
Almost Optimal Time Lower Bound for Approximating
Parameterized Clique, CSP, and More, under ETH

Venkatesan Guruswami* Bingkai Lin† Xuandi Ren‡ Yican Sun§

Kewen Wu¶

Abstract

The Parameterized Inapproximability Hypothesis (PIH), which is an analog of the PCP
theorem in parameterized complexity, asserts that, there is a constant ε > 0 such that for any
computable function f : N → N, no f (k) · nO(1)-time algorithm can, on input a k-variable CSP
instance with domain size n, find an assignment satisfying 1 − ε fraction of the constraints.
A recent work by Guruswami, Lin, Ren, Sun, and Wu (STOC’24) established PIH under the
Exponential Time Hypothesis (ETH).

In this work, we improve the quantitative aspects of PIH and prove (under ETH) that ap-
proximating sparse parameterized CSPs within a constant factor requires nk1−o(1)

time. This
immediately implies that, assuming ETH, finding a (k/2)-clique in an n-vertex graph with a
k-clique requires nk1−o(1)

time. We also prove almost optimal time lower bounds for approxi-
mating k-ExactCover and Max k-Coverage.

Our proof follows the blueprint of the previous work to identify a "vector-structured" ETH-
hard CSP whose satisfiability can be checked via an appropriate form of "parallel" PCP. Using
further ideas in the reduction, we guarantee additional structures for constraints in the CSP. We
then leverage this to design a parallel PCP of almost linear size based on Reed-Muller codes
and derandomized low degree testing.

*Simons Institute for the Theory of Computing, and Departments of EECS and Mathematics, UC Berkeley. Email:
venkatg@berkeley.edu. Research supported in part by NSF grants CCF-2228287 and CCF-2211972 and a Simons In-
vestigator award.

†State Key Laboratory for Novel Software Technology, Nanjing University. Email: lin@nju.edu.cn
‡Department of EECS, UC Berkeley. Email: xuandi_ren@berkeley.edu. Supported in part by NSF grant CCF-

2228287.
§School of Computer Science, Peking University. Email: sycpku@pku.edu.cn
¶Department of EECS, UC Berkeley. Email: shlw_kevin@hotmail.com. Supported by a Sloan Research Fellowship

and NSF CAREER Award CCF-2145474.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 75 (2024)

Contents

1 Introduction 3

2 Technical Overview 6
2.1 More Refined Vector Structure . 7
2.2 Applying The Parallel Reed-Muller Code . 7
2.3 Future Works . 8

3 Preliminaries 9
3.1 Constraint Satisfaction Problem . 9
3.2 Parameterized Complexity Theory . 10
3.3 Parallel Reed-Muller Code . 11
3.4 Pair Language and Probabilistic Checkable Proof of Proximity 12

4 Proof of the Main Theorems 14
4.1 Reduction from 4-REGULAR 3-COLORING to SVecCSP 14
4.2 Reduction from SVecCSPs to ε-GAP k-VARIABLE CSPS 16

4.2.1 Verification of Parallel Constraints . 17
4.2.2 Verification of Linear Constraints . 18
4.2.3 The Whole Construction and Analysis . 20

4.3 Putting Everything Together . 22

5 From 4-REGULAR 3-COLORING to SVecCSP 24
5.1 From 4-REGULAR 3-COLORING to VecCSP . 24
5.2 From VecCSP to SVecCSP . 27

6 PCPP for Multi-Test Problem 28
6.1 Single-Coordinate Checking Circuit . 30
6.2 Combining Codeword Testing . 31

A Derandomized Parallel Low Degree Test 36
A.1 Extra Notation . 37
A.2 Codeword Testing . 39
A.3 One Round of Correction . 43
A.4 Derandomized Characterizations of Parallel Low Degree Polynomials 48

2

1 Introduction

One of the goals of complexity theory is to pinpoint the asymptotically optimal time (or other
resource) needed to solve basic computational problems or classes of problems. The theory of NP-
completeness attacks this at a coarse level, but modern complexity theory also has tools to give
more fine-grained information on computational complexity.

A common setting for fine-grained understanding of computational hardness is considering
parameterized problems. Under this setting, each instance is attached with an additional parameter k
indicating some specific quantities (e.g., the optimum or the treewidth). We treat k as some super
constant that is much smaller than the instance size n and consider the existence or absence of
algorithms with running time depends both on n and k (e.g., with running time 22k

nO(1), or n
√

k).
The hardness of parameterized problems is studied under the realm of parameterized complexity
theory [FG06]. It is a central challenge to figure out the minimal time (depending on both n and k)
to solve prototypical parameterized problems.

A representative example is the k-CLIQUE problem parameterized by the optimum k, which
is one of the most fundamental problems in parameterized complexity theory: given an n-vertex
graph as input, determine if it has a clique of size k. The naive brute force algorithm takes roughly
nk time. Using fast matrix multiplication, there are better algorithms that take nωk/3 time, where
ω is the matrix multiplication exponent. On the hardness side, it is known that no algorithm
can decide k-CLIQUE within running time f (k)no(k), for any computable function f (k), under the
widely-considered Exponential Time Hypothesis (ETH) [CHKX06], which states that algorithms
cannot solve 3SAT formulas on n variables within running time 2o(n). The optimal running time
for k-clique is therefore pinpointed to be nΩ(k), assuming ETH.

Can one design a faster algorithm if one settles for approximating k-CLIQUE? For example, what
if we only want to find a clique of size k/2 in a graph that is promised to have a k-clique.1

It was shown that such an approximation to k-CLIQUE still requires the tightest f (k)nΩ(k)

time [CCK+17], under the very strong assumption Gap-ETH. The Gap-ETH postulates an expo-
nential time lower bound of approximating MAX 3-SAT within a constant ratio. The constant gap
baked into the assumption is then transformed into a constant gap for approximating k-CLIQUE.
Though Gap-ETH has been proved under particular strengthening of ETH (smooth version of
ETH) [App17], a theoretically more satisfactory result is to obtain the hardness of approximat-
ing k-CLIQUE under the original ETH. Under ETH, weaker time lower bounds were known for

constant-factor approximations of k-CLIQUE: f (k)nΩ
(

6
√

log k
)

in [Lin21], which was later improved
to f (k)nΩ(log k) in [LRSW22, CFLL23] and f (k)nkΩ(1/ log log k)

in [LRSW23].2 However, all these ap-
proaches cannot obtain lower bounds better than f (k)nΩ(

√
k) due to the coding theoretic barri-

ers [KT00].
However, this paper significantly improves this lower bound, assuming only the original ETH.

Theorem 1.1. Assume ETH. For any constant ε > 0 and any computable function f (k), any algorithm
that approximates k-CLIQUE within an ε ratio must take runtime f (k)nk1−o(1)

.

To prove the theorem above, we follow a similar idea of proving the NP-hardness of approx-
imating cliques, which relies on the NP-hardness of constant approximating CSP (a.k.a., the PCP

1This can also be formulated as a “gap" decision problem of distinguishing graphs with a k-clique from those which
do not even have a (k/2)-clique.

2There is another line of work on improving the inapproximability factor of k-CLIQUE under the minimal hypothesis
W[1] ̸=FPT: constant factor in [Lin21], and the improved ko(1) in [KK22, CFLL23].

3

theorem) and a subsequent FGLSS reduction [FGL+96]. In the parameterized setting, we can ap-
ply an analogous reduction.

• We first establish a near-optimal lower bound for approximating (sparse) “parameterized
CSPs” with k variables, O(k) constraints, an alphabet of size n, and some constant inapprox-
imability factor.

• Then Theorem 1.1 follows immediately by the FGLSS reduction [FGL+96] and an expander-
based gap-amplification procedure [AFWZ95, LRSW22].

The first step is equivalent to establishing a quantitative version of the Parameterized Inap-
proximability Hypothesis (PIH) [LRSZ20], which plays the role of the PCP theorem in the pa-
rameterized complexity theory. The first quantitative version of PIH was established under Gap-
ETH [CCK+17], with the lower bound f (k)nΩ(log k). A recent improvement proved PIH under

ETH [GLR+23], with a weaker lower bound f (k)nΩ
(√

log log k
)
. However, both results are too

weak to establish Theorem 1.1. In this paper, we make a significant quantitative improvement to
the reduction in [GLR+23], obtaining our main theorem stated below.

Theorem 1.2 (Informal version of Theorem 4.1). Assume ETH. For some constant ε ∈ (0, 1), for any
computable function f (k), every algorithm that takes as input a satisfiable parameterized 2CSP instance
with k variables, O(k) constraints and size-n alphabet finds an assignment satisfying 1 − ε fraction of the
constraints, must take f (k)nk1−o(1)

time.

Combining with the parallel repetition in projection games [Rao11], we can immediately boost
the soundness to any constant ε > 0 with lower bound f (k)nkΩ(1/ log(1/ε))

.

Corollary 1.3. Assume ETH. For any computable function f (k) and any constant ε ∈ (0, 1), every algo-
rithm that takes as input a satisfiable parameterized 2CSP instance with k variables, O(k) constraints and
size-n alphabet finds an assignment satisfying 1 − ε fraction of the constraints, must take f (k)nkΩ(1/ log(1/ε))

time.

By the discussion above, Theorem 1.1 follows immediately by combining Theorem 1.2, the
FGLSS reduction, and the expander-based gap-amplification procedure [AFWZ95, LRSW22]. More-
over, using Theorem 1.2 as the foundation, we can obtain, via reductions, strong inapproximability
results for other fundamental parameterized problems. Below, we list two application highlights
and refer interested readers to [GLR+23] for more detailed discussions.

Application Highlight: k-EXACTCOVER. k-EXACTCOVER (a.k.a., k-UNIQUESETCOVER) is one of
the canonical problems in the parameterized world. It is a weaker version of the k-SETCOVER

problem. For the ρ-approximation version of k-EXACTCOVER with ρ ≥ 1, denoted by (k, ρ · k)-
EXACTCOVER, the instance consists of a universe U and a collection S of subsets of U, with a goal
to distinguish the following two cases.

• There exists k disjoint subsets from S whose union equals the whole universe U.

• The union of any ρ · k subsets of S is a proper subset of U.

Here, the parameter is the optimum k. We remark that the additional disjointness requirement in
the completeness part makes (k, ρ · k)-EXACTCOVER an excellent intermediate problem for prov-
ing the hardness of other problems [ABSS97, Man20].

4

On the algorithmic side, the (k, ρ · k)-EXACTCOVER has a brute-force |S|Ω(k)-time algorithm.
However, no |S|o(k)-time algorithms are known. Thus, it is natural to consider whether we can
establish a matching |S|Ω(k) lower bound. Our work almost establishes a lower bound for (k, ρ · k)-
EXACTCOVER, under ETH, for some constant ρ. Previously, this was only known under the Gap-
ETH assumption [Man20].

Theorem 1.4. Assume ETH. There exists some constant ρ ≥ 1, such that for any computable function
f (k), any algorithm deciding (k, ρ · k)-EXACTCOVER must take runtime f (k)|S|k1−o(1)

.

To prove the theorem above, We note that the previous work [GRS23] achieves a parameter-
preserving reduction from PIH to (k, ρ · k)-EXACTCOVER for any constant ρ, by imitating the beau-
tiful reduction of Feige [Fei98].3

Therefore, Theorem 1.4 follows by combining the reduction of [GRS23] with our Theorem 1.2.
Applying Corollary 1.3, we can boost the ratio ρ to any constant with lower bound f (k)|S|kΩ(1/log(ρ))

.

Proposition 1.5. Assume ETH. For any constant ρ ≥ 1 and computable function f (k), any algorithm
deciding (k, ρ · k)-EXACTCOVER must take runtime f (k)|S|kΩ(1/log(ρ))

.

Application Highlight: MAX k-COVERAGE. The MAX k-COVERAGE is the maximization variant
of the k-SETCOVER problem. For the ρ-approximation version of MAX k-COVERAGE with ρ < 1,
denoted by MAX (ρ, k)-COVERAGE, the instances are the same as k-EXACTCOVER above, but the
goal changes to distinguish the following two case:

• There exists k subsets from S whose union equals U .

• Any k subsets from S has the union size at most ρ · |U |.

MAX (ρ, k)-COVERAGE has been widely studied in previous literature. There exists a simple
greedy algorithm solving MAX (1 − 1

e , k)-COVERAGE within polynomial runtime [Hoc97].
On the hardness side, a celebrated result of Feige [Fei98] showed the NP-hardness of MAX

(1 − 1
e + ε, k)-COVERAGE for any ε > 0, thus proving a tight inapproximability result.

In the parameterized world, one can solve MAX k-COVERAGE in |S|k time by brute force enu-
meration. On the other hand, Cohen-Addad, Gupta, Kumar, Lee, and Li [CAGK+19] showed
that assuming Gap-ETH, MAX (1 − 1

e + ε, k)-COVERAGE requires f (k)|S|kpoly(1/ε)
runtime. Manu-

rangsi [Man20] further improved this lower bound to the tightest f (k)|S|Ω(k) under Gap-ETH.
Our work implies an almost-optimal time lower bound for MAX (ρ, k)-COVERAGE under ETH

for some constant ρ.

Theorem 1.6. Assume ETH. There exists some constant ρ ∈ (0, 1), such that for any computable function
f (k), any algorithm deciding MAX (ρ, k)-COVERAGE must take runtime f (k)|S|k1−o(1)

.

Theorem 1.6 follows from our Theorem 1.2 and the analysis in [Man20, Sections 9.1 and 9.2]
that accomplishes a gap-preserving reduction from k-CSP to MAX k-COVERAGE. Applying Corol-
lary 1.3, we can boost the ratio to the tightest 1 − 1

e + ε with lower bound f (k)|S|kε′
.

Proposition 1.7. Assume ETH. for any constant ε ∈ (0, 1) and computable function f (k), there ex-
ists a constant ε′ = ε′(ε), any algorithm deciding MAX (1 − 1

e + ε, k)-COVERAGE must take runtime

f (k)|S|kε′
.

3In fact, a weaker variant of PIH, named Average Baby PIH over rectangular constraints, suffices.

5

New PCP Characterizations. An interesting byproduct of Theorem 1.2 is a new PCP theorem for
3SAT as follows.

Theorem 1.8 (Informal Version of Theorem 4.2). For any parameter k ≪ n, 3SAT has a constant-query
PCP verifier with alphabet size |Σ| = 2n/k1−o(1)

, runtime poly(|Σ|, n), and log k + O
(√

log k log log k
)

random coins, which has perfect completeness and soundness 1
2 .

Theorem 1.8 generalizes the classic PCP theorem and gives a smooth trade-off between the
proof length and the alphabet size, connecting parameterized complexity and the classical com-
plexity theory.

Paper Organization. In Section 2, we provide an overview for our proof of Theorem 1.2 and
discuss future works. In Section 3, we formalize necessary notation and concepts. The formal
structure for proving Theorem 1.2 is presented in Section 4, with most technical statements de-
ferred to other sections: the reduction from ETH-hard problems to special vector-valued CSPs is
provided in Section 5, and the PCPP verifier for a helper language is constructed in Section 6. In
Appendix A, we give details of derandomized parallel low degree tests which is a key component
for the PCPP construction.

2 Technical Overview

In this part, we provide general ideas of proving Theorem 1.2. Due to the equivalence between
the existence of PCP systems and the inapproximability of constraint satisfaction problems [Din07,
AB09], Theorem 1.8 directly follows from Theorem 1.2.

We follow the spirit of [GLR+23] to prove Theorem 1.2. The proof framework is as follows.

• First, we reduce an ETH-hard problem to a CSP problem with specific structures.

• Then, leveraging the special structures, we construct a probabilistic checkable proof of prox-
imity (PCPP) verifier to check whether the encoding of some given solution satisfies all
constraints. Theorem 1.2 follows by converting the PCP verifier into CSP instances [AB09,
Din07].

For the first step, [GLR+23] reduces 3SAT to vector-valued CSPs (VecCSPs for short), whose vari-
ables take values in a vector space Ft

4. In addition, each constraint is either a coordinate-wise
parallel constraint or a linear constraint.

• A parallel constraint (over variables x and y) is defined by a sub-constraint Πsub : F4 ×F4 →
{0, 1} and a subset of coordinate Q ⊆ [t]. It checks whether Πsub(xi, yi) = 1 for every
coordinate i ∈ Q.

• A linear constraint enforces that two vector-valued variables satisfy a linear equation speci-
fied by a matrix M ∈ Ft×t

4 , i.e., y = Mx.

Then, in the second step, [GLR+23] encodes the solution by parallel Walsh-Hadamard code and

constructs a PCPP verifier with double-exponential proof length, resulting in an f (k)nΩ(
√

log log k)

lower bound for ε-Gap k-Variable CSP.

6

2.1 More Refined Vector Structure

Unfortunately, the vector structure used in [GLR+23] is far from being enough for obtaining an
almost-optimal lower bound due to the following reasons.

• For parallel constraints, VecCSP sets up the sub-constraints over a subset of the coordinates.
There might be 2|Ep| (where |Ep| is the number of parallel constraints) different sub-CSP
instances over all coordinates, each of which requires an individual PCPP verifier. To si-
multaneously check the satisfiability of all these sub-instances, they tuple these verifiers into
a giant verifier, resulting in an exponential blowup of the proof length. Hence, an almost
linear proof size is impossible.

• For linear constraints, VecCSP defined in [GLR+23] allow them to be over arbitrary pairs
of variables. They introduce auxiliary variables for all pairs of variables and their corre-
sponding linear constraints to check such unstructured constraints. The number of auxiliary
variables is |V| · |El|, where |V|, |El| are the numbers of variables and linear constraints, re-
spectively. This means that the proof length is at least quadratic, making an almost linear
proof size impossible.

• Furthermore, the VecCSP instance in [GLR+23] has parameters |V| = O(k2), |E| = O(k2),
which is a starting point with already a quantitative loss for any subsequent constructions.

The analysis above urges us to mine more vector structures and devise new reductions with
smaller parameter blowups. In this work, we further engineer VecCSP and obtain special vector-
valued CSPs (SVecCSP for short) with three more features.

• First, SVecCSP partitions the variables into two disjoint parts {x1, . . . xk}∪̇{y1, . . . yk}.

• Second, for parallel constraints, SVecCSP sets up the sub-constraint on all coordinates, which
implies a unified sub-CSP instance among all coordinates. As a result, we avoid the tuple
procedure, enabling a highly succinct proof.

