, on the other
hand, the correct definition is less obvious. We propose the following definition of τ -wise neutral
CSP for AIP:

For every k-ary constraint of the CSP with satisfying assignments R ⊆ Dk, every
a ∈ Dk, some AIP solution w : R → Z supported on R has πT (w) = πT (1a) for
every subset T ⊆ [k] of size at most τ .

(Here D is the domain of the CSP.) Our definition is fairly general: it holds for CSPs whose
satisfying assignments contain a Hamming ball of radius τ (Proposition 4.5). This completes step
(B).

Steps (A) and (D) are the same for BW, AIP, and LP. It remains to complete step (C) and come
up with a scheme for each hierarchy. Devising a scheme for AIP (Section 7) is more challenging
and requires more ideas than for BW (Section 6) or LP (Section 10), in part due to AIP lacking
the convenient probabilistic interpretation of LP solutions.

Not every hierarchy lower bound technique falls into our framework. Previous BW/resolution
lower bounds often used the subadditive complexity measure technique [BSW01]; our framework
instead uses the closure and sparsity technique of [KMOW17] that also works for other hierarchies.

The above, together with previous SDP lower bounds, yields Theorem 1.1. This also easily implies
lower bounds for random 4-SAT, because there is a pairwise uniform distribution supported on all
satisfying assignments of 4-SAT, making 4-SAT pairwise neutral for SDP+AIP (Theorem 8.21).
However, this simple approach falls short of SDP+AIP lower bounds for random 3-SAT, which is
pairwise neutral for SDP and AIP separately but not pairwise neutral for SDP+AIP.
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1.2. Proof overview: Second main theorem.
SDP+AIP lower bounds for random 3-SAT calls for our second main result, based on new LP

and SDP solutions with full support on small closures. More precisely, for every small subset
K of variables, we construct an LP solution that has full support on all satisfying assignments
of the K-closure (Definition 8.19). Such an LP solution imposes no additional constraint on the
AIP solution, apart from the existing constraints in the instance (Lemma 8.20). This cleanly
decouples our LP/SDP construction from the AIP construction, and is a significant departure from
the symmetry-based LP+AIP construction in [CŽ23b].

To ensure full support, to every constraint C in the K-closure E def= cltK(C), its distribution ηE(C)
is planted to be the uniform distribution over all satisfying assignments of C; and to every constraint
C outside E , its distribution ηE(C) is the given τ -wise uniform distribution. This yields a family
ηE of distributions of satisfying assignments (Definition 12.1). Constructing LP and SDP solutions
based on ηE calls for subtle changes to [BGMT12, KMOW17]: Because constraints C in E can
have distributions ηE(C) that are not τ -wise uniform (and may as well be 0-wise uniform), these
constraints can also affect the local distribution on any subset S. We have to augment the closure
of every S to take into account the constraints in E when constructing the local distribution of S
(Definition 9.1).

To ensure the distribution on an augmented closure J is well defined, every constraint C in J has
to be satisfied by an assignment in the support supp(ηE(C)) of ηE(C) (Definition 10.3). Why are
augmented closures satisfiable like that? The simple but crucial observation is that supp(ηE(C))
is τ -wise neutral for BW. Augmented closures are sparse enough to have a BW hierarchy solution,
so they must be ηE -satisfiable (Lemma 12.4). Compared with [BGMT12, KMOW17], our LP and
SDP solutions gain full support, with their level halved only.

Along the way, we also simplify the SDP construction of [KMOW17]. SDP construction is more
challenging than BW/LP/AIP because SDP vectors are more “global”, and S-closure alone does
not account for all constraints affecting the SDP vectors on a subset S. [KMOW17, Theorem 6.20]
defined the witness of S for this purpose, i.e. WS in step (A) of the above framework. Its complete
definition depends on a multi-stage Gram–Schmidt procedure and is complicated. We instead work
with ancestor closure (Section 11.1), a vast simplification of witness. Ancestor closure depends only
on the underlying hypergraph of the instance, and not on any Gram–Schmidt procedure, e.g. not
on any total ordering of variable subsets, or the constraints, or previous stages of the procedure.
We believe our definition ancestor closure is the “right” one concerning SDP vectors coming from
τ -wise uniform CSPs.

We also replace the global Gram–Schmidt procedures in [BCK15, KMOW17] with a new orthog-
onal decomposition (Section 11.2), distilling [KMOW17] into its essence. Our decomposition is
inspired by the Efron–Stein decomposition of functions on a product space. Our decomposition
is also inspired by previous SDP vector decompositions for k-XOR [Gri01, Sch08] and pairwise
uniform subgroups [Tul09, Cha16], generalizing them to τ -wise uniform CSPs. Previous decompo-
sitions are based on equivalence classes of linear equations coming from the abelian group structure
of the CSP predicate. The equivalence classes Γ in our decomposition are instead based on ancestor
closures and do not require the group structure.

1.3. Paper organization.
We define all the hierarchies in Section 3, and the τ -wise neutral conditions for each hierarchy

in Section 4. Section 5 discusses two important concepts for our lower bounds: closure and scheme.
Each hierarchy has its own section on the solution construction: BW in Section 6; AIP in Section 7;
LP in Section 10; SDP in Section 11. Section 8 combines the results of previous sections and proves
Theorem 1.1. Section 9 introduces the concept of augmented closure that is crucial for Theorem 1.2.
Section 12 constructs SDP solutions with full support and proves Theorem 1.2.
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2. Preliminaries

A set is r-small if it has at most r elements. N def= {0, 1, 2, . . . } denotes the set of natural numbers,
and [k] def= {1, 2, . . . , k}.

The notation on;k(1) represents a function εk(n) that, for every fixed k, εk(n) → 0 as n → ∞.
Given a function a : S → D, aT : T → D denotes its restriction to T ⊆ S.
The notation f : (x ∈ X) → Yx means that f is a dependent function mapping every x ∈ X to

f(x) ∈ Yx, where the codomain Yx varies with x.
Given a subset S ⊆ V and assignment a ∈ DS , denote by 1a : DV → Z the indicator function of

a, defined as 1a(b) = 1 if bS = aS , and 1a(b) = 0 otherwise.
Given functions a : S → D and b : T → D defined on subsets S, T ⊆ V such that aS∩T = bS∩T ,

(a ∪ b) denotes the combined function: (a ∪ b)(v) = a(v) if v ∈ S, and (a ∪ b)(v) = b(v) if v ∈ T .
For simplicity, we consider only constraint satisfaction problems with k distinct variables per

constraint (k-CSP). A constraint satisfaction problem is a pair (D,R). Its domain D is a nonempty
finite set. R is a nonempty family of k-ary relations over D, i.e. R ⊆ Dk for every R ∈ R. An
instance I = (V, C) of the CSP (D,R) consists of a finite set V of variables and a finite set C of
constraints over V . Every constraint C ∈ C is of the form C = (S, R), where the scope S ∈ V k of
C is a sequence of k distinct variables, and R ∈ R is the set of accepting assignments of C. We
also write v ∈ C if variable v belongs to the scope of C.

A partial assignment a ∈ DV (C) on a constraint C = (S, R) with scope S = (v1, . . . , vk) ∈ V k

naturally corresponds to an assignment a′ ∈ Dk via a′ def= a ◦ S, that is, a′(i) = a(S(i)) = a(vi) for
i ∈ [k]. The set of satisfying assignments for C is AC

def=
{

a ∈ DV (C) | a ◦ S ∈ R
}

. An assignment
a ∈ DV satisfies a constraint C = (S, R) if aV (C) ∈ AC ; otherwise a violates C. An assignment
a ∈ DV satisfies a constraint set C or an instance I = (V, C) if a satisfies every constraint C ∈ C;
otherwise a violates C and I.

k-SAT is the CSP
(
{0, 1},

{
Ra | a ∈ {0, 1}k

})
where the relation Ra

def= {0, 1}k \ {a} forbids only
the assignment a. k-XOR is the CSP ({0, 1}, {Reven, Rodd}), where Reven (resp. Rodd) consists of
strings a ∈ {0, 1}k of even (resp. odd) parity. k-NAE is the CSP

(
Z2,

{
Ra | a ∈ Zk

2

})
, where the

relation Ra
def= Zk

2 \ {a, a} forbids only the assignment a and its ones’ complement a
def= a ⊕ 1, and

1 ∈ {1}k is the all-one string.
A predicate CSP is a CSP whose domain D is an abelian group, and there is a set Q ⊆ Dk of

assignments satisfying a predicate, such that R = {Q + z | z ∈ Dk}, i.e. each constraint is formed
from any other by a shift. Examples of such CSPs are k-SAT, k-XOR, and k-NAE.

3. Hierarchy

In this section, we formally define all the hierarchies in this paper.

3.1. Relaxed domain.
Let us define a common generalization of the following four hierarchies: bounded width (BW),

linear program (LP), semidefinite program (SDP), and affine integer program (AIP).
Given a CSP with domain D and an instance I = (V, C) of the CSP, a hierarchy is a collection

(DS)S of sets, one for each d-small variable subset S ⊆ V . DS is the relaxed domain or the set of
relaxed assignments on S, and varies across hierarchies.

AS ⊆ DS denotes the set of partial assignments on S that satisfy all constraints in I contained
in S, where a constraint C ∈ C is contained in S if every variable of C belongs to S.

We now define the relaxed domain DS of each elementary hierarchy on a subset S ⊆ V of
variables.
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BW: DBW
S

def= P(AS) \ {∅}, the family of nonempty subsets over AS ; see e.g. [AD08, Defini-
tion 1]. The bounded width hierarchy is also called existential k-pebble game or k-strategy
and is “dual” to bounded-width resolution refutation [AD08, Theorem 2].

LP: DLP
S

def= ∆(AS), the set of distributions over AS [BGMT12, Lemma 2.3]. The LP hierarchy
is known as the Sherali–Adams hierarchy.

SDP: DSDP
S

def= X AS , the set of functions from AS to an arbitrary inner product space X .
Further, the SDP vectors induce distributions µR ∈ ∆(AR) for 2d-smalls subsets R ⊆ V , so
that for any d-small S, T ⊆ V , any αS ∈ DSDP

S , αT ∈ DSDP
T , aS ∈ AS , aT ∈ AT ,

(1) 〈αS(aS), αT (aT )〉X = P
b∼µS∪T

[bS = aS , bT = aT ].

This combined vector program and LP formulation is [Tul09, Section 2.3]. It is equivalent
to the formulation of pseudo-expectation/moment matrix in [KMOW17, Definition 2.7].
The SDP hierarchy is also known as the Lasserre hierarchy and its Lagrangian dual as the
sum-of-squares hierarchy; see e.g. [Lau09, Section 6].

AIP: DAIP
S

def=
{

w : AS → Z
∣∣∣ ∑a∈AS

w(a) = 1
}

, containing affine integer weights supported
on AS . Our definition here is different from [CŽ23a, CŽ23c]; see Remark 3.2.

3.2. Projection of relaxed assignment.
For each hierarchy, we consider a relaxed assignment αS ∈ DS to be a function from the set of

satisfying assignments AS on S to a commutative monoid M (so that addition is defined). In each
of the elementary hierarchy (BW/LP/AIP) except SDP, M is additionally a commutative semiring
(so that multiplication is also defined).

BW: MBW
def= B. The Boolean algebra B has join ∨ as the addition and meet ∧ as the

multiplication. A set αS ∈ P(AS) is represented by its indicator function 1αS : AS → B, so
that 1αS (a) = 1 if a ∈ αS , and 1αS (a) = 0 otherwise.

LP: MLP
def= R+, the nonnegative reals.

SDP: MSDP
def= X .

AIP: MAIP
def= Z.

For any subsets T ⊆ S ⊆ V , there is a projection πS→T : MDS → MDT of functions taking
values in M:
(2) πS→T (αS)(b) def=

∑
a∈DS

aT =b

αS(a) for αS ∈ MDS
, b ∈ DT .

Here the sum is over M.
If αS : A → M is a function from A ⊆ DS , we also think of it as a function αS : DS → M from

DS supported on A:
(3) αS(b) = 0 for b ∈ DS \ A.

Here 0 denotes the additive identity of the commutative monoid M. Given any α : X → M, denote
by supp(α) def= {x ∈ X | α(x) 6= 0} the support of α.

Eq. (2) immediately implies that projection commutes with addition:

(4) πS→T (αS + βS) = πS→T (αS) + πS→T (βS) for any αS , βS ∈ MDS
.

It is also easy to verify that composition of compatible projections is a projection:
(5) πS→R = πT →R ◦ πS→T for any R ⊆ T ⊆ S.

We sometimes abbreviate πS→T as πT when S is clear from the context.
Let Sd

def=
( V
⩽d

)
be the family of d-small variable subsets.
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Definition 3.1. A level-d hierarchy solution is a dependent function s : (S ∈ Sd) → DS that is
consistent with projection:

s(T ) = πS→T (s(S)) for every T ⊆ S ⊆ V, |S| ⩽ d.

Every satisfiable instance has a level-|V | hierarchy solution in each of the elementary hierarchy.
Indeed, if a : V → D is a satisfying assignment, then S 7→ 1aS is a hierarchy solution for BW, LP,
and AIP. Fixing an arbitrary unit vector v in an inner product space X , the functions αS(a) def= 1aS v
for S ⊆ V, a ∈ DS also form an SDP hierarchy solution.

Remark 3.2. Ciardo and Živný [CŽ23a, CŽ23c] initiated the study of the AIP hierarchy. They
defined AIP hierarchy differently [CŽ23a, Section 2]: Their relaxed domain is

DCŽ
S

def=
{

w : DS → Z
∣∣∣ ∑a∈DS w(a) = 1

}
,

the set of affine integer weights on DS that need not be supported on satisfying assignments in AS

for a general S. They only require that for every constraint C ∈ C, every integer weight w ∈ DCŽ
V (C)

on V (C) is supported on satisfying assignments of C.
Their AIP hierarchy is strictly weaker than ours when the level d is at least the arity k of the CSP,

because any solution to our AIP hierarchy is also a solution to theirs, but not the other way round.
All the hierarchies in this paper are refutation-complete at level d = |V |, so that every unsatisfiable
instance has no level-|V | hierarchy solution. Their AIP hierarchy lacks refutation-completeness,
even when d ⩾ |V | [CŽ23a, Theorem 1].

In the terminology of [CŽ23c, Definition 20], our hierarchies are all conic, while their AIP hi-
erarchy is not [CŽ23c, Proposition 21]. For consistency with other hierarchies in this paper, our
AIP hierarchy does not follow their definition. In any case, when d ⩾ k, lower bounds to our AIP
hierarchy imply lower bounds to their AIP hierarchy.

The LP and SDP hierarchies are often expressed as a maximization problem with an objective
value being the number or fraction of constraints satisfied; see e.g. [BGMT12, Section 2.3] and
[Tul09, Section 2.3]. When the objective value is the fraction of constraints satisfied, having an LP
or SDP hierarchy solution (Definition 3.1) is equivalent to the LP or SDP value being 1.

Our definitions of hierarchies may differ from those in other works when level d is less than
constraint arity k, in which case our hierarchies are all trivial and need not satisfy any constraint.
This difference is inessential because our focus is super-constant level lower bounds, in particular
d ⩾ k and our definitions agree with (or is stronger than) other works’.

Each of the elementary hierarchy except SDP can be solved in (|V ||D|)O(d) time, which is poly-
nomial when d is a constant:

BW: A solution can be found by the local consistency algorithm [BK09, paragraph after Def-
inition 3.3].

LP: This corresponds to a linear program with (|V ||D|)O(d) variables and inequalities and
can be solved in the aforementioned time. [Sch86, Theorem 13.4]

AIP: This corresponds to an integer program with (|V ||D|)O(d) variables and equalities and
can be solved in the aforementioned time. [Sch86, Corollary 5.3b]

No polynomial-time algorithm is known to find an exact solution to the SDP hierarchy. Deciding
the feasibility of the SDP hierarchy is a special case of the SDP feasibility problem, whose complex-
ity is still open. Often an SDP solution that is approximately feasible (i.e. having small but positive
probabilities on assignments that violate some constraints) and approximately optimal is enough
for approximation algorithms. Such an approximate solution can be found in O(|V ||D|)O(d) time be-
cause the SDP hierarchy is a semidefinite program with (|V ||D|)O(d) variables and inequalities with
the aforementioned bit-complexity [RW17, Theorem 4.1 and Corollary 3.5]; see also [O’D17] which
points out the subtlety of bit-complexity. A few level-d SDP hierarchy approximation algorithms,



10 CHAN, NG, AND PENG

such as finding a large independent set in a 3-colorable graph with a certain spectral profile, can
be implemented in poly(|V |, |D|)2O(d) time [GS12], which is polynomial whenever d = O(log |V |).

3.3. Nontriviality.
Instead of taking values in DS , it is more convenient to define a hierarchy solution as a dependent

function s : (S ∈ Sd) → MAS taking values in the superset MAS ⊇ DS , so that s satisfies an
additional nontriviality condition. Note that when s(S) takes values in MAS , the constant-zero
function s(S)(a) def= 0 ∈ M for a ∈ AS , S ∈ Sd, is trivially consistent with projection. The
nontriviality condition is meant to rule out this invalid hierarchy solution.

Recall that the set D∅ contains a unique assignment, known as the empty function, which we
will denote by 0. Also A∅ = D∅ = {0}, as there is no constraint contained in ∅ that 0 can violate.

The nontriviality condition says that s(∅)(0) equals 1, the multiplicative identity of the com-
mutative semiring M. More explicitly, the nontriviality constraint for each elementary hierarchy
is:

BW: s(∅) = {0}.
LP: s(∅)(0) = 1.
SDP: SDP inherits the nontriviality condition from the induced LP solution. By Eq. (1), the

LP nontriviality is equivalent to the unit length condition ‖s(∅)(0)‖ = 1 in previous works
such as [Tul09, Section 2.3].

