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Abstract

The class ACC consists of Boolean functions that can be computed by constant-depth circuits
of polynomial size with AND,NOT and MODm gates, where m is a natural number. At the
frontier of our understanding lies a widely believed conjecture asserting that MAJORITY does
not belong to ACC. The Boolean function MAJORITY outputs one if more than half of its inputs
are one, and zero otherwise.

In a paper presented at ITCS 2019, Bhrushundi, Hosseini, Lovett and Rao reduced the con-
jecture that MAJORITY /∈ ACC to a conjecture concerning the non-existence of low degree torus
polynomials that approximate MAJORITY. Torus polynomials approximate Boolean functions
when the fractional part of their value on Boolean points is close to half the value of the func-
tion. Our contribution takes this a step further by reducing it to a seemingly more manageable
conjecture regarding the ℓ2 norm of specific vectors. The crux of our work lies in constructing
machinery inspired by the method of dual polynomials to establish lower bounds on the degree
of torus polynomials approximating Boolean functions. Along the way, we prove several key
results, which include:

• A lower bound on the degree of symmetric torus polynomials approximating ∆w functions,
i.e., functions that output one if and only if there are exactly w input variables that are
one, which includes the AND function. Consequently, we prove that asymmetric torus
polynomials are strictly more powerful than their symmetric counterparts, addressing a
question arising from Bhrushundi, Hosseini, Lovett and Rao (ITCS 2019).

• An error-degree trade-off for symmetric torus polynomials approximating MAJORITY,
extending the corresponding result of Bhrushundi, Hosseini, Lovett and Rao (ITCS 2019).

• The existence of symmetric torus polynomials of degree at most half the number of vari-
ables, approximating MAJORITY within inverse exponential error, when the number of
variables is one more than a power of two. This surprising aspect of our machinery shows
its versatility in proving upper bounds, despite being initially developed for lower bounds.

• The first known lower bounds against asymmetric torus polynomials, showcasing the power
of the machinery we develop. We prove that any torus polynomial approximating AND

within an error of 1

2n
must have degree at least Ω(log(n)). Compare this with an upper

bound of log2(n), which follows from Bhrushundi, Hosseini, Lovett and Rao (ITCS 2019).
Hence, we get an almost complete characterization of the torus polynomial approximation
degree of AND.

• Lower bounds against asymmetric torus polynomials approximating MAJORITY, or AND,
in the very low error regime. Here, we prove that when the degree is one less than the
number of variables, symmetric and asymmetric torus polynomials are equivalent in their
power.

The machinery we have developed has significant room for further analysis, and leads to
numerous open problems. There are various combinatorial questions, interesting in their own
right, that also arise from our work.
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Additionally, we apply our machinery to prove lower bounds on the degree of real polynomials
approximating Boolean functions. We are able to prove strong lower bounds for a large set of
functions with minimal effort.

1 Introduction

Proving that a complexity class is not contained in another, is the prime focus of complexity
theorists and such questions make up some of the hardest problems in Computer Science. We
study such a question at the frontier of our knowledge about Boolean circuit complexity classes.
To state the question, we first need to define the two classes of Boolean circuits we consider.

The first class, called ACC, consists of constant-depth Boolean circuits of polynomial size com-
prising AND,NOT, and MODm gates. A MODm gate outputs one if and only if the count of ones in
the input is divisible by the natural number m. The second class consists of constant-depth Boolean
circuits of polynomial size comprising linear threshold gates. A linear threshold gate outputs one
if and only if a specific linear combination of its inputs crosses a predetermined threshold. This
class is called TC

0. It is easy to see, and is a well-known folklore result, that ACC is a subset of
TC

0. Nearly 35 years ago, Yao [Yao90] conjectured that this containment is strict. This question
has remained unanswered since.

Conjecture 1 ([Yao90]). ACC ( TC
0.

This conjecture can be restated as follows: there is a Boolean function f ∈ TC
0 which cannot

be computed by circuits in ACC. A candidate function for this is the majority function, i.e. the
Boolean function that outputs one if and only if ones are in the majority in the input, denoted by
MAJn. Barrington [Bar89] hypothesized that the majority function is not in ACC.

Conjecture 2 ([Bar89]). MAJn /∈ ACC.

The majority function is one of the simplest threshold functions, as it outputs one if and
only if

∑n
i=1 xi > n

2 . Hence, the majority function belongs to TC
0. Therefore, this conjecture

is a refinement of Conjecture 1. Our work is towards the goal of proving this conjecture, i.e.
Conjecture 2.

Hence, our task is to prove that a particular circuit class cannot compute a certain function. In
the literature, this task is referred to as proving lower bounds against that class. We outline a few
major approaches that have led to lower bounds in the past.

One of the approaches is based on “simplification”, counting, and the probabilistic method,
for example: using random restrictions. This is a classical technique, developed in the 80s.
H̊astad [H̊as86] proved a landmark result, that constant-depth circuits, composed of AND and
NOT gates, even when quite large, simplify considerably when a significant fraction of the input
variables are assigned values randomly. It is easy to see that the parity function does not undergo
such simplification. This intuition was formalized to prove that constant-depth circuits comprising
AND and NOT gates require large size to compute parity. This result concluded a line of work by
Ajtai [Ajt83], Furst, Saxe and Sipser [FSS84], and Yao [Yao85], by proving nearly optimal lower
bounds against such circuits. Note that parity is in ACC, hence applying the technique of random
restrictions does not seem useful for proving Conjecture 2.

Another approach is based on the easy witness lemma, proved by Impagliazzo, Kabanets and
Wigderson [IKW02] in a groundbreaking work. Williams [Wil13], in a remarkable recent work,
used this result to devise a clever approach for proving lower bounds. They proved that non-trivial
algorithms for determining whether a circuit from a particular circuit class ever outputs one, leads
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to lower bounds against that class. Then, in a subsequent breakthrough, Williams [Wil14] used this
approach to prove that the class of functions computable by exponential time non-deterministic
algorithms is not contained in ACC. Subsequent works, such as by Chen, Oliveira and San-
thanam [COS18], Murray and Williams [MW18], Chen [Che19], Chen, Lyu and Williams [CLW20],
and Chen [Che23] have improved the lower bound considerably. This method, although remarkably
successful, seems unable to prove that deterministic classes are not contained in ACC. In particular,
it does not seem to yield an approach to prove that P, the class of functions computable by poly-
nomial time deterministic algorithms, is not contained in ACC, or to prove Conjecture 2. Recall
that our main objective is to prove that a much simpler function, namely the majority function,
which is contained in both P and TC

0, is not contained in ACC.
This leaves us with another classical approach, based on the so-called polynomial method. In

this framework, researchers study various notions of representing Boolean functions using polyno-
mials. This framework is quite powerful, and has numerous applications, such as in interactive and
probabilistically checkable proofs, coding theory, circuit lower bounds, communication complexity,
quantum complexity theory, learning theory, and much more. See this survey by Aaronson [Aar08]
for an interesting and insightful account. We describe two such notions of approximations by
polynomials that have found numerous uses in the study of Boolean circuits.

The first notion, referred to as real polynomial approximation, uses polynomials over the reals
to approximate Boolean functions pointwise. Here is a formal definition.

Definition 1 (Real Polynomial Approximation). Consider P ∈ R[x1, . . . , xn], a polynomial over
the reals, and f : {0, 1}n → {0, 1}, a Boolean function. Then, P is said to approximate f within
an error of ε if for all Boolean points x ∈ {0, 1}n, |P (x)− f(x)| ≤ ε.

Nisan and Szegedy [NS94], in a seminal work, studied the minimum degree of a polynomial
that approximates a given function within an error of 1

3 , called the real polynomial approximation
degree. They proved surprising connections between this degree and other complexity measures,
such as the decision tree complexity. Their work provided considerable impetus to the study of
real polynomial approximations, and firmly established their use in mainstream complexity the-
ory. Shortly thereafter, Paturi [Pat92] completely characterized the real polynomial approximation
degree of symmetric1 functions. Subsequently, researchers have developed this line of study in a
myriad of ways. Several works have devised techniques to prove upper and lower bounds on the
real polynomial approximation degree in various special cases, discovered connections with other
areas in computation complexity, found uses in constructing algorithms, etc. Today, the study of
approximating Boolean functions by real polynomials is a subfield by itself. See this survey by Bun
and Thaler [BT22], and references therein, for a comprehensive introduction.

The second notion of polynomial approximation uses polynomials over finite fields to compute
Boolean functions on most Boolean points. A polynomial over a finite field is said to approximate
a Boolean function within an error of ε, if the value of the polynomial and the function differ
on at most an ε fraction of the Boolean points. Razborov [Raz87], and Smolensky [Smo87], in
independent works, pioneered the use of polynomials over finite fields. Take a function f computable
by constant-depth circuits of polynomial size consisting of AND,NOT and MODp gates, for a prime
p. Then, they proved that there exists a “low” degree polynomial over Fp, the finite field of size p,
that approximates f within an error of 1

3 . They also proved that the same does not hold for the
majority function, or the MODq function, for a prime q 6= p. Hence, they proved that constant-
depth circuits of polynomial size consisting of AND,NOT and MODp gates cannot compute the
majority function, or the MODq function.

1A Boolean function is symmetric if it remains unchanged under permutations of its variables.
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Broadly speaking, in order to prove that a function f is not contained in a class C, the theme
here is to find a distinguisher. A distinguisher is a function µ that maps f to a point outside the
image of C under µ, proving f /∈ C. That is, proving µ(f) /∈ µ(C) implies f /∈ C.

Neither of these methods seem useful to prove lower bounds against ACC. This is evident
by considering the MOD6 function. It requires a high degree to approximate using either real
polynomials [Pat92], or polynomials over finite fields [Smo87], within a reasonable error. In fact, for
a long time, there were no known polynomial method based approaches for resolving Conjecture 1.

Then, in a recent pivotal work, Bhrushundi, Hosseini, Lovett and Rao [BHLR19] made an
inspired suggestion of using the degree of torus polynomials as a distinguisher for the ACC vs
TC

0 question. They proved that torus polynomial approximations extend both real polynomial
approximations and approximation using polynomials over finite fields (See [BHLR19, Lemma 14]).
In fact, they have even more power than both of them combined. For example, torus polynomials
can approximate the MOD6 function. We give a definition of torus polynomial approximation,
which is an equivalent restatement of Definition 1 in [BHLR19].

Definition 2 (Torus Polynomial Approximation). Let f : {0, 1}n → {0, 1} be a boolean function
and P ∈ R[x1, . . . , xn] be a real polynomial. We say that P is a torus polynomial that approximates
f within an error of ε if the following holds:

There exist functions Z : {0, 1}n → Z and δ : {0, 1}n → [−ε, ε] such that:

∀x ∈ {0, 1}n, P (x) =
f(x)

2
+ Z(x) + δ(x)

In other words, the fractional part of P (x) is within ε of f(x)
2 .

Given any function f : {0, 1}n → {0, 1}, one can simply consider the unique polynomial that
exactly matches f on all Boolean points2. This would require degree n for most functions. Note
that this leads to an approximation with zero error. Hence, the question is, for which functions f ,
does there exist a torus polynomial of much smaller degree, say log2(n), approximating it within a
reasonably small error, say 1

n2 . Bhrushundi et al. [BHLR19, Corollary 20] proved that something
similar holds for all functions belonging to ACC.

Theorem 1.1 ([BHLR19]). Consider any function f : {0, 1}n → {0, 1} belonging to the class
ACC. Then, for any ε = 1

nO(1) , there exists a torus polynomial of degree at most log(n)O(1) that
approximates f within an error of ε.

Hence, proving that the same does not hold for the majority function will resolve the ACC vs
TC

0 question. This is precisely the goal of our work in this paper. While we could not take this
task to completion, we do make progress towards it. Before discussing our contributions, we look
at what is already known about torus polynomials.

1.1 Previous Work

Bhrushundi et al. [BHLR19] defined torus polynomials with the goal of proving Conjecture 2, that
the majority function does not belong to ACC. Now, majority is a symmetric function. Hence, it
is natural to study symmetric3 torus polynomials that approximate the majority function as the
first step. They indeed studied the same, and proved that any symmetric torus polynomial approx-

imating the majority function within inverse linear error must have degree at least Ω

(

√

n
log(n)

)

.

2The existence of such a polynomial is folklore.
3A polynomial is symmetric if it is invariant under permutation of its variables.
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Theorem 1.2 ([BHLR19]). Any symmetric torus polynomial approximating the majority function

within an error of 1
20n must have degree Ω

(
√

n
logn

)

.

Now, a priori, this does not lead to a resolution of Conjecture 2. It requires proving an analogous
statement for asymmetric torus polynomials. One would expect that as the majority function is
symmetric, one need not consider asymmetric torus polynomials. This is certainly the case with
real polynomials, which can be proved using a well known symmetrization technique. Given a real
polynomial P over n variables, that approximates a symmetric function, obtain other polynomials
by permuting its variables. Now, average over all polynomials obtained this way by considering all
permutations over n variables. The degree, and the error of approximation, remains the same after
this procedure, and one obtains a symmetric real polynomial.

This procedure does not work for asymmetric torus polynomials. When one averages over all
permutations of variables, the average of the integer parts may not turn out to be an integer.
Then, it will end up contributing to the fractional part, destroying any hope of retaining the
approximation error. Regardless, Bhrushundi et al. [BHLR19, Conjecture 5] conjectured that a
lower bound similar to Theorem 1.2 holds for asymmetric torus polynomials as well.