• Third, for linear constraints, SVecCSP only sets up linear constraints over xi and yi, with
the same index i. After encoding x and y by the parallel Reed-Muller code, we can lever-
age this alignment and introduce auxiliary proofs, which is also a codeword of the parallel
Reed-Mulle code, to check the validity of linear constraints efficiently, with an almost-linear
blowup.

In addition, to decrease the parameter blowup, we apply the reduction in [Mar10, KMPS23] to
obtain ETH-hard sparse parameterized CSP instances. Then, we imitate the reduction in [GLR+23]
to obtain a sparse VecCSP instance with |V| = O(k), |E| = O(k), which ultimately reduces to
SVecCSP, with an almost optimal lower bound, by properly duplicating variables and relocating
constraints.

2.2 Applying The Parallel Reed-Muller Code

After establishing the almost optimal runtime lower bound for SVecCSP, we need to design a
PCPP verifier certifying the encoding of a given assignment satisfies all constraints. However, the
previous work [GLR+23] designs a PCPP verifier that requires a proof with a double-exponential
length, which is far from obtaining Theorem 1.2.

This paper applies the parallel Reed-Muller (RM) encoding with an almost-linear codeword
length. Recall that the variables in the SVecCSP instance are divided into two disjoint parts

7

{x1, . . . xk}∪̇{y1, . . . yk}, the input proof of the PCPP verifier consists of x̂ and ŷ, which are sup-
posed to be the parallel RM encoding of the assignment over x and y respectively. The verification
procedure is demonstrated as follows.

First, to ensure that x̂ and ŷ are indeed codewords of the parallel RM code, we apply parallel
low degree testing. The standard low degree testing causes a quadratic blowup in the proof length.
To ensure an almost-linear proof length, we use the parallel version of the derandomized low degree
testing [BSSVW03] (Appendix A).

Second, we check whether x̂ ◦ ŷ satisfies all parallel constraints. Since a unified sub-CSP in-
stance exists among all coordinates, as long as we have constructed a PCPP verifier for this sub-
CSP, we can simulate it in parallel to check all coordinates at the same time, with no blowup in the
proof length (as opposed to an exponential blowup in [GLR+23]). Our sub-CSP has an alphabet
of constant size. Thus, we can apply the existing approach (see, e.g., [BGH+06, Theorem 3.3])
in a black box way to construct an almost-linear PCPP verifier for all parallel constraints in our
sub-CSP.

Finally, we check whether x̂ ◦ ŷ satisfies all linear constraints. Recall that SVecCSP only sets up
linear constraints over xi and yi, with the same index i. Denote Mi as the matrix for the index i,
i.e., the i-th linear constraint is yi = Mixi. We introduce an auxiliary proof ẑ, satisfying

ẑ = ŷ − M̂x̂

where M̂ is the parallel RM encoding for matrices {M1, M2, . . . , Mk}. Then, all systematic parts
of ẑ, i.e., the codeword entries corresponding to zi := yi − Mixi for i ∈ [k], should be 0⃗. The key
observation is that if x̂ and ŷ are codewords of parallel RM code, then so does ẑ. Hence, we can
apply parallel derandomized low degree testing for ẑ and apply another PCPP, as in the parallel
part, to check whether all systematic parts of ẑ are 0⃗. Finally, we check whether ẑ satisfies the
equation above by simply querying a random index, for which the soundness and completeness
are guaranteed by Schwartz-Zippel lemma [Sch80]. In this way, we have a highly efficient PCPP
verifier that checks all linear constraints with an almost linear proof length.

The overall PCPP verifier is the combination of the verifiers for parallel constraints and for
linear constraints. A more detailed framework of our proof is in Section 4.

2.3 Future Works

Our work gives almost optimal time lower bounds for the approximation version of many canoni-
cal parameterized problems under ETH, including k-CLIQUE, k-EXACTCOVER, k-VARIABLE CSPS,
and MAX k-COVERAGE.

Technically, we prove the almost optimal time lower bound for constant-gap k-Variable CSPs.
Using this result as the cornerstone, we obtain the inapproximability for other problems by ex-
isting reductions. One open question is whether almost optimal time lower bounds for other
problems also follow from this result, e.g., k-BALANCED BICLIQUE [CCK+17, FSLM20].

The second question is to obtain the (actual) optimal f (k)nΩ(k) time lower bounds for constant-
gap k-Variable CSPs. This problem can be seen as the parameterized extension of the long-
standing linear-size PCP conjecture [BEKP13]. In the non-parameterized world, the state-of-the-
art PCP theorem with the shortest proof length is due to [Din07] with quasilinear proof length. It
is also interesting if this optimal bound (i.e., the parameterized extension of the linear-size PCP
conjecture) can be established assuming the existence of linear-size PCP.

For more interesting directions, please refer to [GLR+23].

8

3 Preliminaries

For a positive integer n, we use [n] to denote the set {1, 2, . . . , n}. We use log to denote the loga-
rithm with base 2. For a prime power q = pc where p is a prime and c ≥ 1 is an integer, we use Fq
to denote the finite field of order pc and characteristic char(F) = p.

For an event E , 1E is defined the indicator function, which equals 1 if E happens and 0 other-
wise. For a finite set S ̸= ∅, we use x ∼ S to denote a uniformly random element from S.

For disjoint sets S and T, we use S∪̇T to denote their union while emphasizing S ∩ T = ∅.

Asymptotics. Throughout the paper, we use O(·), Θ(·), Ω(·) to hide absolute constants that do not
depend on any other parameter. We also use poly(·) to denote some implicit polynomial in terms
of the parameters within, e.g., poly(f , g) is upper bounded by (f 2 + g2 + C)C for some absolute
constant C ≥ 0.

3.1 Constraint Satisfaction Problem

In this paper, we only focus on constraint satisfaction problems (CSPs) of arity two. Formally, a
CSP instance G is a quadruple (V, E, Σ, {Πe}e∈E), where:

• V is for the set of variables.

• E is for the set of constraints. Each constraint e = {ue, ve} ∈ E connects two distinct variables
ue, ve ∈ V.

The constraint graph is the undirected graph on vertices V with edges E. Note that we allow
multiple constraints between the same pair of variables; thus, the constraint graph may have
parallel edges.

• Σ is for the alphabet of each variable in V. For convenience, we sometimes have different
alphabets for different variables, and we will view them as a subset of a grand alphabet with
some natural embedding.

• {Πe}e∈E is the set of constraint validity functions. Given a constraint e ∈ E, the function
Πe : Σ × Σ → {0, 1} checks whether the constraint e between ue and ve is satisfied.

We use |G| = (|V|+ |E|) · |Σ| to denote the size of a CSP instance G.

Assignment and Satisfiability Value. An assignment is a function σ : V → Σ that assigns each
variable a value in the alphabet. We use

val(G, σ) =
1
|E| ∑

e∈E
Πe(σ(ue), σ(ve))

to denote the satisfiability value for an assignment σ. The satisfiability value for G is val(G) =
maxσ : V→Σ val(G, σ). We say that an assignment σ is a solution if val(G, σ) = 1, and G is satisfiable
iff G has a solution. When the context is clear, we omit σ in the description of a constraint, i.e.,
Πe(ue, ve) stands for Π(σ(ue), σ(ve)).

Boolean Circuits. Throughout the paper, we consider standard Boolean circuits with AND/OR
gate of fan-in two and fan-out two, and NOT gate with fan-out two.

Exponential Time Hypothesis (ETH). Exponential Time Hypothesis (ETH), first proposed by Im-
pagliazzo and Paturi [IP01], is a famous strengthening of the P ̸= NP hypothesis and that has

9

since found numerous applications in modern complexity theory, especially in fine-grained com-
plexity.

The ETH postulates that the general 3SAT problem has no sub-exponential algorithm. In this
paper, we use the ETH-based hardness of the 4-REGULAR 3-COLORING problem.

Definition 3.1 (4-REGULAR 3-COLORING). A 2CSP instance G = (V, E, Σ, {Πe}e∈E) is an instance
of 4-REGULAR 3-COLORING if (1) Σ = F4, (2) the constraint graph is 4-regular, and (3) each Πe
checks whether the two endpoints of e are assigned with different colors from Λ, where Λ ⊂ F4
has size three and is fixed in advance.

We remark that usually 3-COLORING is defined directly with a ternary alphabet Λ. Here for
simplicity of later reductions, we assume the alphabet is F4. This is without loss of generality
since the coloring constraint is also upgraded to check additionally whether the colors are from Λ.

Theorem 3.2 (ETH Lower Bound for 4-REGULAR 3-COLORING [CFG+16]). Assuming ETH, no
algorithm can decide 4-REGULAR 3-COLORING in 2o(|V|) time.

3.2 Parameterized Complexity Theory

In parameterized complexity theory, we consider a promise language Lyes∪̇Lno equipped with a
computable function κ, which returns a parameter κ(x) ∈ N for every input instance x. We use
(Lyes∪̇Lno, κ) to denote a parameterized language. We think of κ(x) as a growing parameter that
is much smaller than the instance size |x|.

A parameterized promise language (Lyes∪̇Lno, κ) is fixed parameter tractable (FPT) if there is
an algorithm such that for every input (x, κ(x)) ∈ (Lyes∪̇Lno, κ), it decides whether x ∈ Lyes in
f (κ(x)) · |x|O(1) time for some computable function f .

An FPT reduction from (Lyes ∪ Lno, κ) to (L′
yes ∪ L′

no, κ′) is an algorithm A which, on every input
(x, κ(x)) outputs another instance (x′, κ′(x′)) such that:

• COMPLETENESS. If x ∈ Lyes, then x′ ∈ L′
yes.

• SOUNDNESS. If x ∈ Lno, then x′ ∈ L′
no.

• FPT. There exist universal computable functions f and g such that |κ′(x′)| ≤ g(κ(x)) and
the runtime of A is bounded by f (κ(x)) · |x|O(1).

We refer to [FG06] for the backgrounds on fixed parameter tractability and FPT reductions.

ε-Gap k-Variable CSP. We mainly focus on the gap version of the parameterized CSP problem.
Formally, an ε-Gap k-Variable CSP problem is the following parameterized promise language
(Lyes∪̇Lno, κ).

• Lyes consists of all CSPs G with val(G) = 1.

• Lno consists of all CSPs G with val(G) < 1 − ε.

• κ(G) equals the number of variables in G.

In other words, we need to decide whether a given CSP instance (G, |V|) with k variables satisfies
val(G) = 1 or val(G) < 1 − ε.

10

Parameterized Inapproximability Hypothesis (PIH). Parameterized Inapproximability Hypothesis
(PIH) is a folklore conjecture generalizing the celebrated PCP theorem to the parameterized com-
plexity. It was first rigorously formulated in [LRSZ20]. Below, we present a slight reformulation,
asserting fixed parameter intractability (rather than W[1]-hardness specifically) of gap CSP.

Hypothesis 3.3 (PIH). For an absolute constant 0 < ε < 1, no FPT algorithm can decide ε-Gap k-Variable
CSP.

3.3 Parallel Reed-Muller Code

Word. We say x is a word (a.k.a., vector) with alphabet Σ if x is a string of finite length and each
entry is an element from Σ; and Σ∗ contains all words with alphabet Σ. Assume x has length m.
For each I ⊆ [m], we use xI to denote the sub-string of x on entries in I. When I = {i} is a singleton
set, we simply use xi to denote x{i}. For a word x over a vector alphabet Σt, for each entry xi and
j ∈ [t], we define xi[j] as the j-th coordinate of xi. We define x[j] as x1[j] ◦ x2[j] ◦ · · · ◦ xm[j], which
is a word over Σ.

Let y be another word. We use x ◦ y to denote the concatenation of x and y. If y is also of length
m, we define ∆(x, y) := Pri∈[m][xi ̸= yi] as their relative Hamming distance. For a set S of words,
if ∆(x, z) ≥ δ holds for every z ∈ S, we say x is δ-far from S; otherwise we say x is δ-close to S. In
particular, if S = ∅, then x is 1-far from S. Below, we recall the notion of error correcting codes.

Definition 3.4 (Error Correcting Code (ECC)). An error correcting code is the image of the encod-
ing map C : Σk

1 → ΣK
2 with message length k and codeword length K. We say that the ECC has a

relative distance δ if ∆(C(x), C(y)) ≥ δ holds for any distinct x, y ∈ Σk
1. We use δ(C) to denote the

relative distance of the image map of C and use Im(C) to denote the codewords of C.

Reed-Muller Code. We use the parallel Reed-Muller (RM) code to construct PCPPs. This parallel
operation is called interleaving in coding theory. Below, we present the formal definition.

For an m-variate parallel-output function f : Fm → Ft, we denote f [1], . . . , f [t] : Fm → F as
its single-output components, i.e., f (x) = (f [1](x), . . . , f [t](x)) We say f is of parallel degree-d
if f [1], . . . , f [t] are degree-d polynomials, where a polynomial is degree-d if all monomials with
(total) degree larger than d have zero coefficients.

If |F| > d and |F|m ≥ (m+d
d), by a dimension argument, there exist (m+d

d) distinct points (a.k.a.,
interpolation set) {ξ1, . . . , ξ

(m+d
d)

} ⊆ Fm whose values a = (a1, . . . , a
(m+d

d)
) ∈ (Ft)(

m+d
d) can uniquely

determine the polynomial fa of parallel degree d.

Definition 3.5 (Parallel RM Code). Assume |F| > d and |F|m ≥ (m+d
d). Let {ξ1, . . . , ξ

(m+d
d)

} be the
set above. The (F, m, d, t)-parallel RM code is the image of the following encoding map:

RMF,m,d,t :
(
Ft)(m+d

d) →
(
Ft)|F|m ,

where for each a = (a1, . . . , a
(m+d

d)
) ∈ (Ft)(

m+d
d), the encoding RMF,m,d,t(a) is the truth table of fa

over the whole space Fm.
In addition, a is the systematic part of the parallel RM encoding, which can be read off directly:

for each j ∈ (m+d
d), aj equals the entry indexed by ξ j in the codeword.

11

By Schwartz-Zippel lemma4, the relative distance of (F, m, d, t)-parallel RM code is

δ(RMF,m,d,t) = 1 − d
|F| .

Furthermore, there is an efficient codeword testing procedure (Theorem 3.6) for RMF,m,d,t, the
proof of which is in Appendix A.

Theorem 3.6 (Codeword Testing). Assume char(F) = 2 and |F| ≥ max
{

6md, 2100m log |F|
}

. Let
Σ = Fd+1 be the set of univariate degree-d polynomials over F. There exists an efficient verifier Pldt with
the following properties.

• The input of Pldt is T ◦ π, where T ∈ (Ft)|F|
m

is supposed to be a codeword of RMF,m,d,t and
π ∈ (Σt)|F|

m·(m log |F|)O(1)
is the auxiliary proof.

• Pldt tosses m log |F|+ O (log log |F|+ log m) unbiased coins and makes 2 queries on T ◦ π.

• If T ∈ Im(RMF,m,d,t), then there exists some π such that Pldt(T ◦ π) always accepts.

• If T is δ-far from Im(RMF,m,d,t), then Pr[Pldt(T ◦ π) rejects] ≥ 2−40δ for any π.

Given a Boolean circuit C : {0, 1}k → {0, 1}, we say a word x ∈ ({0, 1}t)k parallel satisfies C iff
C(x[j]) = 1 holds for every coordinate j ∈ [t].

Extracting from the verifier in Theorem 3.6, we obtain a circuit of small size that describes the
codeword testing procedure, the proof of which is also in Appendix A.

Theorem 3.7. Assume char(F) = 2 and |F| ≥ max
{

6md, 2100m log |F|
}

. There exists a Boolean circuit
Cldt of size |F|mpoly|F| for T ∈ (Ft)|F|

m
, where we encode F as {0, 1}log |F|, such that T is codeword of

RMF,m,d,t iff T parallel satisfies Cldt.

3.4 Pair Language and Probabilistic Checkable Proof of Proximity

We will perform various satisfiability testing for assignments of Boolean circuits where both are
given as input. This motivates the notion of pair language, where the input is naturally divided
into two parts corresponding to circuits and assignments respectively.

Pair Language. Formally, L is a pair language over the alphabet Σx and Σy if all words of L are in
the form (x, y) where x ∈ Σ∗

x , y ∈ Σ∗
y . For each x ∈ Σ∗

x , we define L(x) = {y ∈ Σ∗
y |(x, y) ∈ L} as

the restriction of L on x.

Probabilistic checkable proof of proximity (PCPP). PCPP provides robust testing of satisfiability
for pair languages.

Definition 3.8 (PCPP). Given a pair language L with alphabet Σ, a (q, r, δ, ε, Σ2)-PCPP verifier P
takes as input a pair of words (x, y) and an auxiliary proof π with alphabet Σ2, such that:

(T1) The verifier P reads all bits of x, tosses at most r(|x|) many unbiased coins, makes at most
q(|x|) queries on y and π, and then decides to accept or reject within runtime (|x|+ |Σ|+
|Σ2|)O(1).

We use Ir to denote the query positions on y ◦ π under randomness r, and use P(x, y, r, a) to
indicate the behavior (i.e., accept or reject) of P under randomness r and query answer a.

4Schwartz-Zippel lemma is usually stated only for single-output polynomials, but it naturally generalizes to the
parallel case.

12

(T2) If (x, y) ∈ L, then there exists some π such that P always accepts.

(T3) If y is δ-far from L(x), then P rejects with probability at least ε for every π.

We say P is a (q, r, ε, Σ2)-PCP verifier if it is a (q, r, 1, ε, Σ2)-PCPP verifier.

Remark 3.9 (Proof Length). We can always upper bound |π| by 2r(|x|)q(|x|), for which reason we
do not put an additional parameter in Definition 3.8.

From PCPP to CSP. PCPPs are tightly connected with CSPs. The following standard reduction
establishes the connection.

Definition 3.10 (From PCPP to CSP). Given a (q, r, δ, ε, Σ2)-PCPP verifier P for the pair lan-
guage L = {(x, y)|x, y ∈ Σ∗}. We define a CSP instance G′ = (V ′, E′, Σ′, {Π′

e}e∈E′), where
V ′ = Vy∪̇Vπ∪̇Vpcpp and Σ′ = Σ ∪ Σ2, by the following steps:

• First, we treat each position of y (resp., π) as a single variable in Vy and (resp., Vπ) with
alphabet Σ (resp., Σ2). Note that |Vy| = |y| and |Vπ| ≤ 2r(|x|)q(|x|) by Remark 3.9.

• Then, for each choice of random coins r ∈ {0, 1}r(|x|), let Sr be the set of query positions over
y ◦ π under randomness r; and we add a variable zr to Vpcpp whose alphabet is (Σ ∪ Σ2)|Sr |,
i.e., all possible configurations of the query result. Note that |Vpcpp| ≤ 2r(|x|).

