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Abstract

In this paper we present a new proof system framework CLIP (Circuit Linear Induction
Proposition) for propositional model counting (#SAT). A CLIP proof firstly involves a Boolean
circuit, calculating the cumulative function (or running count) of models counted up to a point,
and secondly a propositional proof arguing for the correctness of the circuit.

This concept is remarkably simple and CLIP is modular so it allows us to use existing checking
formats from propositional logic, especially strong proof systems. CLIP has polynomial-size
proofs for XOR-pairs which are known to require exponential-size proofs in MICE [21]. The
existence of a strong proof system that can tackle these hard problems was posed as an open
problem in Beyersdorff et al. [5]. In addition, CLIP systems can p-simulate all other existing
#SAT proofs systems (KCPS(#SAT) [12], CPOG [7], MICE). Furthermore, CLIP has a theoretical
advantage over the other #SAT proof systems in the sense that CLIP only has lower bounds
from its propositional proof system or if P#P is not contained in P/poly, which is a major open
problem in circuit complexity.

CLIP uses unrestricted circuits in its proof as compared to restricted structures used by the
existing #SAT proof systems. In this way, CLIP avoids hardness or limitations due to circuit
restrictions.

1 Introduction

Given a propositional formula, the problem of finding its total number of satisfying assignments
(models) is known as the propositional model counting problem #SAT [30]. The problem is known
to be #P-complete and is considered one of the hardest problem in the field of computational
complexity. In fact, it is known that with an access to a #SAT-oracle, any problem from polynomial
hierarchy can be solve in polynomial time (Toda’s Theorem [33]).

Over the last few years, some important proof systems have been developed for #SAT. The
KCPS(#SAT) [12] system is the first non-trivial proof system based on knowledge compilation
designed for #SAT. A KCPS(#SAT) proof for a CNF represents the proposition as a decision-
DNNF, with some additional annotations for checking. A decision-DNNF allows for model counting
to be easily extracted. However, limitations and lower bounds for KCPS(#SAT) have already been
established [3, 12]. The second proof system designed for #SAT is the MICE [21] proof system.
Unlike KCPS(#SAT), it is a line based proof system which computes the model count in a step
by step fashion using some simple inference rules. Several lower bounds for MICE have been
established in the literature [3, 5]. For example, XOR-PAIRS [5], are shown to be hard for the MICE
proof system. Recently, an important proof system CPOG [7] was introduced for #SAT. Similar to
KCPS(#SAT), CPOG is also based on knowledge compilation. A CPOG proof for a CNF formula ϕ
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consists of a Partitioned-Operation Graph (POG) G along with a Resolution proof of the fact that
G ≡ ϕ.

The relationship between these three proof systems are now well known. It has been shown
in [3], that CPOG is exponentially stronger than KCPS(#SAT) and MICE. On the other hand
KCPS(#SAT) and MICE are incomparable [3, Figure 1]. This means that KCPS(#SAT) and MICE
have unconditional lower bounds. For CPOG a lower bound is currently unknown, but the proof
complexity is necessarily tied to the limitations of POGs.

MICE KCPS(#SAT)

CPOG

CLIP+eFrege ≡
CLIP+DRAT

Known L.B.

L.B. ≡ Major open problems

p-simulates

strictly stronger

incomparable

Figure 1: Hierarchy of #SAT proof sys-
tems. New results are shown in bold.

In this paper, we introduce a powerful #SAT proof
format CLIP (Circuit Linear Induction Proposition)
(Definition 5). A CLIP based proof for a CNF formula
ϕ consists of a Boolean circuit calculating the running
count of models up to an assignment treated in a lex-
icographical order. We denote this Boolean circuit as
a cumulator (Definition 3). In addition to cumulator,
the CLIP proof also contains a certificate proving the
correctness of the cumulator. The CLIP format is sim-
ilar to CPOG in the sense that instead of a POG, CLIP
has a cumulator. Since POG uses restricted versions
of AND and OR gates, as compared to cumulators, we
believe that CLIP format is much stronger than CPOG.
In this direction, we show that CLIP can p-simulate

CPOG (Theorem 53). In fact, we show that CLIP has lower bounds only if some open problems of
proof complexity or circuit complexity are solved (Theorem 7).

In MICE and KCPS(#SAT), proofs can grow exponentially because of unsatisfiable formulas
that have lower bounds in Resolution. In this direction, for any unsatisfiable formula which is hard
in Resolution, it is unclear how large the CPOG proofs will be. In our system, for unsatisfiable
formulas, proofs are no bigger than the shortest DRAT proofs (Proposition 55). In addition, we
also show that XOR-PAIRS which are known to be hard for existing proof systems are easy for the
CLIP format (Theorem 65). We sum up our contributions in the Figure 1. We explain the same in
detail in the following subsection.

1.1 Our Contributions

1. Introducing a new proof system framework for #SAT (CLIP): We present a proof
system where proofs are pairs containing a circuit and a propositional proof. The circuit is a
multi-output Boolean circuit we call the cumulator which takes a complete assignment α and
returns the number (in binary) of models of a propositional formula up to α in some fixed
lexicographical ordering of assignments. In addition, CLIP proofs also contain a certificate
showing the correctness of the cumulator. The certificate here is propositional proof. This is
possible because we can construct a tautology that covers every inductive step for any two
consecutive complete assignments. The CLIP format allows us to use any known propositional
proof system P for proving the correctness of the cumulator. In this paper we focus on CLIP+
Extended Frege (CLIP+eFrege). We show that CLIP+eFrege is a powerful proof system in the
sense that it has a lower bound only if a super-polynomial lower bound for eFrege is found or
it is proven that P#P ⊈ P/poly (Theorem 7). Hence proving lower bounds in CLIP+eFrege will
lead to solving major open problems in the fields of proof complexity or circuit complexity.
Another way to say this is that, CLIP is the first #SAT proof system which is conditionally
optimal. Note that such systems already exist in the propositional and QBF worlds, i.e. IPS
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( the Ideal Proof System) [23] and eFrege +∀red [2] respectively.

2. A CLIP+eFrege simulation technique for all existing #SAT proof systems: The
CLIP+eFrege simulation technique consists of three parts. The first part consists of extracting
a cumulator from any #SAT proof system which is closed under restrictions. The second
part establishes that if a #SAT proof system admits easy eFrege proofs of the properties of
restriction (Definition 19) then it can be p-simulated by CLIP+eFrege. The final part proves
that the CPOG system admits all the required properties and hence can be p-simulated by
CLIP+eFrege. Let us briefly explain each of them separately.

(a) Cumulator extraction (Section 4.1). We show that from any #SAT proof system
which is closed under restrictions (Definition 1), there is a simple technique to efficiently
extract a cumulator from its proofs. For this, we carefully use the concept of Fenwick
trees [20] to introduce and compute the Fenwick assignments (Definition 13). Informally,
the Fenwick assignments are a small set of partial assignments that collectively covers
all assignments up to a given complete assignment (Definition 10).

(b) Extended Frege (eFrege) certification of the cumulator (Section 4.2). Informally,
the properties of restriction imply that after restricting a proof with a complete assign-
ment α, the model count will be 0 or 1, depending on whether α satisfies the formula.
Whereas, in the case of restricting a proof with a partial assignment α undefined on
some variable x, the model count returned should be the sum of model counts returned
when restricting with α0 and α1, where αb = α ∪ {x = b}. These two are the only
properties we need to know which when globally combined tells us that the model count
under the restriction of a partial assignment is correct. If a #SAT proof system admits
easy eFrege proofs for these properties of restriction (Definition 19), we show that it can
be p-simulated by CLIP+eFrege (Theorem 23).

(c) CLIP+eFrege p-simulates CPOG (Section 5.3, 6). Using the structure of the POG
to form an inductive proof. We explicitly show that the CPOG proof system admits
easy eFrege proofs of the properties of restriction (Lemma 52). Thereby, proving that
CLIP+eFrege p-simulates CPOG (Theorem 53), which in-turn p-simulates KCPS(#SAT)
andMICE [3]. This shows that CLIP+eFrege p-simulates all existing #SAT proof systems.

3. Upperbounds in CLIP for some hard formulas of existing #SAT systems:

(a) XOR-PAIRS. Since the CLIP framework uses unrestricted Boolean circuits in its proof as
compared to other existing #SAT proof systems, CLIP is capable of handling formulas
that are hard for other systems. We show this for the family XOR-PAIRS, which are
known to be hard for MICE [5], and give an easy proof for the same in the CLIP+eFrege
proof system (Theorem 65). For the short proof, we first carefully define a short cumu-
lator for the XOR-PAIRS. Then, using a constant case analysis we certify the correctness
of the cumulator in eFrege.

(b) Unsatisfiable formulas. We show that any unsatisfiable formula which has an easy
eFrege proof, also has an easy CLIP+eFrege proof (Proposition 55). It is already known
that for unsatisfiable formulas, MICE and KCPS(#SAT) are p-equivalent to Resolution
and regular-Resolution respectively [3, Proposition 5.1, 5.3]. As a result, all unsatisfiable
formulas, which are hard for Resolution and easy for eFrege are all hard for MICE and
KCPS(#SAT) but easy for CLIP+eFrege. We list two such important counting based
unsatisfiable formulas. Namely, the pigeonhole principle (PHP) and the clique-coloring
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principle [28, Definition 7.1], which are known to be hard for Resolution [24, 28] but are
easy for eFrege [18, 9, 10].

Organization of the paper: Section 2 contains the preliminaries used in this paper. Section 3
defines the CLIP framework proof systems. We give the CLIP simulation technique Part-1 and
Part-2 in Section 4.1 and 4.2 respectively. Section 5.1, 5.2 and 5.3 show Part-1 of the simulation
technique for proof systems KCPS(#SAT), MICE′ and CPOG respectively. We show Part-2 of our
simulation technique for CPOG proof system in Section 6. Section 7 shows upper bounds in the
clip framework for hard formulas of MICE and KCPS(#SAT). Section 8 discusses the potential for
new benchmarks in the SAT and DQBF worlds from the clip framework. Finally in Section 9, we
conclude the paper.

2 Preliminaries

For a Boolean variable x, its literals can be x or ¬x. We use the notation ℓ = ¬x when ℓ = x and
ℓ = x when ℓ = ¬x. A clause C is a disjunction of literals and a conjunctive normal form (CNF)
formula ϕ is a conjunction of clauses. We denote the empty clause by ⊥. vars(ϕ) is the set of all
variables in formula ϕ.

2.1 Assignments

A partial assignment is a partial mapping from a set of propositional variables X to {0, 1}, when
the mapping is defined everywhere we say the assignment is complete. ⟨X⟩ is the set of all complete
assignments. Consider a totally ordered set of variables X. An initial assignment α is a partial
assignment to X such that there are no pairs x, y ∈ X where x < y and x is undefined in α and y
is defined. vars(α) are the variables for which α is defined and |α| represents |vars(α)|. A partial
assignment α can be extended to a total assignment by appending 0/1 assignment to the variables
X \ vars(α). Two partial assignments α, β are called non-overlapping, if there does not exist any
total assignment γ which can be obtained by extending both α and β.

For a CNF ϕ, ϕ|α (similarly C|α) denotes the restricted formula (or clause) resulting from
replacing all occurrences of vars(α) in ϕ (or C) with assignments from α. For a propositional
formula F we define the indicator function 1F , this acts on the free variables of F . 1F is equal to
an assignment that corresponds to 0 when F is false and 1 when F is true.

When variables are ordered as X = {xn−1, . . . x0}, complete assignments can be seen as binary
numbers i.e. {x2 = 1, x1 = 0, x0 = 1} represents 5. We distinguish numerals 0 and 1 from
Boolean constants 0 and 1 through the use of boldface. Let num map assignments to integers
using the standard binary encoding (num(α) =

∑i<n
i=0 1α(xi) · 2i), and num−1 be its inverse. We

also encapsulate arithmetic statements with || · || to indicate that we revert this into a proposition.
Later we will drop this notation when obvious. We denote [J ] to denote numbers {1,2, . . . , J1, J}
and [J1, J2] to denote numbers {J1, J1 + 1, . . . , J2 − 1, J2}.

2.1.1 Model Counting

Given a formula ϕ over a set of variables X, a model is an complete assignment to X that satisfies
ϕ. The set of models of ϕ is M(ϕ). We denote the total number of models of a CNF ϕ as
#models(ϕ) = |M(ϕ)|. #SAT is the computational problem of calculating #models(ϕ) from a CNF
ϕ. The class of languages decidable in polynomial time with an oracle to #SAT are denoted by
P#P .
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The weighted model counting problem assigns a real-valued weight function w : X → [0, 1] to the

set of variablesX. The weighted counting value is #w(ϕ) =
∑

α∈M(ϕ)

∏α(x)=1
x∈X w(x)·

∏α(x)=0
x∈X (1−w(x)).

2.2 Circuits

A Boolean circuit σ on variables X is a directed acyclic graph, in which the input nodes (with
in-degree 0) are Boolean variables in X and other nodes are the basic Boolean operations: ∨ (OR),
∧ (AND) and ¬ (NOT) and have in-degree at most 2. Every Boolean circuit σ evaluates a Boolean
function whose output is that of the node with out-degree 0 in σ. P/poly is the class of Boolean
functions computed by polynomial-sized circuit families.