AIP: s(∅)(0) = 1.
The nontriviality condition can be written succinctly as s(∅) = 10.

Lemma 3.3. For each elementary hierarchy except SDP, a dependent function s : (S ∈ Sd) → MAS

that is consistent with projection and satisfies the nontriviality condition is a hierarchy solution
(i.e. takes values in DS).

Proof. Since s is consistent with projection, for any S ∈ Sd, s(S) sums to 1, i.e., ∑a∈AS
s(S)(a) =

s(∅)(0) = 1. This in turn is equivalent to the following statements:
BW: s(S) is the indicator function of a nonempty subset of AS .
LP: s(S) is the probability mass function of a distribution over AS .
AIP: s(S) satisfies the affine constraint ∑a∈AS

s(S)(a) = 1. □

3.4. Combined hierarchy.
Starting with [BGWŽ20], a number of hierarchies were proposed by combining the elementary

ones (BW, LP, SDP, and AIP). Each combined hierarchy strengthens AIP by requiring its solution
to be contained in the support of the solution of some other hierarchy.

LP+AIP: The LP+AIP relaxation was introduced in [BGWŽ20]; see also [BG19]. The
LP+AIP hierarchy was formally defined in [CŽ23b, Section 3.2]. In this hierarchy, the
relaxed domain for d-small S ⊆ V is

DLP+AIP
S

def=
{

(µS , wS) ∈ DLP
S × DAIP

S

∣∣∣ supp(µS) ⊇ supp(wS)
}

.

The commutative semiring MLP+AIP is the direct product MLP × MAIP.
BW+AIP: The BW+AIP hierarchy was introduced by Dalmau and Opršal [DO23] as the

Z-affine k-consistency hierarchy. In this hierarchy, the relaxed domain for d-small S ⊆ V is

DBW+AIP
S

def=
{

(αS , wS) ∈ DBW
S × DAIP

S

∣∣∣ supp(αS) ⊇ supp(wS)
}

.

SDP+AIP: The SDP+AIP hierarchy is introduced in this paper, and is equivalent to the
SDA hierarchy in [CŽ24]. For every d-small S ⊆ V , there is αS ∈ DSDP

S , and for every
2d-small R ⊆ V , there is (µR, wR) ∈ DLP+AIP

R , so that (αS)S induces (µR)R as in Eq. (1).
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Even though our AIP hierarchy is stronger than the AIP hierarchy in [CŽ23a, CŽ23c] when
d ⩾ k (Remark 3.2), our LP+AIP hierarchy is equivalent to the LP+AIP hierarchy in [CŽ23b,
Section 3.2] when d ⩾ k. The LP+AIP hierarchy can be solved in O(|V ||D|)O(d) time [CŽ23b,
Section 3.2] by first finding a solution in the relative interior of the LP hierarchy, and then solving
the AIP hierarchy with the support restricted to that of the LP solution.

By contrast, we do not know how to solve the SDP+AIP hierarchy efficiently, because finding an
exact solution in the relative interior of an SDP is harder than the SDP feasibility problem. Even
though a polynomial-time algorithm for SDP+AIP or finding a refutation is not known (due to
the SDP feasibility obstacle), a refutation for SDP+AIP that can be verified in O(|V ||D|)O(d) time
may sometimes exist.

One possible refutation consists of a certificate for the “support” Z of the SDP hierarchy. The
“support” Z : (S ∈ S2d) → AS represents local assignments not ruled out by the SDP hierarchy,
and is defined for 2d-small T ⊆ V to be

Z(T ) def=
{

a ∈ DT
∣∣∣ µT (a) > 0 for some LP solution (µR)R induced by some SDP solution

}
.

A possible certificate for the support Z consists of, for each 2d-small T ⊆ V and a ∈ DT \ Z(T ),
a sum-of-squares proof showing µT (a) ⩽ 0 for every LP solution induced by any SDP solution.
Finally, the AIP algorithm can further certify that no AIP solution supported on Z exists.

The SDP+AIP hierarchy is a common generalization of all other hierarchies in this section, and
is at least as strong as any one of them. Lower bounds for SDP+AIP unify and imply lower bounds
for all these hierarchies.

4. τ-wise neutral CSP

In this section, we define τ -wise neutrality for each hierarchy. As mentioned in Section 1.1, this
concept is meant the capture the notion that a constraint C appears to the hierarchy to enforce
no constraints on subsets of at most τ variables in C. In Section 4.3 we further discuss τ -wise
neutrality for AIP.

4.1. Neutral solution.
Each elementary hierarchy except SDP comes with a natural way to combine αS : DS → M and

αT : DT → M defined on disjoint variable subsets S and T into their product αS ⊗αT : DS∪T → M.
This is simply the tensor product ⊗ : MDS × MDT → MDS∪T of appropriate functions taking
values in a commutative semiring M:

(6) (u ⊗ v)(a, b) def= u(a)v(b) for (a, b) ∈ DS × DT ∼= DS∪T .

Here the multiplication is over M. More explicitly, the tensor product for each hierarchy is:
BW: ⊗BW

def= ⊗B.
LP: ⊗LP

def= ⊗R+ . Note that αS ⊗R+ αT is the product distribution of αS and αT in the usual
sense of probability theory, i.e. sampling from αS and αT independently.

AIP: ⊗AIP
def= ⊗Z.

To construct a solution fooling a hierarchy, first fix a neutral solution ν mapping every v ∈ V to
ν(v) ∈ D{v}. Then lift ν(v) to a relaxed assignment νS on every subset S ⊆ V by

(7) νS def=
⊗
v∈S

ν(v).

We now define a neutral solution ν : (v ∈ V ) → D{v} for each hierarchy except SDP.

BW: νBW(v) def= D{v}, the set of functions from {v} to D.
LP: νLP(v) is the uniform distribution over D{v}.
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AIP: First fix an assignment a : V → D (such as assigning an arbitrary fixed element 0 ∈ D
to every variable). Then νAIP(v) = 1av . In other words, νAIP(v) assigns weight 1 to the
partial assignment v 7→ a(v) and weight 0 to every other partial assignment on {v}.

Consequently, the lifted relaxed assignment νS for any S ⊆ V will be:
BW: νS

BW = DS .
LP: νS

LP is the uniform distribution over the set DS of all assignments from S to D.
AIP: if νAIP is the neutral solution with respect to a : V → D, then νS

AIP = 1aS , i.e. νS
AIP

assigns weight 1 to aS and weight 0 to every other partial assignment on S.
The function S 7→ νS is a solution to the hierarchy if I is the empty instance containing no

constraint, but not in general if I contains some constraints.

4.2. τ-wise neutral CSP.

Definition 4.1. Given a neutral solution ν : (v ∈ [k]) → D{v} and a natural number τ ∈ N, a
relaxed assignment α : Dk → M is τ -wise ν-neutral if τ ⩽ k and

(8) πV →T (α) = νT for every τ -small T ⊆ [k].

Note that a τ -wise ν-neutral relaxed assignment α is necessarily nontrivial:

π[k]→∅(α) (8)= ν∅ (7)= 10.

Definition 4.2. A k-CSP (D,R) is τ -wise ν-neutral if every relation R ∈ R has a τ -wise ν-neutral
relaxed assignment αR : Dk → M supported on R.

A τ -wise ν-neutral CSP is called as such because the neutral solution ν is independent of (i.e. neu-
tral to) the choice of the set R of satisfying assignments in a constraint.

Definition 4.3. For each elementary hierarchy, a k-CSP is τ -wise neutral if the CSP is:
BW: τ -wise ν-neutral for ν = v 7→ D{v}.
LP: τ -wise ν-neutral, where ν(v) is the uniform distribution on D{v} for every v. Such a CSP

is also known as τ -wise uniform (or τ -wise independent in some earlier works).
SDP: τ -wise neutral in the LP sense.
AIP: τ -wise νa-neutral for every a ∈ Dk, where νa

def= v 7→ 1av . (We also write τ -wise
νa-neutral as τ -wise 1a-neutral.)

In the previous definition, AIP is somewhat unusual. For other hierarchies, τ -wise neutrality
means τ -wise ν-neutral for one specific ν; but for AIP, it requires a collection of ν’s. We will need
a full collection of ν’s to construct the AIP solution later.

A CSP is τ -wise neutral for LP+AIP if it is τ -wise (νLP, 1a)-neutral for every a ∈ Dk. In
other words, every relation R of the CSP supports a τ -wise uniform distribution µR of satisfying
assignments, and there is a τ -wise 1a-neutral AIP relaxed assignment supported on supp(µR) for
every a ∈ Dk. If a CSP is τ -wise neutral for LP+AIP, we also say that it is τ -wise neutral for
SDP+AIP.

4.3. τ-wise neutral CSP for AIP.
In this subsection, we give examples of CSPs that are τ -wise neutral for AIP. We first show that

k-SAT is τ -wise neutral for AIP.
Given S ⊆ V , the parity function χS : {0, 1}V → {+1, −1} ⊆ Z is defined as follows: χS(x) = +1

if xS has an even number of 1’s; and χS(x) = −1 if xS has an odd number of 1’s.

Proposition 4.4. k-SAT is (k − 1)-wise neutral for AIP for every k ⩾ 1.
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Proof. Consider the set R = {0, 1}k \ {b} of satisfying assignments of a k-SAT constraint that
forbids b ∈ {0, 1}k. We now show that every a ∈ {0, 1}k has a (k − 1)-wise 1a-neutral relaxed
assignment αa : Dk → Z supported on R.

If a 6= b, then αa
def= 1a works. Otherwise a = b, and the relaxed assignment αa

def= 1b − χ[k](b)χ[k]
works. Indeed, this αa is supported on R because αa(b) = 1b(b)−χ[k](b)χ[k](b) = 1−1 = 0. This αa

is also (k−1)-wise 1a-neutral, because πT (χ[k]) ≡ 0 for (k−1)-small T ⊆ [k] by Proposition A.2. □

Is there a simple sufficient condition for a CSP to be τ -wise neutral for each hierarchy? For BW,
the necessary and sufficient is easy to find (Proposition 6.1). For LP and SDP, the necessary and
sufficient condition is well known [AH11, Lemma 3.1]. For AIP, we now give a simple sufficient
condition for a CSP to be τ -wise neutral: every relation contains a Hamming ball of radius τ .

Proposition 4.5. Suppose every R ∈ R contains some Hamming ball B(cR, τ) of radius τ around
cR ∈ Dk, where B(a, τ) def= {b ∈ Dk | d(a, b) ⩽ τ} and d(a, b) def= |{i ∈ [k] | ai 6= bi}| is the Hamming
distance. Then the k-CSP (D,R) is τ -wise neutral for AIP.

Proof. Fix any center c ∈ Dk of a Hamming ball B(c, τ). For a ∈ Dk, we construct by induction
on d(c, a) a τ -wise 1a-neutral relaxed assignment αa supported on B(c, τ).

Base Case: d(c, a) ⩽ τ . Then αa
def= 1a is supported on {a} ⊆ B(c, τ) and is τ -wise 1a-neutral.

Induction Step: d(c, a) > τ . Let Q(c, a) def=
{

b ∈ Dk
∣∣∣ bi ∈ {ai, ci} for every i ∈ [k]

}
. Define

the generalized parity function χ : Q(c, a) → {+1, −1} ⊆ Z as follows: χ(b) = +1 if d(a, b) is even;
and χ(b) = −1 if d(a, b) is odd. Consider the relaxed assignment

αa
def= −

∑
b∈Q(c,a)\{a}

χ(b)αb.

Every b ∈ Q(c, a) \ {a} has d(c, b) < d(c, a), so every αb is supported on B(c, τ) by Induction
Hypothesis, and therefore so is αa.

Finally, for any τ -small T ⊆ [k], we now verify that πT (αa) = 1aT . Indeed,

πT (αa) (4)= −
∑

b∈Q(c,a)\{a}
χ(b)πT (αb)

I.H.= −
∑

b∈Q(c,a)\{a}
χ(b)1bT

(∗)= 1aT −
∑

b∈Q(c,a)
χ(b)1bT

= 1aT −
∑

b′∈πT (Q(c,a))
πT (χ)(b′)1b′ ,

where (∗) uses χ(a) = 1. Let S
def= {i ∈ [k] | ai 6= ci}. Since |S| = d(c, a) > τ and T is τ -small,

S \ T 6= ∅. It remains to show that πT (χ)(b′) = 0 for any b′ ∈ πT (Q(a, c)). This holds because
extensions b ∈ Q(c, a) of b′ correspond to choosing bi ∈ {ai, ci} for i ∈ S \ T , and half of these
extensions have even d(a, b) and χ(b) = 1, while the other half have odd d(a, b) and χ(b) = −1. □

How few satisfying assignments can there be in the relations R of a τ -wise neutral CSP for each
hierarchy? For LP and SDP, Austrin and Håstad [AH11, Theorems 1.1 and 1.2] showed that for
every τ ⩾ 2, most k-ary relations R ∈

(Dk

t

)
are τ -wise uniform for some t ≲|D|,τ kτ log k, and the

log k factor can be avoided when τ = 2. For AIP, Proposition 4.5 above implies that some relation
R ∈

(Dk

t

)
is τ -wise neutral for AIP when t ≲|D|,τ kτ , similar to Austrin and Håstad’s bound for LP

and SDP.
We also have examples of CSPs over D = {0, 1} that are pairwise neutral for AIP without

containing any Hamming ball of radius 2, but not included in this paper.
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5. Closure and scheme

5.1. Closure.
Following [BGMT12, KMOW17], we define S-closure to track constraints affecting the relaxed

assignment on a variable subset S. Our definition is almost identical to [KMOW17, Definition 5.3],
which in turn is a simplification of advice set in [BGMT12, Section 3.1]. The closure as defined in
[KMOW17] will be called local closure instead in this work (Definition 8.7).

Given a constraint set C, denote by V (C) def= {v ∈ V | v ∈ C for some C ∈ C} its variable set. Its
boundary B(C) is the set of its variables that belong to a unique constraint in C:

B(C) def= {v ∈ V (C) | v belongs to a unique C ∈ C}.

Denote by B(C) def= V (C) \ B(C) the set of variables belonging to multiple constraints in C.

Definition 5.1 (S-closure). Given S ⊆ V , constraint set C over V , and τ ∈ N, C is S-closed if
|V (C) ∩ (S ∪ B(C))| > τ for every C ∈ C. The S-closure clS(C) of C is the union of S-closed C′ ⊆ C.

For our applications in subsequent sections, the parameter τ in the definition of S-closure will
be chosen so that the CSP is τ -wise neutral.

Lemma 5.2. The union ⋃i Ci of S-closed constraint sets Ci is S-closed. In particular, the S-closure
clS(C) is also S-closed.

Proof. Every C ∈
⋃

i Ci belongs to some Ci, whose S-closeness implies |V (C) ∩ (S ∪ B(Ci))| > τ .
Now B(Ci) ∩ V (C) ⊇ B(

⋃
i Ci) ∩ V (C) by Lemma A.1, so |V (C) ∩ (S ∪ B(

⋃
i Ci))| > τ as well. □

Lemma 5.3. For constraint sets C′ ⊆ C, clS(C′) ⊆ clS(C).

Proof. clS(C′) ⊆ C′ ⊆ C and clS(C′) is S-closed by Lemma 5.2. □

We now prove that S-closure admits an equivalent definition: Start with C; Remove C ∈ C from
C if C violates the S-closeness property, i.e. |V (C) ∩ (S ∪ B(C))| ⩽ τ . Keep removing constraints
this way until no more constraints can be removed. We will show that the resulting set coincides
with the S-closure in Definition 5.1.

Formally, define the set of “S-internal” constraints

(9) RS(C) def= {C ∈ C | |V (C) ∩ (S ∪ B(C))| > τ},

and

(10) R∗
S(C) def=

{
C if RS(C) = C
R∗

S(RS(C)) if RS(C) ⊊ C
.

Proposition 5.4. R∗
S(C) = clS(C).

Proof. We first prove by induction on C that C′ ⊆ R∗
S(C) for every S-closed C′ ⊆ C.

Base Case: C = RS(C). Then C′ ⊆ C (10)= R∗
S(C).

Induction Step: C ⊋ RS(C). Consider any S-closed C′ ⊆ C. We now show that C′ ⊆ RS(C).
Indeed, every constraint C ∈ C′ satisfies |V (C)∩(S∪B(C′))| > τ , which implies |V (C)∩(S∪B(C))| >
τ because V (C) ∩ B(C) ⊆ V (C) ∩ B(C′) by Lemma A.1. This means C ∈ RS(C) by Eq. (9). Thus
C′ ⊆ RS(C), which implies (by Induction Hypothesis for RS(C)) that C′ ⊆ R∗

S(RS(C)) (10)= R∗
S(C).

Having completed the induction proof, apply its conclusion to the S-closed set C′ = clS(C), and
get clS(C) ⊆ R∗

S(C).
For the converse inclusion, note that RS(R∗

S(C)) = R∗
S(C) by Eq. (10), and hence R∗

S(C) is
S-closed by Eq. (9), and therefore R∗

S(C) ⊆ clS(C). □
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The equivalence in Proposition 5.4 does not appear in [KMOW17] or [BGMT12]. Both def-
initions of closure are useful: The removal viewpoint helps construct hierarchy solutions recur-
sively (Lemma 5.11), while the union viewpoint helps show local closures to be small and sparse
(Lemma 8.10).

Given any constraint set C, any variable subset S ⊆ V , let RS(C) def= C \ RS(C) be the set of
“S-exterior” constraints.

We also define the S-closure of an instance as the subinstance (i.e. variables and constraints)
affecting the relaxed assignment on S.

Definition 5.5. Given an instance I = (V, C) and a subset S ⊆ V , denote by clS(I) def= S ∪ clS(C)
the subinstance with variable set S ∪ V (clS(C)) and constraint set clS(C).

