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Abstract

Lifting theorems are theorems that bound the communication complexity of a composed
function f ◦ gn in terms of the query complexity of f and the communication complexity of g.
Such theorems constitute a powerful generalization of direct-sum theorems for g, and have seen
numerous applications in recent years.

We prove a new lifting theorem that works for every two functions f, g such that the dis-
crepancy of g is at most inverse polynomial in the input length of f . Our result is a significant
generalization of the known direct-sum theorem for discrepancy, and extends the range of inner
functions g for which lifting theorems hold.

1 Introduction

The direct-sum question is a fundamental question in complexity theory, which asks whether com-
puting a function g on n independent inputs is n times harder than computing it on a single input.
A related type of result, which is sometimes referred to as an “XOR lemma”, says that computing
the XOR of the outputs of g on n independent inputs is about n times harder than computing g
on a single coordinate. Both questions received much attention in the communication complexity
literature, see, e.g., [KRW91, FKNN95, KKN92, CSWY01, Sha01, JRS03, BPSW05, JRS05, LS09,
BBCR10, Jai11, She11, BR11, Bra12].

A lifting theorem is a powerful generalization of both direct-sum theorems and XOR lemmas.
Let f : {0, 1}n → O and g : Λ× Λ → {0, 1} be functions (where Λ and O are some arbitrary sets).
The block-composed function f ◦ gn is the function that corresponds to the following task: Alice
gets x1, . . . , xn ∈ Λ, Bob gets y1, . . . , yn ∈ Λ, and they wish to compute the output of f on the n-bit
string whose i-th bit is g(xi, yi). Lifting theorems say that the “natural way” for computing f ◦ gn
is more-or-less the best way. In particular, direct-sum theorems and XOR lemmas can be viewed
as lifting theorems for the special cases where f is the identity function and the parity function
respectively.

A bit more formally, observe that there is an obvious protocol for computing f ◦ gn: Alice and
Bob jointly simulate a decision tree of optimal height for solving f . Any time the tree queries the
i-th bit, they compute g on (xi, yi) by invoking the best possible communication protocol for g.
A (query-to-communication) lifting theorem is a theorem that says that this protocol is roughly
optimal. Specifically, let Ddt(f) and Dcc(g) denote the deterministic query complexity of f and
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communication complexity of g respectively, and let Rdt(f) and Rcc(g) denote the corresponding
randomized complexities. Then, a lifting theorem says that

Dcc(f ◦ gn) = Ω
(
Ddt(f) ·Dcc(g)

)
(in the deterministic setting) (1)

Rcc(f ◦ gn) = Ω
(
Rdt(f) ·Rcc(g)

)
(in the randomized setting).

In other words, a lifting theorem says that the communication complexity of f ◦ gn is close to the
upper bound that is obtained by the natural protocol.

In recent years, lifting theorems found numerous applications, such as proving lower bounds on
monotone circuit complexity and proof complexity (e.g. [RM97, GP14, RPRC16, PR17, GGKS18,
PR18, dRMN+20a, dRMN+20b]), the separation of partition number and deterministic communica-
tion complexity [GPW15], proving lower bounds on data structures [CKLM18], and an application
to the famous log-rank conjecture [HHL16], to name a few.

For most applications, it is sufficient to prove a lifting theorem that holds for every outer
function f , but only for one particular choice of the inner function g. Moreover, it is desirable that
the inner function g would be a simple as possible, and that its input length b = log |Λ| would be a
small as possible in terms of in the input length n of the outer function f . For these reasons, the
function g is often referred to as the “gadget”.

On the other hand, if we view lifting theorems as a generalization of direct-sum theorems, then
it is an important research goal to prove lifting theorems for as many inner functions g as possible,
including “complicated” ones. This goal is not only interesting in its own right, but might also lead
to additional applications. Indeed, this goal is a natural extension of the long line of research that
attempts to prove direct-sum theorems for as many functions as possible. This is the perspective
we take in this work, following Chattopadhyay et. al. [CKLM17, CFK+19]. In particular, we
intentionally avoid the term “gadget”, since we now view the function g as the main object of
study.

Previous work. The first lifting theorem, due to Raz and McKenzie [RM99], holds only when
the inner function g is the index function. For a long time, this was the only inner function for which
lifting theorems were known to hold for every outer function f . Then, the works of Chattopadhyay
et. al. [CKLM17] and Wu et. al. [WYY17] proved a lifting theorem for the case where g is the inner
product function. The work of [CKLM17] went further than that, and showed that their lifting
theorem holds for any inner function g that satisfies a certain hitting property. This includes, for
example, the gap-Hamming-distance problem.

All the above results are stated only for the deterministic setting. In the randomized setting,
Göös, Pitassi, and Watson [GPW17] proved a lifting theorem with the inner function g being the
index function. In addition, Göös et. al. [GLM+15] proved a lifting theorem in the non-deterministic
setting (as well as several related settings) with g being the inner product function.

More recently, Chattopadhyay et. al. [CFK+19] proved a lifting theorem that holds for every
inner function g that has logarithmic input length and exponentially small discrepancy. This
theorem holds in both the deterministic and randomized setting, and includes the cases where g
is the inner product function or a random function. Since our work builds on the lifting theorem
of [CFK+19], we discuss this result in more detail. The discrepancy of g, denoted disc(g), is a
natural and widely-studied property of functions, and is equal to the maximum bias of g in any
combinatorial rectangle. Formally, it is defined as follows:

Definition 1.1. Let g : Λ×Λ → {0, 1} be a function, and let U, V be independent random variables
that are uniformly distributed over Λ. Given a combinatorial rectangle R ⊆ Λ×Λ, the discrepancy
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of g with respect to R, denoted discR(g), is defined as follows:

discR(g) = |Pr [g(U, V ) = 0 and (U, V ) ∈ R]− Pr [g(U, V ) = 1 and (U, V ) ∈ R]| .

The discrepancy of g, denoted disc(g), is defined as the maximum of discR(g) over all combinatorial
rectangles R ⊆ Λ× Λ.

Informally, the main theorem of [CFK+19] says that if b = log |Λ|, disc(g) = 2−Ω(b) and
b ≥ c · log n for some constant c, then

Dcc(f ◦ gn) = Ω
(
Ddt(f) · b

)
and Rcc

1/3(f ◦ gn) = Ω
(
Rdt

1/3(f) · b
)
.

We note that when disc(g) = 2−Ω(b), it holds that Dcc(g) ≥ Rcc(g) ≥ Ω(log |Λ|), and therefore the
latter result is equivalent to Equation (1).

The research agenda of [CFK+19]. As discussed above, we would like to prove a lifting
theorem that holds for as many inner functions g as possible. Inspired by the literature on direct-
sum theorems, [CFK+19] conjectured that lifting theorems should hold for every inner function g
that has a sufficiently large information cost IC(g).

Conjecture 1.2 (special case of [CFK+19, Conj. 1.4]). There exists a constant c > 0 such that
the following holds. Let f : {0, 1}n → O and g : Λ× Λ → {0, 1} be an arbitrary function such that
IC(g) ≥ c · log n. Then

Rcc(f ◦ gn) = Ω
(
Rdt(f) · IC(g)

)
.

Proving this conjecture is a fairly ambitious goal. As an intermediate goal, [CFK+19] suggested
to prove this conjecture for complexity measures that are simpler than IC(g). In light of their result,

it is natural to start with discrepancy. It has long been known that the quantity ∆(g)
def
= log 1

disc(g) is

a lower bound on Rcc(g) up to a constant factor. More recently, it has even been shown that ∆(g) is
a lower bound on IC(g) up to a constant factor [BW12]. Motivated by this consideration, [CFK+19]
suggested the following natural conjecture: for every function g such that ∆(g) ≥ c · log n, it holds
that Rcc(f ◦ gn) = Ω

(
Rdt(f) ·∆(g)

)
(see Conjecture 1.5 there). The lifting theorem of [CFK+19]

proves this conjecture for the special case where ∆(g) = Ω(b).

Our result. In this work, we prove the latter conjecture of [CFK+19] in full, by waiving the
limitation of ∆(g) = Ω(b) from their result, where b = log |Λ|. As in previous works, our result
holds even if f is replaced with a general search problem S. In what follows, we denote byRdt

β (S) and
Rcc

β (S ◦gn) the randomized query complexity of S with error β and the randomized communication
complexity of S ◦ gn with error β respectively. We now state our result formally.

Theorem 1.3 (Main theorem). There exists a universal constant c such that the following holds:
Let S be a search problem that takes inputs from {0, 1}n, and let g : Λ×Λ → {0, 1} be an arbitrary
function such that ∆(g) ≥ c · log n. Then

Dcc(S ◦ gn) = Ω
(
Ddt(S) ·∆(g)

)
,

and for every β > 0 it holds that

Rcc
β (S ◦ gn) = Ω

((
Rdt

β′(S)−O(1)
)
·∆(g)

)
,

where β′ = β + 2−∆(g)/50.
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Discrepancy with respect to product distributions We note that Definition 1.1 is in
fact a special case of the common definition of discrepancy. The general definition refers to an
arbitrary distribution µ over Λ × Λ. The discrepancy of g with respect to µ is defined similarly to
Definition 1.1 except that the random variables U, V are distributed according to µ rather than the
uniform distribution. We show that Theorem 1.3 holds even where the discrepancy is with respect
to a product distribution. We do so by reducing the case of product distribution into the case of
uniform distribution, more details can be found in Section 7.

Remark 1.4. It is interesting to note that one of the first direct-sum results in the randomized
setting went along these lines. In particular, the work of Shaltiel [Sha01] implies that for every
function g such that ∆(g) ≥ c for some universal constant c, it holds that Rcc(gn) = Ω (n ·∆(g)).
Our main theorem can be viewed as a generalization of that result.

Remark 1.5. A natural question is whether the requirement that ∆(g) ≥ c · log n is necessary.
In principle, it is possible that this requirement could be relaxed. Any such relaxation, however,
would imply a lifting theorem that allows inner functions of smaller input length than is currently
known, which would be considered a significant breakthrough.

Remark 1.6. In order to facilitate the presentation, we restricted our discussion on the previous
works to lifting theorems that hold for every outer function f (and indeed, every search problem S).
If one is willing to make certain assumptions on the outer function f , it is possible to prove
stronger lifting theorems that in particular allow for a wider variety of inner functions (see, e.g.,
[She09, SZ09, GP14, HHL16, dRMN+20b, ABK21]).

1.1 Our techniques

Following the previous works, we use a “simulation argument”: We show that given a protocol that
computes f◦gn with communication complexity C, we can construct a decision tree that computes f
with query complexity O( C

∆(g)). In particular, we follow the simulation argument of [CFK+19] and
extend their main technical lemma. We now describe this argument in more detail, focusing on
the main lemma of [CFK+19] and our extension of that lemma. For simplicity, we focus on the
deterministic setting, but the proof in the randomized setting follows similar ideas.

The simulation argument. We assume that we have a protocol Π that computes f ◦ gn, and
would like to construct a decision tree T that computes f . The basic idea is that given an in-
put z ∈ {0, 1}n, the tree T uses the protocol Π to find a pair of inputs (x, y) ∈ Λn × Λn such that
(f ◦ gn)(x, y) = f(z), and then returns the output of Π on (x, y).

In order to find the pair (x, y), the tree T maintains a pair of random variables (X,Y ). Initially,
the variables (X,Y ) are uniformly distributed over Λn × Λn. Then, the tree gradually changes
the distribution of (X,Y ) until they satisfy (f ◦ gn)(X,Y ) = f(z) with probability 1, at which
point the tree chooses (x, y) to be an arbitrary pair in the support of (X,Y ). This manipulation
of the distribution of (X,Y ) is guided by a simulation of the protocol Π on (X,Y ) (hence the
name “simulation argument”). Throughout this process, the decision tree maintains the following
structure of (X,Y ):

� There is a set of coordinates, denoted F ⊆[n], such that for every i ∈ F it holds that g(Xi, Yi) = zi
with probability 1.

� X[n]\F and Y[n]\F are dense in the following sense: for every J ⊆ [n] \F , the variables XJ

and YJ have high min-entropy.
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Intuitively, the set F is the set of coordinates i for which the simulation of Π has already com-
puted g(Xi, Yi), while for the coordinates i ∈ [n] \F the value g(Xi, Yi) is unknown. Initially, the
set F is empty, and then it is gradually expanded until it holds that (f ◦ gn)(X,Y ) = f(z).

The main lemma of [CFK+19]. Suppose now that as part of the process described above, we
would like expand the set F by adding a new set of coordinates I ⊆ [n] \F . This means that we
should condition the distribution of (X,Y ) on the event that gI(XI , YI) = zI . This conditioning,
however, decreases the min-entropy of (X,Y ), which might cause X[n]\(F∪I) and Y[n]\(F∪I) to lose
their density.

In order to resolve this issue, [CFK+19] defined a notion of “sparsifying values” of X and Y .
Informally, a value x in the support of X is called sparsifying if after conditioning Y on the
event gI(xI , YI) = zI , the variable Y[n]\(F∪I) ceases to be dense. A sparsifying value of Y is
defined similarly. It is not hard to see that if X and Y do not have any sparsifying values in
their supports, then the density of X[n]\(F∪I) and Y[n]\(F∪I) is maintained after the conditioning

on gI(XI , YI) = zI . Therefore, [CFK
+19] design their decision tree such that before the conditioning

on the event gI(XI , YI) = zI , the tree first removes the sparsifying values from the supports of X
and Y .

The removal of sparsifying values, however, raises another issue: when we remove values from
the supports of X and Y , we decrease the min-entropy of X and Y . In particular, the removal of
the sparsifying values might cause X[n]\F and Y[n]\F to lose their density. This issue is resolved by
the main technical lemma of [CFK+19]. Informally, this lemma says that if X[n]\F and Y[n]\F are
dense, then the sparsifying values are very rare. This means that the removal of these values barely
changes the min-entropy of X and Y , and in particular, does not violate the density property.

Our contribution. Recall that the lifting theorem of [CFK+19] requires that ∆(g) = Ω(b) (where
b = log |Λ|), and that our goal is to waive that requirement. Unfortunately, it turns out that main
lemma of [CFK+19] fails when ∆(g) is very small relatively to b. In fact, in Section 6 we provide
an example in which all the values in the support of X are sparsifying.

Hence, unlike [CFK+19], we cannot afford to remove the sparsifying values before condition-
ing on the event gI(XI , YI) = zI . Therefore, in our simulation, the variables X[n]\F and Y[n]\F
sometimes lose their density after the conditioning. Nevertheless, we observe that even if the den-
sity property breaks in this way, it can often be restored by removing some more values from the
supports of X and Y . We formalize this intuition by defining a notion of “recoverable values”.
Informally, a value x in the support of X is called recoverable if after conditioning Y on the event
gI(xI , YI) = zI , the density of Y[n]\(F∪I) can be restored by discarding some values from its support.

Our main lemma says, informally, that if X[n]\F and Y[n]\F are dense, then almost all the values
of X and Y are recoverable. In particular, we can afford to remove the unrecoverable values of X
and Y without violating their density. Given our lemma, it is easy to fix the simulation argument
of [CFK+19]: whenever our decision tree is about to condition on an event gI(xI , YI) = zI , it
first discards the unrecoverable values of X and Y ; then, after the conditioning, the decision tree
restores the density property by discarding some additional values. The rest of our argument
proceeds exactly as in [CFK+19].

The proof of our main lemma. The definition of a sparsifying value of X can be stated as
follows: the value x is sparsifying if there exists a value yJ such that the probability

Pr [YJ = yJ | g(xI , YI) = zI ] (2)
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is too high. On the other hand, it can be showed that a value x is unrecoverable if there are many
such corresponding values yJ . Indeed, if there are only few such values yJ , then we can recover the
density of Y[n]\(F∪I) by discarding them.

Very roughly, the main lemma of [CFK+19] is proved by showing that for every yJ , there is
only a very small number of corresponding x’s for which the latter probability is too high. Then,
by taking union bound over all possible choices of yJ , it follows that there are only few values x for
which there exists some corresponding yJ . In other words, there are only few sparsifying values.

This argument works in the setting of [CFK+19] because they can prove a very strong upper
bound on the number of values x for a single yJ — indeed, the bound is sufficiently strong to
survive the union bound. In our setting, on the other hand, the fact that we assume a smaller value
of ∆(g) translates to a weaker bound on the number of values x for a single yJ . In particular, we
cannot afford to use the union bound. Instead, we take a different approach: we observe that, since
for every yJ there is only a small number of corresponding x’s, it follows by an averaging argument
that there can only be a small number of x’s that have many corresponding yJ ’s. In other words,
there can only be a small number of unrecoverable x’s.