We refer to a multi-circuit when we have multiple nodes with out-degree 0. This is simultane-
ously many overlapping circuits. Multi-circuits take inputs and outputs of Boolean vectors of fixed
length. We denote the Boolean XOR gate with ⊕ in the paper. Likewise we use ↔ (or =, or ≡)
for bi-equivalence and A |= B to mean that models of A are also models of B.

The class of polynomials with polynomial degree that can be represented by arithmetic circuits
of polynomial size are represented by VP. VNP is the class of polynomials f(x1, ..., xn) such that
given a monomial, its coefficient in f can be determined efficiently with a polynomial size arithmetic
circuit.

A Conjunctive Normal Form (CNF) ϕ can trivially be represented as a Boolean circuit σ as
follows: for every C ∈ ϕ, σ has |vars(C)| number of OR-gates. Then, σ has m−1 AND-gates where
m is the number of clauses ∈ ϕ.

2.3 Proof Systems

A proof system [17] is a polynomial-time function that maps proofs to theorems, where the set of
theorems is some fixed language L. A proof system is sound if its image is contained in L and
complete if L is contained in its image. A proof system takes in strings as its inputs. Let π be such
a proof we denote its size, i.e. the string length by |π|. Given two proof systems f and g for the
same language L. We that the f p-simulates g, when there is a polynomial time function r that
maps g-proofs to f -proofs such that g(π1) = f(r(π1)). f and g are said to be p-equivalent if they
both p-simulate each other,f and g are incomaparable if neither of them p-simulates the other. We
say that f is exponentially stronger than g, if f p-simulates g but g does not p-simulate f .

Conventionally we may take L to be the set of propositional tautologies (as in Section 2.3.1).
For propositional model counting, we take L as the set of all pairs (ϕ,#models(ϕ)), where ϕ is any
propositional formula. We refer to a #SAT proof of (ϕ,#models(ϕ)) as a proof of ϕ.

Definition 1 (Closure under restrictions [29]). A proof system P is closed under restrictions if for
every P -proof π of a CNF formula ϕ and any partial assignment α to vars(ϕ), there exists a P -proof
π′ of ϕ|α such that |π′| ≤ p(|π|) for some polynomial p. In addition, there exists a polynomial time
procedure (w.r.t. |π|) to extract π′ from π.

A similar definition called ‘closure under conditioning’ exists in the knowledge-compilation
domain [19, Definition 3]. Precisely, a knowledge representation structure S (like DNNF, POG,
etc) is closed under conditioning if from an S structure T and an assignment α to vars(T ), another
S structure T ′ can be computed just by replacing all occurrences of free variables by α wherever
defined. Additionally T ′ should be equivalent to T ∧ α.
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2.3.1 Propositional Proof Systems

Resolution [32] is arguably the most studied propositional proof system. It has the following rule:
(C∨x) (D∨x)

(C∪D) where C,D are clauses and x is a variable. Resolution refutation ρ of CNF ϕ is a

derivation of ⊥ using the above rule (i.e. ρ := ϕ Res ⊥). Size of ρ (i.e. |ρ|) is the number of times
the above rule is used in ρ. It is well-known that Resolution is closed under restrictions.

Frege systems [22] are important propositional proof systems. They consist of a sound and
complete set of axioms and rules where any variable can be substituted by any formula. All Frege
systems are p-equivalent [17]. Figure 2 gives one example of a Frege system.

1 x1 → (x2 → x1) ((x1 → 0)→ 0)→ x1

(x1 → (x2 → x3))→ ((x1 → x2)→ (x1 → x3))
x1 x1 → x2

x2

Figure 2: A Frege system for connectives →, 0, 1.

Res

Frege

eFregeDRAT

CPPCR

PC

Truth Table

Figure 3: p-simulations
of propositional proof
systems [17].

Extended Frege (eFrege) [17] allows the introduction of new vari-
ables as well as all Frege rules. Simultaneously we can imagine it as
a Frege system where lines are circuits instead of formulas, or as Sub-
stitution Frege, where derived tautologies can be generalised. eFrege is
also p-equivalent to DRAT (Deletion Resolution Asymmetric Tautol-
ogy) [27], a practical proof-format widely used in certifying SAT solvers.

In Figure 3 we show that eFrege sits at the top of the simulation
hierarchy of propositional proof systems. In fact eFrege can simulate any
proof system as long as there is a short proof of the reflection principle
of said proof system [26].

When showing that eFrege has short proofs for complicated tautolo-
gies, it does not help us to be committed to one strictly defined proof
system. Instead, we can use the fact that it can simulate many different
proof systems such as Resolution, Cutting planes, Polynomial calculus

and Truth Tables. Any tautology that has a short proof in any weaker system will also have a short
proof in eFrege.

An NP-oracle is a theoretical concept which answers the membership question for NP in one
step i.e if a formula Φ is given, it can correctly return if Φ belongs to SAT or not. NP-oracles have
been used in QBF proof systems to skip propositional inference steps [13, 4].

3 Circuit Linear Induction Proposition (CLIP) Proof Framework

In this section, we define a propositional model counting proof framework (CLIP+P) for any propo-
sitional proof system P. Given a CNF ϕ over n variables, a CLIP+P proof consists of a Boolean
circuit ξ (denoted as a cumulator) which outputs the total number of models of ϕ from complete
assignment 0 to a given complete assignment num(α) (denoted as Cmodels(ϕ, α), Definition 2).
Clearly, when num(α) = 2n − 1, Cmodels(ϕ, α) = #models(ϕ). In addition, the CLIP+P-proof also
requires a P-proof of a statement which carefully encodes the correctness of cumulator ξ using the
induction-principle (see Definition 5). We need the following definitions.
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Definition 2 (Cmodels(ϕ, α)). Let ϕ be an CNF formula, fix an order among vars(ϕ). For any
complete assignment α to vars(ϕ), the cumulative number of models of CNF ϕ w.r.t. α (denoted
by Cmodels(ϕ, α)) is the number of models of ϕ between assignment 0 to assignment num(α). In
other words Cmodels(ϕ, α) := Σnum(β)≤num(α)1ϕ(β), where 1ϕ(β) is the indicator function for when β
is a model of ϕ.

Definition 3 (Cumulator). A cumulator for a CNF ϕ over n variables is a multi-circuit ξ(α) which
takes as input a complete assignment α to vars(ϕ) (as n binary bits) and calculates the cumulative
number of models of ϕ, i.e. Cmodels(ϕ, α) outputted as n+1 binary bits. As a result, when α is the
last assignment (i.e. num(α) = 2n − 1), ξ(α) outputs the total number of models of ϕ, we denote
this as the final output of ξ.

A trivial cumulator for ϕ would be to keep a counter and given any α, input every assignment
from 0 to num(α) into the trivial Boolean circuit representing ϕ. If an assignment is a model then
increment the counter. This will take O(2|vars(ϕ)|) computations in the case of α being the last
assignment.

Consider a CNF ϕ and let k be its number of models. Given a cumulator ξ(α) for ϕ, the correctness
of the cumulator can be encoded inductively as follows:

For the base case when num(α) = 0, we need to verify that the following is satisfied:
(ϕ(α) ∧ ||ξ(α) = 1||) ∨ (ϕ(α) ∧ ||ξ(α) = 0||). This covers the case that if the first assign-
ment is a model for ϕ then the cumulator should return 1, else a 0.

For the inductive step when num(α) = num(β) + 1, the following should be satisfied
(ϕ(α) ∧ ||ξ(α) = ξ(β) + 1||) ∨ (ϕ(α) ∧ ||ξ(α) = ξ(β)||). This covers the case that if the
next assignment α after β is a model of ϕ, then the cumulator should increment its output by 1.
Otherwise, the cumulator should output the same number under both assignments.

For the final case when num(α) = 2|vars(ϕ)| − 1, it should be true that ξ(x) = k. This covers
the case that the cumulator computes the correct total number of models of ϕ.

It is clear to see that if all of the above cases are true, the cumulator ξ is proven to be a correct
cumulator of ϕ. From the above discussion, one can encode the correctness of ξ as the following
statement (|| · || encloses the arithmetic comparisons needed):
||num(α) = 0|| →

(
(ϕ(α) ∧ ||ξ(α) = 1||) ∨ (¬ϕ(α) ∧ ||ξ(α) = 0||)

)
∧||num(α) = num(β) + 1|| →

(
(ϕ(α) ∧ ||ξ(α) = ξ(β) + 1||) ∨ (¬ϕ(α) ∧ ||ξ(α) = ξ(β)||)

)
∧||num(α) = 2|vars(ϕ)| − 1|| → ||ξ(x) = k||.

To convert this into a purely propositional statement, we need Boolean circuits to implement
the arithmetic conditions ||x = y|| and ||x = y + 1|| for any integers x, y. We define polynomial
sized Boolean circuits for the same as E(x, y) and T (x, y) respectively in Definition 4 below.

Definition 4. Let Z be a set of variables of size n, and let γ and δ be assignments to Z. For pairs
of individual variables a, b, use a = b to denote (¬a∨ b)∧ (a∨¬b). We can encode polynomial size
propositional circuits:

• E(γ, δ), that denotes num(γ) = num(δ): E0(γ, δ) := (γ0 ↔ δ0). For 1 ≤ i < n, Ei(γ, δ) :=
(γi ↔ δi) ∧ Ei−1(γ, δ). E(γ, δ) := En−1(γ, δ).

• T (γ, δ), that denotes num(γ) = num(δ) + 1 using an intermediate definition S that will
denote the successor function. For 0 ≤ i < n and accepting the empty conjunction as true,
S(δ)i := ¬(δi ↔

∧j<i
j≥0 δj). T (γ, δ) := E(γ, S(δ)) ∧

∨i<n
i≥0 δi.
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Definition 5 (CLIP+P). For every propositional proof system P, the CLIP+P system for #SAT is
a cumulator ξ for a CNF ϕ along with its correctness presented as a valid P-proof of the following
linear induction proposition statement lip(ξ).

Let A and B be two disjoint copies of the variables in ϕ. The following is a tautology in the
variables of A ∪B:

lip(ξ) :=
E(A,num−1(0))→

(
(ϕ(A)→ E(ξ(A),num−1(0))) ∧ (ϕ(A)→ T (ξ(A),num−1(0)))

)
∧

T (B,A)→
(
(ϕ(B)→ E(ξ(B), ξ(A))) ∧ (ϕ(B)→ T (ξ(B), ξ(A)))

)
∧

E(A,num−1(2|vars(ϕ)| − 1))→ E(ξ(A),num−1(k)).

The existence of a valid P-proof of lip(ξ), ensures that ξ is correct and the final output k of ξ is
the correct number of models of ϕ. Note that in a technical sense the proof of inductive step (i.e.
line 2 in lip(ξ)) is sufficient to verify the cumulator ξ, as the base and final case can be managed in
the checker.

Theorem 6. If P is a propositional proof system then CLIP+P is a propositional model counting
proof system.

Proof. CLIP+P is sound and complete for #SAT as a trivial cumulator always exists for any ϕ and
the propositional proof system P is sound and complete. Note that for a refutational proof system
P ′, CLIP+P ′ can include the correctness of ξ by including a P ′-refutation of lip(ξ) from the above
definition. For polynomial time checkability, we perform 3 steps: 1) Verify that ξ is indeed a circuit.
2) Using ξ, generate lip(ξ) once again, to make sure it matches (where P does not accept circuits
a canonical translation, i.e. a Tseitin transformation is needed). 3) Verifying the P proof.

Theorem 7. CLIP+eFrege has a super-polynomial lower bound only if eFrege has a super-
polynomial lower bound or P#P ⊈ P/poly.

Proof. Suppose there is a family (ϕn)n≥0 of propositional formulas that are a super-polynomial lower

bound to CLIP+eFrege. Let fn,i be the ith bit of the cumulative function for ϕn. (fn,i)
0≤i≤|vars(ϕn)|
n≥0

is a P#P family. Finding the value of the cumulator at assignment α can be found by adding a
constraint to ϕ that the only acceptable models are less than or equal to α and querying for the
number of models.

Now suppose P#P ⊂ P/poly, then there are polynomial size circuits for each fn,i and thus a
polynomial size cumulator ξn for each ϕn. For each n, lip(ξn) is also polynomial size in ϕn. Thus
the family (lip(ξn))n≥0 is super-polynomial lower bound for eFrege.

Definition 8 (CLIPNP ). The proof format CLIPNP for #SAT is a cumulator ξ for CNF Φ along
with its correctness encoded by the statement lip(ξ) from Definition 5 and verified by an NP-oracle
instead of a proof.

For CLIPNP, size is determined by lip(ξ) only. CLIPNP is a proof system only if P = NP.

4 CLIP+eFrege simulates existing #SAT proof systems

In this section, we give an important CLIP+eFrege p-simulation technique for any #SAT proof sys-
tems which are closed under restrictions and have short eFrege proofs of the properties of restriction
(Definition 19). To be precise, we show that CLIP+eFrege can p-simulate any model counting proof
system P which obey the following conditions:
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I. The polynomial-time ability to extract circuits from a P-proof π of CNF ϕ over n variables
(xn−1 . . . x0) that calculate closure under restrictions for any given (partial) assignment α.
We denote this circuit as θi(α), where i = n − |α|. Precisely, θi(α) computes the count of
models of ϕ that also satisfy α (Definition 9).