As is well known, small subinstances of a random instance are sparse. Our next definition,
implicit in [BGMT12, Lemma 3.2] and [KMOW17, Theorem 5.12], highlights the key combinatorial
property enjoyed by these sparse subinstances.
Definition 5.6 (Dismissible). A constraint set C is dismissible if cl∅(C) = ∅. An instance I is
dismissible if its constraint set C(I) is.

In other words, a dismissible constraint set can be completely removed by iteratively taking away
∅-exterior constraints.

5.2. Scheme.
In this subsection, we lay a common framework to construct hierarchy solutions for each elemen-

tary hierarchy except SDP, generalizing previous LP constructions in [BGMT12, Lemma 3.2] and
[KMOW17, Theorem 5.12]. The framework involves a scheme assigning a relaxed assignment to
every (small and sparse) subinstance.
Definition 5.7. A scheme σ for a family I of instances is a function mapping I ∈ I to σ(I) ∈ MAI ,
where AI is the set of assignments a ∈ DV (I) that satisfy all constraints in I. A scheme is compatible
with closure4 if for every I = (U, C) ∈ I and S ⊆ U ,
(11) πU→S(σ(I)) = πV (clS(I))→S(σ(clS(I))).

A scheme σ for I is nontrivial if σ(I∅) = 1∅, where I∅
def= (∅, ∅) is the null instance without any

variable or constraint. We will later turn a nontrivial scheme into a hierarchy solution (Proposi-
tion 8.15).

When assigning a relaxed assignment to a subinstance, what really matter are the constraints
in the subinstance. The isolated variables play essentially no role. Our next definition focuses
on the simpler setting of assigning a relaxed assignment to the constraints of the subinstance, and
considers a scheme for a family of constraint sets (namely, the family of constraints appearing in the
family of small subinstances). At the same time, we also simplify the “compatibility with closure”
condition. Recall that the S-closure can be obtained by iteratively removing S-exterior constraints
(Proposition 5.4). Instead of directly requiring every instance to share the same projection as its
S-closure, we instead ask for the same projection with the subinstance obtained after removing any
single S-exterior constraint.
Definition 5.8. Let C be a family of constraint sets over a variable set V . A scheme σ for C is a
function mapping C ∈ C to σ(C) ∈ MAC , where AC is the set of assignments a ∈ DV (C) that satisfy
all constraints in C. A scheme σ for C is compatible with a neutral solution ν : (v ∈ V ) → D{v} if
for every C ∈ C, S ⊆ V (C), C ∈ RS(C),

(12) πV (C)→S(σ(C)) = πV (C)→S

(
σ(C′) ⊗ νV (C)\V (C′)

)
,

4This definition only makes sense if I is closed under closure, which is the case in our applications.
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where C′ def= C \ {C}.
We will show in Lemma 5.11 below that, roughly speaking, the new compatible condition in

Eq. (12) implies the original one in Eq. (11). The new condition is easier to verify in practice,
because it only involves removing one constraint at a time.

Given a family C of constraint sets over V , let I(C) be the family of instances I = (U, C) with a
constraint set in C, that is, U ⊆ V and C ∈ C.
Definition 5.9. Given a scheme σ for C compatible with a neutral solution ν, its extended scheme
σ∗ for I(C) is

(13) σ∗(I) def= σ(C) ⊗ νU\V (C) for I = (U, C) ∈ I(C).

In the above definition, since σ is supported on satisfying assignments of C = C(I), σ∗ is indeed
supported on satisfying assignments of I.

A scheme σ for C is nontrivial if σ(∅) = 10.
Lemma 5.10. Let σ be a scheme for a family C of constraint sets compatible with a neutral solution.
If σ is nontrivial, then so is its extended scheme σ∗.

Proof. σ∗(I∅) (13)= σ(∅) = 10. □
Lemma 5.11. Let σ be a scheme for a family C of constraint sets compatible with a neutral solution
ν. Then its extended scheme σ∗ for I(C) is compatible with closure.
Proof. We prove by induction on C ∈ C that for any instance I = (U, C), any S ⊆ U , πS(σ∗(I)) =
πS(σ∗(clS(I))).

Base Case: C = clS(C). The result follows because C = clS(C), so I = clS(I).
Induction Step: C ⊋ clS(C). By Proposition 5.4 and Eq. (10), C ⊋ RS(C) ⊇ clS(C). Fix an

arbitrary C ∈ RS(C). Let C′ def= C \{C} and T
def= S ∩V (C). Then C ∈ RT (C). Since σ is compatible

with ν,

πS(σ∗(I)) (13)= πS

(
σ(C) ⊗ νU\V (C)

) (51)= πT (σ(C)) ⊗ νS\V (C)

(12)= πT

(
σ(C′) ⊗ νV (C)\V (C′)

)
⊗ νS\V (C′)

(51)= πS

(
σ(C′) ⊗ ν(S∪V (C))\V (C′)

) (13)= πS(σ∗(I ′)) I.H.= πS(σ∗(clS(I ′))),

where I ′ = (U, C′). The desired result now follows from the fact that clS(C′) = clS(C) (and
hence clS(I ′) = clS(I)), which holds because (1) C′ ⊇ RS(C) ⊇ clS(C) and clS(C) is S-closed, so
clS(C′) ⊇ clS(C); and (2) of Lemma 5.3. □

6. BW scheme

This section concerns the bounded width hierarchy. Recall that the neutral solution ν
def= νBW

maps every v ∈ V to D{v}.
Proposition 6.1. Let R ⊆ Dk be a relation. Consider an integer τ such that 0 ⩽ τ ⩽ k. Then
some τ -wise neutral relaxed assignment α ⊆ Dk is supported on R if and only if
(14) πT (R) = DT for τ -small T ⊆ [k].

Proof. If Eq. (14) holds, then the relaxed assignment α
def= R is τ -wise ν-neutral because πT (α) =

πT (R) = DT = νT for τ -small T ⊆ [k]. Also, this α is supported on R, that is, α ⊆ R.
Conversely, if some τ -wise neutral relaxed assignment α ⊆ R is supported on R, then πT (R) ⊇

πT (α) = νT = DT for τ -small T ⊆ [k]. But πT (R) is trivially a subset of DT . This implies
Eq. (14). □
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Consequently, a CSP (D,R) is τ -wise neutral if and only if Eq. (14) holds for every R ∈ R.
k-SAT, k-NAE, k-XOR are all examples of (k − 1)-wise neutral CSPs for BW when k ⩾ 1.
When τ = 2, our pairwise neutral condition here is closely related to (but stronger than) the

null-constraining condition in [CM13, Definition 2.6], which means some lower bounds in [CM13]
do not follow from our lower bounds here. As an example, [AD22, Theorem 3] morally follows from
[CM13, Theroem 1.4(a)] (and Lemma B.3) but not from Theorem 1.1.5

Consider the function σ mapping constraint sets C to the set σ(C) def= AC ⊆ DV (C) of satisfying
assignments of C.

Proposition 6.2. σ is a nontrivial scheme for constraint sets and is compatible with ν.

Proof. σ is supported on satisfying assignments of C by definition.
σ is nontrivial, because σ(∅) = A∅ = {0}, which is nonempty.
We now prove that for any S ⊆ V (C), C ∈ RS(C), if C′ def= C \ {C}, U

def= V (C′), then

πS(σ(C)) = πS

(
σ(C′) ⊗ νV (C)\U

)
.

For any b ∈ πS(σ(C)), some assignment a ∈ V (C) satisfies all constraints of C and aS = b.
In particular aU satisfies all constraints in C′ and a ∈ AC′ × DV (C)\U = σ(C′) ⊗ νV (C)\U , so
b ∈ πS

(
σ(C′) ⊗ νV (C)\U

)
.

Conversely, if b ∈ πS

(
σ(C′) ⊗ νV (C)\U

)
, then some a ∈ DV (C) satisfies aS = b and aU satisfies

all constraints in C′. Let T
def= V (C) ∩ (S ∪ U) = V (C) ∩ (S ∪ B(C)). Since C ∈ RS(C), |T | ⩽ τ .

Since Eq. (14) holds for the relation R of C, some satisfying assignment c ∈ AC has cT = aT . Then
the combined assignment a′ def= aS∪U ∪ c ∈ DV (C) satisfies all constraints in C and has projection
a′

S = aS = b, so b ∈ πS(σ(C)). □
Corollary 6.3. If a dismissible constraint set C is τ -wise neutral, then C is satisfiable.

Proof. By Proposition 6.2 and Lemmas 5.10 and 5.11, the function σ
def= I 7→ AI is a nontrivial

extended scheme for instances, and σ is compatible with closure. Let I
def= (V (C), C) be the instance

consisting of C and I∅
def= (∅, ∅) be the null instance. Then π∅(σ(I)) (11)= π∅(σ(cl∅(I))) = π∅(σ(I∅)) 6=

∅ because σ is nontrivial. Therefore σ(I) 6= ∅ and any assignment a ∈ σ(I) = AI satisfies C. □

7. AIP scheme

This section concerns the AIP hierarchy. Given any τ -wise neutral CSP and any a ∈ Dk, we
wish to construct a scheme for constraint sets compatible with 1a (or more precisely, compatible
with νa

def= v 7→ 1av ). To this end, we will recursively define a function Ma(C) that outputs an
integer weight w : DV (C) → Z by “mending” the integer weight 1aV (C) according to C.

Call a family
{

αa ∈ ZDk
∣∣∣ a ∈ Dk

}
of relaxed assignments τ -wise neutral if αa is τ -wise 1a-neutral

for every a ∈ Dk.

Definition 7.1. Given a family
{

αa

∣∣∣ a ∈ Dk
}

of τ -wise neutral relaxed assignments, the derived
relaxed assignments are

αb
def=

∑
a∈Dk

aS=b

αa for b ∈ DS , S ⊆ [k].

5The reason is that for any relational structure S satisfying the condition “U, V ∈ G (S) implies U ◦ V = S2”
of [AD22, Theorem 3], the CSP has no forbidding path of length at least 2 and its domain S is null-constraining.
However, S is not necessarily pairwise neutral for BW, and an example is graph 3-coloring.
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Lemma 7.2. The derived relaxed assignment αb in Definition 7.1 is τ -wise 1b-neutral:
π[k]→U (αb) = π[k]→U (1b) for τ -small subset U ⊆ [k].

Proof.
πU (αb)

(4)=
∑

a∈Dk

aS=b

πU (αa) (∗)=
∑

a∈Dk

aS=b

πU (1a) (4)= πU (1b),

where (∗) is by Definition 4.1. (Here 1b : Dk → Z.) □
Lemma 7.3. If the relaxed assignments αa in Definition 7.1 are all supported on R ⊆ Dk, then so
is every derived relaxed assignment αb.

Proof. For every c ∈ Dk \ R, αb(c) =
∑

a∈Dk

aS=b

αa(c) = 0. □

Given a τ -wise neutral CSP (D,R), let
{

αR
a

∣∣∣ a ∈ Dk
}

be a family of τ -wise neutral relaxed assign-
ments supported on R for every R ∈ R, and

{
αR

b

∣∣∣ b ∈ DS , S ⊆ [k]
}

be the derived τ -wise neutral re-
laxed assignments for R ∈ R. They further yield relaxed assignments

{
αC

b ∈ ZAC

∣∣∣ b ∈ DS , S ⊆ V (C)
}

on every constraint C of the CSP, where αC
b is αR

b transferred to C (Definition 7.4 below) and R
is the k-ary relation of satisfying assignments of C:
Definition 7.4. Given a relaxed assignment α : Dk → M and a constraint C with scope S, the
relaxed assignment αC : DV (C) → M transferred to C is αC(a) def= α(a ◦ S) for a ∈ DV (C).

Since we only consider constraints C having no repeated variables (i.e. its scope S consists of k
distinct variables), αC

b inherits τ -wise neutrality from αR
b .

Definition 7.5. Given subsets S, T of V , define the generalized tensor product ⊗̃ : ZDS × ZDT →
ZDS∪T by

(15) (u ⊗̃ v)(a) def= u(aS)v(aT ) for a ∈ DS∪T , u ∈ ZDS
, v ∈ ZDT

.

It is easy to verify that ⊗̃ is commutative and associative. In the above definition, the subsets
S and T need not be disjoint. When they are, the generalized tensor product coincides with the
usual tensor product in Eq. (6).

Definition 7.6. Given constraint sets C′ ⊆ C, b ∈ DV (C′)∩B(C), define

αC′
b

def=
⊗̃

C∈C′

αC
bV (C)∩B(C)

.

We are now ready to define the mending function Ma : (C ∈ C) → ZDV (C) for the family of
dismissible constraint sets C. Define Ma(∅) def= 10. For a nonempty dismissible C, Ma(C) is defined
recursively via inclusion-exclusion by

(16) Ma(C) def=
∑

C′⊆R∅(C)
C′ 6=∅

(−1)|C′|+1M ′
a(C, C′),

where
(17) M ′

a(C, C′) def= Ma(C \ C′) ⊗̃ αC′
aV (C′)∩B(C)

.

Lemma 7.7. For variable subsets S, R ⊆ V , subset U ⊆ R, weights w ∈ ZDS , y ∈ ZDR ,
πS∪U (w ⊗̃ y) = w ⊗̃ πU (y).
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Proof. Let T
def= R \ (S ∪ U). For any b ∈ DS∪U ,

πS∪U (w ⊗̃ y) (b) (2)=
∑

a∈DT

(w ⊗̃ y) (b ∪ a) (15)=
∑

a∈DT

w(bS)y(bU ∪ a)

(∗)= w(bS)
∑

a∈DT

y(bU ∪ a) (2)= w(bS)πU (y)(bU ) (15)= (w ⊗̃ πU (y))(b),

where (∗) is due to the independence of w(bS) from a. □

Lemma 7.8. For any constraint set C, variable subset T ⊆ V (C), T -exterior constraint C ∈ RT (C),
let Q

def= V (C) ∩ B(C) and S
def= V (C) \ Q. For any w : DS → Z, b ∈ DQ,

(18) πT

(
w ⊗̃ αC

b

)
= πT (w ⊗ 1b).

Proof. U
def= T ∩ V (C) is τ -small because C ∈ RT (C). Then

(19) πS∪U

(
w ⊗̃ αC

b

)
= w ⊗̃ πU

(
αC

b

)
= w ⊗̃ πU (1b),

where the first equality is Lemma 7.7 (with R
def= V (C), y

def= αC
b ), and the second is Lemma 7.2.

Further projecting to T ,

πT

(
w ⊗̃ αC

b

) (5)= πT

(
πS∪U

(
w ⊗̃ αC

b

)) (19)= πT (w ⊗̃ πU (1b))

= πT (w ⊗̃ 1bU∩Q
) (∗)= πT (w ⊗ 1bU∩Q

) (51),(5)= πT (w ⊗ 1b),

where (∗) uses the fact that U ∩ Q is disjoint from S. □

Corollary 7.9. For any constraint set C, variable subset T ⊆ V (C), subset of T -exterior constraints
C′ ⊆ RT (C), let U

def= V (C′) ∩ B(C). For any y : DV (C)\U → Z, b ∈ DU ,

(20) πT

(
y ⊗̃ αC′

b

)
= πT (y ⊗ 1b).

Proof. We prove by induction on C′.
Base Case: C′ = ∅. Then V (C′) = ∅. Both sides of Eq. (20) equal πT (y), since αC′

b = 1b = 10.
Induction Step: C′ 6= ∅. Fix any C ∈ C′. Let C′′ def= C′ \ {C}, Q

def= V (C′′) ∩ B(C) and
R

def= V (C) ∩ B(C). Then C /∈ RT (C). Lemma 7.8 (with w
def= y ⊗̃ αC′′

bQ
) implies

πT

(
y ⊗̃ αC′′

bQ
⊗̃ αC

bR

) (18)= πT

(
y ⊗̃ αC′′

bQ
⊗ 1bR

) I.H.= πT

(
y ⊗ 1bQ

⊗ 1bR

)
= πT (y ⊗ 1b) . □

Proposition 7.10. Ma is a nontrivial scheme for constraint sets.

Proof. Nontriviality follows by definition of Ma(∅) = 10.
We prove by induction on C that Ma(C) is supported on satisfying assignments of C.
Base Case: C = ∅. The result holds because no constraint can be violated.
Induction Step: C 6= ∅. Then Ma(C) is a signed sum of M ′

a(C, C′) over nonempty C′ ⊆ R∅(C).
For every such term, let C′ def= C \ C′. For any b ∈ DV (C),

(21) M ′
a(C, C′)(b) (17)=

(
Ma(C′) ⊗̃ αC′

aV (C)∩B(C)

)
(b) = Ma(C′)

(
bV (C′)

) ∏
C∈C′

αC
aV (C)∩B(C)

(
bV (C)

)
.

If b violates some constraint in C′ = C \ C′, Eq. (21) is zero by Induction Hypothesis for C′ ⊊ C. If
b violates C ∈ C′, Eq. (21) is also zero by Lemma 7.3. □

Lemma 7.11. For any constraint sets C′ ⊆ C, any S ⊆ V (C), RS(C) ∩ C′ ⊆ RS∩V (C′)(C′).
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Proof. We have S ∩ V (C′) ⊆ S ∩ V (C) = S. For any C ∈ RS(C) ∩ C′, we have V (C) ∩ B(C′) ⊆
V (C) ∩ B(C) by Lemma A.1, so

|V (C) ∩ ((S ∩ V (C′)) ∪ B(C′))| ⩽ |V (C) ∩ (S ∪ B(C))| ⩽ τ,

thus C ∈ RS∩V (C′)(C′). □

Theorem 7.12. The scheme Ma is compatible with 1a: For any C, S ⊆ V (C), C ∈ RS(C),

(22) πS(Ma(C)) = πS

(
Ma(C \ {C}) ⊗ 1aV (C)∩B(C)

)
.