Conjecture 3 ([BHLR19]). Any torus polynomial approximating the majority function within error
1

20n must have degree Ω
(
√

n
logn

)

.

This conjecture, if true, proves Conjecture 2. Moreover, it will separate P from ACC, improving
our knowledge well beyond what is currently known. In fact, in a recent work, Chen, Lu, Lyu
and Oliveira [CLLO21] proved that it leads to an even stronger statement. They proved that
if the previous conjecture is true, then no ACC circuit matches the majority function’s value on
significantly more than half the inputs.

Before we proceed further, we briefly discuss the proof of Theorem 1.2, as proved by Bhrushundi
et al. [BHLR19]. They employ a three step combinatorial argument, roughly outlined below. They

consider the set of all symmetric functions, and take d = o

(

√

n
log(n)

)

. In the first step, they prove

that there exists a symmetric function, such that no symmetric torus polynomial of degree at most
d can approximate it within an error of 1

10 . Then, they consider ∆w functions. The ∆w function,
for a 0 ≤ w ≤ n, outputs one if and only if the sum of its inputs equals w. They prove that the
statement above implies that there exists a w such that no torus polynomial of degree at most d
can approximate the ∆w function within an error of 1

20n . Then, they use this to prove the same for
the majority function.

This leads to the following natural question. The second step of the proof is existential. It only
guarantees the existence of w for which the lower bound holds. Can we explicitly identify such a
w? In particular, what about the simplest such function, w = n, i.e. the AND function? Nisan
and Szegedy [NS94], in one of the earliest works on real polynomial approximations, prove a lower
bound against real polynomial approximations for AND. On the other hand, there are no known
lower bounds against torus polynomial approximations for the AND function. We fill this gap in
our work in a strong sense.

Also, what if we require a smaller error of approximation. Does it lead to a higher degree lower
bound? We answer this in the affirmative by proving an error-degree trade-off.

1.2 Our Contribution

Bhrushundi et al. [BHLR19] revived the polynomial method as an approach towards proving lower
bounds against ACC. They reduced this question to proving lower bounds against torus polynomials,
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an algebraic object more amenable to mathematical techniques. Still, proving lower bounds is asking
for proving non-existence. We take the next step, and convert this into an existence question. This
is often an important step in proving influential results, as seen in [HMP+93, MS08, TS08, Spa08,
CM22] for just a few examples.

Our main contribution in this work is considerably extending the method of dual polynomials,
and applying it to torus polynomials. The dual polynomial approach is a highly successful method,
and has led to several interesting results about real polynomial approximations. We refer the reader
to this survey by Bun and Thaler [BT22] for a comprehensive discussion of this method, and its
applications. This method can be summarized as follows.

• Consider any real polynomial P of degree d. Assume that it approximates a Boolean function
f within an error of ε. This implies that the values of P satisfy certain conditions, based on
f and ε.

• Write the conditions that P must satisfy as a linear program, so that this linear program is
feasible if and only if P approximates f within an error of ε.

• Use duality in linear programming to obtain another linear program, called the dual. The
dual is unbounded if and only if the original program is infeasible.

• Prove that the dual is indeed unbounded. This proves the non-existence of such a P .

We start by doing the same for torus polynomials, by interpreting a torus polynomial as a real
polynomial that can have arbitrary integral parts. This leads to a family of linear programs, for
each combination of integral parts, and we convert each of them into their corresponding dual. For
proving the non-existence of a torus polynomial, we need to prove that the whole family of dual
linear programs is feasible. This is a key challenge we confront.

The starting point of our approach is very similar to how researchers have constructed dual
polynomials in the literature. However, once we construct the dual, our approach for proving the
feasibility is completely different, based on geometric arguments, rather than the earlier analytical
approaches. Also, the linear program developed in the literature is constructed without assuming
anything about the symmetry of the polynomial. Our first observation is that in the symmetric
case, the linear program simplifies considerably. While it may not make a difference in the real
polynomials case, this path is imperative while dealing with torus polynomials. Also, the resulting
dimension reduction leads to a significant ease in analysis. We prove several results using this
approach, including contributing to the theory of real polynomials. Following is a discussion of
these results.

Consider the following quote, from the fourth paragraph of [BHLR19, Section 1.2]. “Unfortu-
nately, the aforementioned idea of symmetrization cannot be used in the setting of torus polynomials
in a straightforward manner and so it’s unclear how powerful non-symmetric torus polynomials are
compared to their symmetric counterparts.”

They raise the question of the relative power of symmetric torus polynomials versus their asym-
metric counterparts. We first prove that for an inverse linear error a statement similar to Theo-
rem 1.2 holds for all ∆w functions, extending the results of Bhrushundi et al. [BHLR19] in a strong
form. This simultaneously answers the symmetric versus asymmetric question. Indeed, our lower
bound holds for AND = ∆n. However, Bhrushundi et al. [BHLR19] proved that low degree torus
polynomials can approximate AND within an inverse linear error. Hence, asymmetric torus polyno-
mials afford more power than symmetric torus polynomials, even when approximating symmetric
Boolean functions.
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Next, we consider a natural question, viz, does assuming a smaller error bound result in a higher
degree lower bound. We answer this in the affirmative for the majority function, serving another
extension of Theorem 1.2. Following are the formal statements of these results.

Theorem 1.3. The following holds for any large n.

1. All Delta Functions. Let 0 ≤ w ≤ n. Any symmetric torus polynomial that approximates

the ∆w function within an error of 1
2n must have degree d at least Ω

(

√

n
log(n)

)

.

2. Error-Degree Trade-off. Fix c ∈ R, c ≥ 0. Let ε = 1

21+log(n)+logc+1(n)
. Then there exists a

w such that any symmetric torus polynomial that approximates ∆w within an error of ε must

have degree d at least Ω
(

√

n logc(n)
)

.

Note that we get a degree lower bound of
√
n, by setting c = 0 in the error-degree trade-off result,

when ε is inverse polynomial, slightly improving the lower bound by Bhrushundi et al. [BHLR19].
As a corollary of the previous result, we get the following statement.

Corollary 1. There are symmetric functions, such as the AND function, that have torus polyno-
mials of low degree approximating them within a small error. On the other hand, any symmetric
torus polynomial approximating them within a small error must have large degree.

Also, consider the fact that there is a real polynomial of degree O(
√
n) approximating AND

within an error of 1
3 [Pat92]. Using standard error reduction for real polynomials, such as

from [BT22, Theorem 10], we get that there is a real polynomial of degree O(
√
n log(n)) ap-

proximating AND within an error of 1
2n . Using the standard technique of symmetrization, we can

assume that this real polynomial is symmetric. Hence, this real polynomial is also a symmetric
torus polynomial of degree O(

√
n log(n)) approximating AND within an error of 1

2n . Therefore, our

degree lower bound of
√

n
log(n) is tight within logarithmic factors.

Next, we consider an unexplored error regime, where the error is inverse exponentially small.
We prove that all symmetric functions have symmetric torus polynomials of degree at most n− 1
approximating them within this miniscule error. Then, we prove a matching lower bound for AND
and the majority function. Moreover, as opposed to when the degree is lower, we prove that
symmetrization holds when the degree is n − 1. However, the argument is not as simple as the
one for real polynomials, and requires additional tricks. This adds even more intrigue to torus
polynomials, as they behave quite differently from real polynomials.

One interesting aspect of our proof of the above results is that we find a single certificate for
the feasibility of a whole family of dual linear programs. This leaves room for exploring multiple
certificates, each of which works for a subset of the family, such that each dual in the family is
covered by some certificate. We develop a theory, and propose a geometric method, to do exactly
this. In fact, we show that this method leads to almost matching upper and lower bounds in the
case of symmetric torus polynomials. Then, we exhibit the power of our method by proving upper
bounds, i.e. the existence of a symmetric torus polynomial approximating the majority function
within an inverse exponential error, for a careful choice of n and the degree d.

Theorem 1.4. Consider d = 2t for some natural number t ∈ N, and n = 2d + 1. Then, there
exists a symmetric torus polynomial of degree at most d that approximates MAJn within an error
of 1

2Ω(n) .
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Then, we shift our attention towards the main goal of this paper, i.e. proving Conjecture 2. We
extend the geometric method we develop for the symmetric case to the asymmetric case as well.
This allows us to reduce Conjecture 2 to a concrete combinatorial conjecture, that seems much
more tractable. This conjecture appears as Conjecture 13. Our method for the asymmetric case
also leads to lower bounds against torus polynomials approximating the AND function. These lower
bounds lead to tight bounds on the torus polynomial degree of AND, up to a quadratic factor.

Theorem 1.5. Any torus polynomial approximating the AND function within an error of

O
(

1
2log

c(n)

)

must have degree Ω(logc(n)).

For example, if we choose c = 1, this implies that any torus polynomial approximating the AND
function within an error of O

(

1
n

)

must have degree Ω(log(n)). Note that [BHLR19, Lemma 14],
when combined with [All89, Lemma 1], implies a degree upper bound of log2(n) for an error of
O
(

1
n

)

. Hence, the bound is tight up to a quadratic factor. In general, the two works cited above

imply a degree upper bound of logc+1(n) for an error of O
(

1

2log
c+1(n)

)

. Hence, our lower bound

of logc(n) is tight up to a logarithmic factor. We leave it as an open problem to bring the lower
bound and the upper bound closer.

Problem 4. Find d : N → N as a function of n, such that each of the following holds:

• There exists a torus polynomial of degree O(d(n)) approximating AND within an error of

O
(

1
2log

c(n)

)

.

• Any torus polynomial approximating AND within an error of O
(

1
2log

c(n)

)

must have degree at

least Ω(d(n)).

Finally, if we consider real polynomials, it becomes much simpler to apply our methods, as we
have a single dual to deal with, namely with all integral parts being zero. Hence, our methods are
applicable even for real polynomials. In fact, once we set up the machinery, it becomes exceedingly
easy to prove lower bounds against real polynomials with an artful choice of n and d. We demon-
strate this ease by proving lower bounds for a large family of Boolean functions. While these lower
bounds do not improve known lower bounds significantly, we prove them using our method with
the hope that it may be useful for more functions.

Theorem 1.6. Fix a constant 0 < c ≤ 1. Consider an odd n. Take f : {0, 1}n → {0, 1} to be
any function that evaluates to 0 on any Boolean point x ∈ {0, 1}n of even Hamming weight. If f
evaluates to 1 on a c fraction of the inputs with odd Hamming weight, then the following holds.

Any real polynomial approximating f within an error of ε <
√
c
2 must have degree at least n+1

2 .

To compare, the dual polynomial for parity, which we take from [BT22], implies the following.
For a function f such as the one described above, it implies that the degree must be n if the real
polynomial approximates f within an error of ε < c

2 . Our result improves the error quadratically, a
minor improvement, while decreasing the degree by half. Hence, these results seem incomparable.

1.3 Organization

We start with some preliminaries in Section 2. Then, we present our lower bounds against sym-
metric torus polynomials in Section 3. There, we also develop a method for potentially proving
stronger lower bounds. Next, in Section 4, we prove matching lower and upper bounds for torus
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polynomials approximating the majority function, as well as the AND function, within an inverse
exponential error. In Section 5, we use the method developed in the previous sections to prove the
existence of symmetric torus polynomials that approximate the majority function within an inverse
exponential error. After this, in Section 6, we develop our methods further towards the goal of
proving Conjecture 2. In Section 7, we show how to use our method to easily prove lower bounds
against real polynomials approximations for a large family of Boolean functions. We close with a
discussion on some future directions in Section 8.

2 Preliminaries

We begin with some standard definitions.

Definition 3 (Hamming weight). The Hamming weight of a Boolean point x ∈ {0, 1}n is defined
as |x| =∑n

i=1 xi. That is, the Hamming weight of the vector equals the number of ones in it.

Definition 4 (ℓp norm). For a vector v ∈ Rn and a real number p 6= 0, the ℓp norm ‖v‖p is defined

as (
∑n

i=1 v
p
i )

1
p .

We will also need the following inequality.

Lemma 2.1 (Folklore). The ℓ1 and ℓ2 norms of a vector v ∈ Rn satisfy ‖v‖2 ≤ ‖v‖1 ≤
√
n‖v‖2.

Definition 5 (Integer Lattice). Consider a matrix B ∈ Mn×m(R) of dimensions n×m with real
entries, with linearly independent columns b1, . . . ,bm. Then, the lattice generated by this matrix
is defined as all integer combinations of the columns, i.e. L(B) = {

∑m
i=1 zibi : zi ∈ Z}.

The following theorem provides an upper bound on the length of the shortest vector in a lattice.

Theorem 2.2 (Minkowski [Min10]). Consider a real matrix B ∈ Mn×m(R). Then, the lattice

L(B) contains a vector v with its ℓ2 norm bounded by ‖v‖2 ≤
√
mdet(BTB)

1
2m .

The following corollary is immediate from Lemma 2.1. See also [Ngu09].

Corollary 2. The lattice L(B) contains a vector v with ‖v‖1 ≤
√
n
√
mdet(BTB)

1
2m .

3 Limitations of Symmetric Torus Polynomials

In this section, we generalize the method of dual polynomials, a method previously applied to obtain
lower bounds against real polynomials, and apply it to torus polynomials. Although we take the
same initial step, our method deviates significantly afterward. One key observation that makes
it easier for us to prove our results is that the linear program we construct is different and much
smaller in case of symmetric polynomials.

3.1 Symmetric Torus Polynomial Lower Bounds

We begin by recalling the statement of Theorem 1.3.

Theorem 1.3. The following holds for any large n.