• Finally, we add constraints between zr and every query position i ∈ Sr. The constraint checks
whether zr is an accepting configuration, and the assignment of the position i is consistent
with the assignment of zr.

By construction, the completeness and soundness are preserved up to a factor of q under this
reduction, where the loss comes from splitting q queries into q consistency checks. In addition, the
reduction from P to G′ is an FPT reduction.

Fact 3.11. The reduction described in Definition 3.10 is an FPT reduction. Recall that P is a (q, r, δ, ε, Σ2)-
PCPP verifier for the pair language L over the alphabet Σ. We have the following properties for G′:

• ALPHABET. The alphabet of G′ is (Σ ∪ Σ2)
q.

• PARAMETER BLOWUP. The number of varialbes |V ′| ≤ |y|+ 2r(|x|)q(|x|) + 2r(|x|). The number of
constraints |E′| = O(V ′ · q(|x|)).

• COMPLETENESS. If (x, y) ∈ L, then there exists a solution σ′ of G′ assigning y to Vy.

• SOUNDNESS. If y is δ-far from L(x), then any assignment σ′ assigning y to Vy satisfies at most
1 − ε

q fraction of the constraints in G′. Note that if L(x) = ∅, then val(G′) ≤ 1 − ε
q .

Circuit Value Problem (CKTVAL). CKTVAL is a standard pair language widely used in the classi-
cal PCP theorems (see e.g., [BGH+06]). It directly checks if a binary string is a solution to a Boolean
circuit.

Definition 3.12 (CKTVAL). CKTVAL is a pair language over {0, 1} consisting of all words in the
form of w = (C, z), where C is a Boolean predicate with |z| input bits and z is a binary string that
satisfies C. We define the input length |w| to be the size of C plus |z|.

We quote the following almost-linear PCPP result for CKTVAL, which follows from [BGH+06,
Theorem 3.3] by setting t to be a constant sufficiently large.

13

Theorem 3.13 (PCPP for CKTVAL, [BGH+06]). There exists an absolute constant 0 < δ⋆ ≤ 2−100 such
that CKTVAL has

an
(

O(1), log |w|+ O(log0.1 |w|), δ⋆,
1
2

, {0, 1}
)

-PCPP verifier Pckt,

where |w| is the input length of CKTVAL.

Remark 3.14. In the parallel setting, we want to check if a circuit C is satisfied on t different inputs
z1, z2, . . . , zt. Note that according to the Definition 3.8, given (C, zi) and an auxiliary proof πi for
every i ∈ [t], the PCPP reads the whole C and then queries zi and πi. In other words, the query
locations depend only on C. So, when applied in parallel, the PCPP queries the same locations for
different i ∈ [t].

4 Proof of the Main Theorems

This section is devoted to giving a landscape of the proof of Theorem 1.2 and Theorem 1.8. To
depict a clear picture, we relegate the proof of technical lemmas in subsequent sections. Below,
we first present the formal statement of Theorem 1.2 and Theorem 1.8.

Theorem 4.1 (Formal Version of Theorem 1.2). Assume ETH. Then for some constant ε ∈ (0, 1) and
any computable function f (K), no algorithm can take as input a 2CSP instance Λ with K variables, O(K)

constraints and alphabet [N], distinguish between the following two cases in f (K)NK/2ω(
√

log K log log K)
time:

• Λ is satisfiable;

• any assignment satisfies at most 1 − ε fraction of the constraints in Λ.

Theorem 4.2 (Formal Version of Theorem 1.8). For any integer k ≪ n sufficiently large, 3SAT has
a constant-query PCP verifier of alphabet size |Σ| = exp

(
n
k · 2O(

√
log k)

)
, runtime poly(|Σ|, n), and

log k + O
(√

log k log log k
)

random coins, which has perfect completeness and soundness 1
2 .

The proof of Theorem 4.1 follows a similar idea in the previous work [GLR+23].

• First, we reduce from 4-REGULAR 3-COLORING, which has the lower bound 2Ω(|V|) un-
der ETH, to a CSP with specific vector structures, termed as the special vector-valued CSP
(SVecCSP for short). This step is somewhat similar to the previous approach [GLR+23], in
the sense that both approaches engineer non-parameterized CSP problems into parameter-
ized CSPs with vector structure. However, the vector structure in [GLR+23] is not enough
for obtaining the almost-optimal lower bound for k-Variable CSP. This paper obtains a much
more refined structure.

• Second, we design a PCPP verifier for SVecCSPs. To obtain an almost-optimal lower bound,
we encode the solution of SVecCSPs via Reed-Muller code with an almost-linear blowup.
Below, we present the details of our proof.

4.1 Reduction from 4-REGULAR 3-COLORING to SVecCSP

In this section, we define special vector-valued CSP (SVecCSP for short). The notion of vector-valued
CSPs was first defined in [GLR+23], and here we consider a better-structured variant.

14

Definition 4.3 (SVecCSP). A CSP instance G = (V, E = Ep∪̇El, Σ, {Πe}e∈E) is an SVecCSP if the
following properties hold.

(S1) V = {x1, . . . , xk}∪̇{y1, . . . , yk}.

(S2) Σ = Ft is a t-dimensional vector space over a finite field F with char(F) = 2.

(S3) For each constraint e = {u, v} ∈ Ep where u = (u1, . . . , ut) and v = (v1, . . . , vt) are two
variables in V, there is a sub-constraint Πsub

e : F × F → {0, 1} such that Πe(u, v) checks Πsub
e

on all coordinates, i.e.,
Πe(u, v) =

∧
i∈[t]

Πsub
e (ui, vi).

(S4) El = {{xi, yi}i∈[k]}. For each i ∈ [k], there exists a matrix Mi ∈ Ft×t and a constraint Πi(xi, yi)
check if yi = Mixi, i.e.,

Πi(xi, yi) = 1yi=Mixi .

The following theorem establishes the hardness of SVecCSP.

Theorem 4.4. There is a reduction algorithm that holds the following. Given as input an integer 6 ≤
k ≤ n and an n-variable 4-REGULAR 3-COLORING instance Γ, it produces an SVecCSP instance G =
(V, E, Σ, {Πe}e∈E) where:

(R1) VARIABLES AND CONSTRAINTS. |V| = O(k) and |E| = O(k).

(R2) RUNTIME. The reduction runs in time poly(n, 2n log k/k).

(R3) ALPHABET. Σ = Ft
4 where t = O

(
n log k

k

)
.

(R4) SATISFIABILITY. G is satisfiable iff Γ is satisfiable.

We defer the proof of Theorem 4.4 to Section 5. Compared with vector-valued CSPs (VecCSP)
used in the previous work [GLR+23, Definition 3.3], SVecCSP offers more structural properties.

• For parallel constraints, the previous work [GLR+23] sets up the sub-constraint over a subset
of the coordinates. By construction, there might be 2|Ep| different sub-CSP instances over all
coordinates. Each of the 2|Ep| sub-CSPs requires an individual PCPP verifier. To simultane-
ously check the satisfiability of all these sub-instances, they tuple these verifiers into a giant
verifier, resulting in an exponential blowup of the proof length. Hence, an almost-linear size
of proof is impossible.

In contrast, SVecCSP sets up the sub-constraint on all coordinates, which implies a unified
sub-CSP instance among all coordinates. As a result, we avoid the tuple procedure, enabling
a highly succinct proof.

• For linear constraints, VecCSP defined in [GLR+23] allow them to be over arbitrary pairs
of variables. They introduce auxiliary variables for all pairs of variables and their corre-
sponding linear constraints to check such unstructured constraints. The number of auxiliary
variables is |V| · |El|, which means that the proof length is at least quadratic, making an
almost linear size of proof impossible.

However, SVecCSP only sets up linear constraints over xi and yi, with the same index i.
After encoding x and y by the parallel Reed-Muller code, we can leverage this alignment
and introduce auxiliary proofs, which is also a codeword of the parallel Reed-Mulle code, to
check the validity of linear constraints efficiently, with an almost-linear blowup.

15

Though SVecCSP has a more refined structure than VecCSP, we can obtain it from VecCSP
by properly duplicating variables and relocating constraints. However, the VecCSP instance in
[GLR+23] has parameters |V| = O(k2), |E| = O(k2), which are too large to obtain Theorem 4.4. To
get around this, we combine results from [Mar10, KMPS23] and the reduction in [GLR+23] to ob-
tain a sparse VecCSP instance with |V| = O(k), |E| = O(k), which ultimately leads to Theorem 4.4.

4.2 Reduction from SVecCSPs to ε-GAP k-VARIABLE CSPS

With the ETH-hardness of SVecCSP by Theorem 4.4, the remaining work is to reduce SVecCSP to
ε-Gap k-Variable CSP. To this end, we follow the same idea of previous works [ALM+01, GLR+23].

(L1) First, we encode the solution using an error correcting code.

(L2) Then, we design a constant-query PCPP verifier to check whether the given proof is the
codeword of some solution with the aid of auxiliary proofs.

(L3) Finally, we obtain Theorem 4.1 by converting the PCPP verifier into an instance of ε-Gap
k-Variable CSP by Fact 3.11.

Remark 4.5. In our actual construction of Item (L2), parallel constraints and linear constraints
will be processed separately, building on a (supposedly) same solution. Hence we need to encode
the solution using error correcting codes in Item (L1) and design PCPP verifier (instead of PCP
verifier) for Item (L2) on top of the shared encoding of the solution.

For the first step (Item (L1)), we need error correcting codes with almost-linear length blowup.
In detail, we choose the parallel Reed-Muller code (see Definition 3.5) with suitable choice of pa-
rameters. This motivates us to define the following pair language SVecCSP Satisfiability (SVSAT).

Definition 4.6 (SVSAT). (F, m, d, t)-SVSAT is a pair language consisting of w = (G, (x̂, ŷ)) where:

• G = (V = {x1, . . . , xk}∪̇{y1, . . . , yk}, E = Ep∪̇El, Σ = Ht, {Πe}e∈E) is an SVecCSP instance.
We require that k ≤ (m+d

d) and H is a subfield of F.

• x̂, ŷ are codewords of RMF,m,d,t. Suppose x̂ = RMF,m,d,t(σx) and ŷ = RMF,m,d,t(σy) for some
σx, σy ∈ (Ft)(

m+d
d). Define assignment σ : V → Ft by

σ(v) :=

{
σx(i) v = xi,
σy(i) v = yi.

We further require that σ is a solution of G, which implicitly demands σ(v) ∈ Ht for v ∈ V.

Remark 4.7. Since (m+d
d) ≥ k, the index i in defining σ is at most the length of σx, σy and thus σ is

well defined in Definition 4.6. The parameters F, m, d, t come from the parameters of the parallel
Reed-Muller code.

In this pair language, G is the starting SVecCSP instance in our reduction, and (x̂, ŷ) serves as
the encoding of a solution. We have the following connection between (F, m, d, t)-SVSAT and the
satisfiability of SVecCSP.

Fact 4.8. Let G = (V = {x1, . . . , xk}∪̇{y1, . . . , yk}, E = Ep∪̇El, Σ = Ht, {Πe}e∈E) be an SVecCSP
instance. Assume k ≤ (m+d

d) and H is a subfield of F. Then, G is satisfiable iff there exists (x̂, ŷ) such that
(G, (x̂, ŷ)) ∈ (F, m, d, t)-SVSAT.

16

Remark 4.9 (Encoding Choice). One may wonder the necessity for encoding x̂ and ŷ separately,
as opposed to encoding them jointly as x̂ ◦ y. This is due to the bipartite structure of the linear
constraints El (see Item (S4)) that we will need to ensure proximity for the encoding on both x and
y. This will be clear in Item (T3) and Lemma 4.23.

For the second step (Item (L2)), we need to construct a PCPP verifier for (F, m, d, t)-SVSAT.
Formally, we construct a PCPP verifier with the following parameters.

Theorem 4.10. Assume char(F) = 2 and |F| ≥ max{12md, 2101m log |F|}. Then for any δ ∈ [0, 1],
(F, m, d, t)-SVSAT has

and
(

O(1), log(|E|+ |F|m) + O
(

log0.1(|E|+ |F|m) + log |F|
)

, δ, Ω(δ), Σt
)

-PCPP verifier P ,

where |E| is the number of constraints in (F, m, d, t)-SVSAT and Σ = Fd+1.

Fix some (G, (x̂, ŷ)) supposed to be in (F, m, d, t)-SVSAT. We use σ to denote the assignment
recovered (if succeeded) from x̂ and ŷ. Our goal is to verify whether σ is the solution of G. To
this end, we will handle parallel and linear constraints in Subsection 4.2.1 and Subsection 4.2.3
separately, then combine them together in Subsection 4.2.3 to prove Theorem 4.10.

4.2.1 Verification of Parallel Constraints

We first consider verifying whether σ satisfies all parallel constraints by probing the indices of
(x̂, ŷ). Since RMF,m,d,t is a systematic code (Definition 3.5), we can recover the value of an index in
the assignment σ directly from probing an index of x̂ ◦ ŷ. In addition, recall that parallel constraints
set up the same sub-constraints over all coordinates (Item (S3)), we can build up a unified Boolean
circuit Cp : {0, 1}2|F|m log |F| → {0, 1} that checks whether the systematic part of x̂ and ŷ satisfies
the sub-constraints in a single coordinate. In detail, the circuit Cp is defined as follows.

Definition 4.11 (The Circuit Cp). Let x̃, ỹ be words of length |F|m over alphabet5 F. Assume x̃, ỹ
are codewords of RMF,m,d,t. The circuit Cp executes the following.

• Cp recovers the messages σx̃, σỹ from the systematic part of x̃, ỹ respectively.

• After that, Cp checks whether the assignment σ̃ specified by σx̃, σỹ has the correct subfield
entries and satisfies all constraints in the Ep part of G, at the single-coordinate level. Specifi-
cally, σ̃ is the assignment of V defined by

σ(v) =

{
σx̃(i) v = xi,
σỹ(i) v = yi.

For every v ∈ V, Cp checks whether σ(v) ∈ H; and for every constraint e = {u, v} ∈ Ep, Cp

checks whether Πsub
e (σ(u), σ(v)) = 1.

The size of circuit Cp is bounded by (|F|m + k + |Ep|) · poly|F| = (|F|m + |E|) · poly|F|.

Double Test Problem (DOUBLETEST). In light of Definition 4.11, (x̂, ŷ) satisfies all parallel con-
straints iff x̂, ŷ are correct codewords and Cp(x̂[i] ◦ ŷ[i]) = 1 for each i ∈ [t]. This motivates us to
consider the following pair language DOUBLETEST related to CKTVAL.

5For ease of presentation, the circuit’s input is described as alphabet F. We take the trivial conversion from an
element of F into a binary string of length log |F|.

17

Definition 4.12 (DOUBLETEST). Assume char(F) = 2. (F, m, d, t)-DOUBLETEST is a pair language
over Σx = {0, 1}, Σy = Ft consisting of w = (C, T1 ◦ T2) where

• C is a Boolean circuit with 2|F|m log |F| input bits and T1, T2 ∈ (Ft)|F|
m

are codewords of
RMF,m,d,t;

• if we view F as {0, 1}log |F|, T1 ◦ T2 parallel satisfies C.

We define the input length |w| to be the size of C plus 2|F|m log |F|. Note that the dimension t is
reflected on the alphabet, not on the length.

In short, DOUBLETEST extends CKTVAL by allowing the assignment to have more dimensions
(i.e., t), allowing the assignment to be partitioned into two parts (i.e., T1, T2), and assuming each
part is encoded by parallel RM code.

Given Definition 4.12 and Definition 4.11, we have the following statement. Note that the
assumption that x̃, ỹ are codewords of RMF,m,d,t in Definition 4.11 is guaranteed in Definition 4.12.

Fact 4.13. Parallel constraints Ep in G are satisfied iff (Cp, x̂ ◦ ŷ) ∈ (F, m, d, t)-DOUBLETEST.

Thus, to verify that σ satisfies all parallel constraints, if suffices to construct a PCPP verifier for
DOUBLETEST. The verifier is formally stated as follows and will be proved in Section 6.

Theorem 4.14 (PCPP for DOUBLETEST). Assume char(F) = 2 and |F| ≥ max
{

6md, 2100m log |F|
}

.
For any δ ∈ [0, 1], (F, d, m, t)-DOUBLETEST has

an
(

O(1), log |w|+ O
(

log0.1 |w|+ log |F|
)

, δ, Ω(δ), Σt
)

-PCPP verifer Pdt,

where |w| is the input length of (F, d, m, t)-DOUBLETEST and Σ = Fd+1.

4.2.2 Verification of Linear Constraints

We then turn to verifying whether σ satisfies all linear constraints El. Recall from Item (S4) that
all linear constraints are set up between xi and yi, with the constraint that yi = Mixi. By defining
auxiliary variables zi := yi − Mixi, it suffices to check whether zi ≡ 0⃗t for every i ∈ [k].

Thus, we add the auxiliary proof ẑ ∈ (Ft)|F|
m

, which is supposed to fulfill the following con-
dition

ẑ(p) = ŷ(p)− M̂(p)x̂(p) holds for all p ∈ Fm, (1)

where M̂ ∈ (Ft×t)|F|
m

is the parallel RM encoding of (M1, . . . , Mk, 0t×t, . . . , 0t×t) ∈ (Ft×t)(
m+d

d).
Here we extend Definition 3.5 for matrix values: the value of ξi is Mi for i ≤ k and is 0t×t for
i > k. Equivalently, for each matrix coordinate (i, j) ∈ [t]× [t], M̂[i, j] ∈ F|F|m is the RM encoding
of (M1[i, j], . . . , Mk[i, j], 0, . . . , 0). We remark that entries of M̂ can be efficiently computed on the
fly by demand and are not included as a proof for the PCPP verifier.

Based on the discussion above, we obtain the following fact.

Fact 4.15. Linear constraints El in G are satisfied iff x̂, ŷ are codewords of RMF,m,d,t and the systematic
part of ẑ, defined by (1), are all 0t.

Recall that x̂, ŷ being correct codewords are guaranteed by the analysis of parallel constraints
above. Hence we focus on testing the systematic part of ẑ, which amount to ẑ parallel satisfying
the following circuit.

18

Definition 4.16 (The Circuit Cl). The circuit Cl receives as input a word z̃ of length |F|m over
alphabet F. It checks if z̃(ξi) = 0 holds for all i ∈ [k], where we recall that ξi from Definition 3.5.

The size of the circuit Cl is bounded by (|F|m + k) · poly|F|.