Proof. We prove by induction on C that for every S ⊆ V (C), C ∈ RS(C), Eq. (22) holds.
Base Case: C = clS(C). Eq. (22) holds vacuously because RS(C) = C and no C ∈ RS(C) exists.
Induction Step: Fix any S ⊆ V (C) and any C ∈ RS(C). Let C

def= C \ {C}. A summand in
Eq. (16) is M ′

a(C, {C}). After projecting to S, this summand becomes (by Lemma 7.8)

πS(M ′
a(C, {C})) (17)= πS

(
Ma(C) ⊗̃ αC

aV (C)∩B(C)

) (18)= RHS of (22).

It remains to show that all other terms in Eq. (16) cancel each other after projecting to S. These
other terms can be paired: For every nonempty C0 ⊆ R∅(C) \ {C}, pair up the term for C0 and the
term for C1

def= C0 ∪ {C}. Let Ci
def= C \ Ci for i = 0, 1.

Ignoring the sign, and after projecting to S, the term for Ci contributes

πS(M ′
a(C, Ci))

(17)= πS

(
Ma(Ci) ⊗̃ αCi

aV (Ci)∩B(C)

) (20)= πS

(
Ma(Ci) ⊗ 1aV (Ci)∩B(C)

)
(51)= πS∩V (C0)

(
Ma(Ci)

)
⊗ 1a

S\V (C0)
.(23)

In particular,

(23) for C0
I.H.= πS∩V (C0)

(
Ma(C1) ⊗ 1a

V (C)∩B(C0)

)
⊗ 1a

S\V (C0)

(51)= (23) for C1.

We can apply the Induction Hypothesis (I.H.) because C ∈ RS∩V (C0)(C0) by Lemma 7.11.
Since the terms for C0 and C1 have opposite signs in Eq. (16), their projections cancel each

other. □

8. Hierarchy solution on expanding instances

Throughout this section, we consider a fixed τ -wise neutral CSP for some τ ∈ N. We prove our
first main theorem (Theorem 1.1) in Section 8.2. As an application, we also prove SDP+AIP lower
bounds for k-SAT for k ⩾ 4 in Section 8.3.

8.1. Expansion and local closure.
Following [KMOW17, Definition 4.8], we measure the sparsity of a subinstance as follows:6

Definition 8.1 (Sparsity). Given a subset S ⊆ V and an S-closed constraint set C over V , their
sparsity is

(24) sp(C, S) def= 2|S ∪ B(C)| + (τ + 1)|C| − 2|J(C, S)|,

where
J(C, S) def= {(C, v) ∈ C × (S ∪ B(C)) | v ∈ C}

denotes the constraint-variable incidences between C and S ∪ B(C).

6Sparsity is called revenue in [KMOW17]. Eq. (24) has the factor τ + 1 in place of the factor τ in the revenue.
This is because our CSP is τ -wise neutral, whereas [KMOW17, Notation 2.4] is (τ − 1)-wise uniform.
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The constraint set C and variable subset S above represent a “subinstance” I = (S, C) of a τ -wise
neutral CSP, where C is allowed to contain variables outside S in this definition. Definition 8.1
counts how much sparser (i.e. many fewer constraint-variable incidences) I is from being potentially
non-dismissible. In other words, how far away from the impossibility of recursively constructing a
hierarchy solution for I from scratch. Consider the case of k-XOR, which is τ -wise neutral in the
BW or LP hierarchy for τ = k − 1. Consider a k-XOR subinstance I = (U, C) whose variables each
participates in exactly two constraints and U = V (C). Such a subinstance may be unsatisfiable,
if the sum of parities of all the constraints is odd. And indeed sp(C, U) = 0, signifying I is not
sparse enough to guarantee satisfiability, let alone having a hierarchy solution of level |U |. By
contrast, any k-XOR instance I all of whose nonempty constraint subsets C′ have positive sparsity
sp(C′, V (C′)) is dismissible.

The sparsity can be equivalently decomposed as the sum
(25) sp(C, S) =

∑
C∈C

spS∪B(C)(C) +
∑

v∈S∪B(C)

spC(v),

where
spT (C) def= (τ + 1) − |V (C) ∩ T | for T ⊆ V, and

spC(v) def= 2 − |{C ∈ C | v ∈ C}|.
Indeed, all the contributions to Eq. (24) and Eq. (25) are:

• Every v ∈ S ∪ B(C) contributes 2 to Eq. (24) and to Eq. (25).
• Every C ∈ C contributes τ + 1 to Eq. (24) and to Eq. (25).
• Every incidence (C, v) ∈ J(C, S) contributes −2 to Eq. (24). It also contributes −1 to

spS∪B(C)(C) and −1 to spC(v) in Eq. (25).

Remark 8.2. Since sparsity sp(C, S) is only defined for an S-closed constraint set C, every term
spS∪B(C)(C) of Eq. (25) is nonpositive for C ∈ C. Also, every term spC(v) is nonpositive if v ∈ B(C).
The only positive terms are spC(v) = 1 for v ∈ S ∩ B(C), and spC(v) = 2 for v ∈ S \ V (C).
Remark 8.3. Any S-closed constraint set C has sp(C, S) ⩽ 2|S| by the previous remark.
Definition 8.4 (Sparsity expansion). Let t ⩾ 0 and γ > 0. A constraint set C over V is (t, γ)-
expanding if sp(C′, S) ⩾ γ|C′| for any S-closed t-small constraint subset C′ ⊆ C and any S ⊆ V . An
instance I is (t, γ)-expanding if its constraint set is.
Remark 8.5. Suppose τ = k − 1. Remark 8.2 and |V (C)| = k = τ + 1 imply sp(C, V (C)) = |B(C)|.
The expansion condition is then equivalent to |B(C′)| ⩾ τ |C′| for t-small constraint subsets C′. That
means the factor graph of the instance is a (one-sided) unique-neighbor expander, also known as a
boundary expander, when τ = k − 1.
Remark 8.6. Sparsity expansion was introduced by [KMOW17] as “Plausibility Assumption.” More
precisely, (t, γ)-expansion of an instance I = (V, C) is equivalent to the factor graph of I satisfying
their “Plausibility Assumption”, when their (2 · SMALL, ζ) = (t, γ). See [KMOW17, Remark 4.10
and “Plausibility Assumption, Restated”] for relevant definitions. Indeed, if Plausibility Assump-
tion holds, then any S ⊆ V and any S-closed t-small C′ ⊆ C corresponds to the (τ +1)-factor graph
(C′, V (C′) ∩ S), whose plausibility implies sp(C′, S) ⩾ sp(C′, V (C′) ∩ S) ⩾ γ|C′|. Conversely, if I is
(t, γ)-expanding, then any (τ +1)-factor graph H

def= (C′, S) with t-small C′ satisfies sp(C′, S) ⩾ γ|C′|
because C′ is S-closed, and hence H is plausible.

We now define local closure [KMOW17, Definition 5.3] and recall some results in [KMOW17].
Definition 8.7 (Local closure). Given a variable subset S ⊆ V , a constraint set C over V and a
real number t ⩾ 0, the t-local S-closure cltS(C) of C is the union of t-small S-closed C′ ⊆ C.
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Definition 8.8. Given an instance I = (V, C), denote by cltS(I) def= S ∪ cltS(C) the subinstance with
variable set S ∪ V (cltS(C)) and constraint set cltS(C).

Lemma 8.9. For any t, any variable subsets T ⊆ S, any constraint set C, cltT (C) ⊆ cltS(C).

Proof. For any t-small T -closed C′ ⊆ C, C′ ⊆ cltS(C) by definition of cltS(C) and S-closedness of C′.
Taking the union over all t-small T -closed C′ ⊆ C, we get cltT (C) ⊆ cltS(C). □

Lemma 8.10. Let S ⊆ V , and C def= C1 ∪ C2 be the union of two t-small S-closed constraint sets C1
and C2. If C is (2t, 2γ)-expanding and sp(C, S) ⩽ 2rγ for some r ⩽ t, then C is r-small.

Proof. C1 and C2 are t-small, so C is 2t-small. C is S-closed by Lemma 5.2. sp(C, S) ⩾ 2γ|C| by
(2t, 2γ)-expansion of C. Therefore 2rγ ⩾ sp(C, S) ⩾ 2γ|C|, implying |C| ⩽ r. □

Lemma 8.11. For any r ⩽ t, cltS(C) is r-small if C is (2t, 2γ)-expanding and S is rγ-small.

Proof. By Remark 8.3, sp(C′, S) ⩽ 2|S| ⩽ 2rγ for any S-closed C′. The local closure cltS(C) is a finite
union of t-small S-closed constraint subsets, so an induction using Lemma 8.10 and Lemma 5.2
implies cltS(C) is r-small and S-closed. □

Lemma 8.12. For any (2t, 2γ)-expanding C and any t-small C′ ⊆ C, C′ is dismissible.

Proof. clt∅(C) = ∅ by Lemma 8.11 (with r
def= 0, S

def= ∅). The next lemma implies cl∅(C′) ⊆ clt∅(C) =
∅. □

We also relate closure to local closure.

Lemma 8.13. For any constraint sets C′ ⊆ C, any variable subset T , if C′ is t-small, then

clT (C′) ⊆ cltT (C).

Proof. clT (C′) is T -closed by Lemma 5.2. clT (C′) ⊆ C′ ⊆ C by Lemma 5.3. Since C′ is t-small, so is
clT (C′). The result follows by definition of cltT (C). □

Lemma 8.14. For any constraint set C, any variable subsets T ⊆ S, if cltS(C) is t-small, then

(26) clT (cltS(C)) = cltT (C).

As a result, clT (cltS(I)) = cltT (I) if cltS(C) is t-small.

Proof. cltT (C) ⊆ cltS(C) by Lemma 8.9. Further, cltT (C) is T -closed by Lemma 5.2, so cltT (C) ⊆
clT (cltS(C)) by definition of clT (cltS(C)).

The reverse inclusion is Lemma 8.13 (with C′ def= cltS(C)). □

8.2. Hierarchy solution.

Proposition 8.15. Suppose σ is a nontrivial scheme for dismissible instances and is compatible
with closure. Let d

def= tγ. Then any (2t, 2γ)-expanding instance I has a level-d hierarchy solution
s given by

(27) s(S) def= πS ◦ σ ◦ cltS(I) for d-small S ⊆ V.

Proof. For any d-small subset S ∈ Sd, its closure cltS(C) is t-small by Lemma 8.11 (with r
def= t),

therefore cltS(C) is dismissible by Lemma 8.12 and σ ◦ cltS(I) is well defined.
Since clt∅(I) is dismissible, Lemma 8.14 and Definition 5.6 imply that clt∅(I) is the null instance

I∅
def= (∅, ∅) that has no variable or constraint. Therefore s(I∅) = π∅ ◦ σ ◦ clt∅(I) = σ(I∅) = 10 and s

is nontrivial.
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By Lemma 3.3, it remains to show that s is consistent with projection. Indeed, for any S ∈ Sd,
T ⊆ S,

πS→T ◦ s(S) (27)= πS→T ◦ πS ◦ σ ◦ cltS(I) (5)= πT ◦ σ ◦ cltS(I) (11)= πT ◦ σ ◦ clT ◦ cltS(I)
(26)= πT ◦ σ ◦ cltT (I) (27)= s(T ). □

A random CSP instance is expanding with high probability. The following result will be proved
in Appendix B.2 and is a variant of [KMOW17, Theorem 4.12].

Lemma 8.16. Let λ
def= τ − 1 ⩾ 1, 0 < γ ⩽ λ/2, ζ

def= ∆2/(λ−γ)/n. Except with probability oζ;k(1),
a random k-CSP instance with n vertices and m

def= ∆n constraints is (t, γ)-expanding, where

t = n

∆2/(λ−γ) · 1
2O(k) .

We are now ready to prove Theorem 1.1.

Theorem 1.1. Let τ ⩾ 2. For each elementary hierarchy (BW, LP, SDP, and AIP), if a k-CSP
is τ -wise neutral for the hierarchy, then except with probability on;k(1), a random instance of the
CSP with n variables and ∆n constraints has a hierarchy solution of level Ωk(n/(∆2/(τ−1) log ∆)).

Proof. Fix γ
def= 1/ log ∆, λ

def= τ − 1 ⩾ 1. We may assume ∆2/λ log ∆ ⩽ n, for otherwise the level
lower bound is trivial, as every hierarchy has a solution of level 0. Since ∆2/(λ−3/ log ∆) = Θ(∆) for
λ ⩾ 1, we have ζ

def= ∆2/(λ−3γ)/n = on(1). Lemma 8.16 implies that except with probability on;k(1),
a random instance I is (2t, 3γ)-expanding, where t = n/(∆2/(λ−3γ)2O(k)) = Ωk(n/∆2/λ).

Proposition 8.15 further turns any nontrivial scheme σ of a hierarchy for dismissible instances
that is compatible with closure into a level d

def= tγ hierarchy solution for I. For each elementary
hierarchy except SDP, any τ -wise neutral k-CSP has such a scheme σ; (See also Lemmas 5.10
and 5.11.)

BW: It follows from Proposition 6.2.
LP: This is essentially [BGMT12, Lemma 3.2] or [KMOW17, Theorem 5.12]. See Lemma 10.4

below (with K = ∅ and E = ∅ so that cl = cl) for a self-contained proof.
AIP: It follows from Proposition 7.10 and Theorem 7.12.

The SDP hierarchy requires additional work due to the extra constraint in Eq. (1). The SDP
solution can be constructed by [KMOW17, Theorem 1.2]. See Theorem 11.26 and Lemma 11.27
below for a self-contained proof. □

8.3. SDP+AIP hierarchy solution for 4-SAT.
Previous LP and SDP lower bounds for k-SAT, starting with [BGMT12, Sch08], were all based

on the k-XOR distribution — the uniform distribution over all assignments of even (or odd) parity.
As discussed in the Introduction, such a solution cannot fool the LP+AIP hierarchy, because it
strengthens every constraint into k-XOR, and AIP can refute unsatisfiable k-XOR instances.

In this subsection, we give an easy workaround for k-SAT whenever k ⩾ 4, by constructing a
(k − 2)-wise uniform distribution supported on all satisfying assignments of a k-SAT constraint
(Lemma 8.17). Such a distribution implies the SDP hierarchy solution constructed in Theorem 1.1
induces an LP hierarchy solution that has full support on small closures (Definition 8.19). Together
with (k − 1)-wise neutrality for AIP (Proposition 4.4), k-SAT is (k − 2)-wise neutral for SDP+AIP.
This easily implies k-SAT fools the SDP+AIP hierarchy whenever k ⩾ 4.

The main result of this subsection, Theorem 8.21, will be subsumed by Theorem 1.2, whose proof
will make up the rest of this paper. We include a proof of Theorem 8.21 because it highlights an
interesting distinction between 3-SAT and 4-SAT: the latter is pairwise neutral for SDP+AIP but
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the former is not. This means LP+AIP and SDP+AIP lower bounds for 4-SAT follow rather easily
from our results so far, while those for 3-SAT need significantly more effort.
Lemma 8.17. For every integer k ⩾ 4, every k-SAT constraint C has a (k − 2)-wise uniform
distribution ηC supported precisely on all satisfying assignments of C. That is, supp(ηC) = AC .

Proof. Suppose C forbids the assignment b ∈ ZV (C)
2 . Let ηC be the distribution of sampling a

random satisfying assignment a ∈ AC as follows:
(1) Pick S uniformly at random among all S ⊆ V (C) of size k − 1. Let T

def= V (C) \ S.
(2) Pick aT ∈ ZT

2 uniformly at random.
(3) Pick aS from ZS

2 as follows:
(a) If (a ⊕ b)T 6= 0, then aS is uniform from ZS

2 .
(b) If (a ⊕ b)T = 0, then aS is uniform from ZS

2 conditioned on (a ⊕ b)S having odd parity.
Because (a ⊕ b)T 6= 0 (in Case (a)) or (a ⊕ b)S 6= 0 (in Case (b)), assignment a satisfies C with
probability 1. Every a ∈ AC belongs to the support of ηC , because such assignment a satisfies
(a ⊕ b)v = 1 for some v ∈ V (C), and there is a positive probability of choosing S 63 v from Step
(1), aT from Step (2), and aS from Step (3a). Finally, let ηC|S0 denote the distribution of ηC

conditioned on S = S0 in Step (1). Claim 8.18 implies ηC|S0 is (k − 2)-wise uniform for every S0,
and therefore so is ηC , being a mixture of such distributions. □
Claim 8.18. For every S0 ⊆ V (C) of size k − 1, the conditional distribution ηC|S0 is (k − 2)-wise
uniform.
Proof. Fix any R ⊆ V (C) of size k−2. When choosing aT in Step (2), aT ∩R is uniform. Conditioned
on aT , aS∩R is uniform because |S ∩R| ⩽ k−2, and the distributions of both (a) and (b) are (k−2)-
wise uniform on S. □

Our next definition concerns hierarchy solutions that have full support on small closures.
Definition 8.19 (Full support). Fix t ∈ N. A level-d hierarchy solution has full support if
supp(s(S)) ⊇ πS(AJ) for every d-small S ⊆ V , where J

def= cltS(I).
Lemma 8.20. Let sLP and sAIP be level-d solutions for LP and AIP hierarchies respectively.
Suppose sLP has full support. If sAIP is constructed by Proposition 8.15 from σAIP, then s

def=
(sLP, sAIP) is a level-d solution for the LP+AIP hierarchy.

Proof. Given any d-small S ⊆ V , consider J
def= cltS(I). Then

supp ◦sAIP(S) (27)= supp ◦πS ◦ σAIP(J)
(53)
⊆ πS ◦ supp ◦σAIP(J)

(52)
⊆ πS ◦ AJ

(∗)
⊆ supp ◦sLP(S),

where (∗) is due to sLP having full support. □
Theorem 8.21. For any k ⩾ 4, except with probability on;k(1), a random instance of 4-SAT with
n variables and ∆n constraints has an SDP+AIP hierarchy solution of level Ωk,∆(n).