II. P has short eFrege proofs for properties of restriction (Definition 19) that confirm the cor-
rectness of closure under restriction in P. Precisely, the properties encode that θ0(α) = ϕ(α)
and θi(α) = θi−1(α ∪ {xi−1 = 1}) + θi−1(α ∪ {xi−1 = 0}) when i > 0.

Let us formally define the circuit θ used in above conditions.

Definition 9. Let ϕ be a CNF on n variables and α be a (partial) assignment of length n− i. We
define θi(α) to be a Boolean circuit that returns #models(ϕ|α). Also, θij(α) is a circuit that returns

the jth bit of θi(α).

In the upcoming subsections, we give the complete simulation technique. Recall that
CLIP+eFrege proof consists of a cumulator ξ and a eFrege-proof of validity of the propositional
‘lip’ statement which encodes the correctness of ξ. Using the condition-I above, in Section 4.1
we derive the cumulator ξ for ϕ (Part 1 of our simulation technique). In Section 4.2, we use the
condition-II to derive the eFrege-proof of lip(ξ) (Part 2 of our simulation technique).

4.1 Simulation Technique (Part 1) : Cumulator Extraction

In this section, we give a general framework of extracting efficiently a cumulator from the proofs
of existing propositional model counting proof systems. We need the following definition.

Definition 10 (Disjoint binary partial assignment cover (PAC(J1,J2))). Let J1, J2 be integers
representing some complete assignments to variables X := xn−1, ..., x0 in this order. The cover
PAC(J1,J2) is a set of partial assignments to X which are non-overlapping and together cover the
entire assignment space between J1 and J2 inclusive of both.

For instance, let X := {x3, x2, x1, x0}, J1 := 5 and J2 := 15. One possible PAC(J1,J2):=
{{x3 = 1}, {x3 = 0, x2 = 1, x1 = 1}, {x3 = 0, x2 = 1, x1 = 0, x0 = 1}}. Observe that the first
partial assignment (i.e. {x3 = 1}) is covering all assignments from [8 ,15 ]. Similarly the second
and third partial assignments are covering the assignments [6 ,7 ] and 5 respectively.

Let us now outline the general extraction technique.

Cumulator Extraction Technique: Let P ∈ {MICE,KCPS(#SAT),CPOG} be a propositional
model counting proof system. Consider a CNF ϕ over n variables and its P-proof π. In order to
efficiently extract a correct cumulator ξ for ϕ, we follow the following steps:

1. Show that P is closed under restrictions (see Definition 1). That is, show that P obeys
condition-I from above.

2. For any complete assignment J to vars(ϕ), find the set of non-overlapping partial assignments
(to vars(ϕ)) which cover the entire assignment space from assignments 0 → J (i.e PAC(0,J)
see Definition 10).

Using Fenwick’s idea [20], it is easy to compute PAC(0,J) for any complete assignment J
(Lemma 11). Moreover, |PAC(0,J)| ≤ n.

3. For each partial assignment α ∈ PAC(0,J), restrict π with α and consider the P-proof π′
of CNF ϕ|α. Observe that π′ is actually θi(α) where i = n − |α|. Since P is closed under
restrictions, this step takes O(|π|) time for every α.
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4. Finally add the number of models returned by all the π′ proofs obtained in the above step.
(This step will need a full-adder circuit as integers are represented as (n+ 1)-bit numbers).

This process will return ξ(J) which computes Cmodels(ϕ, J) and takes O(n.|π|) time.
We prove Step-1 of our simulation technique individually for existing proof systems

KCPS(#SAT), MICE′ and CPOG in Section 5.1, 5.2 and 5.3 respectively. For Step-2, consider
the following lemma.

Lemma 11. Given an input size n, and binary integer 0 ≤ J < 2n. There is a polynomial time
algorithm in n that returns a disjoint binary partial assignment cover for [0 , J ] (PAC(0,J)) with at
most n many partial assignments.

Proof. Refer to Algorithm 1 for the exact procedure. The idea is as follows: given any total
assignment J , it finds the index of the least significant 1 (from the right) in its binary representation
(say r) and subtracts (2r+1) from J to find its parent assignment. The process repeats recursively
for the parent assignment while it remains > 0. However all these parent assignments are total.
In order to find the required partial assignments, we simultaneously remember (in the dash array)
logarithm of the difference between any assignment and its parent. As a result, the dash array
records the number of variables (from the right end) that need to be removed from the corresponding
total assignment.

The correctness of Algorithm 1 stems from the correctness of Fenwick trees [20] which efficiently
computes the cumulative sum of numbers stored between index 0 to any other index of the array
by visiting least possible indices in the tree. A Fenwick tree guarantees that it visits logarithmic
number of indexes in the worst case. Algorithm 1 similarly computes PAC(0,J) by finding the least
number of partial assignments to include such that they cover the entire range from [0 , J ]. Hence
the maximum partial assignments returned from Algorithm 1 is log(2n) = n. Note that we drop the
use of a sign bit as we only deal with non-negative numbers for assignments in Fenwick trees.

Algorithm 1 Fenwick tree [20] based algorithm to find PAC(0,J)

Require: J < 2n

function Fenwick-assignments(int J , int n)
int α := {}, dash:= {} /*α, dash are each a set of integers*/
int indx← J + 1 /*assignments ∈ [0, 2n − 1] but the Fenwick tree handles [1, 2n]*/
while indx > 0 do

parent = indx− (indx & − indx) /*& is the bit-wise AND operator*/
α.append(parent)
dash.append(log(indx − parent)) /*records the no. of variables to forget from α*/
indx← parent

end while
return α′ = process(α, dash)
/*‘process’ function does the following: for i ∈ |α|, α′[i] is the partial assignment obtained from
α[i] after discarding ‘dash[i]’ number of variables from the right end in the fixed ordering of
variables*/
end function

For a detailed version of Algorithm 1, see Appendix A. We provide Example 12 to illustrate the
use of Algorithm 1.
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Example 12. Let n = 5 and J = 22. Let the variables be lexicographical ordered as x4 . . . x0. The
Algorithm 1 will initially find the parent of indx = 23, this is done as follows:

indx = 10111, −indx = 01001
=⇒ (indx & − indx) = 00001 =⇒ indx− (indx & − indx) = 10110 = (22)10

Doing this recursively gives the parent chain as 22→ 20→ 16→ 0.
The sets α and dash are {22, 20, 16, 0} and {0, 1, 2, 4} respectively. The corresponding PAC(0,22) is

the following set of partial assignments:
{
{x4 = 1, x3 = 0, x2 = 1, x1 = 1, x0 = 0}, {x4 = 1, x3 =

0, x2 = 1, x1 = 0}, {x4 = 1, x3 = 0, x2 = 0}, {x4 = 0}
}
.

Note that extracting cumulator is not enough for the full CLIP simulation. Because, CLIP proofs
also consists of the validity proof of the lip statement. However, with an access to an NP-oracle, the
validity of the lip statement can be obtained in one step due to the correctness of our simulation
technique. Thus the efficient cumulator extraction shows that CLIPNP (Definition 8) p-simulates
any #SAT system which is closed under restrictions. Observe that CLIPNP is a proof system only
if P = NP.

In the upcoming sections, we give full CLIP framework simulations of all the existing #SAT
proof systems using the powerful eFrege system for validating the lip statement.

Recall that for the cumulator extraction, we used the concepts of Fenwick assignments. In
upcoming proofs, we also need some additional results on Fenwick assignments. We finish this
subsection with these results before proceeding to the part 2 of our simulation technique.

4.1.1 Formalising Fenwick Assignments

In Lemma 11, we show how to compute the PAC given a complete assignment α with |PAC(0,α)| ≤
|α|. In this section, we formalise it as a Boolean circuit (Definition 13) which outputs a PAC for
any given complete assignment α. We call the output PAC(0,J) of the Boolean circuit as Fenwick
assignments. Note that these are the same assignments obtained when following Algorithm 1. We
further show that eFrege can handle a few essential properties of Fenwick assignments. We use
these in the next section for part-2 of the simulation technique.

Definition 13 (Fenwick assignments). Let α be a complete assignment to n variables with ordering
xn−1 . . . x0. For every i, 0 ≤ i ≤ n, we define an existence function ei(α) and the set of initial
assignment bits fi,j for 0 ≤ i ≤ j < n as follows:

ei(α) =


1 α(xi) ∧

∨k<i
k≥0 α(xk) and 0 < i < n

1 α(xi) ∧
∧k<i

k≥0 α(xk) and 0 ≤ i < n

1
∧k<n

k≥0 α(xk) and i = n

0 otherwise

fi,j(α) =

{
1 α(xj) and j > i

0 otherwise

We denote for 0 ≤ i < n, fi(α) = {fi,j |i ≤ j < n} as the ith partial assignment for α (note that
fn is the empty assignment and needs no variables to be defined). For a complete assignment α,
Fenwick assignments are {fi(α)|ei(α) = 1, 0 ≤ i ≤ n}. Here, ei(α) can be seen as a single-bit value
that indicates if there is an initial assignment defined on n− i variables in the Fenwick assignments
of α. Similarly, fi,j(α) is the value of xj in the ith partial assignment corresponding to ei(α) in
Fenwick assignments of α.

Below we give an example of how we represent Fenwick assignments as in Definition 13.
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Example 14. Let n = 4 and J = 12. Let the variables be lexicographical ordered as x3 . . . x0. That
is, α := {x3 = 1, x2 = 1, x1 = 0, x0 = 0}.

The Fenwick indicators have the following values: e0(12) = 1, e1(12) = 0, e2(12) =
1, e3(12) = 1, e4(12) = 0. This indicates that there are 3 partial Fenwick assignments in
PAC(0,12) ending at x0, x2 and x3 respectively. The exact assignments are computed as follows:
f0,3(12) = 1, f0,2(12) = 1, f0,1(12) = 0, f0,0(12) = 0 → f0 = {x3 = 1, x2 = 1, x1 = 0, x0 = 0}
f2,3(12) = 1, f2,2(12) = 0 → f2 = {x3 = 1, x2 = 0}
f3,3(12) = 0 → f3 = {x3 = 0}.

The corresponding PAC(0,12) (i.e Fenwick assignment of 12) is the following set of partial

assignments:
{
{x3 = 1, x2 = 1, x1 = 0, x0 = 0}, {x3 = 1, x2 = 0}, {x3 = 0}

}
. Note that these

can also be obtained from Algorithm 1 (see Example 12).

Next we see few properties of how Fenwick assignments change as num(α) increases slowly.
Assume X,Y are complete assignments and Y = X + 1. In the first case that X is odd and Y is
even, the change in Fenwick assignments are minor and easily captured in eFrege.

Lemma 15. Assume T (Y,X) (i.e. Y = X + 1) and ¬Y0 then

1. e0(Y ) ∧ ¬e0(X)

2. For i > 0, ei(X)↔ ei(Y )

3. For 0 < i ≤ j < n, ei(X)→ (fi,j(X)↔ fi,j(Y ))

4. For 0 ≤ j < n, f0,j(Y )↔ Yj

And we can prove these formally in eFrege in short proofs even in the case that Y and X are vectors
of variables (or extension variables).

Proof. Ȳ0 ∧
∧k<0

k≥0 Yk is true hence e0(Y ) can be shown via definition. Since, Y0 = X0 ⊕
∧k<0

k≥0Xk

and
∧k<0

k≥0Xk is just the empty conjunction which equals 1 therefore X0 is true and so e0(X) must
be false and we can show this through a short derivation.

Take p to be the maximum such that
∧k<p

k≥0Xi is true, we can prove such a maximum exists by
exhibiting a disjunction. Then for 0 < i < p, ei(X) = 0. Yk = 0 for k ≤ i by definition of T and so
¬ei(Y ) by definition of ei(Y ). For i = p, Xi = 0 while

∧k<i
k≥0Xi and Yi = 1 while

∨k<i
k≥0 Ȳi so both

ei(X) and ei(Y ) are true. fp,p(X) = fp,p(Y ) = 0 because i is not strictly greater than itself. For

j > p, we have to show that Xj and Yj are equal. Recall that Yj = Xj ⊕
∧k<j

k≥0Xk, but since Xp is

false,
∧k<j

k≥0Xk = 0 and so Yj = Xj . Hence fp,j(X) = fp,j(Y ).

For i > p, if ei(X) is true then Xi ∧
∨k<i

k≥0 X̄k must be true.
∨k<i

k≥0 Ȳk must also be true because

Y0 is true. Since Xi = Yi then Yi ∧
∨k<i

k≥0 Ȳk is also true and so ei(Y ) can be proven that way. Since
Xj = Yj for j ≥ i then by definition fi,j(X) = fi,j(Y ).

By definition, for j > 0, f0,j(Y ) = Yj and f0,0(Y ) = 0 = Y0.