1. All Delta Functions. Let 0 ≤ w ≤ n. Any symmetric torus polynomial that approximates

the ∆w function within an error of 1
2n must have degree d at least Ω

(

√

n
log(n)

)

.
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2. Error-Degree Trade-off. Fix c ∈ R, c ≥ 0. Let ε = 1

21+log(n)+logc+1(n)
. Then there exists a

w such that any symmetric torus polynomial that approximates ∆w within an error of ε must

have degree d at least Ω
(

√

n logc(n)
)

.

Proof. The proof consists of two parts. Part 1 is common to both the claims.
Part 1: We begin by describing a general method for proving lower bounds on the degree of

a symmetric torus polynomial that approximates a symmetric Boolean function. This is similar to
the method of dual polynomials, popular in the study of real polynomials. We write the conditions
that a torus polynomial must fulfill in order to approximate a Boolean function, within a certain
error, as a linear program. The linear program we consider is much smaller than what is considered
in the literature, precisely because the polynomial is symmetric. This program is feasible if and only
if such a polynomial exists. Then, we convert this linear program into its dual linear program. By
a theorem of alternatives, the dual linear program is feasible if and only if the required polynomial
does not exist. The formal statement is as follows.

Lemma 3.1. Define the matrix A ∈ M2(n+1)×(n−d)(R) with entries Ai,j =
(

i
j

)

, Ai+n+1,j = −
(

i
j

)

for 0 ≤ i ≤ n, 0 ≤ j ≤ d. For a tuple (z0, . . . , zn) ∈ Zn+1, define bi = zi + ε + f(i)
2 and

bi+n+1 = −zi + ε− f(i)
2 for 0 ≤ i ≤ n. Then, exactly one of the following statements holds.

• There exists a symmetric torus polynomial of degree d approximating f within an error of ε.

• The following linear program, called the dual, is feasible for all tuples (z0, . . . , zn).

ATβ = 0

β ≥ 0

bT · β < 0

Proof. Consider a symmetric torus polynomial P of degree d that approximates a symmetric
Boolean function f : {0, 1}n → {0, 1} within an error of ε. As P is symmetric, monomials of
the same degree have the same coefficient. For 0 ≤ j ≤ d, denote by αj the coefficient of the degree
j monomials of P . Then, for a point x with Hamming weight i for 0 ≤ i ≤ n, P (x) evaluates to
∑d

j=0

(

i
j

)

αj .
Now, Definition 2 implies that there exist functions Z : {0, 1}n → Z and δ : {0, 1}n → [−ε, ε]

such that P (x) = f(x)
2 + Z(x) + δ(x) for any Boolean vector x ∈ {0, 1}n. As P is a symmetric

polynomial, it evaluates to the same value on Boolean points of the same Hamming weight. This
implies that Z and δ are symmetric functions as well, and evaluate to the same value on Boolean
points of the same Hamming weight.

For each 0 ≤ i ≤ n, denote by zi the value of Z(x) for a vector x with Hamming weight
|x| = i. Then, the condition for the existence of a torus polynomial approximation implies that

zi − ε + f(i)
2 ≤ P (x) ≤ zi + ε + f(i)

2 , for each 0 ≤ i ≤ n. We collect these as a system of linear
inequalities as follows.

A2(n+1)×(d+1)α ≤ b

Here, Ai,j =
(

i
j

)

, bi = zi + ε+ f(i)
2 , Ai+n+1,j = −

(

i
j

)

and bi+n+1 = −zi + ε− f(i)
2 for 0 ≤ i ≤ n, 0 ≤

j ≤ d. Note that b is a function of Z, while A is independent of Z.
We note that each tuple (z0, z1, . . . , zn) defines a linear program. Hence, to prove that such an

approximation is not possible, it suffices to prove that the corresponding linear program is infeasible
for each (z0, z1, . . . , zn).
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By Farkas’ lemma [Far02], this system is infeasible4 if and only if the following system is feasible:

ATβ = 0

β ≥ 0

bT · β < 0

This completes the proof of the statement. �

We will prove that the dual is feasible for all choices of f = ∆w, for any (z0, . . . , zn), and the
given regime of d and ε.

First, we focus on the first two expressions in the dual, i.e. ATβ = 0, β ≥ 0. This system is
known as a polyhedral cone. Geometrically, to prove that the dual is feasible, we need to prove
the existence of a ray in the cone which forms an obtuse angle with b. It suffices to identify the
extreme rays of the cone since, if there exists a ray in the cone forming an obtuse angle with b, one
of the extreme rays would also form an obtuse angle with vector b.

However, obtaining a description of the extreme rays looks like a difficult exercise. Instead,
we leverage the fact that AT has a special structure, and show that it suffices to characterize the
nullspace of a suitable matrix. To demonstrate this special structure, we write AT below.

AT =

















(

0
0

)

. . .
(

i
0

)

. . .
(

n
0

)

−
(

0
0

)

. . . −
(

i
0

)

. . . −
(

n
0

)

... . . .
... . . .

...
... . . .

... . . .
...

(

0
j

)

. . .
(

i
j

)

. . .
(

n
j

)

−
(

0
j

)

. . . −
(

i
j

)

. . . −
(

n
j

)

...
... . . .

...
...

... . . .
... . . .

...
(

0
d

)

. . .
(

i
d

)

. . .
(

n
d

)

−
(

0
d

)

. . . −
(

i
d

)

. . . −
(

n
d

)

















(d+1)×2(n+1)

First, note that AT is upper triangular with d + 1 non-zero entries on the main diagonal. Hence,
it has rank d+ 1. Therefore, the nullspace of AT has dimension 2(n+ 1)− (d+ 1). We describe a
basis for the nullspace of AT .

Next, note that AT has form AT = [M | −M ]. Hence, AT · [ei | ei] = 0 for each 0 ≤ i ≤ n.
There are n+ 1 of these, and each of them forms an element of our chosen basis.

We need n− d additional basis vectors to describe the nullspace of AT . We obtain these from
the nullspace of M , denoted henceforth as null(M), using a procedure that we will describe later.
First, we construct a basis for null(M).

Lemma 3.2. A basis for null(M) consists of columns of the matrix B ∈ M(n+1)×(n−d)(R) where

Bi,k = (−1)i−k
(

d+1
i−k

)

.

Proof. We need to prove that MB = 0, and that the columns of B are linearly independent First,
note that B is a lower triangular matrix with non-zero entries on the main diagonal. Also, B has
fewer columns than rows. Therefore, B has full column rank. This implies that the columns of B
are linearly independent.

Now, consider any 0 ≤ j ≤ d and 0 ≤ k < n − d. Then, we need to prove that the product of
jth row of M and kth row of B is 0.

(MB)j,k =
n
∑

i=0

(

i

j

)(

d+ 1

i− k

)

(−1)i−k = 0

A proof of this identity will complete the proof. We prove this in the next lemma. �

4Alternatively, one can put bT
· β as the cost function, and require the linear program to be unbounded.
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Lemma 3.3.
n
∑

i=0

(

i

j

)(

d+ 1

i− k

)

(−1)i−k = 0

Proof. In order to prove this identity, consider another identity

xj(1 + x)d+1+k−j =
∑

m≥0

(

d+ 1 + k − j

m

)

xm+j

Differentiate the equation k times and substitute x = −1. Then, the limits on j and k imply that
each term in the LHS will be some positive power of 1 + x. This implies that the LHS will be 0
after the substitution. That is,

0 =
∑

m≥0

(

d+ 1 + k − j

m

)

(−1)m+j−k((m+ j) · . . . · (m+ j + 1− k)) (1)

=
∑

i≥j

(

d+ 1 + k − j

i− j

)

(−1)i−k(i · . . . · (i+ 1− k)) (2)

=
∑

i≥j

(

d+ 1

i− k

)

(−1)i−k (d+ 1 + k − j) · · · . . . · (d+ 2)

(i− j) · . . . · (i+ 1− k)
(i · . . . · (i+ 1− k)) (3)

= ((d+ 1 + k − j) · . . . · (d+ 2))
∑

i≥j

(

d+ 1

i− k

)

(−1)i−k i · . . . (i+ 1− k)

(i− j) · . . . · (i+ 1− k)
(4)

(5)

Hence,

∑

i≥j

(

d+ 1

i− k

)

(−1)i−k i!

j!(i− j)!
(6)

=
∑

i≥0

(

i

j

)(

d+ 1

i− k

)

(−1)i−k (7)

Equation 1 is obtained by setting LHS equal to the RHS. Then, equation 2 is obtained by sub-
stituting i = m + j. Next, equation 3 is obtained by using the binomial identity

(

n
r

)

= n
r

(

n−1
r−1

)

.
Furthermore, equation 4 is obtained by simple rearrangement of terms. Following that, equation 6
is obtained by dividing both sides by (d+1) · . . . · (d+2) and j!. Finally, equation 7 is obtained by
using the definition of binomial coefficients and simple rearrangement of terms.

This completes the proof. �

We continue with the task of constructing the remaining non-negative vectors in the nullspace
of AT . We show how to construct a non-negative β ≥ 0 in the nullspace of AT using a vector
γ ∈ null(M). Note that γ may have both positive and negative entries.

Lemma 3.4. For a vector γ ∈ null(M), define two n+1 dimensional vectors. Define γ+ as the n+1

dimensional vector, where γ+i =

{

γi γi ≥ 0

0 γi < 0
. Similarly, define γ− as the n+1 dimensional vector,

where γ− =

{

−γi γi ≤ 0

0 γi > 0
. Denote by β the 2n + 2 dimensional vector obtained by concatenating

γ+ and γ−, i.e. β = [γ+ | γ−]. Then, ATβ = 0, β ≥ 0.

12



Proof. Consider a vector γ in null(M). Define β as per the statement. Then, ATβ = Mγ+−Mγ− =
Mγ = 0. Also, β ≥ 0 by construction. �

For each column of B, apply this procedure to obtain a non-negative vector in the nullspace of
AT . It is easy to check that these newly obtained vectors are also linearly independent, and that
there are exactly enough of them to form a basis for the nullspace of AT along with [ei | ei]. Note
that bT · [ei | ei] = 2ε ≥ 0, hence, to get a β with bT · β < 0, we focus on the βs obtained from γs.

Now, for β = [γ+ | γ−], a straightforward calculation shows that

bT · β =
n
∑

i=0

(

zi +
f(i)

2

)

γi + ε‖γ‖1 (8)

Our objective then is to find, for each (z0, . . . , zn), a γ ∈ null(M) such that bT · β < 0. Consider
the second term in the expression of bT · β, i.e. ε‖γ‖1. This term will always evaluate to a positive
value. Hence, to make bT · β negative, the first term must dominate the second. Therefore, we
would like to make the second term as small as possible while ensuring the first term does not
become small.

In the next lemma, we prove that it is also sufficient to show that bT ·β is “large enough”. This
will prove useful as we proceed.

Lemma 3.5. The dual defined in Lemma 3.1 is feasible, if there exists a γ ∈ null(M), such that
for β = [γ+ | γ−], the quantity bT · β > 2‖γ‖1.

Proof. Define β′ = [γ− | γ+]. Notice that β′ is also in the nullspace of AT . Now, note that
bT · (β + β′) = 2ε‖γ‖1. As bT · β > 2ε‖γ‖1, it implies bT · β′ < 0. �

Finally, we show how to complete our proof by finding a γ with integer entries.

Lemma 3.6. Consider an integral γ ∈ Zn+1 ∩ null(M). If γw is odd, then for f = ∆w, the dual
is feasible for ε < 1

‖γ‖1 .

Proof. First, notice that
∑n

i=0

(

zi +
f(i)
2

)

γi = z + 1
2 , where z is an integer. Now, if ε‖γ‖1 < 1

2 ,

then we argue as follows. If z ≥ 0, bT · β ≥ 1 > 2ε‖γ‖1. Else z ≤ −1, for which bT · β < 0. Hence,
we get that the dual is feasible for ε < 1

2‖γ‖1 .

This completes the first part of the proof.
Part 2: Till this point, we follow the same steps for both item 1 and 2. Now, in part 2A,

we prove the All Delta Functions claim (item 1), and in part 2B, we prove the Error-degree

Trade-off claim (item 2).
Part 2A: Below, we prove that for each f = ∆w, and ε < 1

2n , there exists a γ ∈ null(M) that

allows us to prove that the dual is feasible for any small d = O

(

√

n
log(n)

)

.

Lemma 3.7. There exist a constant c, such that for any large n, and d ≤ c
√

n
log(n) , the following

holds. For any 0 ≤ w ≤ n, there exists a γ ∈ null(M) with the following properties.

G.1 γi ∈ {−1, 0, 1} for any 0 ≤ i ≤ n.

G.2 γw 6= 0.

G.3 ‖γ‖1 ≤ n.

13



Proof. Before we begin the proof, we remark that the statement looks similar to Siegel’s
Lemma [HS13, Lemma D.4.1]. In fact, it will be evidence that Siegel’s Lemma suffices to prove
items G.1 and G.3. We provide a proof, very similar to the proof of Siegel’s Lemma, not only for
completeness, but to prove item G.2 as well.

Assume that w ≤ n
2 . The case where w ≥ n

2 is analogous. Consider an n+1 dimensional vector

g ∈ {0, 1}n+1, where gw, . . . ,gw+⌈n
2
⌉ is either 0 or 1, and all others are 0. There are exactly 2⌈

n
2
⌉+1

such gs. Now, consider Mg for such a g.
For a fixed g, denote by the label of g, ℓ(g), the vector Mg. This is a vector of d+1 dimensions.