Proof. Let d′(n, k, τ, ∆) denote the level guaranteed by Theorem 1.1 (with τ
def= k − 2), and let

d
def= d′/2 be half of that.
Every k-SAT constraint C has a (k − 2)-wise uniform distribution ηC supported on all satisfying

assignments by Lemma 8.17. From this, Theorem 1.1 constructs a level-d SDP solution (αS)S . The
proof of Theorem 1.1 assigns the canonical distribution µJ ([KMOW17, Definition 5.10], equiva-
lently our Definition 10.2) to the closure J

def= cltS(I) of every 2d-small subset S ⊆ V . Since ηC is
supported on all satisfying assignments, the canonical distribution is supported on all satisfying as-
signments of J (Lemma 12.3). Therefore the level-2d LP solution (µR)R induced by (αS)S satisfies
Definition 8.19 and has full support on small closures.
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k-SAT is also (k − 1)-wise neutral for AIP by Proposition 4.4. Theorem 1.1 constructs a level-2d
AIP solution (wR)R, using Proposition 8.15. Lemma 8.20 implies (µR, wR)R is a level-2d LP+AIP
hierarchy solution such that (µR)R is induced by the level-d SDP hierarchy solution (αS)S . □

9. Augmented closure

A key idea towards the proof of Theorem 1.2 is augmented closure, made precise in this section.
Throughout this section, K ⊆ V is a fixed variable subset.

Definition 9.1. Given S ⊆ V , the K-augmented S-closure is clS
def= clS∪K . Further, given also

t ∈ N, the K-augmented t-local S-closure is cltS
def= cltS∪K .

We now weaken the compatibility requirement for schemes, by restricting the removed S-exterior
constraint to be outside a constraint subset E .

Definition 9.2. Let E ⊆
⋃

C be a constraint subset. A scheme σ for a family C of constraint sets
is compatible with a neutral solution ν outside E if for any C ∈ C, any S ⊆ V (C), any C ∈ RS(C)\E ,

(28) πV (C)→S(σ(C)) = πV (C)→S

(
σ(C′) ⊗ νV (C)\V (C′)

)
,

where C′ def= C \ {C}.

Lemma 5.11 upgrades “compatibility with constraint removal” into “compatibility with closure”,
by iteratively removing S-exterior constraints C. The next lemma shows that as long as the removed
constraints C are all outside E , we get a similar compatibility with closure property.

Lemma 9.3. Let σ be a scheme for C compatible with ν outside E. Then its extended scheme σ∗

for I(C) is compatible with augmented closure containing E. That is, for every I = (U, C) ∈ I and
S ⊆ U , if E ⊆ clS(C), then
(29) πU→S(σ(I)) = πV (clS(I))→S(σ(clS(I))).

Proof. We prove by induction on C ∈ C that for any instance I = (U, C), any S ⊆ U , if E ⊆ clS(C),
then πS(σ∗(I)) = πS(σ∗(clS(I))).

Base Case: C = clS(C). The result follows because C = clS(C), so I = clS(I).
Induction Step: C ⊋ clS(C). Let S′ def= S ∪ K. By Proposition 5.4 and Eq. (10), C ⊋ RS′(C) ⊇

clS′(C) = clS(C). Fix an arbitrary C ∈ RS′(C). Then C /∈ E . Let C′ def= C \ {C} and T
def= S′ ∩ V (C).

Then C ∈ RT (C) \ E . Since σ is compatible with ν outside E ,

πS(σ∗(I)) (13)= πS

(
σ(C) ⊗ νU\V (C)

) (51)= πT (σ(C)) ⊗ νS\V (C)

(28)= πT

(
σ(C′) ⊗ νV (C)\V (C′)

)
⊗ νS\V (C′)

(51)= πS

(
σ(C′) ⊗ ν(S∪V (C))\V (C′)

) (13)= πS(σ∗(I ′)) I.H.= πS(σ∗(clS(I ′))),

where I ′ = (U, C′). The desired result now follows from the fact that clS(C′) = clS(C) (and hence
clS(I ′) = clS(I)), which holds because (1) C′ ⊇ RS′(C) ⊇ clS′(C) = clS(C) and clS(C) is S′-closed,
so clS(C′) = clS′(C′) ⊇ clS(C); and (2) of Lemma 5.3. □
Definition 9.4. A constraint solution η : (C ∈ C) → MAC is τ -wise ν-neutral outside E if η(C) is
τ -wise ν-neutral for every C ∈ C \ E .

Lemma 9.5. For any constraint set C, any variable subsets T ⊆ S, if cltS(C) is t-small, then
(30) clT (cltS(C)) = cltT (C).
As a result, clT (cltS(I)) = cltT (I) if cltS(C) is t-small.
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Proof. Let S
def= S ∪ K, T

def= T ∪ K. The desired equality now becomes
clT (cltS(C)) = cltT (C),

which holds by Lemma 8.14 and our assumption that cltS(C) = cltS(C) is t-small. □

10. LP scheme

Towards proving Theorem 1.2, we construct LP solutions based on augmented closure defined in
Section 9. Throughout this section, we consider a fixed τ -wise uniform CSP (D,R). Recall that
the neutral solution ν = νLP maps every v ∈ V to the uniform distribution over D{v}.

Definition 10.1. Given a constraint set C, a family η of satisfying distributions for C maps every
C ∈ C to a distribution η(C) ∈ ∆(AC) of satisfying assignments of C.

Recall the following distribution of assignments on an instance I: ([BGMT12, Section 3.2] and
[KMOW17, Definition 5.10])

Definition 10.2 (Canonical distribution). Suppose I = (V, C) is an instance and η a family of
satisfying distributions for C. Define the canonical distribution µI to be the following distribution
over satisfying assignments a ∈ AV (I):

(1) Draw av uniformly from D{v} independently for isolated variable v ∈ V \ V (C); and
(2) Draw aV (C) from η(C) independently for C ∈ C, conditioned on agreeing at their common

variables in B(C).

Given a constraint set C, define µC
def= µI , where I

def= (V (C), C) is the instance consisting of C.

Definition 10.3 (η-satisfiable). An assignment a ∈ DV (C) η-satisfies a constraint set C if aV (C) ∈
supp(η(C)) for every C ∈ C. C is η-satisfiable if some assignment a η-satisfies C. An instance I is
η-satisfiable if its constraint set is.

The canonical distribution µI in Definition 10.2 is well defined if (and only if) I is η-satisfiable.
The next lemma generalizes [KMOW17, Theorem 5.12] and [BGMT12, Lemma 3.2], allowing η

to be not τ -wise uniform on a constraint subset E , provided the augmented closure contains E .

Lemma 10.4. Suppose an instance I = (V, C) is η-satisfiable. Suppose η is τ -wise uniform outside
E ⊆ C. For any S ⊆ V , if E ⊆ clS(C), then the marginal of µI on S equals the marginal of µclS(I)

on S. That is, πS(µI) = πS

(
µclS(I)

)
.

Proof. C′ 7→ µC′ is a scheme for constraint subsets C′ ⊆ C. Proposition 10.5 below says that this
scheme is compatible with the uniform neutral solution outside E .

By Lemma 9.3, the extended scheme J 7→ µJ for subinstances J ⊆ I is compatible with aug-
mented closure containing E . Then Eq. (29) implies the desired result. □
Proposition 10.5. For any η-satisfiable constraint set C, any S ⊆ V (C), any C ∈ RS(C) \ E, let
V

def= V (C), C′ def= C \ {C ′}, T
def= V (C′) ∪ S. Then πT (µC) = µC′ ⊗ νS\V (C′).

Proof. By Definition 10.2, for every a ∈ DV ,

µC(a) = 1
ZC

∏
C′∈C

η(C ′)
(
aV (C′)

)
, where ZC

def=
∑

a∈DV

∏
C′∈C

η(C ′)
(
aV (C′)

)
,

and ZC > 0 because C is η-satisfiable. Now for every b ∈ DT ,

(31) πT (µC)(b) =
∑

a∈DV

aT =b

µC(a) = 1
ZC

∏
C′∈C′

η(C ′)
(
bV (C′)

)
·
∑

a∈DV

aT =b

η(C)
(
aV (C)

)
.
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Let U
def= V (C) ∩ T = V (C) ∩ (S ∪ B(C)). Since C /∈ RS(C), |U | ⩽ τ . Also C /∈ E implies η(C) is

τ -wise uniform. Thus

(32)
∑

a∈DV

aT =b

η(C)
(
aV (C)

)
= πU (η(C))(bU ) = 1

|DU |
,

which is independent of b. Therefore πT (µC)(b) is proportional to
∏

C′∈C′

η(C ′)
(
bV (C′)

)
, to which

µ′(b) is also proportional, where µ′ def= µC′ ⊗ νS\V (C′). Thus πT (µC) = µ′. □
Proposition 10.6. Let η be a family of satisfying distributions for a constraint set C. Suppose C
is dismissible with respect to some τ ∈ N, and supp(η(C)) is τ -wise neutral in the BW hierarchy
for C ∈ C. Then C is η-satisfiable.

Proof. Strengthen every constraint C = (S, R) in C to C ′ def= (S, supp(η(C))) to get the new con-
straint set C′ def= {C ′ | C ∈ C}. Applying Corollary 6.3 to C′, the desired conclusion follows, because
any assignment that satisfies C′ η-satisfies C. □
Proposition 10.7. If η is a family of τ -wise uniform satisfying distributions for a dismissible
constraint set C then C is η-satisfiable.
Proof. For every C ∈ C, since η(C) is τ -wise uniform for LP, supp(η(C)) is τ -wise neutral for BW.
The result now follows from Proposition 10.6. □

11. SDP solution

Towards proving Theorem 1.2, we construct SDP solutions for τ -wise uniform CSP instances. Our
SDP solution is heavily inspired by [KMOW17] and reuses many of their ideas. Our presentation
is significantly different, more modular, and shorter.

Throughout this section, fix an instance I = (V, C), τ ∈ N and η : (C ∈ C) → ∆(AC) so that
η is τ -wise uniform outside E ⊆ C. Also fix a constraint size bound t ∈ N and a variable subset
size bound d ∈ N. Choose K ⊆ V so that the K-augmented local closure clt∅(C) contains E , and
therefore ∅ ⊆ clt∅(C) ⊆ cltS(C) for any S ⊆ V by Lemma 8.9.

Readers interested only in SDP solutions without full support can take K = ∅ and E = ∅. In
this special case K-augmented local closures cltS are simply usual local closures cltS . The general
case K 6= ∅ is only needed for SDP solutions with full support.

11.1. Ancestor closure.
Crucial to lower bounds in other hierarchies is the notion of closure that captures constraints

(and variables) affecting the local solution on a subset S. Closure alone cannot capture all the
constraints affecting the local SDP solution on S. [KMOW17] introduced witness for this reason.
We now introduce a simplification of witness that we call ancestor closure cltA(S).

Definition 11.1. Given a family A ⊆ P(V ) of subsets of variables, define the augmented local
A-closure cltA

def= cltU , where U
def=
⋃

A ⊆ V is the union of the subsets in A.
Definition 11.2 (Embeddable). Given variable subsets S, T ⊆ V of an instance I = (V, C), T is
embeddable into S if there are |T | vertex-disjoint paths7 from T to S in clt{S,T }(I). Write T ↣ S if
T is embeddable into S.
Definition 11.3 (Ancestor). Let⇝ be the transitive closure of the binary relation↣. Let A(S) def=
{T | T ⇝ S} be the family of ancestors of S for S ⊆ V .

7A path p in a hypergraph H is a sequence of distinct vertices such that every two consecutive vertices in p both
belong to some common hyperedge in H.
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A(S) contains only subsets T no bigger than S, because only such T is embeddable into S. Also
note that S ↣ S for any S ⊆ V .

In other words, the ancestors A(S) of S transitively include T ⊆ V maximally connected to S.
And the ancestor closure cltA(S) is the (local augmented) closure of all ancestors of S combined.

Let Γ def= Sd/ ∼ be the collection of equivalence classes of d-small variable subsets, where subsets
S and T are equivalent if A(S) = A(T ). For every Q ∈ Γ, define A(Q) def= A(S) for any S ∈ Q.

Remark 11.4. Equivalently, given an instance I, define a directed graph Gd on node set Sd with
directed edge set ↣ ∩ S2

d . Then T ⇝ S if and only if Gd has a path from T to S, and Γ is the
collection of strongly connected components of Gd.

11.2. Orthogonal decomposition.
Rather than using the global Gram–Schmidt procedures in [BCK15, KMOW17], we instead

construct an explicit orthogonal decomposition for the vector space of small juntas.

Definition 11.5. Given S ⊆ V , let YS ⊆ RDV be the vector space of S-juntas, consisting of
functions f : DV → R depending only on S (that is, there exists g : DS → R such that f(a) = g(aS)
for a ∈ DV ). Given a family Q ⊆ P(V ) of subsets of variables, define YQ

def=
∑

S∈Q YS as the span
of S-juntas over S ∈ Q.

The subspace YS of S-juntas coincides with the span of indicators 1a ∈ RDV over partial assign-
ments a ∈ DS to S.

Our SDP solution builds upon an orthogonal decomposition for YSd
. Our decomposition is

inspired by Efron–Stein’s, which we now recall.
Below when we consider the inner product, orthogonality, and orthogonal projection “under a

distribution µ,” we mean “in the real Hilbert space L2(µ) of (equivalence classes of square integrable)
functions with respect to µ.”

Definition 11.6 (Efron–Stein [Mos10, Definition 2.10 rephrased]). Let νV be any product distri-
bution over DV as in Eq. (7). Given a subset S ⊆ V , define ZS to be the subspace of YS orthogonal
to all the subspaces of proper subsets of S:

ZS
def= YS ∩ Y ⊥

P∗(S) under νS ,

where P∗(S) def= P(S) \ {S}. The subspaces {ZS | S ⊆ V } are mutually orthogonal under νV and
together they span L2(νV ). The Efron–Stein decomposition is the orthogonal decomposition

(33) L2(νV ) =
⊕
S⊆V

ZS under νV .

When D = Z2 and ν is uniform over D, the Efron–Stein decomposition coincides with the
discrete Fourier decomposition for functions on the Boolean domain, and every ZS is spanned by
the Fourier character χS .

Definition 11.7. Given a family A ⊆ P(V ) of subsets of variables, define µA
def= µJ to be the

canonical distribution on the A-closure J
def= cltA(I) of I. Define the inner product

(34) 〈f, g〉A
def= E

µA
[fg] for f, g ∈ YA.

Intuitively, the augmented local A-closure cltA(I) of I is the smallest subinstance J whose canon-
ical distribution µJ correctly defines an inner product on YA, provided cltA(I) is η-satisfiable so
that µA is well defined.

We implicitly make the following assumption for the rest of this subsection:
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Assumption 11.8 (Small satisfiable closure). cltA(S)(C) is t-small and η-satisfiable for every S ∈
S2d.

This assumption ensures that all the distributions µA(S) and µ{S,T } considered below are well
defined for S, T ∈ Sd. As such, Eq. (34) is a genuine inner product on YA(S) ⊆ L2(µA(S)).

Analogous to Efron–Stein, we decompose YSd
into orthogonal subspaces, replacing the inclusion

relationship of subsets by that of ancestors.

Definition 11.9. Given Q ∈ Γ, define A∗(Q) def= A(Q) \ Q to be the family of proper ancestors of
Q. Also define XQ to be the subspace of YQ orthogonal to the subspaces of proper ancestors:

(35) XQ
def= YQ ∩ Y ⊥

A∗(Q) under µA(Q).

Given Q ∈ Γ, let Γ(Q) def= {R ∈ Γ | A(R) ⊆ A(Q)} be the equivalence classes of ancestors
contained in Q’s ancestors. In the next subsection, we will construct the local orthogonal decom-
position
(36) YA(Q) =

⊕
R∈Γ(Q)

XR under µA(Q).

We will also construct a global orthogonal decomposition over all equivalence classes:
(37) YSd

=
⊕
R∈Γ

XR under (·, ·)d,

where (·, ·)d is the bilinear extension of the local inner products 〈·, ·〉{S,T } to YSd
. That is,

(38) (f, g)d = 〈f, g〉{S,T }
(34)= E

µ{S,T }
[fg] for f ∈ YS , g ∈ YT , S, T ∈ Sd,

and (·, ·)d is extended to the span YSd
of d-juntas via bilinearity:

(39)

∑
P ∈P

fP ,
∑

Q∈Q
gQ


d

=
∑

P ∈P,Q∈Q
(fP , gQ)d for fP , gQ ∈ YSd

, any finite P, Q.

The symmetric bilinear form (·, ·)d is called pseudo-expectation in [KMOW17, Definition 5.15]. We
will justify Eq. (37) by showing that subspaces XR and XQ are orthogonal under (·, ·)d for distinct
R, Q ∈ Γ. This in turn implies (·, ·)d is positive-semidefinite and hence a semi-inner product.

Remark 11.10. If I = (V, ∅) is an empty instance with no constraint, then our subspaces {XQ | Q ∈
Γ} in Eq. (35) coincides with the Efron–Stein subspaces {ZS | S ⊆ V } in Definition 11.6. Indeed,
since I has no constraint, T is embeddable into S if and only if T ⊆ S. Every equivalence class
Q contains exactly one subset S, so that A(Q) = P(S) and A∗(Q) = P∗(S). Assumption 11.8
holds even for d = |V |. Also, µI = νV is uniform over DV , and (·, ·)d = 〈·, ·〉νV . Our orthogonal
decomposition of small juntas in Eq. (37) reduces to the Efron–Stein decomposition.