Implementing this idea is more difficult than it might seem at a first glance. The key diffi-
culty is that when we say “values x that have many corresponding yJ ’s” we do not refer to the
absolute number of yJ ’s but rather to their probability mass. Specifically, the probability distribu-
tion according to which the yJ ’s should be counted is the probability distribution of Equation (2).
Unfortunately, this means that for every value x, we count the yJ ’s according to a different dis-
tribution, which renders a simple averaging argument impossible. We overcome this difficulty by
proving a finer upper bound on the number of x’s for each yJ and using a careful bucketing scheme
for the averaging argument.

2 Preliminaries

We assume familiarity with the basic definitions of communication complexity (see, e.g., [KN97]).

For any n ∈ N, we denote [n] def= {1, . . . , n}. We denote by c ∈ N some large universal constant that
will be chosen later (c = 1000 will do). For the rest of this paper, we fix some natural number n ∈ N,
a finite set Λ, and denote b = log |Λ|. We fix g : Λ × Λ → {0, 1} to be an arbitrary function such

that ∆(g) ≥ c · log n (where ∆(g)
def
= log 1

disc(g)), and abbreviate ∆
def
= ∆(g). Since our main theorem

holds trivially when n = 1, we assume that n ≥ 2. Furthermore, throughout this paper, X and Y
denote independent random variables that take values from Λn.

Let I ⊆ [n] be a set of coordinates. We denote by ΛI the set of strings over alphabet Λ
of length |I| and index the coordinates of the string by I. Given a string x ∈ Λn, we denote
by xI ∈ ΛI the projection of x to the coordinates in I (in particular, x∅ is defined to be the
empty string). We denote by gI : ΛI × ΛI → {0, 1}I the function that takes as inputs |I| pairs
from Λ × Λ that are indexed by I, and outputs the string in {0, 1}I whose i-th bit is the output

of g on the i-th pair. In particular, we denote gn
def
= g[n], so gn is the direct-sum function that takes

as inputs x, y ∈ Λn and outputs the binary string

gn(x, y)
def
= (g(x1, y1), . . . , g(xn, yn)) .

We denote by g⊕I : ΛI × ΛI → {0, 1} the function that given x, y ∈ ΛI outputs the parity of the
string gI(x, y). The following bound is used throughout the paper.
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Proposition 2.1. Assume that β, l ∈ R such that β ≤ 1 and l ≥ 1. Then it holds that∑
S⊆[n],|S|≥l

β|S| · 1

n|S|
≤ 2βl

.

Proof. It holds that∑
S⊆[n],|S|≥l

β|S|
1

n|S|
≤

n∑
s=⌈l⌉

(
n

s

)
βs 1

ns

≤
n∑

s=⌈l⌉

βs 1

s!
(

(
n

s

)
≤ ns

s!
)

≤ 2

∞∑
s=⌈l⌉

(
β

2

)s

(s! ≥ 2s−1)

≤ 2

(
β
2

)⌈l⌉
1− β

2

(geometric sum)

≤ 2

(
β
2

)l
1− β

2

(
β

2
≤ 1 and l ≤ ⌈l⌉)

= 2βl ·
(
1
2

)l
1− β

2

≤ 2βl (
1

2
≤ 1− β

2
). ■

Search problems. Given a finite set of inputs I and a finite set of outputs O, a search problem S
is a relation between I and O. Given z ∈ I, we denote by S(z) the set of outputs o ∈ O such
that (z, o) ∈ S. Without loss of generality, we may assume that S(z) is always non-empty, since
otherwise we can set S(z) = {⊥} where ⊥ is some special failure symbol that does not belong to O.

Intuitively, a search problem S represents the following task: given an input z ∈ I, find a
solution o ∈ S(z). In particular, if I = X ×Y for some finite sets X ,Y, we say that a deterministic
protocol Π solves S if for every input (x, y) ∈ I, the output of Π is in S(x, y). We say that a
randomized protocol Π solves S with error β if for every input (x, y) ∈ I, the output of Π is
in S(x, y) with probability at least 1 − β. We denote by Dcc(S) the deterministic communication
complexity of a search problem S. Given β > 0, we denote by Rcc

β (S)-th randomized (public-
coin) communication complexity of S with error β. In case that β is omitted one should assume
that β = 1

3 .
Given a search problem S ⊆ {0, 1}n × O, we denote by S ◦ gn ⊆ (Λn × Λn) × O the search

problem that satisfies S ◦ gn(x, y) = S(gn(x, y)) for every x, y ∈ Λn.

2.1 Decision trees

Informally, a decision tree is an algorithm that solves a search problem S ⊆ {0, 1}n×O by querying
the individual bits of its input. The decision tree is computationally unbounded, and its complexity
is measured by the number of bits it queries.
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Formally, a deterministic decision tree T from {0, 1}n to O is a binary tree in which every
internal node is labeled with a coordinate in [n] (which represents a query), every edge is labeled
by a bit (which represents the answer to the query), and every leaf is labeled by an output in O.
Such a tree computes a function from {0, 1}n to O in the natural way, and with a slight abuse of
notation, we denote this function by T as well. The query complexity of T is the depth of the tree.
We say that a tree T solves a search problem S ⊆ {0, 1}n × O if for every z ∈ {0, 1}n it holds
that T (z) ∈ S(z). The deterministic query complexity of S, denoted Ddt(S), is the minimal query
complexity of a decision tree that solves S.

A randomized decision tree T is a random variable that takes deterministic decision trees as
values. The query complexity of T is the maximal depth of a tree in the support of T . We say
that T solves a search problem S ⊆ {0, 1}n ×O with error β if for every z ∈ {0, 1}n it holds that

Pr [T (z) ∈ S(z)] ≥ 1− β.

The randomized query complexity of S with error β, denoted Rdt
β (S), is the minimal query com-

plexity of a randomized decision tree that solves S with error β. In case that β is omitted, one
should assume that β = 1

3 .

2.2 Probability

Below we recall some standard definitions and facts from probability theory. Recall that the expo-
nential distribution, denoted Ex(λ), is defined by the following cumulative probability distribution

1− e−λx for x ≥ 0.

The Erlang distribution, denoted Erl(k, λ), is defined as the sum of k exponential variables with
parameters λ and its cumulative probability distribution of Erl(k, λ) is

1− e−λx
k−1∑
i=0

(λx)i

i!
for x ≥ 0.

Given two distributions µ1, µ2 over a finite sample space Ω, the statistical distance (or total
variation distance) between µ1 and µ2 is

|µ1 − µ2|
def
= max
E⊆Ω

{|µ1(E)− µ2(E)|} .

We say that µ1 and µ2 are ε-close if |µ1 − µ2| ≤ ε.

Fact 2.2. Let E be some event and µ some distribution. Then

|µ− (µ | E)| ≤ 1− Pr [E ] .

Let V be a random variable that takes values from a finite set V. The min-entropy of V , de-
notedH∞(V ), is the largest number k ∈ R such that for every value x it holds that Pr [V = v] ≤ 2−k.
The deficiency of V is defined as

D∞(V )
def
= log |V| −H∞(V ).

Intuitively, the deficiency of V measures the amount of information that is known about V relative
to the uniform distribution. Deficiency has the following easy-to-prove properties.
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Fact 2.3. For every random variable V it holds that

D∞ (V ) ≥ 0.

Fact 2.4. For every random variable V and an event E with positive probability it holds that

D∞ (V | E) ≤ D∞ (V ) + log
1

Pr [E ]
.

Fact 2.5. Let V1, V2 be random variables. Then,

D∞ (V1) ≤ D∞ (V1, V2) .

2.2.1 Vazirani’s Lemma

Given a boolean random variable V , we denote the bias of V by

bias(V )
def
= |Pr [V = 0]− Pr [V = 1]| .

Vazirani’s lemma is a useful result that says that a random string is close to being uniformly
distributed if the parity of every set of bits in the string has a small bias. We use the following
variants of the lemma.

Lemma 2.6 ([GLM+15]). Let ε > 0, and let Z be a random variable taking values in {0, 1}m. If
for every non-empty set S ⊆ [m] it holds that

bias(
⊕
i∈S

Zi) ≤ ε · (2 ·m)−|S| (3)

then for every z ∈ {0, 1}m it holds that

(1− ε) · 1

2m
≤ Pr [Z = z] ≤ (1 + ε) · 1

2m
.

The following version of Vazirani’s lemma bounds the deficiency of the random variable via a
weaker assumption on the biases

Lemma 2.7 ([CFK+19]). Let t ∈ N be such that t ≥ 1, and let Z be a random variable taking
values in {0, 1}m. If for every set S ⊆ [m] such that |S| ≥ t it holds that

bias

(⊕
i∈S

ZI

)
≤ (2 ·m)−|S|

then D∞ (Z) ≤ t logm+ 1.

2.2.2 Coupling

Let µ1, µ2 be two distributions over a sample space Ω. A coupling of µ1 and µ2 is a distribution ν
over the sample space Ω2 whose marginals over the first and second coordinates are µ1 and µ2

respectively. The following standard fact characterizes the statistical distance between µ1 and µ2

using couplings.

Fact 2.8. Let µ1, µ2 be two distributions over a sample space Ω. For every coupling ν of µ1 and µ2

it holds that
|µ1 − µ2| = min

ν
Pr

(V1,V2)←ν
[V1 ̸= V2] ,

where the minimum is taken over all couplings ν of µ1 and µ2. In particular, any coupling gives
an upper bound on the statistical distance.
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2.3 Prefix-free codes

A set of strings C ⊆ {0, 1}∗ is called a prefix-free code if no string in C is a prefix of another string
in C. Given a string w ∈ {0, 1}∗, we denote its length by |w|. We use the following simple corollary
of Kraft’s inequality.

Fact 2.9 (Corollary of Kraft’s inequality). Let C ⊆ {0, 1}∗ be a finite prefix-free code, and let W
be a random string that takes values from C. Then, there exists a string w ∈ C such that
Pr [W = w] ≥ 2−|w|.

A simple proof of Fact 2.9 can be found in [CFK+19].

2.4 Properties of discrepancy

Recall that ∆
def
= ∆(g) = log 1

disc(g) , that X,Y are independent random variables that take values

from Λn, and that g⊕S : ΛS × ΛS → {0, 1} is the function that given xS , yS ∈ ΛS outputs the
parity of the string gS(xS , yS). We use the following properties of discrepancy. In what follows,
the parameter λ controls bias

(
g⊕S(xS , YS)

)
and the parameter γ controls the error probability.

Lemma 2.10 (see, e.g., [CFK+19, Cor. 2.12]). Let λ > 0 and let S ⊆ [n]. If

D∞(XS) +D∞(YS) ≤ (∆(g)− 6− λ) · |S|

then
bias

(
g⊕S(XS , YS)

)
≤ 2−λ|S|.

Lemma 2.11 (see, e.g., [CFK+19, Cor. 2.13]). Let γ, λ > 0 and let S ⊆ [n]. If

D∞(XS) +D∞(YS) ≤ (∆(g)− 7− γ − λ) · |S|

then the probability that X takes a value x ∈ Λn such that

bias
(
g⊕S(xS , YS)

)
> 2−λ|S|

is less than 2−γ|S|.

2.5 Background from [CFK+19]

In this section, we review some definitions and results from [CFK+19] that we use in our proofs. We
present those definitions and results somewhat differently than [CFK+19] in order to streamline
the proofs in the setting where ∆ ≪ b. The most significant deviation from the presentation
of [CFK+19] is the following definition of a σ-sparse random variable, which replaces the notion of
a δ-dense random variable from [GLM+15, GPW17, CFK+19]. Both notions are aimed to capture
a random variable over Λn on which very little information is known.

Definition 2.12. Let X be a random variable taking values from Λn, and let σ > 0. We say
that X is σ-sparse if for every set S ⊆ [n] it holds that D∞(XS) ≤ σ ·∆ · |S| .

Remark 2.13. The relation between the above definition to the notion of δ-dense random variable
of [GLM+15, GPW17, CFK+19] is the following: X is σ-sparse if and only if it is (1− ∆

b ·σ)-dense.

As explained in Section 1.1, our proof relies on a simulation argument that takes a protocol Π
for S ◦ gn and constructs a decision tree T for S. We use the following notion of restriction to keep
track of the queries that the tree makes and their answers.
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Definition 2.14. A restriction ρ is a string in {0, 1, ∗}n. We say that a coordinate i ∈ [n] is
free in ρ if ρi = ∗, and otherwise we say that i is fixed. Given a restriction ρ ∈ {0, 1, ∗}n, we
denote by free(ρ) and fix(ρ) the sets of free and fixed coordinates of ρ respectively. We say that a
string z ∈ {0, 1}n is consistent with ρ if zfix(ρ) = ρfix(ρ).

Intuitively, fix(ρ) represents the queries that have been made so far, and free(ρ) represents
the coordinates that have not been queried yet. As explained in Section 1.1, the decision tree
maintains a pair of random variables X,Y with a certain structure, which is captured by the
following definition.

Definition 2.15. Let ρ ∈ {0, 1, ∗}n be a restriction, let σX , σY > 0, and let X,Y be independent
random variables that take values from Λn. We say that X and Y are (ρ, σX , σY )-structured if
there exist σX , σY > 0 such that Xfree(ρ) and Yfree(ρ) are σX -sparse and σY -sparse respectively and

gfix(ρ)
(
Xfix(ρ), Yfix(ρ)

)
= ρfix(ρ).

Intuitively, this structure says that (Xfix(ρ), Yfix(ρ)) must be consistent with the queries that the
decision tree has made so far, and that the simulated protocol Π does not know much about the
free coordinates. The following proposition formalizes the intuition that the simulated protocol
does not know the value of g on the free coordinates. In what follows, the parameter γ controls
how close are the values of g on the free coordinates to being uniformly distributed.

Proposition 2.16 ([CFK+19, Prop. 3.10]). Let γ ≥ 0. Let X,Y be random variables that are
(ρ, σX , σY )-structured for σX + σY ≤ 1− 8

c − γ, and let I = free (ρ). Then,

∀zI ∈ {0, 1}I : Pr
[
gI (XI , YI) = zI

]
∈
(
1± 2−γ∆

)
· 2−|I|.

Next, we state the uniform marginals lemma of [CFK+19] (which generalized an earlier lemma
of [GPW17]). Intuitively, this lemma says that the simulated protocol Π cannot distinguish between
the distribution (X,Y ) and the same distribution conditioned on gn(X,Y ) = z. In what follows,
the parameter γ controls the indistinguishability.

Lemma 2.17 (Uniform marginals lemma, [CFK+19, Lemma 3.4]). Let γ ≥ 0, let ρ be a re-
striction, and let z ∈ {0, 1}n be a string that is consistent with ρ. Let X,Y be (ρ, σX , σY )-
structured random variables that are uniformly distributed over sets X ,Y ⊆ Λn respectively such that
σX + σY ≤ 1− 10

c − γ . Let (X ′, Y ′) be uniformly distributed over (gn)−1 (z) ∩ (X × Y). Then, X
and Y are 2−γ∆-close to X ′ and Y ′ respectively.

The following folklore fact allows us to transform an arbitrary variable over Λn into a σ-sparse
one by fixing some of its coordinates.

Proposition 2.18 (see, e.g., [CFK+19, Prop. 3.6]). Let X be a random variable, let σX > 0, and
let I ⊆ [n] be a maximal subset of coordinates such that D∞(XI) > σX ·∆ · |I|. Let xI ∈ ΛI be a
value such that

Pr [XI = xI ] > 2σX ·∆·|I|−b·|I|.

Then, the random variable X[n]−I | XI = xI is σX-sparse.

Proposition 2.18 is useful in the deterministic setting, since in this setting the decision tree is
free to condition the distributions of X,Y in any way that does not increase their sparsity. In
the randomized setting, however, the decision tree is more restricted, and cannot condition the
inputs on events such as XI = xI which may have very low probability. In [GPW17], this issue
was resolved by observing that the probability space can be partitioned to disjoint events of the
form XI = xI , and that the randomized simulation can use such a partition to achieve the same
effect of Proposition 2.18. This leads to the following lemma, which we use as well.
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Lemma 2.19 (Density-restoring partition [GPW17]). Let X ⊆ Λn denote the support of X, and
let σX > 0. Then, there exists a partition

X def
= X 1 ∪ · · · ∪ X ℓ

where each X j is associated with a set Ij ⊆ [n] and a value xj ∈ ΛIj such that:

� XIj | X ∈ X j is fixed to xj.

� X[n]−Ij | X ∈ X j is σX-sparse.

Moreover, if we denote p≥j
def
= Pr

[
X ∈ X j ∪ . . . ∪ X ℓ

]
, then it holds that

D∞(X[n]−Ij | X ∈ X j) ≤ D∞(X) + σX ·∆ · |Ij |+ log
1

p≥j
.

In what follows, we recall some definitions and the main lemma from [CFK+19]. Those defini-
tions and lemma are not used to prove our main result, but are given here so they can be compared
to our definitions and main lemma.

