
Trading Determinism for Noncommutativity in Edmonds’

Problem

V. Arvind
*

Abhranil Chatterjee
†

Partha Mukhopadhyay
‡

Abstract

Let 𝑋 = 𝑋1 ⊔ 𝑋2 ⊔ . . . ⊔ 𝑋𝑘 be a partitioned set of variables such that the variables in each

part 𝑋𝑖 are noncommuting but for any 𝑖 ≠ 𝑗, the variables 𝑥 ∈ 𝑋𝑖 commute with the variables

𝑥′ ∈ 𝑋𝑗 . Given as input a square matrix𝑇 whose entries are linear forms overQ⟨𝑋⟩, we consider

the problem of checking if 𝑇 is invertible or not over the universal skew field of fractions of the

partially commutative polynomial ringQ⟨𝑋⟩ [KVV20]. In this paper, we design a deterministic

polynomial-time algorithm for this problem for constant 𝑘. The special case 𝑘 = 1 is the

noncommutative Edmonds’ problem (NSingular) which has a deterministic polynomial-time

algorithm by recent results [GGdOW16, IQS18, HH21].

En-route, we obtain the first deterministic polynomial-time algorithm for the equivalence

testing problem of 𝑘-tape weighted automata (for constant 𝑘) resolving a long-standing open

problem [HK91, Wor13]. Algebraically, the equivalence problem reduces to testing whether a

partially commutative rational series over the partitioned set 𝑋 is zero or not [Wor13]. Decid-

ability of this problem was established by Harju and Karhumäki [HK91]. Prior to this work,

a randomized polynomial-time algorithm for this problem was given by Worrell [Wor13] and,

subsequently, a deterministic quasipolynomial-time algorithm was also developed [ACDM21].

*
Institute of Mathematical Sciences (HBNI), and Chennai Mathematical Institute, Chennai, India, email:

arvind@imsc.res.in.
†
Indian Statistical Institute, Kolkata, email: abhneil@gmail.com. Research Supported by INSPIRE Faculty Fel-

lowship provided by the Department of Science and Technology, Government of India.

‡
Chennai Mathematical Institute, Chennai, email: partham@cmi.ac.in.

0

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 73 (2024)

Contents

1 Introduction 2

1.1 Proof Idea . 4

1.2 Other Related Results . 9

2 Background and Notation 10

2.1 Algebraic Complexity . 10

2.1.1 Identity testing results . 12

2.1.2 Homogenization . 12

2.2 Cyclic Division Algebras . 13

2.3 Partially Commutative Rational Series . 14

2.4 Equivalent Notions of Matrix Rank . 15

3 An Algorithm for NSINGULAR based on NC-PIT 16

3.1 Constructive Regularity Lemma . 17

3.2 Rank Increment Step . 17

3.2.1 A noncommutative ABP identity testing reduction step 18

3.2.2 Rounding and blow-up Control . 20

3.3 The Algorithm for NSINGULAR . 20

4 Proofs of the Main Theorems 21

4.1 Identity testing of partially commutative ABPs . 22

4.1.1 Matrix substitution witnessing nonzero of a series 24

4.2 The procedure for PC-RANK . 24

4.2.1 Rank increment step . 26

4.2.2 A partially commutative ABP identity testing reduction step 27

4.2.3 Rounding step . 28

4.2.4 Blow-up and shape control step . 28

4.2.5 Pseudo-code for rank increment . 30

5 Discussion 32

A Appendix 36

1

1 Introduction

Let 𝑋 = {𝑥1 , 𝑥2 , . . . , 𝑥𝑛} be a set of 𝑛 variables and F be a field. Consider the coefficient matrices

𝐴0 , 𝐴1 , . . . , 𝐴𝑛 ∈ Mat𝑠(F), and define the 𝑠 × 𝑠 symbolic matrix 𝑇 as

𝑇 = 𝐴0 + 𝐴1𝑥1 + . . . + 𝐴𝑛𝑥𝑛 .
In 1967, Edmonds introduced the problem of deciding whether 𝑇 is invertible over the rational

function fieldF(𝑥1 , 𝑥2 , . . . , 𝑥𝑛) [Edm67], often referred to as the Singular problem. More generally,

Edmonds was interested in computing the (commutative) rank of 𝑇 over the rational function field

F(𝑥1 , 𝑥2 , . . . , 𝑥𝑛). The problem can be restated as computing the maximum rank of a matrix in the

affine matrix space generated by theF-linear span of the coefficient matrices𝐴𝑖 , 1 ⩽ 𝑖 ⩽ 𝑛. This was

further studied by Lovász [Lov89], in the context of graph matching and matroid-related problems.

The Singular problem, and more generally the rank computation problem, admits a simple ran-

domized polynomial-time algorithm due to the Polynomial Identity Lemma [Sch80, Zip79, DL78].

However, the quest for an efficient deterministic algorithm remains elusive. Eventually, Kabanets

and Impagliazzo showed that any efficient deterministic algorithm for Singular will imply a

strong circuit lower bound, justifying the elusiveness over the years [KI04]. Interestingly, the rank

computation problem admits a deterministic PTAS algorithm [BJP18].

The rank computation problem is also well-studied in the noncommutative setting [Coh95,

FR04]. More precisely, 𝑇 is still a linear matrix but the variables 𝑥1 , 𝑥2 , . . . , 𝑥𝑛 are noncommuting.

The problem of testing whether 𝑇 is invertible (NSingular), or the rank computation question

is naturally addressed over the noncommutative analog of the commutative function field, the

free skew field F⦓𝑋⦔ = F⦓𝑥1 , 𝑥2 , . . . , 𝑥𝑛⦔. The free skew field has been extensively studied in

mathematics [Ami66, Ami55, Coh71]. Intuitively, it suffices to state that F⦓𝑋⦔ is the smallest field

over the noncommutative ring F⟨𝑋⟩.
Two independent breakthrough results showed that NSingular is in P [GGdOW16, IQS18]. The

algorithm of Garg, Gurvits, Oliveira, and Wigderson [GGdOW16] is analytic in nature and based on

operator scaling which works overQ. The algorithm of Ivanyos, Qiao, and Subrahmanyam [IQS18]

is purely algebraic, and it works over Q as well as fields of positive characteristic. Subsequently, a

third algorithm based on convex optimization is also developed by Hamada and Hirai [HH21]. Not

only are these beautiful results, but also they have enriched the field of computational invariant

theory greatly [BFG
+
19, DM20].

The main driving motivation for this work is to understand the trade-off between the role of

noncommutativity and the complexity of Edmonds’ problem. More precisely, let 𝑋[𝑘] = 𝑋1 ⊔
𝑋2 ⊔ . . . ⊔ 𝑋𝑘 be a partitioned set of variables such that the variables in each 𝑋𝑖 : 1 ⩽ 𝑖 ⩽ 𝑘 are

noncommuting and |𝑋𝑖 | ⩽ 𝑛. However, for each 𝑖 ≠ 𝑗, the variables in 𝑋𝑖 commute with the

variables in 𝑋𝑗 . Given a linear matrix 𝑇 with (affine)-linear form entries over 𝑋[𝑘], the problem is to

decide whether 𝑇 is invertible or not. Of course, in order to consider the invertibility of 𝑇, we need

a skew field of the fractions of the partially commutative polynomial ring F⟨𝑋[𝑘]⟩. A construction

of such a skew field (which we call as 𝔘[𝑘]) is known when the characteristic of F is zero [KVV20,

Theorem 1.1]. Given the field 𝔘[𝑘], the definition of matrix rank is as usual, the maximum size of

any invertible submatrix over 𝔘[𝑘]. We define PC-Singular as the problem of checking whether

such a linear matrix is invertible over 𝔘[𝑘] where PC stands for the partially commutative nature

of the variables. The main result of this paper is the following theorem.

Theorem 1. Given an 𝑠 × 𝑠 matrix 𝑇 whose entries are Q-linear forms over the partially commutative set

of variables 𝑋[𝑘] (where |𝑋𝑖 | ⩽ 𝑛 for 1 ⩽ 𝑖 ⩽ 𝑘), the rank of 𝑇 over 𝔘[𝑘] can be computed in deterministic

(𝑛𝑠)2𝑂(𝑘 log 𝑘)
time. The bit complexity of the algorithm is also bounded by (𝑛𝑠)2𝑂(𝑘 log 𝑘)

.

2

As a direct corollary of Theorem 1, PC-Singular ∈ P for 𝑘 = 𝑂(1). Notice that PC-Singular

generalizes both NSingular and Singular. For 𝑘 = 1 it is just NSingular and the above theorem

implies NSingular is in P. Also, letting |𝑋𝑖 | = 1 for each 𝑖, it captures the Singular problem with

𝑘 as a running parameter.

Remark 2. We note two points regarding the choice of the field and the input parameters.

1. Theorem 1 is stated overQ as the result of [KVV20] works over characteristic zero fields, and

we also want that the field arithmetic computation should be efficient. The other ingredients

of the proof work also over sufficiently large fields of positive characteristic.

2. For convenience (and w.l.o.g) throughout the paper we assume 𝑠 ⩾ 𝑛 and express the run

time, bit complexity, and the dimension of the matrices used as a function of 𝑠 and 𝑘 only.

It is to be noted that apart from NSingular, the deterministic polynomial-time algorithm is known

only for a few other special instances of Singular problem defined over linear matrices. We refer

the reader to Section 1.2 for more details.

Equivalence testing of multi-tape weighted automata En-route to the proof of Theorem 1, we

obtain the first deterministic polynomial-time algorithm for equivalence testing of 𝑘-tape weighted

automata for 𝑘 = 𝑂(1) resolving a long standing open problem [HK91, Wor13]. Since the equiva-

lence testing problem of multi-tape automata is closely related to the rich domain of trace monoids

(or partially commutative monoids), we make a small detour to it.

A trace is a set of strings over an alphabet where certain letters (variables) are allowed to

commute and others are not. Historically, traces were introduced by Cartier and Foata to give a

combinatorial proof of MacMahon’s master theorem [CF69]. The trace monoid or the partially

commutative monoid is a monoid of traces. More formally, it is constructed by giving an indepen-

dence relation on the set of commuting letters. This induces an equivalence relation and partitions

the given trace into equivalences classes. The set of equivalence classes themselves form a monoid

which is a quotient monoid. This is also called the trace monoid which is a foundational object in

concurrency theory [DM97, Maz95].

For us the alphabet is the partitioned set of variables 𝑋[𝑘] = 𝑋1 ⊔ 𝑋2 ⊔ . . . ⊔ 𝑋𝑘 . The variables

in 𝑋𝑖 are noncommuting but the variables in 𝑋𝑖 and 𝑋𝑗 for 𝑖 ≠ 𝑗 are mutually commuting. Given

two 𝑠 × 𝑠 linear matrices 𝑇1 , 𝑇2 over 𝑋[𝑘]and vectors 𝑢1 , 𝑢2 ∈ F1×𝑠
, 𝑣1 , 𝑣2 ∈ F𝑠×1

, the problem is to

check whether the following infinite series are the same:

𝑢1

(∑
𝑖⩾0

𝑇 𝑖
1

)
𝑣1

?

= 𝑢2

(∑
𝑖⩾0

𝑇 𝑖
2

)
𝑣2.

Let 𝑋∗[𝑘] denote the set of all monomials (or words) over the variables in 𝑋[𝑘]. Any monomial

𝑚 ∈ 𝑋∗[𝑘] can be obtained as some interleaving of monomials 𝑚𝑖 ∈ 𝑋∗𝑖 , 1 ⩽ 𝑖 ⩽ 𝑘. Conversely, given

𝑚 ∈ 𝑋∗[𝑘] we can uniquely extract each 𝑚𝑖 ∈ 𝑋∗𝑖 by dropping from monomial 𝑚 the variables in

𝑋[𝑘] \𝑋𝑖 . Essentially each 𝑚𝑖 is the restriction 𝑚 |𝑋∗
𝑖
. Hence, two partially commutative monomials

𝑚, 𝑚′ ∈ 𝑋∗[𝑘] are the same if and only 𝑚 |𝑋∗
𝑖
= 𝑚′ |𝑋∗

𝑖
for each 1 ⩽ 𝑖 ⩽ 𝑘. This defines an equivalence

relation ∼ over the set of monomials 𝑋∗[𝑘]. To see a simple example, consider 𝑋1 = {𝑥1 , 𝑥2}
and 𝑋2 = {𝑥′

1
, 𝑥′

2
}. Then 𝑥1𝑥

′
2
𝑥2𝑥
′
1
∼ 𝑥1𝑥2𝑥

′
2
𝑥′

1
. This is the algebraic formulation of the well-

known 𝑘-tape weighted automata equivalence problem. See [Wor13, Section 3] for a detailed

3

discussion. Equivalence testing of 𝑘-tape weighted automata was shown to be decidable by Harju

and Karhumäki [HK91] using the theory of free groups. Indeed, a co-NP upper bound follows

from their result as observed by Worrell [Wor13]. Improved complexity upper bounds for this

problem remained elusive, until Worrell [Wor13] obtained a randomized polynomial-time algorithm

for testing the equivalence of 𝑘-tape weighted automata for any constant 𝑘. Worrell’s key insight

was to reduce this problem to the polynomial identity testing of algebraic branching programs

(ABPs) defined over the partially commutative set of variables𝑋[𝑘] (in other words, the linear forms

on the edges of the ABP are in F⟨𝑋[𝑘]⟩). Essentially, the reduction says that two infinite series are

the same if and only if

𝑢1

(∑
𝑖⩽𝑠

𝑇 𝑖
1

)
𝑣1 = 𝑢2

(∑
𝑖⩽𝑠

𝑇 𝑖
2

)
𝑣2.

This is obtained by adapting such a result for 𝑘 = 1 case suitably for arbitrary 𝑘 [Eil74, Corollary 8.3].

This is equivalent to the following identity testing problem:

𝑢

(∑
𝑖⩽𝑠

𝑇 𝑖

)
𝑣

?

= 0

where, 𝑢 =
(
𝑢1 𝑢2

)
, 𝑣 =

(
𝑣1

−𝑣2

)
, 𝑇 =

(
𝑇1 0

0 𝑇2

)
.

Clearly, 𝑢
(∑

𝑖⩽𝑠 𝑇
𝑖
)
𝑣 can be represented as an ABP of width 2𝑠 and degree 𝑠 defined over the

variable set 𝑋[𝑘]. Then, Worrell developed a partially commutative analogue of the well-known

Amitsur-Levitzki Theorem to solve the identity testing problem in randomized polynomial time

[AL50, Wor13]. Building on Worrell’s work, in [ACDM21] a deterministic quasipolynomial-time

algorithm was obtained for any constant 𝑘. The key technical idea was a bootstrapping of the

quasipolynomial-size hitting set for noncommutative ABPs [FS13] to the partially commutative set-

ting. However, the main open question of [HK91, Wor13] was to design a deterministic polynomial-

time test that remained elusive. In this paper, we fully resolve the problem by giving the first

deterministic polynomial-time algorithm for any constant 𝑘.

Theorem 3. Given an ABP of size 𝑠 whose edges are labeled byQ-linear forms over the partially commutative

set of variables 𝑋[𝑘] (where |𝑋𝑖 | ⩽ 𝑛 for 1 ⩽ 𝑖 ⩽ 𝑘), there is a deterministic (𝑛𝑠)2𝑂(𝑘 log 𝑘)
time algorithm

to check whether the ABP computes the zero polynomial. As a corollary, the equivalence testing of 𝑘-tape

weighted automata can be solved in deterministic polynomial time for 𝑘 = 𝑂(1). The bit complexity of the

algorithm is also bounded by (𝑛𝑠)2𝑂(𝑘 log 𝑘)
.

As already mentioned in Remark 2, that for convenience we always take 𝑠 ⩾ 𝑛. We provide more

background and other results related to the equivalence testing problem of multi-tape weighted

automata in Section 1.2.

1.1 Proof Idea

When a ring 𝑅 is embeddable in a skew field 𝔉, the notions of rank and singularity of matrices over

𝑅 are easier to work with. It is a remarkable fact that in the noncommutative world, even integral

domains, in general, need not be embeddable in a skew field! Cohn’s text contains a detailed study

of matrix rank over different rings [Coh95]. We also refer the reader to the important paper of

Malcev [Mal37]. An 𝑠 × 𝑠 matrix 𝑇 over such a ring 𝑅 is invertible if there is a matrix 𝑇−1
over 𝔉

4

such that 𝑇𝑇−1 = 𝑇−1𝑇 = 𝐼𝑠 .1 An 𝑠× 𝑠 matrix 𝑇 over this ring 𝑅 is invertible precisely when its rank

is 𝑠. Likewise, the rank of an 𝑠 × 𝑡 matrix 𝑀 over such a ring 𝑅 is precisely the maximum 𝑟 such

that 𝑀 has an 𝑟 × 𝑟 invertible submatrix. An example of this setting is the free noncommutative

ring 𝑅 = F⟨𝑋⟩ which embeds in the free skew field F⦓𝑋⦔.

For 𝑆 ⊆ [𝑘], let 𝑋𝑆 be the set of variables in 𝑋𝑖 for 𝑖 ∈ 𝑆. Now, if 𝑋 is a set of partially

commutative variables 𝑋 = 𝑋[𝑘], singularity testing (or more generally the rank computation) of

any linear matrix 𝑇 defined over 𝑋[𝑘], the construction of a universal skew field containing F⟨𝑋[𝑘]⟩
will be required. As already mentioned, such a construction is recently obtained [KVV20, Theorem

1.1] whenF is characteristic zero. We will denote that universal skew field by 𝔘[𝑘]. More generally,

for a subset of indices 𝑆 ⊆ [𝑘], we will denote by 𝔘𝑆 the universal skew field containing the ring

F⟨𝑋𝑆⟩. This is the main reason that we state our results over fields of characteristic zero and for

efficient computational purpose, we fix it to be Q.

We develop two recursive subroutines PC-PIT and PC-Rank which are the building blocks

of our main results. The subroutine PC-PIT takes as input an ABP whose edges are labeled by

Q-linear forms over the partially commutative variables 𝑋[𝑘] and finds matrix assignments of the

form 1 to the variables in 𝑋1 , 𝑋2 , . . . , 𝑋𝑘 such that the nonzeroness is preserved. For clarity, when

the subroutine PC-PIT handles ABPs over a ℓ -partition set, we denote it by PC-PITℓ . For example,

here we are interested in PC-PIT𝑘 .

The subroutine PC-Rank takes a linear matrix𝑇 over𝑋[𝑘] as input and finds matrix assignments

to the variables in 𝑋 of the form 1 that attains the rank. More precisely, if the rank of 𝑇 in 𝔘[𝑘]
is 𝑟 and the dimension of the matrices is 𝑑, then the rank of the scalar matrix obtained from 𝑇

after the substitution is 𝑟𝑑. We use PC-Rankℓ to indicate that the subroutine is applied over a

ℓ -partition variable set. In essence, it turns out that the two subroutines PC-PIT𝑘 and PC-Rank𝑘

are interlinked. Indeed, PC-PIT𝑘 makes subroutine calls to PC-Rank𝑘−1 and, in turn, PC-Rank𝑘

makes subroutine calls to PC-PIT𝑘 .

As a warm-up, we first consider PC-Rank subroutine for 𝑘 = 1 case i.e. the NSingular problem.

This algorithm for NSingular, reduces the main algorithmic step (which is the rank increment step)

to noncommutative ABP identity testing. It allows us to design a new algorithm for NSingular,

presented in Section 3. It turns out that this connection to ABP identity testing can be lifted in

the setting of partially commutative case and proved to be a key conceptual component in the

proofs of Theorem 1 and Theorem 3. We do not know if other algorithms for NSingular, e.g. the

algorithm in [IQS18] which is based on the connection between singularity and the existence of

shrunk subspaces [FR04], can be generalized to the partially commutative setting.2

A crucial notion that plays an algorithmic role in [IQS18] and in our NSingular algorithm is

the blow-up rank [DM17, IQS18]. Let 𝑇 be a linear matrix in noncommutative variables. Writing

𝑇 = 𝐴0 +
∑𝑛
𝑖=1
𝐴𝑖𝑥𝑖 , where 𝐴0 , 𝐴1 , . . . , 𝐴𝑛 are coefficient matrices, the evaluation of 𝑇 at a matrix

tuple

¯
𝑀 = (𝑀1 , 𝑀2 , . . . , 𝑀𝑛) of dimension 𝑑, where each 𝑀𝑖 has scalar entries is:

𝑇(
¯
𝑀) = 𝐴0 ⊗ 𝐼𝑑 +

𝑛∑
𝑖=1

𝐴𝑖 ⊗ 𝑀𝑖 .

Define 𝑇{𝑑} = {𝑇(
¯
𝑀) | each 𝑀𝑖 ∈ F𝑑×𝑑}. Notice that 𝑇{𝑑} contains 𝑠𝑑 × 𝑠𝑑 matrices. Let rank(𝑇{𝑑})

be the maximum rank attained by a matrix in 𝑇{𝑑}. The regularity lemma [IQS18, DM17] shows

that rank(𝑇{𝑑}) is always a multiple of 𝑑. Moreover, ncrank(𝑇) is the maximum 𝑟 such that for

1The inverse if it exists will be unique and is hence denoted 𝑇−1
.

2Neither do we know if the other approaches for NSingular in [GGdOW16, HH21] are applicable in this setting.

5

some 𝑑 rank(𝑇{𝑑}) = 𝑟𝑑. If for a tuple

¯
𝑀 of dimension 𝑑 the rank of 𝑇(

¯
𝑀) ⩾ 𝑟𝑑, we say that

¯
𝑀 is a

witness of rank 𝑟.