Note that, |Mg|j ≤
∑n

i=0|Mi,j | upper bounds the ith entry in the label. This itself is upper bounded
by
∑n

i=0

(

i
j

)

≤ n
(

n
j

)

≤ n
(

n
d

)

≤ n · nd = nd+1. Hence, the total number of distinct labels is at most

n(d+1)2 .
If the number of possible gs is larger than the number of possible labels, there have to be two

gs with the same label. Say the two gs are g,g′, such that Mg = Mg′. Then, γ = g − g′ satisfies

Mγ = 0, hence γ ∈ null(M). For the above to hold, we need n(d+1)2 < 2⌈n
2 ⌉+1. This is satisfied if

we choose a d = O

(

√

n
log(n)

)

which is small enough.

Hence, we can obtain a γ ∈ null(M) through this procedure. By construction, γ satisfies
Property G.1. As the number of non-zeros entries in g is at most

⌈

n
2

⌉

, it satisfies Property G.3.
It remains to prove that γ satisfies Property G.2. If γw 6= 0, then we are done. Otherwise, we

use the fact that the columns of B are essentially the same vector shifted downwards. This allows
us to “shift” γ, to make it satisfy Property G.2, while still satisfying Property G.1 and G.3. We
formalize this intuition in the next lemma, which will complete the proof.

We need the following lemma to complete the proof of the previous lemma.

Lemma 3.8. Consider a vector γ ∈ null(M) such that the minimum index i where γi 6= 0 is i0.
Then, for any 0 ≤ w′ < i0, the vector γ′ given below is also in null(M).

γ′i =











0 0 ≤ i < w′

γi+i0−w′ w′ ≤ i ≤ n− i0 + w′

0 n− i0 + w′ < i ≤ n

Proof. Recall that the columns of B are a basis for null(M). Suppose a ∈ Rn−d is the vector such
that Ba = γ. As B is lower triangular, and γ0 = . . . = γi0−1 = 0, it follows that a0 = . . . = ai0−1 =
0.

Now, consider the equality (Ba)i0 = γi0 . The LHS is
∑n−d−1

k=0 (−1)i0−k
(

d+1
i0−k

)

ak. For any k < i0,

ak = 0. On the other hand, for any k > k0, the difference i0 − k < 0 is negative, hence
(

d+1
i0−k

)

= 0.

Therefore, the only non-zero term in the summation is (−1)i0−i0
(

d+1
i0−i0

)

ai0 = ai0 .
This yields ai0 = γi0 6= 0. Now, define a′ as

a′k =











0 k < w′

0 k > n− d− 1− i0 + w′

ak+k0−w′ w′ ≤ k ≤ n− d− 1− i0 + w′

Essentially, a is shifted upwards by i0 − w′ places, and padded with 0s at the bottom to get a′.
Then, for γ′ = Ba′, we have γ′w′ 6= 0.

Finally, note that each column of B is a shift of the first column, i.e. Bi,k = Bi+1,k+1 for any
0 ≤ i ≤ n−1 and 0 ≤ k ≤ n−d−2. Hence, Bi,ka

′
k = Bi+k0−w′ak+k0−w′ for any w′ ≤ i ≤ n+w′−i0

14



and w′ ≤ k ≤ n− d− 1 + i0 + w′. Therefore, γ′i = γi+k0−w′ for any w′ ≤ i ≤ n+ w′ − i0. All other
entries of γ′ are 0 by construction. Therefore, γ′ is as desired.

This completes the proof of this statement. �

This allows us to complete the proof of Lemma 3.7. Hence, putting everything together, we get

that the dual is feasible any small enough d = O

(

√

n
log(n)

)

, all f = ∆w, and ε < 1
2n . Therefore,

the lower bound holds as claimed in item 1.
Part 2B: We begin by noticing that columns of B are integral vectors. Hence, any integer

combination of columns of B will lead to an integral vector in null(M). Therefore, it is natural to
consider the lattice generated by the columns of B, denoted by L(B).

Our goal is again to find vectors with small ℓ1 norm. This is a very well studied pursuit
(see [Yas21] for a nice recent survey). The most general upper bound known for the length of
the shortest vector in a lattice comes from the theorem of Minkowski, and it is this we use (see
Corollary 2). Let γ be a lattice vector with the smallest ℓ1 norm. Then, it must have an odd entry
γw. Unfortunately, Minkowski’s theorem only guarantees the existence of a vector, but it does not
allow us to determine the w for which γw is odd.

Instead, we work around this by turning the problem over on its head. We choose f = ∆w for
the w where γw is odd. Note that γ does not depend on (z0, . . . , zn), hence neither does our choice
of f . This leaves us with the task of bounding ‖γ‖1 from above. This is precisely what we do next.

Lemma 3.9. Fix c ∈ R, c ≥ 0. For any large n, and small enough d ≤ O
(

√

n logc(n)
)

, L(B)

contains a vector γ with ‖γ‖1 ≤ 2log(n)+logc+1(n).

Proof. We invoke Corollary 2 on L(B). It implies the existence of a vector γ with ‖γ‖1 ≤√
n+ 1

√
n− d(det(BTB))

1
2(n−d) . This requires calculating det(BTB), which we do next.

Consider row k1 of BT and column k2 of B for some 0 ≤ k1, k2 < n − d. Then,
(BTB)k1,k2 =

∑n
i=0(−1)i−k1

(

d+1
i−k1

)

(−1)i−k2
(

d+1
i−k2

)

. By rearranging these terms, and replacing
(

d+1
i−k2

)

with
(

d+1
d+1−i+k2

)

, we get (BTB)k1,k2 =
∑n

i=0(−1)k1+k2
(

d+1
i−k1

)(

d+1
d+1−i+k2

)

. We use the iden-

tity
∑d+1

i=0

(

d+1
i

)(

d+1
d+1−i+k1

)

=
( 2(d+1)
d+1−k1

)

to get (BTB)k1,k2 = (−1)k1+k2
( 2(d+1)
d+1+k1−k2

)

. This proves that

BTB looks like the following.

BTB =













(2(d+1)
d+1

)

. . . (−1)k1
( 2(d+1)
d+1−k1

)

. . .
... . . .

... . . .

(−1)k2
( 2(d+1)
d+1+k2

)

. . . (−1)k2+k1
( 2(d+1)
d+1+k2−k1

)

... . . .
... . . .













(n−d)×(n−d)

Now we calculate the determinant of BTB. We simplify the task by multiplying row k1 and column
k2 of B

TB with −1 for each odd value of k1, k2 in the range 0 ≤ k1, k2 < n−d. Note that this makes
each entry of the transformed matrix non-negative while, as −1 gets multiplied an even number of
times, it has the same determinant as BTB. Therefore,

det(BTB) = det

























(2(d+1)
d+1

) (2(d+1)
d

) (2(d+1)
d−1

)

. . . . . . . . .
(2(d+1)

d+2

) (2(d+1)
d+1

) (2(d+1)
d

)

. . . . . . . . .
...

...
... . . . . . . . . .

. . . . . . . . .
(2(d+1)

d+3

) (2(d+1)
d+2

) (2(d+1)
d+1

)
























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Grinberg [Gri22, Gri] proved the following formula for this determinant:

det(BTB) =
H(d+ 1)H(d+ 1)H(n− d)H(n+ d+ 2)

H(n+ 1)H(n+ 1)H(2(d+ 1))

where H(m+ 1) = m! · . . . · 2!1!0! for any m ∈ Z≥0. We substitute this into the above equation.

det(BTB) =
(d! · . . . · 2!)2((n− d− 1)! · . . . · 2!)((n+ d+ 1)! · . . . · 2!)

(n! · . . . · 2!)2((2d+ 1)! · . . . · 2!)

=
(d! · . . . · 2!)((n+ d+ 1)! · . . . · (n+ 1)!)

(n! · . . . · (n− d)!)((2d+ 1)! · . . . · (d+ 1)!)
(9)

=
d! · . . . · 2!

(d+ 2)d(d+ 3)d−1 · . . . · (2d+ 1)
· (n+ d+ 1)!

n!(d+ 1)!
· . . . · (n+ 1)!

(n− d)!(d+ 1)!
(10)

≤
(

n+ d+ 1

d+ 1

)

·
(

n+ d

d+ 1

)

· . . . ·
(

n+ 1

d+ 1

)

(11)

≤
(

n+ d+ 1

d+ 1

)(d+1)

(12)

≤ (n+ d+ 1)(d+1)2 (13)

Equations 9 and 10 are obtained by rearranging terms and cancellation of common terms.
Inequalities 11, 12 and 13 are obtained as follows:

• ignore the first fraction from the previous expression and convert the other fractions into
binomial coefficients,

•

(

n+d+1
d+1

)

is the largest binomial coefficient among the ones that appear in the RHS,

•

(

n
d

)

≤ nd.

This proves that the shortest vector has length at most
√
n+ 1

√
n− d · (n+d+1)

(d+1)2

2(n−d) . For small

enough d = O
(

√

n logc(n)
)

, the shortest vector has length at most n · 2logc+1(n) = 2log(n)+logc+1(n).

�

We give another proof for the previous statement, using an argument similar to the one given
in the proof of Lemma 3.7.

Proof. Consider an n+1 dimensional g ∈ {0, . . . , ℓ− 1}n+1. There are exactly ℓn+1 such gs. Now,
consider Mg for such a g.

For a fixed g, denote by the label of g, ℓ(g), the vector Mg. This is a vector of d+1 dimensions.
Note that, |Mg|j ≤ ∑n

i=0 ℓ|Mi,j | upper bounds the ith entry in the label. This itself is upper
bounded by ℓ

∑n
i=0

(

i
j

)

≤ ℓn
(

n
j

)

≤ ℓn
(

n
d

)

≤ ℓn · nd = ℓnd+1. Hence, the total number of distinct

labels is at most ℓd+1n(d+1)2 .
If the number of possible gs is larger than the number of possible labels, there have to be two

gs with the same label. Say the two gs are g,g′, such that Mg = Mg′. Then, γ = g − g′ satisfies
Mγ = 0, hence γ ∈ null(M). For the above to hold, we need ℓd+1n(d+1)2 < ℓn+1. For ℓ = 2log

c+1(n),

this is satisfied if we choose a d = O
(

√

n logc(n)
)

which is small enough.

Hence, we can obtain a γ ∈ null(M) through this procedure. Note that, by construction,

|γ|i ≤ ℓ − 1 for each i. Therefore, we get ‖γ‖1 =
∑n

i=0|γ|i ≤ 2log(n)+logc+1(n). This completes the
proof. �
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Using the bound on the ℓ1 norm, we achieve the claimed lower bound for some f = ∆w and
ε < 1

21+log(n)+logc+1(n)
. This completes the proof of both the claimed statements.

The result above implies that symmetric torus polynomials are significantly less powerful than
asymmetric torus polynomials.

Here, we conjecture that the error-degree trade-off actually holds for all ∆w functions. The
main hurdle we encounter in proving this is that, while Lemma 3.9 gives us an upper bound on the
ℓ1 norm of the shortest vector, we are not able to argue about which position in the shortest vector
must contain an odd entry. If we can prove that the last entry in the shortest vector is one, then
by using an argument similar to Lemma 3.8, we can prove the lower bound for all ∆w functions.
Hence, we conjecture that the last entry is indeed one.

Conjecture 5. Consider the basis B for any n, d. There exists a vector γ ∈ L(B) with the smallest
ℓ2 norm such that γn = 1.

3.2 Lower Bounds for the Majority Function

So far, the error-degree trade-off we have proved is for ∆w. Next, we borrow a reduction by
Bhrushundi et al. [BHLR19] to prove the lower bound for the majority function. They proved that
a symmetric torus polynomial approximation for the majority function can be used to obtain a
symmetric torus polynomial approximation for each ∆w function. We give a proof for completeness.

Claim 3.1 ([BHLR19]). Let d : N → N and ε : N → R be functions over natural numbers. Suppose
ε = O

(

1
n

)

. Consider a symmetric torus polynomial of degree at most d(n) that approximates
MAJn within an error of ε(n). Then, for any 0 ≤ w ≤ n, there is a symmetric torus polynomial of
degree d(2n+ 1) that approximates ∆w within an error of ε(n).

Proof. Fix n and w, 0 ≤ w ≤ n. Define ∆≥w : {0, 1}n → {0, 1} as ∆≥w(x) = 1 if and only if
|x| ≥ w. Following is a way to compute it using MAJn:

∆≥w(x1, . . . , xn) = MAJ2n+1(x1, . . . , xn, c1, . . . , cn+1)

Here, c1 = . . . = cn−w+1 = 1 and the rest are 0.
Let P (x1, . . . , x2n+1) be the symmetric torus polynomial over 2n+1 variables of degree at most

d(2n+1) that approximates MAJ2n+1 within an error of ε(2n+1) (d(2n+1), and similarly ε(2n+1),
are the value of functions d and ε evaluated at 2n+ 1). Set the last n+ 1 variables to obtain P≥w

as
P≥w = P (x1, . . . , xn, c1, . . . , cn+1)

Then P≥w is a symmetric torus polynomial of degree at most d(2n + 1) that approximates ∆≥w

within an error of ε(2n + 1). Similarly, obtain a symmetric torus polynomial P≥w+1 of degree at
most d(2n+ 1) that approximates ∆≥w+1 within an error of ε(2n+ 1). Note that

∆w = ∆≥w −∆≥w+1

Therefore, Pw = P≥w − P≥w+1 is a symmetric torus polynomial that approximates ∆w within
2ε(2n+ 1) error. The degree of Pw is bounded by d(2n+ 1) as desired.