Definition 2.20 ([CFK+19]). Let Y be a random variable taking values from Λn. We say that a
value x ∈ Λn is leaking if there exists a set I ⊆ [n] and an assignment zI ∈ {0, 1}I such that

Pr
[
gI (xI , YI) = zI

]
< 2−|I|−1.

Let σY , ε > 0, and suppose that Y is σY -sparse. We say that a value x ∈ Λn is ε-sparsifying
if there exists a set I ⊆ [n] and an assignment zI ∈ {0, 1}I such that the random variable
Y[n]−I | gI (xI , YI) = zI is not (σY + ε)-sparse. We say that a value x ∈ Λn is ε-dangerous if it
is either leaking or ε-sparsifying.

Lemma 2.21 (main lemma of [CFK+19]). There exists universal constants h, c such that the
following holds: Let b be some number such that b ≥ c · log n and let γ, ε, σX , σY > 0 be such that
ε ≥ 4

∆ , and σX +σY ≤ 1− h·b·logn
∆2·ε −γ. Let X,Y be (ρ, σX , σY )-structured random variables. Then,

the probability that Xfree(ρ) takes a value that is ε-dangerous for Yfree(ρ) is at most 2−γ∆.

3 The main lemma

In this section, we state and prove our main lemma. As discussed in the introduction, our simulation
argument maintains a pair of random variables X,Y ∈ Λn. A crucial part of the simulation consists
of removing certain “unsafe” values from the supports of these variables. Our main lemma says
that almost all values are safe.

There are two criteria for a value x ∈ Λn to be “safe”: First, it should hold that after we condi-
tion Y on an event of the form gI (xI , YI) = zI , the density of Y can be recovered by conditioning
on a high probability event (such values are called recoverable). Second, it holds that gn(x, Y ) is
distributed almost uniformly (such values are called almost uniform). This guarantees that from
the point of view of Alice, who knows X, the value of gn(X,Y ) is distributed almost uniformly.
For the simplicity of notation we denote:

Notation 3.1. For x ∈ Λn we define the random variable Zx def
= gn (x, Y ).

We now formally define the notions of safe, recoverable and almost uniform values.
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Definition 3.2 (safe values). Let α ≥ 0. Let Y be a random variable in Λn, let σY > 0 be the
minimal value for which Y is σY -sparse and let x ∈ Λn. We say that x is almost uniform (for Y )
if for any assignment z ∈ {0, 1}n it holds that

Pr [Zx = z] ∈ 2−n
(
1± 2−

∆
10

)
.

We say that x is α-recoverable (for Y ) if for all I ⊆ [n] and zI the following holds: there exists an
event E that only depend on Y such that Pr [E | Zx

I = zI ] ≥ 1 − 2−α∆ and such that the random
variable

Y[n]−I | E and Zx
I = zI

is (σY + 4
c )-sparse. We say that x is α-safe (for Y ) if it is both almost uniform and α-recoverable.

Almost uniform, recoverable, and safe values for X are defined analogously.

We turn to state our main lemma.

Lemma 3.3 (Main lemma). For every c > 0 the following holds. Let α ≥ 1
∆ and γ > 0, and let

X and Y be independent random variables such that X is σX-sparse. Let σY > 0 be the minimal
value for which Y is σY -sparse. If σX + 2σY ≤ 9

10 − 25
c − γ − α, then

Pr
x∼X

[x is not α-safe for Y ] ≤ 2−γ·∆.

In the rest of this section, we prove the main lemma. Let α, σX , σY be as in the lemma. Let X,Y
be independent random variables such that X is σX -sparse and Y is σY -sparse. The following two
propositions, which are proved in Sections 3.1 and 3.2, upper bound the probabilities that X takes
a value that is not almost uniform or not recoverable respectively. Lemma 3.3 follows immediately
from the following propositions using the union bound.

Proposition 3.4. Let γ > 0 be a real number such that σX + σY ≤ 9
10 − 11

c − γ. The probability
that X takes a value that is not almost uniform is at most 2−γ·∆.

Proposition 3.5. Let γ > 0 and assume that σX + 2 · σY ≤ 1− 24
c − γ − α. Then, the probability

that X takes an almost uniform value x that is not α-recoverable is at most 2−γ·∆.

Proof of Lemma 3.3 from Propositions 3.4 and 3.5 Any value that is not α-safe is either
not almost uniform or almost uniform but not α-recoverable. By applying Proposition 3.4 with
γ = γ + 1

c , it follows that the probability that X takes a value that is not almost uniform is

at most 2−(γ+
1
c
)·∆ ≤ 2−γ∆−1. By applying Proposition 3.5 with γ = γ + 1

c , and α = α, it
follows that the probability that X takes an almost uniform value that is not α-recoverable is at
most 2−(γ+

1
c
)·∆ ≤ 2−γ∆−1. Therefore, the probability that X takes a value that is not α-safe value

is at most 2−γ∆−1 + 2−γ∆−1 = 2−γ∆. ■

Remark 3.6. We now compare our notion of safe values to the notion of dangerous values in
[CFK+19].

� Our requirement that safe values would be almost uniform corresponds to the requirement of
[CFK+19] that safe values would be non-leaking. However, our definition is stronger: Both
definitions bound the probability of Pr [Zx

I = zI ]. The definition of almost-uniform values
bounds the probability tightly from both above and below while the definition of non-leaking
values bounds it only from below. We use our stronger requirement to bound the probability
of a certain event in Section 5.2.1.
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� Our requirement that safe values would be recoverable corresponds to the requirement of
[CFK+19] that safe values would be non-sparsifying. Our requirement is weaker: Both defi-
nitions regard the sparsity of the random variable Y[n]−I | Zx

I = zI . While the definition of
[CFK+19] requires the random variable to have low sparsity, our definition only requires that
the sparsity of the random variable can be made low by conditioning on an additional event.
As discussed in the introduction, this weakening is necessary as when ∆ ≪ b, there might
not be enough values x that satisfy the stronger requirement (see Section 6).

3.1 Proof of Proposition 3.4

In this section we prove Proposition 3.4, restated next, following the ideas of [CFK+19]. Essentially,
the proof uses Vazirani’s lemma to reduce the problem to bounding bias(g⊕S(xS , YS)) for most
values of x. This is done using the fact that X and Y have low sparsity together with the low
discrepancy of g.

Proposition 3.4. Let γ > 0 be a real number such that σX + σY ≤ 9
10 − 11

c − γ. The probability
that X takes a value that is not almost uniform is at most 2−γ·∆.

Proof. We start by observing that for every x ∈ Λn, if it holds that

bias(g⊕S(xS , YS)) ≤ 2−
∆
10 · (2n)−|S|

for every non-empty set S ⊆ [n], then by first variant of Vazirani’s lemma (Lemma 2.6) we get
that x is almost uniform.

It remains to show that with probability at least 1 − 2−γ·∆ the random variable X takes a
value x that satisfies the latter condition on the biases. We start by lower bounding the probability

that bias(g⊕S(xS , YS)) ≤ 2−
∆
10 · (2n)−|S| for a specific set S ⊆ [n]. Fix a non-empty set S ⊆ [n]. By

assumption, it holds that

D∞(XS) +D∞(YS) ≤ (1− 11

c
− γ − 1

10
) ·∆ · |S|

=

(
∆− 7∆

c
− γ∆− ∆

10
− 4∆

c

)
· |S|

≤
(
∆− 7− γ∆− ∆

10
− 2 log n− 2

)
· |S| . (∆ ≥ c log n)

By applying Lemma 2.11 with γ = γ∆ + log n + 1 and λ = log n + 1 + ∆
10 it follows that with

probability at least 1− 2−γ∆−1 · 1
n|S| , the random variable X takes a value x such that

bias
(
g⊕S(xS , YS)

)
≤ 2−

∆
10 · (2n)−|S| .

Next, by taking the union bound over all non-empty sets S ⊆ [n], it follows that

Pr
[
∃S ̸= ∅ : bias

(
g⊕S(xS , YS)

)
> 2−

∆
10 · (2n)−|S|

]
≤

∑
S⊆[n]:S ̸=∅

2−γ∆−1 · 1

n|S|
< 2−γ∆−1 · 2 = 2−γ∆

by Proposition 2.1. Therefore with probability at least 1 − 2−γ∆, the random variable X takes a

value x such that bias(g⊕S(xS , YS)) ≤ 2−
∆
10 ·(2n)−|S| for all non-empty sets S ⊆ [n], as required. ■
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3.2 Proof of Proposition 3.5

In the following subsection we prove Proposition 3.5. To this end, we introduce the notion of light
values. A value x is light if after conditioning on x the distribution YJ | ZI,xI

= zI is “mostly”(
σY + 4

c

)
-sparse, that is, for almost all values yJ it holds that

Pr [YJ = yJ | Zx
I = zI ] ≤ 2(σY + 4

c )·∆·|J |−b·|J |.

The term “light” is motivated by the intuitive idea that the values yJ that violate the sparsity
requirement are “heavy” in terms of their probability mass, so a “light” value x is one that does
not have many “heavy” values yJ . We show that when a values x is light then it also recoverable.
Intuitively, the density of YJ can be restored by conditioning on the high probability event that
the heavy values are not selected. We now formally define light values. In the following definition
of heavy value there is an additional parameter t, which measures by how much the heavy value yJ
violates the (σY + 4

c )-sparsity. This parameter is used later in the proof.

Definition 3.7. Let x ∈ Λn, J ⊆ [n] and t ∈ R. We say that yJ is t-heavy (for x and zI) if

Pr [YJ = yJ | Zx
I = zI ] > 2(σY + 4

c
)·∆·|J |−b·|J |+t−1

We say that a value yJ is heavy if it is 0-heavy. We say that a value x is α-light with respect to J
if for every I ⊆ [n]− J and zI ∈ {0, 1}I it holds that

Pr [YJ is heavy for x and zI | Zx
I = zI ] ≤ 2−α∆ ·

(
1

2n

)|J |
.

A value x is α-light if it is α-light with respect to all sets J .

We now state the relationship between light values and recoverable values that was mentioned
earlier.

Proposition 3.8. If x ∈ Λn is α-light then it is α-recoverable.

We postpone the proof of Proposition 3.8 to the end of this subsection. To prove Proposition 3.5,
we consider values x that are not light with respect to some specific J . The following proposition
bounds the probability of such values. We then complete the proof by taking union bound over all
sets J .

Proposition 3.9. Assume that σX + 2 · σY ≤ 1 − 22
c − γ − α. For every J ⊆ [n], the probability

that X takes an almost uniform value x that is not α-light with respect to J is at most 2−γ·∆·|J |.

The proof Proposition 3.9 is provided in Section 3.3. We now prove Proposition 3.5 restated
below.

Proposition 3.5. Assume that σX + 2 · σY ≤ 1− 24
c − γ − α. Then, the probability that X takes

an almost uniform value x that is not α-recoverable is at most 2−γ·∆.

Proof. By applying Proposition 3.9 with γ = γ + 2
c , we obtain that for every set J ⊆ [n], the

probability that X takes an almost uniform value x that is not α-light with respect to J is at
most 2−γ·∆ · 1

(2n)|J| . By the union bound and Proposition 2.1, we obtain that with probability at

least 1− 2−γ·∆, the random variable X takes a value x that is α-light with respect to all J ⊆ [n].
Such a value x is α-recoverable by Proposition 3.8, so the required result follows. ■

15



Proof of Proposition 3.8 Let α ≥ 1
∆ and let x ∈ Λn be α-light. We show that x is α-recoverable

by showing that for every I ⊆ [n] and zI ∈ ΛI there exists an event E such that the following
random variable is (σY + 4

c )-sparse:

Y[n]−I | E and Zx
I = zI .

We choose E to be the event such that yJ are not heavy for some non-empty set J ⊆ [n] − I. We
first prove that Pr [¬E | ZI,xI

= zI ] < 2−α∆. By the union bound, it holds that

Pr [¬E | ZI,xI
= zI ] = Pr [∃J ̸= ∅ ⊆ [n]− I : YJ is heavy for x and zI | Zx

I = zI ]

≤
∑

∅≠J⊆[n]−I

Pr [YJ is heavy for x and zI | Zx
I = zI ]

≤
∑

∅≠J⊆[n]−I

2−α∆ ·
(

1

2n

)|J |
(x is α-light)

≤ 2−α∆ (Proposition 2.1)

It remain to prove that the random variable

Y[n]−I | E and Zx
I = zI

is
(
σY + 4

c

)
-sparse. For every J ⊆ [n]− I, let yJ be some value of YJ then it holds that

Pr [YJ = yJ | E and ZI,xI
= zI ] =

Pr [YJ = yJ and Y ∈ E | Zx
I = zI ]

Pr
[
E | Zx

I = zI
]

≤ 2(σY + 4
c
)·∆·|J |−b·|J |−1

Pr
[
E | Zx

I = zI
] (yJ is not heavy)

≤ 2(σY + 4
c
)·∆·|J |−b·|J |−1

1− 2−α∆

≤ 2(σY + 4
c
)·∆·|J |−b·|J |−1

1− 1
2

(since α ≥ 1

∆
)

≤ 2(σY + 4
c
)·∆·|J |−b·|J |,

and therefore the above random variable is (σY + 4
c )-sparse, as required. ■

3.3 Proof of Proposition 3.9

The proof of Proposition 3.9 consist of two parts. In the first part, we prove that for any yJ there
are only few x such that yJ is heavy for that x. In the second part, we complete the proof using
an averaging and bucketing argument. The first part is encapsulated in the following result.

Proposition 3.10. Let γ ≥ 2
c and assume that σX +σY ≤ 1− 15

c −γ. Then, for every J ⊆ [n] and
for every yJ ∈ ΛJ , the probability that X takes an almost uniform value x such that yJ is t-heavy
for x is at most 2−γ·∆·|J |−2t.

The proof of Proposition 3.10 is given in Section 3.4, and the rest of this section is devoted to
proving Proposition 3.9 using Proposition 3.10. An important point about the proposition is that
we get stronger bounds on the probability for higher values of t, that is, for values y that violate
the sparsity more strongly.
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It is tempting to try and deduce Proposition 3.9 directly from Proposition 3.10 by an averaging
argument. Such an argument would first say that, for all y, there is only a small probability that X
takes a value for which y is heavy by Proposition 3.10. Thus, for most values of x, the probability
of choosing y such that y is heavy for x should be small as well. There is, however, a significant
obstacle here: in order to prove Proposition 3.9, we need to bound probability that YJ is heavy
for x with respect to a distribution that depends on x, namely, the distribution YJ conditioned
on the value of gI (xI , YI). In contrast, the naive averaging argument assumes that X and Y are
independent. This complication renders a naive averaging argument impossible.

In order to overcome this obstacle, we note that conditioning on Zx
I = zI can increase the

probabilities of getting some yJ . This increase in probability is characterize by the maximal t such
that yJ is t-heavy for x. Thus, for each x we consider all yJ such that yJ is t-heavy for x, and
place them into buckets according to the value of t. Then, we bound the weight of each bucket
separately, while making use of the fact that Proposition 3.10 provides a stronger upper bound for
larger values of t. Using this bucketing scheme turns out to be sufficient for the averaging argument
to go through. We now prove Proposition 3.9 restated below.

Proposition 3.9. Assume that σX + 2 · σY ≤ 1 − 22
c − γ − α. For every J ⊆ [n], the probability

that X takes an almost uniform value x that is not α-light with respect to J is at most 2−γ·∆·|J |.

Proof. Let J ⊆ [n], and let X and YJ denote the supports of X and YJ respectively. For every
x ∈ X and yJ ∈ YJ , let t(x, yJ , I, zI) ∈ R be the number for which

Pr [YJ = yJ | Zx
I = zI ] = 2(σY + 4

c
)·∆·|J |−b·|J |+tx,yJ−1.

We define tx,yJ as the maximum of t(x, yJ , I, zI) over all possible I, zI . Next, consider a table whose
rows and columns are indexed by X and YJ respectively. For every row x ∈ X and column yJ ∈ YJ ,
we set the corresponding entry to be

ent(x, yJ)
def
=

{
2(σY + 4

c
)·∆·|J |−b·|J |+tx,yJ−1 tx,yJ > 0 and x is almost uniform

0 otherwise.