We will use a variant of DOUBLETEST, denoted SINGLETEST, on Cl and ẑ. But before that, we
give a degree bound for ẑ.

Claim 4.17. If x̂, ŷ are codewords of RMF,m,d,t, then the ẑ defined by (1) is a codeword of RMF,m,2d,t.

Proof. Expanding the matrix multiplication, for each coordinate i ∈ [t], we have

ẑ[i](p) = ŷ[i](p)− ∑
j∈[t]

M̂[i, j](p) · x̂[j](p) for all p ∈ Fm,

where M̂[i, j](p) is the (i, j)-th entry of M̂(p). Since ŷ[i], M̂[i, j], x̂[j] are truth tables of degree-d
polynomials, ẑ[j] is the truth table of a degree-2d polynomial, which means ẑ ∈ Im(RMF,m,2d,t).

Single Test Problem (SINGLETEST). At this point, checking Fact 4.15 can be safely handled by the
following SINGLETEST with proper degree conditions.

Definition 4.18 (SINGLETEST). Assume char(F) = 2. (F, m, d, t)-SINGLETEST is a pair language
over Σx = {0, 1}, Σy = Ft consisting of w = (C, T1) where

• C is a Boolean circuit with 2|F|m log |F| input bits and T1 ∈ (Ft)|F|
m

is a codeword of
RMF,m,d,t;

• if we view F as {0, 1}log |F|, T1 parallel satisfies C.

We define the input length |w| to be the size of C plus |F|m log |F|.

In comparison, SINGLETEST simply removes the second table T2 from DOUBLETEST. Combin-
ing Claim 4.17 and Fact 4.15, we have the following result.

Fact 4.19. Linear constraints El in G are satisfied iff x̂, ŷ are codewords of RMF,m,d,t, ẑ satisfies (1), and
(Cl, ẑ) ∈ (F, m, 2d, t)-SINGLETEST.

Analogous to Theorem 4.14, we also have an efficient PCPP verifier for SINGLETEST as follows,
which will also be proved in Section 6.

Theorem 4.20 (PCPP for SINGLETEST). Assume char(F) = 2 and |F| ≥ max
{

6md, 2100m log |F|
}

.
For any δ ∈ [0, 1], (F, d, m, t)-SINGLETEST has

an
(

O(1), log |w|+ O
(

log0.1 |w|+ log |F|
)

, δ, Ω(δ), Σt
)

-PCPP verifer Pst,

where |w| is the input length of (F, d, m, t)-SINGLETEST and Σ = Fd+1.

Finally, we briefly sketch how to check if ẑ satisfies (1), as needed in Fact 4.19. This will be
done by randomly picking an index p and checking whether (1) holds on that p. The soundness
will be analyzed by Schwartz-Zippel Lemma. This will be formalized in Subsection 4.2.3.

19

4.2.3 The Whole Construction and Analysis

Based on the above discussion, we are now ready to construct the PCPP verifier P for SVSAT.
We invoke Theorem 4.14 to obtain PCPP verifiers Pdt and Pst for (F, m, d, t)-DOUBLETEST and
(F, m, 2d, t)-SINGLETEST respectively.

Recall that the input of (F, m, d, t)-SVSAT is (G, (x̂, ŷ)). The auxiliary proof consists of ẑ, π1,
and π2, where

• ẑ is supposed to be a codeword in RMF,m,2d,t and ẑ(p) = ŷ(p)− M̂(p)x̂(p) for all p ∈ Fm;

• π1 is supposed to be the auxiliary proof to convince Pdt that (Cp, x̂ ◦ ŷ) belongs to the pair
language (F, m, d, t)-DOUBLETEST.

• π2 is supposed to be the auxiliary proof to convince Pst that (Cl, ẑ) belongs to the pair lan-
guage (F, m, 2d, t)-SINGLETEST.

The verifier P performs one of the following three tests with equal probability.

(T1) Feed the pair of words (Cp, x̂ ◦ ŷ) and the auxiliary proof π1 into Pdt. Reject if Pdt rejects.

(T2) Feed the pair of words (Cl, ẑ) and the auxiliary proof π2 into Pst. Reject if Pst rejects.

(T3) Generate a random point p ∈ Fm, reject if ẑ(p) ̸= ŷ(p)− M̂(p)x̂(p).

At this point, we are ready to analyze the PCPP verifier P . In particular, Theorem 4.10 follows
from the combination of the following Lemma 4.21, Lemma 4.22, and Lemma 4.23.

Lemma 4.21 (Parameters). Assume char(F) = 2 and |F| ≥ max
{

12md, 2101m log |F|
}

. Then P tosses

log(|E|+ |F|m) + O
(

log0.1(|E|+ |F|m) + log |F|
)

.

unbiased coins and makes O(1) queries. The alphabet of the auxiliary proof is Σt where Σ = Fd+1.

Proof. By Theorem 4.14 and Theorem 4.20, both Pdt and Pst make constant queries. Also in
Item (T3), P makes 3 queries on x̂, ŷ, ẑ. Thus P makes O(1) total queries.

By Definitions 4.11 and 4.16, the input lengths of Pdt and Pst in Item (T1) and Item (T2) are{
|w1| = (|F|m + |E|) · poly|F|+ 2|F|m log |F| ≤ (|E|+ |F|m)poly|F|,
|w2| = (|F|m + k) · poly|F|+ |F|m log |F| ≤ (|E|+ |F|m)poly|F|,

respectively. Putting this into Theorem 4.14 and Theorem 4.20, the number of unbiased coins used
in Pdt and Pst is

log(|E|+ |F|m) + O
(

log0.1(|E|+ |F|m) + log |F|
)

.

In Item (T3), P tosses m log |F| coins. Since P only executes one of the three tests, the randomness
is bounded by their maximum.

The auxiliary proofs π1, π2 have alphabet Σ by Theorem 4.14 and Theorem 4.20. The alphabet
of ẑ is Ft, which can also be embedded into the larger Σt.

Lemma 4.22 (Completeness). Assume char(F) = 2 and |F| ≥ max
{

12md, 2101m log |F|
}

. Suppose
x̂ = RMF,m,d,t(σx), ŷ = RMF,m,d,t(σy), and the assignment σ given by σx and σy (recall Definition 4.6) is
a solution to G. Then there exist ẑ, π1, π2 which P accepts with probability 1.

20

Proof. By Definition 4.11, (x̂, ŷ) parallel satisfies the circuit Cp. Thus (Cp, x̂ ◦ ŷ) ∈ (F, m, d, t)-
DOUBLETEST by Fact 4.13. Hence there exists an auxiliary proof π1 which makes Pdt accepts with
probability 1. Item (T1) therefore always passes.

For each p ∈ Fm, define ẑ(p) = ŷ(p) − M̂(p)x̂(p). By Claim 4.17, ẑ ∈ Im(RMF,m,2d,t). Let
σx, σy, σz be the messages x̂, ŷ, ẑ encodes respectively. Note that (σx, σy) satisfies the linear con-
straints El in G, i.e., σy(i)− Miσx(i) = 0t for all i ∈ [k]. Hence all i ∈ [k], we have

σz(i) = ẑ(ξi) = ŷ(ξi)− M̂(ξi)x̂(ξi) = σy(i)− Miσx(i) = 0t,

where {ξ1, . . . , ξ
(m+d

d)
} are the distinct points defining the encoding of parallel RM code (see Defi-

nition 3.5). Therefore, ẑ parallel satisfies Cl. By Fact 4.19, there exists an auxiliary proof π2, which
makes Pst accepts with probability 1, and Item (T2) always passes.

Finally Item (T3) always passes due to the definition of ẑ. This completes the proof.

Lemma 4.23 (Soundness). Assume char(F) = 2 and |F| ≥ max
{

12md, 2101m log |F|
}

. Let δ ∈ [0, 1]
be arbitrary. If (x̂, ŷ) is δ-far from satisfying, i.e., δ-far from the restriction of (F, m, d, t)-SVSAT on G,
then P rejects with probability Ω(δ).

Proof. Let κ ≥ 1 be a large constant, the specific value of which depends on the hidden constants
in Theorem 4.14 and Theorem 4.20. By modifying the hidden constant in Ω(·) here and noticing
that δ-far implies δ′-far for any δ′ ≤ δ, we safely assume δ ≤ 1/κ2.

Fix arbitrary (x̂, ŷ) that is δ-far from satisfying. Assume that P rejects with probability at most
κ · δ, since otherwise the statement already holds. Then each of the tests Item (T1), Item (T2), and
Item (T3) reject with probability at most 3κ · δ. By choosing κ sufficiently large and according to
soundness guarantee of Pdt and Pst in Theorem 4.14 and Theorem 4.20, we know

1. (x̂, ŷ) is δ-close to (x, y), which is a pair of codewords of RMF,m,d,t that parallel satisfies Cp.

Since x̂, ŷ have the same length, this alse implies that x̂ is 2δ-close to x and ŷ is 2δ-close to y.

2. ẑ is δ-close to z, which is a codeword of RMF,m,2d,t that parallel satisfies Cl.

We aim to show that (G, (x, y)) ∈ (F, m, d, t)-SVSAT, which contradicts to the assumption that
(x̂, ŷ) is δ-far from satisfying and completes the proof.

Let σx, σy, σz be the messages of x, y, z respectively. It now suffices to prove the assignment σ
given by

σ(v) =

{
σx(i) v = xi

σy(i) v = yi

satisfies all constraints in Ep∪̇El.
By Item 1 and Fact 4.13, σ satisfies all constraints in Ep. To analyze constraints in El, we first

prove that z = y − M̂x in accordance with (1). Assume this is false for some entry p ∈ Fm, i.e.,

z(p) ̸= y(p)− M̂(p)x(p). (2)

Note that x, y, M̂ are all of parallel degree-d and z is of parallel degree-2d. Then by Schwartz-
Zippel lemma, (2) actually happens for at least 1 − 2d

|F| fraction of points p ∈ Fm. Now recall the
test in Item (T3), which checks precisely the above for a random p ∼ Fm with x, y, z replaced by
x̂, ŷ, ẑ. By Items 1 and 2 and a union bound, with probability at least 1− 5δ − 2d

|F| , on this random p

21

we have x̂(p) = x(p), ŷ(p) = y(p), ẑ(p) = z(p) and (2) happens, which makes Item (T3) reject. By
our assumption on |F| and δ ≤ 1/κ2 with κ sufficiently large, this rejection probability is at least
0.9 > 3κ · δ and contradicts to our assumption on the rejection probability of Item (T3). In short,
(2) can never happen.

Finally we are ready to show that constraints in El are satisfied by σ. By Item 2 and Fact 4.19,
σz(i) = 0t holds for all i ∈ [k], and thus

σy(i)− Miσx(i) = y(ξi)− M̂(ξi)x(ξi) = z(ξi) = σz(i) = 0.

Therefore, all constraints in El are also satisfied. This completes the whole soundness proof.

4.3 Putting Everything Together

Now, we are ready to prove the main theorems.

Proof of Theorem 4.1. We start with an arbitrary n-variable 4-REGULAR 3-COLORING instance Γ,
which prohibits algorithms of runtime 2o(n) in the worst case by Theorem 3.2 assuming ETH. By
Theorem 4.4, we obtain an SVecCSP instance G = (V, E, Ft

4, {Πe}e∈E) in time poly(n, 2n log k/k)

which preserves the satisfiability of Γ. In addition, t = O
(

n log k
k

)
and |V| = O(k), |E| = O(k).

Let m and d be integers to be chosen later satisfying

k ≤
(

m + d
d

)
. (3)

Let F be a field of characteristic two which contains F4 as a subfield and satisfies

|F| ≥ max
{

12md, 2101m log |F|
}

. (4)

By Fact 4.8, G is satisfiable iff there exists x̂, ŷ ∈ (Ft)|F|
m

such that (G, (x̂, ŷ)) ∈ (F, m, d, t)-SVSAT.
Then we construct the PCPP verifier P for (F, m, d, t)-SVSAT from Theorem 4.10 with δ = 1 to
obtain a PCP verifier (recall Definition 3.8) P ′ for the satisfiability of G.

The query complexity, completeness, alphabet, and randomness of P ′ follow from those of P
in Theorem 4.10; and the soundness of P ′ is the (unspecified) constant soundness parameter by
setting δ = 1 in Theorem 4.10. In particular,

the alphabet size is |Σ|t = |F|(d+1)·t = |F|O(dn log k/k)

and
the randomness is log(k + |F|m) + O

(
log0.1(k + |F|m) + log |F|

)
coins.

Then we apply Fact 3.11 and obtain a 2CSP instance Λ preserving the satisfiability of G (and thus
Γ) where

• the size of the alphabet of Λ is
N = |F|O(dn log k/k),

• the number of variables in Λ is at most

K = 2|F|m + 2log(k+|F|m)+O(log0.1(k+|F|m)+log |F|) · O(1) = (k + |F|m) · poly
(
|F|, 2log0.1(k+|F|m)

)
,

22

• the number of constraints in Λ is a constant multiple of the number of variables in Λ.

Finally we optimize the choice of m, d, |F|. Assume log k is a perfect square and is sufficiently
large and set

|F| = 21000 log k · 2
√

log k, m =
√

log k, d = 230
√

log k · 2
√

log k.

Then (
m + d

d

)
≥
(

d
m

)m

=
(

230 · 2
√

log k
)√log k

≥ k,

which is consistent with (3). We also have

12md = 12 · 230 · log k · 2
√

log k ≤ |F| and

2101m log |F| ≤ 2101
√

log k
(√

log k + log log k + 1000
)
≤ |F|,

which is consistent with (4). Moreover, Λ has alphabet size N and the number of variables K as
follows.

N =
(

log k · 2
√

log k
)O

(
n·log1.5 k·2

√
log k

k

)
and K = k · 2O(

√
log k log log k)

where N can be furthered simplified to

N =
(

2n/k
)2O(

√
log k)

,

Since Γ has no 2o(n)-time algorithm by assumption, Λ has the lower bound f (K) · NK/2ω(
√

log K log log K)
-

time for any computable function f as claimed.

The PCP statement Theorem 4.2 follows directly from the proof above.

Proof of Theorem 4.2. From any instance of 3SAT, there is a linear-size reduction to an instance of
4-REGULAR 3-COLORING [Mar10]. Therefore we only need to construct the desired PCP for 4-
REGULAR 3-COLORING. This follows directly from the verifier P ′ in the proof of Theorem 4.1. In
particular, we stick to the parameter choice there and obtain a PCP verifier with alphabet size

2n·2O(
√

log k)/k

and randomness
log k + O

(√
log k log log k

)
.

The implicit constant soundness of P ′ can be boosted to 1
2 by a constant number of randomness-

efficient query repetitions (see e.g., [BGH+06, Lemma 2.11]).

23

5 From 4-REGULAR 3-COLORING to SVecCSP

The goal of this section is to reduce 4-REGULAR 3-COLORING, which is known to be ETH-hard
Theorem 3.2, to SVecCSP.

Theorem (Theorem 4.4 Restated). There is a reduction algorithm such that the following holds. Given
as input an integer 6 ≤ k ≤ n and an n-variable 4-REGULAR 3-COLORING instance Γ, it produces an
SVecCSP instance G = (V, E, Σ, {Πe}e∈E) where:

(R1) VARIABLES AND CONSTRAINTS. |V| = O(k) and |E| = O(k).

(R2) RUNTIME. The reduction runs in time poly(n, 2n log k/k).

(R3) ALPHABET. Σ = Ft
4 where t = O

(
n log k

k

)
.

(R4) SATISFIABILITY. G is satisfiable iff Γ is satisfiable.

The reduction starts by grouping vertices into supernodes, which take vector values. Then
the constraints between supernodes correspond to (possibly multiple) constraints in the original
instance. To make sure the new instance has small size, we need a grouping method (Lemma 5.1)
that produces as few supernodes and constraints as possible. Then we make duplicates of vari-
ables and rearrangements of their coordinates to make sure parallel constraints are scattered prop-
erly (Proposition 5.4). Finally we make more duplicates to ensure that linear constraints form a
matching and parallel constraints are applied on all coordinates (Proposition 5.5).

5.1 From 4-REGULAR 3-COLORING to VecCSP

The following Lemma 5.1 serves the purpose of the grouping method and can be seen as a param-
eterized version of the sparsification lemma [IP01, IPZ01] in classical computation complexity.

Lemma 5.1 ([Mar10, KMPS23]). There is an algorithm A such that the following holds. A takes as
input a 2CSP instance G = (V, E, Σ, {Πe}e∈E) and an integer 6 ≤ k ≤ |V|, outputs a 2CSP instance
G′ = (V ′, E′, Σt, {Π′

e}e∈E′) in time poly
(
|V|, |Σ|t

)
where |V ′| = k and t ≤ O

(
(|V|+ |E|) · log k

k

)
, such

that G is satisfiable iff G′ is satisfiable. In addition, the constraint graph of G′ is a 3-regular graph.
In the actual construction, each x ∈ V ′ corresponds to a subset S(x) ⊆ V of size t and takes values in

ΣS(x) as assignments to variables in S(x). For each e = {x, y} ∈ E′, the constraint Πe is the conjunction
of the following:

1. equality constraints on common variables of S(x) and S(y);

2. constraints across6 S(x) and S(y) in G.

Remark 5.2. Note that since the constraint graph of G′ is 3-regular, the total number of constraints
in G′ is linear in |V ′|. In addition, t only incurs an extra log k = ko(1) blowup over the information
theoretic limit (|V| + |E|)/k. This is crucial for us to get almost tight hardness. Indeed, naive
approaches (e.g., the reduction in [GLR+23]) will incur a polynomial loss. We also remark that
it is an open problem whether the extra log k can be further removed, which, if true, implies a
precise parameterized analog of the sparsification lemma and has many applications. See [Mar10]
for detailed discussions.

6The construction in [KMPS23] ensures that each original constraint (u, v) ∈ E is covered by some new constraint
(x, y) ∈ E′ in the sense that u ∈ S(x), v ∈ S(y). This means that we only need to check the cross constraints in G′ and
omit the ones purely inside S(x) or inside S(y).

24

Given Lemma 5.1, we first obtain a vector-valued CSP (VecCSP) instance (Proposition 5.4),
which we will soon convert into SVecCSP (Proposition 5.5).

Definition 5.3 (VecCSP, [GLR+23]). A CSP instance G = (V, E, Σ, {Πe}e∈E) is a VecCSP if the
following properties hold.

• Σ = Ft is a t-dimensional vector space over a finite field F with char(F) = 2.