Now use ε = O
(

1
n

)

to get that 2ε(2n + 1) ≤ ε(n). Therefore, Pw is a torus polynomial that
approximates ∆w within an error of ε(n). This completes the proof.

Hence, we get the following as a corollary of the previous result and Theorem 1.3.

Corollary 3. Fix c ∈ R, c ≥ 0. Consider ε < 1

21+log(n)+logc+1(n)
. Then, any symmetric torus

polynomial that approximates MAJn within an error of ε must have degree Ω
(

√

n logc(n)
)

.
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3.3 Towards Stronger Lower Bounds

Several questions arise from our approach. Here, we answer some of them, and pose others as open
questions. We first prove that it is necessary to look beyond the shortest vector to obtain stronger
lower bounds. Moreover, we conjecture that the upper bound on the shortest vector we obtain is
indeed tight. If the conjecture holds, it becomes imperative to look beyond the shortest vector to
improve the lower bounds we have proved. Then, we propose an approach and develop a theory
that indeed looks beyond the shortest vector. In fact, our approach allows proving almost tight
lower bounds against symmetric torus polynomials.

First, we prove that simply considering the shortest vector cannot lead to stronger lower bounds.

Claim 3.2. Consider a pair (f, γ) such that 〈f, γ〉 is odd, and the entries of γ have GCD 1. Then,

there exists a Z = (z0, . . . , zn) ∈ Zn+1 such that
〈

Z + f
2 , γ
〉

= 1
2 .

Proof. Say
〈

f
2 , γ
〉

= z + 1
2 . As the GCD of the entries of γ is 1, there exists a vector Z =

(z0, . . . , zn) ∈ Zn+1 such that 〈Z, γ〉 = −z. Hence,
〈

Z + f
2 , γ
〉

= 1
2 .

Hence, simply looking at the shortest vector cannot improve the lower bound beyond what we
have proved. Therefore, we would like to understand whether there is an improvement to our lower
bound using the shortest vector method by simply finding an even shorter vector. We do not know
whether shorter vectors exist, which leads us to the following open problem.

Problem 6. Prove a lower bound on the ℓ1 norm of the shortest vector in L(B).

The standard method for this is to perform Gram-Schmidt orthogonalization on B. Then, the
smallest ℓ2 norm in the orthogonalized basis is a lower bound on the smallest ℓ2 norm of a vector in
L(B). Using the fact that the ℓ1 norm is at least as much as the ℓ2 norm, it will also lead to a lower
bound on the smallest ℓ1 norm. We leave it as an open problem to perform the Gram-Schmidt
orthogonalization.

Problem 7. Describe the shortest vector obtained after applying the Gram-Schmidt orthogonaliza-
tion process on B.

Naturally, one may ask whether the bound we obtain using Minkowski’s theorem is tight. Here,
we provide some intuition that it is probably almost tight. Consider the columns of B when d is
much smaller than n. Then, more often than not, a pair of columns is orthogonal to each other.
Hence, we expect Minkowski’s theorem to be almost tight. Therefore, we conjecture exactly that.
Note that we state this conjecture for the ℓ2 norm, not the ℓ1 norm. This is because L(B) is not
full rank, hence Minkowski’s theorem is directly applicable only for the ℓ2 norm. The conjecture is
as follows.

Conjecture 8. Consider the case when d = o(n). Then, the smallest ℓ2 norm of a vector γ ∈ L(B)

is ‖γ‖2 = Θ(
√
n− d(det(BTB))

1
2(n−d) ).

3.4 Beyond the Shortest Vector

In this subsection, we propose a method that looks beyond the shortest vector, with a view towards
stronger lower bounds against symmetric torus polynomials. Recall Equation 8 from the proof of

18



Theorem 1.3 for a given f, n, d, ε. The dual is feasible if and only if, for each Z = (z0, . . . , zn), there
exists a γ ∈ null(M) such that

〈

Z +
f

2
, γ

〉

+ ε‖γ‖1 < 0

Define

ε0 = min
Z∈Zn+1

max
γ∈null(M)

〈

Z + f
2 , γ
〉

‖γ‖1
Note that ε0 is a function of f, n, d. Also, the dual is feasible for each Z ∈ Zn+1 if and only if
ε < ε0. This implies the following:

• If ε < ε0, then there exists no degree d symmetric torus polynomial that approximates f
within an error of ε.

• If ε ≥ ε0, then there exists a degree d symmetric torus polynomial that approximates f within
an error of ε.

This gives us an exact characterization. Hence, the parameter ε0 is precisely what we would
like to estimate. For each Z ∈ Zn+1, consider the projection of Z + f

2 onto null(M). The standard
method of determining the projection of a vector onto a subspace V is by determining the projection
matrix for V . We denote the projection matrix for projecting onto null(M) by P . The projection

of Z+ f
2 onto null(M) is then P

(

Z + f
2

)

. Then, by virtue of being the projection,
〈Z+ f

2
,P(Z+ f

2 )〉
‖P(Z+ f

2 )‖2

≥
〈Z+ f

2
,γ〉

‖γ‖2 for any γ ∈ null(M). Using the inequalities ‖γ‖2 ≤ ‖γ‖1 ≤
√
n+ 1‖γ‖2 for any γ ∈ Rn+1,

we get the following observation.

Observation 1.

min
Z∈Zn+1

〈

Z + f
2 , P

(

Z + f
2

)〉

∥

∥

∥
P
(

Z + f
2

)∥

∥

∥

2

≥ ε0 ≥ min
Z∈Zn+1

〈

Z + f
2 , P

(

Z + f
2

)〉

√
n+ 1

∥

∥

∥
P
(

Z + f
2

)∥

∥

∥

2

Therefore, calculating the projection gives us almost tight bounds on the optimum error ε0.
Now, null(M) is a subspace of Rn+1 with B as the basis. Hence, the projection of a vector

onto null(M) can be calculated using the projection matrix P = B(BTB)−1BT . Note that the
projection matrix is idempotent, i.e. P 2 = P , and symmetric, i.e. P T = P . Hence, we get
〈

Z + f
2 , P

(

Z + f
2

)〉

=
∥

∥

∥
P
(

Z + f
2

)∥

∥

∥

2

2
. Therefore,

〈Z+ f

2
,P(Z+ f

2 )〉
‖P(Z+ f

2 )‖2

=
∥

∥

∥
P
(

Z + f
2

)∥

∥

∥

2
. This shows

that estimating the smallest possible projection over all possible Zs is useful for not only obtaining
degree lower bounds, but also upper bounds. In fact, in Section 5, we use this machinery to prove
an upper bound.

Here, we derive an explicit formula for the projection matrix.

Theorem 3.10. For a given n, d, the projection matrix P ∈ M(n+1)×(n+1)(R) has the following
entries.

(−1)i+jPi,j

=
i
∑

k1=0

j
∑

k2=0

(−1)k1+k2

(

d+ 1

i− k1

)(

d+ 1

j − k2

)(

k1 + d+ 1

d+ 1

)(

k2 + d+ 1

d+ 1

) n−d−1
∑

k=max(k1,k2)

(

k+d−k1
d

)(

k+d−k2
d

)

(

k+d+1
d+1

)(k+2(d+1)
d+1

)
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Proof. The expression for P = B(BTB)−1BT requires calculating (BTB)−1 first. We have al-
ready calculated (BTB) in the proof of Claim 3.9. For 0 ≤ k1, k2 < n − d, (BTB)k1,k2 =

(−1)k1+k2
( 2(d+1)
d+1+k1−k2

)

. We derive the inverse of this matrix using a formula given by Lemma 5
of Hoskins and Ponzo [HP72, Lemma 5], but omit the tedious calculations. Hence, we get

(BTB)−1
k1,k2

=

(

k1 + d+ 1

d+ 1

)(

k2 + d+ 1

d+ 1

) n−d−1
∑

k=max(k1,k2)

(

k+d−k1
d

)(

k+d−k2
d

)

(

k+d+1
d+1

)(k+2(d+1)
d+1

)

After this, a straightforward multiplication with B on the left, and BT on the right, gives the
formula for Pi,j as claimed. Again, we omit the calculations.

4 Tight Bounds for Torus Polynomials for Very Small Error

Usually, polynomial approximations are studied in the context of inverse polynomial error regime.
We believe it is fruitful to study them in other regimes as well, where the error is much smaller.
In this section, we consider the case when the error is miniscule – less than 1

2n+1 . The interesting
result is that for an error this small, the degree has to be n. This holds even for asymmetric
torus polynomials, for the AND and MAJn functions, making it the first lower bound known in the
asymmetric world. On the other hand, degree n− 1 suffices for any larger error.

Lower bounds for the asymmetric case do not automatically follow from the symmetric case, as
per Corollary 1, as opposed to real polynomials. In this section, we prove a surprising result that
lower bounds for the symmetric case imply lower bounds for the asymmetric case when the degree
is n − 1. The proof though is not as simple as real polynomials, it requires additional tricks to
make it work.

We start with the proof of upper and lower bound for symmetric torus polynomials, which we
then lift to bounds for asymmetric torus polynomials.

Theorem 4.1. Depending on the value of ε, the following cases hold.

• If ε < 1
2n+1 , then the following holds for f = MAJn as well as f = AND, and infinitely many

n. There does not exist a symmetric torus polynomial of degree at most n− 1 approximating
f within an error of ε.

• If ε ≥ 1
2n+1 , then the following holds for any symmetric Boolean function f : {0, 1}n → {0, 1}.

There exists a symmetric torus polynomial P of degree at most n− 1 approximating f within
an error of ε.

Proof. We prove the lower bound first. Consider a symmetric torus polynomial of degree n − 1
approximating f = MAJn. The proof proceeds along the lines of the proof of Theorem 1.3 till
Lemma 3.2. In this case, null(M) has dimension one, spanned by the vector γ = [

(

n
0

)

, . . . , (−1)n
(

n
n

)

].
For n = 2t for some natural number t,

(

n
i

)

is even for all 1 ≤ i ≤ n−1. Hence, 〈f, γ〉 =∑i>n
2

(

n
i

)

is odd. Therefore, the lower bound holds for ε < 1
2‖γ‖1 = 1

2n+1

A similar argument proves both the bounds for AND as well.
To prove the upper bound, take f as any symmetric function. Now, consider the following

expressions from the dual.

ATβ = 0

β ≥ 0
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We prove that it is enough to look at β that arise out of null(M), by converting γ ∈ null(M) to
β = [γ+ | γ−].
Lemma 4.2. If bT · [γ+ | γ−] ≥ 0 for all γ ∈ null(M), then bT · β ≥ 0 for any β satisfying
ATβ = 0, β ≥ 0.

Proof. Consider any β that satisfies ATβ = 0, β ≥ 0. Define the vector β′ such that

β′
i =

{

min(βi, βi+n+1) 0 ≤ i ≤ n

min(βi−n−1, βi) n+ 1 ≤ i ≤ 2n+ 1

Then, β′ =
∑n

i=0min(βi, βi+n+1)[ei | ei]. Note that each [ei | ei] is in the nullspace of AT . Hence,
β′′ = β − β′ is in the nullspace of AT as well. Also, bT · β′′ = bT · β − bT · β′ = bT · β −
ε (
∑n

i=0min(βi, βi+n+1)) ≤ bT · β. Therefore, bT · β′′ ≥ 0 implies bT · β ≥ 0.
Now, we construct a vector γ ∈ null(M) using β′′ as follows:

γi =











β′′
i β′′

i > 0

β′′
i+n+1 β′′

i+n+1 > 0

0 β′′
i = β′′

i+n+1 = 0

The construction for β′′ ensures that for any 0 ≤ i ≤ n, either β′′
i = 0 or β′′

i+n+1 = 0. Hence, the
construction for γ is well-defined. Therefore, β′′ = [γ+ | γ−].

Now, it is easy to check that γ ∈ null(M). This completes the proof. �

Denote by β = [γ+ | γ−], β
′
= [γ− | γ+]. If ε‖γ‖1 = 1

2 , then, we claim that there exists

(z0, . . . , zn) such that bT · β ≥ 0,bT · β′ ≥ 0. This will prove the upper bound.
There are two cases to consider.

• Let
∑n

i=0
f(i)
2 γi = z for some integer z. Choose z0 = −z, z1 = . . . = zn = 0. Then,

∑n
i=0

(

zi +
f(i)
2

)

γi = 0.

Hence, bT · [γ+ | γ−] = bT · [γ− | γ+] = ε‖γ‖1 = 1
2 .

• Let
∑n

i=0
f
2γ = z + 1

2 for some integer z. Choose z0 = −z, z1 = . . . = zn = 0. Then,
∑n

i=0

(

zi +
f(i)
2

)

γi =
1
2 .

Hence, bT · [γ+ | γ−] = 1
2 + ε‖γ‖1 = 1, bT · [γ− | γ+] = −1

2 + ε‖γ‖1 = 0.

Hence, bT · β ≥ 0 for any β ≥ 0 in the nullspace of AT . Therefore, the dual is infeasible. This
proves that the primal is feasible. Noting that ‖γ‖1 = 2n finishes the proof.

The proof of the upper bound above implies the existence of symmetric torus polynomials with
low error. We leave it as an open problem to construct these polynomials.

Problem 9. For ε = 1
2n+1 and any symmetric Boolean function f : {0, 1}n → {0, 1}, construct a

symmetric torus polynomial of degree n− 1 that approximates f within an error of ε.