Now we use a bucketing argument. We take each pair (x, yJ) and put it in the bucket that is labeled
by ⌈tx,yJ ⌉. Then, for each yJ , we upper bound the probability of (X, yJ) to be in each bucket. Let
γ′ = γ + σY + α+ 7

c . Note that when ⌈tX,yJ ⌉ = t, we can bound tX,yJ from below by t− 1. Then,
by applying Proposition 3.10 with γ = γ′, we get that for every yJ and every t ∈ Z>0 it holds that

Pr [⌈tX,yJ ⌉ = t and X is almost uniform] ≤ 2−γ
′·∆·|J |−2(t−1). (4)

Therefore, for every yJ ∈ YJ , the expected entry in the yJ -th column (over the random choice of X)
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is

E [ent(X, yJ)] =

∞∑
t=1

(Pr [⌈tX,yJ ⌉ = t and X is almost uniform] ·

E [ent(X, yJ) | ⌈tX,yJ ⌉ = t and X is almost uniform])

≤2(σY + 4
c
)·∆·|J |−b·|J |−1 ·

∞∑
t=1

Pr [⌈tX,yJ ⌉ = t and X is almost uniform] · 2t

≤2(σY + 4
c
)·∆·|J |−b·|J |−1 ·

∞∑
t=1

2−γ
′·∆·|J |−2(t−1) · 2t (Equation (4))

=2(σY + 4
c
)·∆·|J |−b·|J |−1 · 2−γ′·∆·|J |+2 ·

∞∑
t=1

2−t

≤2(σY + 4
c
−γ′+ 1

c
)·∆·|J |−b·|J |

=2(σY + 4
c
−γ−σY −α− 7

c
+ 1

c
)·∆·|J |−b·|J | (definition of γ′)

≤2−(γ+α+ 2
c
)·∆·|J |−b·|J |.

It follows that the expected sum of a random row of the table (over the random choice of X) is

E

 ∑
yJ∈YJ

ent(X, yJ)

 =
∑

yJ∈YJ

E [ent(X, yJ)]

≤
∑

yJ∈YJ

2−(γ+α+ 2
c
)·∆·|J |−b·|J |

= 2−(γ+α+ 2
c
)·∆·|J |.

By Markov’s inequality, the probability that the sum of the X-th row is more than 2−(α+
2
c )·∆|J | is

upper bounded by 2−γ·∆·|J |. We now prove that if a value x ∈ X is almost uniform and the sum

in the x-th row is at most 2−(α+
2
c )·∆|J |, then x is α-light with respect to J , and this will finish the

proof of the proposition.
Let x ∈ X be such a value. We prove that x is α-light with respect to J . Let I ⊆ [n]− J and

let zI ∈ {0, 1}I . We would like to prove that

Pr [YJ is heavy for x and zI | Zx
I = zI ] ≤ 2−α∆ ·

(
1

2n

)|J |
.

Observe that for every heavy yJ , it holds that Pr [YJ = yJ | Zx
I = zI ] ≤ ent(x, yJ). It follows that

Pr [YJ is heavy for x and zI | Zx
I = zI ]

≤
∑

yJ is heavy for x and zI

Pr [YJ = yJ | Zx
I = zI ]

≤
∑
yJ

ent(x, yJ)

≤2−(α+
2
c )·∆|J |

≤2−α∆ ·
(

1

2n

)|J |
(|J | ≥ 1,∆ ≥ c log n)

as required. ■
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3.4 Proof of Proposition 3.10

In this section, we prove Proposition 3.10, restated next.

Proposition 3.10. Let γ ≥ 2
c and assume that σX +σY ≤ 1− 15

c −γ. Then, for every J ⊆ [n] and
for every yJ ∈ ΛJ , the probability that X takes an almost uniform value x such that yJ is t-heavy
for x is at most 2−γ·∆·|J |−2t.

Proposition 3.10 is essentially a more refined version of the analysis in [CFK+19]. An important
point about this proposition is that it gives stronger bounds for larger values of t. The proof of
Proposition 3.10 follows closely the equivalent proof in [CFK+19] while taking the parameter t into
consideration. The proof consists of three main steps: first, we use Bayes’ formula to reduce the
upper bound of Proposition 3.10 to upper bounding the probability of a related type of values,
called skewing values; then, we use Vazirani’s lemma to reduce the latter task to the task of the
upper bounding the biases of Zx

I . Finally, we upper bound the biases of Zx
I using the low deficiency

of X and Y and the discrepancy of g. We start by formally defining skewing values, and then
establish their connection to heavy values.

Definition 3.11. Let J ⊆ [n] , yJ ∈ supp(YJ), and I ⊆ [n]− J . Let e(yJ) be the real number that
satisfies.

Pr [YJ = yJ ] = 2σY ·∆·|J |−b·|J |−e(yJ )

We note that e (yJ) is non-negative as we assume that Y is σY -sparse. We say that x is t-skewing
for yJ (with respect to I) if

D∞ (Zx
I | YJ = yJ) > 4 · log n · |J |+ e (yJ) + t− 2

Proposition 3.12. Let x ∈ Λn, J ⊆ [n], and yJ ∈ ΛJ . If yJ is t-heavy for x and is almost uniform
then x is t-skewing for yJ (with respect to some set I).

Proof. By the assumption that yJ is t-heavy for x, there exist I ⊆ [n] and zI ∈ ΛI such that

Pr [YJ = yJ | Zx
I = zI ] > 2(σY + 4

c
)·∆·|J |+t−b·|J |−1. (5)

We show that x is t-skewing for yJ with respect to I. It follows that

Pr [Zx
I = zI | YJ = yJ ] =

Pr [YJ = yJ | Zx
I = zI ] · Pr [Zx

I = zI ]

Pr [YJ = yJ ]
(Bayes’ formula)

>
2(σY + 4

c
)·∆·|J |+t−b·|J |−1 · Pr [Zx

I = zI ]

Pr [YJ = yJ ]
(Equation (5))

≥ 2(σY + 4
c
)·∆·|J |+t−b·|J |−1 · 2−|I|−1

Pr [YJ = yJ ]
(x is almost uniform)

=
2(σY + 4

c
)·∆·|J |+t−b·|J |−1 · 2−|I|−1

2σY ·∆·|J |−b·|J |−e(yJ )
(definition of e(yJ))

= 24·logn·|J |+e(yJ )+t−2−|I| (∆ ≥ c · log n).

The latter inequality implies that

D∞ (Zx
I | YJ = yJ) > 4 · log n · |J |+ e (yJ) + t− 2.

as required. ■
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Next, we formally define biasing values and relate them to skewing values via the usage of
Vazirani lemma, thus allowing us to focus on the biases. Informally, biasing values are values x
such that when conditioning on YJ = yJ , the bias of g⊕S (xS , YS) =

⊕
i∈S Zx

i is too high for
some S ⊆ I.

Definition 3.13. Let J ⊆ [n] and let yJ ∈ ΛJ . We say that x is t-biasing for yJ if there exists a

set S ⊆ [n]− J such that |S| ≥ 4 · |J |+ t+e(yJ )−3
logn and

bias
(
g⊕S (xS , YS) | YJ = yJ

)
> (2n)−|S| .

Proposition 3.14. Let x ∈ Λn, let J ⊆ [n], and let yJ ∈ ΛJ . If x is not t-biasing for yJ
then x is not t-skewing for yJ .

Proof. Let x, J, yJ be as in the proposition, and assume that x is not t-biasing for yJ . We prove
that x is not t-skewing for yJ . To this end, we prove that for every I ⊆ [n]− J it holds that

D∞ (Zx
I | YJ = yJ) ≤ 4 · log n · |J |+ e (yJ) + t− 2.

Let I ⊆ [n] − J . By assumption, x is not t-biasing for yJ . Therefore we can apply the second
variant of Vazirani’s lemma (Lemma 2.7) to the random variable ZI,xI

| YJ = yJ and obtain that

D∞ (Zx
I | YJ = yJ) ≤

(
4 · |J |+ t+ e(yJ)− 3

log n

)
· log |I|+ 1

≤
(
4 · |J |+ t+ e(yJ)− 3

log n

)
· log n+ 1

= 4 · log n · |J |+ t+ e(yJ)− 2,

as required. ■

We finally prove Proposition 3.10, restated next.

Proposition 3.10. Let γ ≥ 2
c and assume that σX +σY ≤ 1− 15

c −γ. Then, for every J ⊆ [n] and
for every yJ ∈ ΛJ , the probability that X takes an almost uniform value x such that yJ is t-heavy
for x is at most 2−γ·∆·|J |−2t.

Proof. Let J ⊆ [n] and let yJ ∈ ΛJ . We first observe that it suffices to prove that with probability
at least 1− 2−γ·∆·|J |−2t, the random variable X takes a value x that is not t-biasing for yJ . Indeed,
if x is a value that is not t-biasing for yJ , then by Proposition 3.14 it is not t-skewing for yJ , and
then by Proposition 3.12 it cannot be the case that yJ is t-heavy for x and that x is almost uniform.
It remains to upper bound the probability that x is t-biasing for yJ .

We start by upper bounding the probability that X takes a value x such that

bias
(
g⊕S (xS , YS) | YJ = yJ

)
> (2n)−|S|

for some fixed non-empty set S ⊆ [n]−J such that |S| ≥ 4·|J |+ t+e(yJ )−3
logn (the case where S is empty

is trivial). Let S be such a set. In order to upper bound the latter probability, we use Lemma 2.11,
which in turn requires us to upper bound the deficiencies D∞(XS) and D∞(YS | YJ = yJ). By
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assumption, we know that D∞(XS) ≤ σX · ∆ · |S|. We turn to upper bound D∞(YS | YJ = yJ).
For every yS ∈ ΛS , it holds that

Pr [YS = yS | YJ = yJ ] =
Pr [YS∪J = yS∪J ]

Pr [YJ = yJ ]

=
Pr [YS∪J = yS∪J ]

2σY ·∆·|J |−b·|J |−e(yJ )
(Definition of e(yJ))

≤ 2σY ·∆·(|S|+|J |)−b·(|S|+|J |)

2σY ·∆·|J |−b·|J |−e(yJ )
(Y is σY -sparse)

= 2σY ·∆·|S|+e(yJ )−b·|S|

and thus
D∞(YS | YJ = yJ) ≤ σY ·∆ · |S|+ e(yJ).

By our assumption on the size of S, it follows that

e(yJ) ≤ log n · |S|+ 3 ≤ 4 · log n · |S| ≤ 4

c
·∆ · |S|

and therefore

D(XS) +D∞(YS | YJ = yJ) ≤ (σX + σY +
4

c
) ·∆ · |S|

≤ (1− 11

c
− γ) ·∆ · |S| (σX + σY ≤ 1− 15

c
− γ)

=

(
∆− 7∆

c
− γ∆− 4∆

c

)
· |S|

≤ (∆− 7− γ∆− 2 log n− 2) · |S| .

Now, by applying Lemma 2.11 with γ = γ∆ + log n + 1 and λ = log n + 1, it follows that the
probability that X takes a value x such that

bias
(
g⊕S (xS , YS) | YJ = yJ

)
> (2n)−|S|

is at most

2−γ·∆·|S| · 1

(2n)|S|
,

where the inequality holds since S is assumed to be non-empty. By taking union bound over all
relevant sets S, it follows that the probability that X takes a value x that is t-biasing for yJ is at
most ∑

S⊆[n]:|S|≥4·|J |+ t+e(yJ )−3

logn

2−γ·∆·|S| · 1

(2n)|S|

≤
∑

S⊆[n]:|S|≥4·|J |+ t−3
logn

2−γ·∆·|S| · 1

(2n)|S|
(e(yJ) ≥ 0)

≤ 2 · 2−γ·∆·
(
4·|J |+ t−3

logn

)
· 1
2

(Proposition 2.1)

≤ 2
−γ·∆·

(
4|J |+ t−3

logn

)
≤ 2

−γ·∆|J |−γ·∆ t
logn (|J | ≥ 1, log n ≥ 1)

≤ 2−γ·∆·|J |−2t (
γ ·∆
log n

≥ 2∆

c log n
≥ 2)
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as required. ■

4 The deterministic lifting theorem

In this section we prove the deterministic part of our main theorem, restated below.

Theorem 4.1 (Deterministic lifting theorem). There exists a universal constant c ∈ N such that the
following holds. Let S be a search problem that takes inputs from {0, 1}n and let g : Λ×Λ → {0, 1}
be an arbitrary function such that ∆(g) ≥ c · log n. Then there is a deterministic decision tree T

that solves S with complexity O
(
Dcc(S◦gn)

∆(g)

)
.

In what follows, we fix Π to be an optimal deterministic protocol for S ◦ gn and let Dcc(S ◦ gn)
be its complexity. We construct a decision tree T that solves S using O(D

cc(S◦gn)
∆ ) queries. We

construct the decision tree T in Section 4.1, prove its correctness in Section 4.2, and analyze its
query complexity in Section 4.3.

High-level idea of the proof. Intuitively, given an input z ∈ {0, 1}n, the decision tree T
attempts to construct a full transcript π of Π that is consistent with some input (x, y) such that
gn(x, y) = z. Such a transcript must output a solution in

(S ◦ gn)(x, y) = S (gn(x, y)) = S(z)

thus solving S on z. The tree works iteratively, constructing the transcript π message-by-message.
Throughout this process, the tree maintains random variables X,Y that are distributed over the
inputs of Alice and Bob such that the input (X,Y ) is consistent with π. In particular, the tree
preserves the invariant that the variables (X,Y ) are (ρ, σX , σY )-structured where ρ is a restriction
that is consistent with z and for some values σX and σY . The restriction ρ keep track which
of the input bits of z have been queried, and is maintained accordingly by the tree. By the
uniform marginals lemma (Lemma 2.17), we get that the protocol Π cannot distinguish between
the distribution of (X,Y ) and the same distribution conditioned on gn(X,Y ) = z. Hence, when
the protocol ends, π must be consistent with an input in (gn)−1 (z).

We now describe how the tree preserves the foregoing invariant. Suppose without loss of gener-
ality that the invariant is violated because XI is not σX -sparse (the case where Y is not σY -sparse
is treated similarly). Specifically, assume that the deficiency of XI is too large for some set of
coordinates I ⊆ free(ρ). To restore the structure, the tree queries zI and conditions X and Y on
gI(XI , YI) = zI . The conditioning on gI(XI , YI) = zI , however, could increase the deficiency of X
and Y , which might violate their structure. In order to avoid this, the tree conditions X in advance
on taking a safe value. Moreover, after the conditioning on gI(XI , YI) = zI the tree recovers the
density of Y by conditioning it on a high-probability event, as in the the definition of a recoverable
value (Definition 3.2).

In order to upper bound the query complexity of the tree, we keep track of the deficiency
D∞

(
Xfree(ρ), Yfree(ρ)

)
throughout the simulation of the protocol. We prove that the messages that

the tree sends in the simulation increase the deficiencies by at most O(Dcc(S ◦ gn)) overall. On
the other hand, whenever the tree queries a set of coordinates I, the deficiency decreases by at

least Ω(|I| ·∆). As a result we get that the tree cannot make more then O
(
Dcc(S◦gn)

∆

)
queries in

total.
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4.1 The construction of the deterministic decision tree

In this section we describe the construction of the deterministic decision tree T . For the construction
we set σ

def
= 1

4 , α
def
= 1

c and c = 200.

Invariants. The tree maintains a partial transcript π, a restriction ρ, and two independent ran-
dom variables X,Y over Λn such that the input (X,Y ) is consistent with π. The tree works
iteratively. In each iteration the tree simulates a single round of the protocol Π. The tree main-
tains the invariant that at the beginning of each iteration, if it is Alice’s turn to speak in the
simulated protocol, then X and Y are (ρ, σ+ 4

c , σ)-structured. If it is Bob’s turn to speak, it is the
other way around.

The algorithm of the tree. When T starts the simulation, the tree sets the transcript π to be
empty , the restriction ρ to {∗}n, and X,Y to uniform random variables over Λn. It is easy to verify
that the invariant holds at the beginning of the simulation. We now describe a single iteration of
the tree. Without lose of generality, we assume that this is Alice’s turn. The tree performs the
following steps:

1. The tree conditions Xfree(ρ) on taking an α-safe value for Yfree(ρ).

2. Let M (x, π) be the message that Alice sends on partial transcript π and input x. The tree
chooses a message m such that P [M (X,π) = m] ≥ 2−|m|, adds it to π, and conditions X on
the event that M (X,π) = m. We note that such a message m must exist (see explanation
below).

3. Let I ⊆ free (ρ) be a maximal set that violates the σ-sparsity of Xfree(ρ), and let xI be a value

such that Pr [XI = xI ] > 2σ·∆·|I|−b·|I|. The tree conditions X on XI = xI .

4. The tree query zI and sets ρI to zI .

5. The tree conditions Y on gI (xI , YI) = zI .

6. The tree conditions Y on an event E such that Y | E is
(
σ + 4

c

)
-sparse and Pr [E ] ≥ 1

2 . Such
an event must exist since the value x is safe, and in particular, recoverable

When the protocol Π halts, the tree T halts as well and returns the output of the transcript π. A
few additional comments are in order:

� We need to explain why we never condition X nor Y on an event with zero probability. Re-
garding Step 1, we need to prove that there exist α-safe values. To do so we apply Lemma 3.3
with γ = 1

c (and α as defined above). As required by the lemma, it holds that

σX + 2σY ≤ 3σ +
4

c
= 0.77 ≤ 0.865 = 1− 27

c
= 1− 25

c
− γ − α.

Therefore we know that the conditioning is on an event with probability of at least 1− 2−
∆
c > 0.