• For each constraint e = {u, v} ∈ E where u = (u1, . . . , ut) and v = (v1, . . . , vt) are two
variables in V, the constraint validity function Πe is classified as one of the following cases:

– LINEAR. There exists a matrix Me ∈ Ft×t such that

Πe(u, v) = 1u=Mev.

– PARALLEL. There exists a sub-constraint Πsub
e : F × F → {0, 1} and a subset of coordi-

nates Qe ⊆ [t] such that Πe checks Πsub
e for every coordinate in Qe, i.e.,

Πe(u, v) =
∧

i∈Qe

Πsub
e (ui, vi).

• Each variable is related to at most one parallel constraint.

Note that SVecCSP, the special case of VecCSP we use, additionally enforces linear constraints
to be a matching and enforces parallel constraints to operate on all coordinates (i.e., Qe = [t]).

Proposition 5.4 (VecCSP Intermediate Instance). There is a reduction algorithm such that the following
holds. Given as input an integer 6 ≤ k ≤ n and an n-variable 4-REGULAR 3-COLORING instance Γ, it
produces an VecCSP instance G = (V, E, Σ, {Πe}e∈E) where:

• VARIABLES AND CONSTRAINTS. |V| = O(k) and |E| = O(k).

• RUNTIME. The reduction runs in time poly(n, 2n log k/k).

• ALPHABET. Σ = Ft
4 where t = O

(
n log k

k

)
.

• SATISFIABILITY. G is satisfiable iff Γ is satisfiable.

Proof. We first plug the 4-REGULAR 3-COLORING instance Γ from Theorem 3.2 into Lemma 5.1
and obtain a 2CSP instance G′ = (V ′, E′, Ft

4, {Π′
e}e∈E′). By the construction in Lemma 5.1, each

x ∈ V ′ corresponds to a set S(x) of t variables in Γ. We fix an arbitrary order in S(x) and use
x[i] to denote the i-th variable in S(x). From the fact that Γ is 4-regular and the construction in
Lemma 5.1, the produced 2CSP instance G′ has the following properties:

• for each {x, y} ∈ E′ and i ∈ [t], there are at most five sub-constraints between x[i] and
{y[j] : j ∈ [t]}: at most one equality check (Item 1 of Lemma 5.1) and at most four coloring
checks (Item 2 of Lemma 5.1);

• the constraint graph of G′ is 3-regular;

• |V ′| = k, |E′| = O(k), t = O
(

n log k
k

)
, and the runtime is poly(n, k, 4t) = poly(n, 2n log k/k);

• G′ is satisfiable iff Γ is satisfiable.

25

Figure 1: An example of G′ and G′′ and the permutation to parallelize sub-constraints.

Thus, we duplicate each x ∈ V ′ into constant many copies, and distribute the sub-constraints
in G′ onto different copies. This produces another 2CSP instance G′′ = (V ′′, E′′, Ft

4, {Π′′
e }e∈E′′)

where

• for each e = {u, v} ∈ E′′, the constraint Π′′
e has exactly one type of sub-constraint (i.e.,

equality or coloring), which forms a partial (non-parallel) matching across the coordinates
(i.e., S(u), S(v)) of u, v;

(Note that the consistency checks among duplicates will be added later.)

• each variable in V ′′ is related to exactly one constraint;

• |V ′′| = O(|V ′|) = O(k) and |E′′| = |E′| = O(k).

The above procedure is efficient: we only need to perform matching decompositions for each
{x, y} ∈ E′ separately for equality checks and coloring checks.

Before adding the consistency checks among duplicates, we first permute coordinates of each
variable in V ′′ to parallelize the partial matchings. This is possible since each variable in V ′′ is
related to exactly one constraint in G′′. For a fixed x ∈ V ′, let x1, . . . , xm ∈ V ′′ be the duplicates
of x ∈ V ′. After the permutation, we add linear constraints between xi and xi+1 for 1 ≤ i < m to

26

check whether they are consistent (i.e., the correct permuted copies of each other). See Figure 1 for
a streamlined presentation.

The construction of the VecCSP instance G = (V, E, Σ = Ft
4, {Πe}e∈E) is completed after the

permutation and adding the consistency checks among duplicated. The satisfiability is naturally
preserved, |V| = |V ′′| = O(k), and |E| ≤ |E′′| + |V ′′| = O(k). In terms of Definition 5.3, the
consistency checks are linear constraints and the constraints in G′′ after permutation are parallel
constraints.

5.2 From VecCSP to SVecCSP

Given Proposition 5.4, Theorem 4.4 follows directly by the following general reduction from
VecCSP to SVecCSP.

Proposition 5.5 (VecCSP to SVecCSP). There is a reduction algorithm such that the following holds.
Given as input a VecCSP instance G = (V, E, Ft, {Πe}e∈E), it produces an SVecCSP instance G′ =
(V ′, E′, Ft, {Π′

e}e∈E′) where:

• VARIABLES AND CONSTRAINTS. |V ′| = O(|V|+ |E|) and |E′| = O(|V|+ |E|).
• RUNTIME. The reduction runs in time poly(|V|, |E|, |F|t).
• SATISFIABILITY. G′ is satisfiable iff G is satisfiable.

Proof. Now that we get a VecCSP instance G, we show how to modify it to to obtain an SVecCSP
instance G′ that satisfies properties Item (S3) and Item (S4). The construction consists of two steps
and see Figure 2 for a streamlined presentation.

• First, from G, get another VecCSP instance Ĝ which satisfies Item (S3).

• Next, based on Ĝ, build a SVecCSP instance G′ which in addition satisfies Item (S4).

To satisfy Item (S3), we split each variable x in V into a parallel variable xp and a linear variable
xl in Ĝ for parallel and linear constraints separately. Then we construct the constraints Ê in Ĝ.

• For each linear constraint e = {x, y} ∈ E, we add the same linear constraint on {xl, yl} in Ê.

• For each parallel constraint e = {x, y} ∈ E with sub-constraint Πsub
e and subset of coor-

dinates Qe, we add a parallel constraint on {xp, yp} in Ê, which has Πsub
e applied on all

coordinates.

• We need to additionally check in Ĝ the partial equality between xp and xl only on the sub-
set of coordinates Qe. Since each variable x is related to at most one parallel constraint as
guaranteed in Definition 5.3, this additional check is well-defined.

This check can be written as MQe x
p = MQe x

l, where MQe is a matrix which projects on
coordinates inside Qe and zeroing out coordinates outside Qe. To have the matrix only on
one side, we introduce an additional variable xa in Ĝ, and add two linear constraints xa =
MQe x

p and xa = MQe x
l to Ê.

We first show that the above construction preserves the satisfiability as follows.

• Given a solution σ for the original G, assign σ(x) to xl and xa, which satisfies all linear
constraints in Ê. Then assign σ(x) to xp on the subset Qe of coordinates, which satisfies all the

27

partial equality checks in Ê. Finally, assign arbitrary solution7 of Πsub
e to xp on coordinates

outside Qe, which satisfies all the parallel constraints in Ê.

• Given a solution σ′ of Ĝ, assign σ′(xl) to every x in G, which satisfies all linear constraints
in E. Since σ′(xp) satisfies the parallel constraint in G′ for all coordinates and the partial
equality check guarantees consistency between σ′(xl) and σ′(xp) on the coordinates Qe, the
corresponding parallel constraints in E are satisfied as well.

Moreover, the variable set V̂ ⊆ ⋃
x∈V

{
xp, xl, xa

}
has size |V̂| = O(|V|) and the constraint set Ê

has size |Ê| ≤ |E|+ 2 · |V| = O(|V|+ |E|).
Now we construct G′ from Ĝ to satisfy Item (S4). The final variable set of G′ will be V ′ = X∪̇Y,

which is constructed along with the constraint set E′ = E′
l ∪̇E′

p as follows.

• Initialize X, Y as disjoint copies of V̂ and initialize E′
l = E′

p = ∅. For a variable u ∈ V̂, we
denote as xu, yu its X-copy and Y-copy in V ′, respectively.

• For each u ∈ V̂, we add an equality, which is a linear constraint with the identity matrix, in
E′
l between xu and yu.

Note that this is consistent with Item (S4).

• Then for each parallel constraint e = {xp, yp} ∈ Ê, we add the same constraint in E′
p on the

X-copies of xp and yp.

• Finally for each linear constraint8 e = {u, v} ∈ Ê that checks u = Mev, we add new variables
xe to X and ye to Y. Then we impose a linear constraint ye = Mexe between them in E′

l , which
is consistent with Item (S4). We further add two equality constraints, which are identified as
parallel constraints in E′

p, between xe and xu, as well as between ye and xv.

The construction of G′ preserves the satisfiability of Ĝ as all the duplicates in G′ of variables
in Ĝ are connected by identity constraints. Moreover, |X| = |Y| ≤ |V̂|+ |Ê| = O(|V|+ |E|) and
|E′| ≤ |V̂|+ |Ê|+ 3 · |Ê| = O(|V|+ |E|) as desired.

6 PCPP for Multi-Test Problem

In this section we prove Theorem 4.14 for DOUBLETEST and Theorem 4.20 for SINGLETEST. For
convenience, we define the following multi-test problem (MULTITEST) which generalizes DOU-
BLETEST and SINGLETEST in a straightforward fashion.

Definition 6.1 (MULTITEST). Assume char(F) = 2. (F, m, d, t, u)-MULTITEST is a pair language
over Σx = {0, 1}, Σy = Ft consisting of all words in the form of w = (C, T1 ◦ · · · ◦ Tu), where

• C is a Boolean circuit with u · |F|m log |F| input bits and T1, . . . , Tu ∈ (Ft)|F|
m

are codewords
of RMF,m,d,t;

• if we view F as {0, 1}log |F|, T1 ◦ · · · ◦ Tu parallel satisfies C.

7Technically it is possible that Πsub
e is not satisfiable. If Qe = ∅, then we can simply replace Πsub

e by any satisfiable
sub-constraint. If otherwise Qe ̸= ∅, then the original G is not satisfiable and Ĝ is also not satisfiable. Therefore the
construction still works.

8In particular, e = {u, v} can be
{

xl, yl
}

or
{

xl, xa
}

or {xp, xa}.

28

Figure 2: An illustration of the reduction from G to Ĝ, and from Ĝ to G′.

We define the input length |w| to be the size of C plus u · |F|m log |F|.

By setting u = 1 or u = 2, we immediately obtain (F, m, d, t)-SINGLETEST or (F, m, d, t)-
DOUBLETEST. Hence Theorem 4.20 and Theorem 4.14 follows directly from the following result
for MULTITEST.

Theorem 6.2 (PCPP for MULTITEST). Assume char(F) = 2 and |F| ≥ max
{

6md, 2100m log |F|
}

.
Assume u ≤ 250 is a positive integer. Then for any δ ∈ [0, 1], (F, d, m, t, u)-MULTITEST has

an
(

O(1), log |w|+ O
(

log0.1 |w|+ log |F|
)

, δ, Ω(δ), Σt
)

-PCPP verifer Pmt,

where |w| is the input length of (F, d, m, t, u)-MULTITEST and Σ = Fd+1.

Proof sketch. Let (C, T1 ◦ · · · ◦ Tu) be an input for (F, d, m, t, u)-MULTITEST. Our goal is to check
whether T1 ◦ · · · ◦ Tu is δ-close to some T∗

1 ◦ · · · ◦ T∗
u ∈ MULTITEST(C), i.e., the restriction of the

pair language MULTITEST on C. In other words, the following two conditions hold:

(C1) for each j ∈ [u], T∗
j ∈ F|F|m is the truth table of a polynomial of parallel degree d;

(C2) T∗
1 ◦ · · · ◦ T∗

u , viewed as a word in {0, 1}u|F|m log |F|, parallel satisfies the Boolean circuit C.

To guarantee Item (C1), we use the PCPP verifier Pldt from the codeword testing of RMF,m,d,t

(see Theorem 3.6). Given T∗
1 ◦ · · · ◦ T∗

u satisfying Item (C1), we aim to test that it also satisfies
Item (C2). That is, for each fixed i ∈ [t], T∗

1 [i] ◦ · · · ◦ T∗
u [i] satisfies the Boolean circuit C.

To this end, we will use the PCPP verifier Pckt of CKTVAL (see Theorem 3.13). This alone,
however, is not sufficient as Pckt cannot rule out the case that changing o(1) fraction of entries in
T∗

1 [i] ◦ · · · ◦ T∗
u [i] satisfying the circuit C. To fix this issue, we have to exploit the fact that each T∗

j [i]

29

is supposed to be the truth table of a degree-d polynomial, which, by Schwartz-Zippel lemma and
the fact that u is a constant, forbids such attacks. As a result, we need to incorporate the codeword
testing circuit (see Theorem 3.7) to enforce the low degree condition.

Unfortunately, this still does not work due to a subtle alphabet mismatch: the codeword testing
works over F but Item (C2) needs to flat F as {0, 1}log |F|. Therefore, the distance guaranteed by
the low degree condition can be dilated by a worst-case factor of log |F| = ω(1) after converting F

to {0, 1}log |F|, for which reason the mentioned attack can still be carried out. To address this issue,
we employ a standard approach to lift the conversion of F via error correcting codes [BGH+06,
ALM+01, Din07]. More formally, after flattening F as {0, 1}log |F|, we take it through an error
correcting code with constant rate and distance, which produces a codeword in {0, 1}O(log |F|) and,
more importantly, has constant relative distance against other codewords.

In summary, to handle Item (C2), we need to use Pckt to check the validity of the combination
of (1) the original circuit C, (2) the codeword testing procedure, and (3) the error correcting lifting.
This is parallel for each coordinate and is presented in Subsection 6.1. Then in Subsection 6.2, we
put together the argument for Item (C1) and prove Theorem 6.2.

Remark 6.3. One may wonder the necessity of using a separate codeword testing for Item (C1), as
we anyway need to use it for Item (C2). The difference lies in the proximity: the former uses The-
orem 3.6 which guarantees the parallel proximity (i.e., including all the dimensions [t]), whereas
the latter uses Theorem 3.7 which only implies coordinate-wise proximity (i.e., individually for
each coordinate i ∈ [t]).

Without the former, we can only get an Ω(t · δ) final proximity via a union bound. Upgrad-
ing the latter needs to generalize the construction of Pckt to the parallel setting, which arguably
requires more work. Hence we stick to our current presentation for simplicity.

6.1 Single-Coordinate Checking Circuit

As sketched above, we construct another Boolean circuit C′ for Item (C2), which augments the
original circuit C with an alphabet lifting via error correcting code and a low-degree check. Later,
this single-coordinate checking circuit will be applied in parallel for every coordinate.

Lifted Flattening of F. We will use the following standard error correcting code to achieve such
an alphabet lifting.

Proposition 6.4 (Binary ECC with Constant Rate and Distance [Jus72]). For every n ≥ 1, there
exists an efficiently computable error correcting code with the encoding map ECCn : {0, 1}n → {0, 1}7n of
relative distance δ(ECCn) ≥ 0.01.

Let Enc : F → {0, 1}7 log |F| to be ECClog |F| composed with the natural flattening of F into
{0, 1}log |F|. Let Dec be the corresponding decoding function.

Later putting back into the construction of Pmt, we will apply Enc to every entry of T1[i] ◦ · · · ◦
Tu[i] ∈ Fu|F|m for every coordinate i ∈ [t]. For convenience, we define the parallel encoding map
Enc⊙ : F|F|m → {0, 1}7|F|m log |F| as

Enc⊙(z)(k, ·) = Enc(zk) for z ∈ F|F|m and k ∈ [|F|m], (5)

where we view Enc⊙(z) ∈ {0, 1}7|F| log |F| as a function [|F|m]× [7 log |F|] → {0, 1} and the index
k points to the lifted flattening of the k-th entry of z. Given the definition of Enc⊙, the lifted
flattening of T1[i] ◦ · · · ◦ Tu[i] can be simply represented as Enc⊙(T1[i]) ◦ · · · ◦ Enc⊙(Tu[i]).

30

The Construction of C′. Given the lifted flattening of alphabet, we now present the construction.
The circuit C′ takes as input y1 ◦ · · · ◦ yu where each yj ∈ {0, 1}7|F|m log |F| is supposed to be Enc⊙(ŷj)

for some ŷj ∈ F|F|m . Note that ŷj will be Tj[i], rolling over all coordinates i ∈ [t]. The circuit C′

check the following three things in order:

(S1) Check if each yj is a codeword of Enc⊙ and, if so, compute each ŷj and view it as a binary
string via the standard flattening of F.

This requires to decode a total number of u · |F|m words in {0, 1}7 log |F|, which can be has
circuit size u|F|m · polylog|F| ≤ |F|mpoly|F|.

(S2) Check if each ŷi satisfies Cldt from Theorem 3.7, i.e., ŷi is the truth table of a degree-d poly-
nomial.

This has size |F|mpoly|F| by Theorem 3.7.

(S3) Check whether ŷ1 ◦ · · · ◦ ŷu satisfies the original circuit C.

This has size precisely the size of C.

Now we list properties of C′.

Fact 6.5 (Satisfiability). If Enc⊙(ŷ1) ◦ · · · ◦ Enc⊙(ŷu) satisfies the circuit C′, then ŷ1 ◦ · · · ◦ ŷu satisfies
the circuit C.

Fact 6.6 (Size). Recall from Definition 6.1 that |w| is the input length of (F, m, d, t)-MULTITEST, which
equals the size of C plus u · |F|m log |F|. The size of the circuit C′ is at most |w| · poly|F| and the input of
C′ has length O(|w|).

Claim 6.7 (Distance). If y1 ◦ · · · ◦ yu passes Items (S1) and (S2) but not Item (S3), then it is 2−60-far
from solutions of C′.

Proof. Let z1 ◦ · · · ◦ zu be an arbitrary solution of C′, which means it passes Items (S1) to (S3). Let
ẑ1, . . . , ẑu be the decoding outcome from Item (S1). Then there exists j ∈ [u] such that ŷj ̸= ẑj.
Since they both pass Item (S2), ŷj and ẑj, viewed as an element from F|F|m , correspond to truth
tables of distinct degree-d polynomials. Hence ∆(ŷj, ẑj) ≥ 1 − d

|F| >
1
2 by Schwartz-Zippel lemma

and our assumption on |F|. Recall from (5) that Enc⊙ applies Enc entrywise. Since yj = Enc⊙(ŷj)

and zj = Enc⊙(ẑj), we now have ∆(yj, zj) > 0.01 · 1
2 by Proposition 6.4. Since u ≤ 250, we have

∆(y1 ◦ · · · ◦ yu, z1 ◦ · · · ◦ zu) ≥
∆(yj, zj)

u
> 2−60

as desired.