Guided by the above notion of blow-up rank, the algorithm in [IQS18] has two main steps

applied iteratively: the rank increment step, and the rounding and blow-up control step. We

briefly sketch their algorithm. Given a matrix 𝐵 in 𝑇{𝑑} of rank ⩾ 𝑟𝑑, the rank-increment step

searches3 for a new matrix 𝐵′ in 𝑇{𝑑
′}

(where 𝑑′ > 𝑑) of rank ⩾ 𝑟𝑑′ + 1. If no such matrix exists,

then ncrank(𝑇) = 𝑟 where ncrank(𝑇) is the rank of 𝑇 in F⦓𝑋⦔. Next, the rounding step is a

constructive version of the regularity lemma to find another matrix 𝐵′′ in 𝑇{𝑑
′}

such that the rank

of 𝐵′′ is 𝑟′𝑑′ where 𝑟′ is at least 𝑟 + 1. A blow-up in the dimension of

¯
𝑀 at each iteration incurs

an exponential blow-up in the final dimension. They control the dimension increase by dropping

rows and columns from the witness matrices along with repeated applications of the rounding

step. Finally, it outputs a matrix �̂� of rank 𝑟′𝑑′′ where 𝑟′ ⩾ 𝑟 + 1 and 𝑑′′ ⩽ 𝑟′ + 1. The rounding

step crucially works with matrices from a division algebra (because nonzero matrices in a division

algebra are of full rank).

Coming back to our NSingular algorithm, the rounding and blow-up control step is very

similar to that in [IQS18]. As already mentioned, the main difference is the rank increment step

which we reduce to PIT of noncommutative ABPs. As we show in Lemma 18, Lemma 30, and

Corollary 31, given a linear matrix 𝑇 and a rank-𝑟 witness of dimension 𝑑, it essentially suffices

to compute a nonzero matrix tuple for a noncommutative ABP of size 𝑟𝑑 to find a witness of 𝑇

of noncommutative rank 𝑟 + 1. This can be done with well-known identity testing algorithms

[RS05, AMS10]. This also avoids incurring any super-polynomial bit-complexity blow-up over Q.

Armed with the intuition for the new algorithm for NSingular, we now sketch the main ideas

of the proofs of Theorem 1 and Theorem 3. It is shown in [KVV20] that a linear matrix 𝑇 over the

partially commutative variable set 𝑋[𝑘] is invertible (over the universal skew field 𝔘[𝑘]) if and only

if there exists matrix substitutions for the variables 𝑥 ∈ 𝑋𝑖 : 1 ⩽ 𝑖 ⩽ 𝑘 of the form

𝐼𝑑1
⊗ 𝐼𝑑2

⊗ · · · ⊗ 𝐼𝑑𝑖−1
⊗ 𝑀𝑥 ⊗ 𝐼𝑑𝑖+1

⊗ · · · ⊗ 𝐼𝑑𝑘 (1)

such that 𝑇 evaluates to an invertible matrix. Here, 𝑀𝑥 is a 𝑑𝑖 × 𝑑𝑖 matrix and 𝑑1 , 𝑑2 , . . . , 𝑑𝑘 ∈ N.

Notice that the structure of the matrices respect the partial commutativity. The basic idea in our

proof is to explicitly (and efficiently) find such matrices respecting partially commutative tensor

product structures. Our algorithm also confirms that each dimension 𝑑𝑖 is at most 𝑠 + 1.4

ABP identity testing over partially commutative variables We now give an overview of the

PC-PIT𝑘 subroutine. In the noncommutative case (𝑘 = 1), when 𝑋 is just a set of noncommuting

variables, the PIT algorithm in [RS05], first homogenizes the ABP using standard techniques

[RS05, Lemma 2] and then identity tests each homogenized component. Each homogenized ABP

is processed layer by layer. An important feature of homogeneous noncommutative ABPs is that

every nonzero monomial𝑚 has unique parsing: more precisely, the only way the ABP can construct

a monomial 𝑚 is from left to right, one variable at a time. This allows the algorithm of [RS05] to

maintain at layer 𝑖 (of width 𝑤) at most 𝑤 monomials of degree 𝑖 that have linearly independent

coefficient vectors at that layer.

This crucial unique parsing property does not hold for ABPs defined over partially commutative

variables (for 𝑘 > 1). To handle this, we homogenize the input ABP 𝒜 over the variable set 𝑋1,

3Computing the limit point of a second Wong sequence [IKQS15, IQS18], a non-trivial generalization of augmenting

paths algorithm in the bipartite graph matching.

4For 𝑘 = 1, the result in [DM17, Theorem 1.8] shows that for linear matrices of size 𝑠, 𝑠 − 1 dimension suffices.

6

treating the remaining variables as part of the coefficients. More precisely, suppose the input ABP

𝒜 is of width𝑤, degree 𝑑 and size 𝑠. Then it turns out each 𝑋1-homogenized component is an ABP

whose edge labels are linear forms

∑
𝑖 𝛼𝑖𝑥𝑖 , with 𝑥𝑖 ∈ 𝑋1, such that the coefficients 𝛼𝑖 are given

by ABPs of size 𝑂(𝑠𝑑) = 𝑂(𝑠2) over variables 𝑋2 , 𝑋3 , . . . , 𝑋𝑘 (Lemma 12). For an 𝑋1-homogenized

ABP, inductively, assume that at the 𝑗𝑡ℎ level, we have recorded the monomials𝑚1 , 𝑚2 , . . . , 𝑚𝑤 ∈ 𝑋 𝑗

1

and the corresponding coefficient vectors are 𝑣1 , 𝑣2 , . . . , 𝑣𝑤 . The entries of the vectors 𝑣𝑖 are ABPs

over 𝑋2 , 𝑋3 , . . . , 𝑋𝑘 of size 𝑂(𝑠2 𝑗). The vector 𝑣𝑖 is the vector of coefficients of the monomial 𝑚𝑖

in the polynomials computed at each node of layer 𝑗. Additionally, we maintain the property that

the vectors 𝑣1 , 𝑣2 , . . . , 𝑣𝑤 are 𝔘[𝑘]\{1}-linearly independent and also 𝔘[𝑘]\{1}-spanning for the set of

all vectors corresponding to all monomials in 𝑋
𝑗

1
(spanning as a left 𝔘-module). For the (𝑗 + 1)𝑡ℎ

level, we need to now compute a similar set of 𝔘[𝑘]\{1}-linearly independent vectors from among

the vectors corresponding to the monomials {𝑚𝑖𝑥 𝑗 : 1 ⩽ 𝑖 ⩽ 𝑤, 𝑥 𝑗 ∈ 𝑋1}. Clearly the size of such a

set is bounded by the width of the ABP. We will see that this is reducible to computing the rank of

a matrix 𝑀 whose entries are ABPs over the variables in 𝑋[𝑘]\{1}. It turns out that, we can linearize

this rank problem by adapting a recent result [ACG
+
22] proved in the context of noncommutative

(𝑘 = 1) setting. That is, the rank computation of matrix 𝑀 is polynomial-time reducible to the

rank computation of a linear matrix 𝑇 over 𝑋2 , 𝑋3 , . . . , 𝑋𝑘 of size 𝑂(𝑠5). This is the place where we

recursively call PC-Rank𝑘−1 for linear matrices of size 𝑂(𝑠5) over the variable set 𝑋[𝑘]\{1}.

At the end of this process we find a surviving monomial 𝑚1 over the variables in 𝑋1 whose

coefficient is nonzero. Given such a monomial, we can use a standard idea (by now) to produce

assignments {𝑀𝑥}𝑥∈𝑋1
which makes the polynomial evaluate to a nonzero matrix of polynomials

over 𝑋2 , 𝑋3 , . . . , 𝑋𝑘 [AMS10]. The dimension of the matrices {𝑀𝑥}𝑥∈𝑋1
is bounded by deg(𝑓) + 1

(recall that 𝑓 is the polynomial computed by the ABP), and the entries are over {0, 1}.
One can then recover the ABP𝒜𝑚1

over𝑋2 , 𝑋3 , . . . , 𝑋𝑘 which is the coefficient of𝑚1. The size of

the ABP will be 𝑂(𝑠𝑑2) = 𝑂(𝑠3), however the degree is still bounded by deg(𝑓). It now recursively

invokes PC-PIT𝑘−1 over 𝒜𝑚1
to compute the matrix assignments for the variables in 𝑋[𝑘]\{1} such

that𝒜𝑚1
evaluates to a nonzero matrix.

Since the dimension of the matrices is only a function of deg(𝑓), it is always bounded by 𝑠 + 1

for each 𝑋𝑖 . Finally, the matrix substitution for the variables 𝑥 ∈ 𝑋𝑖 will be identified with the

form 1. To summarize, the upshot is that the PC-PIT𝑘 problem over 𝑋[𝑘] is deterministic poly(𝑠)-
time reducible to 𝑂(𝑠4) instances of PC-Rank𝑘−1 for linear matrices over 𝑋2 , 𝑋3 , . . . , 𝑋𝑘 of size

𝑂(𝑠5) and at most 𝑠 recursive calls to PC-PIT𝑘−1 for ABPs of size 𝑂(𝑠3) defined over 𝑋[𝑘]\{1} (taking

all homogenized components into account).

Computing linear matrix rank over partially commutative variables Now we discuss the con-

struction of the subroutine PC-Rank𝑘 . Given a linear matrix 𝑇 of size 𝑠 over the partially com-

mutative variables 𝑋[𝑘], let pc-rank(𝑇) denote its rank over the universal skew field 𝔘[𝑘]. This is

the size of the largest invertible submatrix (over 𝔘[𝑘]) of 𝑇. The subroutine PC-Rank𝑘 finds the

matrix assignments of the form 1 to the variables such the rank of the new scalar matrix becomes a

multiple of pc-rank(𝑇). More precisely, the rank of the scalar matrix after the matrix assignments

is 𝑑′ · pc-rank(𝑇)where 𝑑′ = 𝑑1𝑑2 · · · 𝑑𝑘 .
Let us define the notion of the witness for pc-rank. A set of matrix tuples of the form 1 is a

rank 𝑟 witness for 𝑇 if after the substitution, the rank of the scalar matrix is at least 𝑟𝑑′. Now to

construct the subroutine PC-Rank𝑘 , the main idea is to do an induction over 𝑟. Namely, given a

witness for pc-rank 𝑟 (which we call as the matrix tuple

¯
𝑀), we would like to construct another

witness for pc-rank 𝑟 + 1 in deterministic polynomial time unless 𝑟 is already the pc-rank(𝑇). Note

7

that to construct a witness for rank 𝑟 = 1, it suffices to assign values to the variables such that any

nonzero linear form in 𝑇 becomes nonzero, which is clearly trivial.

Let the input matrix 𝑇 (of size 𝑠) be of the following form:

𝑇(𝑋1 , . . . , 𝑋𝑘) = 𝐴0 +
𝑘∑
𝑗=1

∑
𝑥∈𝑋𝑗

𝐴𝑥𝑥.

Given a pc-rank witness 𝑟 for 𝑇 of the form 1, the rank of

𝑇′′
1
= 𝐴0 ⊗ 𝐼𝑑′ +

𝑘∑
𝑗=1

∑
𝑥∈𝑋𝑗

𝐴𝑥 ⊗ (𝐼𝑑1
⊗ · · · 𝐼𝑑𝑗−1

⊗ 𝑀𝑥 ⊗ 𝐼𝑑𝑗+1
⊗ · · · ⊗ 𝐼𝑑𝑘) (2)

is at least 𝑟𝑑′ where 𝑇′′
1

is the evaluation of 𝑇 on the witness tuple. Additionally, assume that for

1 ⩽ 𝑗 ⩽ 𝑘, the dimension 𝑑 𝑗 ⩽ 𝑠3
. We call

¯
𝑑 = (𝑑1 , 𝑑2 , . . . , 𝑑𝑘) as the shape of the tensor product.

Let 𝑇𝑑′(𝑍) denote the matrix obtained from 𝑇 by replacing the variable 𝑥 ∈ 𝑋𝑖 by the matrix

𝐼𝑑1
⊗ · · · ⊗ 𝐼𝑑𝑖−1

⊗ 𝑍𝑥 ⊗ 𝐼𝑑𝑖+1
⊗ · · · ⊗ 𝐼𝑑𝑘 where the dimension of the generic matrix 𝑍𝑥 is 𝑑𝑖 .

By generic, we mean that the entries of 𝑍𝑥 are indeterminate variables 𝑧𝑥,ℓ1 ,ℓ2 : 1 ⩽ ℓ1 , ℓ2 ⩽ 𝑑𝑖 .
Furthermore, the variables in 𝑍𝑖 = {𝑍𝑥}𝑥∈𝑋𝑖 are noncommuting but variables across 𝑍𝑖 and 𝑍 𝑗 are

commuting for 𝑖 ≠ 𝑗. Equivalently, one can view each𝑍𝑖 as the set of variables {𝑧𝑥,ℓ1 ,ℓ2}𝑥∈𝑋𝑖 ,1⩽ℓ1 ,ℓ2⩽𝑑𝑖 .
Thus we have a new set of partially commutative variables over 𝑍 = (𝑍1 , . . . , 𝑍𝑘) but with equal

number of partitions. It is important to note that pc-rank(𝑇𝑑′(𝑍)) = 𝑑′ · pc-rank(𝑇) (Corollary 41).

We require a similar observation for our NSingular algorithm (Lemma 28).

In 𝑇𝑑′(𝑍) replace the matrices 𝐼𝑑1
⊗ · · · ⊗ 𝐼𝑑𝑖−1

⊗ 𝑍𝑥 ⊗ 𝐼𝑑𝑖+1
⊗ · · · ⊗ 𝐼𝑑𝑘 corresponding to 𝑥 ∈ 𝑋𝑖 by

𝐼𝑑1
⊗ · · · ⊗ 𝐼𝑑𝑖−1

⊗ (𝑍𝑥 +𝑀𝑥) ⊗ 𝐼𝑑𝑖+1
⊗ · · · ⊗ 𝐼𝑑𝑘

and obtain the matrix 𝑇𝑑′(𝑍 + ¯
𝑀). Note that the scalar part of the matrix is 𝑇′′

1
. In other words,

𝑇𝑑′(𝑍 + ¯
𝑀) = 𝑇′′

1
+

𝑘∑
𝑖=1

∑
𝑥∈𝑋𝑖

𝐴𝑥 ⊗ 𝐼𝑑1
⊗ · · · ⊗ 𝐼𝑑𝑖−1

⊗ 𝑍𝑥 ⊗ 𝐼𝑑𝑖+1
⊗ · · · ⊗ 𝐼𝑑𝑘 . (3)

By the simple property that the rank of a linear matrix is invariant under shifting of the variables

by scalars, we get that pc-rank(𝑇𝑑′(𝑍 + ¯
𝑀)) = pc-rank(𝑇𝑑′(𝑍)).

Applying Gaussian elimination, we can transform 𝑇𝑑′(𝑍 + ¯
𝑀) to the following shape:

𝑇𝑑′(𝑍 + ¯
𝑀) →

(
𝐼𝑟𝑑′ − 𝐿 0

0 𝐶 − 𝐵(𝐼𝑟𝑑′ − 𝐿)−1𝐴

)
. (4)

The matrices 𝐿, 𝐴, 𝐵, 𝐶 are linear matrices over the variables in 𝑍1 , 𝑍2 , . . . , 𝑍𝑘 . The (ℓ1 , ℓ2)𝑡ℎ
entry of 𝐶−𝐵(𝐼𝑟𝑑′ −𝐿)−1𝐴 is given by 𝑆ℓ1 ,ℓ2 = 𝐶ℓ1ℓ2 −𝐵ℓ1(𝐼𝑟𝑑′ −𝐿)−1𝐴ℓ2 where 𝐵ℓ1 is the ℓ 𝑡ℎ

1
row vector

of 𝐵 and 𝐴ℓ2 is the ℓ 𝑡ℎ
2

column vector of 𝐴. Now we notice a simple fact that shows pc-rank(𝑇) > 𝑟

if and only if 𝑆ℓ1 ,ℓ2 ≠ 0 for at least one pair (ℓ1 , ℓ2) (Lemma 42). This is the partially commutative

version of Lemma 29 that we prove in the context of NSingular problem.

Notice that 𝑆ℓ1 ,ℓ2 has the following series expansion

𝑆ℓ1ℓ2 = 𝐶ℓ1ℓ2 − 𝐵ℓ1

(∑
𝑖⩾0

𝐿𝑖

)
𝐴ℓ2 .

8

The refined goal is to find a nonzero for the series which allows us to construct a witness of

pc-rank(𝑇) ⩾ 𝑟 + 1. If the series is defined over the free noncommuting variables, a standard result

[Eil74, Corollary 8.3] shows that the infinite series is nonzero if and only if the polynomial

𝑆⩽𝑟𝑑
′

ℓ1ℓ2
= 𝐶ℓ1ℓ2 − 𝐵ℓ1

(∑
𝑖⩽𝑟𝑑′

𝐿𝑖

)
𝐴ℓ2 ≠ 0.

The same result can be extended to the partially commutative case to obtain a similar statement. In

[Wor13, Proposition 5], Worrell proves this statement using Ore domains. A self contained proof

is given in Lemma 18. The important (and simple) observation is that the polynomial 𝑆⩽𝑟𝑑
′

ℓ1ℓ2
can be

represented by a partially commutative ABP of width ⩽ 𝑟𝑑′ and degree 𝑟𝑑′ + 2 over the variable

set 𝑍1 , 𝑍2 , . . . , 𝑍𝑘 .

Hence, we can apply PC-PIT𝑘 subroutine on the ABP computing the partially commutative

polynomial 𝑆⩽𝑟𝑑
′

ℓ1ℓ2
. Additionally, we observe that a suitable scaling of the nonzero of the ABP will

be a nonzero for the infinite series 𝑆ℓ1ℓ2 also. This is by the combined effect of applying Theorem

36 and Lemma 38. As a result, we obtain a matrix tuple that witness the pc-rank(𝑇) > 𝑟. Now we

need a rounding operation that should produce a witness for pc-rank(𝑇) ⩾ 𝑟 + 1 and also a blow-

up control procedure that controls the dimension of the matrices. This step is somewhat similar

in spirit to the rounding and blow-up control steps for the NSingular algorithm, but requires

additional conceptual ideas. More precisely, given a linear matrix 𝑇 over 𝑋[𝑘] of size 𝑠 and matrix

tuple of shape (𝑑1 , . . . , 𝑑𝑘) such that the rank of the image > 𝑟𝑑1𝑑2 · · · 𝑑𝑘 , our idea is to update the

matrix substitution such that the rank of the image of the new substitution ⩾ (𝑟 + 1)𝑑1𝑑2 · · · 𝑑𝑘 .
Indeed, assuming that the 𝑑𝑖 are pairwise relatively prime, the rounding step turns out to be

essentially like the noncommutative case. However, this assumption makes the blow-up control

step harder. Even if we start with a substitution of shape (𝑑1 , . . . , 𝑑𝑘) where each 𝑑𝑖 is prime, it

might fail for 𝑑𝑖 − 1. To overcome this, our idea is to relax the dimension upper bound of the

witness matrix. Instead of reducing 𝑑𝑖 one at a time, we allow it to drop to the next (suitable) prime

number less than 𝑑𝑖 . A theorem about the distribution of primes in small intervals helps us find

such a prime close enough to 𝑑𝑖 [LS12].

1.2 Other Related Results

Among the specific instances of Singular problem, a deterministic polynomial-time algorithm is

known if the coefficient matrices of the symbolic matrix is of rank-one or rank-two skew-symmetric

[Lov89]. Raz and Wigderson have given a deterministic polynomial-time algorithm for another

instance of Singular problem originated in the context of graph rigidity [RW19]. Another result

by Ivanyos, and Qiao gives deterministic polynomial-time algorithm for a special case of Singular

problem related to symmetrization or skew-symmetrization problem [IQ19]. Recently, Ivanyos,

Mittal, and Qiao obtain a deterministic polynomial-time algorithm where the coefficient matrices

generate a matrix Lie algebra [IMQ22].

Equivalence testing of multitape automata is a foundational algorithmic question and has a

long history. One-way multitape automata were introduced in the seminal paper of Rabin and Scott

[RS59]. The equivalence testing problem of multitape nondeterministic automata is undecidable

[Gri68]. Here the equivalence means the words accepted as sets and the question is to decide

whether two sets are the same. The problem was shown to be decidable for 2-tape deterministic

automata independently by Bird [Bir73] and Valiant [Val74]. Subsequently, an exponential upper

bound was obtained for it [Bee76]. Eventually, for two-tape deterministic automata, a polynomial-

time algorithm was given in [FG82]. As already mentioned, using the theory of free groups,

9

Harju and Karhumäki [HK91] established the decidability of multiplicity equivalence of multitape

nondeterministic automata. More generally, they prove that the weighted equivalence testing of

multitape automata is decidable. One of their open questions was to give an efficient algorithm

for the weighted equivalence testing problem when the number of tapes is any constant. Worrell’s

result giving a randomized polynomial-time algorithm is the first major progress in this direction

[Wor13], followed by the quasipolynomial deterministic bound given in [ACDM21]. A relatively

recent result analyzes the combinatorial method of Bird [Bir73] more carefully, and it shows a

polynomial-time algorithm for the equivalence problem for 𝑘-tape deterministic automata (where

the coefficients are only 0−1) when 𝑘 = 𝑂(1) [GS20]. Our paper completes this line of investigation

by obtaining the first deterministic polynomial-time equivalence test for weighted 𝑘-tape automata

for 𝑘 = 𝑂(1), thereby improving on the previous algorithmic results.

Organization.

In Section 2, we collect background results from algebraic complexity theory and cyclic division

algebras. We give the algorithm for noncommutative singularity testing in Section 3. The main

results (Theorem 1 and Theorem 3) are proved in Section 4. We state a few question for further

research in Section 5.

2 Background and Notation

Throughout the paper, we useF, 𝐹, 𝐾 to denote fields. Mat𝑚(F) (or Mat𝑚(𝐹),Mat𝑚(𝐾)) will denote

𝑚-dimensional matrix algebras over F (resp. 𝐹 or 𝐾) where 𝑚 will be clear from the context.