Regarding the conditioning at Step 5, we note that the value xI is safe. Hence, xI is almost
uniform and the event gI (xI , YI) = zI is not empty.

� In Step 2, we claimed that there must be a message m such that Pr [M (X,π) = m] ≥ 2−|m|.
To this end, we note that the set of possible messages of Alice must be a prefix-free code.
Otherwise, there would be two messages m1,m2 such that m1 is prefix of m2. In case that Bob
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got the message m1 from Alice, Bob will not know whether Alice sent m2 but the remaining
bits have not arrived yet, or Alice sent the message m1. We complete the proof of the claim
by using Fact 2.9 that ensures that such a message exists.

� We need to prove that at the end of Step 6, the variable X is σ-sparse and Y is
(
σ + 4

c

)
-

sparse as required by the invariants. It holds that X is σ-sparse by Proposition 2.18, and Y
is
(
σ + 4

c

)
-sparse by the definition of the event E at end of Step 6.

4.2 Correctness of the deterministic decision tree

We now prove that the tree always returns a correct answer, that is, given an input z the tree
outputs an answer o such that (z, o) ∈ S. Let X,Y and π be the distributions and transcript at
the end of the simulation. Let o be the output associated with the transcript π. As asserted in
Section 4.1, every (x, y) ∈ supp (X,Y ) is consistent with the transcript π. By the fact that Π solves
S ◦ gn, for every pair (x, y) ∈ supp (X,Y ) it holds that

(gn (x, y) , o) ∈ S.

To complete the proof of correctness, we show that there exists a pair (x, y) ∈ supp (X,Y ) such
that gn (x, y) = z and therefore (z, o) ∈ S. As X,Y are (ρ, σX , σY )-structured, it is guaranteed
that

gfix(ρ)
(
Xfix(ρ), Yfix(ρ)

)
= zfix(ρ)

with probability 1. Regarding the free part, we apply Proposition 2.16 with γ = 1
c . (so the

requirement 2σ + 4
c ≤ 1− 8

c − γ holds) and we get that

Pr
[
gfree(ρ)

(
Xfree(ρ), Yfree(ρ)

)
= zfree(ρ)

]
> 0.

Therefore there must be some pair (x, y) ∈ supp (X,Y ) such that gfree(ρ)
(
xfree(ρ), yfree(ρ)

)
= zfree(ρ).

Both facts together ensure us that there exist a pair (x, y) ∈ supp (X,Y ) such that gn (x, y) = z,
as required.

4.3 Query complexity of the deterministic decision tree

In this section, we upper bound the query complexity of the tree by O
(
Dcc(S◦gn)

∆

)
. The upper

bound is proven using a potential argument. We define our potential function to be the deficiency
of X,Y , i.e.,

D∞
(
Xfree(ρ), Yfree(ρ)

)
= D∞

(
Xfree(ρ)

)
+D∞

(
Yfree(ρ)

)
.

We prove that whenever the simulated protocol sends a message m, the deficiency increases by at
most O (|m|), and that whenever the tree makes a query, the deficiency decreased by at least Ω (∆).
The deficiency is equal to zero at the beginning of the simulation and it is always non-negative by
Fact 2.3. The length of the transcript is bounded by Dcc (S ◦ gn), and therefore we get a bound of

O
(
Dcc(S◦gn)

∆

)
queries.

We now analyze in detail the changes in the deficiency during a single iteration of the tree
step-by-step:

1. In Step 1 the tree conditions on the event that Xfree(ρ) is safe. By applying Lemma 3.3

with γ = 1
c , we obtain that Pr

[
Xfree(ρ) is not safe

]
≤ 2−

∆
c ≤ 1

2 . Therefore, it follows that
D∞

(
Xfree(ρ)

)
increases at most by 1 by Fact 2.4.
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2. In Step 2, the deficiency D∞
(
Xfree(ρ)

)
increases by at most log 1

Pr[m] by Fact 2.4. As m is

chosen such that Pr [m] ≥ 2−|m|, it holds that D∞
(
Xfree(ρ)

)
increases by at most |m|

3. In Step 3, the deficiency D∞
(
Xfree(ρ)

)
increases by at most b · |I| − σ ·∆ · |I| by Fact 2.4.

4. In Step 4, we reduce free (ρ) by |I|. The deficiency D∞
(
Xfree(ρ)

)
is decreased by b·|I| since XI

is a constant, while D∞
(
Yfree(ρ)

)
does not increase by Fact 2.5.

5. In Step 5, we get thatD∞
(
Yfree(ρ)

)
increases by at most log 1

Pr[g(xI ,YI)=zI ]
by Fact 2.4. Since xI

is almost uniform, we know that Pr [g (xI , YI) = zI ] ≥ 2−|I|−1, and therefore D∞
(
Yfree(ρ)

)
increases by at most |I|+ 1.

6. In Step 6 the tree conditions Y on the event E such that Pr [Y ∈ E ] ≥ 1
2 . By Fact 2.4 we get

that D∞(Yfree) increases by at most 1.

At the end, we have that any message m increase the deficiency by at most |m|+ 1 ∈ O (|m|), and
for any set of queries I the deficiency decreases by at least

b · |I| − (b · |I| − σ ·∆ · |I|)− |I| − 2 ≥
(
σ − 3

∆

)
·∆ · |I| (rearranging,|I|≥ 1)

≥
(
σ − 3

c

)
·∆ · |I| (∆ > c log n)

∈ Ω (∆ · |I|) (σ − 3

c
= 0.235 is a positive constant).

5 The randomized lifting theorem

In this section we prove the randomized lifting theorem. We start by stating the following simulation
result, which implies the lifting theorem as a simple consequence.

Notation 5.1. Let Π be some protocol that takes inputs in Λn × Λn. For every z ∈ {0, 1}n we
let Π′z denote the distribution of transcripts of the protocol Π on uniformly random inputs X,Y
conditioned on the event gn (X,Y ) = z.

Theorem 5.2. Let g : Λ×Λ → {0, 1} be a function such that ∆(g) ≥ 1000 log n. Let Π be a public-
coin randomized protocol that takes inputs from Λn×Λn and uses at most C bits of communication.
Then, there is a randomized decision tree given an input z ∈ {0, 1}n, samples from a distribution

that is
(
2−

∆(g)
20 · (1 + C)

)
-close to the distribution Π′z and makes at most 80

(
C

∆(g) + 1
)
queries.

Before we prove Theorem 5.2, we show how Theorem 5.2 implies Theorem 1.3, restated next.

Theorem 1.3 (Randomized part). There exists a universal constant c such that the following holds:
Let S be a search problem that takes inputs from {0, 1}n, let g : Λ × Λ → {0, 1} be an arbitrary
function such that ∆(g) ≥ c · log n, and let β > 0. Then, it holds that

Rcc
β (S ◦ gn) ∈ Ω

((
Rdt

β′(S)− 80
)
·∆(g)

)
,

where β′ = β + 2−∆(g)/50.
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Proof. We choose c = 1000. Let Π be an optimal protocol that solves S ◦gn with error probability
β, and denote by C the complexity of Π. In the case that C ≥ n · ∆(g), the lower bound holds
trivially, and we therefore assume that C < n · ∆(g). Let T be the tree obtained by applying
Theorem 5.2 to Π. We construct a decision tree T ′ for S as follows: on input z, the tree T ′

simulates the tree T on z, thus obtaining a transcript π of Π, and returns the output associated
with this transcript. For a transcript π of Π, we denote by O (π) the output associated with this
transcript. By assumption, for every inputs (x, y) ∈ Λn × Λn such that gn (x, y) = z, it holds that
the output of Π on x, y is in S (z) with probability 1 − β as S (z) = (S ◦ gn) (x, y). The error
probability of T ′ on z is

Pr
o←T ′(z)

[(z, o) /∈ S] = Pr
π←T

[(z,O (π)) /∈ S]

≤ Pr
π←Π′

z

[(z,O (π)) /∈ S] + 2−
∆(g)
20 · (1 + C) (by Theorem 5.2)

≤ β + 2−
∆(g)
20 · (1 + C)

≤ β + 2−
∆(g)
20 · n ·∆(g)

≤ β + 2−
∆(g)
20 · 2

∆(g)
c ·∆(g) (∆ (g) ≥ c · log n)

≤ β + 2−
∆(g)
50 . (as ∆ (g) ≥ c = 1000)

where the second to last transition hold for sufficiently large (but constant) c. Therefore, the tree T ′

solves S with error probability at most β′. Note that the query complexity of T ′ is the same as
the query complexity of T . Therefore, by Theorem 5.2, the query complexity of T ′ is at most

80
(
Rcc

β (S◦gn)
∆(g) + 1

)
. Together with the fact that T ′ solves S we get that

Rdt
β′ (S) ≤ 80

(
Rcc

β (S ◦ gn)
∆ (g)

+ 1

)

and therefore

Rdt
β′ (S)− 80 ≤ 80

(
Rcc

β (S ◦ gn)
∆ (g)

)
(
Rdt

β′ (S)− 80
)
·∆(g) ≤ 80

(
Rcc

β (S ◦ gn)
)

Rcc
β (S ◦ gn) ∈ Ω

((
Rdt

β′ (S)− 80
)
·∆(g)

)
. ■

In the rest of this section we prove Theorem 5.2. The proof is organized as follow: We first
introduce the algorithm of tree T in Section 5.1 and prove some basic facts about the tree. Then,
in Section 5.2 we prove the correctness of the tree, that is, we prove that the distribution of the
outputs of the tree given z is indeed close to Π′z. We end the section with proving the bound on
the query complexity in Section 5.3.

5.1 Construction of the decision tree

The construction of the randomized decision tree is similar to the deterministic tree but has several
important differences. The key difference is in the goal of the tree: in the randomized case, we
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should sample a transcript from Π′z, whereas in the deterministic case we only need to find some
transcript in the support of Π′z.

As in the deterministic case, the tree maintains two random inputs X and Y . As a result of
the key difference described above, the tree cannot condition on low-probability events, as this can
drastically change the distribution of the returned transcript. This constraint results in number of
changes to the way the tree samples messages and restores density. We now describe these changes:

� When the deterministic tree chooses a message for Alice in the simulation, it is sufficient for
the tree to choose some high probability message m and to condition X on sending it. In
contrast, the randomized tree needs to sample a message that is close to the distribution of the
next message in Π′z. In order to do so in the case that Alice speaks, the randomized decision
tree samples the message m by first sampling x from X and then simulating the protocol on x
to obtain m. The case where it is Bob’s turn to speak is handled similarly. In Section 5.2 we
prove that this distribution of the message is sufficiently close to its distribution in Π′z using
the uniform marginals lemma.

� The change to the selection of messages in the previous item creates a new problem. Denote
by M be the random message that sampled by the simulation. In the deterministic case,
when the tree conditions X on M = m, the deficiency of X grows by at most |m|, as the
choice of m guarantees that Pr [M = m] ≥ 2−|m|. In the randomized case, on the other
hand, this does not hold anymore, since the chosen message m may have an arbitrarily low
probability. In order to resolve this issue, we maintain a counter Kmsg that keep track of the
sum

∑
m∈π log

1
Pr[M=m] , that is, the total increase in deficiency caused by sending messages.

The tree halts if the counter Kmsg surpasses C + ∆ at any point. This way we ensure that
sending messages contributes at most C +∆ to the deficiency. In Section 5.2, we prove that
the tree halts in this way only with small probability, and therefore this modification does
not contribute much to the error probability.

� In the deterministic case, the tree restores the density of the variable X by conditioning
it on an event of the form XI = xI for some value xI . Unfortunately, the event XI = xI
might have too low probability. Instead, we use the density-restoring partition (Lemma 2.19).
Specifically the tree sample some class Xj of the partition and conditions on X ∈ Xj .

� The change to the density-restoration procedure create a new problem. Let J be the a
random variable of the partition class, and let j be the index of the class partition that was
chosen. Using the density-restoring partition increases the deficiency by an additional term
of log 1

Pr[J≥j] . As with the messages, we create a counter Kprt that keeps track of the sum∑
log 1

Pr[J≥j] and halt if Kprt > 5C + 2∆. We show that Kprt > 5C + 2∆ occurs with only
with negligible probability.

The changes described above follow the previous works [GPW17, CFK+19]. In particular, our
construction closely follows the construction in [CFK+19]. As in the deterministic case, the main
difference is the addition of density-restoring step for Y at the end of the iteration. This, in turn,
requires a non-trivial addition to the proof of correctness (see Section 5.2.1). We turn to formally
describe the decision tree.

Parameters. Let set c = 1000, σ
def
= 1

10 + 2
c and α

def
= 1

10 . Let ∆
def
= log 1

disc(g) be such that
∆ > c log n. Denote by C the worst-case complexity of the protocol Π.
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Assertions and Invariants. Throughout the simulation the tree maintains two independent
random variables X,Y ∈ Λn that are uniformly distributed over some subsets X ,Y ⊆ Λn respec-
tively. The tree also maintains a restriction ρ. It holds that the set fix (ρ) is the set of all queried
bits, and ρfix(ρ) = zfix(ρ). The tree simulates Π iteratively, where at each iteration the tree simulates
single round. At the beginning of each iteration, if it is Alice’s (respectively Bob’s) turn to speak
then X,Y are

(
ρ, σ + 4

c , σ
)
-structured (respectively

(
ρ, σ, σ + 4

c

)
-structured). Throughout the sim-

ulation, the tree maintains some partial transcript π. At any point in the simulation, it holds that
all pairs of inputs (x, y) in X × Y are consistent with the partial transcript π.

The Algorithm Of The Tree. The tree starts by sampling public coins for the randomized
protocol Π and fixing them. From this point on, the protocol can be thought of as a deterministic
protocol. The tree then sets initial values to its variables. The distributions X,Y are initialized
to be uniform over Λn. The transcript π is initialized to the empty transcript, the restriction ρ
to {∗}n, and the counters Kmsg,Kprt to 0. We now describe a single iteration of the tree. Without
lose of generality we assume here that it is Alice’s turn to speak in π. An iteration where it is Bob’s
turn to speak in π is the same with the exception of swapping the roles X and Y .

1. The tree conditions Xfree(ρ) on taking a value x that is α-safe for Yfree(ρ).

2. Let the random variable M be the message that Alice sends on input X and the current
partial transcript π. The tree samples a message m according to M and appends it to π.
Then, the tree adds log 1

Pr[M=m] to Kmsg and conditions X on M = m,.

3. Let Xfree(ρ) = X 1∪· · ·∪X l be the density-restoring partition we get from Lemma 2.19. The tree
chooses a random class X j such that it choose the i-th class with probability Pr

[
Xfree(ρ) ∈ X i

]
.

The tree then conditions X on Xfree(ρ) ∈ X j . Let Ij and xj be the set of coordinates and
value associated with X j as defined by Lemma 2.19.

4. Recall that
p≥i

def
= Pr

[
Xfree(ρ) ∈ X i ∪ · · · ∪ X l

]
,

where the random variable X here refers to the random variable as in the start of Step 3.
The tree adds log 1

p≥j
to Kprt.

5. If Kprt > 5C + 2∆ or Kmsg > C +∆ then the tree halts.

6. The tree queries the coordinates in Ij and sets ρIj = zIj .

7. The tree conditions Y on gIj
(
xIj , YIJ

)
= ρIj .

8. The tree conditions Y on an event E such that Pr [E ] > 1− 2−α∆ and Yfree(ρ) | E is
(
σ + 4

c

)
-

sparse. Such an event must exist as x is α-safe, and in particular, α-recoverable. For the sake
of the analysis, we assume that there is a canonical choice of such the event E .

When the simulation reaches the end of the protocol, the decision tree halts and outputs the
transcript π. In order for the algorithm to be well-defined, it remains to explain two points.

� We explain why all the conditionings done in the tree are on non-empty events. Regarding
Step 1, the probability that Xfree(ρ) is safe is lower bounded by the main lemma. We know
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that Xfree(ρ), Yfree(ρ) are
(
σ + 4

c

)
-sparse and σ-sparse respectively. We now apply the main

lemma with γ = 1
10 , which is possible since

σX + 2σY =
3

10
+

10

1000
= 0.310 ≤ 0.675 =

7

10
− 25

1000
=

9

10
− 25

c
− γ − α.

Thus the probability is lower bounded by 1 − 2−
1
10

∆ > 0 and we can conclude that the
event is not empty. In Step 7, the tree conditions on gIj

(
xIj , YIJ

)
= ρIj , and it holds that

Pr
[
gIj
(
xIj , YIJ

)
= ρIj

]
> 2−|I|−1 as x is almost uniform.