6.2 Combining Codeword Testing

Now we are ready to combine the codeword testing for Item (C1) and the single-coordinate check-
ing circuit C′ for Item (C2) to prove Theorem 6.2.

Proof of Theorem 6.2. The auxiliary proof for Pmt consists of two parts.

• The first part is πldt,1, . . . , πldt,u. Each πldt,i has alphabet Σt and is constructed by Theorem 3.6,
which is supposed to be the auxillary proof for codeword testing of RMF,m,d,t on Ti.

31

• The second part is denoted by πckt, which has the alphabet {0, 1}t naturally embedded into
Σt. For each coordinate i ∈ [t], πckt[i] is constructed by Theorem 3.13 for Pckt to check if
Enc⊙(T1[i]) ◦ · · · ◦ Enc⊙(Tu[i]) satisfies the circuit C′.

Testing Procedure of Pmt. Now we describe the testing procedure. Pmt executes one of the fol-
lowing two tests with equal probability.

• For each i ∈ [u], Pmt invokes Pldt to run the codeword testing for RMF,m,d,t on Ti ◦ πldt,i. This
checks whether Ti ∈ Im(RMF,m,d,t).

• Pmt parallel simulates Pckt to test if Enc⊙(T1[i]) ◦ · · · ◦ Enc⊙(Tu[i]) ◦ πckt[i] satisfies C′ for all
coordinates i ∈ [t].

In detail, for each coordinate i ∈ [t], Pmt tosses random coins as Pckt does, and probes entries
of πckt[i] if needed. Whenever Pckt needs to probe some bit of Enc⊙(Tj[i]), Pmt queries the
corresponding entry (i.e., the index k in (5)) of Tj[i], performs the lifted flattening of F for
that entry, and obtains the desired bit.

We emphasize that the randomness used to simulate Pckt is the same for all coordinates.
Therefore, the queries by Pckt are simulated in parallel for all coordinates i ∈ [t], as the
query locations are uniquely determined by the randomness.

Parameters of Pmt. Since u is a constant and both Pldt,Pckt have constant queries (see Theorem 3.6
and Theorem 3.13), Pmt makes constant queries.

Recall that the input length |w| equals the size of C plus u|F|m log |F|. By Theorem 3.6, the first
part tosses

m log |F|+ O(log log |F|+ log m) ≤ log |w|+ O(log m) ≤ log |w|+ O(log |F|)

coins, where we used the assumption on |F|. By Theorem 3.13 and Fact 6.6, the second part tosses

log(|w| · poly|F|) + O
(

log0.1(|w| · poly|F|)
)
≤ log |w|+ O

(
log0.1 |w|+ log |F|

)
coins. Since we only execute one of them, the number of random coins is the maximum of the
above two as desired.

Completeness and Soundness. The completeness is straightforward by the completeness of Pldt

(see Theorem 3.6) and Pckt (see Theorem 3.13) and the construction of C′ (see Subsection 6.1). We
focus on the soundness analysis: assuming that T1 ◦ · · · ◦ Tu is δ-far from MULTITEST(C) (i.e., we
do not have Items (C1) and (C2)), Pmt rejects with probability Ω(δ). By modifying the hidden
constant in Ω(·) and noticing that δ-far implies δ′-far for any δ′ ≤ δ, we additionally assume
δ ≤ 2−100.

Assume towards contradiction that the above soundness statement is false. We first show that
each Tj is close to being parallel degree-d. This comes from the following Fact 6.8, which can be
deduced directly from Theorem 3.6.

Fact 6.8. If for some j ∈ [u], Tj is δ-far from Im(RMF,m,d,t), then Pmt rejects with probability Ω(δ).

Now we assume each Tj is δ-close to some T∗
j ∈ Im(RMF,m,d,t), which corresponds to Item (C1).

Next, we show T∗
1 ◦ · · · ◦ T∗

u parallel satisfies C, which corresponds to Item (C2). By Fact 6.5, it
suffices to show for each coordinate i ∈ [t] that Enc⊙(T∗

1 [i]) ◦ · · · ◦ Enc⊙(T∗
u [i]) satisfies C′, which

is precisely the following Claim 6.9.

32

Claim 6.9. For each coordinate i ∈ [t], Enc⊙(T∗
1 [i]) ◦ · · · ◦ Enc⊙(T∗

u [i]) satisfies Items (S1) to (S3).

Given Claim 6.9, we arrive at a contradiction and complete the soundness analysis.

Finally we prove Claim 6.9.

Proof of Claim 6.9. Note that Item (S1) is already satisfied. Since each T∗
j ∈ Im(RMF,m,d,t), each T∗

j [i]
is the truth table of a degree-d polynomial, which means Item (S2) is also satisfied. If Item (S3)
is false for some i ∈ [t], then by Claim 6.7, Enc⊙(T∗

1 [i]) ◦ · · · ◦ Enc⊙(T∗
u [i]) is 2−60-far from any

solution of C′. Observe that

∆(Enc⊙(T1[i]) ◦ · · · ◦ Tu[i], Enc⊙(T∗
1 [i]) ◦ · · · ◦ T∗

u [i]) ≤ ∆(Enc⊙(T1) ◦ · · · ◦ Tu, Enc⊙(T∗
1) ◦ · · · ◦ T∗

u)

≤ max
j∈[u]

∆(Enc⊙(Tj), Enc⊙(T∗
j))

(since ∆ is relative distance)

≤ δ. (by the choice of T∗
j)

Since δ ≤ 2−100, we know that Enc⊙(T1[i]) ◦ · · · ◦ Tu[i] is 2−70-far from solutions of C′. By The-
orem 3.13, this means Pmt, which executes Pckt with half probability, rejects with probability
1
2 ·

1
2 = Ω(δ). Recall that we assumed that Pmt does not reject with probability Ω(δ), which is a con-

tradiction. Thus Item (S3) should also be satisfied and this completes the proof of Claim 6.9.

Acknowledgement

We thank Eli Ben-Sasson for clarifying questions regarding [BSSVW03] and thank Karthik C.S. for
pointing out the application to MAX k-COVERAGE (Theorem 1.6).

References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cam-
bridge University Press, USA, 1st edition, 2009. 6

[ABSS97] Sanjeev Arora, László Babai, Jacques Stern, and Z. Sweedyk. The hardness of ap-
proximate optima in lattices, codes, and systems of linear equations. J. Comput. Syst.
Sci., 54(2):317–331, 1997. 4

[AFWZ95] Noga Alon, Uriel Feige, Avi Wigderson, and David Zuckerman. Derandomized
graph products. Comput. Complex., 5(1):60–75, 1995. 4

[ALM+01] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and the hardness of approximation problems. Journal of the ACM
(JACM), 45:501–555, 09 2001. 16, 30

[App17] Benny Applebaum. Exponentially-hard gap-csp and local prg via local hardcore
functions. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science
(FOCS), pages 836–847, 2017. 3

[AR94] Noga Alon and Yuval Roichman. Random Cayley graphs and expanders. Random
Structures & Algorithms, 5(2):271–284, 1994. 38

33

[BEKP13] Edouard Bonnet, Bruno Escoffier, Eun Jung Kim, and Vangelis Th. Paschos. On
subexponential and fpt-time inapproximability. In Gregory Gutin and Stefan Szei-
der, editors, Parameterized and Exact Computation, pages 54–65, Cham, 2013. Springer
International Publishing. 8

[BGH+06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan.
Robust PCPs of proximity, shorter PCPs, and applications to coding. SIAM Journal
on Computing, 36(4):889–974, 2006. 8, 13, 14, 23, 30

[BSSVW03] Eli Ben-Sasson, Madhu Sudan, Salil Vadhan, and Avi Wigderson. Randomness-
efficient low degree tests and short pcps via epsilon-biased sets. In Proceedings of the
Thirty-Fifth Annual ACM Symposium on Theory of Computing, STOC ’03, page 612–621,
New York, NY, USA, 2003. Association for Computing Machinery. 8, 33, 36, 38, 39,
41, 43, 45

[CAGK+19] Vincent Cohen-Addad, Anupam Gupta, Amit Kumar, Euiwoong Lee, and Jason Li.
Tight FPT Approximations for k-Median and k-Means. In Christel Baier, Ioannis
Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International
Colloquium on Automata, Languages, and Programming (ICALP 2019), volume 132 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 42:1–42:14, Dagstuhl,
Germany, 2019. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. 5

[CCK+17] Parinya Chalermsook, Marek Cygan, Guy Kortsarz, Bundit Laekhanukit, Pasin
Manurangsi, Danupon Nanongkai, and Luca Trevisan. From gap-ETH to FPT-
inapproximability: Clique, dominating set, and more. In Chris Umans, editor, 58th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA,
USA, October 15-17, 2017, pages 743–754. IEEE Computer Society, 2017. 3, 4, 8

[CFG+16] Marek Cygan, Fedor V. Fomin, Alexander Golovnev, Alexander S. Kulikov, Ivan Mi-
hajlin, Jakub Pachocki, and Arkadiusz Socala. Tight bounds for graph homomor-
phism and subgraph isomorphism. In Robert Krauthgamer, editor, Proceedings of the
Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016,
Arlington, VA, USA, January 10-12, 2016, pages 1643–1649. SIAM, 2016. 10

[CFLL23] Yijia Chen, Yi Feng, Bundit Laekhanukit, and Yanlin Liu. Simple combinatorial con-
struction of the ko(1)-lower bound for approximating the parameterized k-clique.
CoRR, abs/2304.07516, 2023. 3

[CHKX06] Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Strong computational lower
bounds via parameterized complexity. J. Comput. Syst. Sci., 72(8):1346–1367, 2006. 3

[Din07] Irit Dinur. The PCP theorem by gap amplification. J. ACM, 54(3):12–es, jun 2007. 6,
8, 30

[Fei98] Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM
(JACM), 45(4):634–652, 1998. 5

[FG06] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006. 3, 10

34

[FGL+96] Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario Szegedy. In-
teractive proofs and the hardness of approximating cliques. J. ACM, 43(2):268–292,
1996. 4

[FS95] Katalin Friedl and Madhu Sudan. Some improvements to total degree tests. In Pro-
ceedings Third Israel Symposium on the Theory of Computing and Systems, pages 190–198.
IEEE, 1995. 36, 45

[FSLM20] Andreas Emil Feldmann, Karthik C. S., Euiwoong Lee, and Pasin Manurangsi. A
survey on approximation in parameterized complexity: Hardness and algorithms.
Algorithms, 13(6), 2020. 8

[GLR+23] Venkatesan Guruswami, Bingkai Lin, Xuandi Ren, Yican Sun, and Kewen Wu. Pa-
rameterized inapproximability hypothesis under ETH. CoRR, abs/2311.16587, 2023.
4, 6, 7, 8, 14, 15, 16, 24, 25

[GRS23] Venkatesan Guruswami, Xuandi Ren, and Sai Sandeep. Baby PIH: Parameterized
inapproximability of Min CSP. arXiv preprint arXiv:2310.16344, 2023. 5

[Hoc97] Dorit S. Hochbaum. Approximation algorithms for NP-hard problems. SIGACT
News, 28(2):40–52, jun 1997. 5

[IP01] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of
Computer and System Sciences, 62:367–375, 2001. 9, 24

[IPZ01] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have
strongly exponential complexity? Journal of Computer and System Sciences, 63(4):512–
530, 2001. 24

[JM21] Akhil Jalan and Dana Moshkovitz. Near-optimal Cayley expanders for abelian
groups. In 41st IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, 2021. 38

[Jus72] Jørn Justesen. Class of constructive asymptotically good algebraic codes. IEEE Trans.
Inf. Theory, 18:652–656, 1972. 30

[KK22] Karthik C. S. and Subhash Khot. Almost polynomial factor inapproximability for pa-
rameterized k-clique. In Shachar Lovett, editor, 37th Computational Complexity Con-
ference, CCC 2022, July 20-23, 2022, Philadelphia, PA, USA, volume 234 of LIPIcs, pages
6:1–6:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. 3

[KMPS23] Karthik C. S., Dániel Marx, Marcin Pilipczuk, and Uéverton S. Souza. Condi-
tional lower bounds for sparse parameterized 2-CSP: A streamlined proof. CoRR,
abs/2311.05913, 2023. 7, 16, 24

[KT00] Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures for
error-correcting codes. In Proceedings of the Thirty-Second Annual ACM Symposium on
Theory of Computing, STOC ’00, page 80–86, New York, NY, USA, 2000. Association
for Computing Machinery. 3

[Lin21] Bingkai Lin. Constant approximating k-clique is W[1]-hard. In Samir Khuller and
Virginia Vassilevska Williams, editors, STOC ’21: 53rd Annual ACM SIGACT Sympo-
sium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 1749–1756.
ACM, 2021. 3

35

[LRSW22] Bingkai Lin, Xuandi Ren, Yican Sun, and Xiuhan Wang. On lower bounds of ap-
proximating parameterized k-clique. In Mikolaj Bojanczyk, Emanuela Merelli, and
David P. Woodruff, editors, 49th International Colloquium on Automata, Languages, and
Programming, ICALP 2022, July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages
90:1–90:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. 3, 4

[LRSW23] Bingkai Lin, Xuandi Ren, Yican Sun, and Xiuhan Wang. Improved hardness of ap-
proximating k-clique under ETH. In 64th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023, pages 285–
306. IEEE, 2023. 3, 36, 37, 38, 45

[LRSZ20] Daniel Lokshtanov, M. S. Ramanujan, Saket Saurabh, and Meirav Zehavi. Parame-
terized complexity and approximability of directed odd cycle transversal. In Shuchi
Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 2181–2200. SIAM, 2020.
4, 11

[Man20] Pasin Manurangsi. Tight running time lower bounds for strong inapproximability of
maximum k-coverage, unique set cover and related problems (via t-wise agreement
testing theorem). In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 62–81. SIAM, 2020. 4, 5

[Mar10] Dániel Marx. Can you beat treewidth? Theory Comput., 6(1):85–112, 2010. 7, 16, 23,
24

[PS94] Alexander Polishchuk and Daniel A Spielman. Nearly-linear size holographic
proofs. In Proceedings of the twenty-sixth annual ACM symposium on Theory of com-
puting, pages 194–203, 1994. 45, 46

[Rao11] Anup Rao. Parallel repetition in projection games and a concentration bound. SIAM
Journal on Computing, 40(6):1871–1891, 2011. 4

[RS96] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with
applications to program testing. SIAM Journal on Computing, 25(2):252–271, 1996. 37,
41, 48, 49

[Sch80] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
J. ACM, 27(4):701–717, oct 1980. 8

A Derandomized Parallel Low Degree Test

In this section, we design a derandomized parallel low degree test to prove Theorem 3.6 and The-
orem 3.7. This is obtained by combining the derandomized low degree test [BSSVW03, Theorem
4.1] with the parallel low degree test [LRSW23, Lemma 7.7], where the latter builds on [FS95].
While the combination is standard, we decide to expand the proof sketch in [BSSVW03] to a full
proof for completeness.

Theorem (Theorem 3.6 Restated). Assume char(F) = 2 and |F| ≥ max
{

6md, 2100m log |F|
}

. Let
Σ = Fd+1 be the set of univariate degree-d polynomials over F. There exists an efficient verifier Pldt with
the following properties.

36

• The input of Pldt is T ◦ π, where T ∈ (Ft)|F|
m

is supposed to be a codeword of RMF,m,d,t and
π ∈ (Σt)|F|

m·(m log |F|)O(1)
is the auxiliary proof.

• Pldt tosses m log |F|+ O (log log |F|+ log m) unbiased coins and makes 2 queries on T ◦ π.

• If T ∈ Im(RMF,m,d,t), then there exists some π such that Pldt(T ◦ π) always accepts.

• If T is δ-far from Im(RMF,m,d,t), then Pr[Pldt(T ◦ π) rejects] ≥ 2−40δ for any π.

Theorem (Theorem 3.7 Restated). Assume char(F) = 2 and |F| ≥ max
{

6md, 2100m log |F|
}

. There
exists a Boolean circuit Cldt of size |F|mpoly|F| for T ∈ (Ft)|F|

m
, where we encode F as {0, 1}log |F|, such

that T is codeword of RMF,m,d,t iff T parallel satisfies Cldt.

A.1 Extra Notation

We first set up some necessary notation.

Parallel Low Degree Polynoimal. We first recall the notion of parallel polynomial from Section 3.
Let F be a finite field. For a parallel-output function f : Fm → Ft, we denote f [1], . . . , f [t] : Fm → F

as its single-output components, i.e., f (x) = (f [1](x), . . . , f [t](x)). We aim to test if f [1], . . . , f [t]
are consistent with degree-d polynomials on a large common set of inputs. Formally, we say f is
δ-close to parallel degree-d iff f is δ-close to RMF,m,d,t; and we say f is parallel degree-d if δ = 0.

A simple union bound shows that if each f [i] is δ-close to degree-d (e.g., from the standard
low degree test), then f = (f [1], . . . , f [t]) is tδ-close to parallel degree-d. However for our pur-
poses, such a loss is not affordable since t is typically large. Therefore we need to open-box the
specific low degree test and show that it implies consistency on 1 − δ common fraction of inputs
simultaneously for all f [i].

Parallel Low Degree Test. For x, y ∈ Fm, the line crossing x in direction y is the set

ℓx,y := {x + t · y : t ∈ F} .

Note that if y = 0m then ℓx,y = {x}, otherwise ℓx,y has |F| points. Let L be the set of lines in Fm.
For a parallel function f : Fm → Ft and any ℓ ∈ L, we use f |ℓ : ℓ → Ft to denote the restriction of
f on the line ℓ.

Let F(d,t) be the set of univariate parallel degree-d polynomials, i.e.,

F(d,t) :=
{

h : F → Ft : hi is a univariate degree-d polynomial for each i ∈ [t]
}

.

The standard low degree test LDTest f ,g [RS96], translated to the parallel setting [LRSW23], is given
oracle access to f : Fm → Ft and g : L → F(d,t), which later tests their consistency9. For each line
ℓ ∈ L, we denote g(ℓ) ∈ F(d,t) as its parallel line polynomial, which we interpret as a univariate
parallel degree-d polynomial mapping elements in ℓ to Ft. Thus for a line ℓ and a point z ∈ ℓ,
g(ℓ)(z) ∈ Ft is well defined. We say f agrees with g(ℓ) on z if f (z) = g(ℓ)(z).