In the second case that X is even and Y is odd, the change in Fenwick assignments maintain
some essential properties which are again easy to capture in eFrege.

Lemma 16. Assume T (Y,X) (i.e. Y = X +1) and Y0 then there is some maximum p : 0 < p ≤ n
such that

∧j<p
j≥0 Yj. Further the following properties are true and have short formal eFrege proofs.

1. (a) ei(X) ∧ ¬ei(Y ) for 0 ≤ i < p
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(b) fi,j(X)↔ Yj for 0 ≤ i < p ≤ j < n

(c) fi,j(X) for 0 ≤ i < j < p ≤ n
(d) ¬fi,p(X) for 0 ≤ i < p

2. (a) ¬ep(X) ∧ ep(Y ) if p < n

(b) fp,j(X)↔ fp,j(Y ) for p ≤ j < n.

(c) ¬fp,p(X) ∧ ¬fp,p(Y ) if p < n

3. (a) ei(X)↔ ei(Y ) for p < i < n

(b) fi,j(X)↔ fi,j(Y ) for p < i ≤ j < n

Proof. Because Y0 = 1, then by definition of T we can prove X0 = 0, hence
∨k<i

k≥0 X̄k is always true
for i > 0. This means that through the definition of T , Yi = Xi for i > 0. This will be important
for many items when i > 0.

For i = 0 we get e0(X) and ¬e0(Y ) through definition and use of Y0 ∧¬X0. And for 0 < i < p,
Xi = 1 and since

∨k<i
k≥0 X̄k is true ei(X) is true. However

∧j≤i
j≥0 Yj is true so ei(Y ) is false. Through

Yi = Xi we also get that for 0 ≤ i < j, fi,j(X) = Xj = Yj . For j < p we specifically get Yj = 1 and
for j = p we get Yj = 0. This completes all cases from 1.

In case 2, ep(X) is false because Xp = Yp = 0 and
∧k<p

k≥0Xk is false. Likewise, ep(X) is true

because Yp = 0 and
∧k<p

k≥0 Yk is true. fp,p(X) = fp,p(Y ) = 0 by definition and fp,j(X) = fp,j(Y ), for
j > p because then Xj = Yj .

In case 3, again fi,j(X) = fi,j(Y ), for j ≥ i > p because Xj = Yj . We can also use Xj = Yj to

show ei(X) = ei(Y ) because
∨k<i

k≥0 X̄k and
∨k<i

k≥0 Ȳk are now both true.
All these cases can be formalised in eFrege proofs due to their simplicity for each choice of p.

One final important step is to create and prove disjunction over all possible p.

Step 3,4 of our simulation technique require restricting the θ circuit with all the Fenwick assign-
ments of some complete assignment α and adding them up to get ξ(α). Using the formal definition
of the Fenwick assignments from Definition 13, we have the following.

Definition 17. For a complete assignment α on n variables, we define the vector of Boolean
variables ξ(α) as the following sum:

(en(α) ∧ θn(fn(α))) + (en−1(α) ∧ θn−1(fn−1(α))) + · · ·+ (e0(α) ∧ θ0(f0(α)))

This circuit ξ is the required cumulator.

4.2 Simulation Technique (Part 2): eFrege certification of the cumulator

Recall that, for a full CLIP+eFrege simulation, the proof system must have short eFrege proofs of
the properties of restriction, i.e. condition-II from Section 4. Let us formally define the properties
of restriction in Definition 19 which are based on the following simple observations of partial
assignments .

Observation 18. Let ϕ be a CNF on variables xn−1 . . . x0 (used in that lexicographic ordering
in CLIP). Let α be a partial assignment defined on xn−1 . . . xi, undefined on xi−1 . . . x0. Given a
{0, 1}-value b, let αb := α ∪ {xi−1 = b}. Then, #models(ϕ|α) = #models(ϕ|α0) + #models(ϕ|α1). If α
is a complete assignment, #models(ϕ|α) = 1ϕ(α).
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Proof. A complete assignment α either satisfies ϕ or falsifies it. Therefore #models(ϕ|α) = 1ϕ(α).
For a partial assignment α, #models(ϕ|α) calculates the models of ϕ after restricting with α. Notice
that adding another restriction to ϕ|α only reduces the search space for models. However, adding
the extra restriction in both the polarities again has the original search space for models as ϕ|α.
That is, #models(ϕ|α) = #models(ϕ|α0) + #models(ϕ|α1).

Definition 19 (Properties of Restriction). Let S be a propositional model counting proof system
and ϕ be a CNF on n variables (xn−1 . . . x0). Suppose ϕ has an S-proof π with θ being the associated
circuit for restriction. We consider the following properties for all assignments α over xn−1 . . . x0.

1. If α is a complete assignment: θ0(α) = 1ϕ(α).

2. If α is a partial assignment defined on xn−1 . . . xi : θ
i(α) = θi−1(α0) + θi−1(α1)

Observation 20. Any propositional model counting proof system P which is closed under restric-
tions, satisfies the properties of restriction mentioned in Definition 19.

Proof. By definition, closure under restrictions imply the existence of a polynomial-size (in terms of
the P-proof of some CNF ϕ) Boolean circuit θ calculating the value of #models(ϕ|α) for any partial
assignment α to vars(ϕ). This when combined with the properties of partial assignments shown in
Observation 18, give the properties of restriction.

Remark. For the CLIP+eFrege simulation of a propositional model counting proof system, just
satisfying the properties of restriction (Definition 19) are not enough. The proof system must have
a short eFrege proof of these properties a well. In Lemma 52, we explicitly show that CPOG has
short eFrege proofs for these properties.

Next we prove in Lemma 21 that short eFrege proofs of the properties of restriction can be used
to give short eFrege-proofs of the lip statement from Definition 5.

Before presenting the detailed proof of Lemma 21, we briefly give the proof idea. For a CNF
ϕ and any two consecutive assignments β1, β2 such that β2 = β1 + 1, we need to show that
ξ(β2) = ξ(β1)+1ϕ(β

2). We show this in the following two cases: β2 being odd or even. In the case
of β1= odd and β2= even, we show that the Fenwick assignments of β2 are the Fenwick assignment
of β1 along with the assignment β2 itself (Lemma 15). This directly implies ξ(β2) = ξ(β1)+1ϕ(β

2).
In the case of β1= even and β2= odd, we show that the only extra assignment in Fenwick

assignments of β2 is assignment γ which is the common prefix of both β1 and β2 (Lemma 16). We
then show that using Observation 20 a linear number of times we can prove that θ(γ) decomposes
so that it implies ξ(β2) = ξ(β1) + 1ϕ(β

2).

Lemma 21. Suppose P is a propositional model counting proof system which is closed under
restrictions. Let ϕ be a CNF and ξ be a cumulator obtained by using Fenwick assignments on the
P-proof of ϕ. If P has polynomial-sized eFrege proofs of the properties of restriction, then it has
short eFrege proof of lip(ξ).

Proof. Line-1 of the lip statement assumes the assignment α = 0. From a simple computation,
only e0(0) = 1 with the corresponding f0(0) = 0. From Definition 17, ξ(0) = θ0(0). From the
properties of restriction θ0(0) = 1ϕ(0).

Line-3 of the lip statement assumes the assignment α = 2n − 1. Similarly, we can compute that
only en(2

n − 1) = 1 and fn(2
n − 1) = ∅. Then ξ(2n − 1) = θn(∅). θn contains no restriction, so it

is the intended answer for the entire model count.
The main part of CLIP is the inductive step for complete assignments β2 = β1 + 1.
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For an even β2, We use the cases for short proofs in Lemma 16 . We can argue that

ei(β
1)↔ ei(β

2) for i > 0

and
ei(β

1)→ (fi,j(β
1)↔ fi,j(β

2)) for i > 0.

That is, all Fenwick assignments for β1 and β2 are the same except the one corresponding to
e0(β

2). Additionally that f0(β
2) = β2. Along with associativity (see Appendix B), this easily leads

to ξ(β2) = ξ(β1) + 1ϕ(β
2) in eFrege.

For an odd β2, we can use the short proofs from Lemma 16 of the various cases . We take the
maximum p : 0 ≤ p ≤ n such that

∧j≥0
j<p β

2
j . We can derive (case-3a,3b of Lemma 16)

ej(β
1)↔ ej(β

2) and fj,k(β
1)↔ fj,k(β

2) for j > p.

At j = p, we have that (case-2a,2b of Lemma 16) fp(β
2) = the common prefix of β1 and β2 up

to p (say γ). For j < p, we derive (case-1b of Lemma 16) that γ is the prefix of all these Fenwick
assignments. Further we show (case-1c,1d of Lemma 16) that these assignments extend γ by p−j−1
number of 1s and end with a 0. That is, (extending the notation from Observation 18)

{fj(β1)}p>j≥0 = γ0, γ10, γ110, . . . , β
1.

Using the split property of restrictions for i times, we have

θ(γ) =

j≥0∑
j≤p

(ej(β
1) ∧ θj(fj(β1))) + θ0(β2).

Adding fj,k(β
1)↔ fj,k(β

2) for j > p to the above gives us ξ(β2) = ξ(β1) + 1ϕ(β
2).

Next, we give a supplementary example of Lemma 21.

Example 22. Let a CNF ϕ be defined on n = 5 variables and β1, β2 be 10010, 10011 (i.e 18, 19)
respectively. Let the variables be lexicographical ordered as x4 . . . x0. The corresponding PAC(0,18)

and PAC(0,19) are:
{
{x4 = 1, x3 = 0, x2 = 0, x1 = 1, x0 = 0}, {x4 = 1, x3 = 0, x2 = 0, x1 =

0}, {x4 = 0}
}

and
{
{x4 = 1, x3 = 0, x2 = 0}, {x4 = 0}

}
respectively.

The first zero of β2 occurs for the second digit therefore we take p = 2. For j > p, clearly
e4(β

1) = e4(β
2) and f4(β

1) = f4(β
2). There is one partial assignment that is in β2 but not in

β1, it is f2(β
2) (i.e {x4 = 1, x3 = 0, x2 = 0}). This is also the common prefix γ of both β1

and β2. Using the split property on γ twice, we have the following: θ2(γ) = θ1(γ0) + θ1(γ1) =
θ1(γ0) + θ0(γ10) + θ0(γ11). Adding f4(β

1) = f4(β
2) to this implies that ξ(19) = ξ(18) + 1ϕ(19).

This ends our simulation technique. For a model counting proof system P and a CNF ϕ with
it’s P-proof π, we have a cumulator ξ from Part 1 of our simulation technique. In Lemma 21, we
also have an eFrege proof of lip(ξ). Therefore, we have the following.

Theorem 23. CLIP+eFrege p-simulates any model counting proof system which is closed under
restrictions and has short eFrege proofs of the properties of restriction.

In conclusion, for any propositional model counting proof system P, Part 2 of our simulation
technique consists of the following step:

5. Show that P has short eFrege-proofs of the two properties of restriction (Definition 19). That
is, show that P obeys condition-II from above.
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5 Cumulator Extraction and NP Oracle simulation

For a complete p-simulation of #SAT proof systems by CLIP+eFrege, we need to apply both part-1
& part-2 of our simulation technique on the same. In the upcoming subsections, we apply Part-1
of our simulation technique to existing #SAT proof systems. Recall that the correctness of our
cumulator extraction technique implies that CLIPNP (Definition 8) p-simulates the proof systems
which are closed under restrictions (Theorem 32, 40, 47). In the next section, we also apply part-
2 of our simulation technique for CPOG, which is sufficient as it can p-simulate all other proof
systems.

5.1 Cumulator extraction from KCPS(#SAT)

In this section, we apply our simulation technique to the Knowledge Compilation based Proof
System (KCPS(#SAT)). In [12], the authors define a static propositional model counting proof
system based on the knowledge representation known as dec-DNNF(see Definition 24). First we
redefine the KCPS(#SAT) propositional model counting proof system (Definition 27) from [12]. We
then show that KCPS(#SAT) is closed under restrictions (Theorem 28), which is the first step in
our simulation technique. Step-3, 4 of the simulation technique are proved in Lemma 30.

Definition 24 (dec-DNNF [25]). A decision Decomposable Negation Normal Form (dec-DNNF)
circuit D on variables X is a directed acyclic graph (DAG) with exactly one node of indegree 0
called the source. Nodes of outdegree 0, called the sinks, are labeled by 0 or 1. The other nodes have
outdegree 2 and can be of two types: decision-nodes or ∧-nodes. Decision nodes are labeled with a
variable x ∈ X and have one outgoing edge labeled with 1 and the other labeled by 0.

If there is a decision node in D labeled with variable x, we say that x is tested in D. A valid
dec-DNNF has the following properties:

• Every x ∈ X is tested at most once on every source-sink path of D.

• Every ∧-gate of D is decomposable: there are no common variables tested in both of the
dec-DNNFs rooted at the end of its outgoing edges.

For an example of a dec-DNNF, refer [12, Figure 1]. Given any dec-DNNFD, it is easy to find
the number of models of D (denoted by #models(D)) and it is also easy to test if a total assignment
is satisfying D or not. We briefly explain the procedure for the same.