Similarly, Mat𝑚(F)𝑛 (resp. Mat𝑚(𝐹)𝑛 ,Mat𝑚(𝐾)𝑛) will denote the set of 𝑛 tuples over Mat𝑚(F)
(resp. Mat𝑚(𝐹),Mat𝑚(𝐾)). 𝐷 is used to denote a division algebra. We use 𝑋 to denote a set of

variables. Sometimes, we use

¯
𝑝,
¯
𝑞,
¯
𝑀,
¯
𝑁 to denote matrix tuples in suitable matrix algebras. The

free noncommutative ring or partially commutative ring of polynomials over a field F is denoted

by F⟨𝑋⟩ where 𝑋 is clear from the context. The notation 𝐴 ⊗ 𝐵 denotes the usual tensor product

of the matrices 𝐴 and 𝐵. We use [𝑘] to denote the set {1, 2, . . . , 𝑘}. Let 𝑋 = 𝑋1 ⊔ 𝑋2 ⊔ · · · ⊔ 𝑋𝑘 . For

𝑆 ⊆ [𝑘], let 𝑋𝑆 be the set of variables in

⊔
𝑖∈𝑆 𝑋𝑖 . In particular, if 𝑋 is a set of partially commutative

variables, it is denoted by 𝑋[𝑘].

2.1 Algebraic Complexity

Definition 4 (Algebraic Branching Program). An algebraic branching program (ABP) is a layered

directed acyclic graph. The vertex set is partitioned into layers 0, 1, . . . , 𝑑, with directed edges only

between adjacent layers (𝑖 to 𝑖 + 1). There is a source vertex of in-degree 0 in the layer 0, and one

out-degree 0 sink vertex in layer 𝑑. Each edge is labeled by an affineF-linear form. The polynomial

computed by the ABP is the sum over all source-to-sink directed paths of the ordered product of

affine forms labeling the path edges.

The size of the ABP is defined as the total number of nodes and the width is the maximum

number of nodes in a layer. The ABP model can compute commutative or noncommutative

polynomials (depending on the variable set 𝑋). ABPs of width 𝑤 can also be seen as iterated

matrix multiplication

¯
𝑐 · 𝑀1𝑀2 · · ·𝑀ℓ · ¯

𝑏, where

¯
𝑐,
¯
𝑏 are 1 × 𝑤 and 𝑤 × 1 vectors respectively and

each 𝑀𝑖 is a 𝑤 × 𝑤 matrix, whose entries are affine linear forms over

¯
𝑥.

10

Similarly, the ABP model can be used to compute polynomials over a set 𝑋[𝑘] of partially

commutative variables. The only difference is that the linear forms are over F⟨𝑋[𝑘]⟩ and two

monomials 𝑚, 𝑚′ ∈ 𝑋∗ are same under the equivalence relation ∼ as described in Section 1.

Definition 5 (Linear Pencil for Noncommutative Polynomials). A noncommutative polynomial

𝑔 ∈ F⟨𝑋⟩ is said to have a size 𝑠 linear pencil 𝐿 if 𝐿 is an 𝑠 × 𝑠 invertible linear matrix over 𝑋 such

that 𝑔 is computed in the (1, 𝑠)𝑡ℎ entry of 𝐿−1
.

We can now generalize Definition 5 for partially commutative polynomials also where𝑋 = 𝑋[𝑘].

Definition 6 (Linear Pencil for Partially Commutative Polynomials). A partially commutative

polynomial 𝑔 ∈ Q⟨𝑋[𝑘]⟩ is said to have a size 𝑠 linear pencil 𝐿 if 𝐿 is an 𝑠 × 𝑠 invertible linear matrix

over 𝑋[𝑘] such that 𝑔 is computed in the (1, 𝑠)𝑡ℎ entry of 𝐿−1
.

Since we will be using the result in [KVV20] throughout the paper, whenever we talk about

invertibility over the partially commutative setting, the field is always fixed to be Q.

Given an ABP that computes a polynomial 𝑓 at the the (1, 𝑤)𝑡ℎ entry of the matrix product

𝑀1𝑀2 · · ·𝑀𝑑 where each 𝑀𝑖 is of size𝑤×𝑤, it is well-known that the polynomial can be computed

at the upper right corner of the inverse of a linear matrix 𝐿 𝑓 of small size. This was explicitly

stated in [HW15, Equation 6.4] in the context of noncommutative variables. However, we can

immediately see that the construction also holds for a partially commutative set of variables. We

give the formal statement.

Proposition 7. An ABP of size 𝑠 (width 𝑤, and depth 𝑑) computing a polynomial 𝑓 over the partially

commutative variables 𝑋[𝑘] =
⊔𝑘
𝑖=1
𝑋𝑖 has the following linear pencil of size bounded by 2𝑠:

𝐿 𝑓 =


𝐼𝑤 −𝑀1

𝐼𝑤 −𝑀2

. . .
. . .

𝐼𝑤 −𝑀𝑑

𝐼𝑤


.

The polynomial 𝑓 is computed at the upper right corner of 𝐿−1

𝑓
.

We also record the following simple observation that talks about the partial evaluation of a

polynomial defined over 𝑋[𝑘]. This is field independent.

Observation 8. Let 𝑓 ∈ F⟨𝑋[𝑘]⟩ be a partially commutative polynomial. For each 𝑖 ∈ [𝑘] and 𝑥 ∈ 𝑋𝑖 , let

𝑀𝑥 be a 𝑑𝑖 × 𝑑𝑖 matrix. Consider the following matrices:

1. Substitute each 𝑥 ∈ 𝑋1 by 𝑀𝑥 in 𝑓 and obtain a 𝑑1 × 𝑑1 matrix 𝑀1 ∈ Mat𝑑1
(F⟨𝑋[𝑘]\{1}⟩). Similarly,

define a (𝑑1𝑑2 · · · 𝑑𝑖) × (𝑑1𝑑2 · · · 𝑑𝑖)matrix 𝑀𝑖 ∈ Mat𝑑1𝑑2···𝑑𝑖 (F⟨𝑋[𝑘]\[𝑖]⟩) by substituting each 𝑥 ∈ 𝑋𝑖
by 𝑀𝑥 in the (𝑑1𝑑2 · · · 𝑑𝑖−1) × (𝑑1𝑑2 · · · 𝑑𝑖−1) matrix 𝑀𝑖−1 ∈ Mat𝑑1𝑑2···𝑑𝑖−1

(F⟨𝑋[𝑘]\[𝑖−1]⟩). Let 𝑀𝑘 be

the final matrix.

2. Let 𝑀∗ be the matrix evaluation of 𝑓 (𝑋[𝑘]) substituting for each 𝑖 ∈ [𝑘], each 𝑥 ∈ 𝑋𝑖 by

𝐼𝑑1
⊗ · · · 𝐼𝑑𝑖−1

⊗ 𝑀𝑥 ⊗ 𝐼𝑑𝑖+1
· · · 𝐼𝑑𝑘 .

Then, it computes the same matrix i.e. 𝑀𝑘 = 𝑀∗.

11

Proof. Consider a monomial 𝑚 in 𝑓 (𝑋[𝑘]). We can write 𝑚 = 𝑚1𝑚2 · · ·𝑚𝑘 where 𝑚𝑖 ∈ 𝑋∗𝑖 . Let

𝑁𝑖 ,𝑚 =
∏

𝑥∈𝑚𝑖
𝑀𝑥 be the 𝑑𝑖 × 𝑑𝑖 matrix. Now, 𝑀1 =

∑
𝑚 𝑁1,𝑚 ⊗ 𝑚2 ⊗ · · · ⊗ 𝑚𝑘 from the definition.

Therefore, 𝑀𝑘 =
∑
𝑚 𝑁1,𝑚 ⊗ 𝑁2,𝑚 ⊗ · · · ⊗ 𝑁𝑘,𝑚 . Clearly from the definition of each 𝑁𝑖 ,𝑚 the

contribution of each 𝑚 in 𝑀∗ is also 𝑁1,𝑚 ⊗ 𝑁2,𝑚 ⊗ · · · ⊗ 𝑁𝑘,𝑚 . □

2.1.1 Identity testing results

For noncommutative ABPs, Raz and Shpilka obtained a deterministic polynomial-time algorithm

for identity testing [RS05].

Theorem 9 (Raz-Shpilka [RS05]). Given as input a noncommutative ABP of width 𝑤 and 𝑑 many layers

computing a polynomial 𝑓 ∈ F⟨𝑋⟩, there is a deterministic poly(𝑤, 𝑑, 𝑛) time algorithm to test whether or

not 𝑓 ≡ 0.

In fact, the following corollary is standard by now. This was first formally observed in [AMS10]

using a minor adaptation of [RS05].

Corollary 10. Given a noncommutative ABP of width𝑤 and 𝑑many layers computing a nonzero polynomial

𝑓 ∈ F⟨𝑋⟩, there is a deterministic poly(𝑤, 𝑑, 𝑛) time algorithm which outputs a nonzero monomial 𝑚 in

𝑓 . If F = Q, the bit complexity of the algorithm is poly(𝑤, 𝑑, 𝑛, 𝑏) where 𝑏 is the maximum bit complexity

of any coefficient in the input ABP.

Essentially, the algorithm of Raz and Shpilka maintains basis vectors (indexed by at most 𝑤

monomials) in each layer of the ABP using simple linear algebraic computations. The entries of

the basis vectors are the coefficients of the indexing monomials in different nodes of that layer of

the ABP.

Given such a monomial𝑚 = 𝑥𝑖1𝑥𝑖2 . . . 𝑥𝑖𝑑 , [AMS10] introduced a simple trick to produce a matrix

tuple in Mat𝑑+1(F)𝑛 on which 𝑓 evaluates to nonzero. To see that consider a 𝑑+1 state deterministic

finite automaton𝒜 that accepts only the string 𝑥𝑖1𝑥𝑖2 . . . 𝑥𝑖𝑑 over the alphabet {𝑥1 , 𝑥2 , . . . , 𝑥𝑛}. The

transition matrix tuple (𝑀𝑥1
, . . . , 𝑀𝑥𝑛) of 𝒜 have the property that 𝑓 (𝑀𝑥1

, . . . , 𝑀𝑥𝑛) ≠ 0. More

precisely, the automaton𝒜 is the following.

𝑞0 𝑞1 𝑞2 𝑞𝑑
𝑥𝑖1 𝑥𝑖2 · · · · · · 𝑥𝑖𝑑

The transition matrices 𝑀𝑥 𝑗 : 1 ⩽ 𝑗 ⩽ 𝑛 are (𝑑+1) dimensional (0, 1)-matrices with the property

that 𝑀𝑥 𝑗 (ℓ , ℓ + 1) = 1 if and only if 𝑥 𝑗 is the edge label between 𝑞ℓ and 𝑞ℓ+1 for 0 ⩽ ℓ ⩽ 𝑑 − 1. This

we record as a corollary.

Corollary 11. Given a noncommutative ABP of width𝑤 and 𝑑 layers computing a nonzero polynomial 𝑓 ∈
F⟨𝑋⟩, there is a deterministic polynomial-time algorithm that can output a matrix tuple (𝑀1 , 𝑀2 , . . . , 𝑀𝑛)
of dimension at most 𝑑 + 1 such that 𝑓 (𝑀1 , 𝑀2 , . . . , 𝑀𝑛) ≠ 0.

2.1.2 Homogenization

A noncommutative (or commutative ABP) over variable set 𝑋 can be easily homogenized using

standard ideas. The standard reference is the survey by Shpilka and Yehudayoff [SY10, Chapter 2].

This is also explained in [RS05, Lemma 2]. We observe that the same homogenization extends to

12

partially commutative ABPs defined over the variable set 𝑋[𝑘] in the following sense. This result

is field independent.

Lemma 12. Let 𝑓 ∈ F⟨𝑋[𝑘]⟩ be a partially commutative polynomial of degree 𝑑 computed by an ABP of

size 𝑠. Then for any 1 ⩽ 𝑗 ⩽ 𝑘, we can efficiently homogenize the ABP over the variable set 𝑋𝑗 , and the

coefficients are also computed by ABPs over F⟨𝑋[𝑘]\{ 𝑗}⟩ of size 𝑂(𝑠𝑑).

Proof. W.l.o.g, we describe the homogenization w.r.t. the variable set 𝑋1. The construction is

standard and we provide a sketch. Every node 𝑣 is replaced by a set of nodes (𝑣, 0), (𝑣, 1), . . . , (𝑣, 𝑑)
where the node (𝑣, 𝑗) computes the 𝑗𝑡ℎ homogenized component of the polynomial computed at

the node 𝑣. Let 𝑣 → 𝑢 be an edge in the ABP labeled by 𝐿′ + 𝐿 where 𝐿 is a linear form over 𝑋1

and 𝐿′ is an affine linear form over 𝑋2 ⊔ · · · ⊔ 𝑋𝑘 . Then we connect (𝑣, 𝑖) to (𝑢, 𝑖)with a label 𝐿′ for

0 ⩽ 𝑖 ⩽ 𝑑. Similarly, we connect (𝑣, 𝑖) to (𝑢, 𝑖 + 1)with a label 𝐿.

The next step is to get rid of edges that labeled with affine linear forms overF⟨𝑋2 , . . . , 𝑋𝑘⟩. This

process is repeated layer by layer starting from the source vertex at the left most layer. Suppose

that there is an edge between (𝑣, 𝑖) → (𝑢, 𝑖) labeled with 𝐿′ over F⟨𝑋2 , . . . , 𝑋𝑘⟩. For an edge

(𝑤, 𝑖 − 1) → (𝑣, 𝑖) already labeled with an ABP 𝑔 will be changed to (𝑤, 𝑖 − 1) → (𝑢, 𝑖) with the

label 𝑔 · 𝐿′. If there is already an edge between (𝑤, 𝑖 − 1) to (𝑢, 𝑖) with a label 𝑔′ which is an ABP,

we update the edge label (𝑤, 𝑖 − 1) → (𝑢, 𝑖) by 𝑔 · 𝐿′ + 𝑔′. We repeat this process until we get rid of

all the edges carrying affine linear forms over F⟨𝑋[𝑘]\{1}⟩. Clearly each of the ABPs on the edges

are of size 𝑂(𝑠𝑑). □

2.2 Cyclic Division Algebras

A division algebra 𝐷 is an associative algebra over a (commutative) field F such that all nonzero

elements in 𝐷 are units (they have a multiplicative inverse). In the context of this paper, we are

interested in finite-dimensional division algebras. Specifically, we focus on cyclic division algebras

and their construction [Lam01, Chapter 5].

We describe the construction overF = Q. Let 𝐹 = Q(𝑧), where 𝑧 is a commuting indeterminate.

Let 𝜔 be an ℓ 𝑡ℎ primitive root of unity. To be specific, let 𝜔 = 𝑒2𝜋𝑖/ℓ
. Let 𝐾 = 𝐹(𝜔) = Q(𝜔, 𝑧) be the

cyclic Galois extension of 𝐹 obtained by adjoining 𝜔. The elements of 𝐾 are polynomials in 𝜔 (of

degree at most ℓ − 1) with coefficients from 𝐹.

Define 𝜎 : 𝐾 → 𝐾 by letting 𝜎(𝜔) = 𝜔𝑘
for some 𝑘 relatively prime to ℓ and stipulating that

𝜎(𝑎) = 𝑎 for all 𝑎 ∈ 𝐹. Then 𝜎 is an automorphism of 𝐾 with 𝐹 as fixed field and it generates the

Galois group Gal(𝐾/𝐹).
The division algebra 𝐷 = (𝐾/𝐹, 𝜎, 𝑧) is defined using a new indeterminate 𝑥 as the ℓ -

dimensional vector space:

𝐷 = 𝐾 ⊕ 𝐾𝑥 ⊕ · · · ⊕ 𝐾𝑥ℓ−1 ,

where the (noncommutative) multiplication for𝐷 is defined by 𝑥ℓ = 𝑧 and 𝑥𝑏 = 𝜎(𝑏)𝑥 for all 𝑏 ∈ 𝐾.

Then 𝐷 is a division algebra of dimension ℓ 2
over 𝐹 [Lam01, Theorem 14.9].

Definition 13. The index of 𝐷 is defined to be the square root of the dimension of 𝐷 over 𝐹. In our

example, 𝐷 is of index ℓ .

The elements of 𝐷 has matrix representation in 𝐾ℓ×ℓ from its action on the basis 𝒳 =

{1, 𝑥, . . . , 𝑥ℓ−1}. I.e., for 𝑎 ∈ 𝐷 and 𝑥 𝑗 ∈ 𝒳, the 𝑗𝑡ℎ row of the matrix representation is obtained by

writing 𝑥 𝑗𝑎 in the 𝒳-basis.

For example, the matrix representation 𝑀(𝑥) of 𝑥 is:

13

𝑀(𝑥)[𝑖 , 𝑗] =


1 if 𝑗 = 𝑖 + 1, 𝑖 ⩽ ℓ − 1

𝑧 if 𝑖 = ℓ , 𝑗 = 1

0 otherwise.

𝑀(𝑥) =


0 1 0 · · · 0

0 0 1 · · · 0

...
...

. . .
. . .

...

0 0 · · · 0 1

𝑧 0 · · · 0 0


.

For each 𝑏 ∈ 𝐾 its matrix representation 𝑀(𝑏) is:

𝑀(𝑏)[𝑖 , 𝑗] =


𝑏 if 𝑖 = 𝑗 = 1

𝜎𝑖−1(𝑏) if 𝑖 = 𝑗 , 𝑖 ⩾ 2

0 otherwise.

𝑀(𝑏) =



𝑏 0 0 0 0 0

0 𝜎(𝑏) 0 0 0 0

0 0 𝜎2(𝑏) 0 0 0

0 0 0

. . . 0 0

0 0 0 0 𝜎ℓ−2(𝑏) 0

0 0 0 0 0 𝜎ℓ−1(𝑏)


Remark 14. We note that𝑀(𝑥)has a “circulant” matrix structure and𝑀(𝑏) is a diagonal matrix. For

a vector 𝑣 ∈ 𝐾ℓ , it is convenient to write circ(𝑣1 , 𝑣2 , . . . , 𝑣ℓ) for the ℓ×ℓ matrix with (𝑖 , 𝑖+1)𝑡ℎ entry 𝑣𝑖
for 𝑖 ⩽ ℓ−1, (ℓ , 1)𝑡ℎ entry as 𝑣ℓ and remaining entries zero. Thus, we have𝑀(𝑥) = circ(1, 1, . . . , 1, 𝑧).
Similarly, we write diag(𝑣1 , 𝑣2 , . . . , 𝑣ℓ) for the diagonal matrix with entries 𝑣𝑖 .

Fact 15. The 𝐹-algebra generated by 𝑀(𝑥) and 𝑀(𝑏), 𝑏 ∈ 𝐾 is an isomorphic copy of the cyclic division

algebra in the matrix algebra Matℓ (𝐾).

Proposition 16. For all 𝑏 ∈ 𝐾, circ(𝑏, 𝜎(𝑏), . . . , 𝑧𝜎ℓ−1(𝑏)) = 𝑀(𝑏) ·𝑀(𝑥).

Define 𝐶𝑖 , 𝑗 = 𝑀(𝜔 𝑗−1) · 𝑀(𝑥 𝑖−1) for 1 ⩽ 𝑖 , 𝑗 ⩽ ℓ . Observe that, 𝔅 = {𝐶𝑖 𝑗 , 𝑖 , 𝑗 ∈ [ℓ]} be a

𝐹-generating set for the division algebra 𝐷. The following proposition is a standard fact.

Proposition 17. [Lam01, Section 14(14.13)] Then 𝐾 linear span of 𝔅 is the entire matrix algebra Matℓ (𝐾).

2.3 Partially Commutative Rational Series

In the following lemma, we prove that the zero testing of a series defined over partially commutative

variables can be reduced to the zero testing of a polynomial of low degree. This extends such a

result known for 𝑘 = 1 [Eil74, Corollary 8.3, Page 145] (Also, see [DK21, Example 8.2, Page 23]) to

the partially commutative setting where 𝑋 = 𝑋[𝑘]. The proof is linear algebraic and we crucially

use the fact that the partially commutative ring F⟨𝑋[𝑘]⟩ is embedded in the universal skew field

𝔘[𝑘] [KVV20] as mentioned in Section 1 (a formal statement regarding the construction of 𝔘[𝑘] is

given in Theorem 21). In [Wor13, Proposition 5], Worrell has proved the same result using Ore

domains.

14

Lemma 18. Consider the universal skew field 𝔘[𝑘] over F⟨𝑋[𝑘]⟩. Let 𝐿 ∈ 𝔘𝑠×𝑠[𝑘] be a linear matrix over 𝑋[𝑘],

𝑢, 𝑣 are 1× 𝑠 and 𝑠×1 dimensional vectors whose entries are linear forms over 𝑋[𝑘]. Then 𝑢
(∑

𝑖⩾0
𝐿𝑖

)
𝑣 = 0

if and only if 𝑢
(∑

𝑖⩽𝑠 𝐿
𝑖
)
𝑣 = 0.

Proof. If 𝑢
(∑

𝑖⩾0
𝐿𝑖

)
𝑣 = 0 then clearly 𝑢

(∑
𝑖⩽𝑠 𝐿

𝑖
)
𝑣 = 0 since different homogeneous components

will not mix together.

To see the other direction, we first note that 𝑢
(∑

𝑖⩽𝑠 𝐿
𝑖
)
𝑣 = 0 implies 𝑢𝐿𝑖𝑣 = 0, 0 ⩽ 𝑖 ⩽ 𝑠 as each

term in the sum is a different homogeneous part. Now consider the 𝑠 + 1 many vectors 𝑣𝑖 = 𝑢 · 𝐿𝑖
for 0 ⩽ 𝑖 ⩽ 𝑠. Since each 𝑣𝑖 is in the left 𝔘[𝑘]-module 𝑈 𝑠

, and 𝔘[𝑘] is a (skew) field, they cannot all

be 𝔘[𝑘]-linearly independent. That means there are 𝜆0 , . . . ,𝜆𝑠 in 𝔘[𝑘], not all zero, such that the left

linear combination

∑𝑠
𝑗=0

𝜆 𝑗𝑣 𝑗 =
∑𝑠
𝑗=0

𝜆 𝑗𝑢𝐿 𝑗 = 0. Let 𝑡 be the largest index such that 𝜆𝑡 is nonzero.