For each f : Fm → Ft and d ∈ N, we use fL : L → F(d,t) to denote the restriction of f on
each line to its closest parallel degree-d polynomial. That is, for each line ℓ, we set fL(ℓ) to be
the parallel degree-d polynomial closest to f |ℓ, where we break tie arbitrarily. Note that we will
always assume the degree to be tested is d, and thus we omit d in defining fL for simplicity.

9The term consistency has been called correlated agreement, e.g., in recent literature of proximity gaps for RS codes
and related literature in FRI protocol/SNARKs.

37

In the completeness case (i.e., f is indeed parallel degree-d), we can pick fL(ℓ) = f |ℓ which
is also parallel degree-d. The parallel low degree test LDTest f ,g explores the reverse direction:
independently select x, y ∼ Fm and accept iff f (x) = g(ℓx,y)(x), i.e., f agrees with the parallel
line polynomial g(ℓx,y) on point x. The parallel low degree test [LRSW23] shows that if LDTest f ,g

accepts with probability 1 − δ, then f is O(δ)-close to parallel degree-d. Note that this bound does
not depend on t.

Derandomized Parallel Low Degree Test. Now we introduce the derandomized version of the
parallel low degree test. Following [BSSVW03], this simply replaces the uniformly random direc-
tion y by a pseudorandom y ∼ S for a much smaller set S ⊆ Fm. Hence the number of randomness
drops from |F|2m to |S| · |F|m.

Definition A.1 (Derandomized Parallel Low Degree Test). Let S ⊆ Fm and f : Fm → Ft, g : L →
F(d,t).10 The derandomized parallel low degree test LDTest

f ,g
S is executed as follows: indepen-

dently select x ∼ Fm and y ∼ S, then accept iff f (x) = g(ℓx,y)(x).

Later the set S is chosen to be a λ-biased set as in [BSSVW03].

Definition A.2 (λ-Biased Set). S ⊆ Fm is a λ-biased set iff

• S is symmetric, i.e., if y ∈ S then −y ∈ S;11

•
∣∣Ey∼S [χ(y)]

∣∣ ≤ λ holds for any non-trivial homomorphism12 χ : Fm → µp, where µ is the
multiplicative group of p-th unit root and p is the characteristic of F.

In a graph theoretical reformulation, S is λ-biased iff the graph GS is an (undirected) expander
graph with expansion factor 1 − λ, where the vertex set of GS is Fm and x, y ∈ GS is connected
iff x − y ∈ S (see e.g., [JM21]). For our purposes, we quote the following results derived directly
from the expanding property of biased sets.

Lemma A.3 ([BSSVW03, Lemma 4.3]). Suppose S ⊆ Fm is λ-biased. Then for any B ⊆ Fm of density
µ = |B|

|F|m and any ε > 0, we have

Pr
x∼Fm,y∼S

[∣∣∣∣∣
∣∣ℓx,y ∩ B

∣∣∣∣ℓx,y
∣∣ − µ

∣∣∣∣∣ > ε

]
≤
(

1
|F| + λ

)
· µ

ε2 .

Finally we remark that λ-biased sets exist for |S| = Ω
(

m log |F|
λ2

)
[AR94] and efficient explicit

constructions of sizes poly(m, log |F|, 1
λ) are also obtained.

Fact A.4 (See e.g., [JM21]). For any finite field F, positive integer m, and parameter λ ∈ (0, 1], a λ-biased
set of size poly(m, log |F|, 1

λ) can be constructed efficiently in time poly(m, |F|, 1
λ).

Augmented Derandomized Parallel Low Degree Test. Unfortunately the derandomized parallel
low degree test is not sufficient to guarantee the exact quantitative degree condition, as the direc-
tions S have fairly limited possibilities. More concretely, even if LDTest f ,g

S succeeds with proba-
bility 1, it is not guaranteed that f is parallel degree-d. To compensate the missing directions, we

10Technically, g only needs to be defined on lines whose directions are in S. We choose to assume g is defined over
all lines L for simplicity.

11In some literature this symmetric assumption is not imposed. The parameter λ in that case is comparable with the
one here by a multiplicative factor of 2.

12This homomorphism is usually referred as character. It is trivial if it maps everything to 1. An illustrative example
is when F = F2 and χ is a parity function.

38

need to augment Definition A.1 with an additional test that checks the consistency of f and g on a
purely random direction from the origin [BSSVW03].

Definition A.5 (Augmented Derandomized Parallel Low Degree Test). Let S ⊆ Fm and f : Fm →
Ft, g : L → F(d,t). The augmented derandomized parallel low degree test AugLDTest f ,g

S is executed
as follows: with equal probability we perform one of the following two tests:

• Independently select x ∼ Fm and y ∼ S, then accept iff f (x) = g(ℓx,y)(x).

• Select z ∼ Fm, then accept iff f (z) = g(ℓ0m,z)(z).

The first test in AugLDTest
f ,g
S is simply LDTest

f ,g
S , for which we will later show that it guaran-

tees that f is close to parallel degree-md. Then the second test allows us to further bring the degree
down to d.

A.2 Codeword Testing

Theorem 3.6 and Theorem 3.7 follow directly from the following result, combined with the explicit
constructions for biased sets.

Theorem A.6. Assume |F| ≥ 6md, |F| ≥ 2100 · m log |F|, and λ ≤ 1
2100·m log |F| . Let S ⊆ Fm be a

λ-biased set. If
Pr
[
AugLDTest

f ,g
S accepts

]
≥ 1 − δ,

then f is 240δ-close to parallel degree-d.

Proof of Theorem 3.6. We first note that |F|m > (m+d
d) and |F| > d are satisfied assuming the condi-

tions on |F| in Theorem 3.6, thus RMF,m,d,t is well defined.
Then we instantiate Theorem A.6 with λ = 1

2100·m log |F| and the λ-biased set S by Fact A.4. The

construction of S is efficient in time poly(|F|, m) and S has size (m log |F|)O(1). Then we define Pldt

as AugLDTest
f ,g
S where T = f and π is defined to be the entries of g that can be possibly queried.

Recall Definition A.5. Then we have

|π| ≤ |F|m · |S|+ |F|m = |F|m · (m log |F|)O(1).

In addition, by merging the randomness of the two tests in AugLDTest
f ,g
S , Pldt tosses

1 + log (|F|m|S|) = m log |F|+ O (log log |F|+ log m)

total coins. The completeness is obvious and the soundness follows from Theorem A.6.

Proof of Theorem 3.7. Now we turn to Theorem 3.7. By Theorem 3.6, it suffices to implement Pldt

purely on f . In addition, since Pldt = AugLDTest
f ,g
S and by Definition A.5, it performs the same

check in parallel for each coordinate i ∈ [t]. This means that we only need to instantiate Pldt for a
single coordinate (or equivalently, think of t = 1) to design the circuit Cldt.

To get rid of the extra proof g, we simply set g = fL. Then, whenever we need information
about entries in g (i.e., a line polynomial), we can probe the entries along the line in f to compute
it. We remark that this is inefficient in terms of the query complexity, but it is still efficient in terms
of the circuit complexity.

39

Now we describe the construction of Cldt for a fixed coordinate i ∈ [t]. Based on the coin toss
of Pldt, it checks the consistency of an F-valued point (i.e., f [i](x) or f [i](z)) with an evaluation
point (i.e., x or z) of a degree-d line polynomial over F (i.e., fℓx,y [i] or fℓ0m ,z

[i]). To implement it as
a circuit, we take the conjunction of all the sub-circuit outcome from coin toss possibilities, where
each sub-circuit performs the following computation.

• It first interpolates the line polynomial using entries of f [i] along the line, and checks if this
line polynomial is degree-d.

This can be efficiently done with poly|F| gates.

• Then it evaluates the value of the desired point of the line polynomial, and checks if it is the
same as the one directly obtained from f [i].

This also requires poly|F| gates only.

The correctness of Cldt follows directly from Theorem 3.6 and our choice of g = fL. Since the
number of coin toss possibilities is |F|mpoly(m, log |F|), by our assumption on |F|, the size of Cldt

is |F|mpoly|F| as claimed.

To prove the statement about AugLDTest, we need to analyze LDTest first, which guarantees a
weaker degree bound.

Theorem A.7. Assume |F| ≥ 3d, |F| ≥ 2100 · m log |F|, and λ ≤ 1
2100·m log |F| . Let S ⊆ Fm be a λ-biased

set. If
Pr
[
LDTest

f ,g
S accepts

]
≥ 1 − δ,

then f is 230δ-close to parallel degree-md.

Assuming Theorem A.7, we conclude the proof of Theorem A.6.

Proof of Theorem A.6. First we assume δ ≤ 2−40 since otherwise 240δ ≥ 1 and the statement trivially
holds. Recall Definition A.5 that AugLDTest

f ,g
S executes LDTest

f ,g
S with probability 1/2. Hence

LDTest
f ,g
S must accept with probability at least 1 − 2δ. By Theorem A.7, this means that f is 231δ-

close to a parallel degree-md polynomial f ′. It suffices to show that f ′ is acutally parallel degree-d.
Assume towards contradiction that f ′ is not parallel degree-d. Now we consider the second

half of AugLDTest f ,g
S , which checks if f (z) = g(ℓ0m,z)(z) for z ∼ Fm. Then we have

Pr
z∼Fm

[f (z) = g(ℓ0m,z)(z)] ≤ Pr
z∼Fm

[
f (z) ̸= f ′(z)

]
+ Pr

z∼Fm

[
f ′(z) = g(ℓ0m,z)(z)

]
≤ 231δ + Pr

z∼Fm

[
f ′(z) = g(ℓ0m,z)(z)

]
. (6)

To analyze (6), we consider the following quantity:

Pr
w∼Fm,i∼F

[
f ′(i · w) = g(ℓ0m,w)(i · w)

]
. (7)

On the one hand, conditioned on i ̸= 0, we have ℓ0m,w = ℓ0m,i·w and i · w being uniform in Fm.
Therefore we can relate (6) with (7):

(7) ≥
(

1 − 1
|F|

)
· Pr

z∼Fm

[
f ′(z) = g(ℓ0m,z)(z)

]
. (8)

40

On the other hand, conditioned on w, f ′(i · w) is a univariate parallel degree-md polynomial in i.
Let d < d′ ≤ md be the parallel degree of f ′. Then the coefficient of id′ in f ′(i · w) is a non-zero
parallel degree-d′ polynomial. By Schwartz–Zippel lemma, it vanishes on at most d′

|F| fraction of

choices of w. For each w that the top coefficient of id′ does not vanish, by Schwartz–Zippel lemma,
f ′(i · w) agrees with g(ℓ0m,w)(i · w) on at most d′ choices of i since g(ℓ0m,w) is parallel degree-d and
d < d′. This means

(7) ≤ Pr
w∼Fm

[
coeff of id′ in f ′(i · w) vanishes

]
+ Pr

w∼Fm,i∼F

[
f ′(i · w) = g(ℓ0m,w)(i · w)

∣∣ not vanish
]

≤ d′

|F| +
d′

|F| ≤
2md
|F| . (since d′ ≤ md)

Combining this with (8) and (6), we have

Pr
z∼Fm

[f (z) = g(ℓ0m,z)(z)] ≤ 231δ +
2md

|F| − 1
≤ 1

2
,

where we used the fact that δ ≤ 2−40 and |F| ≥ 6md. Since this is half of the actual AugLDTest f ,g
S ,

it means
Pr
[
AugLDTest

f ,g
S accepts

]
≤ 1

2
+

1
2
· 1

2
< 1 − δ,

which is a contradiction.
In conclusion, f ′ must be parallel degree-d.

Our Theorem A.7 is the parallel version of [BSSVW03, Theorem 4.1]. Its proof follows from
iteratively applying the following lemma, which is the parallel version of [BSSVW03, Lemma 4.4].

Lemma A.8. Assume |F| ≥ 3d. Let S ⊆ Fm be a λ-biased set and T ⊆ S of size |T| ≥ |S|/2. Let
f : Fm → Ft. If

Pr
[
LDTest

f , fL

T accepts
]
≥ 1 − δ,

then for any 2δ ≤ γ ≤ 2−20, there exists f ′ : Fm → Ft and T′ ⊆ T with the following properties:

1. |T′| ≥
(

1 − δ
γ

)
|T| ≥ |T|

2 .

2. ∆(f ′, f) ≤ 4δ.

3. Pr
[
LDTest

f ′, fL

T′ accepts
]
≥ 1 − 240 · γ ·

(
1
|F| + λ

)
.

Assuming Lemma A.8, we first conclude Theorem A.7.

Proof of Theorem A.7. First we assume δ ≤ 2−30 since otherwise 230δ ≥ 1 and the statement trivially
holds. Next, we can also assume without loss of generality that g = fL. This is because, for each
possible13 line ℓ ∈ L, LDTest f ,g

S conditioned on this line checks a uniformly random point x ∈ ℓ
whether f (x) = g(ℓ)(x). Since g(ℓ) is parallel degree-d, the success probability maximized when
g(ℓ) = fL(ℓ).

We will repeatedly apply Lemma A.8 to bring the soundness gap down to ≪ |F|−2m, at which
point it is actually zero by granularity. Then we use the following characterization of parallel low
degree polynomials similar to [RS96] to arrive at an actual parallel degree-md polynomial.

13A line is possible in LDTest
f ,g
S if its direction lies in S.

41

Theorem A.9. Let S ⊆ Fm be a λ-biased set and T ⊆ S of size |T| > 1+λ
2 · |S|. Then f : Fm → Ft is

parallel degree-md if f |ℓx,y is parallel degree-d for every x ∈ Fm, y ∈ T.

Lemma A.8 will be proved in Appendix A.4. Now we focus on reducing the soundness gap.

The δ ≥ 1
260·m log |F| Case. In this case, we first perform a pre-processing round to bring down the

soundness gap. By Lemma A.8 with T = S and γ = 2−20, we have S1 ⊆ S and f (1) : Fm → Ft with
the following property:

1. |S1| ≥
(
1 − 2−10) · |S|, since δ ≤ 2−30.

2. ∆(f (1), f) ≤ 4δ.

3. Pr
[
LDTest

f (1), fL

S1
accepts

]
≥ 1 − 1

260·m log |F| , since |F| ≥ 2100 · m log |F| and λ ≤ 1
2100·m log |F| .

Now define

δi =
2−i

250 · m log |F| and γi = δi · 210 · m log |F| = 2−i

240 .

For each i = 1, . . . , 2 ⌈m log |F|⌉, we apply Lemma A.8 on δi, Si, f (i) and obtain δi+1, Si+1, f (i+1). To
show the correctness of this process, we verify by induction on i that the conditions in Lemma A.8
are satisfied, i.e.,14

|Si| ≥ 0.9|S| and Pr
[
LDTest

f (i), fL

Si

]
≥ 1 − δi, (9)

where we omit 2δi ≤ γi ≤ 2−20 since it holds by the definition of δi, γi.
The base case i = 1 is valid by Item 1 and Item 3. For the inductive cases i ≥ 2, we first observe

that the first condition in (9) follows from the following calculation:

|Si| ≥
(

1 − δi−1

γi−1

)
|Si−1| =

(
1 − 1

210 · m log |F|

)
|Si−1| (by Lemma A.8)

≥ · · · ≥
(

1 − 1
210 · m log |F|

)i−1

|S1| (by Lemma A.8 iteratively)

≥
(

1 − 1
210 · m log |F|

)i−1

·
(

1 − 2−10
)
|S| (by Item 1)

≥ 0.9|S|. (since i ≤ 2 ⌈m log |F|⌉)

The second condition in (9) follows from last round of Lemma A.8, which establishes that

Pr
[
LDTest

f (i), fL

Si
accepts

]
≥ 1 − 240 · γi−1 ·

(
1
|F| + λ

)
= 1 − 2−i+1 ·

(
1
|F| + λ

)
≥ 1 − 2−i+1 · 2 · 1

2100 · m log |F| ≥ 1 − δi.

Let k = 2 ⌈m log |F|⌉. Then the above analysis shows

|Sk| ≥ 0.9|S| > 1 + λ

2
· |S| and Pr

[
LDTest

f (k), fL

Sk
accepts

]
≥ 1 − 2−k

250 · m log |F| > 1 − |F|−2m.

14In Lemma A.8 we only require |Si| ≥ |S|/2. Here we strengthen it for convenience of Theorem A.9.

42

Since LDTest
f (k), fL

Sk
samples x ∼ Fm and y ∼ Sk ⊆ Fm then perform a deterministic check whether

f (k)(x) = fL(ℓx,y)(x), its accepting probability is an integer multiple of 1
|F|m·|Sk |

≥ |F|−2m. There-

fore, we actually have Pr
[
LDTest

f (k), fL

Sk
accepts

]
= 1, which means that f (k) is parallel degree-d on

ℓx,y for all x ∈ Fm, y ∈ Sk. By Theorem A.9, this means that f (k) is parallel degree-md. In addition,
its distance from the original f is

∆(f (k), f) ≤ ∆(f (1), f) +
k−1

∑
i=1

∆(f (i+1), f (i)) ≤ 4δ +
k−1

∑
i=1

∆(f (i+1), f (i)) (by Item 2)

≤ 4δ +
k−1

∑
i=1

4 · δi = 4δ +
k−1

∑
i=1

4 · 2−i

250 · m log |F| (by Lemma A.8)

≤ 230δ. (since δ ≥ 1
260·m log |F|)

The δ < 1
260·m log |F| Case. In this case, the analysis is even simpler as we do not need pre-

processing. Let S1 = S and f (1) = f . Define

δi = 2−i+1 · δ and γi = δi · 210 · m log |F| = 2−i+11 · δ · m log |F|.

We also apply Lemma A.8 for each i = 1, . . . , 2 ⌈m log |F|⌉ on δi, Si, f (i) to obtain δi+1, Si+1, f (i+1).
The conditions in Lemma A.8 along this process can be verified in the similar fashion. Here we
only highlight the difference: for the second condition, we have

Pr
[
LDTest

f (i), fL

Si
accepts

]
≥ 1 − 240 · γi−1 ·

(
1
|F| + λ

)
= 1 − 2−i+51 · δ · m log |F| ·

(
1
|F| + λ

)
≥ 1 − 2−i−48 · δ ≥ 1 − δi,

and for the third condition, we have

γi = 2−i+11 · δ · m log |F| ≤ 2−i+11

260 ≤ 2−20.

Then similarly, we set k = 2 ⌈m log |F|⌉ and obtain f (k) as a parallel degree-md polynomial. More-
over, we have

∆(f (k), f) ≤
k−1

∑
i=1

∆(f (i+1), f (i)) ≤
k−1

∑
i=1

4 · δi (since f (1) = f and by Lemma A.8)

=
k−1

∑
i=1

4 · 2−i+1 · δ ≤ 230δ,

which completes the proof.