Testing if α is a model of dec-DNNF: Given a dec-DNNFD and a total assignment α, start
from the source of D: if the node is a decision node, follow the outgoing edge consistent with α
and if the node is an ∧-gate, follow both the outgoing edges. Repeat this process recursively until
all the paths followed reach sink-nodes. α is a satisfying assignment of D (i.e., D(α) = 1) only if
all sink-nodes reached by these paths are 1-sinks, else D(α) = 0.

Finding #models(D) for a dec-DNNFD: To find the total number of models for a dec-DNNFD,
maintain a counter at each node and start from the sinks (in bottom-up fashion): if the node is a
sink, assign the value of the sink to the counter. If the node is a decision node, assign its counter
with the sum of the children counters. If the node is an ∧-node, assign its counter with the product
of the children counters. Finally the counter at the source holds the #models(D). This is the general
idea, for the detailed algorithm see [11, Proposition 1.57]. As a result, we have the following.

Proposition 25. [11, Proposition 1.57][12, p.92] Given a dec-DNNF D and a total assignment α
to vars(D), there exists polynomial time procedures to find if α is a satisfying assignment of D and
also to find the total number of models of D.
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KCPS(#SAT) proof system uses cert-dec-DNNF which is a restriction of dec-DNNF.

Definition 26 (cert-dec-DNNF [12]). A certified dec-DNNF D on variables X is a dec-DNNF such
that every 0-sink s of D is labeled with a clause Cs. D is said to be correct if for every assignment
α to vars(X) if there is a path from the source of D to a 0-sink (s) following edges according to α,
Cs|α = ⊥. We denote by F (D) :=

∧
s∈0-sinks(D)

Cs.

It is known that Proposition 25 holds even for cert-dec-DNNFs.

Definition 27 (KCPS(#SAT) [12]). Given a CNF Φ, a certificate in the KCPS(#SAT) system that
Φ has k satisfying assignments is a correct cert-dec-DNNF D such that

• every clause of F (D) is a clause of Φ,

• D computes Φ : for every clause C ∈ Φ, D → C, this can be verified by (D ∧ C) having 0
satisfying assignments.

• D has k satisfying assignments.

Theorem 28. KCPS(#SAT) is closed under restrictions.

Proof. Let Φ be a CNF formula over n variables and cert-dec-DNNF D be the KCPS(#SAT) proof
of Φ. Let |D| = t. We show that given any partial assignment α to vars(Φ) there exists a cert-dec-
DNNF D′ = D|α of Φ|α with size at most t.

Given D and α, we prune the tree starting from the source node: if the node is a decision node
of variable x and x ∈ vars(α), we remove the decision node x (along with its two outgoing edges)
and replace it with the child node which was on the consistent outgoing edge of decision-node x
w.r.t. α. If the node is an ∧-gate or a decision node of variable x ̸∈ vars(α), we keep both the
outgoing edges. Repeat this process recursively until you reach the sinks in all the retained paths.
At this point, we have almost finished pruning D only the labels of 0-sinks, in all the retained paths,
need to be updated correctly w.r.t. α. To finish pruning, if any of the retained paths in D end in
a 0-sink s, update its label Cs with Cs|α. Let us denote this pruned cert-dec-DNNF as D′. For an
example of pruning a dec-DNNF, see Example 29. To show that #models(D

′) = #models(Φ|α), we
show below that D′ ↔ Φ|α.

To show Φ|α → D′: Since D is correct, we know that F (D) ⊆ Φ. Observe that the above
pruning updates the labels of D such that F (D′) ⊆ Φ|α.

For the other direction, we need to show that D′ → Φ|α: Since D is correct, we know that
D → C, for all C ∈ Φ. That is, for all total assignments γ to vars(Φ), if D(γ) = 1 then C|γ = 1.
We need to prove the following:

D′ → C|α for all C|α ∈ Φ|α (1)

The easy case is when the partial assignment α satisfies all the clauses in Φ. That is, for every
clause C ∈ Φ, α sets at least one of its literals to 1. Then conclusion of equation 1 is always true
and we are done.

For the remaining partial assignments α, assume for contradiction that equation 1 is not true.
Then, there is a total assignment β for

(
vars(Φ) \ vars(α)

)
and a C|α ∈ Φ|α such that D′(β) = 1

and (C|α)|β = 0. Note that α and β do not share any common variables and α ∪ β is a total
assignment for vars(Φ). D′ is obtained by pruning D with paths consistent w.r.t. α. We know
that β is a model of D′, therefore D′(β) reaches only 1-sinks. In other words, if one begins with D
and starts testing if α ∪ β is a model, it also ends with all 1-sinks (i.e D(α ∪ β) = 1). But we have
(Cα)|β = Cα∪β = 0 which is a contradiction. This is not possible as D → C for all C ∈ Φ is the
assumption.
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(a) cert-dec-DNNF D for CNF Φ [12]
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(b) cert-dec-DNNF D′ for CNF Φ|α1
with α1 :=

{x = 0}. Observe that we keep the left-child of
decision-node x (since x = 0) from D in D′.
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(c) cert-dec-DNNF D′′ for CNF Φ|α2
with α2 :=

{x = 1, z = 0}. Observe that we keep the right-
child of decision node x (since x = 1) and left-
child of decision node z (since z = 0) from D in
D′′.

Figure 4: cert-dec-DNNF used in Example 29

Example 29 ([12]). Consider a simple example of a CNF computing x = y = z as Φ := (x ∨ y) ∧
(y∨x)∧ (x∨ z)∧ (z ∨x). Φ has 2 models x = y = z = 0 and x = y = z = 1. A KCPS(#SAT) proof
of Φ is shown in Figure 4a. The decision nodes are shown as diamond-shaped with the label of its
corresponding variable inside it. The ∧-nodes are shown as square-shaped with the label of ∧ inside
it. The sink-nodes are shown as circle-shaped with their label of 0/1 value inside it. All 0-sinks s
are additionally labelled with their corresponding Cs clauses just below them.

Now consider the partial assignment α1 := {x = 0}. The CNF Φ|α1 := (1) ∧ (y) ∧ (1) ∧ (z).
Following the pruning procedure of Theorem 28, we build the cert-dec-DNNFD′ for Φ|α1 as shown
in Figure 4b. Note that #models(D

′) = #models(Φ|α1) = 1 (i.e x = y = z = 0).
Now consider the partial assignment α2 := {x = 1, z = 0}. The CNF Φ|α2 := (y)∧(1)∧(⊥)∧(1).

Following the pruning procedure of Theorem 28, we build the cert-dec-DNNF D′′ for Φ|α2 as shown
in Figure 4c. Note that #models(D

′′) = #models(Φ|α2) = 0.

Lemma 30. Given a KCPS(#SAT) proof π of Φ and a binary integer 0 ≤ J < 2n where n =
|vars(Φ)|. There is a polynomial time procedure in |π| that returns the cumulative number of models
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of Φ in [0, J ] (up to and including J (Cmodels(Φ, J)))

Proof. Find the partial assignment cover PAC(0,J) by running Algorithm 1. According to
Lemma 11, this PAC(0,J) contains a maximum of n partial assignments. For each of these partial
assignments α ∈ PAC(0,J), we restrict the cert-dec-DNNF D in π to obtain the cert-dec-DNNF D′

corresponding to Φ|α (as described in Theorem 28). For each such D′, we use Proposition 25 to
find the individual model-counts of Φ|α’s. Finally, we add all these counts to return the required
Cmodels(Φ, J). This procedure takes O(n.|π|) time.

Corollary 31. There is a polynomial time of extracting a cumulator circuit from a KCPS(#SAT)
proofs.

Theorem 32. CLIPNP simulates KCPS(#SAT).

Proof. From a KCPS(#SAT) proof we extract the cumulator circuit ξ in polynomial time. Therefore
lip(ξ) is polynomial size, and is true because of the correctness we have argued for Theorem 28 and
Lemma 11. The NP-oracle finds lip(ξ) in a single line.

In Kraj́ıček’s book on Bounded Arithmetic, Propositional Logic, and Complexity Theory [26] it
discusses how relationships between bounded arithmetic and propositional proof complexity show
that eFrege is capable of the power to simulate any propositional proof system S, provided it is
equipped to access the reflection principle of S. The reflection principle codifies the correctness of S
in arithmetic, but can be re-translated back into propositional logic through a family of tautologies,
that are polynomial-time recognisable. We only use this here for a more concrete statement about
simulations without the use of an NP-oracle.

Theorem 33. There is a family of propositional tautologies ||Ψ|| which can be recognized in poly-
nomial time such that CLIP +eFrege +||Ψ|| simulates KCPS(#SAT).

Proof. Consider a new proof propositional system Extract(KCPS(#SAT). Recall that a proof sys-
tem is a function that maps proofs (as strings) to theorems.

Extract(KCPS(#SAT))(π) =


ϕξ,k, π is a KCPS(#SAT) proof of #models(ϕ) = k

and ξ is the cumulator circuit extracted from it,

eFrege(π), otherwise.

Extract(KCPS(#SAT)) is complete since it accepts any eFrege proof. Its soundness is
shown through correctness of the cumulator extraction of Lemma 30. Hence we can add
Extract(KCPS(#SAT)) to CLIP. What we end up getting is that CLIP +Extract(KCPS(#SAT))
almost trivially simulates KCPS(#SAT). The only thing we have to provide is the cumulator circuit
which is extracted from KCPS(#SAT) via Cor. 31. The rest is trivial because every KCPS(#SAT)
proof is automatically accepted by Extract(KCPS(#SAT)), proving exactly the propositional state-
ment we want. There is no conversion of proof needed.

Every propositional proof system can be simulated by eFrege plus a polynomial-time
recognisable set of tautologies [26]. Extract(KCPS(#SAT)) is simulated by eFrege +
∥refl(Extract(KCPS(#SAT)))∥, where ∥refl(S)∥ is a p-time recognisable set of propositions that
encode an arithmetic statement of correctness of S, for propositional proof system S.
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5.2 Cumulator extraction from MICE′

In this section, we apply our simulation technique to MICE′ (Model-counting Induction by Claim
Extension) [21, 5]. MICE′ is a propositional model counting proof system which is shown to be p-
equivalent to MICE [21] but has simpler inference-rules. Hence extracting cumulator circuits from
MICE′ proofs is sufficient. First we redefine the MICE′ (Definition 34) from [5]. We then show that
MICE′ is closed under restrictions (Theorem 36). Step-3, 4 of the simulation technique are proved
in Lemma 38.

Definition 34 (MICE′ [5]). Let Φ be a CNF with k models. A MICE′ derivation of Lf := (Φ, ∅, k)
from Φ is a sequence π = L1, ..., Lf of claims where each Li = (Fi, Ai, ci) keeps track of the number
of models of the CNF (Fi|Ai

) as ci. These claims are derived using the rules in Figure 5. MICE′ has
two complexity measures, steps(π) counts the number of inference steps whereas size(π) includes
the size of the Resolution refutations (|ρ|) used in the Composition-lines of the proof as well.

Axiom: Composition:

(∅, ∅,1)
(F,A1, c1) . . . (F,An, cn)

(F,A,Σi∈[n]ci), ρ

(C1) vars(A1) = · · · = vars(An) and Ai ̸= Aj for i ̸= j

(C2) A ⊆ Ai for all i ∈ [n]

(C3) ρ := (A ∪ F ∪ {Ai | i ∈ [n]}) Res ⊥

Join: Extension:

(F1, A1, c1) (F2, A2, c2)

(F1 ∪ F2, A1 ∪A2, c1 · c2)
(F1, A1, c1)

(F,A, c1 · 2|vars(F )\(vars(F1)∪vars(A))|)

(J1) A1 ≃ A2 (E1) F1 ⊆ F
(J2) var(F1) ∩ var(F2) ⊆ Ai | i ∈ [n] (E2) A|vars(F1) = A1

(E3) A satisfies F \ F1

Figure 5: MICE′ derivation rules

In the proof of Theorem 36, we need the following definition.

Definition 35. [Invalid MICE′ claims] Let Φ be a CNF formula and α be a partial assignment to
vars(Φ). Let π be a MICE′ proof of Φ and L = (F,A, c) be any claim in π. We say that any claim
L′ = (F |α, A \ vars(α), c′) is invalid w.r.t α if any of the following holds:

a. the formula F |α has an empty clause in it.

b. all the hypothesis claims of L in π are invalid w.r.t α and A ̸≃ α.

c. if at least one hypothesis claim of L in π is invalid w.r.t. α and L was derived by the Join-rule
in π.

d. if L was derived by an Extension-rule in π and L′ does not satisfy Condition-E3 of the
Extension-rule.

Observe that in cases b,c and d above, the models in c were dependent on the restriction of A which
is inconsistent with α.
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Theorem 36. MICE′ is closed under restrictions.