Then we can write 𝑢 · 𝐿𝑡 = −∑𝑡−1

𝑗=0
𝜆𝑡
−1𝜆 𝑗𝑢 · 𝐿 𝑗 . Multiplying both sides on the right by 𝐿𝑠+1−𝑡

, we

obtain

𝑢 · 𝐿𝑠+1 = −
𝑡−1∑
𝑗=0

𝜆𝑡
−1𝜆 𝑗𝑢 · 𝐿 𝑗+𝑠+1−𝑡 .

But this will imply that 𝑢 ·𝐿𝑠+1 ·𝑣 = 0 since 𝑢 ·𝐿 𝑗+𝑠+1−𝑡𝑣 = 0 for 𝑗 ⩽ 𝑡−1. Now, assuming inductively

that 𝑢𝐿𝑖𝑣 = 0 for some 𝑖 ⩾ 𝑠 + 1, we can similarly prove that 𝑢𝐿𝑖+1𝑣 = 0. It follows that the entire

series is zero. □

2.4 Equivalent Notions of Matrix Rank

We first recall the definition of the noncommutative rank of a linear matrix in noncommutative

variables, the computationally useful notion of its blow-up rank, and their equivalence.5

Definition 19. The noncommutative rank (ncrank) of an 𝑠 × 𝑠 linear matrix 𝑇 over the noncom-

muting variables 𝑥1 , 𝑥2 , . . . , 𝑥𝑛 is equal to the size of the largest invertible (square) submatrix of

𝑇.

Let 𝑇 be an 𝑠× 𝑠 matrix whose entries are affine linear forms over {𝑥1 , 𝑥2 , . . . , 𝑥𝑛}. We can write

𝑇 = 𝐴0 +
∑𝑛
𝑖=1
𝐴𝑖𝑥𝑖 where 𝐴0 , 𝐴1 , . . . , 𝐴𝑛 are the coefficient matrices. Given matrix 𝑇, for 𝑑 ∈ Nwe

define the set of "blow-up" matrices

𝑇{𝑑} = {𝑇(
¯
𝑀) |

¯
𝑀 ∈ Mat𝑑(F)𝑛},

where 𝑇(
¯
𝑀) = 𝐴0 ⊗ 𝐼𝑑 +

∑𝑛
𝑖=1
𝐴𝑖 ⊗ 𝑀𝑖 . Then we define the blow-up rank of 𝑇 at 𝑑 as rank(𝑇{𝑑}) =

max

¯
𝑀{rank(𝑇(

¯
𝑀))}. The regularity lemma [IQS17, DM17, IQS18] shows that rank(𝑇{𝑑}) is always

a multiple 𝑏𝑑 of 𝑑. Thus, we can define the blow-up rank of 𝑇 as 𝑏, which the largest positive integer

such that for some 𝑑 we have rank(𝑇{𝑑}) = 𝑏𝑑. The regularity lemma also implies that the blow-up

rank of 𝑇 is precisely ncrank(𝑇).

Fact 20. For a linear matrix 𝑇 in noncommutative variables ncrank(𝑇) is its blow-up rank.

The blow-up rank is algorithmically useful [IQS17, DM17, IQS18]. In Section 3.1, we will

discuss this aspect further. Let us now consider a set 𝑋 = 𝑋[𝑘] of partially commutative variables

and 𝑇 be a linear matrix with linear forms over F⟨𝑋[𝑘]⟩. The main result of [KVV20] is stated in

the following theorem.

5We note that Cohn’s text [Coh95] has a detailed discussion of matrix rank over general noncommutative rings.

15

Theorem 21. [KVV20, Theorem 1.1] For arbitrary 𝑘 ∈ N, the ring F⟨𝑋[𝑘]⟩ can be embedded in a universal

skew field of fractions 𝔘[𝑘].

As a consequence of the above theorem and some properties of noncommutative rings [Coh95],

we can define the rank of matrices over F⟨𝑋[𝑘]⟩ for a partially commutative variable set 𝑋[𝑘] as

follows.

Definition 22. The partially commutative rank (pc-rank) of an 𝑠 × 𝑠 linear matrix 𝑇 over the

partially commutative variable set 𝑋[𝑘] is equal to the size of the largest invertible (over 𝔘[𝑘]) square

submatrix of 𝑇.

The following crucial result is also shown in [KVV20].

Proposition 23. [KVV20, Proposition 3.8] A matrix 𝑇 is invertible over 𝔘[𝑘] if and only if there exists

matrix substitutions for the variables 𝑥 ∈ 𝑋𝑖 : 1 ⩽ 𝑖 ⩽ 𝑘 of the form

𝐼𝑑1
⊗ 𝐼𝑑2

⊗ · · · ⊗ 𝐼𝑑𝑖−1
⊗ 𝑀𝑥 ⊗ 𝐼𝑑𝑖+1

⊗ · · · ⊗ 𝐼𝑑𝑘 (5)

such that 𝑇 evaluates to an invertible matrix. Here 𝑀𝑥 is a 𝑑𝑖 × 𝑑𝑖 matrix and 𝑑1 , . . . , 𝑑𝑘 ∈ N.

The above proposition in fact gives us the right analogue of blow-up rank for the partially

commutative ring F⟨𝑋[𝑘]⟩, and is crucial for our algorithms. Since we will be using partially

commutative matrix substitutions of the above kind for variables in 𝑋[𝑘] for rank computations in

this paper, we introduce the following useful definition.

Definition 24. We call the matrix substitution of the form given in the expression 5 as a type-𝑖

𝑘-fold tensor product. Also

¯
𝑑 = (𝑑1 , 𝑑2 , . . . , 𝑑𝑘) is the shape of the tensor.

Thus, for a linear matrix 𝑇 over 𝑋[𝑘] we seek type-𝑖 matrix substitutions for variables in 𝑋𝑖
for each 𝑖, which are (𝑑1 , 𝑑2 , . . . , 𝑑𝑘) shape tensor products for a suitable choice of the dimensions

𝑑𝑖 , 1 ⩽ 𝑖 ⩽ 𝑘.

3 An Algorithm for NSINGULAR based on NC-PIT

The key ideas for the proofs of Theorems 1 and 3 come from the design of a somewhat simpler

algorithm for NSingular (which is the case for 𝑘 = 1) that we discuss in this section. As explained

earlier, the algorithm in [IQS18] has two main steps: rank increment, rounding and blow-up

control. In the simpler algorithm, rounding and blow-up control is essentially the same as in

[IQS18]. But the rank increment step is quite different. It is based on an efficient reduction to

the noncommutative ABP identity testing. This connection extends to the partially commutative

setting and plays a crucial role in the proofs of Theorems 1 and 3. Motivated by Fact 20, we give

the following definition. We fix the field to be Q.

Definition 25 (Witness of ncrank 𝑟). Let 𝐴0 , 𝐴1 , . . . , 𝐴𝑛 ∈ Mat𝑠(Q) and 𝑇 = 𝐴0 +
∑𝑛
𝑖=1
𝐴𝑖𝑥𝑖 . We say

that

¯
𝑝 = (𝑝1 , . . . , 𝑝𝑛) ∈ Mat𝑑(Q)𝑛 for some 𝑑 is a witness of noncommutative rank (at least) 𝑟 of 𝑇,

if rank(𝑇(
¯
𝑝)) ⩾ 𝑟𝑑.

16

3.1 Constructive Regularity Lemma

Suppose that for a linear matrix 𝑇, we already have a matrix tuple

¯
𝑞 over Mat𝑑(Q), a witness of

rank 𝑟 of 𝑇 such that rank(𝑇(
¯
𝑞)) > 𝑟𝑑. Then the constructive regularity lemma offers a simple and

general procedure to get a 𝑑 × 𝑑 witness of rank 𝑟 + 1 for 𝑇 [IQS18]. We present essentially the

same proof as described in [IQS18]. But for clarity and for setting the context of the main results

in the next section, we use the explicit cyclic division algebra construction described in Section 2.2.

Following Section 2.2, the field 𝐹 = Q(𝑧) and 𝐾 = 𝐹(𝜔).
Lemma 26. [IQS18] For any 𝑠 × 𝑠 matrix 𝑇 = 𝐴0 +

∑𝑛
𝑖=1
𝐴𝑖𝑥𝑖 , and a matrix tuple

¯
𝑞 = (𝑞1 , . . . , 𝑞𝑛) ∈

Mat𝑑(Q)𝑛 such that rank(𝑇(
¯
𝑞)) > 𝑟𝑑, there exists a deterministic poly(𝑛, 𝑠, 𝑑)-time algorithm that returns

another matrix substitution

¯
𝑞′ = (𝑞′

1
, . . . , 𝑞′𝑛) ∈ Mat𝑑(Q)𝑛 such that rank(𝑇(

¯
𝑞′)) ⩾ (𝑟 + 1)𝑑.

Proof. Let 𝐷 = (𝐾/𝐹, 𝜎, 𝑧) be the cyclic division algebra described in Section 2.2. Recall that

𝔅 = {𝐶𝑖 , 𝑗 : 𝑖 , 𝑗 ∈ [𝑑]} is a 𝐹-generating set of 𝐷.

1. By Proposition 17, we can express 𝑞𝑘 =
∑
𝑖 , 𝑗 𝜆𝑖 , 𝑗 ,𝑘𝐶𝑖 , 𝑗 where 𝜆𝑖 , 𝑗 ,𝑘 , 1 ⩽ 𝑘 ⩽ 𝑛 are unknown

variables which take values in 𝐾. A linear algebraic computation yields the values 𝜆0

𝑖 , 𝑗 ,𝑘

where 1 ⩽ 𝑖 , 𝑗 ⩽ ℓ , and 1 ⩽ 𝑘 ⩽ 𝑛 for the unknowns in 𝐾.

2. Now the goal is to compute a 𝑑× 𝑑 tuple

¯
𝑞′′ = (𝑞′′

1
, . . . , 𝑞′′𝑛) such that 𝑞′′

𝑘
=

∑
𝑖 , 𝑗 𝜇

0

𝑖 , 𝑗 ,𝑘
𝐶𝑖 , 𝑗 where

𝜇0

𝑖 , 𝑗 ,𝑘
∈ Q and rank(𝑇(

¯
𝑞′′)) ⩾ (𝑟 + 1)𝑑. We briefly describe the procedure outlined in [IQS18].

Write �̃�1 = 𝜇1,1,1𝐶1,1,1+
∑
(𝑖 , 𝑗)≠(1,1) 𝜆

0

𝑖 , 𝑗 ,1
𝐶𝑖 , 𝑗 where𝜇1,1,1 is a variable. There will be a sub-matrix

of size > 𝑟𝑑 whose minor is non-zero, under the current substitution (�̃�1 , 𝑞2 , . . . , 𝑞𝑛). Since

the determinant of that sub-matrix is a univariate polynomial in 𝜇1,1,1 and degree poly(𝑟, 𝑑),
we can easily fix the value of 𝜇1,1,1 from Q such that the minor remains nonzero. Repeating

the procedure, we can compute a tuple

¯
𝑞′′. Since

¯
𝑞′′ is a tuple over the division algebra,

rank(𝑇(
¯
𝑞′′)) ⩾ (𝑟 + 1)𝑑.

The last line of the above proof is easy to see. The matrix𝑇(
¯
𝑞′′) can be viewed as a 𝑠× 𝑠 block-matrix

of 𝑑-dimensional blocks, and each such block is an element in 𝐷. Since Gaussian elimination is

supported over division algebras, up to elementary row and column operations, we can transform

𝑇(
¯
𝑞′′) as: (

𝐼 0

0 0

)
where 𝐼 is an identity matrix which has at least 𝑟 + 1 blocks of identity matrices 𝐼𝑑 on its diagonal.

Hence rank(𝑇(
¯
𝑞′′)) ⩾ (𝑟+1)𝑑. From the tuple

¯
𝑞′′, we can easily obtain the desired tuple

¯
𝑞′ as follows.

We can think 𝜔 and 𝑧 as fresh commutative parameters 𝑡1 , 𝑡2. Clearly, after the substitution the

determinant of that (𝑟 + 1)𝑑 dimensional submatrix is a bivariate polynomial in 𝑡1 , 𝑡2 of degree

⩽ (𝑟 + 1)𝑑. We can set the variables from a set of size 𝑂(𝑟𝑑) in Q such that the submatrix remains

invertible. Replacing the variables 𝑡1 , 𝑡2 by such values over Q, we get the tuple

¯
𝑞′ defined over

Q. □

3.2 Rank Increment Step

This is quite different from the rank increment step in [IQS18]. More importantly, this turns out to

be readily extendable to the partially commutative case in the proof of Theorem 1. The increment

17

step gradually constructs a witness at every stage. Given a witness of rank 𝑟 for 𝑇, the algorithm

checks if 𝑟 is the maximum possible rank. If not, it produces a witness of rank at least 𝑟 + 1

by solving an instance of ABP identity testing and iterates. At a high level, it has a conceptual

similarity with the idea used in [BBJP19] in approximating commutative rank.

For an 𝑠 × 𝑠 linear matrix 𝑇(
¯
𝑥) = 𝐴0 +

∑𝑛
𝑖=1
𝐴𝑖𝑥𝑖 and 𝑑 ∈ N, define

𝑇𝑑(𝑍) = 𝐴0 ⊗ 𝐼𝑑 +
𝑛∑
𝑖=1

𝐴𝑖 ⊗ 𝑍𝑖

where 𝑍𝑖 = (𝑧(𝑖)𝑗𝑘)1⩽ 𝑗 ,𝑘⩽𝑑 is a 𝑑 × 𝑑 generic matrix with noncommutative indeterminates. In other

words, 𝑍 = (𝑍1 , 𝑍2 , . . . , 𝑍𝑛) is the substitution used for the variables 𝑥1 , 𝑥2 , . . . , 𝑥𝑛 in 𝑇. Now 𝑇𝑑(𝑍)
is a linear matrix of dimension 𝑠𝑑 over the variables {𝑧(𝑖)

𝑗𝑘
}1⩽ 𝑗 ,𝑘⩽𝑑,1⩽𝑖⩽𝑛 .

Remark 27. It is immediate to see that any 𝑑 × 𝑑 matrix shift 𝑇𝑑(𝑍1 + 𝑝1 , 𝑍2 + 𝑝2 , . . . , 𝑍𝑛 + 𝑝𝑛) is

indeed a scalar shift for the variables {𝑧(𝑖)
𝑗𝑘
}1⩽ 𝑗 ,𝑘⩽𝑑,1⩽𝑖⩽𝑛 in the matrix 𝑇𝑑.

Lemma 28. ncrank(𝑇𝑑) = 𝑑 · ncrank(𝑇).

Proof. Let ncrank(𝑇) = 𝑟. Then, for every sufficiently large 𝑑′′, the maximum rank obtained

by evaluating 𝑇 over all 𝑑′′ × 𝑑′′ matrix tuples is 𝑟𝑑′′. Let 𝑑′′ = 𝑑𝑑′ be a multiple of 𝑑 and let

¯
𝑞 = (𝑞1 , . . . , 𝑞𝑛) be a matrix tuple such that rank(𝑇(

¯
𝑞)) = 𝑟𝑑𝑑′. Let

¯
𝑝 = (𝑝(1)

11
, . . . , 𝑝

(1)
𝑑𝑑
, . . . , 𝑝

(𝑛)
11
, . . . , 𝑝

(𝑛)
𝑑𝑑
)

be the matrix tuple such that each 𝑞𝑖 = (𝑝(𝑖)𝑗𝑘)1⩽ 𝑗 ,𝑘⩽𝑑. That is, we think of 𝑞𝑖 as the 𝑑× 𝑑 block matrix

where the (𝑗 , 𝑘)𝑡ℎ block is 𝑝
(𝑖)
𝑗𝑘

. Notice that 𝑇𝑑(
¯
𝑝) = 𝐴0 ⊗ 𝐼𝑑𝑑′ +

∑𝑛
𝑖=1
𝐴𝑖 ⊗ 𝑞𝑖 = 𝑇(

¯
𝑞), with the matrix

𝑞𝑖 substituted for the variable 𝑥𝑖 in 𝑇. Therefore, rank(𝑇(
¯
𝑞)) = rank(𝑇𝑑(

¯
𝑝)) and ncrank(𝑇𝑑) ⩾ 𝑟𝑑.

For the other direction, as ncrank(𝑇) = 𝑟, we can write 𝑇 = 𝑃𝑄 where 𝑃, 𝑄 are 𝑠 × 𝑟 and 𝑟 × 𝑠
matrices respectively with linear entries [Coh95]. We can now define an 𝑠𝑑 × 𝑟𝑑 matrix 𝑃′(𝑍) by

substituting each 𝑥𝑖 by 𝑍𝑖 in the matrix 𝑃(
¯
𝑥). Similarly, we can define a 𝑟𝑑 × 𝑠𝑑 matrix 𝑄′(𝑍) from

𝑄(
¯
𝑥). Notice that, 𝑇𝑑 = 𝑃

′𝑄′. Therefore, ncrank(𝑇𝑑) ⩽ 𝑟𝑑. Hence, the lemma follows. □

3.2.1 A noncommutative ABP identity testing reduction step

Suppose, now, that we have computed a witness of noncommutative rank 𝑟 of 𝑇, namely

¯
𝑝 =

(𝑝1 , . . . , 𝑝𝑛) ∈ Mat𝑑(Q)𝑛 (by construction, we will ensure that 𝑑 ⩽ 𝑟+1). We will now describe how

to check whether ncrank(𝑇) > 𝑟 or not. Observe that

𝑇𝑑(𝑍1 + 𝑝1 , . . . , 𝑍𝑛 + 𝑝𝑛) = 𝑈
(
𝐼𝑟𝑑 − 𝐿 𝐴

𝐵 𝐶

)
𝑉

for invertible transformations𝑈,𝑉 in Mat𝑟𝑑(Q). In fact, applying further invertible transformations

𝑈′, 𝑉′, we can write

𝑇𝑑(𝑍1 + 𝑝1 , . . . , 𝑍𝑛 + 𝑝𝑛) = 𝑈𝑈′
(
𝐼𝑟𝑑 − 𝐿 0

0 𝐶 − 𝐵(𝐼𝑟𝑑 − 𝐿)−1𝐴

)
𝑉′𝑉.

18

Here,𝑈′ =

(
𝐼𝑟𝑑 0

𝐵(𝐼𝑟𝑑 − 𝐿)−1 𝐼(𝑠−𝑟)𝑑

)
, 𝑉′ =

(
𝐼𝑟𝑑 (𝐼𝑟𝑑 − 𝐿)−1𝐴

0 𝐼(𝑠−𝑟)𝑑

)
.

Let𝑇𝑑 = 𝐶−𝐵(𝐼𝑟𝑑−𝐿)−1𝐴. The entries in 𝐶, 𝐵, 𝐿, 𝐴 are linear forms over the variables 𝑋. Notice

that the (𝑖 , 𝑗)𝑡ℎ entry of 𝑇𝑑 is given by (̃𝑇𝑑)𝑖 𝑗 = 𝐶𝑖 𝑗 − 𝐵𝑖(𝐼𝑟𝑑 − 𝐿)−1𝐴 𝑗 where 𝐵𝑖 is the 𝑖𝑡ℎ row vector of

𝐵 and 𝐴 𝑗 is the 𝑗𝑡ℎ column vector of 𝐴.

Lemma 29. ncrank(𝑇) > 𝑟 if and only if (̃𝑇𝑑)𝑖 𝑗 ≠ 0 for some choice of 𝑖 , 𝑗.

Proof. Let ncrank(𝑇) > 𝑟. Then by Lemma 28, ncrank(𝑇𝑑) > 𝑟𝑑. The noncommutative rank of a

linear matrix is invariant under a scalar shift 6, hence ncrank(𝑇𝑑(𝑍1+𝑝1 , . . . , 𝑍𝑛+𝑝𝑛)) = ncrank(𝑇𝑑) >
𝑟𝑑. However, if 𝐶 − 𝐵(𝐼𝑟𝑑 − 𝐿)−1𝐴 is a zero matrix, this is impossible.

Conversely if (̃𝑇𝑑)𝑖 𝑗 = 𝐶𝑖 𝑗 − 𝐵𝑖(𝐼𝑟𝑑 − 𝐿)−1𝐴 𝑗 is nonzero for some indices 𝑖 , 𝑗, we can find matrix

substitutions �̃�
(𝑘)
ℓ1ℓ2

of dimension 𝑑′ for the variables {𝑧(𝑘)
ℓ1ℓ2
}1⩽ℓ1 ,ℓ2⩽𝑑,1⩽𝑘⩽𝑛 , such that the rank of

𝑇𝑑(𝑍1+𝑝1 , . . . , 𝑍𝑛+𝑝𝑛) on that substitution is more than 𝑟𝑑𝑑′. Therefore, ncrank(𝑇𝑑(𝑍1+𝑝1 , . . . , 𝑍𝑛+
𝑝𝑛)) > 𝑟𝑑. Hence ncrank(𝑇𝑑) > 𝑟𝑑. By Lemma 28, we get that ncrank(𝑇) > 𝑟. □

Now, applying Lemma 18 for 𝑘 = 1 we note that the infinite series (̃𝑇𝑑)𝑖 𝑗 ≠ 0 if and only if the

truncated polynomial

𝑃𝑖 𝑗 = 𝐶𝑖 𝑗 − 𝐵𝑖

(∑
𝑘⩽𝑟𝑑

𝐿𝑘

)
𝐴 𝑗 ≠ 0. (6)

To see that Lemma 18 is applicable above, notice that the𝐶𝑖 𝑗 is a linear form and 𝐵𝑖
(∑

𝑘⩽𝑟𝑑 𝐿
𝑘
)
𝐴 𝑗

generates terms of degree at least 2.

Next, we apply Corollary 10 and Corollary 11 to output a matrix tuple efficiently on which

(̃𝑇𝑑)𝑖 𝑗 evaluates to nonzero and 𝐼𝑟𝑑 − 𝐿 evaluates to a full rank matrix.

Lemma 30. There is a deterministic poly(𝑛, 𝑟, 𝑑)-time algorithm that can output a matrix tuple

¯
𝑞 of

dimension at most 𝑑′ = 2𝑟𝑑 for the 𝑍 variables such that 𝐼𝑟𝑑𝑑′ − 𝐿(
¯
𝑞) is invertible and (̃𝑇𝑑)𝑖 𝑗(

¯
𝑞) ≠ 0.