11.3. Proof of orthogonal decomposition.
We continue to implicitly assume Assumption 11.8 in this subsection.
The next lemma ensures (·, ·)d is well defined.

Lemma 11.11. For any S ∈ S2d, any R ⊆ Q def= A(S), any f, g ∈ YR,
(40) 〈f, g〉R = 〈f, g〉Q.

Proof. Write µ(J) to mean µJ for any instance J . Then

〈f, g〉R
(34)= E

µ(cltR(I))
[fg] (∗)= E

µ(clR(cltQ(I)))
[fg] (⋆)= E

µ(cltQ(I))
[fg] (34)= 〈f, g〉Q,
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where (∗) is Lemma 9.5 (with S
def=
⋃

Q, T
def=
⋃

R) and (⋆) is Lemma 10.4 (with S
def=
⋃

R, I
def=

cltQ(I), together with the assumption that E ⊆ cltS(C)). □

Lemma 11.12. There is a bilinear form (·, ·)d satisfying (38) and (39).

Proof. Construct (·, ·)d using the Efron–Stein decomposition YSd
=
⊕

S∈Sd

ZS for the span of d-juntas.

For f, g ∈ YSd
, using Eq. (33), expand f =

∑
S∈Sd

fS and g =
∑

T ∈Sd

gT (where fS ∈ ZS , gT ∈ ZT ), and

define
(41) (f, g)d

def=
∑

S,T ∈Sd

〈fS , gT 〉{S,T }.

Bilinearity Eq. (39) follows because the definition of (·, ·)d in Eq. (41) is bilinear.
For any S ∈ S2d, any f, g ∈ YA(S), using Eq. (33), expand f =

∑
R∈A(S)

fR and g =
∑

T ∈A(S)
gT

(where fR ∈ ZR, gT ∈ ZT ), and

(42) (f, g)d
(41)=

∑
R,T ∈A(S)

〈fR, gT 〉{R,T }
(40)=

∑
R,T ∈A(S)

〈fR, gT 〉A(S)
(∗)= 〈f, g〉A(S),

where (∗) uses bilinearity of A(S)’s inner product. Eqs. (40) and (42) also imply Eq. (38). □

Lemma 11.13. For any Q ∈ Γ,

(43)
∑

R∈Γ(Q)
XR = YA(Q).

Proof. For any R ∈ Γ(Q), we have XR ⊆ YR ⊆ YA(Q). Taking the span of XR over all R ∈ Γ(Q),
we get the “⊆” inclusion of Eq. (43).

We now prove the “⊇” inclusion by induction, assuming the result holds for every proper ancestor
component of Q. Note that {∅} ∈ Γ(Q) for every Q ∈ Γ because ∅ ↣ S for every S ⊆ V , and
T ↣ ∅ implies T = ∅. Let Γ∗(Q) def= Γ(Q) \ {Q} be the proper ancestor components of Q.

Base Case: Q = {∅}. Then A(Q) = {∅}, A∗(Q) = ∅, and YA∗(Q) = {0}. Thus X∅ =
Y∅ ∩ Y ⊥

A∗(Q) = Y∅ ∩ {0}⊥ = Y∅.
Induction Step: Q 6= {∅}. We have

YA(Q) = YQ + YA∗(Q)
(∗)= XQ + YA∗(Q) = XQ +

∑
S∈A∗(Q)

YS

(⋆)
⊆ XQ +

∑
S∈Γ∗(Q)

YA(S),

where (∗) uses the orthogonal decomposition YQ = XQ ⊕ YA∗(Q) under µA(Q), and (⋆) uses the fact
that every S ∈ A∗(Q) belongs to a unique S ∈ Γ∗(Q). By Induction Hypothesis for S, and using
Γ(S) ⊆ Γ∗(Q),

YA(Q) ⊆ XQ +
∑

S∈Γ∗(Q)

∑
R∈Γ(S)

XR ⊆ XQ +
∑

R∈Γ∗(Q)
XR =

∑
R∈Γ(Q)

XR. □

Corollary 11.14.
∑
R∈Γ

XR = YSd
.

Proof. YSd
=
∑
Q∈Γ

YQ
(43)=

∑
Q∈Γ

∑
R∈Γ(Q)

XR =
∑
R∈Γ

XR. □

Recall that given vertex subsets R, S, T of a hypergraph H, R is an (S, T )-separator if every path
in H from S to T contains some vertex in R.



HOW RANDOM CSPS FOOL HIERARCHIES 31

Lemma 11.15 (Implicit in [KMOW17, Lemma 6.14]). Let S, T be subsets of variables of an instance
J = (V, C), and R be an (S, T )-separator in J . Consider picking a random assignment b from µJ .
Then bS and bT are conditionally independent given bR.
Proof. Let VS be the set of vertices in J \ R reachable from S. Define VT similarly. VT is disjoint
from VS since R is a separator.

Further, no constraint C ∈ C contains both u ∈ VS and v ∈ VT , for otherwise J \ R has a path
from S to T (via u and v), contradicting the assumption that R is an (S, T )-separator.

Define CT
def= {C ∈ C | C 3 v for some v ∈ VT }. Then VT ∪ CT contains no vertex in VS .

Let µR be the marginal distribution of bR (and likewise for µS , µT ), and µS|R be the conditional
distribution of bS given bR (and likewise for µT |RS , µST |R). Then µST |R = µS|RµT |RS .

To sample from µT |RS , it suffices to sample according to the subinstance VT ∪ CT given bRS .
Since VT ∪ CT contains no vertex in VS , µT |RS depends only on bR but not on bS\R. Therefore
µT |RS = µT |R and hence µST |R = µS|RµT |R. □

For Q ∈ Γ, S ∈ Q, define XS to be the subspace of YS orthogonal to those of proper ancestors:

XS
def= YS ∩ Y ⊥

A∗(Q) under µA(Q).

The next proposition is the main result of this subsection. It shows that if T is not embeddable
into S, then XT ⊥ YS . In order to prove this statement by induction, we also need to simultaneously
prove an auxiliary statement.
Proposition 11.16. For any integer c such that 0 ⩽ c ⩽ d, the following statements hold:

A(c): If T ∈ Sc is not embeddable into S ∈ Sd, then XT ⊥ YS under (·, ·)d.
B(c): If R ∈ Sc, T ∈ Sd and |R| < |T |, then YR ⊥ XT under (·, ·)d.

Proof. We prove by induction on c that B(c − 1) =⇒ A(c) and A(c) =⇒ B(c).
B(c − 1) =⇒ A(c):
Base Case: c = |T | = 0. Statement A(0) holds vacuously, because T = ∅ is embeddable into

any S.
Induction Step: c = |T | > 0. If T is not embeddable into S, Hypergraph Menger (The-

orem A.11) implies clt{S,T }(I) has an (S, T )-separator R of size strictly less than |T |. For any
f ∈ XT , g ∈ YS ,

(44) (f, g)d
(38)= E

µ{S,T }
[fg] (∗)= E

µR

[
E

µT |R
[f ] · E

µS|R
[g]
]

=
〈

E
µT |R

f, E
µS|R

g

〉
{R}

,

where (∗) is Lemma 11.15, and EµT |R : YT → YR denotes the conditional expectation operator,
defined as (

E
µT |R

[f ]
)

(a) def= E
b∼µ{T,R}

[f(bT ) | bR = a] for a ∈ DR, f ∈ YT , T ⊆ V, R ⊆ V.

The conditional expectation operator EµT |R is well known to coincide with the orthogonal projection
operator under µ{T,R} from YT to YR; see e.g. [dSZ22, Theorem 2.5]. By Statement B(c − 1) and
Eq. (38), since R ∈ Sc−1 and |R| < |T |, we have YR ⊥ XT under µ{T,R}, so EµT |R f = 0 after
projecting from XT to YR, and Eq. (44) vanishes. Since f ∈ XT and g ∈ YS are arbitrary, XT ⊥ YS

under (·, ·)d.
A(c) =⇒ B(c):

Claim 11.17. XQ ⊥ XT under (·, ·)d for any Q ∈ Sc and any T ∈ Sd such that |Q| < |T |.
Proof. If Q is embeddable into T , then XT ⊥ YA∗(T ) under µA(T ) where T ∈ Γ and T ∈ T , which
implies XT ⊥ XQ under (·, ·)d by Eq. (38) since Q ∈ A∗(T ) and XQ ⊆ YQ ⊆ YA∗(T ).

If Q is not embeddable into T , by Statement A(c), XQ ⊥ YT ⊇ XT under (·, ·)d. □
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R belongs to a unique component R ∈ Γ. By Lemma 11.13,

(45) YR ⊆ YA(R)
(43)=

∑
Q∈Γ(R)

XQ =
∑

Q∈Γ(R)

∑
Q∈Q

XQ =
∑

Q∈A(R)
XQ.

For Q ∈ A(R), |Q| ⩽ |R| < |T |, and the previous Claim implies

XT ⊥

 ∑
Q∈A(R)

XQ

 (45)
⊇ YR under (·, ·)d. □

Corollary 11.18. XQ ⊥ XR under (·, ·)d for distinct Q, R ∈ Γ.

Proof. Since Q and R are distinct, assume without loss of generality every T ∈ R is not embeddable
into any S ∈ Q. For any S ∈ Q, T ∈ R, XS ⊥ XT under (·, ·)d by Proposition 11.16 (Statement
A(d)). The desired result follows by taking the span over S ∈ Q and T ∈ R. □

Our orthogonal decomposition Eq. (37) now follows from Corollaries 11.14 and 11.18. The local
orthogonal decomposition Eq. (36) also follows from Lemma 11.13 and Corollary 11.18.

11.4. SDP solution.
By Eqs. (37), (40) and (42), the vector space YSd

equipped with the bilinear form (·, ·)d equals
the direct sum X def=

⊕
Q∈Γ

XQ of inner product spaces, with the inner product

(46) 〈F, G〉X
def=
∑
Q∈Γ

〈FQ, GQ〉Q
(34)=

∑
Q∈Γ

E
µQ

[FQGQ],

whenever F =
⊕
Q∈Γ

FQ and G =
⊕
Q∈Γ

GQ, where FQ, GQ ∈ XQ.

Under Assumption 11.8, XQ is a genuine inner product space for every Q ∈ Γ (after identifying
functions whose difference have zero norm), and hence so is X .

Theorem 11.19. Under Assumption 11.8, for any S, T ∈ Sd, any f ∈ YS, g ∈ YT ,

〈f, g〉X = E
µ{S,T }

[fg].

Proof. Let Q be the equivalence class of S, and similarly R be that of T . By Eq. (36), expand
f =

∑
A∈Γ(Q)

fA and g =
∑

B∈Γ(R)
gB, where fA ∈ XA and gB ∈ XB. Then

〈f, g〉X
(46)=

∑
A∈Γ(Q)∩Γ(R)

〈fA, gA〉A
(40),(42)=

∑
A∈Γ(Q)∩Γ(R)

(fA, gA)d

(37)=
∑

A∈Γ(Q)
B∈Γ(R)

(fA, gB)d
(39)= (f, g)d

(38)= E
µ{S,T }

[fg]. □

11.5. Small ancestor closure.
In this subsection, we justify Assumption 11.8 by Corollary 11.25. The next lemma ([KMOW17,

Lemma 6.12] rephrased) says that if C′ is obtained by adding constraints to C, then the sparsity
can only increase by at most the number of new boundary variables in C′.

Lemma 11.20. Let C ⊆ C′ be constraint sets, so that C is S-closed, C′ is S′-closed, and S′ ⊆
S ∪ V (C′). Then sp(C′, S′) ⩽ sp(C, S) + |S′ ∩ B(C′) \ (S ∪ B(C))|.
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Proof. Expand sp(C, S) and sp(C′, S′) using Eq. (25). Every C ∈ C or v ∈ S ∪ B(C) contributes no
more to sp(C′, S′) than to sp(C, S), because it belongs to no fewer incidences in J(C′, S′) than in
J(C, S). Since S′ ⊆ S ∪ V (C′), only new boundary variables v ∈ S′ ∩ B(C′) \ (S ∪ B(C)) contribute
more to sp(C′, S′) than to sp(C, S), in which case spC′(v) = 1 by Remark 8.2. □

Given Q ⊆ P(V ), shorthand CQ
def= cltQ(C) and sp(C, Q) def= sp(C,

⋃
Q). Also write CS

def= cltS(C)
for S ⊆ V .
Lemma 11.21. For any (2t, 3γ)-expanding constraint set C, any tγ-small S ⊆ V , we have CA(S)
is t-small and sp(CA(S), A(S)) ⩽ 2|S|.
Proof. Denote by Gd[Q] the directed subgraph of Gd induced by Q (see Remark 11.4). Call a
subfamily Q ⊆ A(S) S-connected if every R ∈ Q has a path p to S in Gd[Q] (i.e. p ⊆ Gd[Q]). Note
that A(S) is itself S-connected. For any S-connected Q containing S, we prove by induction on Q
that CQ is t-small and sp(CQ, Q) ⩽ 2|S| ⩽ 2tγ.

Base Case: Q = {S}. Then CQ = cltS(C). sp(CQ, S) ⩽ 2|S| by Remark 8.3, and CQ is t-small
by Lemma 8.11 and tγ-smallness of S.

Induction Step: Q ⊋ {S}. Fix any T ∈ Q whose distance to S in Gd[Q] is largest. Then
R def= Q \ {T} is also S-connected, because every node in R has a path to S in Gd[Q] without going
through T . T also has a path to S in Gd[Q], and the node R after T on this path belongs to R.
Therefore T ↣ R ∈ R.

By Induction Hypothesis and Lemma 11.22 (with its R
def=
⋃

R), CQ is t-small. By Lemma 11.23
and Induction Hypothesis, sp(CQ, Q) ⩽ sp(CR, R) ⩽ 2|S|. □

The next two lemmas are based on [KMOW17, Claims 6.15 and 6.17].
Lemma 11.22. Suppose C is a (2t, 3γ)-expanding constraint set, R ⊆ V and T ∈ Stγ. Let
Q

def= R ∪ T . If CR is t-small and sp(CR, R) ⩽ 2tγ, then CQ is also t-small.

Proof. Start with C′
0

def= CR. Keep adding Q-closed t-small Ci ⊆ C to C′
i−1 to get C′

i
def= C′

i−1 ∪Ci, until
C′

r = CQ. We prove by induction on i that C′
i is t-small.

Base Case: i = 0. Then C′
0 = CR is t-small by assumption.

Induction Step: i > 0. Let Ri
def= R ∪ (T ∩ V (C′

i)). C′
i is Ri-closed because C′

i is Q-closed
and Q ∩ V (C′

i) ⊆ Ri. By Lemma 11.20, sp(C′
i, Ri) ⩽ sp(CR, R) + |T ∩ B(C′

i) \ (R ∪ B(CR))| ⩽ 3tγ.
Further, C′

i−1 is t-small by Induction Hypothesis, so C′
i is 2t-small. Thus C′

i is t-small because C is
(2t, 3γ)-expanding. □
Lemma 11.23. Under the assumptions of the previous lemma, if T is embeddable into R, then
sp(CQ, Q) ⩽ sp(CR, R).

Proof. Let R′ def= R ∪ B(CR) be the old variables and T ′ def= T \ R′ be the new variables in T .
Lemma 11.20 implies sp(CQ, Q) ⩽ sp(CR, R) + |T ′|. Since T ↣ R, there are vertex-disjoint paths
pv from every v ∈ T to R in cltQ(I).

Treat a path p from T ′ to R as a sequence (v1, C1, v2, C2, . . . , vs) of distinct vertices interleaved
with constraints, so that consecutive variables vi and vi+1 both belong to the constraint Ci between
them, for every 1 ⩽ i < s. The first variable v1 is new and the last vs is old, so p contains a new
element y whose successor z is old (i.e. z ∈ R ∪ B(CR) ∪ CR, but not for y). The unordered pair
(y, z) is a new constraint-variable incidence in J(CQ, Q) not in J(CR, R). Further, exactly one of y
or z is a variable.

Because the paths {pv | v ∈ T ′} are vertex-disjoint (i.e. variable-disjoint), the above pairs
{(yv, zv) | v ∈ T ′} from different paths are distinct new constraint-variable incidences to old
constraints or old vertices. These |T ′| new incidences cancel out the |T ′| sparsity increase in
Lemma 11.20, so sp(CQ, Q) ⩽ sp(CR, R). □
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Lemma 11.24. For any t, any families of variable subsets A ⊆ B ⊆ P(V ), any constraint set C,
cltA(C) ⊆ cltB(C).

Proof. Apply Lemma 8.9 with its T
def=
⋃

A and S
def=
⋃

B. □

Corollary 11.25. For any (2t, 3γ)-expanding constraint set C, any S ⊆ V such that S ∪ K is
tγ-small, the K-augmented ancestor closure cltA(S)(C) is t-small.

Proof. Note that K ∈ A(K). Also A(S) ⊆ A(T ) for any S ⊆ T ⊆ V because S ↣ T via paths
with no edges. These two facts imply {K} ∪ A(S) ⊆ A(K) ∪ A(S) ⊆ A(K ∪ S). The desired result
now follows by Lemma 11.21 (with its S

def= K ∪ S) and Lemma 11.24 (with its A def= {K} ∪ A(S)
and B def= A(K ∪ S)). □

11.6. Wrapping up.
Our next theorem generalizes [KMOW17, Theorem 1.2] (which concerns K = ∅ and E = ∅):

Theorem 11.26. Suppose an instance I = (V, C) of a τ -wise uniform CSP is (2t, 3γ)-expanding.
Fix K ⊆ V and E ⊆ C so that η is τ -wise uniform outside E. Choose d ∈ N so that Assumption 11.8
holds. Define

µR
def= πR ◦ µ ◦ cltR(I) for R ∈ S2d; and(47)

αS(aS) def= 1aS for S ∈ Sd, aS ∈ AS .(48)

Then (αS)S is a level-d SDP hierarchy solution inducing the level-2d LP hierarchy solution (µR)R.