Now, we prove a conversion from torus polynomials of degree n − 1 to symmetric torus poly-
nomials of degree n− 1, given that the torus polynomial approximates a symmetric function. This
conversion preserves the error bound as well. First, we describe the intuition behind this proof.
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The hurdle with applying symmetrization for torus polynomials is the average of integral parts
leading to a fractional value. This hurdle does not appear if all the integral parts over a level are
the same. Now, note that adding integers to the coefficients of a torus polynomial does not change
its behavior vis-à-vis approximating a Boolean function. Moreover, a change in the coefficient of a
certain degree monomial does not affect the value of the polynomial on points of Hamming weight
smaller than the degree. Hence, we can inductively change the coefficients for each layer to ensure
that the integral parts for that layer become the same.

This does not work for a general degree d, as the procedure may end up changing the coefficients
of a monomial with degree higher than d. Regardless, if we look at Boolean points with Hamming
weight n, there is only one such point. Hence, over all permutations, it adds up this single value,
and therefore the average remains an integer. Therefore, the procedure need not do anything for
degree n, it can stop after considering monomials of degree n− 1. This makes the procedure work
for degree n− 1. Below, we make this argument formal.

Claim 4.1. Let P ∈ R[X1, . . . , Xn] be a torus polynomial of degree at most n−1 that approximates
a symmetric function f : {0, 1}n → {0, 1} within an error of ε. Then, there exists a symmetric
torus polynomial Ps ∈ R[X1, . . . , Xn] of degree at most n − 1 that approximates f within an error
of ε.

Proof. Let P have the form P (X) =
∑

S⊆[n],|S|≤d αSX
S . The symmetric polynomial Ps will be of

the form Ps(X) =
∑

S⊆[n],|S|≤n−1 α|S|X
S . We determine the αjs using an inductive procedure.

Consider Boolean points of Hamming weight i, starting with i = 1. Fix a Boolean point x
of Hamming weight i and consider all other Boolean points y of Hamming weight i. Denote by
Sx = {i | xi = 1} the set of indices where x has 1. Similarly, denote by Sy the corresponding set
for y. Then, P (x) =

∑

S⊆Sx
αS and P (y) =

∑

S⊆Sy
αS . Let their integral and fractional parts be

Z(x), δ(x) and Z(y), δ(y). Set α′
Sy

= Z(x) − Z(y) + αSy . As this doesn’t change the fractional

part when evaluated at y, the new polynomial correctly approximates f(y). Do this for all Boolean
points y 6= x of Hamming weight i. Then start the same procedure for Hamming weight i+ 1.

Note that this procedure needs to be done only up to i ≤ n − 1 as there is only one point of
Hamming weight n. Hence, if α[n] = 0, then α′

[n] = 0 as well. This proves that deg(P ′) ≤ n− 1.

Now, take Ps =
∑

π∈Sn

P ′◦π
n! as the average of all the polynomials obtained by permuting the

variables of P ′. As the integral part of all points with the same Hamming weight is the same, it
adds up to a multiple of n! when summed over all permutations π ∈ Sn over n variables. Hence, the
fractional part of Ps only gets contribution from the fractional parts of P ′, which are all bounded by
ε in their absolute values. Therefore, the fractional part of Ps is also bounded by ε in its absolute
value.

This proves that Ps is a symmetric torus polynomial approximating f within an error of ε. The
degree bound has already been proved.

As a corollary, we obtain the following result.

Corollary 4. Depending on the value of ε, the following cases hold.

• If ε < 1
2n+1 , then the following holds for f = MAJn as well as f = AND, and infinitely many

n. There does not exist a torus polynomial of degree at most n − 1 approximating f within
an error of ε.

• If ε ≥ 1
2n+1 , then the following holds for any symmetric Boolean function f : {0, 1}n → {0, 1}.

There exists a symmetric torus polynomial P of degree at most n− 1 approximating f within
an error of ε.
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5 Power of Symmetric Torus Polynomials

While the paper has largely focused on proving lower bounds, in this section, we use the machinery
we have developed, along with some additional ideas, to prove an upper bound. To us, it is
surprising that our machinery facilitates proving of upper bounds.

In Theorem 4.1, we proved the existence of a degree n − 1 symmetric torus polynomial that
approximates MAJn within an error of 1

2n+1 . We prove that in certain cases of n, we can bring
the degree down to

⌊

n
2

⌋

without significantly increasing the error of approximation. An interesting
aspect of the proof is that we choose n, d based on divisibility criteria, so that the calculations
simplify substantially.

Theorem 1.4. Consider d = 2t for some natural number t ∈ N, and n = 2d + 1. Then, there
exists a symmetric torus polynomial of degree at most d that approximates MAJn within an error
of 1

2Ω(n) .

Proof. Take d = 2t for some natural number t, n = 2d + 1, and f = MAJn. Our goal is to find

a tuple Z = (z0, . . . , zn) ∈ Zn+1 such that
∥

∥

∥
P
(

Z + f
2

)∥

∥

∥

2
≤ 1

2Ω(n) . First, we prove that there

exists a tuple Z = (z0, . . . , zn) such that BT
(

Z + f
2

)

=
[

−1
2 , 0, . . . , 0,

1
2

]

. Then, we prove that
∥

∥

∥P
(

Z + f
2

)∥

∥

∥

2
≤ 1

2Ω(n) for this Z.

By a result of Kummer [Kum52], or the use of Lucas’ theorem [Luc78] (see also [Dic52, Fin47]),
(

d+1
i

)

is odd if and only if i ∈ {0, 1, d, d+ 1}.
We start by considering the first row of BT . Its entries are BT

0,i = (−1)i
(

d+1
i

)

for 0 ≤ i ≤ n. We
choose z0 = . . . = zd+1 = 0. For f = MAJn, f(0) = . . . = f(d) = 0 and f(d + 1) = 1. Hence, the

first entry of BT
(

Z + f
2

)

is (−1)d+1

2 = −1
2 .

Now, we apply an iterative procedure to obtain zd+2, . . . , zn−1. Assume that we have found
values for zd+1, . . . , zd+1+k for some 0 ≤ k ≤ n− d− 3. Consider the (k + 1)th row of BT , denoted
by BT

k+1. When this row is multiplied by f , among all the entries that coincide with 1, there

are exactly two odd numbers, namely
(

d+1
d

)

and
(

d+1
d+1

)

. Hence, when f
2 is multiplied by BT

k+1, it

evaluates to an integer. Also, the (k + d+ 2)th entry of BT
k+1 is −1. Moreover, all entries of BT

k+1

for k′ > k+d+2 are 0. Hence, the product of Z with BT
k+1 uses exactly one indeterminate, namely

zk+d+2, with −1 as the coefficient. Therefore, we can choose zk+d+2 such that
〈

Z + f
2 , B

T
k+1

〉

= 0.

Finally, consider the n−d−1th row of BT , denoted by BT
n−d−1. When this row is multiplied by f ,

among all the entries that coincide with 1, there are exactly three odd numbers, namely
(

d+1
1

)

,
(

d+1
d

)

and
(

d+1
d+1

)

. Hence, when f
2 is multiplied by BT

n−d−1, it evaluates to half plus an integer. Also, the

nth entry of BT
n−d−1 is −1. Hence, the product of Z with BT

k+1 uses exactly one indeterminate,

namely zn, with −1 as the coefficient. Therefore, we can choose zn such that
〈

Z + f
2 , B

T
k+1

〉

= 1
2 .
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Now, using the fact that P is symmetric, and idempotent, we get:

∥

∥

∥

∥

P

(

Z +
f

2

)∥

∥

∥

∥

2

2

=

〈

P

(

Z +
f

2

)

, P

(

Z +
f

2

)〉

=

〈(

Z +
f

2

)

, P

(

Z +
f

2

)〉

=

〈(

Z +
f

2

)

, B(BTB)−1BT

(

Z +
f

2

)〉

=

〈

BT

(

Z +
f

2

)

, (BTB)−1BT

(

Z +
f

2

)〉

By construction, we have BT
(

Z + f
2

)

=
[

−1
2 , 0, . . . , 0,

1
2

]

. Hence, the last quantity can be written
as

(

(BTB)−1
n−d−1,n−d−1−(BTB)−1

n−d−1,0

2

)

2
−

(

(BTB)−1
0,n−d−1−(BTB)−1

0,0

2

)

2
(14)

Now, we simplify this expression by determining some special properties of (BTB)−1. First, we
recall the entries of BTB:

BTB =













(2(d+1)
d+1

)

. . . (−1)k1
( 2(d+1)
d+1−k1

)

. . .
... . . .

... . . .

(−1)k2
( 2(d+1)
d+1+k2

)

. . . (−1)k2+k1
( 2(d+1)
d+1+k2−k1

)

... . . .
... . . .













(n−d)×(n−d)

Note that BTB is symmetric with respect to both diagonals, hence (BTB)−1 is symmetric with
respect to both diagonals as well. Hence, (BTB)−1

0,0 = (BTB)−1
n−d−1,n−d−1, and (BTB)−1

0,n−d−1 =

(BTB)−1
n−d−1,0. Therefore, we can simplify equation 14 to

(BTB)−1
n−d−1,n−d−1 − (BTB)−1

n−d−1,0

2

Recall the expression for (BTB)−1, as calculated in the proof of Theorem 3.10.

(BTB)−1
k1,k2

=

(

k1 + d+ 1

d+ 1

)(

k2 + d+ 1

d+ 1

) n−d−1
∑

k=max(k1,k2)

(

k+d−k1
d

)(

k+d−k2
d

)

(

k+d+1
d+1

)(k+2(d+1)
d+1

)

Hence, we get

(BTB)−1
n−d−1,n−d−1 =

(

n
d+1

)(

n
d+1

)

(

n
d+1

)(

n+d+1
d+1

)

(BTB)−1
n−d−1,0 =

(

n
d+1

)(

n−1
d

)

(

n
d+1

)(

n+d+1
d+1

)

Therefore, we get

(BTB)−1
n−d−1,n−d−1 − (BTB)−1

n−d−1,0 =

(

n−1
d+1

)

(

n+d+1
d+1

)
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For n = 2d+1, it is easy to see that
(n−1
d+1)

(n+d+1
d+1 )

= 1
2Ω(n) . Hence, we get that the error of approximation

is at most 1
2Ω(n) . This completes the proof.

The tuple (z0, . . . , zn) we have constructed leads to low error, but does it lead to the smallest
error? We do not have an answer to this, hence we leave this as another open problem.

Problem 10. Consider d = 2t for some natural number t ∈ N, and n = 2d + 1. Is there an-
other (z0, . . . , zn) that leads to lower error as compared to the tuple constructed in the proof of
Theorem 1.4?

Moreover, we have proved the upper bound for a special case of n, d, but we are unable to
extend this for more pairs of n, d. Hence, we leave this as an open problem.

Problem 11. Are there other n, d pairs for which we can find symmetric torus polynomials of
degree at most d that approximate MAJn within 1

2Ω(n) error?

Finally, it will be interesting to understand how much we can decrease the degree and continue
to find symmetric torus polynomials that approximate MAJn within an error of 1

2Ω(n) . Note that
we can apply the proof of Corollary 3 to get that the degree must be Ω(n). Hence, essentially we
are asking for d = cn, where c < 1

2 .

Problem 12. What is the smallest d, as a function of n, such that there exists a degree d symmetric
torus polynomial that approximates MAJn within an error of 1

2Ω(n) .

6 Extending the Method for Asymmetric Torus Polynomials

The holy grail we are working towards is proving that MAJ /∈ ACC, a problem at the frontier of our
knowledge about Boolean functions. To do this, we need to extend the techniques of the previous
sections to deal with asymmetric torus polynomials. While the overall methodology is similar, this
project turns out to be much harder, as expected. The details and the technical challenges are
very different, and require different approaches. Hence, we develop a framework with the aim of
tackling exactly these challenges.

The objective here is proving Conjecture 3 [BHLR19, Conjecture 5]. They conjecture that

there does not exist a torus polynomial of degree o

(

√

n
log(n)

)

that approximates MAJn within an

error of 1
20n . Similar to the symmetric case, we write down an exponentially larger linear program,

and use Farkas’ lemma. The reader will notice that the details differ. Like in the symmetric
case, we go through all the steps, including building up the machinery to construct the projection
matrix. Using this, we reduce Conjecture 2 to proving a lower bound on the ℓ2 norm of a family
of vectors, explicitly defined. The linear program, and the dual, in this section are similar to the
ones constructed in the literature [BT22].

6.1 The Dual in the Asymmetric Case

We begin with some notation. First, fix some ordering on the subsets of [n] = {1, . . . , n}. We
choose the reverse lexicographic ordering. For a set Si, define x(i) as the Boolean point with:

x
(i)
i′ =

{

1 i′ ∈ Si

0 i′ /∈ Si
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The proof of the following theorem follows along the broad lines of Theorem 1.3, however the
details, such as the matrices A,M,B, are different.

Theorem 6.1. Consider a Boolean function f : {0, 1}n → {0, 1}, an integer 1 ≤ d < n, and a real
number ε ∈ [0, 14). Define B ∈ M2n×

∑n
w=d+1 (

n
w)
(R) as the following matrix. Its rows are labelled

with all subsets S1 of {1, . . . , n}. Its columns are labelled with all subsets S2 of {1, . . . , n} with size
at least d+ 1. The entries of B are:

BS1,S2 =

{

(−1)|S1|+|S2| S1 ⊆ S2

0 S1 6⊆ S2

Then, the following statements are equivalent:

1. Any torus polynomial approximating f within an error of ε must have degree more than d.

2. For any function Z : {0, 1}n → Z, there exists a γ in the span of columns of B such that

(

n
∑

i=1

(

Z(x(i)) +
f(x(i))

2

)

γi

)

+ ε‖γ‖1 < 0

Proof. Consider a torus polynomial P of degree d that approximates a Boolean function f within
an error of ε. Let the coefficient of the monomial

∏

j∈Si
Xj corresponding to the set Si be αi. For

the Boolean vector x(i), the polynomial evaluates to P (x(i)) =
∑

Sj⊆Si
αj .