Proof. Notice that 𝑃𝑖 𝑗 is an ABP of size poly(𝑟, 𝑑) and the number of layers is at most 𝑟𝑑 + 1.

Applying Corollary 11, we get a matrix tuple of dimension at most 𝑟𝑑 + 2 such that 𝑃𝑖 𝑗 evaluates

on it to nonzero. By simple padding, we can get a matrix tuple

¯
𝑞′ of dimension 𝑑′ = 2𝑟𝑑 such that

𝑃𝑖 𝑗(
¯
𝑞′) ≠ 0. Since

¯
𝑞′ is a substitution for the 𝑍 variables {𝑧(𝑘)

ℓ1ℓ2
} where 1 ⩽ 𝑘 ⩽ 𝑛, 1 ⩽ ℓ1 , ℓ2 ⩽ 𝑑, we

write

¯
𝑞′ = (𝑞′(1)

11
, . . . , 𝑞

′(1)
𝑑𝑑
, . . . , 𝑞

′(𝑛)
11
, . . . , 𝑞

′(𝑛)
𝑑𝑑
) for more clarity. Here each 𝑞

′(𝑘)
ℓ1ℓ2

is a 𝑑′ dimensional

matrix.

Consider a commutative variable 𝑡 and the scaled matrix tuple 𝑡
¯
𝑞′. It is easy to see that the

infinite series 𝐶𝑖 𝑗 − 𝐵𝑖(𝐼𝑟𝑑𝑑′ − 𝐿(𝑡
¯
𝑞′))−1𝐴 𝑗 is nonzero since the 𝑘𝑡ℎ homogeneous part 𝑡𝑘𝐵𝑖𝐿

𝑘(
¯
𝑞′)𝐴 𝑗

will not mix with other homogeneous components.

However this also has a rational representation (̃𝑇𝑑)𝑖 𝑗(𝑡
¯
𝑞′) = 𝛾1(𝑡)/𝛾2(𝑡) where 𝑡-degrees of the

polynomials 𝛾1(𝑡), 𝛾2(𝑡) are bounded by 𝑟𝑑𝑑′. Moreover, 𝐼𝑟𝑑𝑑′−𝐿(𝑡
¯
𝑞′) is an invertible matrix and the

6Suppose a linear matrix 𝐿 achieves the maximum rank at matrix substitution

¯
𝑞 of some dimension 𝑑. Then, for any

scalar shift (𝛼
1
, . . . , 𝛼𝑛), the linear matrix 𝐿(

¯
𝑥 +
¯
𝛼) achieves the same rank at the matrix substitution

¯
𝑞 −
¯
𝛼 ⊗ 𝐼𝑑 .

19

degree of det(𝐼𝑟𝑑𝑑′ − 𝐿(𝑡
¯
𝑞′)) is bounded by 𝑟𝑑𝑑′ over the variable 𝑡. Simply by varying the variable

𝑡 over a suitable large set Γ of size 𝑂(𝑟𝑑), we can fix a value for 𝑡 = 𝑡0 such that (̃𝑇𝑑)𝑖 𝑗(𝑡0
¯
𝑞′) ≠ 0 and

𝐼𝑟𝑑𝑑′ − 𝐿(𝑡0
¯
𝑞′) is of rank 𝑟𝑑𝑑′. Define

¯
𝑞 = 𝑡0

¯
𝑞′. □

Following is an immediate corollary.

Corollary 31. Suppose Lemma 30 outputs a matrix tuple

¯
𝑞. We can compute another matrix tuple

¯
𝑝′ of

dimension 𝑑𝑑′ which is a witness of ncrank(𝑇) > 𝑟.

Proof. Define the matrix tuple

¯
𝑞′′ = (𝑞′′(1)

11
, . . . , 𝑞

′′(1)
𝑑𝑑

, . . . , 𝑞
′′(𝑛)
11

, . . . , 𝑞
′′(𝑛)
𝑑𝑑
)where 𝑞

′′(𝑘)
ℓ1ℓ2

= 𝑞
(𝑘)
ℓ1ℓ2
+ 𝑝(𝑘)

ℓ1ℓ2
⊗

𝐼𝑑′ is a 𝑑′ dimensional matrix tuple for 1 ⩽ 𝑘 ⩽ 𝑛, 1 ⩽ ℓ1 , ℓ2 ⩽ 𝑑.

Lemma 30 shows that the rank of 𝑇𝑑 evaluated on the matrix tuple

¯
𝑞′′ is more than 𝑟𝑑𝑑′. This is

same as saying that𝑇𝑑(𝑍) is of rank more than 𝑟𝑑𝑑′when the variable 𝑧𝑘
ℓ1 ,ℓ2

: 1 ⩽ 𝑘 ⩽ 𝑛, 1 ⩽ ℓ1 , ℓ2 ⩽ 𝑑

is substituted by 𝑞
′′(𝑘)
ℓ1ℓ2

. Hence ncrank(𝑇𝑑) > 𝑟𝑑. By Lemma 28, we know that ncrank(𝑇) > 𝑟.

Moreover, we obtain a matrix tuple

¯
𝑝′ = (𝑝′

1
, 𝑝′

2
, . . . , 𝑝′𝑛)which is a witness of ncrank(𝑇) > 𝑟, where

𝑝′
𝑘
=

(
𝑞
′′(𝑘)
ℓ1ℓ2

)
1⩽ℓ1 ,ℓ2⩽𝑑

: 1 ⩽ 𝑘 ⩽ 𝑛. Notice that

¯
𝑝′ is the substitution for the

¯
𝑥 variables. □

3.2.2 Rounding and blow-up Control

Next, we apply Lemma 26 which gives a rounding procedure to get a matrix tuple of dimension

𝑑1 = 𝑑𝑑′ to witness that ncrank(𝑇) = 𝑟′ where 𝑟′ ⩾ 𝑟 + 1. Call that new matrix tuple as

¯
𝑝′′.

However, we cannot afford to have such a dimension blow-up for the witness matrix tuple in

every step of the iteration as it incurs an exponential blow-up in the dimension of the final witness.

To control that, we use a simple trick from [IQS18] which we describe for the sake of completeness.

Lemma 32. Consider an 𝑠× 𝑠 linear matrix𝑇 and a matrix tuple

¯
𝑝′′ in Mat𝑑1

(Q)𝑛 such that

¯
𝑝′′ is a witness

of rank 𝑟′ of 𝑇. We can efficiently compute another matrix tuple ̂̄𝑝 of dimension at most 𝑟′ + 1 (over Q) such

that ̂̄𝑝 is also a witness of rank 𝑟′ of 𝑇.

Proof. Consider a sub-matrix 𝐴 in 𝑇(
¯
𝑝′′) such that rank(𝐴) is at least 𝑟′𝑑1. From each matrix in

the tuple

¯
𝑝′′, remove the last row and the column to get another tuple ˜̄𝑝. We claim that the

corresponding sub-matrix 𝐴′ in 𝑇 (̃
¯
𝑝) is of rank > (𝑟′ − 1)(𝑑1 − 1) as long as 𝑑1 > 𝑟′ + 1. Otherwise,

rank(𝐴) ⩽ rank(𝐴′) + 2𝑟′ ⩽ (𝑟′ − 1)(𝑑1 − 1) + 2𝑟′ = 𝑟′𝑑1 − 𝑑1 + 𝑟′ + 1 < 𝑟′𝑑1. Now we can use the

constructive regularity lemma (Lemma 26) on the tuple ˜̄𝑝 to obtain another witness of dimension

𝑑1 − 1 which is a witness of rank 𝑟′ of 𝑇. Applying the procedure repeatedly, we can control the

blow-up in the dimension within 𝑟′ + 1 and get the witness tuple ̂̄𝑝. □

3.3 The Algorithm for NSINGULAR

We formally state the main steps of the algorithm.

Algorithm for NSingular

Input: 𝑇 = 𝐴0 +
∑𝑛
𝑖=1
𝐴𝑖𝑥𝑖 where 𝐴0 , 𝐴1 , . . . , 𝐴𝑛 ∈ Mat𝑠(Q).

Output: The noncommutative rank of 𝑇 and a set of matrix assignments that witness

ncrank(𝑇).

20

The algorithm gradually increases the rank and finds a witness for it. Suppose at any

intermediate stage, we already have a matrix tuple

¯
𝑝 in Mat𝑑(Q)𝑛 , a witness of rank 𝑟 of 𝑇.

1. (Is 𝑟 the maximum rank?) Use Theorem 9 to check whether the polynomial 𝑃𝑖 𝑗 ≠ 0 (as

defined in Equation 6) for some choice of 𝑖 , 𝑗.

2. If no such choice for 𝑖 , 𝑗 can be found, then STOP and output 𝑟 to be the noncommutative

rank of 𝑇.

3. (Otherwise, construct a witness of rank 𝑟 + 1 and repeat Step 1) We implement the

following steps to construct a rank (𝑟 + 1)-witness:

(a) [Rank increment step] Apply Corollary 31 to find a 𝑑1 × 𝑑1 matrix substitution

¯
𝑝′ = (𝑝′

1
, . . . , 𝑝′𝑛) such that rank(𝑇(

¯
𝑝′)) > 𝑟𝑑1 where 𝑑1 = 2𝑟𝑑2

.

(b) [Rounding using the regularity lemma] Apply Lemma 26 to find another 𝑑1 × 𝑑1

matrix substitution (𝑝′′
1
, . . . , 𝑝′′𝑛) such that the rank of 𝑇 evaluated at (𝑝′′

1
, . . . , 𝑝′′𝑛) is

𝑟′𝑑1 where 𝑟′ ⩾ 𝑟 + 1.

(c) [Reducing the witness size] Apply Lemma 32 to find a matrix substitution ̂̄𝑝 =

(�̂�1 , . . . , �̂�𝑛) of dimension 𝑑′ ⩽ 𝑟′+ 1, such that the rank of 𝑇 evaluated at ̂̄𝑝 is ⩾ 𝑟′𝑑′.

Next we analyze the performance of the algorithm.

Analysis Since the noncommutative rank of 𝑇 is at most 𝑠, the algorithm iterates at most 𝑠 steps.

Lemma 18 (for 𝑘 = 1), Theorem 9, and Lemma 30 guarantee that Step 1 and Step 3(a) can be done

in poly(𝑛, 𝑟, 𝑑) steps. Step 3(b) and 3(c) require straightforward linear algebraic computations

discussed in Section 3.2.2 which can be performed in poly(𝑛, 𝑑, 𝑟) time. Since 𝑑 ⩽ 𝑠 + 1 throughout

the process, the run time is bounded by poly(𝑛, 𝑠).
We now explain the simple analysis of the bit complexity of the algorithm (since F = Q).

Suppose the witness of rank 𝑟 computed by the algorithm has bit complexity 𝑏. Notice that in the

rank increment step the matrix constructed in Corollary 11 has only 0, 1 entries and the parameter

𝑡0 is of size poly(𝑠, 𝑑). Hence, the bit complexity after step 3(a) can change to 𝑂(𝑏 + log(𝑠𝑑)) at

most. Step 3(b) is a simple linear algebraic step that can incur an additive term of poly(𝑠, 𝑑) to the

bit complexity. Thus, the bit complexity of the witness of rank 𝑟 + 1 is bounded by 𝑏 + poly(𝑠, 𝑑).
Since the bit complexity for the first step is bounded by the input coefficients, it follows that the

overall bit complexity of the algorithm is polynomial in 𝑠 and the input size.

Remark 33. The algorithm of NSingular can be adapted over fields of positive characteristic by

extending the division algebra construction over such fields [Pie82, Section 15.4]. However, since

our main motivation is to prove Theorem 1 and Theorem 3, we prefer to state the algorithm for

NSingular over F = Q.

4 Proofs of the Main Theorems

The goal of this section is to present the proofs of Theorems 1 and 3 by designing the subroutines

PC-PIT𝑘 and PC-Rank𝑘 .

The subroutine PC-PIT𝑘 takes as input an ABP𝒜 of size 𝑠 computing a polynomial 𝑓 ∈ F⟨𝑋[𝑘]⟩.
It finds substitution matrices of the form 1 for the variables 𝑥 ∈ 𝑋[𝑘] such that 𝑓 evaluates to a

nonzero matrix if 𝑓 is a nonzero polynomial. Moreover, the dimension of the substitution matrices

is a polynomial function of the input size.

21

The subroutine PC-Rank𝑘 takes as input a linear matrix 𝑇 of size 𝑠 over the set of variables 𝑋[𝑘]
and finds matrix assignments of the form 1 and dimension 𝑑, to the variables such that the rank of

the final matrix is 𝑑 · pc-rank(𝑇). Moreover, the dimension 𝑑 is a polynomial of the input size.

These two recursive subroutines intertwine, giving the proofs of Theorem 1 and Theorem 3.

Recall that for a set 𝑆 ⊆ [𝑘], 𝑋𝑆 refers to

⊔
𝑖∈𝑆 𝑋𝑖 . When we use PC-Rank (resp. PC-PIT) subroutine

on 𝑋𝑆 with |𝑆 | = ℓ , we refer it as PC-Rankℓ (resp. PC-PITℓ). Also, recall from Definition 24 that

the substitution matrices of the form 1 are type-𝑖 𝑘-fold tensors of shape

¯
𝑑 = (𝑑1 , 𝑑2 , . . . , 𝑑𝑘).

4.1 Identity testing of partially commutative ABPs

In this section, we describe the subroutine PC-PIT𝑘 . Basically, given a partially commutative ABP

as input with edges labeled by linear forms overQ⟨𝑋⟩ where 𝑋 = 𝑋[𝑘], we develop a deterministic

algorithm for identity testing of such ABPs.

We need to generalize the following result shown in [ACG
+
23] for the noncommutative case.

Suppose 𝑀 is a matrix over F⟨𝑋⟩, for noncommutative 𝑋, such that each 𝑀𝑖 𝑗 is given as input by

a linear pencil (See, the definition 5). Then we can efficiently reduces rank computation of 𝑀 to

the rank computation of a (noncommutative) linear matrix over 𝑋.

Lemma 34. [ACG
+
23, Lemma 23] Let 𝑋 = {𝑥1 , . . . , 𝑥𝑛} be a set of noncommutative variables. Let

𝑀 ∈ F⟨𝑋⟩𝑚×𝑚 be a matrix where each (𝑖 , 𝑗)𝑡ℎ entry 𝑀𝑖 𝑗 ∈ F⟨𝑋⟩ is given as input by a size 𝑠 linear pencil

𝐿𝑖 𝑗 . Then, there is a polynomial-time algorithm that computes a linear matrix 𝐿 of size 𝑚2𝑠 + 𝑚 such that,

ncrank(𝐿) = 𝑚2𝑠 + ncrank(𝑀).

It is easy to see by inspection that the proof of the above lemma [ACG
+
23] holds even when 𝑋[𝑘]

is a set of partially commutative variables. More precisely, we have the following generalization,

proved in the appendix.

Lemma 35. Let 𝑋 = 𝑋[𝑘] be a set of partially commutative variables. Let 𝑀 ∈ Q⟨𝑋[𝑘]⟩𝑚×𝑚 be a matrix

where each 𝑀𝑖 𝑗 is given by a linear pencil 𝐿𝑖 𝑗 of size 𝑠.7 Then, there is a polynomial-time algorithm that

computes a linear matrix 𝐿 of size 𝑚2𝑠 + 𝑚 such that,

pc-rank(𝐿) = 𝑚2𝑠 + pc-rank(𝑀).

The actual application of this lemma in the next theorem is as follows: Suppose 𝑀 is an input

matrix whose entries are ABPs defined over the set of partially commutative variables 𝑋[𝑘]. By

Proposition 7, size 𝑠 ABPs have linear pencils of size 𝑂(𝑠) and, moreover, the linear pencils can be

computed in time poly(𝑠). As a result, the rank computation problem for such a matrix 𝑀 can be

reduced in poly(𝑠) time to rank computation of a linear matrix over 𝑋[𝑘].

Theorem 36. Given an input ABP 𝒜 of size 𝑠, width 𝑤, computing a polynomial 𝑓 ∈ Q⟨𝑋[𝑘]⟩ of

degree 𝑑, the subroutine PC-PIT𝑘(𝒜 , 𝑠 , 𝑤, 𝑑, 𝑋[𝑘]) reduces the identity testing problem for 𝑓 to at most

𝑂(𝑑𝑠3) instances of PC-Rank𝑘−1 problem for linear matrices of size 𝑂(𝑠5) and at most 𝑑 recursive calls of

PC-PIT𝑘−1 for an ABP of size 𝑂(𝑠𝑑2), width 𝑂(𝑠𝑑), computing a polynomial of degree ⩽ 𝑑 in Q⟨𝑋[𝑘]\{1}⟩
in deterministic poly(𝑠) time. Moreover, it finds assignments to the variables in 𝑋𝑗 : 1 ⩽ 𝑗 ⩽ 𝑘 which are of

the form 𝐼𝑑1
⊗ · · · ⊗ 𝐼𝑑𝑗−1

⊗𝑀𝑥 ⊗ 𝐼𝑑𝑗+1
⊗ · · · ⊗ 𝐼𝑑𝑘 such that 𝑓 evaluates to a nonzero matrix if 𝑓 is originally

a nonzero polynomial. The dimensions 𝑑1 , 𝑑2 , . . . , 𝑑𝑘 are at most 𝑑 + 1.

7See Definition 6.

22

Proof. Firstly, we explain how PC-PIT𝑘 finds the substitution matrices for the variables in 𝑋1. We

view the edge labels as affine linear forms over the variables in 𝑋1 and the coefficients are over the

ring Q⟨𝑋[𝑘]\{1}⟩ inside 𝔘[𝑘]\{1} by Theorem 21.

As discussed in Section 2, the Raz-Shpilka algorithm [RS05], which is for a noncommutative

set of variables 𝑋, is linear algebraic: We can assume the ABP is layered and the width is 𝑤 at each

layer. For each monomial 𝑚 of degree 𝑗, there is a corresponding 𝑤-dimensional vector 𝑣𝑚 ∈ F𝑤
of 𝑚’s coefficients at the 𝑤 nodes in layer 𝑗. Now, the idea is to maintain a set of at most 𝑤 many

monomials 𝑚1 , 𝑚2 , . . . , 𝑚𝑤 such that their corresponding vectors 𝑣𝑚𝑖
are linearly independent

and their Q-linear span includes all such coefficient vectors 𝑣𝑚 . Then, the Raz-Shpilka algorithm

proceeds to layer 𝑗 + 1 with some linear algebraic computation.

We will broadly use the same approach for the partially commutative case. Applying the

procedure discussed in the proof of Lemma 12, we first homogenize the ABP with respect to the

variables in 𝑋1. It suffices to solve the identity testing problem for such an 𝑋1-homogenized ABP.

It is easy to check that the edges of this homogenized ABP are labeled by linear forms

∑𝑛
𝑖=1

𝛼𝑖𝑥𝑖 in

variables 𝑥𝑖 ∈ 𝑋1, where the 𝛼𝑖 are polynomials in Q⟨𝑋[𝑘]\{1}⟩. Moreover, each 𝛼𝑖 is given by an

ABP of size 𝑂(𝑠𝑑) = 𝑂(𝑠2) by Lemma 12.

Inductively, at the 𝑗𝑡ℎ level, suppose the monomials computed are𝑚1 , 𝑚2 , . . . , 𝑚𝑤′ in 𝑋
𝑗

1
, where

𝑤′ ⩽ 𝑤. Let the corresponding coefficient vectors be 𝑣1 , 𝑣2 , . . . , 𝑣𝑤′ over the ringQ⟨𝑋[𝑘]\{1}⟩. Again

by Lemma 12, entries of the 𝑣𝑖 are given by ABPs over 𝑋[𝑘]\{1} of size 𝑂(𝑠2 𝑗). Moreover, the vectors

𝑣1 , 𝑣2 , . . . , 𝑣𝑤′ are 𝔘[𝑘]\{1}-spanning set for the coefficient vectors of monomials at layer 𝑗 (to be

precise, as a left 𝔘[𝑘]\{1}-module).

Now, for the (𝑗 + 1)𝑡ℎ level, we need to compute at most 𝑤 many 𝔘[𝑘]\{1}-linearly independent

vectors from the at most 𝑛𝑤 many coefficient vectors of the {𝑚𝑖𝑥 𝑗 : 1 ⩽ 𝑖 ⩽ 𝑤′, 𝑥 𝑗 ∈ 𝑋1}. Clearly,

this is the problem of computing the rank of these at most 𝑛𝑤 coefficient vectors whose entries are

ABPs over the variables in 𝑋[𝑘]\{1}. This is because, given a set of 𝑤-dimensional 𝔘[𝑘]\{1}-linearly

independent vectors 𝑣′
1
, . . . , 𝑣′

ℓ ′ and another vector 𝑣, the rank of this matrix with ℓ ′ + 1 columns

is ℓ ′ precisely if 𝑣 is in the 𝔘[𝑘]\{1}-span of 𝑣′
1
, . . . , 𝑣′

ℓ ′. The columns of the matrix are 𝑣′
1
, . . . , 𝑣′

ℓ ′ , 𝑣

and we can make it a square matrix by padding with zero columns. Applying Lemma 35, we can

reduce it to the PC-Rank𝑘−1 problem for linear matrices of size 𝑂(𝑠5) over the variable set 𝑋[𝑘]\{1}.
Equivalently, we need to compute the rank of these linear matrices over the skew field 𝑈[𝑘]\{1},
which has 𝑘 − 1 parts in the set of partially commutative variables.

At the end, the PC-PIT𝑘 algorithm will compute a monomial 𝑚 over 𝑋1 and its coefficient,

which is an ABP over the remaining variables 𝑋[𝑘]\{1}. If 𝑓 ≠ 0, then given such a monomial 𝑚,

as discussed in Section 2.1.1, we can efficiently find scalar matrix substitutions {𝑀𝑥}𝑥∈𝑋1
for the

𝑋1-variables such that the polynomial 𝑓 remains nonzero. We can even ensure that the entries of

each 𝑀𝑥 is in {0, 1} and dim(𝑀𝑥) ⩽ 𝑑 + 1 ⩽ 𝑠 + 1 as explained in Section 2.1.1.