� Earlier we asserted that if at the beginning of the iteration it is Alice’s turn to speak then
Xfree(ρ), Yfree(ρ) are

(
ρ, σ + 4

c , σ
)
-structured, and they are

(
ρ, σ, σ + 4

c

)
-structured when it is

Bob’s turn to speak. Assume that in the start of the iteration it is the case thatXfree(ρ), Yfree(ρ)
are
(
ρ, σ + 4

c , σ
)
-structured. After Step 3 it is guaranteed thatX is σ-sparse, and Y is

(
σ + 4

c

)
-

sparse by Step 8. Therefore X,Y swap rules and the assertion holds.

5.2 Correctness of the decision tree

In this section we prove the correctness of the decision tree, that is, that on every input z the

output distribution of the tree given z is
(
2−

∆(g)
20 · (1 + C)

)
-close to Π′z (recall that Π′z denotes the

distribution of transcripts of the protocol Π on uniformly random inputs conditioned on the event
gn (X,Y ) = z). For the rest of the proof we fix z to be some input. For simplicity, we will assume
that the protocol always runs for exactly C rounds. In case that the protocol finishes earlier, we
consider all the remaining rounds as containing empty messages.

We now set up some additional notation. Let Π† be a random transcript constructed by T
when invoked on the input z. In the case that T halts early we let Π† to be some special symbol ⊥.
Instead of bounding the distance between Π† and Π′z directly, it is easier to bound the distance
of each of them to an intermediate transcript. In order to define the intermediate transcript, we
introduce an intermediate decision tree T ∗, which is the same as the tree T except that Step 5 is
removed. We now define the intermediate transcript Π∗ to be the transcript generated by T ∗ when
invoked on the input z. The correctness of T now follows immediately from the next two claims,
that are proved in Sections 5.2.1 and 5.2.2 respectively.

Claim 5.3. Π′z is C · 2−
∆
20 -close to Π∗.

Claim 5.4. Π∗ is 2 · 2−∆-close to Π†.

5.2.1 Proof Of Claim 5.3

In order to prove Claim 5.3, we define a notion called the extended protocol, which is an augmented
version of Π that imitates the action of the tree T ∗. The extended protocol works in iterations,
such that each iteration corresponds to a single round of the original protocol, and is analogous to
a single iteration of the tree T ∗.

In the following description of the protocol, we denote by X and Y the set of all inputs of
Alice and Bob that are compatible with the current (partial) transcript of the extended protocol.
Additionally, letX and Y be uniform variables over X and Y respectively. Throughout the protocol,
Alice and Bob maintain a restriction ρ, which is initialized with {∗}n and is kept consistent with
gn (x, y). Alice and Bob also maintain shared partial transcript π of the original protocol.

We now describe a single iteration of the extended protocol. Without loss of generality we
assume that it is Alice’s turn to speak in this round. In the case where it is Bob’s turn to speak,
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the roles of Alice (respectively X) and Bob (respectively Y ) are swapped. In a single iteration, the
extended protocol performs the following steps:

1. Alice sends 0 if xfree(ρ) is α-safe for Yfree(ρ), and 1 otherwise.

2. Alice sends the message m that Alice would send in protocol Π on the input x in this round.
The message m is appended to π by both Alice and Bob.

3. Let X j be the density-restoring partition of Xfree(ρ). Alice sends the index j such that xfree(ρ) ∈
X j .

4. Bob sends gIj
(
xIj , yIj

)
. Both Alice and Bob update ρIj = gIj

(
xIj , yIj

)
.

5. Bob sends 0 if y ∈ E , where E is the event from Step 8 of the tree, and 1 otherwise.

The tree T ∗ can be naturally modified to simulate not only the protocol but also the extended
protocol. We call this modified tree the extended tree. More formally, we change T ∗ such that it
maintains extended transcript πe as follows:

� in Step 1 the tree appends 0 to πe.

� in Step 2 the tree appends the same message m to πe as it appends to π.

� in Step 3 the tree appends the index j of the partition class to πe.

� in Step 7 the tree appends the queried bits to πe.

� in Step 8 the tree appends 0 to πe.

After those changes, the sets X = supp(X) and Y = supp(Y ) that are maintained by the tree are
equal to the set of all inputs that are consistent with the partial transcript πe.

Let E∗ be a random extended transcript constructed by T ∗ when invoked on the input z.
Let E′ be a transcript of the extended protocol on random inputs X ′, Y ′ uniformly chosen from
(gn)−1 (z). We prove Claim 5.3 by bounding the statistical distance between the transcripts E∗

and E′. Then, as the transcripts of random transcript of Π∗ and Π′z can be extracted from E∗

and E′, the statistical distance |Π∗ −Π′z| is bounded by |E∗ − E′|.
We bound the distance |E∗ − E′| by constructing a coupling for E∗ and E′. Let E∗≤i be the

prefix of E∗ that corresponds for the first i iterations (the same goes for E′≤i). The coupling is
constructed round-by-round, that is, we iteratively construct couplings of E′≤i and E∗≤i from a
coupling of E′≤i−1 and E∗≤i−1. We formally state this in the following claim.

Claim 5.5. For every i exists a coupling of E′≤i and E∗≤i such that

Pr
[
E′≤i ̸= E∗≤i

]
≤ 2−

∆
20 · i.

Proof. We prove the claim by induction on i. In the base case of i = 0 we set both E′ and E∗ to
the empty transcript , and then Pr [E′0 ̸= E∗0 ] = 0 as desired. Assume by induction that there exists
a coupling of E′≤i−1 and E∗≤i−1. We describe an algorithm that samples a coupling of E′≤i and E∗≤i
using the coupling of E′≤i−1 and E∗≤i−1. The algorithm maintains two partial transcripts e∗ and e′,
which constitute the parts of E′≤i and E∗≤i that were constructed until the current step. We will
sometimes say that the algorithm fails, in which case the output for E∗≤i is sampled by sampling

from the distribution
(
E∗≤i | e∗ is a prefix of E∗≤i

)
and the output for E′≤i is sampled similarly and

independently.
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We assume without loss of generality that it is Alice’s turn to speak in the original protocol. The
algorithm first samples transcripts e′ and e∗ from the coupling of of E′≤i−1 and E∗≤i−1 respectively.
If e′ ̸= e∗ the algorithm fails immediately. Let X be the uniform distribution over the set X of
Alice’s inputs that are consistent with the partial transcript e∗. The random variable Y is defined
analogously for Y and Bob. Let X ′ and Y ′ be random variables that are jointly distributed like X
and Y conditioned on gn (X,Y ) = z (respectively). The algorithm now follows the steps of the
extended tree and extended protocol and constructs e′ and e∗ by appending messages corresponding
to those steps.

� The algorithm appends 0 to e∗ since T ∗ always appends 0 to its transcript. The algorithm
also appends 0 to the transcript e′ with probability Pr

[
Xfree(ρ) is α-safe | gn (X,Y ) = z

]
, and

otherwise it appends 1 to e′ and fails. To bound the failure probability, we use the uniform
marginals lemma (Lemma 2.17) with γ = 1

10 and get that

Pr
[
Xfree(ρ) is not α-safe | gn (X,Y ) = z

]
≤ Pr

[
Xfree(ρ) is not α-safe

]
+ 2−

∆
10 .

Then, by applying the main lemma (Lemma 3.3) with γ = 1
10 , we get that Pr

[
Xfree(ρ) is not α-safe

]
is at most 2−

∆
10 . Note that we can apply the main lemma and the uniform marginals lemma

as X and Y are (σ + 4
c )-sparse and σ-sparse, respectively. Thus, the coupling fails at this

step with probability at most 2 · 2−
∆
10 .

� Let M (x) be the next message in Π on input x and let J (x) be the partition class of the den-
sity restoring partition that contains x. We define the random variables M∗ = M (X),J∗ =
J (X),M ′ = M (X ′), and J ′ = J (X ′). As we will explain momentarily, there exists a cou-

pling of the pairs (M∗, J∗) and (M ′, J ′) s.t Pr [(M∗, J∗) ̸= (M ′, J ′)] ≤ 2−
∆
10 . The algorithm

samples from this coupling and appends the resulting samples to e∗ and e′. If the samples
are different, the algorithm fails.
To show that the required coupling exists, we use the uniform marginals lemma (Lemma 2.17)

with γ = 1
10 to show thatX andX ′ are 2−

∆
10 -close. ThereforeM (X) , J (X) andM (X ′) , J (X)

are 2−
∆
10 -close , which implies the existence of the desired coupling by Fact 2.8. In order to

apply the uniform marginals lemma, we need to show that X and Y are sufficiently sparse.
The random variable Y is σ-sparse by the invariant of the tree. To see why X is sufficiently
sparse, recall that X was (σ + 4

c )-sparse at the beginning at the beginning of the iteration,

and the last step only conditioned it on an event of probably ≥ 1− 2−
∆
10 .

� The algorithm appends zI to both e∗ and e′, where I is the set associated with the class J ′ =
J∗.

� For the last message the algorithm appends 0 to e∗(since in the last step of the extended tree
it always appends 0). The algorithm appends 0 to e′ with probability Pr [Y ′ ∈ E ], otherwise
it appends 1 and fails.
We turn to bound the probability to fail in this step. As Pr [Y /∈ E ] is at most 2−α∆, it is
tempting to apply the uniform marginals lemma to relate Pr [Y ′ ∈ E ] and Pr [Y ∈ E ]. Unfor-
tunately the uniform marginals lemma cannot be applied as Y is not necessarily sparse at
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this point. Yet, we are still able relate Pr [Y ′ ∈ E ] and Pr [Y ∈ E ] as follows:

Pr
[
Y ′ ∈ E

]
=Pr [Y ∈ E | gn (X,Y ) = z]

=
Pr [gn (X,Y ) = z | Y ∈ E ]

Pr [gn (X,Y ) = z]
· Pr [Y ∈ E ] (Bayes’ rule)

=
Pr
[
gfree(ρ)

(
Xfree(ρ), Yfree(ρ)

)
= zfree(ρ) | Y ∈ E

]
Pr
[
gfree(ρ)

(
Xfree(ρ), Yfree(ρ)

)
= zfree(ρ)

] · Pr [Y ∈ E ]

≥
Pr
[
gfree(ρ)

(
Xfree(ρ), Yfree(ρ)

)
= zfree(ρ) | Y ∈ E

]
2−|free(ρ)| ·

(
1 + 2−

∆
10

) · Pr [Y ∈ E ] (X is almost uniform)

Regarding the last inequality, recall that the tree removes all unsafe values from the support
of X, thus all the values in the support of X are safe and thus almost uniform. Observe that
by the definition of E , it hold that Y | Y ∈ E is

(
σ + 4

c

)
-sparse. Thus, we can bound the

numerator from below using Proposition 2.16. It follows that

Pr [Y ∈ E | gn (X,Y ) = z]

≥
2−|free(ρ)| ·

(
1− 2−

∆
10

)
2−|free(ρ)| ·

(
1 + 2−

∆
10

) · Pr [Y ∈ E ] (By Proposition 2.16)

≥
(
1− 2 · 2−

∆
10

)
· Pr [Y ∈ E ]

≥Pr [Y ∈ E ]− 2 · 2−
∆
10 ≥ 1−

(
2 · 2−

∆
10 + 2−α∆

)
.

Thus, the probability that the algorithm fails at this step is at most
(
2 · 2−

∆
10 + 2−α∆

)
.

At last, the sum of all the failure probabilities is

First Message︷ ︸︸ ︷
2 · 2−

∆
10 +

Second Message︷︸︸︷
2−

∆
10 +

Third Message︷︸︸︷
2−

∆
10 +

Fifth message︷ ︸︸ ︷
2 · 2−

∆
10 + 2−α∆

≤7 · 2−
∆
10 (α =

1

10
)

≤2−
∆
20 . (∆ ≥ c = 1000)

The probability that E′≤i ̸= E∗≤i is at most the failure probability of the algorithm, which is at most

Pr
[
E′≤i ̸= E∗≤i

]
≤ Pr

[
E′≤i−1 ̸= E∗≤i−1

]
+ 2−

∆
20

≤ 2−
∆
20 (i− 1) + 2−

∆
20

= 2−
∆
20 · i

thus completing the proof. ■

As the number of rounds is bounded by the communication complexity of the protocol we get
that there exists a coupling such that

Pr
[
E′ ̸= E∗

]
≤ 2−

∆
20 · C.

Using Fact 2.8 and this coupling, we get that the statistical distance between E′ and E∗ is upper

bounded by 2−
∆
20 · C.
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Remark 5.6. We now explain why we use the notion of almost-uniform values which was not
present in [CFK+19]. Recall the work of [CFK+19] did not use the notion of “almost uniform” and
instead used the notion of “non-leaking”. The notion of “almost uniform” bounds the probability

Pr
[
gfree(ρ)

(
xfree(ρ), Yfree(ρ)

)
= zfree(ρ)

]
from both below and above, while the notion of “non-leaking” only bounds the probability from
below. In the above proof, in order to bound Pr [Y ∈ E | gn (X,Y ) = z] we need to bound the
latter probability from above, and this is the reason that we use the stronger notion of “almost
uniform” instead of the weaker notion of “non-leaking”. The reason that this issue did not come
up in [CFK+19] is that the step of restoring the density of Y (Step 8) does not exist in [CFK+19],
and therefore their analysis does not require to bound Pr [Y ∈ E | gn (X,Y ) = z].

5.2.2 Proof of Claim 5.4

We now prove that the transcripts Π† and Π∗ are sufficiently close. By definition Π† differs from Π∗

if and only if the tree T halts on Step 5. For the ease of notation, we denote the event that the
tree halts due to Kmsg by Hmsg, and the event that the tree halts due to Kprt by Hprt. Then, by
Fact 2.2 and the union bound it hold that∣∣∣Π† −Π∗

∣∣∣ ≤ Pr [Hmsg or Hprt] ≤ Pr [Hmsg] + Pr [Hprt] .

In what follows we upper bound the probabilities of Hmsg and Hprt separately.
It suffices to upper bound the probabilities of Hmsg and Hprt conditioned on every fixed choice

of the random coins of the protocol, since Pr [Hmsg] and Pr [Hprt] are a convex combinations of
those probabilities. For the rest of this section, we fix a choice of the random coins , and assume
that all the probabilities below are conditioned on this choice.

We first set up some notation. Let M̄ = (M1, . . . ,Mr) be the random messages that are chosen
by the tree and let J̄ = (J1, . . . , Jr) be the random variable of the indices of the partition class
chosen by the tree. We denote by m̄ = (m1, . . . ,mr) and j̄ = (j1, . . . , jr) some specific values of M̄
and J̄ respectively.

Bound on the probability of Hmsg. Before formally proving the bound on Pr [Hmsg] we first
give a high-level description of the argument. For every transcript let Kmsg be the value of Kmsg

at the end of the simulation of this transcript. Then, it holds that the probability of getting this
transcript is at most 2−Kmsg . Recall that the tree halts if Kmsg > C +∆, so every specific halting
transcript has a probability of at most 2−C−∆. By taking a union bound over all of them, we get
a probability of 2−∆ as required. In the formal proof, we also need to take into account in the
union bound the different choices of the partition classes, see below. Note that the following proof
is identical to the corresponding proof in [CFK+19] and we provide it here for completeness.

We define B to be the set of all pairs (m̄, j̄) for which T halts on Step 5 because of Kmsg, then
it holds that

Pr [Hmsg] =
∑

(m̄,j̄)∈B

Pr
[
M̄ = m̄, J̄ = j̄

]
=

∑
(m̄,j̄)∈B

r∏
i=1

Pr
[
Mi = mi | M̄<i = m<i, J̄<i = j̄<i

]
· Pr

[
Ji = ji | M̄≤i = m≤i, J̄<i = j̄<i

]
.
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Now, recall that conditioned on the event Hmsg, we know that at the end of the simulation we have

Kmsg =
∑

log
1

Pr
[
Mi = mi | M̄<i = m<i, J̄ = j̄<i

] > C +∆.

In other words,
r∏

i=1

Pr
[
Mi = mi | M̄<i = m<i, J̄<i = j̄<i

]
< 2−C−∆,

and therefore we get

Pr [Hmsg] =
∑

(m̄,j̄)∈B

r∏
i=1

Pr
[
Mi = mi | M̄≤j = m<i, J̄<i = j̄<i

]
· Pr

[
Ji = ji | M̄≤i = m̄≤i, J̄<i = j̄<i

]
<

∑
(m̄,j̄)∈B

2−C−∆ ·
r∏

i=1

Pr
[
Ji = ji | M̄≤j = m≤i, J̄<i = j̄<i

]
≤ 2−C−∆

∑
(m̄,j̄)

r∏
i=1

Pr
[
Ji = ji | M̄≤j = m≤i, J̄<i = j̄<i

]
.