A.3 One Round of Correction

This section is devoted to proving Lemma A.8, which follows the sketch outlined in [BSSVW03].

43

Lemma (Lemma A.8 Restated). Assume |F| ≥ 3d. Let S ⊆ Fm be a λ-biased set and T ⊆ S of size
|T| ≥ |S|/2. Let f : Fm → Ft. If

Pr
[
LDTest

f , fL

T accepts
]
≥ 1 − δ,

then for any 2δ ≤ γ ≤ 2−20, there exists f ′ : Fm → Ft and T′ ⊆ T with the following properties:

1. |T′| ≥
(

1 − δ
γ

)
|T| ≥ |T|

2 .

2. ∆(f ′, f) ≤ 4δ.

3. Pr
[
LDTest

f ′, fL

T′ accepts
]
≥ 1 − 240 · γ ·

(
1
|F| + λ

)
.

Proof. Let T′ ⊆ T be the set of directions y ∈ T such that for at least 1 − γ fraction of x ∈ Fm, f
agrees with the parallel line polynomial ℓx,y on x. That is,

T′ =
{

y ∈ T : |
{

x ∈ Fm : f (x) = fL(ℓx,y)(x)
}
| ≥ (1 − γ) · |F|m

}
. (10)

Then

1 − δ ≤ Pr
[
LDTest

f , fL

T accepts
]

(by assumption)

= Pr
x∼Fm,y∼T

[
f (x) = fL(ℓx,y)(x)

]
(by Definition A.1)

=
|T′|
|T| Pr

x∼Fm,y∼T

[
f (x) = fL(ℓx,y)(x)

∣∣ y ∈ T′]+ |T \ T′|
|T| Pr

x∼Fm,y∼T

[
f (x) = fL(ℓx,y)(x)

∣∣ y /∈ T′]
≤ |T′|

|T| +
(

1 − |T′|
|T|

)
· (1 − γ) , (by (10))

which implies Item 1 by rearranging.
To construct f ′ : Fm → Ft, for each x ∈ Fm we define f ′(x) ∈ Ft to be the most common value

of fL(ℓx,y)(x) over y ∈ T′ where we break tie arbitrarily. Now we verify Item 2. Let

B =

{
x ∈ Fm : Pr

y∼T′

[
f (x) ̸= fL(ℓx,y)(x)

]
≥ 1

2

}
.

By the definition of f ′, we know that f ′(x) = f (x) holds for any x /∈ B. Hence Item 2 reduces to
showing Prx∼Fm [x ∈ B] ≤ 4δ as follows:

Pr
x∼Fm

[x ∈ B] = Pr
x∼Fm

[
Pr

y∼T′

[
f (x) ̸= fL(ℓx,y)(x)

]
≥ 1

2

]
≤ 2 · Pr

x∼Fm,y∼T′

[
f (x) ̸= fL(ℓx,y)(x)

]
(by Markov’s inequality)

≤ 2 · |T||T′| · Pr
x∼Fm,y∼T

[
f (x) ̸= fL(ℓx,y)(x)

]
(since T′ ⊆ T)

= 2 · |T||T′| · Pr
[
LDTest

f , fL

T rejects
]
≤ 2 · |T||T′| · δ (by assumption)

≤ 4δ. (by Item 1)

44

To prove Item 3, we first get rid of f ′. For a fixed x ∈ Fm and each b ∈ Ft, let Ub ⊆ T′ be the
set of directions y such that fL(ℓx,y)(x) = b. Denote b∗ = f ′(x), which is defined to be the most
common value of fL(ℓx,y)(x) over y ∈ T′. Thus |Ub∗ | ≥ |Ub| for any b ∈ Ft. As a result, we have

Pr
y∼T′

[
f ′(x) = fL(ℓx,y)(x)

]
=

|Ub∗ |
|T′| =

|Ub∗ |
|T′| · ∑

b

|Ub|
|T′| (since Ub’s form a partition of T′)

≥ ∑
b

(
|Ub|
|T′|

)2

(since |Ub∗ | ≥ |Ub| for all b)

= Pr
y1,y2∼T′

[
fL(ℓx,y1)(x) = fL(ℓx,y2)(x)

]
.

Now taking the negation and the expectation over random x, we have

Pr
[
LDTest

f ′, fL

T′ rejects
]
= Pr

x∼Fm,y∼T′

[
f ′(x) ̸= fL(ℓx,y)(x)

]
≤ Pr

x∼Fm,y1,y2∼T′

[
fL(ℓx,y1)(x) ̸= fL(ℓx,y2)(x)

]
. (11)

To upper bound (11), we will use bivariate testing theorems [PS94] similar to [LRSW23, FS95]. The
idea is, as sketched in [BSSVW03], to use Lemma A.3 to show the following claim.

Claim A.10. With probability at least

1 − 240 · γ ·
(

1
|F| + λ

)
over x, y1, y2, we have

(a) Pri∼F

[
fL(ℓx+i·y1,y2)(x + i · y1) ̸= f (x + i · y1)

]
≤ 1

200 .

(b) Prj∼F

[
fL(ℓx+j·y2,y1)(x + j · y2) ̸= f (x + j · y2)

]
≤ 1

200 .

(c) Pri,j∼F

[
fL(ℓx+i·y1,y2)(x + i · y1 + j · y2) ̸= f (x + i · y1 + j · y2)

]
≤ 1

200 .

(d) Pri,j∼F

[
fL(ℓx+j·y2,y1)(x + i · y1 + j · y2) ̸= f (x + i · y1 + j · y2)

]
≤ 1

200 .

Claim A.10 intuitively says that f is almost parallel degree-d along the line ℓx,y1 (Item (a)), the
line ℓx,y2 (Item (b)), and the plane spanned by ℓx,y1 , ℓx,y2 (Items (c) and (d)). For simplicity, define

R(i, j) = fL(ℓx+i·y1,y2)(x + i · y1 + j · y2) and C(i, j) = fL(ℓx+j·y2,y1)(x + i · y1 + j · y2). (12)

Given Claim A.10 and (11), it suffices to show

R(0, 0) = C(0, 0) assuming Items (a) to (d). (13)

Observe that R : F × F → Ft is a parallel bivariate polynomial. Recall that fL is the restriction
of f on each line of its closest parallel degree-d polynomial. Thus for each fixed i ∈ F, R(i, j) is
parallel degree-d in the variable j. Let R1, . . . , Rt : F × F → F be the single-output components of
R. Then for each r ∈ [t] and in Rr(i, j), the variable i has degree at most |F| − 1 and the variable j
has degree at most d. We say R is of parallel degree (|F| − 1, d) for shorthand. Similarly, C(i, j) is
of parallel degree (d, |F| − 1).

Combining Items (c) and (d), we have

Pr
i,j∼F

[R(i, j) ̸= C(i, j)] ≤ 1
100

. (14)

We will use the following lemma to zero out the inconsistent entries of R(i, j) and C(i, j).

45

Lemma A.11 ([PS94, Lemma 3]). Let Z ⊆ F × F be arbitrary. There exists a non-zero bivariate polyno-
mial E : F × F → F of degree

(⌊√
|Z|
⌋

,
⌊√

|Z|
⌋)

such that E(i, j) = 0 for all (i, j) ∈ Z.

By setting Z to be the set of (i, j) with R(i, j) ̸= C(i, j), we have |Z| ≤ |F|2/100 by (14). Thus
by Lemma A.11, there is a non-zero bivariate polynomial E of degree at most

(
|F|
10 , |F|10

)
such that

E(i, j)R(i, j) = E(i, j)C(i, j) holds for all i, j ∈ F. Note that R and C are polynomials with t outputs
and E has single output. The product E(i, j)R(i, j) produces a vector of length t with entries of
R(i, j) scaled by E(i, j); same for E(i, j)C(i, j).

Then we use the following lemma to show that R and C are close to a parallel bivariate poly-
nomial of parallel degree (d, d).

Lemma A.12 ([PS94, Lemma 8]). Let E, P : F × F → F be bivariate polynomials of degree (b, a) and
(b + d, a + d) respectively. Assume n > min {2b + 2d, 2a + 2d}. Assume further there exist distinct
i1, . . . , in such that E(ik, ·) divides P(ik, ·) for all k ∈ [n], and distinct j1, . . . , jn such that E(·, jk) divides
P(·, jk) for all k ∈ [n]. Then E(·, ·) divides P(·, ·), i.e., there exists a bivariate polynomial Q : F × F → F

of degree (d, d) such that E(i, j)Q(i, j) = P(i, j) holds for all i, j ∈ F.

Fix an arbitrary r ∈ [t]. For each i, j ∈ F, define Pr(i, j) = E(i, j)Rr(i, j), which also equals
E(i, j)Cr(i, j) since E(i, j)R(i, j) = E(i, j)C(i, j). Since E is non-zero and has degree

(
|F|
10 , |F|10

)
, there

are at least 9|F|
10 many distinct i ∈ F such that E(i, ·) is an univariate polynomial not identically

zero, for which E(i, ·) divides Pr(i, ·); same for E(·, j) and Pr(·, j). By Lemma A.12 with a = b = |F|
10

and n = 9|F|
10 , there exists a bivariate polynomial Qr : F × F → F with parallel degree (d, d) such

that E(i, j)Qr(i, j) = Pr(i, j) = E(i, j)Rr(i, j) = E(i, j)Cr(i, j) holds for all i, j ∈ F, where we used
the fact that |F| ≥ 3d implies |F| > 10d

7 .15

Let Q : F×F → Ft be the parallel-output bivariate polynomial with single-output components
Q1, . . . , Qr obtained above. Then Q(i, ·) = R(i, ·) holds as long as E(i, ·) is not identically zero,
which has at least 9|F|

10 possibilities out of |F| total choices off i. Recall Item (a). For at least 9
10 −

1
200 > 4

5 fraction of i’s, we have f (x + i · y1) = R(i, 0) = Q(i, 0). Note that the distance between
any two distinct (parallel) degree-d polynomial is at least 1 − d

|F| , which is at least 2
3 < 2 · 1

5 since
|F| ≥ 3d. In addition, Q(·, 0) is parallel degree-d. Thus Q(·, 0) is the closest parallel degree-d
polynomial of f |ℓx,y1

, i.e., Q(i, 0) = fL(ℓx,y1)(x + i · y1) = C(i, 0) holds for all i ∈ F where we recall
(12). In particular, this means Q(0, 0) = C(0, 0).

Similarly, using Item (b), we can show Q(0, 0) = R(0, 0), which verifies (13) and thus Item 3,
and completes the proof of Lemma A.8.

Finally it remains to prove Claim A.10.

Proof of Claim A.10. We show that each item holds with probability at least 1 − 230 · γ ·
(

1
|F| + λ

)
,

and then Claim A.10 follows from a union bound.
We first consider Item (a) and the analysis for Item (b) is almost identical. For each y ∈ S,

define
By =

{
x ∈ Fm : fL(ℓx,y)(x) ̸= f (x)

}
.

15If d ≥ 1, then 3d > 10d
7 ; otherwise 10d

7 = 0 < 1 ≤ |F|.

46

Then for any fixed y2 ∈ T′, we have |By2 | ≤ γ · |F|m by (10), and, moreover,

Pr
x∼Fm,y1∼T′

[Item (a) does not hold]

= Pr
x∼Fm,y1∼T′

[
Pr
i∼F

[
fL(ℓx+i·y1,y2)(x + i · y1) ̸= f (x + i · y1)

]
>

1
200

]
= Pr

x∼Fm,y1∼T′

[
Pr
i∼F

[
x + i · y1 ∈ By2

]
>

1
200

]
= Pr

x∼Fm,y1∼T′

[|ℓx,y1 ∩ By2 |
|ℓx,y1 |

>
1

200

]
≤ Pr

x∼Fm,y1∼T′

[|ℓx,y1 ∩ By2 |
|ℓx,y1 |

>
|By2 |
|F|m +

1
400

]
(since |By2 |

|F|m ≤ γ and γ ≤ 2−20 by assumption)

≤ |S|
|T′| · Pr

x∼Fm,y1∼S

[|ℓx,y1 ∩ By2 |
|ℓx,y1 |

>
|By2 |
|F|m +

1
400

]
(since T′ ⊆ T ⊆ S)

≤4 Pr
x∼Fm,y1∼S

[|ℓx,y1 ∩ By2 |
|ℓx,y1 |

>
|By2 |
|F|m +

1
400

]
(by assumption and Item 1)

≤220 ·
(

1
|F| + λ

)
·
|By2 |
|F|m (by Lemma A.3)

≤220 · γ ·
(

1
|F| + λ

)
. (since |By2 |

|F|m ≤ γ)

By taking the expectation over y2, Item (a) holds with the desired probability.
Now we consider Item (c) and the analysis for Item (d) is almost identical. For each y ∈ S,

define

By =

{
x ∈ Fm : Pr

j∼F

[
fL(ℓx,y)(x + j · y) ̸= f (x + j · y)

]
> 2−10

}
. (15)

For each y2 ∈ S, we have

|By2 |
|F|m = Pr

x∼Fm

[
Pr
j∼F

[
fL(ℓx,y2)(x + j · y2) ̸= f (x + j · y2)

]
> 2−10

]
≤ 210 · Pr

x∼Fm,j∼F

[
fL(ℓx,y2)(x + j · y2) ̸= f (x + j · y2)

]
(by Markov’s inequality)

= 210 · Pr
x∼Fm,j∼F

[
fL(ℓx+j·y2,y2)(x + j · y2) ̸= f (x + j · y2)

]
(since ℓx,y2 = ℓx+j·y2,y2)

= 210 · Pr
z∼Fm

[
fL(ℓz,y2)(z) ̸= f (z)

]
= 210 ·

|By2 |
|F|m

≤ 210 · γ, (16)

and

Pr
x∼Fm,y1∼T′

[Item (c) does not hold]

= Pr
x∼Fm,y1∼T′

[
Pr

i,j∼F

[
fL(ℓx+i·y1,y2)(x + i · y1 + j · y2) ̸= f (x + i · y1 + j · y2)

]
>

1
200

]
≤ Pr

x∼Fm,y1∼T′

[
Pr
i∼F

[
x + i · y1 ∈ By2

]
>

1
300

]
, (17)

where we use the following reasoning for the last inequality: if the event inside bracket does not
happen, then

Pr
i,j∼F

[
fL(ℓx+i·y1,y2)(x + i · y1 + j · y2) ̸= f (x + i · y1 + j · y2)

]
47

≤ 1
300

+ Pr
i,j∼F

[
fL(ℓx+i·y1,y2)(x + i · y1 + j · y2) ̸= f (x + i · y1 + j · y2)

∣∣ x + i · y1 /∈ By2

]
≤ 1

300
+ 2−10 <

1
200

. (by (15))

Then similar to the analysis for Item (a), we continue upper bounding (17) as follows:

RHS of (17) = Pr
x∼Fm,y1∼T′

[
|ℓx,y1 ∩ By2 |

|ℓx,y1 |
>

1
300

]

≤ Pr
x∼Fm,y1∼T′

[
|ℓx,y1 ∩ By2 |

|ℓx,y1 |
>

|By2 |
|F|m +

1
400

]
(by (16) and γ ≤ 2−20)

≤ 4 Pr
x∼Fm,y1∼S

[
|ℓx,y1 ∩ By2 |

|ℓx,y1 |
>

|By2 |
|F|m +

1
400

]
(since T′ ⊆ S and |T′| ≥ |S|/4)

≤ 220 ·
(

1
|F| + λ

)
·
|By2 |
|F|m ≤ 230 · γ ·

(
1
|F| + λ

)
. (by Lemma A.3 and (16))

Therefore Item (c) holds with the desired probabilit by taking the expectation over y1.

A.4 Derandomized Characterizations of Parallel Low Degree Polynomials

In this part, we extend the characterization of low degree polynomials in [RS96] to the deran-
domized setting, where we only consider lines with directions generated by a (large subset of)
small-biased set.

We use superscript ⊤ to denote vector and matrix transpose. For two vectors u, v ∈ Fd, we use
⟨u, v⟩ to denote their inner product which equals u⊤v (or v⊤u).

Theorem (Theorem A.9 Restated). Let S ⊆ Fm be a λ-biased set and T ⊆ S of size |T| > 1+λ
2 · |S|.

Then f : Fm → Ft is parallel degree-md if f |ℓx,y is parallel degree-d for every x ∈ Fm, y ∈ T.

Proof. Assume without loss of generality that t = 1, since we can apply the analysis individually
for each single-output component f [1], . . . , f [t].

We first prove that T has the full rank m. Assume towards contradiction that T has rank at most
m − 1. Then there exists a non-zero vector z ∈ Fm such that z⊤y = 0 holds for all y ∈ T. In light of
Definition A.2, we construct a non-trivial homomorphism χ : Fm → µp to derive a contradiction,
where p is the characteristic of F. Let ξ : F → µp be a non-trivial (group) homomorphism, where
we view F as an additive group. We define for each x ∈ Fm that

χ(x) = ξ(x⊤z),

which is a non-trivial homomorphism since ξ is a non-trivial homomorphism and z ̸= 0m. Note
that for all y ∈ T, we have

χ(y) = ξ(y⊤z) = ξ(0) = 1.

Thus ∣∣∣∣ E
y∼S

[χ(y)]
∣∣∣∣ = ∣∣∣∣ E

y∼S

[
χ(y) ·

(
1y∈T + 1y/∈T

)]∣∣∣∣ = ∣∣∣∣ E
y∼S

[
1y∈T + χ(y) · 1y/∈T

]∣∣∣∣
48

≥ E
y∼S

[
1y∈T

]
− E

y∼S

[
1y/∈T

]
=

|T|
|S| −

|S| − |T|
|S|

> λ, (since |T| > 1+λ
2 · |S|)

which contradicts Definition A.2.
Now we fix a set of m linearly independent directions y1, . . . , ym ∈ T. Then we can interpolate f

using degree-d polynomials f |ℓx,y1
, . . . , f |ℓx,ym

for x ∈ Fm. For concreteness, we apply the invertible
linear transform on Fm such that y1, . . . , ym map to axis parallel directions e1, . . . , em, where ei =
(0, . . . , 0︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
m−i

). Let f ′ be the polynomial after this transform, which shares the same degree

with f since the transform is invertible and linear. Since f |ℓx,y1
, . . . , f |ℓx,ym

are all degree-d, we
know that f ′ is degree-d along the axis parallel lines. Then by polynomial interpolation (see e.g.,
[RS96, Lemma 28]), f ′ has degree at most md, which in turn means that f has degree at most md
as claimed.

49
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