The PC-PIT𝑘 procedure described above computes a nonzero monomial 𝑚 ∈ 𝑋𝑑
1

for some

𝑑 ⩽ 𝑠 whose coefficient is a nonzero ABP 𝒜𝑚 in Q⟨𝑋[𝑘]\{1}⟩. By Lemma 12, the size of 𝒜𝑚 is

𝑂(𝑠𝑑2) = 𝑂(𝑠3), width 𝑂(𝑠𝑑) and computes a polynomial of degree ⩽ 𝑑. Hence we can recursively

apply PC-PIT𝑘−1(𝒜𝑚 , 𝑂(𝑠3), 𝑂(𝑠𝑑), 𝑑, 𝑋[𝑘]\{1}).
The PC-PIT𝑘−1 subroutine outputs the substitution matrices for the variables 𝑥 ∈ 𝑋𝑗 : 2 ⩽ 𝑗 ⩽ 𝑘

which are of tensor product structure 𝐼𝑑2
⊗ · · · ⊗ 𝐼𝑑𝑗−1

⊗ 𝑀𝑥 ⊗ 𝐼𝑑𝑗+1
⊗ · · · ⊗ 𝐼𝑑𝑘 and the dimensions

𝑑2 , . . . , 𝑑𝑘 are at most 𝑑 + 1. Combining with the substitution matrices for 𝑋1, the final structure

of the matrix substitutions for 𝑥 ∈ 𝑋𝑗 is of the form 𝐼𝑑1
⊗ 𝐼𝑑2

⊗ · · · ⊗ 𝐼𝑑𝑗−1
⊗ 𝑀𝑥 ⊗ 𝐼𝑑𝑗+1

⊗ · · · ⊗ 𝐼𝑑𝑘 .
This follows from Observation 8. Now the theorem follows by considering the procedure above

for every 𝑋1-homogenized ABPs. □

23

Remark 37. By Theorem 36, each 𝑑 𝑗 ⩽ 𝑑 + 1. However, we can relax the bound for each 𝑑 𝑗 and

choose any larger value. This can be easily done using a standard idea of padding sufficient

number of zero rows and columns to the matrix construction shown in Subsection 2.1.1. We will

require this in Subsection 4.2.3, where we need to ensure that 𝑑 𝑗 , 1 ⩽ 𝑗 ⩽ 𝑘 are distinct prime

numbers bounded by poly(𝑠).

4.1.1 Matrix substitution witnessing nonzero of a series

In the design of the subroutine PC-Rank, we need to find nonzero of a series over partially

commutative variables. To that end, using Theorem 36 we prove the following lemma.

Lemma 38. Let 𝑆 = 𝑏(𝐼 − 𝐿)−1𝑎 be a series over the partially commutative variable set 𝑋[𝑘]. The dimension

of 𝐼 , 𝐿 are 𝑠× 𝑠, 𝑏, 𝑎 are 1× 𝑠 and 𝑠×1 dimensional vectors respectively. The entries in 𝑏, 𝑎, 𝐿 are linear forms

over 𝑋[𝑘]. Then, there is a deterministic polynomial time algorithm, with access to subroutine PC-PIT𝑘 for

linear matrices, that computes matrix substitutions on which 𝑆 evaluates to a nonzero matrix if 𝑆 ≠ 0.

Proof. For 𝑘 = 1, in Section 3 we showed that finding a nonzero of the series 𝑆 reduces to finding

a nonzero of its 𝑠-term truncation 𝑃𝑆 = 𝑏
(∑

𝑘⩽𝑠 𝐿
𝑘
)
𝑎 (using Lemma 18), and a scaling trick. In

this section, we extend the approach for 𝑘 > 1. Lemma 18 implies that 𝑆 = 0 if and only if

𝑃𝑆 = 𝑏
(∑

𝑘⩽𝑠 𝐿
𝑘
)
𝑎 = 0.

Apply PC-PIT𝑘 on 𝑃𝑆 and using Theorem 36 compute substitution matrices which has tensor

product structure. For the convenience of notation, let

¯
𝑀1 , ¯

𝑀2 , . . . , ¯
𝑀𝑘 be the tuples of the matrices

for the variables in 𝑋1 , 𝑋2 , . . . , 𝑋𝑘 respectively. Let 𝑡 be a commutative variable and by 𝑡
¯
𝑀 𝑗 ,

we mean that each matrix in the tuple is scaled by the factor 𝑡. Notice that 𝑆(𝑡
¯
𝑀1 , . . . , 𝑡 ¯

𝑀𝑘)
is nonzero since 𝑃𝑆(𝑡 ¯

𝑀1 , . . . , 𝑡 ¯
𝑀𝑘) ≠ 0 and different 𝑡 degrees homogenized components will

not mix together. Let 𝑑1 , 𝑑2 , . . . , 𝑑𝑘 be the dimension of the matrices in different components

as promised by Theorem 36, and let 𝑑 = 𝑑1𝑑2 · · · 𝑑𝑘 . Thus (𝐼 − 𝐿)(𝑡
¯
𝑀1 , . . . , 𝑡 ¯

𝑀𝑘) evaluates to a

matrix of dimension 𝑠𝑑 over the variable 𝑡. Similarly, 𝑏(𝑡
¯
𝑀1 , . . . , 𝑡 ¯

𝑀𝑘) and 𝑎(𝑡
¯
𝑀1 , . . . , 𝑡 ¯

𝑀𝑘) are 𝑠

dimensional vectors of matrices of dimension 𝑑. We want a value for the parameter 𝑡 that makes

det[(𝐼 − 𝐿)(𝑡
¯
𝑀1 , . . . , 𝑡 ¯

𝑀𝑘)] ≠ 0 and 𝑆 = 𝑏(𝐼 − 𝐿)−1𝑎((𝑡
¯
𝑀1 , . . . , 𝑡 ¯

𝑀𝑘))) ≠ 0. Hence, it suffices to avoid

the roots of the univariate polynomials in 𝑡 originating from the determinant computation and the

entries of 𝑏(𝐼 − 𝐿)−1𝑎[𝑡
¯
𝑀1 , . . . , 𝑡 ¯

𝑀𝑘]. Since 𝑑 = 𝑠𝑂(𝑘) by Theorem 36, we can find a suitable value

of 𝑡 from a poly(𝑠𝑘) size finite subset of Q. □

4.2 The procedure for PC-RANK

We are now ready to design the subroutine PC-Rank𝑘 . We can write the input linear matrix 𝑇 of

size 𝑠 as:

𝑇(𝑋1 , . . . , 𝑋𝑘) = 𝐴0 +
𝑘∑
𝑗=1

∑
𝑥∈𝑋𝑗

𝐴𝑥𝑥. (7)

The algorithm computes the matrix substitution for each 𝑥 ∈ 𝑋𝑗 (1 ⩽ 𝑗 ⩽ 𝑘) of the form

𝑥 ← 𝐼𝑑1
⊗ · · · 𝐼𝑑𝑗−1

⊗ 𝑀𝑥 ⊗ 𝐼𝑑𝑗+1
⊗ · · · ⊗ 𝐼𝑑𝑘 , (8)

where matrix 𝑀𝑥 is 𝑑 𝑗-dimensional and the rank of the resulting scalar matrix will be (𝑑1𝑑2 · · · 𝑑𝑘) ·
pc-rank(𝑇). Recall from the definition 24, that the substitutions of the form 8 is a type-𝑗 𝑘-fold

tensor. Consider the following definition of witness of pc-rank.

24

Definition 39 (Witness of pc-rank 𝑟). Let 𝑇(𝑋1 , . . . , 𝑋𝑘) be the given linear matrix of the form

𝑇 = 𝐴0 +
∑𝑘
𝑗=1

∑
𝑥∈𝑋𝑗 𝐴𝑥𝑥 such that 𝐴0 , 𝐴𝑥 ∈ Mat𝑠(Q) for 𝑥 ∈ 𝑋[𝑘]. We say that a matrix substitution

of shape

¯
𝑑 = (𝑑1 , . . . , 𝑑𝑘) that assigns type-𝑗 𝑘-fold tensor products for variables in 𝑋𝑗 (1 ⩽ 𝑗 ⩽ 𝑘),

is a witness of pc-rank(𝑇) ⩾ 𝑟 if 𝑇 evaluates to a scalar matrix of rank at least 𝑟𝑑1𝑑2 · · · 𝑑𝑘 after the

substitution.

Now, we describe a rank increment procedure that computes new matrix assignments to the

variables in 𝑋𝑖 (1 ⩽ 𝑖 ⩽ 𝑘) that witness the pc-rank(𝑇(𝑋[𝑘])) is at least 𝑟+1, if such a rank increment

is possible. To do that, we need the following lemma and corollary as preparatory results.

Lemma 40. Let 𝑇 = 𝐴0 +
∑𝑘
𝑖=1

∑
𝑥∈𝑋𝑖 𝐴𝑥𝑥 be an 𝑠 × 𝑠 linear matrix over variables 𝑋[𝑘]. For 𝑑 ∈ N

define 𝑇𝑑 = 𝐴0 ⊗ 𝐼𝑑 +
∑
𝑥∈𝑋1

(𝐴𝑥 ⊗ 𝑍𝑥) +
∑𝑘
𝑖=2

∑
𝑥∈𝑋𝑖 (𝐴𝑥 ⊗ 𝐼𝑑)𝑥 where {𝑍𝑥 = (𝑧𝑥,𝑖, 𝑗)1⩽𝑖 , 𝑗⩽𝑑}𝑥∈𝑋1

be

a set of generic matrices of noncommutative variables which are commuting with 𝑋2 , . . . , 𝑋𝑘 . Then,

pc-rank(𝑇𝑑) = 𝑑 · pc-rank(𝑇).

Proof. Write 𝑇𝑑 = 𝐴0 ⊗ 𝐼𝑑 +
∑
𝑥,𝑖, 𝑗 𝐴𝑥,𝑖, 𝑗 𝑧𝑥,𝑖, 𝑗 +

∑𝑘
𝑖=2

∑
𝑥∈𝑋𝑖 (𝐴𝑥 ⊗ 𝐼𝑑) 𝑥 where each {𝐴𝑥,𝑖, 𝑗 : 𝑥 ∈ 𝑋1 , 1 ⩽

𝑖 , 𝑗 ⩽ 𝑑} is an 𝑠𝑑 × 𝑠𝑑 matrix.

Let pc-rank(𝑇) = 𝑟. Then, 𝑇 has a submatrix 𝑀 of size 𝑟 invertible over the skew field 𝔘[𝑘] (by

Theorem 21). By Proposition 23, there are matrix substitutions for the variables 𝑥 ∈ 𝑋𝑖 : 1 ⩽ 𝑖 ⩽ 𝑘
of the form 𝐼𝑑′

1

⊗ 𝐼𝑑′
2

⊗ · · · ⊗ 𝐼𝑑′
𝑖−1

⊗ 𝑝𝑥 ⊗ 𝐼𝑑′
𝑖+1

⊗ · · · ⊗ 𝐼𝑑′
𝑘

such that 𝑀 evaluates to an invertible scalar

matrix. Here, 𝑝𝑥 is a 𝑑′
𝑖
× 𝑑′

𝑖
matrix and 𝑑′

1
, . . . , 𝑑′

𝑘
∈ N. Also, w.l.o.g, we can assume 𝑑′

𝑖
: 1 ⩽ 𝑖 ⩽ 𝑘

to be multiple of 𝑑. In particular, let 𝑑′′
1
= 𝑑′

1
/𝑑.

For each 𝑥 ∈ 𝑋1, let us write the matrix 𝑝𝑥 as a matrix of blocks of dimension 𝑑′′
1
× 𝑑′′

1
. So

the (𝑖 , 𝑗)𝑡ℎ block in [𝑑] × [𝑑] is a matrix 𝑞𝑥,𝑖, 𝑗 . Now, it is not hard to see that 𝑀 corresponds to a

submatrix of size 𝑟𝑑 in 𝑇𝑑 which becomes invertible by the substitutions

𝑧𝑥,𝑖, 𝑗 ← 𝑞𝑥,𝑖, 𝑗 ⊗ 𝐼𝑑′
2

⊗ · · · ⊗ 𝐼𝑑′
𝑖−1

⊗ 𝐼𝑑′
𝑖
⊗ 𝐼𝑑′

𝑖+1

⊗ · · · ⊗ 𝐼𝑑′
𝑘
,

for 𝑥 ∈ 𝑋1 and

𝑥 ← 𝐼𝑑′′
1

⊗ 𝐼𝑑′
2

⊗ · · · ⊗ 𝐼𝑑′
𝑖−1

⊗ 𝑝𝑥 ⊗ 𝐼𝑑′
𝑖+1

⊗ · · · ⊗ 𝐼𝑑′
𝑘
,

for 𝑥 ∈ 𝑋𝑖 : 2 ⩽ 𝑖 ⩽ 𝑘. Hence pc-rank(𝑇𝑑) ⩾ 𝑟𝑑.

For the other direction, as pc-rank(𝑇) = 𝑟, we can write

𝑇 = 𝑈 ·
(
𝐼𝑟 0

0 0

)
·𝑉,

for invertible transformations 𝑈,𝑉 over the skew field 𝔘[𝑘]. Hence, pc-rank(𝑇𝑑) ⩽ 𝑟𝑑. This proves

the lemma. □

We apply Lemma 40 repeatedly to prove the following corollary.

Corollary 41. Let 𝑇 = 𝐴0 +
∑𝑘
𝑖=1

∑
𝑥∈𝑋𝑖 𝐴𝑥𝑥 be an 𝑠 × 𝑠 linear matrix over the partially commutative set

of variables 𝑋[𝑘]. Let 𝑑1 , 𝑑2 , . . . , 𝑑𝑘 ∈ N, and define 𝑇𝑑1 ,𝑑2 ,...,𝑑𝑘 = 𝐴0 ⊗ 𝐼𝑑1𝑑2···𝑑𝑘 +
∑𝑘
𝑖=1

∑
𝑥∈𝑋𝑖 𝐴𝑥 ⊗ 𝐼𝑑1

⊗
· · · ⊗ 𝐼𝑑𝑖−1

⊗ 𝑍𝑥 ⊗ 𝐼𝑑𝑖+1
⊗ · · · ⊗ 𝐼𝑑𝑘 where the dimension of the generic noncommutative matrices 𝑍𝑥 for the

variables 𝑥 ∈ 𝑋𝑖 is 𝑑𝑖 , and the variables in {𝑍𝑥}𝑥∈𝑋𝑖 and {𝑍𝑥}𝑥∈𝑋𝑗 are mutually commuting for 𝑖 ≠ 𝑗.

Then, pc-rank(𝑇𝑑1 ,𝑑2 ,...,𝑑𝑘) = 𝑑1𝑑2 · · · 𝑑𝑘 · pc-rank(𝑇).

25

Proof. For clarity we explain the proof up to stage two where we handle the variables in 𝑋1 and

𝑋2. Then a simple induction on 𝑘 gives the general result.

For 𝑑1 ∈ N, define 𝑇𝑑1
= 𝐴0 ⊗ 𝐼𝑑1

+ ∑
𝑥∈𝑋1

𝐴𝑥 ⊗ 𝑍𝑥 +
∑𝑘
𝑖=2

∑
𝑥∈𝑋𝑖 (𝐴𝑥 ⊗ 𝐼𝑑1

)𝑥 where 𝑍𝑥 is a 𝑑1

dimensional generic matrix. Then by Lemma 40, we know that pc-rank(𝑇𝑑1
) = 𝑑1 · pc-rank(𝑇). Let

𝐴′
0
= 𝐴0 ⊗ 𝐼𝑑1

+∑
𝑥∈𝑋1

𝐴𝑥 ⊗ 𝑍𝑥 . Also, for each 𝑥 ∈ ⊔𝑘
𝑖=2
𝑋𝑖 , we use 𝐴′𝑥 to denote the matrix 𝐴𝑥 ⊗ 𝐼𝑑1

.

Thus,

𝑇𝑑1
= 𝐴′

0
+

𝑘∑
𝑖=2

∑
𝑥∈𝑋𝑖

𝐴′𝑥𝑥.

Now replace the variables 𝑥 ∈ 𝑋2 by generic matrices 𝑍𝑥 of dimension 𝑑2 to get the matrix

𝑇𝑑1 ,𝑑2
= 𝐴′

0
⊗ 𝐼𝑑2

+
𝑘∑
𝑖=3

∑
𝑥∈𝑋𝑖
(𝐴′𝑥 ⊗ 𝐼𝑑2

)𝑥 +
∑
𝑥∈𝑋2

𝐴′𝑥 ⊗ 𝑍𝑥 .

Applying the Lemma 40 again, we know that pc-rank(𝑇𝑑1 ,𝑑2
) = 𝑑2 ·pc-rank(𝑇𝑑1

) = 𝑑1𝑑2 ·pc-rank(𝑇).
Note that to get 𝑇𝑑1 ,𝑑2

from 𝑇, we need to substitute the variables 𝑥 ∈ 𝑋1 by matrices of the form

𝑍𝑥 ⊗ 𝐼𝑑2
. Similarly, the matrices for 𝑥 ∈ 𝑋2 are given by 𝐼𝑑1

⊗ 𝑍𝑥 . Repeating the process 𝑘 times we

get the desired result. □

4.2.1 Rank increment step

We now return to the construction of the subroutine PC-Rank𝑘 . The main idea is that, given an

input linear matrix 𝑇 over 𝑋[𝑘], we do an induction on the rank parameter 𝑟. Clearly for the base

case (𝑟 = 1), we can easily make a linear form nonzero after the evaluation. Suppose that we have

already computed a rank 𝑟 witness

¯
𝑀, which is a type-𝑗 𝑘-fold tensor product matrix assignments

for the variables in 𝑋𝑗 (1 ⩽ 𝑗 ⩽ 𝑘) such that:

• rank(𝑇(
¯
𝑀)) is at least 𝑟𝑑′ where (𝑑1 , 𝑑2 , . . . , 𝑑𝑘) is the shape of the tensor and 𝑑′ = 𝑑1𝑑2 · · · 𝑑𝑘 .

• Moreover, for each 1 ⩽ 𝑗 ⩽ 𝑘, 𝑑 𝑗 ⩽ 𝑠3
and 𝑑1 , . . . , 𝑑𝑘 are distinct prime numbers.

Let 𝑇𝑑′(𝑍) denote the matrix obtained from 𝑇 by replacing the variables 𝑥 ∈ ⊔𝑘
𝑖=1
𝑋𝑖 by the

matrices 𝐼𝑑1
⊗ · · · ⊗ 𝐼𝑑𝑖−1

⊗ 𝑍𝑥 ⊗ 𝐼𝑑𝑖+1
⊗ · · · ⊗ 𝐼𝑑𝑘 where the dimension of the generic matrix 𝑍𝑥

is 𝑑𝑖 . By Corollary 41, pc-rank(𝑇𝑑′(𝑍)) = 𝑑′ · pc-rank(𝑇). Let 𝑍 denote the tuple (𝑍1 , . . . , 𝑍𝑘)
where 𝑍ℓ = {𝑍𝑥}𝑥∈𝑋ℓ for each ℓ . Equivalently, if we regard each matrix 𝑍ℓ as the set of variables

{𝑧𝑥,𝑖′, 𝑗′}1⩽𝑖′, 𝑗′⩽𝑑ℓ ;𝑥∈𝑋ℓ , then 𝑍 is essentially the new set of partially commutative variables. That is,

in each 𝑍ℓ the variables are noncommuting and variables across different sets 𝑍ℓ1 , 𝑍ℓ2 , for ℓ1 ≠ ℓ2,

are mutually commuting.

Next, in 𝑇𝑑′(𝑍) replace each matrix 𝑍𝑥 ⊗ 𝐼𝑑2
⊗ · · · ⊗ 𝐼𝑑𝑘 for 𝑥 ∈ 𝑋1 by

(𝑍𝑥 +𝑀𝑥) ⊗ 𝐼𝑑2
⊗ · · · ⊗ 𝐼𝑑𝑘 .

Similarly, the matrices 𝐼𝑑1
⊗ · · ·⊗ 𝐼𝑑𝑖−1

⊗𝑍𝑥 ⊗ 𝐼𝑑𝑖+1
⊗ · · ·⊗ 𝐼𝑑𝑘 corresponding to 𝑥 ∈ 𝑋[𝑘]\{1} are replaced

by

𝐼𝑑1
⊗ · · · ⊗ 𝐼𝑑𝑖−1

⊗ (𝑍𝑥 +𝑀𝑥) ⊗ 𝐼𝑑𝑖+1
⊗ · · · ⊗ 𝐼𝑑𝑘 .

For the simplicity, we write the matrix obtained as 𝑇𝑑′(𝑍 + ¯
𝑀).

26

Notice that,

𝑇𝑑′(𝑍 + ¯
𝑀) = 𝑇′′

1
+

𝑘∑
𝑖=1

∑
𝑥∈𝑋𝑖

𝐴𝑥 ⊗ 𝐼𝑑1
⊗ · · · ⊗ 𝐼𝑑𝑖−1

⊗ 𝑍𝑥 ⊗ 𝐼𝑑𝑖+1
⊗ · · · ⊗ 𝐼𝑑𝑘 , (9)

recalling the discussion in Section 1.1 (see Equation 3).

Since the rank of a linear matrix is invariant under shifting of the variables by scalars (See,

footnote 6), we get that pc-rank(𝑇𝑑′(𝑍 + ¯
𝑀)) = pc-rank(𝑇𝑑′(𝑍)).

For invertible transformations𝑈,𝑉 over Q, we can write

𝑇𝑑′(𝑍 + ¯
𝑀) = 𝑈

(
𝐼𝑟𝑑′ − 𝐿 𝐴

𝐵 𝐶

)
𝑉.