Proof. Let Φ be a CNF formula and π := {L1, ..., Lf} be a MICE′ proof of Φ of size s. We show
that given any partial assignment α there exists a MICE′ proof π′ : {L′

1, ..., L
′
f} of Φ|α of size at

most s.
We first deal with the partial assignments which satisfy or falsify the CNF formula Φ: Firstly,

if α is a partial/ total assignment which satisfies Φ (i.e α satisfies every clause ∈ Φ), π′ is derived
as follows: (∅, ∅, 1) by the axiom-rule, (Φ|α, ∅,2|vars(Φ|α)|) by extension-rule. Secondly, if α is a
partial/ total assignment which falsifies Φ (i.e α falsifies every literal in a clause ∈ Φ), π′ is derived
as follows: (Φ|α, ∅, 0), ρ by using the composition-rule with 0 hypothesis where ρ is the Resolution

refutation of Φ|α.
Now we are left with partial assignments α for which Φ|α is a nontrivial CNF. In this case, we

build π′ from π in two passes. In the first pass using induction on the size of π, we derive π′-claims
and also mark some of them as invalid (Ref. definition 35) in the process. In the second pass, we
discard all the invalid claims and the resultant is the required π′.
Phase I:
Induction Statement: Let Φ be a CNF formula and α be a partial assignment such that Φ|α is
a non-trivial CNF. Given a MICE′ proof π = {L1, .., Lf} of Φ, by induction on i ∈ [f ] we show that
corresponding to Li := (Fi, Ai, ci) ∈ π we can derive the claim L′

i := (Fi|α, Ai \ vars(α), c′i) ∈ π′
such that if L′

i is not invalid (as discussed above), then c′i = #models(Fi|α∪Ai\vars(α)).
Base case: For the base case i = 1, Li could either be derived by an axiom-rule or a composition-
rule with 0 hypothesis. In the former case, L′

i is equal to Li and it is valid. In the latter case i.e

(Fi,∅,0),ρ , ρ := Fi Res ⊥ and as Resolution is closed under restrictions, ρ|α := Fi|α Res ⊥. Therefore
L′
i = (Fi|α, ∅, 0), ρ|α and it is valid. Both the cases satisfy the induction statement as the empty

CNF is always true and unsatisfiable CNF is always false.
Inductive Step: For the inductive step assume that the statement is true until i − 1. Li ∈ π
must be derived from one of the four MICE′ rules. For each of the rules, we show below that the
induction statement holds for L′

i as well:

1. If Li is derived by an axiom-rule, L′
i is also the same claim.

2. If Li is derived by an Extension-rule as follows:

Lj := (F1, A1, c1)

Li := (F, A, c1.2|vars(F )\(vars(F1)∪vars(A))|)
, j < i

for the corresponding claim L′
i in π

′, following four cases can occur.

(a) The corresponding hypothesis claim L′
j := (F1|α, A1 \ vars(α), c′1) in π′ is valid and the

restriction A ≃ α. Then set

L′
i := (F |α, A \ vars(α), c′1 · 2|vars(F |α)\(vars(F1|α)∪vars(A\vars(α))|).

This is sound as the Conditions E1, E2, E3 are satisfied in this case.

(b) The corresponding hypothesis claim L′
j := (F1|α, A1 \ vars(α), c′1) in π′ is valid but the

restriction A ̸≃ α.
• Verify if {A \ vars(α)} satisfies (F |α \ F1|α). If yes, set

L′
i := (F |α, A \ vars(α), c′1.2|vars(F |α)\(vars(F1|α)∪vars(A\vars(α))|).

This is sound as the Conditions E1, E2 are satisfied and we specifically verified that
E3 is also satisfied.
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• If no, mark L′
i in π

′ as an invalid claim.

(c) The corresponding hypothesis claim L′
j := (F1|α, A1 \ vars(α), c′1) in π′ is either invalid

or valid but CNF F |α has a empty-clause in it. Mark L′
i in π

′ as an invalid claim in this
case.

3. If Li is derived by a Join-rule as follows:

Lj := (F1, A1, c1), Lk := (F2, A2, c2)

Li := (F1 ∪ F2, A1 ∪A2, c1.c2)
, j, k < i

for the corresponding claim L′
i in π

′, following two cases can occur.

(a) The corresponding hypothesis claims L′
j := (F1|α, A1 \ vars(α), c′1), L′

k := (F2|α, A2 \
vars(α), c′2) in π

′ are valid. Then set

L′
i := ((F1 ∪ F2)|α, A1 \ vars(α) ∪A2 \ vars(α), c′1.c′2)

This is sound as the Conditions J1, J2 are satisfied in this case.

(b) One or both of the corresponding hypothesis claims L′
j , L

′
k are invalid. In this case, mark

L′
i in π

′ as an invalid claim.

4. If Li is derived by a Composition-rule as follows:

Lk1 := (F, A1, c1)...Lkn := (F, An, cn)

Li := (F, A, Σi∈[n]ci), ρ
, k1, ..., kn < i

for the corresponding claim in π′, following four cases can occur.

(a) The corresponding hypothesis claims L′
k1

:= (F |α, A1\vars(α), c′1), ..., L′
kn

:= (F |α, An\
vars(α), c′n) in π

′ are valid. Then set

L′
i := (F |α, A \ vars(α), Σi∈[n]c

′
i), ρ|α.

This is sound as the Conditions C1, C2 are satisfied in this case and C3 is satisfied as
Resolution is closed under restrictions.

(b) One or more of the hypothesis claims (say L′
k1

:= (F |α, A1 \ vars(α), c′1), ..., L′
kj

:=

(F |α, Aj \ vars(α), c′j)) are invalid but A ≃ α. Then set

L′
i := (F |α, A \ vars(α), Σi∈[j+1,n]ci), ρ|α

This is sound as C1, C2 are obviously satisfied and C3 is satisfied as follows: Since F |α
is same among all hypothesis, the invalid hypothesis should be a result of A1, ..., Aj ̸≃ α.
π being a valid MICE′ proof, we know that ρ := (F ∪ A ∪ {Ai|i ∈ [n]}) Res ⊥ now

because A1, ..., Aj ̸≃ α restricting ρ|α := (F |α ∪ A \ vars(α) ∪ {Ai|i ∈ [j + 1, n]}) Res ⊥
as imposing α satisfies the clauses representing A1, ..., Aj and hence can be dropped.

(c) All the hypothesis claims are invalid and A ̸≃ α or F |α has a empty-clause in it. In this
case, mark the L′

i in π
′ as invalid.
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Note that the last claim L′
f was definitely not marked as invalid in the above process. This

is because the last inference would be only from either a Composition-rule or a Join-rule with
hypothesis restrictions A1, A2 = ∅. In the former case, Lf is the claim (Φ, ∅, k) and ∅ ≃ α so
this is the case 4a or 4b above, both of these do not result in invalid claims. In the latter case
with join-rule, Lf would be derived as follows: (F1, ∅, c1),(F2, ∅, c2)

Lf :=(Φ:=F1∪F2, ∅, c1.c2)
. In the case 3a above, L′

f is

definitely valid and we can see that this is the only possibility as case 3b would be only possible
when Φ|α has a empty-clause in it and this case was handled before the start of phase-I itself.

Phase-II : Finally, prune through the π′ from the last line L′
f (which as discussed above is

valid) and recursively include the valid hypothesis used at every line until you reach the axiom
clause. This will get rid of all the invalid claims and the redundant claims which are deriving these
invalid claims. Now π′ is a correct MICE′ proof of Φ|α as every retained inference was shown to be
sound and satisfying all the conditions of MICE′ inference rules.

Example 37. Consider a simple example of a CNF computing x = y = z as Φ := (x ∨ y) ∧ (y ∨
x) ∧ (x ∨ z) ∧ (z ∨ x). Φ has 2 models x = y = z = 0 and x = y = z = 1. A MICE′ proof of the
same is as follows:

π :=
{
(∅, ∅, 1) by axiom,

(Φ, x = y = z = 0, 1) by Extension,
(Φ, x = y = z = 1, 1) by Extension,

(Φ, ∅, 2) by Composition with ρ := (x ∨ z), (x ∨ z), (z), (z),⊥
}
.

Now consider a partial assignment α := {x = 0}. Following the above procedure, we build π′ for
Φ|α as follows.

π′ :=
{
(∅, ∅, 1) by axiom,

(Φ|α, y = z = 0, 1) by Extension,
<Invalid-claim>,

(Φ|α, ∅, 1) by Composition with ρ|α := (z),⊥
}

We derive π′ using the procedure defined in proof of Theorem 36. Precisely, claim 1 of π′ is
derived from case 1 and claim 2 is derived from case 2b. Claim 3 is declared as invalid from case
2b as y = z = 1 does not satisfy Φ|α := (y) ∧ (z)). Finally, claim 4 is derived from case 4b.
Now starting from the last claim of π′, we retain it and include its valid hypothesis claims. So the
final π′ := {(∅, ∅, 1), (Φ|α, y = z = 0, 1), (Φ|α, ∅, 1), ρ|α := (z),⊥}. This is valid MICE′ proof of
Φ|α with the correct model-count.

Lemma 38. Given a MICE′ proof π of Φ and a binary integer 0 ≤ J < 2n where n = |vars(Φ)|.
There is a polynomial time procedure in |π| that returns the number of models of Φ in [0, J ] i.e
(Cmodels(Φ, J))).

Proof. Run Algorithm 1 on (J, n) to find the disjoint binary partial assignment cover PAC(0,J).
According to Lemma 11, this PAC(0,J) contains a maximum of n partial assignments. For each
of these partial assignments α ∈ PAC(0,J), follow the procedure described in Theorem 36 (which
takes |π| time) to find the MICE′ proof π′ = L′

1, ..., L
′
f of Φ|α. Add the number of models (c′) in

the last line (L′
f = (Φ|α, ∅, c′f )) of all the above restricted MICE′ proofs (π′s) to get Cmodels(Φ, J).

This procedure takes O(n.|π|) time.

Corollary 39. From a MICE′ proof π of Φ you can efficiently extract cumulator circuits.

Theorem 40. CLIPNP simulates MICE′.
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Proof. Corollary 39 demonstrates that one can extract cumulator circuits of polynomial size from
any MICE′ proof. The proposition lip(ξ) is polynomial in the original propositional formula. Since
these circuits are correct, owing to Theorem 36 and Lemma 11, the NP-Oracle in CLIPNP always
returns true.

Theorem 41. There is a family of propositional tautologies ||Ψ|| which can be recognized in poly-
nomial time such that CLIP +eFrege +||Ψ|| simulates MICE′.

Proof. This works the same as the proof of Theorem 33 but we substitute MICE′ for KCPS(#SAT).

We will later show (Corollary 54) that ||Ψ|| is empty in both Theorem 32 and 41.

5.3 Cumulator extraction from CPOG

In this section, we apply our simulation technique Part-1 to the CPOG (Certified Partitioned-
Operation Graphs) [7] proof system. That is, we show that CPOG is closed under restrictions
(Lemma 45). For a CNF formula ϕ, CPOG is a propositional weighted-model counting proof system
which consists of a POG structure G (Definition 42) along with Resolution proofs of ϕ↔ G. It is
well known that model counting is easy for POG [7, p. 16]. However, given a POG G and a CNF
ϕ, verifying that G ≡ ϕ is hard. In this paper, we only study CPOG for the unweighted (standard)
model counting. We first define the POG structure (Definition 42) and the CPOG proof system
(Definition 44) which is based on POG from [7].

Definition 42 (POG [7]). A Partitioned-Operation Graph (POG) (say G) is a directed acyclic
graph defined on n variables (say X). Each node v in a POG has an associated dependency set
D(v) ⊆ X and a set of modelsM(v), consisting of all complete assignments that satisfy the formula
represented by the POG rooted at v. The leaf nodes (with outdegree = 0) can be of the following:

• Boolean constants 0 or 1. Here, D(1) = D(0) = 0,M(0) = ∅ andM(0) = ⟨X⟩.

• Literal l for some variable x such that vars(l) = x ∈ X. Here, D(l) = x, M(l) = {α ∈
⟨X⟩ | α(x) ≡ l}.

The rest of the nodes (internal nodes) can be of the following:

• Decomposable AND-gate (∧p) 1 with outgoing edges to v1, . . . , vk for k > 1. Here, D(∧p) =⋃
1≤i≤k D(vi) andM(∧p) =

⋂
1≤i≤kM(vi). This node needs to follow the decomposable prop-

erty namely, D(vi) ∩ D(vj) = ∅ for every i, j ∈ [k] and i ̸= j.

• Deterministic OR-gate (∨p) with outgoing edges to v1, v2. Here, D(∨p) = D(v1) ∪ D(v2) and
M(∨p) = M(v1) ∪ M(v2). This node needs to follow the deterministic property namely,
M(v1) ∩M(v2) = ∅.

The edges of G have an optional polarity to indicate if they need to be negated (polarity = 1) or
not (polarity = 0). Here, D(¬v) = D(v) andM(¬v) = ⟨X⟩ −M(v). Every POG has a designated
root node r with indegree = 0.

1For simplicity, we use the same notations from [7]. Here, p stands for partitioned-operation formulas.
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For an example of POG see [8].

The weighted model counting can be seen as a ring-evaluation problem for a commutative ring over
rational numbers ∈ [0,1]. The ring evaluation problem takes a weight function w(x) ∈ [0,1] for all
variables x ∈ X and computes the following:

R(v, w) = Σα∈M(v) Πl∈α w(l) (2)

where w(x) = 1−w(x). For standard unweighted model-counting (i.e |M(v)|), one can fix w(x) = 1
2

for all x ∈ X and |M(v)| = 2|X| ·R(v, w). The following properties of the ring evaluation function
are well known.