We claim that the sum
∑

(m̄,j̄)

∏r
i=1 Pr

[
Ji = ji | M̄≤i = m̄≤i, J̄<i = j̄<i

]
is equal to

∑
m̄ 1, which in

our case is upper bounded by 2C . To see it, observe that for every round t it holds that

∑
m̄,j̄≤t

t∏
i=1

Pr
[
Ji = ji | M̄≤i = m̄≤i, J̄<i = j̄<i

]

=
∑
m̄,j̄<t

(t−1∏
i=1

Pr
[
Ji = ji | M̄≤i = m̄≤i, J̄<i = j̄<i

])
·
∑
jt

Pr
[
Jt = jt | M≤t = m̄≤t, J̄<i = j̄<t

]
=
∑
m̄,j̄<t

t−1∏
i=1

Pr
[
Ji = ji | M̄≤i = m̄≤i, J̄<i = j̄<i

]
,

where the last transition hold as∑
jt

Pr
[
Jt = jt | M̄≤t = m̄≤t, J̄<i = j̄<t

]
= 1.

By induction, we get that

∑
(m̄,j)

r∏
i=1

Pr
[
Ji = ji | M̄≤i = m̄≤i, J̄<i = j̄<i

]
=
∑
m̄

1 ≤ 2C .

We now get that

Pr [Hmsg] < 2−C−∆
∑
m̄,J

r∏
i=1

Pr
[
Ji = ji | M̄≤i = m̄≤i, J̄<i = j̄<i

]
≤ 2−∆,

as required.
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Bound on the probability of Hprt. This part of the proof is a variant of the analysis of
[GPW17]. Let p(i) be the probability p≥j in the i-th iteration. Using this notation, we can write

Kprt =
∑C

i=1 log
1

p
(i)
≥
. For the next claim, we will need the notion of stochastic domination. Given

two real-valued random variables X,Y , we say that X is stochastically dominant over Y if for all t
it hold that

Pr [X ≥ t] ≥ Pr [Y ≥ t] .

We will also use the following fact, whose proof is deferred to the end of this section.

Fact 5.7. Let A1 . . . An and B1 . . . Bn be random variables over R such that Ai are i.i.d and
independent from B1 . . . Bn. Assume that for all i ≤ n and b1, . . . , bi−1 ∈ R the random the random
variable Bi is stochastically dominant Ai conditioned on B1 = x1, . . . , Bi−1 = xi−1. Then,

∑n
i=1Bi

is stochastically dominant over
∑n

i=1Ai.

Claim 5.8. The Erlang distribution Erl (C, ln 2) is stochastically dominant over Kprt.

Proof. Let
(
U (1), . . . , U (C)

)
be independent uniform random variables over [0, 1]. We start by

proving that Pr
[
∀i : p(i) ≥ ti

]
≥ Pr

[
∀i : U (i) ≥ ti

]
for every ti ∈ [0, 1]. We do so by analyzing the

distribution of
p(i) | M<i = m̄<i, J<i = j̄<i.

Let p1 . . . pl be the probabilities assigned to the different partition classes in this round. Then, the
probability Pr

[
p(i) = p≥j | M<i = m̄<i, J<i = j̄<i

]
is equal to p≥j − p≥(j+1). Thus, it easy to see

that
Pr
[
p(i) ≥ t | M<i = m̄<i, J<i = j̄<i

]
≥ 1− t = Pr

[
U (i) ≥ t

]
for every choice of m̄<i and j̄<i and every t ∈ [0, 1]. Let δ(i) = log 1

U(i) . As the function log 1
x is

monotonically decreasing, we can get that

Pr

[
log

1

p(i)
≥ t | M<i = m̄<i, J<i = j̄<i

]
≤ Pr

[
δ(i) ≥ t

]
.

for every choice of m̄<i and j̄<i. Note that for all real a1 . . . ai−1 it holds that

Pr

[
log

1

p(i)
≥ t | p(1) = a1, . . . , p

(i−1) = ai−1

]
is a convex combination of the probabilities Pr

[
log 1

p(i)
≥ t | M<i = m̄<i, J<i = j̄<i

]
for different

m̄<i and j̄<i, and thus

Pr

[
log

1

p(i)
≥ t | p(1) = a1, . . . , p

(i−1) = ai−1

]
≤ Pr

[
δ(i) ≥ t

]
.

By applying Fact Fact 5.7 we get that

Pr

[
C∑
i=1

log
1

p(i)
≥ t

]
≤ Pr

[
C∑
i=1

δ(i) ≥ t

]
.

The left-hand side of the equation is just Pr [Kprt ≥ t]. In the right-hand side, the random variable
δ(i) is distributed like the exponential distribution Ex (ln 2) as

Pr
[
δ(i) ≤ t

]
= Pr

[
log

1

U (i)
≤ t

]
= Pr

[
U (i) ≥ 2−t

]
= 1− 2−t.

As the Erlang random variable is a sum of exponential random variables, we get that
∑C

i=1 δ
(i) is

distributed like Erl (C, ln 2), and thus we complete the proof. ■
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As a result of the above claim, it holds that in order to bound the probability thatKprt > 5C + 2∆,
it suffices to bound the probability that Erl(C, ln 2) > 5C + 2∆. For convenience, we denote

t
def
= 5C + 2∆ and λ

def
= ln 2.

Pr [Erl(C, λ) > t] = e−λ·t
C−1∑
i=0

1

i!
· (λt)i .

By our choice of t, it easy to see that 1
(i+1)! · (λt)

i+1 is larger than 1
i! · (λt)

i by a factor of at least 2.
Therefore

C−1∑
i=0

1

i!
· (λt)i ≤

C−1∑
i=0

(
1

2

)C−i 1

C!
· (λt)C

<
1

C!
· (λt)C ·

∞∑
i=1

(
1

2

)−i
=

1

C!
· (λt)C .

Then

Pr [Erl(C, λ) > t] ≤ 2−t · (λt)C · 1

C!

≤ 2−t · (λt)C ·
( e

C

)C
(C! ≥

(
C

e

)C

).

Substituting t = 5C + 2∆ we get

Pr [Erl(C, λ) > 5C + 2∆] ≤ 2−5C−2∆ · (5λC + 2λ∆)C ·
( e

C

)C
= 2−5C−2∆ · 5C · (λe)C ·

(
1 +

2∆

5 · C

)C

≤ 2−5C−2∆ · 5C · (λe)C · eC+ 2∆
5 ((1 + x)y ≤ ex·y)

= 2−5C−2∆ · 2(log 5)·C · 2(log(λe))·C · 2(log e)·C+(log e)· 2
5
·∆

= 2−(5−log(5λe
2))C−(2− 2·log e

5 )·∆.

As 5− log(5λe2) ≥ 0 and 2− 2·log e
5 ≥ 1 we have that

Pr [Kprt > 5C + 2∆] ≤ Pr [ErlC,λ > 5C + 2∆] ≤ 2−∆.

Proof of Fact 5.7 We will prove by induction. The base case is trivial as
∑1

i=1Bi = B1. Assume
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that Pr
[∑n−1Bi ≥ x

]
≥ Pr

[∑n−1Ai ≥ x
]
. Then,

Pr

[
n∑

Bi ≥ x

]
= Eb1,...,bn−1←B1,...,Bn−1

[
Pr

[
Bn ≥ x−

n−1∑
bi | B1 = b1, . . . , Bn−1 = bn−1

]]

≥ Eb1...bn−1←B1...Bn−1

[
Pr

[
An ≥ x−

n−1∑
bi

]]

= Pr

[
An +

n−1∑
Bi ≥ x

]

= Ean←An

[
Pr

[
n−1∑

Bi ≥ x− an

]]

≥ Ean←An

[
Pr

[
n−1∑

Ai ≥ x− an

]]

= Pr

[
n∑

Ai ≥ x

]
. ■

5.3 Query complexity of the decision tree

The following analysis of the query complexity of the randomized decision tree is very similar to
the analysis of the deterministic decision tree. As in the analysis of deterministic case we define
our potential function to be

D∞
(
Xfree(ρ), Yfree(ρ)

)
= D∞

(
Xfree(ρ)

)
+D∞

(
Yfree(ρ)

)
.

The main difference between the analysis of the deterministic and randomized cases is as follows.
While in the deterministic case we could bound the increase in the deficiency caused by sending a
message m by |m|, in the randomized setting this does not hold. Nevertheless, Kmsg bounds the
increase in deficiency. Another difference is that Step 3 can increase the deficiency by extra term
of log 1

p≥j
. Due to Step 5 of the tree, it holds that Kmsg + Kprt ≤ 6C + 3∆ (otherwise the tree

halts).
With the latter issue resolved, the rest of the analysis is similar to the deterministic case. We

prove that any query decreases the deficiency by at least Ω (∆) per queried bit. Thus, we get an
upper bound of O

(
C+∆
∆

)
= O

(
C
∆ + 1

)
on the number of queries. We now analyze a single iteration

of the tree. Without loss of generality, we assume that it is Alice’s turn to speak. We go through
the iteration step by step. We start by noting that Steps 4 and 5 do not change the deficiency, and
therefore are ignored in the following list.

� In Step 1, the tree conditions on an event with probability 1−2−
1
10

∆ ≥ 1
2 by Lemma 3.3 with

γ = 1
10 . Therefore, the deficiency increases at by most 1 by Fact 2.4.

� In Step 2, the tree samples a message and then conditions on sending it. Therefore, the
conditioning increases the deficiency by at most log 1

pm
by Fact 2.4.

� In Step 3, the tree chooses a partition class X j of X. By Lemma 2.19 we know that the
deficiency increases by at most (b− σ ·∆) · |Ij |+ log 1

p≥j
. For the rest of the analysis we will

denote the probability p≥j and set Ij at the i-th step by p(i) and I(i) respectively.
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� In Step 6, the tree decreases the size of free (ρ) by
∣∣I(i)∣∣. It holds that D∞

(
Yfree(ρ)

)
does

not increase by Fact 2.5, while D∞
(
Xfree(ρ)

)
decreases by b ·

∣∣I(i)∣∣ as XI(i) is fixed to xI(i) .

Altogether we get that the deficiency decreases by at least b ·
∣∣I(i)∣∣.

� In Step 7, the tree conditions Y on gI
(i)

(xI(i) , YI(i)) = ρI . As x is safe, we know that the

probability of this event is at least 2−|I(i)|−1 ≥ 2−2|I(i)|, and therefore the deficiency increases
by at most 2

∣∣I(i)∣∣ by Fact 2.4.

� In Step 8, the tree conditions on the event E such that Pr [E ] ≥ 1
2 . Thus, the deficiency

increases at most by 1 by Fact 2.4.

Steps 1 and 8 can be executed at most C times and therefore contribute at most 2C to the deficiency.
Step 2 contributes

∑
m∈π log

1
pm

= Kmsg,which is at most C + ∆ due to Step 4. Similarly, the

contribution of the term log 1
p≥j

from Step 3 is
∑

log 1
p(i)

= Kprt , which is at most 5C + 2∆ due

to Step 5. We note that in fact when the tree halts at Steps 4 or 5 the counters Kmsg or Kprt may
be bigger then C +∆ and 5C + 2∆ respectively, but such an iteration does not make queries and
therefore it does not affect the analysis.

We turn to bound the change in deficiency that is caused by Step 3 (without the log 1
p(i)

), and

Steps 6 and 7. Assume that the tree queries I in some iteration. In Steps 3, and 7 the deficiency
increases by at most

(b− σ ·∆) ·
∣∣∣I(i)∣∣∣+ 2

∣∣∣I(i)∣∣∣ ,
and Step 6 decreases the deficiency by at least b ·

∣∣I(i)∣∣. Altogether, we get that the deficiency
decreases by at least

b ·
∣∣∣I(i)∣∣∣− (b− σ ·∆) ·

∣∣∣I(i)∣∣∣− 2
∣∣∣I(i)∣∣∣ = ∆ ·

∣∣∣I(i)∣∣∣ (σ − 2

c

)
=

1

10
·∆ ·

∣∣∣I(i)∣∣∣ ∈ Ω
(
∆ ·
∣∣∣I(i)∣∣∣) . (σ =

1

10
+

2

c
)

Summing over all iterations of the simulation we get that

D∞
(
Xfree(ρ)

)
+D∞

(
Xfree(ρ)

)
≤ 8C + 3∆−

∑
i

∆

10
·
∣∣∣I(i)∣∣∣

≤ 8C + 3∆− ∆

10
·
∑
i

∣∣∣I(i)∣∣∣ .
By Fact 2.3, D∞

(
Xfree(ρ)

)
+D∞

(
Xfree(ρ)

)
≥ 0 therefore we get that

∆

10
·
∑
i

∣∣∣I(i)∣∣∣ ≤ 8C + 3∆

∑
i

∣∣∣I(i)∣∣∣ ≤ 80

(
C

∆
+ 1

)
∈ O

(
C

∆
+ 1

)
.

The term
∑

i

∣∣I(i)∣∣ is the equal to query complexity of the tree, and thus we complete the proof.
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6 The tightness of the main lemma of [CFK+19]

Our work expands upon the results of [CFK+19] and generalizes them into a wider regime of
parameters. Despite the similarities between our work and their work, a crucial difference between
the two works is that we use a weaker notion of safe values. To motivate the need for a weaker notion
of safety, we show that the conclusion of the main lemma of [CFK+19] cannot hold when ∆ ≪ b.
We first recall the notion of dangerous values of [CFK+19] and restate their main lemma in our
terms.

Definition 2.20. Let Y be a random variable taking values from Λn. We say that a value x ∈ Λn

is leaking if there exists a set I ⊆ [n] and an assignment zI ∈ {0, 1}I such that

Pr
[
gI (xI , YI) = zI

]
< 2−|I|−1.

Let σY , ε > 0, and suppose that Y is σY -sparse. We say that a value x ∈ Λn is ε-sparsifying
if there exists a set I ⊆ [n] and an assignment zI ∈ {0, 1}I such that the random variable
Y[n]−I | gI (xI , YI) = zI is not (σY + ε)-sparse. We say that a value x ∈ Λn is ε-dangerous if it
is either leaking or ε-sparsifying.

Remark 6.1. We note that even when ε ≥ 1, Definition 2.20 remains non-trivial, since the sparsity
is measured with respect to ∆ rather than b. On the other hand, from the perspective of the
simulation, a value x that is 1-dangerous is “useless”. The reason is that the discrepancy of g (and
in particular, Lemmas 2.10 and 2.11) cannot give any effective bound on the biases of ε-sparse
distributions for ε ≥ 1.

Lemma 2.21 (Main lemma of [CFK+19]). There exists universal constants h, c such that the
following holds: Let b be some number such that b ≥ c · log n and let γ, ε, σX , σY > 0 be such that
ε ≥ 4

∆ , and σX +σY ≤ 1− h·b·logn
∆2·ε −γ. Let X,Y be (ρ, σX , σY )-structured random variables. Then,

the probability that Xfree(ρ) takes a value that is ε-dangerous for Yfree(ρ) is at most 2−γ∆.

It can be seen that the lemma is only applicable when ∆ = Ω(
√
b · log n). In this section we

show this is almost optimal. The main result of this section is that in the case where ∆ ∈ O
(√

b
)
,

the conclusion of the main lemma of [CFK+19] completely fails: that is, it may happen that Xfree(ρ)

takes only values that are 2-dangerous for Yfree(ρ). As noted in Remark 6.1, such values are useless
for the simulation.

Proposition 6.2. For every b ≥ 1000 and n ≥
⌊
3
√
b
⌋
+ 1 the following holds: There exist an

inner function g : {0, 1}b × {0, 1}b → {0, 1} with ∆(g) ∈ Θ
(√

b
)

and two random variables X,Y

over
(
{0, 1}b

)n
that are 2

∆ -sparse such that every x ∈ supp (X) is 2-dangerous for Y .

The rest of this section is dedicated to proving Proposition 6.2. We start by introducing some

notation. Let b, n be as in the proposition and let Λ = {0, 1}b. We denote by I the set
[⌊

3
√
b
⌋]

and define d
def
=
⌊
1
3

√
b
⌋
. For each value y ∈ Λn, we view the last block yn ∈ Λ as consisting of |I|

substrings of length d and of the remaining b− d |I| bits. We call each such string of d bits a cell,
and denote the i-th cell by yn,i for every i ∈ I. Note that the definition of cells applies only to the
last block yn. For each i ∈ I, we refer to the first d bits of the i-th block yi as the prefix of yi,
and denote it by yprei . Let U be the uniform distribution over Λn, and for each i ∈ I, let Ai be the
event that ⟨Upre

i , Un,i⟩ = 1.
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We now choose the function g to be g(v, w) = ⟨vpre, wpre⟩ for v, w ∈ Λ. It hold that d
2 ≤ ∆ ≤ d+ 1,

where the lower bound is by Lindsey’s lemma and the upper bound is trivial. We choose the ran-
dom variable X to be the uniform distribution over Λn. We define Y to be equal to the random
variable U conditioned on the events Ai for every i ∈ I. In order to prove Proposition 6.2 we need
to show that X,Y are 2

∆ -sparse and that every x ∈ supp (X) is 2-dangerous for Y . The variable X
is trivially 0-sparse. We turn to prove that Y is 2

∆ -sparse.