Furthermore,

𝑇𝑑′(𝑍 + ¯
𝑀) = 𝑈𝑈′

(
𝐼𝑟𝑑′ − 𝐿 0

0 𝐶 − 𝐵(𝐼𝑟𝑑′ − 𝐿)−1𝐴

)
𝑉′𝑉. (10)

Here,𝑈′ =

(
𝐼𝑟𝑑′ 0

𝐵(𝐼𝑟𝑑′ − 𝐿)−1 𝐼(𝑠−𝑟)𝑑′

)
, 𝑉′ =

(
𝐼𝑟𝑑′ (𝐼𝑟𝑑′ − 𝐿)−1𝐴

0 𝐼(𝑠−𝑟)𝑑′

)
.

Notice that 𝐿, 𝐴, 𝐵, 𝐶 are linear matrices over the variables in 𝑍1 , 𝑍2 , . . . , 𝑍𝑘 . The (ℓ1 , ℓ2)𝑡ℎ entry

of 𝐶 −𝐵(𝐼𝑟𝑑′ − 𝐿)−1𝐴 is given by 𝐶ℓ1ℓ2 −𝐵ℓ1(𝐼𝑟𝑑′ − 𝐿)−1𝐴ℓ2 where 𝐵ℓ1 is the ℓ 𝑡ℎ
1

row vector of 𝐵 and 𝐴ℓ2
is the ℓ 𝑡ℎ

2
column vector of 𝐴. We prove the following lemma which is the partially commutative

version of Lemma 29.

Lemma 42. pc-rank(𝑇) > 𝑟 if and only if 𝑆ℓ1ℓ2 = 𝐶ℓ1ℓ2 − 𝐵ℓ1(𝐼𝑟𝑑′ − 𝐿)−1𝐴ℓ2 ≠ 0 for some choice of ℓ1 , ℓ2.

Proof. Suppose pc-rank(𝑇) > 𝑟. Then, by Corollary 41, pc-rank(𝑇𝑑′(𝑍+ ¯
𝑀)) = pc-rank(𝑇𝑑′(𝑍)) > 𝑟𝑑′.

However, if 𝐶 − 𝐵(𝐼𝑟𝑑′ − 𝐿)−1𝐴 is a zero matrix, this is impossible.

Conversely, if (𝑇𝑑′(𝑍 + ¯
𝑀))ℓ1ℓ2 = 𝐶ℓ1ℓ2 − 𝐵ℓ1(𝐼𝑟𝑑′ − 𝐿)−1𝐴ℓ2 is nonzero for some indices ℓ1 , ℓ2, we

can find (partially commutative) matrix substitutions to the variables in 𝑍 such that 𝑇𝑑′(𝑍 + ¯
𝑀)

evaluated on such substitutions (let say of dimension �̂�) will be of rank more than 𝑟𝑑′�̂�. Then

pc-rank(𝑇𝑑′(𝑍 + ¯
𝑀)) > 𝑟𝑑′ implying that pc-rank(𝑇) > 𝑟 by Corollary 41. □

4.2.2 A partially commutative ABP identity testing reduction step

Now we vary over all choices for ℓ1 , ℓ2 and apply Lemma 38 to find a nonzero of the series

represented by 𝑆ℓ1ℓ2 for some choice of ℓ1 , ℓ2.8 Next, we describe how to update the matrix tuple

¯
𝑀 to a new tuple that will be the assignment for the 𝑋[𝑘] variables.

Suppose, by Lemma 38, we obtain matrix assignments {𝑀′
𝑥,𝑖, 𝑗
}𝑥∈𝑋1 ,1⩽𝑖 , 𝑗⩽𝑑ℓ to the 𝑍ℓ variables,

1 ⩽ ℓ ⩽ 𝑘. Consider 𝑥 ∈ 𝑋ℓ (1 ⩽ ℓ ⩽ 𝑘). The matrix assignment for 𝑍𝑥 will be the matrix 𝑀′𝑥
obtained by replacing the variable 𝑧𝑥,𝑖, 𝑗 : 1 ⩽ 𝑖 , 𝑗 ⩽ ℓ by the matrix 𝑀′

𝑥,𝑖, 𝑗
of dimension pℓ . Now, let

𝑀′′𝑥 = 𝑀𝑥 ⊗ 𝐼pℓ +𝑀′𝑥 .

For 𝑥 ∈ 𝑋ℓ , we substitute 𝑥 by type-ℓ 𝑘-fold tensor

𝐼𝑑′′
1

⊗ · · · ⊗ 𝐼𝑑′′
ℓ−1

⊗ 𝑀′′𝑥 ⊗ 𝐼𝑑′′ℓ+1

⊗ · · · ⊗ 𝐼𝑑′′
𝑘
,

8Notice that 𝐶ℓ1ℓ2 is a linear term and the degree of the other terms in the series is at least 2.

27

where we note that each 𝑀′′𝑥 , 𝑥 ∈ 𝑋ℓ is of dimension 𝑑′′
ℓ
= 𝑑ℓpℓ . We denote the resulting tuple of

matrices by
˜̄𝑀. Proof of the next claim is analogous to the proof of Corollary 31.

Claim 43. rank(𝑇(˜̄𝑀)) > 𝑟𝑑′′
1
𝑑′′

2
· · · 𝑑′′

𝑘
.

Remark 44. We observe the following additional properties of our construction:

1. W.l.o.g, we can ensure that p
1
, p

2
, . . . , p𝑘 are distinct odd primes such that each pℓ > 𝑑 𝑗 as

discussed in Remark 37.

2. The above choice of the primes pℓ ensures that the dimensions 𝑑′′
ℓ
, 1 ⩽ ℓ ⩽ 𝑘 are pairwise

relatively prime since the 𝑑ℓ are distinct prime numbers.

4.2.3 Rounding step

Recall from the last section, we have already computed a matrix tuple
˜̄𝑀 of shape (𝑑′′

1
, . . . , 𝑑′′

𝑘
) such

that rank(𝑇(˜̄𝑀)) > 𝑟𝑑′′
1
· · · 𝑑′′

𝑘
, where the 𝑑′′

ℓ
are all pairwise relatively prime. We now describe the

algorithm to obtain a witness of pc-rank 𝑟 + 1 if rank(𝑇) ⩾ 𝑟 + 1.

Lemma 45. Given a linear matrix 𝑇 over 𝑋[𝑘] of size 𝑠 and matrix tuple ˜̄𝑀 of shape (𝑑′′
1
, . . . , 𝑑′′

𝑘
) such that

rank(𝑇(˜̄𝑀)) > 𝑟𝑑′′
1
𝑑′′

2
· · · 𝑑′′

𝑘
and the 𝑑′′

𝑖
are pairwise relatively prime, we can compute another matrix tuplê̄𝑀 in deterministic poly(𝑠, 𝑑′′

1
, . . . , 𝑑′′

𝑘
) time such that rank(𝑇(̂̄𝑀)) ⩾ (𝑟 + 1) · 𝑑′′

1
𝑑′′

2
· · · 𝑑′′

𝑘
.

Proof. If rank(𝑇(˜̄𝑀)) is a multiple of each 𝑑′′
𝑖

then the hypothesis already implies rank(𝑇(˜̄𝑀)) ⩾
(𝑟 + 1) · 𝑑′′

1
𝑑′′

2
· · · 𝑑′′

𝑘
, and there is nothing to prove. Now, suppose rank(𝑇(˜̄𝑀)) is not a multiple of 𝑑′′

𝑖
for some 𝑖 ∈ [𝑘]. The idea is to find a 𝑑′′

𝑖
× 𝑑′′

𝑖
matrix substitution 𝑀′′𝑥 for each 𝑥 ∈ 𝑋𝑖 and update

the 𝑖𝑡ℎ component of the matrix tuple
˜̄𝑀 such that rank(𝑇(

¯
𝑀′′)) is a multiple of 𝑑′′

𝑖
where

¯
𝑀′′ is

the updated matrix tuple. To do so, we first substitute each 𝑥 ∈ 𝑋[𝑘]\{𝑖} by the restriction of the

matrix tuple
˜̄𝑀 of shape (𝑑′′

1
, . . . , 𝑑′′

𝑖−1
, 𝑑′′

𝑖+1
, . . . , 𝑑′′

𝑘
) by dropping the 𝑖𝑡ℎ component and obtain a

linear matrix 𝑇[𝑘]\{𝑖}(𝑋𝑖).
Now, we are left with an instance of the noncommutative rank computation over 𝑋𝑖 variables.

By Lemma 26, we can find matrix substitutions 𝑀′′𝑥 : 𝑥 ∈ 𝑋𝑖 such that rank(𝑇[𝑘]\{𝑖}({𝑀′′𝑥 })) is a

multiple of 𝑑′′
𝑖
. It also updates the matrix tuple

˜̄𝑀 to

¯
𝑀′′ by updating only the 𝑖𝑡ℎ component of˜̄𝑀 to 𝑀′′𝑥 . Now rank(𝑇(

¯
𝑀′′)) > 𝑟𝑑′′

1
· · · 𝑑′′

𝑘
and rank(𝑇(

¯
𝑀′′)) is a multiple of 𝑑′′

𝑖
.

We now do this for each 𝑗 ∈ [𝑘] \ {𝑖}, to find a matrix substitution
̂̄𝑀 such that rank(𝑇(̂̄𝑀)) is a

multiple of 𝑑′′
𝑗

for each 𝑗 ∈ [𝑘]. As the 𝑑′′
𝑗

are pairwise relatively prime, rank(𝑇(̂̄𝑀)) is also a multiple

of 𝑑′′
1
𝑑′′

2
· · · 𝑑′′

𝑘
. Moreover, rank(𝑇(̂̄𝑀)) > 𝑟𝑑′′

1
· · · 𝑑′′

𝑘
. Therefore, rank(𝑇(̂̄𝑀)) ⩾ (𝑟 + 1)𝑑′′

1
· · · 𝑑′′

𝑘
. □

Next, we describe the blow-up control step.

4.2.4 Blow-up and shape control step

Now the plan is to find another rank 𝑟 + 1 witness such that the dimension of the 𝑖𝑡ℎ component is

bounded by 𝑠3
. Moreover, the witness is of prime shape (p

1
, . . . , p𝑘) where the p𝑖 are distinct prime

numbers. We need the following result about primes in short intervals, along with a nontrivial

generalization of Lemma 32, to prove the next lemma.

28

Theorem 46 (prime number theorem in short interval [LY92]). Let 𝑛 be a sufficiently large number,

and 𝜋(𝑛) be the number of primes ⩽ 𝑛. Moreover, let 𝑛′ = 𝑛𝜃 for 1/2 ⩽ 𝜃 ⩽ 7/12. Then,

1.01

𝑛′

log 𝑛
⩾ 𝜋(𝑛) − 𝜋(𝑛 − 𝑛′) ⩾ 0.99

𝑛′

log 𝑛

We are now ready to present the blow-up control step. For our purpose, we will choose 𝜃 = 0.6.

Lemma 47. Suppose 𝑇 is a linear matrix of size 𝑠 over 𝑋[𝑘] and ̂̄𝑀 is a matrix tuple of shape (𝑑′′
1
, . . . , 𝑑′′

𝑘
)

such that

• rank(𝑇(̂̄𝑀)) ⩾ (𝑟 + 1)𝑑′′
1
𝑑′′

2
· · · 𝑑′′

𝑘
.

• The dimensions 𝑑′′
𝑖
, 1 ⩽ 𝑖 ⩽ 𝑘 are pairwise relatively prime. Moreover, each 𝑑′′

𝑖
is a product of two

distinct odd primes.

Then for all but finitely many 𝑠, in deterministic poly(𝑠, 𝑑′′
1
, . . . , 𝑑′′

𝑘
) time, we can compute another matrix

tuple ̂̄𝑁 of prime shape (p
1
, . . . , p𝑘) such that rank(𝑇(̂̄𝑁)) ⩾ (𝑟 + 1)p

1
· · · p𝑘 and for each 𝑖, p𝑖 ⩽ 𝑠3

is a

prime number.

Proof. We will prove the statement by induction, replacing 𝑑′′
𝑖

by prime p𝑖 for increasing indices

𝑖. Inductively assume that we have computed a matrix tuple
˜̄𝑀 of shape (p

1
, . . . , pℓ , 𝑑′′ℓ+1

, . . . , 𝑑′′
𝑘
)

such that

• Each p𝑗 ⩽ 𝑠3
is an odd prime.

• rank(𝑇(˜̄𝑀)) ⩾ (𝑟 + 1)p
1
p

2
· · · pℓ 𝑑′′ℓ+1

· · · 𝑑′′
𝑘
.

• The dimensions p
1
, p

2
, . . . , pℓ are distinct primes that are also relatively prime to each 𝑑′′

𝑖
, 𝑖 > ℓ .

Notice that the base case is ℓ = 0. In the inductive step, our goal is to replace 𝑑′′
ℓ+1

by a prime pℓ+1

satisfying the above. That will complete the proof.

Consider an invertible sub-matrix 𝐴 in 𝑇 of size 𝑟 + 1. We can find such 𝐴 since the rank of

𝑇(˜̄𝑀) is ⩾ (𝑟 + 1)p
1
p

2
· · · pℓ 𝑑′′ℓ+1

· · · 𝑑′′
𝑘
.

The following claim summarize how we will be applying the number-theoretic Theorem 46 to

find the prime pℓ+1
.

Claim 48. For all but finitely many 𝑑 (depending on 𝑘) there are at least 2𝑘 + 1 many prime numbers in the

interval (𝑑 − 𝑑0.6 , 𝑑].

We will apply the claim to 𝑑 = 𝑑′′
ℓ+1

. We can assume without loss of generality that 𝑑′′
ℓ+1

> 𝑠3
.

This is because we can always double the dimension 𝑑′′
ℓ+1

by making the matrix components

corresponding to 𝑋ℓ+1 in
˜̄𝑀 block diagonal with two blocks. Notice that the resulting matrix tuple

is still a witness of rank at least 𝑟+1. Furthermore, notice that all the primes p𝑗 and the dimensions

𝑑′′𝜄 , 𝜄 > ℓ are all still pairwise relatively prime as 𝑑′′
ℓ+1

only changed by factors of 2.

By abuse of notation, let
˜̄𝑀 still denote the modified matrix tuple with 𝑑′′

ℓ+1
> 𝑠3

. By the above

Claim 48, for all but finitely many 𝑠, we can find a prime p in the interval (𝑑′′
ℓ+1
− 𝑑′′0.6

ℓ+1
, 𝑑′′
ℓ+1
] that is

relatively prime to all the p𝑗 and to each 𝑑′′𝜄 , 𝜄 > ℓ + 1.

29

Now from the matrices in
˜̄𝑀, remove the last 𝑑′′

ℓ+1
− p many rows and columns of the first

component matrices (namely, the substitutions for variables in 𝑋ℓ+1) and keep other substitutions

as they are. This yields another tuple

¯
𝑀′ of matrix substitutions for the 𝑋[𝑘] variables.

Let Δ =
∏ℓ

𝑗=1
p𝑗

∏
𝜄>ℓ+1

𝑑′′𝜄 . We claim that rank(𝐴(
¯
𝑀′)) > 𝑟pΔ. Suppose not. Then, we have:

rank(𝐴(̂̄𝑀)) ⩽ rank(𝐴(
¯
𝑀′)) + 2(𝑟 + 1)(𝑑′′ℓ+1

− p)Δ
⩽ 𝑟pΔ + 2(𝑟 + 1)(𝑑′′

1
− p)Δ

= Δ(𝑟p + 2(𝑟 + 1)(𝑑′′ℓ+1
− p))

= Δ(2(𝑟 + 1)𝑑′′ℓ+1
− (𝑟 + 2)p)

< (𝑟 + 1)𝑑′′ℓ+1
Δ

which contradicts the inductive assumption. To see the last strict inequality we observe that

(𝑟 + 1)𝑑′′
ℓ+1

< (𝑟 + 2)p. This follows from the following:

(𝑟 + 1)(𝑑′′ℓ+1
− p) ⩽ (𝑟 + 1)𝑑′′0.6ℓ+1

⩽ (𝑠 + 1)𝑑′′0.6ℓ+1
⩽ 𝑑′′0.95

ℓ+1
< p

because (𝑠 + 1) < 𝑑′′0.34

ℓ+1
and p > 𝑑′′

ℓ+1
− 𝑑′′0.6

ℓ+1
.

We can now apply Lemma 45, with the matrix tuple

¯
𝑀′ as input, to find a new matrix tuple

on which 𝑇 will evaluate to a matrix of rank ⩾ (𝑟 + 1)pΔ. Now, if p > 𝑠3
we can repeat the above

process with p instead of 𝑑′′
ℓ+1

until we finally get p ⩽ 𝑠3
. Then we set pℓ+1

= p completing the

inductive step of the proof.

To summarize, we will finally obtain the claimed matrix substitution
̂̄𝑁 of prime shape

(p
1
, . . . , p𝑘)where each p𝑖 ⩽ 𝑠3

. The runtime bound is easy to verify. □

Remark 49. The dimension of the final (𝑟 + 1)-rank witness
̂̄𝑁 is bounded by 𝑠3𝑘

.

4.2.5 Pseudo-code for rank increment

Given an input matrix 𝑇 over 𝑋[𝑘] and type-𝑗 𝑘-fold tensor product matrix assignments for the

variables in𝑋𝑗 (1 ⩽ 𝑗 ⩽ 𝑘) such that rank(𝑇(
¯
𝑀)) is at least 𝑟𝑑′where

¯
𝑑 = (𝑑1 , 𝑑2 , . . . , 𝑑𝑘) is the shape

of the tensor and 𝑑′ = 𝑑1𝑑2 · · · 𝑑𝑘 , we describe the pseudo-code of the rank increment procedure

described above that finds another set of assignments to the variables in 𝑋𝑗 (1 ⩽ 𝑗 ⩽ 𝑘) that witness

the pc-rank(𝑇(𝑋[𝑘])) is at least 𝑟 + 1, if such a rank increment is possible. Moreover, for each

1 ⩽ 𝑗 ⩽ 𝑘 : 𝑑 𝑗 ⩽ 𝑠3
and

¯
𝑀 represents the entire tuple of matrix assignment.

Algorithm for Rank-Increment (𝑇[𝑘] , ¯
𝑀, 𝑟)

Input : A linear matrix 𝑇 over 𝑋[𝑘] and the matrix tuple

¯
𝑀 such that rank(𝑇(

¯
𝑀)) is at least 𝑟𝑑′

where the shape of the matrix tuples in

¯
𝑀 are given by

¯
𝑑 = (𝑑1 , 𝑑2 , . . . , 𝑑𝑘) such that the

𝑑 𝑗 ⩽ 𝑠3
(1 ⩽ 𝑗 ⩽ 𝑘) are distinct prime numbers and 𝑑′ = 𝑑1𝑑2 · · · 𝑑𝑘 .

Output : Find another set of matrix assignments of shape

¯
𝑑 = (𝑑1 , . . . , 𝑑𝑘) for 𝑥 ∈ 𝑋[𝑘] that witness

the pc-rank(𝑇) ⩾ 𝑟 + 1, if such a rank increment is possible and the 𝑑 𝑗 ⩽ 𝑠3
are distinct prime

numbers.

Steps : 1. Using the 𝑍 variables and the matrix shift, construct the linear matrix 𝑇𝑑′(𝑍 + ¯
𝑀) as

shown in Equation 9.

30

2. Using Gaussian elimination, convert the matrix 𝑇𝑑′(𝑍 + ¯
𝑀) to the block diagonal shape

shown in Equation 10.

3. Use Lemma 38, to find the nonzero of a series originating from the bottom right of the

block. If it fails to find a nonzero STOP the procedure.

4. Use Claim 43 to compute a new set of matrix assignments of dimension 𝑑′′
1
, 𝑑′′

2
, . . . , 𝑑′′

𝑘
(the 𝑑′′

𝑗
are pairwise relatively prime) to the variables in 𝑋1 , 𝑋2 , . . . , 𝑋𝑘 , such that after

the evaluation, the rank of the resulting matrix is strictly more than 𝑟 · 𝑑′′
1
𝑑′′

2
· · · 𝑑′′

𝑘
.

5. Use Lemma 45 and Lemma 47 to implement the rounding and the blow-up control steps

and compute the matrix assignments that witness pc-rank(𝑇) ⩾ 𝑟 + 1. Moreover, the

dimension of each component of the witness is bounded by 𝑠3
.

We complete the section with the proof of the main theorems. For the convenience of the

reader, we restate the theorems.

Theorem 50 (Restate of Theorem 1). Given an 𝑠 × 𝑠 matrix 𝑇 whose entries are Q-linear forms over the

partially commutative set of variables 𝑋[𝑘] (where |𝑋𝑖 | ⩽ 𝑛 for 1 ⩽ 𝑖 ⩽ 𝑘 and w.l.o.g 𝑛 ⩽ 𝑠), the rank

of 𝑇 over 𝔘[𝑘] can be computed in deterministic 𝑠2
𝑂(𝑘 log 𝑘)

time. The bit complexity of the algorithm is also

bounded by 𝑠2
𝑂(𝑘 log 𝑘)

.

Proof. Firstly note that, due the blow-up control step, the shape of the matrix tuples is always

determined by the size of the input matrix thus it remains as

¯
𝑑 = (𝑑1 , 𝑑2 , . . . , 𝑑𝑘) where each

𝑑𝑖 ⩽ 𝑠3
. Also, since the pc-rank(𝑇) is bounded by 𝑠, the subroutine Rank-Increment can be called

for at most 𝑠 times. Let 𝑡𝑘(𝑠) be the time taken by the procedure Rank-Increment from rank 𝑟 to

rank 𝑟 + 1. The size of the matrix 𝑇𝑑′(𝑍 + ¯
𝑀) is at most 𝑠𝑑′ = 𝑠𝑂(𝑘) since 𝑑′ = 𝑑1𝑑2 · · · 𝑑𝑘 . Hence

Step 1 and Step 2 can be performed in 𝑠𝑂(𝑘) time. In Step 3, the application of Lemma 38 calls

PC-PIT𝑘 on a linear matrix of size 𝑠𝑂(𝑘) and additional 𝑠𝑂(𝑘) time for linear algebraic computation.

As shown in Lemma 45 and Lemma 47 that Step 5 takes at most 𝑠𝑂(𝑘) time.