Definition 2 implies that there exists functions Z : {0, 1}n → Z and δ : {0, 1}n → [−ε, ε] such

that P (x) = f(x)
2 + Z(x) + δ(x).

As P is a torus polynomial that approximates f within an error of ε, the following inequalities
must hold for all x ∈ {0, 1}n:

Z(x) +
f(x)

2
− ε ≤ P (x) ≤ Z(x) +

f(x)

2
+ ε

We collect these as a system of linear inequalities as follows.

Aα ≤ b

Here, A is a matrix of dimension 2 · 2n ×∑d
w=0

(

n
w

)

with Ai,j = −Ai+2n,j =

{

1 Sj ⊆ Si

0 otherwise.
Also,

b is a vector of size 2 · 2n with bi,j = Z(x(i)) + f(x(i))
2 + ε and bi+2n,j = −Z(x(i))− f(x(i))

2 + ε. Here,

1 ≤ i ≤ 2n and 1 ≤ j ≤∑d
w=0

(

n
w

)

.
We note that each function Z defines a linear program. Hence, proving that the linear program

is infeasible for each Z proves the desired lower bound.
By Farkas’ lemma [Far02], this system is infeasible if and only if the following system is feasible:

ATβ = 0

bT · β < 0

β ≥ 0

Showing that this linear program is feasible for any Z : {0, 1}n → {0, 1} is equivalent to proving
the lower bound for the given f , d and ε.
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The first step to understand the latter linear program is to determine non-negative vectors in the
nullspace of AT . We construct a basis for the nullspace of AT . It is easy to see that AT = [M | −M ]

for a matrix M . The entries of M are

{

Mj,i = 1 Sj ⊆ Si

0 otherwise.
Hence, AT · [ei | ei] = 0 for each

1 ≤ i ≤ 2n.
The remaining vectors in the basis can be obtained from null(M) using the following procedure.

Let γ be a vector in null(M). Define γ+ = max(γ, 0) and γ− = max(−γ, 0), where max is taken
coordinate wise. Then, β = [γ+ | γ−] is a non-negative vector in the nullspace of AT . Hence,
choose a basis B for null(M) and construct β from the elements of this basis. These vectors, along
with [ei | ei], form a basis for the nullspace of AT (we leave it to the reader to verify this).

Now, note that bT · [ei, ei] = 2ε, while we need bT · β < 0. Also, for any β, define β′ such that
β′
i = βi−min(βi, βi+n+1), β

′
i+n+1 = βi−min(βi, βi+n+1) for all 1 ≤ i ≤ 2n. Then, bT ·β < 0 implies

bT · β′ < 0. Note that these are exactly the vectors that can be obtained as β = [γ+ | γ−] from
γ ∈ null(M). Therefore, the focus is on null(M).

We construct a basis for null(M). This can be achieved using an extension trick. Consider the

matrix D of dimension 2n× 2n where Dj,i =

{

1 Sj ⊆ Si

0 Sj 6⊆ Si

. This extends the matrix M to a square

matrix.

Lemma 6.2. A basis B for null(M) consists of the last
∑n

w=d+1

(

n
w

)

columns of D−1.

Proof. M consists of the first
∑d

w=0

(

n
w

)

rows of D, while B consists of the last
∑n

w=d+1

(

n
w

)

columns
of D−1. Hence, each row of M multiplied by any column of B equals 0. Therefore, B is a basis for
null(M). �

We describe D−1 explicitly.

Lemma 6.3. D−1
i,j =

{

(−1)|Si|+|Sj | Sj ⊆ Si

0 otherwise.

Proof. Towards a proof, consider (DD−1)k,i =
∑2n

j=1 1Sk⊆Sj
(−1)|Si|+|Sj |1Sj⊆Si

. If k = i, the only

non-zero entry on the RHS is when Sj = Si = Sk, which is 1, therefore (DD−1)i,i = 1. When k > i,
there is no subset Sj such that Sj ⊆ Si and Sk ⊆ Sj , therefore (DD−1)k,i = 0.

For k < i, consider two cases.

• Let Sk ⊆ Si with |Si| = |Sk|+ d where d ≥ 1. Then, for any 0 ≤ d′ ≤ d, there are
(

d
d′

)

many

sets such that |Sj | = |Sk|+ d′ and Sk ⊆ Sj ⊆ Si. Hence, DD−1
k,i =

∑d
d′=0(−1)d

′
(

d
d′

)

= 0.

• Let Sk 6⊆ Si. Consider any set Sj such that Sk ⊆ Sj . Then, there is s ∈ Sj such that s /∈ Si.
Hence, Sj 6⊆ Si. Similarly, if Sj ⊆ Si, then Sk 6⊆ Sj . Therefore, DD−1

k,i = 0.

This completes the proof. �

The remaining step in the proof is to find a γ such that for β = [γ+ | γ−], bT · β < 0. The

expansion of bT ·β can be seen to be bT ·β =
(

∑n
i=1

(

Z(x(i)) + f(x(i))
2

)

γi

)

+ε′‖γ‖1. Hence, finding
a β such that ATβ = 0, β ≥ 0,bT · β < 0 is precisely equivalent to the statement of the theorem.

This completes the proof.
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6.2 Torus Polynomial Degree Lower Bounds for the AND Function

Here, we prove Theorem 1.5. We recall the statement here.

Theorem 1.5. Any torus polynomial approximating the AND function within an error of

O
(

1
2log

c(n)

)

must have degree Ω(logc(n)).

Proof. First, we prove the lower bound for the OR function. Then, we use De Morgan’s law to
prove that the same lower bound holds for the AND function.

To see the lower bound for OR, apply Theorem 6.1 with f = OR, d = logc(n) − 3, ε = 1
2log

c(n) .

Choose γ as the first column of B. Then, 〈f, γ〉 = −1, which is odd. Moreover, ‖γ‖1 = 2d+1 =
2log

c(n)−2. Hence, the lower bound holds for ε < 1
2‖γ‖1 = 1

2log
c(n)−1

Now, consider a torus polynomial P (x1, . . . , xn) of degree d, approximating AND within an
error of ε. Then, 1

2 + P (1− x1, . . . , 1− xn) is a polynomial of degree d, approximating OR within
an error of ε. Hence, we get the desired lower bound.

6.3 Limits to using Minkowski’s Theorem

In the asymmetric case, the matrix B has dimensions 2n ×∑n
w=d+1

(

n
w

)

. If we apply Minkowski’s
theorem to L(B), we get that it contains a vector γ with its ℓ2 norm bounded by

‖γ‖1 ≤

√

√

√

√

n
∑

w=d+1

(

n

w

)

det(BTB)

1

2
∑n

w=d+1 (
n
w)

For d ≤ n
2 , the first term in the product is already quite large. Hence, this will imply a really large

upper bound on the smallest ℓ2 norm, not small enough to prove Conjecture 2. Regardless, we
calculate det(BTB), as it has a closed form solution and is an interesting combinatorial problem
in its own right. The quantity det(BTB) denotes the volume of the fundamental parallelepiped
associated with the lattice.

The matrix BTB has the following entries. Its rows and columns are indexed by sets of size at
least d + 1. The entry indexed by S1, S2 is (BTB)S1,S2 = (−1)|S1|+|S2|2|S1∩S2|. We did not find it
easy to calculate the determinant using this form. We notice that B has a recursive structure, which
considerably simplifies the calculation of the determinant. Following is the recursive structure.

Lemma 6.4. Denote by B(n, d) the basis of the nullspace for n, d. Then, B(n, d) has the following
recursive structure.

B(n, d) =

[

B(n− 1, d− 1) 0
−B(n− 1, d− 1) B(n− 1, d)

]

Proof. Consider an entry in B(n, d), with its row and column indexed by sets S1, S2 respectively.
We consider four cases, based on which set contains 1.

• 1 ∈ S1, 1 ∈ S2. In this case, S1 ⊆ S2 if and only if S1 \ {1} ⊆ S2 \ {1}. Note that
this reduces the size of both the row set and the column set by 1. Hence, B(n, d)S1,S2 =
B(n− 1, d− 1)S1\{1},S2\{1}. Therefore, the top-left block of B(n, d) is exactly B(n− 1, d− 1).

• 1 ∈ S1, 1 /∈ S2. In this case, S1 ⊆ S2 never holds. Hence, the top-right block of B(n, d) is 0.

• 1 /∈ S1, 1 ∈ S2. In this case, S1 ⊆ S2 if and only if S1 ⊆ S2 \ {1}. Note that this reduces the
size of the column set by 1. Moreover, as 1 /∈ S1, we can consider S1 ⊆ {2, . . . , n}. Hence,
B(n, d)S1,S2 = −B(n − 1, d − 1)S1,S2\{1}. Therefore, the top-left block of B(n, d) is exactly
−B(n− 1, d− 1).
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• 1 /∈ S1, 1 /∈ S2. In this case, we can consider both S1, S2 ⊆ {2, . . . , n}. Hence, B(n, d)S1,S2 =
B(n− 1, d)S1\{1},S2\{1}. Therefore, the top-left block of B(n, d) is exactly B(n− 1, d).

This completes the proof.

With this recursive structure in place, it becomes much easier to calculate det(BTB).

Theorem 6.5. det(BTB) = 2n(
n−1
d ).

Proof. We use the following notation to shorten the expressions.

B = B(n, d) Bd = B(n− 1, d) Bd−1 = B(n− 1, d− 1)

Using the recursive structure of B, we get,

BTB =

[

2BT
d−1Bd−1 −BT

d−1Bd

−BT
d Bd−1 BT

d Bd

]

Using the Schur formula [Sch18] for the determinant of block matrices, we get

det(BTB) = det(2BT
d−1Bd−1) ∗ det(BT

d Bd −BT
d Bd−1(2B

T
d−1Bd−1)

−1BT
d−1Bd)

Now, note that Bd−1(B
T
d−1Bd−1)

−1BT
d−1 is the matrix for projecting on the column-space of Bd−1.

Moreover, each column of Bd is also a column of Bd−1. Hence, a column of Bd remains unchanged
when projected on the column-space of Bd−1. Therefore, Bd−1(B

T
d−1Bd−1)

−1BT
d−1Bd = Bd.

With this observation, we can simplify the formula as

det(BTB) = det(2BT
d−1Bd−1) det

(

BT
d Bd

2

)

Now, the number of columns in BT
d−1Bd−1 is

∑n−1
w=d

(

n−1
w

)

. Hence,

det(2BT
d−1Bd−1) = 2

∑n−1
w=d (

n−1
w ) det(BT

d−1Bd−1)

Similarly, the number of columns in BT
d Bd is

∑n−1
w=d+1

(

n−1
w

)

. Hence,

det

(

BT
d Bd

2

)

= 2−
∑n−1

w=d+1 (
n−1
w ) det(BT

d Bd)

Therefore,

det(BTB) = 2(
n−1
d ) det(BT

d−1Bd−1) det(B
T
d Bd)

Define LD(n, d) = log2(det(B
TB)) as the log of the determinant of BTB. Then, the equation

above leads to the following recursion:

LD(n, d) = LD(n− 1, d) + LD(n− 1, d− 1) +

(

n− 1

d

)

There are two base cases of this recursion.

• B(n,−1) = I. Hence, BTB(n,−1) = I. Therefore, LD(n,−1) = log2(1) = 0.

• B(n, n−1) is a single column, of length 2n, with 1 and−1 entries. Hence, BTB(n, n−1) = [2n].
Therefore, LD(n, n− 1) = n.
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With these base cases, it is easy to verify that LD(n, d) = n
(

n−1
d

)

satisfies the recursion. Hence,

det(BTB) = 2n(
n−1
d ).

Now, if we apply Corollary 2, we get that there exists a vector γ with its ℓ1 norm bounded by

‖γ‖1 ≤
√
2n

√

√

√

√

n
∑

w=d+1

(

n

w

)

2

n(n−1
d )

2(
∑n

w=d+1 (
n
w))

Note that there are basis columns with ℓ1 norm 2d+1, which is better than the previous bound for
most values of d. Hence, the error-degree trade-off we get here is not enough to resolve Conjecture 1.

6.4 The Projection Matrix in the Asymmetric Case

Inspired by the symmetric case, we study the projections here as well. We first establish the

importance of such a study. Consider the projection of Z + f
2 , i.e. P

(

Z + f
2

)

. Then, it is easy to

observe the following:

Observation 2.

min
Z∈Z2n

∥

∥

∥

∥

P

(

Z +
f

2

)∥

∥

∥

∥

2

≥ min
Z∈Z2n

max
γ∈null(M)

〈

Z + f
2 , γ
〉

‖γ‖1
≥ min

Z∈Z2n

∥

∥

∥
P
(

Z + f
2

)∥

∥

∥

2
n
2

Hence, for any Z, the ℓ2 norm of the projection has to be large in order for us to prove a lower
bound against asymmetric torus polynomials. Moreover, if it is at least an inverse polynomial frac-
tion of 2

n
2 , then it is sufficient to prove an inverse polynomial lower bound for the error. Therefore,

it is beneficial to study the projection en route to proving lower bounds against asymmetric torus
polynomials.