Claim 6.3. Y is 2
∆ -sparse

Proof. For any set S, we prove that the deficiency D∞ (YS) ≤ 2 |S| = 2
∆ ·∆ · |S|, and this would

imply that Y is 2
∆ -sparse. Let U be the uniform distribution over Λn. In order to bound D∞ (YS),

we start by expressing Pr [YS = yS ] · 2−b|S| as follows

Pr [YS = yS ]

2b|S|
=

Pr [US = yS | ∀i ∈ I : Ai]

Pr [US = yS ]
(Y = U | ∀i ∈ I : U ∈ Ai)

=
Pr [∀i ∈ I : Ai | US = yS ]

Pr [∀i ∈ I : Ai]
. (Bayes’ formula)

We note that Pr [∀i ∈ I : Ai] =
(
1−2−d

2

)|I|
: this holds as each event Ai has probability

1−2−d

2 and

they are all independent. We turn to bound the probability in the above numerator. The events Ai

are independent even conditioned on US = yS , and therefore we can bound their probabilities
separately. In general, the probability of Ai conditioned on US = yS can be as large as 1 (for
example, if both i and n are in S, and ⟨yprei , yn,i⟩ = 1). Nevertheless, it is easy to see that for each
i ∈ I\S, the probability of Ai conditioned on US = yS is at most 1

2 even if n ∈ S. Therefore we
can get a bound as follows

Pr [∀i ∈ I : Ai | US = yS ]

Pr [∀i ∈ I : Ai]
≤ 2−|I\S|(

1−2−d

2

)|I| = 2|S| ·
(
1− 2−d

)−|I|
.

The second term can be bounded as follows(
1− 2−d

)−|I|
≤ e|I|2

−d ≤ e3
√
b·2−⌊ 1

3

√
b⌋
,

which is at most 2 for b ≥ 1000. Therefore

D∞ (YS) = logmax
yS

Pr [YS = yS ]

2b|S|
≤ 1 + |S| ≤ 2 |S| . ■

It remain to prove that every x ∈ supp (X) is 2-dangerous for Y . In order to do so, we use the
following claim on the distribution of Y .

Claim 6.4. Let yn be such that yn,i ̸= 0 for every i. Then Pr [Yn = yn] ≥ 2−b.

Proof. First, observe that the event Yn,i = yn,i is independent of the event Aj for every j ̸= i and
thus it holds that

Pr [Yn,i = yn,i] = Pr [Un,i = yn,i | Ai]

=
Pr [Ai | Un,i = yn,i] Pr [Un,i = yn,i]

Pr [Ai]
(Bayes’ rule).
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As yn,i ̸= 0̄ it easy to see that Pr [Ai | Un,i = yn,i] ≥ Pr [Ai], and therefore

Pr [Ai | Un,i = yn,i] Pr [Un,i = yn,i]

Pr [Ai]
≥ Pr [Un,i = yn,i] = 2−d.

Finally by combining this inequality for all cells and and the fact that the remaining b− d · |I| bits
are uniformly distributed and independent, we get the desired result. ■

We finally show that all values in supp (X) are 2-dangerous. It holds that every x such that
xprei = 0 for some i ∈ I is leaking as Pr [gn (x, Y ) = 1n] = 0, and thus such an x is dangerous.
It remains to handle the case where xprei ̸= 0d for all i ∈ I. Let x ∈ Λn be such a value. We
show that every such x is 2-sparsifying. Specifically, we show that there exists a value yn such
that Pr

[
Yn = yn | gI (xI , YI) = 1|I|

]
is too high. We choose yn be equal to the concatenation of all

prefixes xprei appended by b− d |I| zeros. For this choice of yn it hold that

Yn = yn ⇒ ∀i ∈ I : ⟨yn,i, Y pre
i ⟩ = 1 (definition of Y )

⇒ ∀i ∈ I : ⟨xprei , Y pre
i ⟩ = 1 (definition of yn,1)

⇒ gI (xI , YI) = 1I .

Thus we have that

Pr
[
Yn = yn | gI (xI , YI) = 1|I|

]
=
Pr [Yn = yn] · Pr

[
gI (xI , YI) = 1|I| | Yn = yn

]
Pr
[
gI (xI , YI) = 1|I|

] (Bayes’ formula)

=
Pr [Yn = yn]

Pr
[
gI (xI , YI) = 1|I|

] (Yn = yn ⇒ gI (x, Y ) = 1I).

We note that the events g (xi, Yi) = 1 are independent for each i ∈ I, and that each of them occurs
with probability at most ≤ 1

2·(1−2−d)
, thus

Pr
[
gI (xI , YI) = 1|I|

]
≤
(

1

2 · (1− 2−d)

)|I|
.

Therefore we get

Pr
[
Yn = yn | gI (xI , YI) = 1|I|

]
≥ Pr [Yn = yn] ·

(
2− 21−d

)|I|
.

It holds that Pr [Yn = yn] ≥ 2−b by Claim 6.4 as yn,i = xprei ̸= 0̄ for all i. Thus, we get that

Pr
[
Yn = yn | gI (xI , YI) = 1|I|

]
≥ 2−b ·

(
2− 21−d

)|I|
= 2|I|−b ·

(
1− 2−d

)|I|
≥ 2|I|−b ·

(
1− 2−⌊

1
3

√
b⌋
)3√b

≥ 2|I|−b−1 (b ≥ 1000).
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Hence, the distribution Yn | gI (xI , YI) = 1|I| is not |I|−1∆ -sparse and thus x is |I|−3∆ -sparsifying. As

a result we can see that all values of x are
(
|I|−2
∆

)
-dangerous. We have that

(
|I| − 3

∆

)
≥

⌊
3
√
b
⌋
− 3⌊

1
3

√
b
⌋
+ 1

(∆ ≤ d+ 1,d =

⌊
1

3

√
b

⌋
,|I| =

⌊
3
√
b
⌋
)

≥ 3
√
b− 4

1
3

√
b+ 1

(x ≥ ⌊x⌋ ≥ x− 1)

= 9

(
1− 13

3
√
b+ 9

)
≥ 2 (b ≥ 9),

as required.

Remark 6.5. We note that the choice of the constant 2 in Proposition 6.2 is arbitrary. For any

constant ε one can construct an example such that all values are ε-dangerous, where ∆ ∈ Θ

(√
b
ε

)
and n ≥ b = Ω(ε).

7 Discrepancy with respect to product distributions.

Discrepancy is commonly defined with respect to an underlying distribution as follows.

Definition 7.1. Let µ be a distribution over Λ × Λ and let g : Λ × Λ → {0, 1} be a function.
Let (V,W ) ∈ Λ × Λ be a pair of random variables that are distributed according to µ. Given
a combinatorial rectangle R ⊆ Λ × Λ, the discrepancy of g with respect to R (and µ), denoted
discµ,R(g), is defined as follows:

discµ,R(g) =

∣∣∣∣Prµ [g(V,W ) = 0 and (V,W ) ∈ R]− Pr
µ
[g(V,W ) = 1 and (V,W ) ∈ R]

∣∣∣∣ .
The discrepancy of g with respect to µ, denoted discµ(g), is defined as the maximum of discµ,R(g)
over all combinatorial rectangles R ⊆ Λ× Λ. We define

∆µ(g)
def
= log

1

discµ (g)

Note that the definition of discrepancy that we used throughout this paper is the special case
of the above definition for the uniform distribution. A natural question is to ask whether our main
result (Theorem 1.3) can be generalized to other distributions. We show that the theorem holds
with respect to every product distribution µ.

Theorem 7.2. There exists a universal constant c such that the following holds: Let S be a search
problem that takes inputs from {0, 1}n, and let g : Λ × Λ → {0, 1} be an arbitrary function such
that ∆µ(g) ≥ c · log n for some product distribution µ. Then

Dcc(S ◦ gn) ∈ Ω
(
Ddt(S) ·∆µ(g)

)
,

and for every β > 0 it holds that

Rcc
β (S ◦ gn) ∈ Ω

((
Rdt

β′(S)−O(1)
)
·∆µ(g)

)
,

where β′ = β + 2−∆µ(g)/50.
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We start by defining a simple kind of reduction between two communication problems,

Definition 7.3. We say that a function g′ : Λ′×Λ′ → O is reducible to g : Λ×Λ → O if there exist
functions rA, rB : Λ′ → Λ such that for every x′, y′ ∈ Λ′ it holds that g′ (x′, y′) = g (rA (x) , rB (y)).

It easy to see that if g′ is reducible to g then Dcc (g′) ≤ Dcc (g) and Rcc
β (g′) ≤ Rcc

β (g).

Claim 7.4. Given a search problem S : {0, 1}n → O and functions g′ : Λ′ × Λ′ → {0, 1} that is
reducible to g : Λ× Λ → {0, 1} it hold that S ◦ (g′)n is reducible to S ◦ gn.

Proof. Let r′A, r
′
B the functions that reduce g′ to g, and let rA = (r′A)

nand let rB = (r′B)
n. Then,

it easy to see that

(S ◦ gn) ◦
(
r′A × r′B

)n
= S ◦

(
g ◦
(
r′A × r′B

))n
= S ◦

(
g′
)n

■

To prove Theorem 7.2, we use the following lemma that relates discrepancy of a function g
with respect to the some product distribution µ to the discrepancy with respect to the uniform
distribution for some function g′ that is reducible to g.

Lemma 7.5. Let g : Λ× Λ → {0, 1} be a function and let µ = µX × µY be a product distribution.
Then, for every constant ε > 0 there exists a function g′ : Λ′ ×Λ′ → {0, 1} reducible to g such that
discU (g′) ≤ discµ (g) + ε, where U is the uniform distribution over Λ′ × Λ′.

We prove Lemma 7.5 later in this section. We turn to prove Theorem 7.2 by applying Theo-
rem 1.3 with a inner function g′ that is constructed by Lemma 7.5.

Proof of Theorem 7.2 from Lemma 7.5 Let c′ be the universal constant c from Theorem 1.3.
We choose the universal constant c to be equal to max (c′ + 1, 2). Let n, µ, S, and g be as in
the theorem. Let ε = discµ (g) and let g′ be the function obtained from Lemma 7.5 for g and µ.
As g′ is reducible to g, it hold that S ◦ gn is reducible to S ◦ (g′) n. Therefore, it hold that
Dcc(S ◦ (g′) n) ≤ Dcc(S ◦ gn) and Rcc

β (S ◦ (g′) n) ≤ Rcc
β (S ◦ gn).

We note that the discrepancy of g′ is bounded from above as follows

discU
(
g′
)
≤ discµ (g) + discµ (g) ≤ 2n−c ≤ n−c

′

In other words, it holds that ∆U (g′) ≥ ∆µ (g) − 1 ≥ c′ · log n. Hence, we can apply Theorem 1.3
on S ◦ g′ and get

Dcc (S ◦ gn) ≥ Dcc
(
S ◦

(
g′
)
n
)
∈ Ω

(
Ddt(S) ·∆U

(
g′
))

= Ω
(
Ddt(S) ·∆µ(g)

)
,

and for every β > 0 it holds that

Rcc
β (S ◦ gn) ≥ Rcc

β

(
S ◦

(
g′
)
n
)
∈ Ω

((
Rdt

β′(S)−O(1)
)
·∆U

(
g′
))

= Ω
((

Rdt
β′(S)−O(1)

)
·∆µ(g)

)
,

where β′ = β + 2−∆(g)/50. ■

It only remain to prove Lemma 7.5. In order to prove the lemma, we first introduce a notion
of a canonical rectangle with respect to function g and then we then show that the discrepancy is
maximized with respect to such rectangles.

Definition 7.6. Let g : Λ×Λ → {0, 1} , g′ : Λ′ ×Λ′ be functions such that g′ is reducible to g and
let rA, rB : Λ′ → Λ be the reductions. A rectangle R′ ⊆ Λ′ × Λ′ is canonical if and only if there
exists a rectangle R = A×B ⊆ Λ× Λ such that R′ = r−1A (A)× r−1B (B).
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Claim 7.7. Let g : Λ× Λ → {0, 1} and g′ : Λ′ × Λ′ → {0, 1} be functions such that g′ is reducible
to g. The discrepancy of g′ with respect to any product distribution µ is maximized by a canonical
rectangle.

Proof. We show that for every rectangle R′ = M ×N of g′, there exists a canonical rectangle of g′

with at least the same discrepancy and this will imply the claim. The discrepancy of a rectangle R′

can be written as follow

discµ,R′(g′) =

∣∣∣∣∣∣
∑

(x′,y′)∈R

(−1)g
′(x′,y′) Pr

(V,W )←µ

[
(V,W ) =

(
x′, y′

)]∣∣∣∣∣∣ .
Assume without loss of generality that the above sum inside the absolute value is positive. It hold
that each row x′ ∈ M either has a positive contribution to the sum or not. If the contribution is
positive then we add all the rows v′ such that rA (v′) = rA (x′). For each such row v′ it hold that
g′ (x′, y′) = g′ (v′, y′) for every y′ ∈ N and thus the contributions to the sum from x′ and v′ are
equal. As a result we get that adding v′ increases the discrepancy. Similarly, if the contribution of
a row x′ is not positive we remove this row from M , and the new rectangle has at least the same
discrepancy as the one with the row x′. The same can be done for the columns. Therefore we get
a canonical rectangle that has at least the same discrepancy as R′. ■

We also use the following folklore fact

Fact 7.8 (Folklore). For every distribution ν over finite set Λ and ε > 0 there exists a distribution ν ′

over Λ such that all the probabilities that µ′ assigns are rational and |ν ′ − ν| ≤ ε.

Finally, we prove Lemma 7.5. Let µ = µX × µY be a product distribution. The high-level
idea of the proof is that we choose Λ′ and rA, rB : Λ′ → Λ such that for every x ∈ Λ it holds

that µX(x) ≈ |r−1
A (x)|
|Λ′| (the same is done for rB and µY ). As the discrepancy is maximized by

canonical rectangles, we get that for each input x the set r−1A (x) is either contained in the rows of
the rectangle or disjoint from them. Therefore when calculating the discrepancy we get that the
contribution of x is multiplied by about Pr [µX = x] as in the definition of discrepancy with respect
to µ.

Proof of Lemma 7.5 Let g, µ = µX × µY , and ε be as in the lemma. Let ε′ = ε
4 . Let µ′X

(respectively, µ′Y ) be some distribution that is ε′-close to µX (respectively, µY ) and is rational,
whose existence guaranteed by Fact 7.8. As µ′X and µ′Y are rational then exists an integer l > 0
such that l · µ′X (x) and l · µ′Y (y) are integers for all x, y ∈ Λ. We choose Λ′ = [l], and choose the
function rA such that for every x ∈ Λ, the function rA maps l · µ′X (x) values to x. The function
rB is chosen in the same way with respect to µ′Y .

We prove that discU (g
′) ≤ disc(g) + ε. Let R′ = M × N be rectangle that maximizes the

discrepancy of g′, and recall that we can assume R′ is a canonical rectangle by Claim 7.7. Let
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R = rA (M)× rB (N) be the rectangle of g that corresponds to R′. Then it holds that

discU
(
g′
)
= discU,R′

(
g′
)

=

∣∣∣∣∣∣
∑

(x′,y′)∈R′

(−1)g
′(x′,y′) Pr

[
U =

(
x′, y′

)]∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∑

(x,y)∈R

∑
(x′,y′)∈r−1

A (x)×r−1
B (y)

(−1)g
′(x′,y′) 1

l2

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∑

(x,y)∈R

(−1)g(x,y)
∑

(x′,y′)∈r−1
A (x)×r−1

B (y)

1

l2

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

(x,y)∈R

(−1)g(x,y)
∣∣r−1A (x)× r−1B (y)

∣∣
l2

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

(x,y)∈R

(−1)g(x,y) · µ′X(x) · µ′Y (y)

∣∣∣∣∣∣ .
=

∣∣∣∣∣∣
∑

(x,y)∈R

(−1)g(x,y) Pr
(V,W )←µ′

[(V,W ) = (x, y)]

∣∣∣∣∣∣
= discµ′,R (g) .

Next, we show that as µ and µ′ are ε′-close then discµ′,R (g) is only bigger then discµ,R′ (g) by ε as
follows

discU
(
g′
)
=discµ′,R (g)

=

∣∣∣∣ Pr
(V,W )←µ′

[g(V,W ) = 0 and (V,W ) ∈ R]

− Pr
(V,W )←µ′

[g(V,W ) = 1 and (V,W ) ∈ R]

∣∣∣∣
≤4ε′ +

∣∣∣∣ Pr
(V,W )←µ

[g(V,W ) = 0 and (V,W ) ∈ R] (µ′ is 2ε′-close to µ)

− Pr
(V,W )←µ

[g(V,W ) = 1 and (V,W ) ∈ R]

∣∣∣∣
=ε+ discµ,R (g)

≤ε+ discµ (g) ■
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