Let 𝑇1(𝑠, 𝑘) be the running time of the PC-PIT𝑘 subroutine on an ABP of size 𝑠 over 𝑋[𝑘], and

𝑇2(𝑠, 𝑘) be the running time of the PC-Rank𝑘 subroutine on a linear matrix of size 𝑠 over 𝑋[𝑘]. Then,

for a suitable constant 𝛽 > 0 we can bound

𝑡𝑘(𝑠) ⩽ 𝑠𝛽𝑘𝑇1(𝑠𝛽𝑘 , 𝑘) + 𝑠𝛽𝑘 .

Now, we simultaneously analyze the recurrences for 𝑇1(𝑠, 𝑘) and 𝑇2(𝑠, 𝑘). Notice that, 𝑇1(𝑠, 𝑘) ⩽
𝑇2(𝑂(𝑠), 𝑘), since size 𝑠 ABPs have linear pencils of size 𝑂(𝑠) (Proposition 7). From Theorem 36

and from the time analysis of Rank-Increment subroutine as shown above, as 𝑇2(𝑠, 𝑘) ⩽ 𝑠𝑡𝑘(𝑠) we

have:

𝑇1(𝑠, 𝑘) ⩽ 𝑠𝑇1(𝑠4 , 𝑘 − 1) + 𝑠6𝑇2(𝑠6 , 𝑘 − 1) + 𝑠𝑂(1)

𝑇2(𝑠, 𝑘) ⩽ 𝑠𝑇1(𝑠𝛾𝑘 , 𝑘) + 𝑠𝛾𝑘 .

for some constant 𝛾 > 0. From the first inequality above, 𝑇1(𝑠, 𝑘) ⩽ 2
𝑘𝑠𝑂(1)𝑇2(𝑠6 , 𝑘 − 1) for all but

finitely many 𝑠. Combined with the second inequality above, we have 𝑇2(𝑠, 𝑘) ⩽ 𝑠𝜏𝑘𝑇2(𝑠𝜏𝑘 , 𝑘 − 1)
for a suitable constant 𝜏 > 𝛽.

Therefore, 𝑇2(𝑠, 𝑘) ⩽ 𝑠𝜏𝑘𝑇2(𝑠𝜏𝑘 , 𝑘 − 1) ⩽ 𝑠𝜏𝑘 · 𝑠𝜏𝑘 · · · 𝑠𝜏𝑘 · 𝑇NSingular(𝑠(𝜏𝑘)
𝑘),

31

where 𝑇2(𝑠, 1) = 𝑇NSingular(𝑠) = poly(𝑠) is the running time of the NSingular algorithm on a linear

matrix of size 𝑠. Therefore, we have

𝑇2(𝑠, 𝑘) ⩽ (𝑠(𝜏𝑘)
2)poly(𝑠(𝜏𝑘)𝑘) ⩽ 𝑠2

𝑂(𝑘 log 𝑘)
.

We can bound the bit complexity of the algorithm along the same line and noting the fact that the

bit complexity of the NSingular algorithm is polynomially bounded. □

Next, we prove Theorem 3.

Theorem 51 (Restate of Theorem 3). Given an ABP of size 𝑠 whose edges are labeled by Q-linear forms

over the partially commutative set of variables 𝑋[𝑘] (where |𝑋𝑖 | ⩽ 𝑛 ⩽ 𝑠 (w.l.o.g) for 1 ⩽ 𝑖 ⩽ 𝑘), there

is a deterministic 𝑠2
𝑂(𝑘 log 𝑘)

time algorithm to check whether the ABP computes the zero polynomial. As a

corollary, the equivalence testing of 𝑘-tape weighted automata can be solved in deterministic polynomial time

for 𝑘 = 𝑂(1). The bit complexity of the algorithm is also bounded by 𝑠2
𝑂(𝑘 log 𝑘)

.

Proof. The proof follows directly from the analysis of the recurrence for 𝑇2(𝑠, 𝑘) in the proof of

Theorem 50 above. □

5 Discussion

We find the interplay between symbolic determinant identity testing, concepts from formal lan-

guage theory, and noncommutative algebra very fascinating. Apart from yielding a deterministic

polynomial-time algorithm for the 𝑘-tape weighted automata equivalence problem, the most in-

teresting aspect of the PC-Singular problem is that it provides a common framework spanning

both Singular and NSingular. We state a few questions for further study.

1. It would be satisfactory to obtain a deterministic algorithm for PC-Singular over a 𝑘-

partitioned set of 𝑛 variables such that setting 𝑘 = 1 captures the best-known algorithm

for NSingular and setting 𝑘 = 𝑛 yields the best-known algorithm for Singular. For 𝑘 = 1,

we obtain a deterministic polynomial-time algorithm for NSingular. In contrast, as the run-

time of our algorithm is doubly exponential in 𝑘, applied to the Singular problem (where

𝑘 = 𝑛) the time bound becomes even worse than an exhaustive search. Of course, finding

an (𝑛𝑠𝑘)𝑂(1) algorithm for PC-Singular would be a breakthrough as it would imply a circuit

lower bound [KI04].

2. It is to be noted that the running time of the randomized algorithm for equivalence testing of

𝑘-tape weighted automata by Worrell [Wor13] is indeed (𝑛𝑠)𝑂(𝑘). Thus, it would be plausible

and interesting to obtain a deterministic algorithm for equivalence testing of 𝑘-tape weighted

automata with runtime closer to (𝑛𝑠)𝑂(𝑘).

3. Another interesting problem is to understand the complexity of the equivalence testing of

multi-tape weighted automata for unbounded number of tapes.

References

[ACDM21] Vikraman Arvind, Abhranil Chatterjee, Rajit Datta, and Partha Mukhopadhyay.

Equivalence testing of weighted automata over partially commutative monoids. In

32

Filippo Bonchi and Simon J. Puglisi, editors, 46th International Symposium on Math-

ematical Foundations of Computer Science, MFCS 2021, August 23-27, 2021, Tallinn,

Estonia, volume 202 of LIPIcs, pages 10:1–10:15. Schloss Dagstuhl - Leibniz-Zentrum

für Informatik, 2021.

[ACG
+
22] Vikraman Arvind, Abhranil Chatterjee, Utsab Ghosal, Partha Mukhopadhyay, and

C. Ramya. On identity testing and noncommutative rank computation over the free

skew field. CoRR, abs/2209.04797, 2022.

[ACG
+
23] Vikraman Arvind, Abhranil Chatterjee, Utsab Ghosal, Partha Mukhopadhyay, and

C. Ramya. On identity testing and noncommutative rank computation over the free

skew field. In Yael Tauman Kalai, editor, 14th Innovations in Theoretical Computer

Science Conference, ITCS 2023, January 10-13, 2023, MIT, Cambridge, Massachusetts,

USA, volume 251 of LIPIcs, pages 6:1–6:23. Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 2023.

[AL50] A. S. Amitsur and J. Levitzki. Minimal identities for algebras. Proceedings of the

American Mathematical Society, 1(4):449–463, 1950.

[Ami55] S.A Amitsur. The T-ideals of the free rings. J. of London Math. Soc., 20:470–475, 1955.

[Ami66] S.A Amitsur. Rational identities and applications to algebra and geometry. Journal

of Algebra, 3(3):304 – 359, 1966.

[AMS10] Vikraman Arvind, Partha Mukhopadhyay, and Srikanth Srinivasan. New results

on noncommutative and commutative polynomial identity testing. Computational

Complexity, 19(4):521–558, 2010.

[BBJP19] Vishwas Bhargava, Markus Bläser, Gorav Jindal, and Anurag Pandey. A determin-

istic PTAS for the algebraic rank of bounded degree polynomials. In Timothy M.

Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 647–661.

SIAM, 2019.

[Bee76] C. Beeri. An improvement on valiant’s decision procedure for equivalence of deter-

ministic finite turn pushdown machines. Theoretical Computer Science, 3(3):305 – 320,

1976.

[BFG
+
19] Peter Bürgisser, Cole Franks, Ankit Garg, Rafael Mendes de Oliveira, Michael Walter,

and Avi Wigderson. Towards a theory of non-commutative optimization: Geodesic

1st and 2nd order methods for moment maps and polytopes. In David Zucker-

man, editor, 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS

2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 845–861. IEEE Computer

Society, 2019.

[Bir73] Malcolm Bird. The equivalence problem for deterministic two-tape automata. J.

Comput. Syst. Sci., 7(2):218–236, 1973.

[BJP18] Markus Bläser, Gorav Jindal, and Anurag Pandey. A deterministic PTAS for the

commutative rank of matrix spaces. Theory Comput., 14(1):1–21, 2018.

[CF69] P. Cartier and D. Foata. Problémes combinatoires de commutation et réarrangements.

Lecture Notes in Mathematics, 1969.

33

[Coh71] P. M. Cohn. The Embedding of Firs in Skew Fields. Proceedings of the London Mathe-

matical Society, s3-23(2):193–213, 10 1971.

[Coh95] P. M. Cohn. Skew fields: Theory of general division rings. In Encyclopedia of Mathe-

matics and its Applications 57, 1995.

[DK21] Manfred Droste and Dietrich Kuske. Weighted automata. In Jean-Éric Pin, editor,

Handbook of Automata Theory, pages 113–150. European Mathematical Society Pub-

lishing House, Zürich, Switzerland, 2021.

[DL78] Richard A. Demillo and Richard J. Lipton. A probabilistic remark on algebraic

program testing. Information Processing Letters, 7(4):193 – 195, 1978.

[DM97] Volker Diekert and Yves Métivier. Partial Commutation and Traces, pages 457–533.

Springer Berlin Heidelberg, Berlin, Heidelberg, 1997.

[DM17] Harm Derksen and Visu Makam. Polynomial degree bounds for matrix semi-

invariants. Advances in Mathematics, 310:44–63, 2017.

[DM20] Harm Derksen and Visu Makam. Algorithms for orbit closure separation for invari-

ants and semi-invariants of matrices. Algebra & Number Theory, 14(10):2791–2813,

2020.

[Edm67] Jack Edmonds. System of distinct representatives and linear algebra. J. Res. Nat. Bur.

Standards Sets., B 71:241–245, 1967.

[Eil74] Samuel Eilenberg. Automata, Languages, and Machines (Vol A). Pure and Applied

Mathematics. Academic Press, 1974.

[FG82] Emily P. Friedman and Sheila A. Greibach. A polynomial time algorithm for deciding

the equivalence problem for 2-tape deterministic finite state acceptors. SIAM J.

Comput., 11:166–183, 1982.

[FR04] Marc Fortin and Christophe Reutenauer. Commutative/noncommutative rank of

linear matrices and subspaces of matrices of low rank. Séminaire Lotharingien de

Combinatoire [electronic only], 52, 01 2004.

[FS13] Michael A. Forbes and Amir Shpilka. Quasipolynomial-time identity testing of non-

commutative and read-once oblivious algebraic branching programs. In 54th Annual

IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013,

Berkeley, CA, USA, pages 243–252, 2013.

[GGdOW16] Ankit Garg, Leonid Gurvits, Rafael Mendes de Oliveira, and Avi Wigderson. A de-

terministic polynomial time algorithm for non-commutative rational identity testing.

In Irit Dinur, editor, IEEE 57th Annual Symposium on Foundations of Computer Science,

FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages

109–117. IEEE Computer Society, 2016.

[Gri68] T. V. Griffiths. The unsolvability of the equivalence problem for nondeterministic

generalized machines. J. ACM, 15(3):409–413, July 1968.

[GS20] Hayk A. Grigoryan and Samvel K. Shoukourian. Polynomial algorithm for equiva-

lence problem of deterministic multitape finite automata. Theor. Comput. Sci., 833:120–

132, 2020.

34

[HH21] Masaki Hamada and Hiroshi Hirai. Computing the nc-rank via discrete convex

optimization on CAT(0) spaces. SIAM J. Appl. Algebra Geom., 5(3):455–478, 2021.

[HK91] Tero Harju and Juhani Karhumäki. The equivalence problem of multitape finite

automata. Theor. Comput. Sci., 78(2):347–355, 1991.

[HW15] Pavel Hrubeš and Avi Wigderson. Non-commutative arithmetic circuits with divi-

sion. Theory of Computing, 11(14):357–393, 2015.

[IKQS15] Gábor Ivanyos, Marek Karpinski, Youming Qiao, and Miklos Santha. Generalized

wong sequences and their applications to edmonds’ problems. J. Comput. Syst. Sci.,

81(7):1373–1386, 2015.

[IMQ22] Gábor Ivanyos, Tushant Mittal, and Youming Qiao. Symbolic determinant identity

testing and non-commutative ranks of matrix lie algebras. In Mark Braverman,

editor, 13th Innovations in Theoretical Computer Science Conference, ITCS 2022, January

31 - February 3, 2022, Berkeley, CA, USA, volume 215 of LIPIcs, pages 87:1–87:21.

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[IQ19] Gábor Ivanyos and Youming Qiao. Algorithms based on *-algebras, and their ap-

plications to isomorphism of polynomials with one secret, group isomorphism, and

polynomial identity testing. SIAM J. Comput., 48(3):926–963, 2019.

[IQS17] Gábor Ivanyos, Youming Qiao, and K. V. Subrahmanyam. Non-commutative ed-

monds’ problem and matrix semi-invariants. Comput. Complex., 26(3):717–763, 2017.

[IQS18] Gábor Ivanyos, Youming Qiao, and K. V. Subrahmanyam. Constructive non-

commutative rank computation is in deterministic polynomial time. Computational

Complexity, 27(4):561–593, Dec 2018.

[KI04] Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity

tests means proving circuit lower bounds. Comput. Complex., 13(1-2):1–46, 2004.

[KVV20] Igor Klep, Victor Vinnikov, and Jurĳ Volčič. Multipartite rational functions. Docu-

menta Math., 25:1285–1313, 2020.

[Lam01] T.Y. Lam. A First Course in Noncommutative Rings (Second Edition). Graduate Texts in

Mathematics. Springer, 2001.

[Lov89] László Lovász. Singular spaces of matrices and thier application in combinatorics.

Bulletin of Brazilian Mathematical Society, 20(1):87–99, 1989.

[LS12] Sylvain Lombardy and Jacques Sakarovitch. The removal of weighted 𝜖-transitions.

In Nelma Moreira and Rogério Reis, editors, Implementation and Application of Au-

tomata, pages 345–352, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[LY92] Shituo Lou and Qi Yao. A chebychev’s type of prime number theorem in a short

interval ii. Hardy-Ramanujan Journal, 15:1–33, 1992.

[Mal37] A. Malcev. On the immersion of an algebraic ring into a field. Mathematische Annalen,

113:DCLXXXVI–DCXCI, 1937.

[Maz95] Antoni W. Mazurkiewicz. Introduction to trace theory. In Volker Diekert and Grze-

gorz Rozenberg, editors, The Book of Traces, pages 3–41. World Scientific, 1995.

35

[Pie82] Richard S. Pierce. Associative Algebras. Springer-Verlag, 1982.

[RS59] Michael O. Rabin and Dana S. Scott. Finite automata and their decision problems.

IBM J. Res. Dev., 3(2):114–125, 1959.

[RS05] Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in non-

commutative models. Computational Complexity, 14(1):1–19, 2005.

[RW19] Orit E. Raz and Avi Wigderson. Subspace arrangements, graph rigidity and deran-

domization through submodular optimization. CoRR, abs/1901.09423, 2019.

[Sch80] Jacob T. Schwartz. Fast probabilistic algorithm for verification of polynomial identi-

ties. J. ACM., 27(4):701–717, 1980.

[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results

and open questions. Foundations and Trends in Theoretical Computer Science, 5(3-4):207–

388, 2010.

[Val74] Leslie G. Valiant. The equivalence problem for deterministic finite-turn pushdown

automata. Information and Control, 25(2):123 – 133, 1974.

[Wor13] James Worrell. Revisiting the equivalence problem for finite multitape automata.

In Automata, Languages, and Programming - 40th International Colloquium, ICALP 2013,

Riga, Latvia, July 8-12, 2013, Proceedings, Part II, pages 422–433, 2013.

[Zip79] R. Zippel. Probabilistic algorithms for sparse polynomials. In Proc. of the Int. Sym. on

Symbolic and Algebraic Computation, pages 216–226, 1979.

A Appendix

The idea is to reduce the computation of pc-rank of a matrix with𝔘[𝑘] entries to pc-rank computation

of a linear matrix incurring a small blow-up in the size. To show the reduction, we need the

following lemma.

Lemma 52. Let 𝑋 = 𝑋[𝑘] and 𝔘[𝑘] be the universal skew field over F⟨𝑋[𝑘]⟩. Let 𝑃 ∈ 𝔘[𝑘]𝑚×𝑚 such that,

𝑃 =

[
𝐴 𝐵

𝐶 𝐷

]
,

where 𝐴 ∈ 𝔘𝑟×𝑟[𝑘] is invertible. Then,

pc-rank(𝑃) = 𝑟 + pc-rank(𝐷 − 𝐶𝐴−1𝐵),

Proof. If 𝑄 is an 𝑚 × 𝑚 invertible matrix over 𝔘 then

pc-rank(𝑄𝑃) = pc-rank(𝑃𝑄) = pc-rank(𝑃).

For if 𝑃 = 𝑀𝑁 then 𝑄𝑃 = (𝑄𝑀)𝑁 and if 𝑄𝑃 = 𝑀𝑁 then 𝑃 = (𝑄−1𝑀)𝑁 . Similarly for 𝑃𝑄.

The matrix [
𝐴−1

0

0 𝐼𝑚−𝑟

]
36

is full rank. Similarly, the matrix [
𝐼𝑟 0

−𝐶 𝐼𝑚−𝑟

]
is full rank because [

𝐼𝑟 0

−𝐶 𝐼𝑚−𝑟

] [
𝐼𝑟 0

𝐶 𝐼𝑚−𝑟

]
=

[
𝐼𝑟 0

0 𝐼𝑚−𝑟

]
.

Hence, pc-rank(𝑃) equals pc-rank(𝑅)where

𝑅 =

[
𝐼𝑟 0

−𝐶 𝐼𝑚−𝑟

]
·
[
𝐴−1

0

0 𝐼𝑚−𝑟

]
·
[
𝐴 𝐵

𝐶 𝐷

]
=

[
𝐼𝑟 𝐴−1𝐵

0 𝐷 − 𝐶𝐴−1𝐵

]
Post-multiplying by the invertible matrix

[
𝐼𝑟 −𝐴−1𝐵

0 𝐼𝑚−𝑟

]
we obtain

[
𝐼𝑟 0

0 𝐷 − 𝐶𝐴−1𝐵

]
.

It is easy to see that its inner rank is 𝑟 + pc-rank(𝐷 − 𝐶𝐴−1𝐵). □

For the sake of reading, we restate Lemma 35.

Lemma 53 (Restate of Lemma 35). Let 𝑋 = 𝑋[𝑘] be a set of partially commutative variables. Let

𝑀 ∈ F⟨𝑋[𝑘]⟩𝑚×𝑚 be a matrix where each (𝑖 , 𝑗)𝑡ℎ entry 𝑀𝑖 𝑗 is computed as the (1, 𝑠)𝑡ℎ entry of the inverse

of a linear pencil 𝐿𝑖 𝑗 of size 𝑠. Then, one can construct a linear pencil 𝐿 of size 𝑚2𝑠 + 𝑚 such that,

pc-rank(𝐿) = 𝑚2𝑠 + pc-rank(𝑀).

Proof. We first describe the construction of the linear pencil 𝐿 and then argue the correctness.

Let 𝐿 =


𝐿11 0 · · · 0 𝐵11

0 𝐿12 · · · 0 𝐵12

...
...

. . .
...

...

0 0 · · · 𝐿𝑚𝑚 𝐵𝑚𝑚
−𝐶11 −𝐶12 · · · −𝐶𝑚𝑚 0


, (11)

where each 𝐶𝑖 𝑗 is an 𝑚 × 𝑠 and 𝐵𝑖 𝑗 is an 𝑠 × 𝑚 rectangular matrix defined below. Let 𝑒𝑖 denote the

column vector with 1 in the 𝑖𝑡ℎ entry and the remaining entries are zero. We define

𝐶𝑖 𝑗 =


𝑒𝑖 0 · · · 0


and, 𝐵𝑖 𝑗 =


0

0

...

𝑒 𝑗


,

where 𝑒 𝑗 is a row vector in 𝐵𝑖 𝑗 . To argue the correctness of the construction, we write 𝐿 as a 2 × 2

block matrix. As each 𝐿𝑖 𝑗 is invertible (otherwise 𝑀𝑖 𝑗 would not be defined), the top-left block

entry is invertible. Therefore, we can find two invertible matrices𝑈,𝑉 implementing the required

row and column operations such that,

𝐿 = 𝑈



𝐿11 0 · · · 0 0

0 𝐿12 · · · 0 0

...
...

. . .
...

...

0 0 · · · 𝐿𝑚𝑚 0

0 0 · · · 0 𝐷


𝑉,

37

for some 𝑚 × 𝑚 matrix 𝐷.

Claim 54. The matrix 𝐷 is exactly the input matrix 𝑀.

Proof of Claim. From the 2 × 2 block decomposition we can write,

𝐷 = [𝐶11𝐶12 · · ·𝐶𝑚𝑚]


𝐿−1

11
0 · · · 0

0 𝐿−1

12
· · · 0

...
...

. . .
...

0 0 · · · 𝐿−1

𝑚𝑚



𝐵11

𝐵12

...

𝐵𝑚𝑚

 =
∑
𝑖 , 𝑗

𝐶𝑖 𝑗𝐿
−1

𝑖 𝑗 𝐵𝑖 𝑗 .

Observe that, for each 𝑖 , 𝑗, 𝐶𝑖 𝑗𝐿
−1

𝑖 𝑗
𝐵𝑖 𝑗 is an 𝑚 ×𝑚 matrix with 𝑀𝑖 𝑗 as the (𝑖 , 𝑗)𝑡ℎ entry and remaining

entries are 0. Hence, 𝐷 = 𝑀. □

Notice that the top-left block of 𝐿 in Equation 11 is invertible as for each 𝑖 , 𝑗 ∈ [𝑚], 𝐿𝑖 𝑗 is

invertible. Now the proof follows from Lemma 52. □

38

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