Next, we calculate an explicit formula for the projection matrix in the asymmetric case.

Theorem 6.6. Denote the symmetric difference of two sets S1, S2 by S1∆S2, i.e. S1∆S2 = (S1 ∩
S2)∪ (S2∩S1). Given an n and d, the projection matrix P ∈ M2n×2n(R) has the following entries:

PS1,S2 =







∑n
w=d+1 (

n
w)

2n S1 = S2
∑k−1

i=0 (−1)i+1(k−1
i )(n−k

d−i)
2n |S1∆S2| = k

Proof. We denote by B(n, d) the basis of the nullspace, and by P (n, d) the projection matrix, for
n, d. Then, we use the recursive structure of B(n, d), as described in Lemma 6.4.

B(n, d) =

[

B(n− 1, d− 1) 0
−B(n− 1, d− 1) B(n− 1, d)

]

We use the following notation to shorten the expressions.

B = B(n, d) Bd = B(n− 1, d) Bd−1 = B(n− 1, d− 1)

A = BTB Ad = BT
d Bd Ad−1 = BT

d−1Bd−1

P = P (n, d) = BA−1BT Pd = BdA
−1
d BT

d Pd−1 = Bd−1A
−1
d−1B

T
d−1
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Hence,

BTB =

[

2BT
d−1Bd−1 −BT

d−1Bd

−BT
d Bd−1 BT

d Bd

]

Next, we calculate A−1 using a formula for the inverse of block matrices, as described by Lu and
Shiou [LS02].

A−1 =





A−1
d−1/2

(

I +BT
d−1PdBd−1A

−1
d−1

)

A−1
d−1B

T
d−1BdA

−1
d

A−1
d BT

d Bd−1A
−1
d−1 2A−1

d





Multiplying by B on the left gives:

BA−1 =





Bd−1A
−1
d−1/2

(

I +BT
d−1PdBd−1A

−1
d−1

)

Pd−1BdA
−1
d

PdBd−1A
−1
d−1 −Bd−1A

−1
d−1/2

(

I +BT
d−1PdBd−1A

−1
d−1

)

2BdA
−1
d − Pd−1BdA

−1
d





Now, we make an observation that simplifies our calculations considerably. We note that each
column of Bd is also a column of Bd−1. Hence, a column of Bd remains unchanged when projected
on the column space of Bd−1. Therefore, Pd−1Bd is equal to Bd. This yields 2BdA

−1
d −Pd−1BdA

−1
d =

BdA
−1
d . Now, by multiplying BT on the right we get:

P =





(Pd−1 + Pd−1PdPd−1)/2 Pd − (Pd−1 + Pd−1PdPd−1)/2

PdPd−1 − (Pd−1 + Pd−1PdPd−1)/2 Pd − PdPd−1 + (Pd−1 + Pd−1PdPd−1)/2





Again, Pd−1Bd = Bd implies Pd−1Pd = Pd. Taking transpose on both sides, and noting that both
Pd, Pd−1 are symmetric matrices, we get PdPd−1 = Pd. Therefore, the final expression we get is

P (n, d) =





(P (n− 1, d) + P (n− 1, d− 1))/2 (P (n− 1, d)− P (n− 1, d− 1))/2

(P (n− 1, d)− P (n− 1, d− 1))/2 (P (n− 1, d) + P (n− 1, d− 1))/2





The base cases for this recursion occur when n = d, d = −1, or n = 1, d = 0. For these, we have
the following basis:

B(n, n) = 00×2n

B(n,−1) = I2n×2n

B(1, 0) =

[

1
−1

]

Hence, the base cases are:

P (n, n) = 02n×2n

P (n,−1) = I2n×2n

P (1, 0) =

[

1
2 −1

2
−1

2
1
2

]

It is easy to observe that the base cases satisfy the claimed formula. Now, it is an easy exercise of
induction to obtain the claimed formula for all n, d.

The main conjecture of this paper is now given below.
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Conjecture 13. Consider f = MAJn and d = o

(

√

n
log(n)

)

. Then,

min
Z∈Zn

∥

∥

∥

∥

P (n, d)

(

Z +
f

2

)∥

∥

∥

∥

≥ 2
n
2

nO(1)

A positive resolution of this conjecture will lead to a positive resolution of Conjecture 3, thereby
proving Conjecture 1.

7 Results for Real Polynomials

This is a “harvest section”, a phrase we borrow from Babai and Frankl. Coincidentally, their
section is focused on inclusion matrices, which are also our focus (see of [BF92, Section 7.3]). We
prove lower bound results against real polynomials, using the machinery we have developed, almost
effortlessly.

7.1 Lower Bounds via the Projection Theory

Here, we showcase the power of the framework we have developed in the previous section. We
consider a large family of asymmetric functions, and prove degree lower bounds on real polynomials
approximating them within small error. Formally, we prove the following.

Theorem 1.6. Fix a constant 0 < c ≤ 1. Consider an odd n. Take f : {0, 1}n → {0, 1} to be
any function that evaluates to 0 on any Boolean point x ∈ {0, 1}n of even Hamming weight. If f
evaluates to 1 on a c fraction of the inputs with odd Hamming weight, then the following holds.

Any real polynomial approximating f within an error of ε <
√
c
2 must have degree at least n+1

2 .

Proof. Again, we follow the proof of Theorem 6.1 using Z = 0. Hence, we get that ε ≥ ‖P (n,d)f‖2
2
n
2

.

First, we apply the formula obtained in Theorem 6.6 to calculate the projection matrix when
n is odd and d = n−1

2 . We recall the formula here.

PS1,S2 =







∑n
w=d+1 (

n
w)

2n S1 = S2
∑k−1

i=0 (−1)i+1(k−1
i )(n−k

d−i)
2n |S1∆S2| = k

The summation in the first case if
∑n

w=n+1
2

(

n
w

)

= 2n−1, as it sums up exactly the top half of the

binomial coefficients. Hence, PS,S = 1
2 .

Now, consider the second case when k = |S1∆S2| is non-zero and even. Here, we prove that
PS1,S2 = 0 in this case. We have chosen n and d carefully to make further calculations almost
trivial.

Lemma 7.1. For any d ≥ 0, n = 2d+ 1, and S1 6= S2 with |S1∆S2| being even, PS1,S2 = 0.

Proof.

PS1,S2 =
k−1
∑

i=0

(−1)i+1

(

k − 1

i

)(

2d+ 1− k

d− i

)

Using the binomial identity
(

n
r

)

=
(

n
n−r

)

, we get,

PS1,S2 =
k−1
∑

i=0

(−1)i+1

(

k − 1

k − 1− i

)(

2d+ 1− k

d+ 1− k + i

)
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Now, by substituting i′ = k − 1− i, we get,

PS1,S2 =

k−1
∑

i′=0

(−1)k−1−i′+1

(

k − 1

i′

)(

2d+ 1− k

d− i′

)

As k is even,

PS1,S2 =
k−1
∑

i′=0

(−1)i
′

(

k − 1

i′

)(

2d+ 1− k

d− i′

)

= −PS1,S2

Hence, PS1,S2 = 0. �

Now, consider any set S such that f(xS) = 1, where xSi =

{

1 i ∈ S

0 i /∈ S
. Then,

(Pf)S = PS,Sf(S) +
∑

S1:|S1|≡0 mod 2

PS,S1f(S1) +
∑

S2:|S2|≡1 mod 2

PS,S2f(S2)

Now, f(S1) = 0 for any set S1 with even size. Also, for any set S2 with odd size, we have |S∆S2|
is even. Hence, PS,S2 = 0. Therefore, (Pf)S = 1

2 .
Now, there are 2n−1 sets S with odd size. Of these, a c fraction of them have (Pf)S = 1

2 .

Hence, ‖Pf‖2 ≥
√

c2n−1 1
2 = 2

n
2

√
c
2 . Therefore, the dual, as defined in Theorem 6.1, is feasible for

any ε < ‖Pf‖2
2
n
2

=
√
c
2 . The proof of the lower bound follows.

Note how easily we have obtained a lower bound for asymmetric real polynomials. Hence, this
suggests that if one is looking to prove lower bounds against real polynomials, an early step would
be to simply check if the projection of the function has large ℓ2 norm. An artful choice of n, d, like
in the proof of the statement above, can also simplify the task significantly.

To compare with existing lower bounds, the method of dual polynomials implies a degree lower
bound of n if the error is less than c

2 . Hence, our result gives a quadratic improvement over the
error by reducing the degree lower bound to n+1

2 .

7.2 Maximal Bound for the Majority Function

We prove that for any large n, any real polynomial that approximates MAJn within an error of

O
(

1√
n

)

must have degree n.

Theorem 7.2. There exists a c ∈ R such that the following holds for large n. Any real polynomial
approximating the majority function within an error of 1

c
√
n
must have degree n.

Proof. The theory developed for torus polynomials applies to real polynomials as well. The only
change is that we set Z = 0. This makes it much easier, and we exhibit this power by proving new
lower bounds for real polynomials.

Consider the matrix A from the proof of Theorem 1.3. The nullspace of AT contains the vector
β where βi =

(

n
i

)

, βi+n+1 = 0 for even 0 ≤ i ≤ n and βi = 0, βi+n+1 =
(

n
i

)

for odd 0 ≤ i ≤ n. Then
bT · β =

∑n
i=0(−1)if(i)

(

n
i

)

+ ε
(
∑n

i=0

(

n
i

))

.
Note that f(i) = 1 for i > n

2 and f(i) = 0 otherwise. Therefore, bT · β =
∑

i>n
2
(−1)i

(

n
i

)

+

ε
(
∑n

i=0

(

n
i

))

.

We use the identity
∑

i>n/2(−1)i
(

n
i

)

= (−1)⌈
n+1
2

⌉( n−1
⌈n−1

2
⌉
)

to get bT ·β = (−1)⌈
n+1
2

⌉( n−1
⌈n−1

2
⌉
)

+ ε2n.
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Now, We consider the following two cases. If ⌈n+1
2 ⌉ is odd, we use Stirling’s approximation to

get that −
( n−1
⌈n−1

2
⌉
)

< − 2n

c
√
n
for some c ∈ R for large n. Hence, bT ·β < 0. If ⌈n+1

2 ⌉ is even, we consider
the vector β′ such that β′

i = βi+n+1, β
′
i+n+1 = βi for 0 ≤ i ≤ n. Then, bT · β′ = −

( n−1
⌈n−1

2
⌉
)

+ ε2n < 0

This proves that the dual is feasible, hence proving the lower bound for symmetric real polyno-
mials. Note that one can always assume that a real polynomial approximating MAJn is symmetric.
If P is not symmetric, simply consider Ps =

∑

π∈Sn

P◦π
n! . Then, Ps is symmetric and the degree of

Ps is at most the degree of P . Hence, the degree lower bound holds for real polynomials in general.
Note that a degree upper bound of n is well-known and trivial for any function f . This completes

the proof.

8 Future Directions

We have already described several problem statements arising out of our work. Here, we discuss
some future directions to explore, that may be of independent interest.
Torus Polynomial Lower Bounds for MODm Functions. We have proved lower bounds for
torus polynomials approximating the AND function, which is tight within polynomial factors. A

torus polynomial for the MOD2 function is simply
∑n

i=1 xi

2 , which approximates it within an error
of 0. Note that this is a symmetric polynomial of degree 1. We believe that this is a special case,
that any torus polynomial approximating the MODm function, for m 6= 2, within an error of, say
O
(

1
n

)

, must have degree Ω(log(n)).

Conjecture 14. Any torus polynomial approximating the MODm function, for m 6= 2, within an
error of O

(

1
n

)

must have degree Ω(log(n)).

This will complete the theory by proving lower bounds for all constituent functions of ACC
circuits.
More Real Polynomial Lower Bounds.

Problem 15. Use the method we have described to prove lower bounds for a larger family of
functions against real polynomials approximating them.

Relating Dual Polynomials and Our Method. The method of dual polynomials has seen
considerable success in the literature of real polynomials. Our starting point is the same, but we
use the geometric interpretation to prove feasibility of the dual. Both the methods achieve the
same objective, but with different viewpoints. Is there a way to relate the two?

Problem 16. Re-interpret our methods, for example, the shortest vector based lower bound, as a
dual polynomial.

The Method of Dual Block Composition. One of the ways of proving lower bounds against
real polynomial approximations for block composed function is via the method of dual block com-
position. See [She13, Lee09, SZ09] (also see [BT22] for an in-depth discussion). Is there such a
method for torus polynomials?

Problem 17. Find an analogue of the method of dual block composition for proving lower bounds
against torus polynomials.

The Bipartite Perfect Matching Function. In a beautiful paper, Benaimini and Nisan [BN21]
studied real polynomials for the bipartite matching problem function. The input consists of n2

variables xi,j , where xi,j is 1 if there is an edge between i and j, and 0 otherwise. The function
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outputs 1 if the graph contains a perfect matching, otherwise it outputs 0. They proved that the
unique real polynomial computing the bipartite perfect matching function has degree n2.

Now, this function is contained in P. We believe that this is another explicit function that
does not belong to ACC. Hence, we conjecture that it does not permit low degree torus polynomial
approximations. Note that this is an asymmetric function. Therefore, we need to study asymmetric
torus polynomials.

Conjecture 18. Any torus polynomial approximating the bipartite matching function within an
error of O

(

1
n

)

must have degree logω(1)(n).

Proving this would separate P from ACC.
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des fonctions trigonométriques suivant un module premier. Bulletin de la Société
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