Proof. µR is well defined because Assumption 11.8 implies cltR(I) is η-satisfiable for R ∈ S2d. We
now show that (µR)R is consistent with projection. For any R ∈ S2d, U ⊆ R,

πR→U ◦ µR
(47)= πR→U ◦ πR ◦ µ ◦ cltR(I) (5)= πU ◦ µ ◦ cltR(I)
(∗)= πU ◦ µ ◦ clU ◦ cltR(I) (30)= πU ◦ µ ◦ cltU (I) (47)= µU ,

where (∗) is Lemma 10.4.
For any S, T ∈ Sd, any aS ∈ AS , aT ∈ AT , Theorem 11.19 implies Eq. (1) because

〈αS(aS), αT (aT )〉X
(48)= 〈1aS , 1aT 〉X = E

µ{S,T }
[1aS1aT ] = P

b∼µS∪T

[bS = aS , bT = aT ].

Finally, (αS)S is consistent with projection, because for any S ∈ Sd, T ⊆ S, b ∈ DT ,

πS→T (αS)(b) (2)=
∑

a∈DS

aT =b

αS(a) (48)=
∑

a∈DS

aT =b

1a = 1b
(48)= αT (b). □

Lemma 11.27. When K = ∅ and E = ∅, Assumption 11.8 holds for d
def= tγ/2 and any (2t, 3γ)-

expanding constraint set C.

Proof. Lemma 11.21 (cltA(S)(C) is t-small), Lemma 8.12 (cltA(S)(C) is dismissible) and Proposi-
tion 10.7 (cltA(S)(C) is η-satisfiable) imply Assumption 11.8. □

12. New SDP solution with full support

We now construct a new SDP solution for a τ -wise uniform CSP, completing the proof of Theo-
rem 1.2. Our SDP solution induces an LP solution that has full support on all satisfying assignments
of every small closure.
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Definition 12.1 (E-planted solution). Given constraint sets E ⊆ C, define the constraint solution
ηE : (C ∈ C) → ∆(AC) as follows: ηE(C) is the uniform distribution over AC for C ∈ E , and ηE(C)
is a τ -wise uniform distribution supported on AC for C ∈ C \ E .

Definition 12.2. A relaxed assignment α : DV → M has full support on A ⊆ DV if supp(α) = A.
A scheme σ for a family C of constraints has full support if supp(σ(C)) = AC for C ∈ C.

Lemma 12.3. Let η : (C ∈ C) → ∆(AC) be a family of satisfying assignments for a constraint
set C. Suppose η(C) has full support on AC for every C ∈ C. Then the canonical distribution µI

derived from η has full support on AJ for any instance J = (U, C).

Proof. For every C ∈ C, η(C) has full support on AC , so η(C)(b) > 0 for every b ∈ AC . Now an
assignment α ∈ AJ satisfies all constraints in C, so the canonical distribution µC has probability
mass µC(a) = 1

Z

∏
C∈C

η(C)
(
aV (C)

)
> 0, where Z > 0 is the normalization factor to make µC sum

to 1. This implies supp(µJ) ⊇ AJ .
On the other hand, if an assignment a ∈ DV (J) \ AJ violates some constraint C ∈ C, then

aV (C) /∈ AC and η(C)
(
aV (C)

)
= 0, so µC(a) = 1

Z

∏
C∈C

η(C)
(
aV (C)

)
= 0. Thus supp(µJ) ⊆ AJ . □

Lemma 12.4. Suppose an instance I = (V, C) of a τ -wise uniform CSP is (2t, 3γ)-expanding. For
any tγ/2-small K ⊆ V , let E def= cltK(C) and ηE be the E-planted solution. Then the K-augmented
closure cltA(S)(C) is t-small and ηE -satisfiable for every tγ/2-small S ⊆ V .

Proof. Corollary 11.25 implies cltA(S)(C) is t-small because (K ∪ S) is t-small. By Lemma 8.12,
cltA(S)(C) is dismissible with respect to τ . Since the CSP is τ -wise uniform, every C ∈ C has a τ -wise
uniform distribution ηC supported on its satisfying assignments AC , so supp(ηE(C)) ⊇ supp(ηC)
is τ -wise neutral for BW. By Proposition 10.6 (with C def= cltA(S)(C), η

def= ηE), cltA(S)(C) is ηE -
satisfiable. □

Given an instance I, denote by ΣSDP
d the set of its SDP hierarchy solutions of level d. More

precisely, ΣSDP
d is the set of ((αS)S , (µR)R), where (αS)S is an SDP hierarchy solution for I of level

d inducing the LP hierarchy solution (µR)R of level 2d.

Lemma 12.5. Let I be an instance and d ∈ N. Let ρ be a distribution over a finite set Ω. Suppose
for every E ∈ Ω, there is ((αE

S)S , (µE
R)R) ∈ ΣSDP

d . Then ((αS)S , (µR)R) ∈ ΣSDP
d , where

µR
def= E

E∼ρ
µE

R for 2d-small R ⊆ V ; and(49)

αS
def=
⊕
E∈Ω

√
ρ(E) · αE

S for d-small S ⊆ V .(50)

Proof. For S, T ∈ Sd, aS ∈ AS , aT ∈ AT ,

〈αS(aS), αT (aT )〉ρ

(50)=
∑
E∈Ω

〈√
ρ(E)αE

S(aS),
√

ρ(E)αE
T (aT )

〉
X E

(∗)= E
E∼ρ

〈
αE

S(aS), αE
T (aT )

〉
X E

(⋆)= E
E∼ρ

E
b∼µE

{S,T }

[bS = aS , bT = aT ] (49)= E
b∼µ{S,T }

[bS = aS , bT = aT ],

where (∗) uses bilinearity of 〈·, ·〉X E , and (⋆) is because (αE
S)S induces (µE

R)R for E ∈ Ω. Therefore
(µR)R and (αS)S satisfy Eq. (1).
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(αS)S is consistent with projection, because for any T ⊆ S ⊆ V ,

πT (αS) (50)= πT

⊕
E∈Ω

√
ρ(E) · αE

S

 (55)=
⊕
E∈Ω

√
ρ(E) · πT

(
αE

S

) (†)=
⊕
E∈Ω

√
ρ(E) · αE

T
(50)= αT ,

where (†) is due to (αE
S)S being consistent with projection for E ∈ Ω. □

Theorem 12.6. Suppose an instance I = (V, C) of a τ -wise uniform CSP is (2t, 3γ)-expanding.
Let d

def= tγ/4. Then there exists ((αS)S , (µR)R) ∈ ΣSDP
d such that (µR)R has full support.

Proof. Let Ω def=
{
cltK(C) | K ∈ S2d

}
be the family of closures of 2d-small variable subsets. For

every K ∈ S2d, E def= cltK(C) ∈ Ω, the constraint solution ηE is τ -wise uniform outside E , and
the K-augmented closure clt∅(C) = cltK(C) contains (and in fact equals) E . Theorem 11.26 yields
((αE

S)S , (µE
R)R) ∈ ΣSDP

d , where Assumption 11.8 is justified by Lemma 12.4.
Lemma 12.5 further constructs ((αS)S , (µR)R) ∈ ΣSDP

d , with ρ being any distribution with full
support on Ω, such as the uniform distribution over Ω.

For 2d-small R ⊆ V , consider the K-augmented closure with K
def= R. Let J

def= cltR(I) =
cltR(I), E def= cltR(C) = cltR(C) and µE

J be the canonical distribution on J derived from ηE . Then

supp(µR) (49)=
⋃

E ′∈Ω
supp

(
µE ′

R

)
⊇ supp

(
µE

R

) (47)= supp
(
πR

(
µE

J

)) (54)= πR

(
supp

(
µE

J

))
= πR(AJ),

where the last equality is Lemma 12.3 (with its C def= E , η
def= ηE). Therefore (µR)R satisfies Defini-

tion 8.19 and has full support on small closures. □
We now prove Theorem 1.2.

Theorem 1.2. Let τ ⩾ 2. If a k-CSP is τ -wise neutral for both SDP and AIP (separately), then
except with probability on;k(1), a random instance of the CSP with n variables and ∆n constraints
has an SDP+AIP hierarchy solution of level Ωk(n/(∆2/(τ−1) log ∆)).

Proof. Fix γ
def= 1/ log ∆, λ

def= τ − 1. We may assume ∆2/λ log ∆ ⩽ n, for otherwise the level lower
bound is trivial, as every hierarchy has a solution of level 0. Since ∆2/(λ−3/ log ∆) = Θ(∆) for λ ⩾ 1,
we have ζ

def= ∆2/(λ−3γ)/n = on(1). Lemma 8.16 implies that except with probability on;k(1), a
random instance I is (2t, 3γ)-expanding, where t = n/(∆2/(λ−3γ)2O(k)) = Ωk(n/∆2/λ).

Theorem 12.6 yields a level-d SDP solution (αS)S inducing the level-2d LP solution (µR)R such
that (µR)R has full support, where d

def= tγ/4. Theorem 7.12 and Proposition 8.15 constructs a
level-2d AIP solution (wR)R. Lemma 8.20 implies that (µR, wR)R is a level-2d solution for the
LP+AIP hierarchy. □

Recent works constructed explicit (non-random) instances fooling the SDP hierarchy. A random
CSP instance has two sources of randomness (Definition B.1):
(A) Randomness of the underlying hypergraph
(B) Randomness of the relation (set of satisfying assignments) of each constraint
To fool a hierarchy, randomness (A) ensures expansion, crucial for hierarchy solution. As explained
in Remark 8.5, when τ = k − 1 (e.g. k-SAT), hierarchy solutions can be constructed as long
as an instance has a factor graph that is a boundary expander. Randomness (B) ensures every
assignment is far from satisfying all constraints. Hopkins and Lin [HL22], building on [DFHT21],
constructed explicit 3-XOR instances fooling linear-level SDP using high dimensional expanders
known as quantum Tanner codes [LZ22]. They further showed that every assignment to their
instances violates a fraction of 3-XOR constraints bounded away from zero. Their analysis crucially
exploits the linear structure over F2 that appears naturally for 3-XOR but not for 3-SAT. It is not
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clear how to generalize their analysis to construct explicit 3-SAT instances fooling linear-level
LP+AIP and SDP+AIP. This seems to call for constructing high dimensional expanders from
non-linear codes.
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Appendix A. Omitted proofs

Lemma A.1. For any constraint sets C′ ⊆ C, any C ∈ C′,
B(C) ∩ V (C) ⊆ B(C′) ∩ V (C).

Proof. Every v ∈ B(C) ∩ V (C) belongs to C ∈ C′ but not to any C ′ ∈ C \ {C}, in particular no
C ′ ∈ C′ \ {C} ⊆ C \ {C} contains v. Since C ∈ C′, v is contained in a unique constraint in C′. □
Proposition A.2. For any T ⊊ S, πT (χS) ≡ 0.

Proof. For any a ∈ {0, 1}T ,
πT (χS)(a) =

∑
b∈DS\T

χS(a ∪ b) = χT (a)
∑

b∈DS\T

χS\T (b) = 0,

as half of the assignments b ∈ {0, 1}S\T have even parity and the other half have odd parity. □

Lemma A.3. Suppose M is a commutative semiring. For any disjoint S and T , αS ∈ MDS ,
αT ∈ MDT , R ⊆ S ∪ T ,
(51) πS∪T →R(αS ⊗ αT ) = πS→S∩R(αS) ⊗ πT →T ∩R(αT ).

Proof. For every a ∈ DR,

πS∪T →R(αS ⊗ αT )(a) (2)=
∑

b∈S,c∈T
(b∪c)R=a

(αS ⊗ αT )(b ∪ c) (6)=
∑

b∈S,c∈T
(b∪c)R=a

αS(b)αT (c)

(∗)=
∑
b∈S

bR∩S=aR∩S

αS(b)
∑
c∈T

cR∩T =aR∩T

αT (c)

(2)= πS→S∩R(αS)(aR∩S)πT →T ∩R(αT )(aR∩T )
(6)= (πS→S∩R(αS) ⊗ πT →T ∩R(αT ))(a),

where (∗) follows from the distributivity of multiplication over addition in M. □
Lemma A.4. For any subsets T ⊆ S, any subsets B ⊆ A ⊆ DS,
(52) πT (B) ⊆ πT (A).

Proof. If c ∈ πT (B), then bT = c for some b ∈ B, and hence b ∈ A and c ∈ πT (A). □
Lemma A.5. For any T ⊆ S, any relaxed assignment α : DS → M,
(53) supp(πT (α)) ⊆ πT (supp(α)).

Proof. If b ∈ supp(πT (α)), then 0 6= πT (α)(b) =
∑

{α(a) | a ∈ DS , aT = b}, so α(a) 6= 0 for some
a ∈ DS , aT = b. This implies a ∈ supp(α) and b ∈ πT (supp(α)). □
Lemma A.6. For any T ⊆ S, any nonnegative-real-valued α : DS → R+,
(54) supp(πT (α)) = πT (supp(α)).
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Proof. For any b ∈ DT , b ∈ πT (supp(α)) if and only if α(a) > 0 for some a ∈ DS such that aT = b,
which is equivalent to πT (α)(b) > 0, that is, b ∈ supp(πT (α)). □
Lemma A.7. For any subsets T ⊆ S and family {αE : DS → M | E ∈ Ω} of relaxed assignments,

(55) πT

⊕
E∈Ω

αE

 =
⊕
E∈Ω

πT

(
αE
)

.

Proof. For any b ∈ DT ,

πT

⊕
E∈Ω

αE

 (b) (2)=
∑

a∈DS

aT =b

⊕
E∈Ω

αE

 (a) (∗)=
⊕
E∈Ω

 ∑
a∈DS

aT =b

αE(a)

 (2)=
⊕
E∈Ω

πT

(
αE
)

(b),

where (∗) is by definition of the direct sum construction, that is, coordinate-wise addition. □
Proposition A.8. Let µ be a (k−1)-wise uniform distribution over {0, 1}k. Then µ = λµeven+(1−
λ)µodd for some 0 ⩽ λ ⩽ 1, where µeven (µodd) is the uniform distribution over {0, 1}k conditioned
on even (odd) parity.
Proof. Let χS be the parity function on S for S ⊆ [k]. (k − 1)-wise uniformity is equivalent to the
linear constraints that Eµ[χS ] = 0 for ∅ ⊊ S ⊊ [k]. µ also satisfies the linear equality Eµ[χ∅] = 1
that holds for any distribution. Since the parity functions {χS | S ⊆ [k]} form the Fourier basis of
{f : {0, 1}k → R}, there is only one degree of freedom in µ, namely the choice of α

def= Eµ[χ[k]]. We
have |α| = |Eµ[χ[k]]| ⩽ Eµ[|χ[k]|] = 1. Of the two extremes, α = 1 is achieved by µeven and α = −1
by µodd. Therefore λ

def= (1 + α)/2. □

Proposition A.9. For any a ∈ {0, 1}3, let R
def= {0, 1}3 \ {a} be the set of satisfying assignments

to a 3-SAT constraint forbidding only a. If a distribution µ ∈ ∆(R) over R is pairwise uniform,
then µ is the uniform distribution over {0, 1}3 conditioned on having opposite parity to a.
Proof. The previous Proposition implies µ = λµeven + (1 − λ)µodd for some 0 ⩽ λ ⩽ 1. If a has
even parity, then λ = 0, because a /∈ supp(µ). Likewise if a has odd parity, then λ = 1. □

Let us recall (vertex) Menger’s theorem for graphs, and then prove its counterpart for hyper-
graphs.
Theorem A.10 (Menger, e.g. [Gör02]). For any vertex subsets S and T in a multigraph G, the
minimum size of an (S, T )-separator equals the maximum number of vertex-disjoint paths between
S and T .
Theorem A.11 (Hypergraph Menger). For any vertex subsets S and T in a hypergraph H, the
minimum size of an (S, T )-seperator equals the maximum number of vertex-disjoint paths between
S and T .
Proof. Define a multigraph G having the same vertex set as H, and G has an edge (u, v) ∈ V 2

if some hyperedge in H contains both u and v. Apply Theorem A.10 to G. Note that for every
sequence of vertices, it is a path in G if and only if it is a path in H. □

Appendix B. Random instance

Recall the natural distribution of random CSP instances, e.g. [BGMT12, KMOW17]:
Definition B.1 (Random instance). Fix a k-CSP (D,R), a finite set V of variables, and m ∈ N.

(1) A random constraint C = (S, R) is chosen by picking a sequence S ∈ V k of k distinct
variables uniformly, and R uniformly from R.
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(2) A random instance consists of choosing with replacement m random constraints.

Equivalently, a random instance consists of first picking a k-uniform hypergraph whose hyper-
edges are chosen independently, and then choosing the relation R of each hyperedge (i.e. constraint)
independently and uniformly at random from R.

B.1. Unsatisfiability.
As is well known, most instances of a predicate CSP (D,R) at high constraint density are unsat-

isfiable, if the predicate is violated by some assignment. This result generalizes to non-predicate
CSPs, with a twist. Previous works on predicate CSPs (e.g. [Tul09, Lemma A.1]) exploited the
symmetry of R to argue that in a random instance, every assignment satisfies not many more
constraints than a random assignment. The symmetry argument breaks down for a non-predicate
CSP, as one can see from the following example.

A k-CSP (D,R) is trivially satisfiable by a single value8 if there is some value a ∈ D whose
constant assignment v ∈ [k] 7→ a satisfies every relation in R. We also call it trivially satisfiable
for short. Random instances of such a CSP are always satisfiable for a trivial reason, regardless
of how unlikely a random assignment satisfies the relations in R. An extreme example is R

def=
{R}, R

def= {b}, b
def= v ∈ [k] 7→ a for some value a ∈ D, while D and k are large. Fortunately, trivial

satisfiability turns out to be the only obstacle to unsatisfiability of random instances.