Proposition 43 ([7]). Ring evaluations for operations ¬, ∧p and ∨p satisfies the following for
any weight function w: (i) R(¬v, w) = 1 − R(v, w), (ii) R(

∧p
1≤i≤k vi, w) =

∏
1≤i≤k R(vi, w), (iii)

R(v1 ∨p v2, w) = R(v1, w) +R(v2, w).

For a CNF ϕ, a CPOG proof π consists of a POG G such that G ≡ ϕ. However, to make the
proof easily verifiable, π explicitly has the proof that G is a POG and is equivalent to ϕ. We present
the precise definition following [3] below.

Definition 44 (CPOG [3, 7]). A CPOG proof π of ϕ is the tuple (E(G), δ, ρ, ψ), where

• G is a POG such that G ≡ ϕ and E(G) is a clausal encoding of the POG G by defining an
extension variable for every internal node of G (That is, if there is an ∧p node v with outgoing
edges to v1, v2 and a negated edge to v3, we add the extension variable ev ↔ (v1 ∧ v2 ∧ v3)).

• δ is the determinism proof for OR-gates which contains a Resolution proof of E(G)∧(v1)∧(v2)
for every ∨p-gate v with outgoing edges to v1, v2.

• ρ is the forward implication proof (i.e. ϕ |= G) consisting of a Resolution proof of E(G)∧ϕ∧
(r).

• ψ is the reverse implication proof (i.e. G |= ϕ) consisting of a Resolution proof of E(G)∧(r)∧C
for every clause C ∈ ϕ.

Observe that the extension variables used in CPOG are restrictive as compared to those in eFrege.

Lemma 45. CPOG is closed under restrictions.

Proof. For a given CNF ϕ, a CPOG proof consists of a POG G and a Resolution proof of ϕ ↔ G.
A POG is closed under conditioning as for any partial assignment α: replace the inputs labelled
by x with α(x) for every x assigned by α and the resulting structure is still a POG G′. This
is because, constants are allowed in POG and the ∧p-nodes will remain decomposable since we
are only reducing variables. Also, the ∨p-gates will remain deterministic because if A and B has
disjoint models, so are A|α and B|α. The Resolution proof witness is closed under restrictions.
The CPOG proof of ϕ ↔ G uses Resolution proofs which are closed under restrictions, it implies
ϕ|α ↔ G|α.

This completes Step 1 of our simulation technique for CPOG. Thus we have the following:

Corollary 46. There is a polynomial time method of extracting a cumulator circuit from a CPOG
proof.
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Proof. With a CPOG proof, given an assignment α, in polynomial time we can calculate the PAC(0,
α) via Fenwick’s method (Algorithm 1) and use closure under restrictions to find the values for the
sum. By formalising these steps into a circuit as in Definition 17 we get the cumulator circuit.

Theorem 47. CLIPNP simulates CPOG.

Proof. Corollary 46 demonstrates that one can extract cumulator circuits of polynomial size from
any CPOG proof. The proposition lip(ξ) is polynomial in the original propositional formula. Since
these circuits are correct, owing to Theorem 45 and Lemma 11, the NP-Oracle in CLIPNP always
returns true.

6 CLIP+eFrege p-simulates CPOG

In this section, we apply part-2 of our simulation technique for CPOG. That is, we prove that
CPOG admits easy eFrege proofs for the properties of restriction (Lemma 52) which by Theorem 53
leads to CLIP+eFrege p-simulating CPOG. This is sufficient to show that CLIP+eFrege p-simulates
all existing #SAT proof systems (Theorem 53, Corollary 54), as in [3], the authors show that
CPOG in turn p-simulates MICE′ and KCPS(#SAT). The proofs in this section need to prove basic
properties of arithmetic in short eFrege proofs. We can consider the handling of basic arithmetic
gates as academic folklore but we provide some sketch overviews in Appendix B to reassure the
reader.

Recall, the weight function w is defined for all the variables (X) of POG G as 1
2 . In this case, the

value of R(r, w) = 2|X| · |M(r)|. For an assignment α, conditioning the POG G with α (Lemma 45)
will give POG G′ with root r′ and the following will hold R(r′, w) = 2|X−|α|| · |M(r)|α|.

Instead of changing the POG structure, we change the weight function as defined below to
obtain the same model count as above i.e. R(r, wα) = 2|X−|α|| · |M(r)|α|.

Definition 48. Given a CNF ϕ and an initial assignment α defined on xn−1 . . . xi and undefined
on xi−1 . . . x0, we define the weight wα which weighs variables according to the following

wα(xj) =


1 j ≥ i & α(xj) = 1,

0 j ≥ i & α(xj) = 0,
1
2 j < i.

Next, in Lemma 49,50,51, we prove some properties of R(v, wα) for every node v of the POG
recursively. We use the general properties of the ring function from Proposition 43 in these proofs.
Informally, in Lemma 49, we show that if α was undefined on x and x is not in the dependency
set of v (i.e. x /∈ D(v)), the value of R does not change when weight function is changed to wα0

or wα1 where αb = α ∪ {x = b}. In Lemma 50, we show that if x is in D(v), the values of R hold
a weaker relation of R(v, wα) =

1
2(R(v, wα0) +R(v, wα1)). We consider complete assignments α in

Lemma 51 and prove that the function R(v, wα) returns 1 if α is a satisfying assignment of the
POG rooted at v and 0 otherwise. We use these Lemmas to prove that CPOG has easy eFrege
proofs of the properties of restriction in Lemma 52.

Lemma 49. Let α be an initial partial assignment defined up to xi where i > 0. We can prove in
the structure of the POG that R(v, wα) = R(v, wα0) = R(v, wα1) when xi−1 is not in the dependency
set of v. This proof can be formalised in a short eFrege proof.

Proof. In all cases, except at leaves, the dependency set is the union of the dependency sets of its
children.
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Boolean leaf: R(1, wα) = 1 and R(0, wα) = 0 independent of α. Therefore the Lemma statement
is easily derived in this case.
Variable leaf: Let the variable leaf be xj . R(xj , w) takes the value of w(xj). If xi−1 /∈ D(xj),
then either j ≥ i or j < i− 1. This is formalised in a tautological disjunction in eFrege.

In either case we show equality is easily derived. If j ≥ i then wα(xj) = 1 when α(j) = 1 which
also extends to α0(j) = 1 and α1(j) = 1 in which case wα0(xj) = 1 and wα1(xj) = 1. Similarly all
wα(xj) = wα0(xj) = wα1(xj) = 0 when α(j) = 0. If j < i − 1 then α, α0, α1 are all undefined on
xj , so the weights are all 1

2 .

Negation: Using the induction hypothesis on the child node c, R(c, wα) = R(c, wα0) = R(c, wα1)
and so R(¬c, wα) = 1 − R(c, wα) = 1 − R(c, wα0) = 1 − R(c, wα1) therefore R(¬c, wα) =
R(¬c, wα0) = R(¬c, wα1).

Partition Conjunction: Let C be the set of child nodes for ∧p. Using the induction hypothesis
R(c, wα) = R(c, wα0) = R(c, wα1) for each child c ∈ C. We get the following equality for the
products Πc∈CR(c, wα) = Πc∈CR(c, wα0) = Πc∈CR(c, wα1). Thus R(

∧p
c∈C , wα) = R(

∧p
c∈C , wα0) =

R(
∧p

c∈C , wα1).

Partition Disjunction: Let the child nodes of ∨p be c, d. Using the induction hypothesis
R(c, wα) = R(c, wα0) = R(c, wα1) and R(d,wα) = R(d,wα0) = R(d,wα1).
R(c ∨p d,wα) = R(c, wα) +R(d,wα) = R(c, wα0) +R(d,wα0) = R(c ∨p d,wα0). Similarly, it can be
derived that R(c ∨p d,wα) = R(c ∨p d,wα1).

Each inductive step involves a bounded application of implications using the definitions hence
we get short eFrege proofs.

Lemma 50. Let α be an initial partial assignment defined up to xi where i > 0. We can prove in
the structure of the POG that R(v, wα) =

1
2 ·(R(v, wα0)+R(v, wα1)). Furthermore we can formalise

this in short eFrege proofs.

Proof. If xi−1 /∈ D(v), this directly holds from Lemma 49, along with arithmetic properties i.e.
a = 1

2 · (a+ a). So here we only consider the case that xi−1 ∈ D(v).
Variable leaf: Let the variable leaf be xj . xi−1 ∈ D(v) implies that j = i− 1, then R(v, wα) =

1
2 .

R(v, wα0) = 1 → R(v, wα1) = 0 and R(v, wα0) = 0 → R(v, wα1) = 1, in both cases they sum to 1
which is the right identity when multiplied with 1

2 .

Negation: Using the induction hypothesis on the child node c, i.e. R(c, wα) = 1
2 · (R(c, wα0) +

R(c, wα1)), it implies the following.
R(¬c, wα) = 1−R(c, wα) = 1− 1

2 · (R(c, wα0) +R(c, wα1))
= 1− 1

2 · (1−R(¬c, wα0) + 1−R(¬c, wα1))
= 1− 1

2 · (2−R(¬c, wα0)−R(¬c, wα1))
= 1

2 · (R(¬c, wα0) +R(¬c, wα1)).

Partition Conjunction: Let C be the set of child nodes for ∧p. Observe that, xi−1 ∈ D(c∗)
for exactly one child c∗. Along with multiplicative commutativity and associativity, we know the
following from Proposition 43:
R(

∧p

c∈C
c, wα) = R(c∗, wα) ·

∏
c∈{C\c∗}R(c, wα).

Using the induction hypothesis on c∗ we get
= 1

2 · (R(c
∗, wα0) +R(c∗, wα1)) ·

∏
c∈{C\c∗}R(c, wα).

We can use left-distributivity to get
= 1

2 ·R(c
∗, wα0) ·

∏
c∈{C\c∗}R(c, wα) +

1
2 ·R(c

∗, wα1) ·
∏

c∈{C\c∗}R(c, wα).
At this point we know that xi−1 /∈ D(c ∈ {C \ c∗}), using Lemma 49 we get

= 1
2 ·R(c

∗, wα0) ·
∏

c∈{C\c∗}R(c, wα0) +
1
2 ·R(c

∗, wα1) ·
∏

c∈{C\c∗}R(c, wα1)
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= 1
2 ·R(

∧p

c∈C
c, wα0) +

1
2 ·R(

∧p

c∈C
c, wα1) =

1
2 · (R(

∧p

c∈C
c, wα0) +R(

∧p

c∈C
c, wα1)).

Partition Disjunction: Let the child nodes of ∨p be c, d.
R(c ∨p d,wα) = R(c, wα) +R(d,wα)

Using the induction hypothesis on c, d we get
= 1

2(R(c, wα0) +R(c, wα1)) +
1
2(R(d,wα0) +R(d,wα1))

We can use additive commutativity and distributivity to get
= 1

2 · (R(c, wα0) +R(d,wα0) +R(c, wα1) +R(d,wα1))
= 1

2 · (R(c ∨
p d,wα0) +R(c ∨p d,wα1))

Extended Frege can handle the bounded steps in each case of the inductive step. See appendix B
for details on how the arithemtic can be handled by eFrege.

Lemma 51. For complete assignment α, we can prove using eFrege in the structure of the POG
that R(v, wα) = 1v(α).

Proof. Again we show the base and inductive cases involve polynomially many basic steps (which
each can be simulated by eFrege).
Variable leaf: Let the variable leaf be xi. R(xi, wα) = 1 or R(xi, wα) = 0 since |α| = |X| and the
value is determined entirely by 1xi(α).

Negation: Suppose R(c, wα) = 1 then by the induction hypothesis α satisfies c, so α falsifies ¬c
and R(¬c, wα) = 1−R(c, wα) = 0.

Similarly, it can be derived for R(c, wα) = 0 that R(¬c, wα) = 1.

Partition Conjunction: Let C be the set of child nodes for ∧p. If there is some c∗ ∈ C such that α
falsifies c∗ then by the induction hypothesis R(c∗, wα) = 0. Then we can prove

∏
c∈C R(c, wα) = 0

which is the formula for R(
∧p

c∈C c, wα). Also, α must falsify
∧p

c∈C c as it falsifies c
∗.

In the other case, if no c ∈ C is falsified, α satisfies all of C (we can state and prove this formally
as a disjunction). Here, R(c, wα) = 1 for all c ∈ C and

∏
c∈C R(c, wα) = 1 . Also, α must satisfy∧p

c∈C c as it satisfies all c ∈ C.
Partition Disjunction: Let the child nodes of ∨p be c, d. If α falsifies both c and d then by
induction hypothesis, R(c, wα) = R(d,wα) = 0. By adding these we get 0 = R(c, wα)+R(d,wα) =
R(c ∨p d,wα). Also, α must falsify c ∨p d as it falsifies both c, d.

Suppose α satisfies c, we can prove that α falsifies d using the Resolution proof δ included in
the CPOG proof (and this is simulated by eFrege). Hence, R(c, wα) = 1, R(d,wα) = 0. Then
R(c∨p d,wα) = 1+0 = 1. This can be repeated for when α satisfies d by using left identity instead
of right identity.