Lemma B.2. Suppose a k-CSP (D,R) is not trivially satisfiable. Fix any assignment b : V → D
from a variable set of size n ⩾ 2|D|k. Then b violates a random constraint over V with probability
at least 1/4|D|k .

Proof. Some value a ∈ D must be assigned to at least 1/|D| fraction of the variables by b. Let s be
the number of variables getting the value a under b. Since the CSP is not trivially satisfiable, the
constant assignment v ∈ [k] 7→ a violates some relation R ∈ R. A random constraint is violated if
its scope is contained in b−1(a) and its relation is R. A random constraint has its scope contained
b−1(a) with probability p

def=
(s

k

)
/
(n

k

)
⩾ (1/2|D|)k when n ⩾ 2|D|k. A random constraint has its

relation being R with probability q
def= 1/|R| ⩾ 1/2|D|k . Therefore b violates a random constraint

with probability at least pq ⩾ 1/(2|D|k2|D|k) ⩾ 1/4|D|k . □

The rest of the proof is the standard Chernoff and union bounds.

Lemma B.3. If a k-CSP (D,R) is not trivially satisfiable. As long as ∆ ⩾ exp(O(|D|k)), except
with probability on;|D|,k(1) over a random instance of the CSP with n variables and m

def= ∆n

constraints, every assignment violates at least 1/8|D|k fraction of the constraints.

Proof. Let p be the minimum probability over all assignments b : V → D that a random constraint
is violated by b. The previous Lemma implies p ⩾ 1/4|D|k when n ⩾ 2|D|k.

Now fix any assignment b : V → D. In a random instance, violation of the m constraints
are m independent events, each with probability pb ⩾ p. Chernoff inequality implies b violates
at most 1/8|D|k ⩽ p/2 fraction of constraints with probability at most exp(−mp/8). Taking a
union bound over all assignments, some assignment violates fewer than p/2 fraction of constraints
with probability at most exp(n log|D| − mp/8), which is at most exp(−n log|D|) whenever ∆ ⩾
16(log|D|)/p = exp(O(|D|k)). □

B.2. Expansion.
[KMOW17] proved the following result showing expansion of random instances:

8Such CSPs are called reflexive in [AD22].
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Lemma B.4 ([KMOW17, Theorem 4.12]9). Let λ
def= τ −1 ⩾ 1. Fix 0 < γ ⩽ .99λ and 0 < β < 1/2.

Then except with probability β, a random instance I with m
def= ∆n constraints is (t, γ)-expanding,

provided

t = n

∆2/(λ−γ) · 1
k

(
β

2k

)O(1/λ)
.

We do not use their result as is, because their size bound t depends on the failure probability
β. Had we used Lemma B.4 to prove Theorem 1.1, we could only conclude that random 3-SAT
has a hierarchy solution of level Ω∆,β(n) except with probability β. The bound Ω∆,β(n) is linear
in n when β is constant but not when β = on(1). On the other hand, our Theorem 1.1 that uses
Lemma 8.16 instead gives linear level lower bound even for subconstant failure probability, as long
as ∆ is constant. Our proof of Lemma 8.16 below follows [KMOW17, Theorem 4.12], improved
with a well known trick from [CS88, Lemma 1].

We now restate Lemma 8.16. Recall that oζ;k(1) represents a function εk(ζ) that, for every fixed
choice of the parameter k, εk(ζ) → 0 as ζ → 0 from above.

Lemma B.5. Let λ
def= τ − 1 ⩾ 1, 0 < γ ⩽ λ/2, ζ

def= ∆2/(λ−γ)/n. Except with probability oζ;k(1), a
random k-CSP instance with n vertices and m

def= ∆n constraints is (t, γ)-expanding, where

t = n

∆2/(λ−γ) · 1
2O(k) .

Proof. By Definition 8.1, the hypergraph not (t, γ)-expanding implies the following: Some con-
straint subset C′ of size u and some variable subset S of size s has at least q incidences, where
q

def= s + τ+1−γ
2 u and 1 ⩽ u ⩽ t. Call this latter event E . We will bound its probability.

For fixed u and s, there are
(m

u

)
choices of the constraint subset C′, and

(n
s

)
choices of the variables

S. Out of the ku variable occurrences in C′, there are
(ku

q

)
choices for the q potential incidences.

Consider the event E ′ that these q variable occurrences all belong to S. Suppose, instead of
without replacement, we choose the k variables of a constraint with replacement, the probability of
E ′ can only increase. This is because a random constraint of k distinct variables has w incidences
to S with probability

( s
w

)
/
(n

w

)
, while a constraint of k variables chosen with replacement has w

incidences to S with probability ( s
n)w ⩾

( s
w

)
/
(n

w

)
. The probability of E ′ is

(
s
n

)q when choosing all
variables of C′ independently with replacement.

Therefore, for fixed u and s, their contribution to the probability of E is at most

(56)
(

m

u

)(
n

s

)(
ku

q

)(
s

n

)q

⩽
(

em

u

)u (en

s

)s

2ku
(

s

n

)q

=
(

e1+ s
u 2k s

u

)u

∆u
(

s

n

)λ−γ
2 u

where the inequality uses
(a

b

)
⩽
(

ea
b

)b and
(a

b

)
⩽ 2a, and the equality uses the definitions of m and

q. Let A
def= exp(1 + s

u)2k s
u and δ

def= (λ − γ)/2. Then

(56) =
(

A∆
(

s

n

)δ
)u

⩽
(

A1/δ∆1/δ ku

n

)δu

= (Bζku)δu

where the inequality uses s ⩽ ku, and we let B
def= A1/δ in the last equality. Summing over all

choices of 1 ⩽ s ⩽ ku and 1 ⩽ u ⩽ t,

P[E ] ⩽
∑

1⩽u⩽t

ku(Bζku)δu.

Following [CS88, Lemma 1], split this sum according to whether u is at most U
def= 1/(

√
ζkB).

9τ in our restatement equals τ + 1 in [KMOW17, Theorem 4.12], because our CSP is τ -wise neutral and theirs is
(τ − 1)-wise uniform.
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Case u ⩽ U : We may assume ζ < 1 because the Lemma concerns ζ approaching zero. Then∑
1⩽u⩽U

ku(Bζku)δu ⩽
∑

1⩽u⩽U

kuζδu/2 = O(kζδ/2) = oζ;k(1),

using δ ⩾ 1/2.
Case u > U : By choosing t

def= 1/(2ζBk),∑
U<u⩽t

ku(Bζku)δu ⩽
∑

U<u⩽t

kt2−δu ⩽ 1
2ζB

2−δU

1 − 2−δ
≲k

2−δU

ζ

= 1

ζ2δ/
(√

ζkB
) = oζ;k(1). □

Appendix C. Reduction

Since [Tul09], it has been folkloric that hardness reductions preserve hierarchy lower bounds
(Lemma C.1). In this section, we make explicit reduction-based SDP+AIP lower bounds for graph
coloring in Corollaries C.7 and C.8, which are simple corollaries of Theorem 1.2 (to an expert in
SDP hierarchy lower bound). As mentioned in the abstract of [Tul09], Corollary C.8 is stronger
than the NP-hardness results of graph coloring known even under the Unique Games Conjecture
and its variants. This section helps compare [CŽ24] with what may follow from Theorem 1.2. We
did not include this section in our STOC submission. Chronologically, the results of this section
appear after [CŽ24] first appeared.

Consider a hardness reduction B from a CSP (D,R) to another (D′,R′). Then B maps instances
I of (D,R) to instances I ′ of (D′,R′). B also maps satisfying assignments a ∈ AI of I to those
a′ ∈ AI′ of I ′. Suppose every variable in a′ depends on at most t variables in a. More precisely, B
is t-local if for every variable v′ in I ′, there is a subset Wv′ of at most t variables in I and a function
gv′ : AWv′ → Dv′ mapping a satisfying assignment on Wv′ to an assignment to v′.

For S′ ⊆ V (I ′), define WS′
def=
⋃

v′∈S′ Wv′ . Extend {gv′} into functions gS′ : AWS′ → DS′ for
S′ ⊆ V (I ′), where

(57) gS′(a)(v′) def= gv′

(
aWv′

)
for v′ ∈ S′, a ∈ AWS′ .

B preserves local satisfiability if for every constraint C ′ in I ′ and local assignment a ∈ AWV (C′) ,
gV (C′)(a) satisfies C ′.

The following lemma appeared frequently in the SDP hierarchy lower bound literature, albeit
as special cases and not in this general form. For completeness, we include its proof. (The lemma
also applies to general CSP, not just k-CSP.)

Lemma C.1 (Folklore, see e.g. [Tul09]). Suppose a t-local reduction B maps an instance I of
(D,R) to an instance I ′ of (D′,R′) and preserves local satisfiability. Then for each elementary
hierarchy, any level-dt hierarchy solution on I yields a level-d hierarchy solution on I ′.

Proof. Given a level-dt hierarchy solution s on I, define a dependent function s′ :
(
S′ ∈

(V (I′)
⩽d

))
→

MDS′
, where

(58) s′(S′)(a′) def=
∑

a∈AWS′ ,gS′ (a)=a′

s(WS′)(a) for d-small S′ ⊆ V (I ′), a′ ∈ DS′
.

s(WS′) is defined for d-small S′ because |WS′ | ⩽ dt.
Further, s′(S′) is in fact supported on AS′ . Indeed, every a in the sum in Eq. (58) belongs to AWS′ ,

in particular aV (C′) ∈ AWV (C′) for constraints C ′ contained in S′, so gS′(a)V (C′)
(60)= gV (C′)

(
aWV (C′)

)
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satisfies C ′ because B preserves local satisfiability. Therefore a′ = gS′(a) satisfies every constraint
C ′ contained in S′ whenever a has non-zero contribution to Eq. (58).

s′ inherits consistency with projection (Definition 3.1) from s, because for d-small subset S′ ⊆
V (I ′), T ′ ⊆ S′ and a′ ∈ AT ′ ,

s′(T ′)(a′) (58)=
∑

a∈AWT ′ ,gT ′ (a)=a′

s(WT ′)(a) (∗)=
∑

b∈AWS′ ,bWT ′ =a,gT ′ (a)=a′

s(WS′)(b)

(60)=
∑

b∈AWS′ ,gS′ (b)=b′,b′
T ′ =a′

s(WS′)(b) (58)=
∑

b′∈AS′ ,b′
T ′ =a′

s′(S′)(b′) (2)= πT ′(s′(S′))(a′).

In the above, (∗) is because s is a hierarchy solution consistent with projection.
Like s, s′ also satisfies the nontriviality condition, because s′(∅)(0) (58)= s(∅)(0) = 1. If the

hierarchy is BW, LP, or AIP, then s′ is a hierarchy solution by Lemma 3.3. For the SDP hierarchy,
we need to verify Eq. (1). Indeed, given an SDP hierarchy solution s = ((αS)S , (µR)R) of I, let
s′ = ((α′

S′)S′ , (µ′
R′)R′) be given by Eq. (58). Then for d-small S′, T ′ ⊆ V (I ′), a′

S′ ∈ AS′ , a′
T ′ ∈ AT ′ ,

〈α′
S′(a′

S′), α′
T ′(a′

T ′)〉X
(58)=

∑
(aS ,aT )∈(AWS′ ,AWT ′ )

(gS′ (aS),gT ′ (aT ))=(a′
S′ ,a

′
T ′ )

〈αWS′ (aS), αWT ′ (aT )〉X

(1)=
∑

(aS ,aT )∈(AWS′ ,AWT ′ )
(gS′ (aS),gT ′ (aT ))=(a′

S′ ,a
′
T ′ )

P
b∼µWS′ ∪WT ′

[bWS′ = aS , bWT ′ = aT ]

(†)=
∑

aS∪T ∈AWS′∪T ′
gS′∪T ′ (aS∪T )=a′

S′∪T ′

P
b∼µS∪T

[b = aS ∪ aT ],

(58)= P
b′∼µ′

S′∪T ′

[b′ = a′
S′ ∪ a′

T ′ ],
(#)= P

b′∼µ′
S′∪T ′

[b′
S′ = a′

S′ , b′
T ′ = a′

T ′ ].

(59)

For (†), we write aS∪T
def= aS ∪ aT (we may assume (aS)WS′ ∩WT ′ = (aT )WS′ ∩WT ′ , for otherwise

(aS , aT ) does not contribute). a′
S′∪T ′

def= gS′∪T ′(aS ∪ aT ), which coincides with gS′(aS) ∪ gT ′(aT ) by
Eq. (60), so a′

S′∪T ′ = a′
S′ ∪ a′

T ′ (which also explains (#)). □

Claim C.2. For any T ′ ⊆ S′ ⊆ V (I ′), any b ∈ AWS′ ,

(60) gT ′

(
bWT ′

)
= gS′(b)T ′ ,

Proof. For v′ ∈ T ′, gT ′

(
bWT ′

)
(v′) (57)= gv′(bWv′ )

(57)= gS′(b)(v′) = (gS′(b))T ′(v′). □

Lemma C.3. Suppose a t-local reduction B maps an instance I of (D,R) to an instance I ′ of
(D′,R′) and preserves local satisfiability. Then for each combined hierarchy, any level-dt hierarchy
solution on I yields a level-d hierarchy solution on I ′.

Proof. Starting with a solution s = (s1, s2) to I in the combined hierarchy, define s′ = (s′
1, s′

2) from
s by Eq. (58). Then each s′

i is derived from si by Eq. (58). Lemma C.1 implies each s′
i is a hierarchy

solution to I ′.
Now consider either the LP+AIP or the BW+AIP hierarchy. Solutions are of the form s =

(s1, s2), where si : (S ∈ Sd) → MAS
i . For LP+AIP or BW+AIP, M1 ∈ {B,R+}. Then x ∈ M1\{0}

implies x + y 6= 0 for y ∈ M1. It remains to verify supp(s′
1(S′)) ⊇ supp(s′

2(S′)) for d-small
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S′ ⊆ V (I ′). Eq. (58) implies supp(s′
i(S′)) ⊆ gS′(supp(si(WS′))) for each i. s′

1 satisfies the stronger
property supp(s′

1(S′)) = gS′(supp(s1(WS′))), thanks to the aforementioned property of M1. Thus

supp(s′
2(S′)) ⊆ gS′(supp(s2(WS′)))

(∗)
⊆ gS′(supp(s1(WS′))) = supp(s′

1(S′)),

where (∗) is due to supp(s2(WS′)) ⊆ supp(s1(WS′)), which holds because s is a solution to the
combined hierarchy.

Finally consider the SDP+AIP hierarchy. Solutions are of the form s = (α, r), where r = (µ, w)
is a level-2d LP+AIP solution, and the level-d SDP vector solution α induces µ. Since s′ is derived
from s by Eq. (58), (α′, µ′) is derived from (α, µ) by Eq. (58), so α′ induces µ′ by Eq. (59). □

Lemma C.4. Fix k ⩾ 3. There is a k-CSP such that except with probability on;k(1), its random
instance I with n variables and Ok(n) constraints has an SDP+AIP hierarchy solution of level
Ωk(n), but every assignment to I satisfies at most 1/2Ω(k) fraction of constraints of I.

Proof. Apply Theorem 1.2 and [Tul09, Lemma A.1] to the k-CSP with the predicate Q, where
Q ⊆ {0, 1}k is the union of the Hadamard predicate of the Max-k-CSP in [Tul09, Fact 2.4], which
supports a pairwise uniform distribution, and any Hamming ball of radius 2, which supports a
pairwise neutral AIP assignment (Proposition 4.5). Q contains only O(k2)/2k = 1/2Ω(k) fraction
of all 2k assignments to a k-ary constraint. □

A version of Lemma C.4 for SDP only appeared in [Tul09, Corollary 6.2], and was the starting
point of the following SDP hierarchy lower bounds. A hierarchy lower bound for C-vs-K graph
coloring means a hierarchy solution for C-coloring on a graph G, where G is not K-colorable.

Theorem C.5 ([Tul09, Theorem 6.5]). There is a level-ΩC(N) SDP hierarchy lower bound for
C-vs-2Ω(C) graph coloring on an N -vertex graph, for every large enough constant C.

Theorem C.6 ([Tul09, Theorem 6.7]). There is a level-d SDP hierarchy lower bound for C-vs-K
graph coloring on an N -vertex graph, where

C = 2O(log N/ log log N) K = N/2O(log N/ log log N) d = 2Ω(log N/ log log N).

Apply Lemmas C.3 and C.4 to the reductions in these two theorems, we strengthen the results
to SDP+AIP, with no loss in parameters. We can apply Lemma C.3 because Tulsiani implicitly
verified that these reductions are t-local for an appropriate t and preserve local satisfiability.

Corollary C.7. There is a level-ΩC(N) SDP+AIP hierarchy lower bound for C-vs-2Ω(C) graph
coloring on an N -vertex graph, for every large enough constant C.

Corollary C.8. There is a level-d SDP+AIP hierarchy lower bound for C-vs-K graph coloring on
an N -vertex graph, where

C = 2O(log N/ log log N) K = N/2O(log N/ log log N) d = 2Ω(log N/ log log N).

[KOWŽ23] showed that C-vs-K graph coloring is NP-hard for every constant C ⩾ 4 and K =( C
bC/2c

)
. It is possible to prove linear-level SDP+AIP lower bound for the same choices of C and K,

sharpening Corollary C.7. We omit the details.
For comparison, [CŽ24] obtained the following lower bound for graph coloring:

Theorem C.9 ([CŽ24]). For every constant d ⩾ 2, constant K ⩾ 3, there is a level-d SDP+AIP
hierarchy lower bound for 3-vs-K graph coloring.
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