Lemma 52. CPOG has short eFrege proofs of θ(α) = 1ϕ(α), when α is a complete assignment,
and θ(α) = θ(α0) + θ(α1), when α is strictly initial and partial.

Proof. We define θi(α) = 2i · R(r, wα). Using Lemma 50 we can show for the root node r that
R(r, wα) =

1
2 · (R(r, wα0) +R(r, wα1)) when α is initial and strictly partial. This proves the second

property of restriction.
Using Lemma 51 we can show that R(r, α) = 1r(α) when α is complete. Hence θ0(α) = 1r(α).

Here for the first property of restriction, we still need to prove that 1r(α) = 1ϕ(α). For this, we
use the Resolution proofs for r ↔ ϕ in the CPOG proof. Since eFrege p-simulates Resolution, these
are easily converted to show 1r(α) = 1ϕ(α).

This proves Step 5 of our simulation technique for CPOG. Therefore from our simulation
technique part 1 and 2, we have the following.
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Theorem 53. CLIP+DRAT p-simulates CPOG.

In [3], the authors prove that CPOG is strictly stronger than the other existing proof systems
(i.e. MICE, KCPS(#SAT)). Therefore we have the following.

Corollary 54. CLIP+DRAT p-simulates MICE and KCPS(#SAT).

7 Exponential Improvement on Existing #SAT proof systems

In this section, we give easy CLIP+eFrege proofs for hard formulas of existing proof systems. Below,
in Corollary 56, we give easy CLIP+eFrege proofs of some unsatisfiable formulas which are hard
in MICE and KCPS(#SAT). Next, we give easy proofs of XOR-PAIRS in CLIP+eFrege system
(Theorem 65). These formulas were previously proven to be hard for MICE [5, Theorem 23].
Later, we give an easy CLIPNP proof for the Symmn formulas which are known to be hard for dec-
DNNFs [34, Theorem 10.3.8][1, Corollary 3.8], hence hard for both the MICE′ and KCPS(#SAT)
systems.

7.1 UNSAT formulas

Let us briefly discuss about unsatisfiable formulas. That is, CNF formulas for which the model
counts are 0. In [3], it has been shown that for unsatisfiable formulas, KCPS(#SAT) is p-equivalent
to regular Resolution [3, Proposition 5.1] and MICE is p-equivalent to Resolution [3, Proposition
5.3]. In this paper, we observed the following for the unsatisfiable CNF formulas:

Proposition 55. For unsatisfiable formulas ϕ, if ϕ has a short eFrege proof of unsatisfiability, then
ϕ has a short CLIP+eFrege proof.

Proof. For a unsatisfiable CNF ϕ, assume that it has an easy eFrege-proof of unsatisfiability. We
can have an easy CLIP+eFrege proof of ϕ as follows: The cumulator ξ for ϕ is a trivial circuit that
only outputs ‘0’ for any input. For any two consecutive assignments i.e β2 = β1 + 1, the inductive
statement of lip encodes that ξ(β2) = ξ(β1) + 1ϕ(β2). Therefore, the eFrege proof of lip statement
needs only the unsatisfiability proof of ϕ (i.e. 1ϕ(β2) = 0).

This gives more separation results for unsatisfiable formulas which are hard for Resolution but
easy for eFrege. That is, we have the following:

Corollary 56. The unsatisfiable formulas, PHP, clique-color and Random Parity have short proofs
[16, 9, 15] in CLIP+eFrege but are hard [24, 28, 14] for MICE and KCPS(#SAT).

Note that the Clique-coloring principle [28, Definition 7.1] is well studied in proof complexity.
Informally, it encodes that if a graph G has a clique of size k, then G needs at least k colors. PHP is
the famous Pigeon hole principle which encodes that if there are n pigeons and n− 1 holes, at least
one hole has more than one pigeon in it. Random Parity formulas are contradictions expressing
both the parity and non-parity on a set of variables.

7.2 XOR-PAIRS

Consider the family XOR-PAIRS defined below.

Definition 57 (XOR-PAIRS [5]). Let X = {x1, . . . xn} and Z = {z1,1, z1,2 . . . , zn,n−1, zn,n}.
C1
ij = (xi ∨ xj ∨ z̄ij), C2

ij = (x̄i ∨ xj ∨ zij), C3
ij = (xi ∨ x̄j ∨ zij), C4

ij = (x̄i ∨ x̄j ∨ z̄ij)
ϕ(X,Z) contains C1

ij , C
2
ij , C

3
ij , C

4
ij for i, j ∈ [n].
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The models of XOR-PAIRS are the assignments where zi,j = (xi ⊕ xj) for all i, j ∈ [n]. Hence,
#models(XOR-PAIRS) = 2n. The family XOR-PAIRS is hard for proof system MICE′ [5, Theorem
23]. We will show in Theorem 65 that these formulas are easy in CLIP+eFrege.

Definition 58. Fix an input length n, and let γ and δ be vectors of n variables. For pairs of
individual variables a, b, use a = b to denote (¬a ∨ b) ∧ (¬b ∨ a). We can encode polynomial size
propositional circuits: L(γ, δ), that denotes num(γ) < num(δ).

We define the following gates. Ln(γ, δ) := (¬γ0∧δ0). For 1 < i ≤ n, Li(γ, δ) := (¬γi∧δi)∨((γi =
δi) ∧ Li−1(γ, δ)). L(γ, δ) := L1(γ, δ).

Lemma 59. Let γ and δ be vectors of n variables
There is a short eFrege proof of L(γ, δ)→

∨i≤n
i≥1 γi.

Proof. Induction hypothesis: Lj(γ, δ)→
∨i≥1

i≤j γi.
Base Case: j = n and Ln(γ, δ)→ γn ∧ δn so Lj(γ, δ)→ γj .

Inductive Step: Lj(γ, δ)→ (γj ∧ δj) ∨ Lj+1 so Lj(γ, δ)→ γj ∨
∨i≤n

i>j γi via I.H.

Lemma 60. Let γ and δ be vectors of n variables. Recall Definitions 4 and 58. We have linear
eFrege proofs of L(γ, δ) ∨ L(δ, γ) ∨ E(δ, γ).

Proof. For pairs of individual variables a, b, we use a < b to denote ¬a ∧ b and a = b to denote
(¬a ∨ b) ∧ (¬b ∧ a). Also for brevity, denote the functions Li(γ, δ) as L

γ,δ
i (see Definition 58), and

Ei(γ, δ) as E
γ,δ
i (see Definition 4).

Induction hypothesis: Lγ,δ
i ∨ L

δ,γ
i ∨ E

γ,δ
i has a O(n− i)-size eFrege proof.

Base Case: ¬Lγ,δ
n → (γn = δn) ∨ (δn < γn) and hence Lγ,δ

n ∨ Lδ,γ
n ∨ Eγ,δ

n

Inductive Step: ¬Lγ,δ
i → ((γi = δi) ∨ (δi < γi)) ∧ (¬(γi = δi) ∨ (¬Lγ,δ

i+1)). We can distribute

this out: ¬Lγ,δ
i → ((γi = δi) ∧ (¬Lγ,δ

i+1)) ∨ ((δi < γi) ∧ (¬(γi = δi)) ∨ ((δi < γi) ∧ (¬Lγ,δ
i+1)). In fact

(δi < γi) is sufficient for Lδ,γ
i , so we simplify to ¬Lγ,δ

i → ((γi = δi) ∧ (¬Lγ,δ
i+1)) ∨ (δi < γi).

Using the induction hypothesis we get ¬Lγ,δ
i → ((γi = δi) ∧ (Eγ,δ

i+1 ∨ L
δ,γ
i+1)) ∨ (δi < γi) and this

distributes to ¬Lγ,δ
i → ((γi = δi) ∧ Eγ,δ

i+1) ∨ ((γi = δi) ∧ Lδ,γ
i+1)) ∨ (δi < γi). Essentially this is the

Lγ,δ
i ∨ L

δ,γ
i ∨ E

γ,δ
i .

Lemma 61. Let γ and δ be vectors of n variables. We have linear eFrege proofs of (L(γ, δ) ∨
E(δ, γ))→ L(δ, γ). Also for brevity, denote the functions Li(γ, δ) as Lγ,δ

i (see Definition 58), and

Ei(γ, δ) as E
δ,γ
i (see Definition 4).

Proof. For pairs of individual variables a, b, we use a < b to denote ¬a ∧ b and a = b to denote
(¬a ∨ b) ∧ (¬b ∧ a). Also for brevity, denote the functions Li(γ, δ) as L

γ,δ
i (see Definition 58), and

Ei(γ, δ) as E
γ,δ
i (see Definition 4).

Induction hypothesis: (Lγ,δ
j ∨ E

δ,γ
j )→ L

δ,γ
j

Base Case: (j = n) Lδ,γ
n → (δn ∧ γn) and (δn ∧ γn)→ E

δ,γ
n ∧ L

γ,δ
n

Inductive Step: Study the definition of Lδ,γ
j , Eδ,γ

j ∨ L
γ,δ
j contradicts (δj ∧ γj). So we check the

(δj = γj) ∧ Lδ,γ
j+1 part. (δj = γj) ∧ Lγ,δ

j forces Lγ,δ
j+1 to be true, and Eδ,γ

j forces Eδ,γ
j+1 to true. Since

Eδ,γ
j+1 ∨ L

γ,δ
j+1 implies L

δ,γ
j+1, (δj = γj) ∧ Lδ,γ

j+1 is also refuted by Eδ,γ
j ∨ L

γ,δ
j .

Lemma 62. Let α, β and γ be vectors of n variables. Recall Definitions 4 and 58. We have
polynomial size proofs of

T (β, α)→ L(β, α) ∧ (L(α, γ) ∨ L(γ, β))

30



Proof. For each i : 1 ≤ i ≤ n, we prove the following tautology: T (β, α) → ((αi ∧
∧j≤n

j>i αj) →
(βi ∧

∧k≥1
k<i (αk = βk))) which follows from the definition of T .

We can first prove (αi ∧ βi ∧
∧k≥1

k<i (αk = βk) →
∧j≥1

j≤i Lj(α, β)) in a linear size proof. T (β, α)

implies
∨i≤n

i≥1 αi so we get L1(α, β).

We can inductively prove
∧j≤n

j≥i αj → Li(α, γ)i. Likewise with
∧j≤n

j≥i βj → Li(γ, β)i. Therefore

both αi ∧
∧j≤n

j>i αj ∧ Li(α, γ)i → γi, and βi ∧
∧j≤n

j>i βj ∧ Li(γ, β) → γi have linear size proofs in

n− i. Since αi∧
∧j≤n

j>i αj and βi∧
∧j≤n

j>i βj are equivalent under T (β, α) and
∨

1≤i≤n αi∧
∧j≤n

j>i αj is

implied by T (β, α). We only have to show one more thing, that for any k, αk = βk ∧ (Lk+1(α, γ)∨
Lk+1(γ, β)) → (Lk(α, γ) ∨ Lk(γ, β)) which comes out the definition of L. Assembling this all
together we get T (β, α)→ L(β, α) ∧ (L(α, γ) ∨ L(γ, β)).

Lemma 63. Let α, β, γ and δ be vectors of n variables. Recall Definition 4. We have short eFrege
proof of T (α, β) ∧ T (γ, δ)→ (E(α, γ) = E(β, δ))

Proof. Suppose T (α, β) ∧ T (γ, δ) ∧ E(α, γ) then we can prove for each bit βi = (αi ⊕
∧

j≥i αj) =
(γi ⊕

∧
j≥i γj) = δi and this can be assembled into E(β, δ).

Now for the converse, suppose T (α, β) ∧ T (γ, δ) ∧ E(β, δ). We can prove by induction starting
with (αn = γn) that each bit is the same.

Lemma 64. Let α, β and γ be vectors of n variables. Recall Definitions 4 and 58. We have
polynomial size proofs of

L(α, β)→ ((E(β, γ) ∨ L(β, γ))→ L(α, γ)).

Proof. For brevity, denote the functions Li(γ, δ) as Lγ,δ
i (see Definition 58), and Ei(γ, δ) as Eγ,δ

i

(see Definition 4).

Induction Hypothesis: Lα,β
j ∧ (Lβ,γ

j ∨ Eβ,γ
j )→ Lα,γ

j .

Base Case: (αn ∧ βn) contradicts (βn ∧ γn) and if βn = γn then (αn ∧ γn)
Inductive Step: (αj ∧ βj) contradicts (βj ∧ γj), so if (αj ∧ βj) and Lβ,γ

j ∨Eβ,γ
j are both true then

βj = γj and thus (αj ∧ γj).
Now suppose instead (αj = βj)∧Lα,β

j+1. If (βj ∧ γj) then (αj ∧ γj), otherwise the only other way

to have Lβ,γ
j ∨E

β,γ
j true is to have both βj = γj and L

β,γ
j+1 ∨E

β,γ
j+1 which proves Lα,γ

j+1. Since αj = γj
we get Lα,γ

j+1.

Theorem 65. CLIP+eFrege has short proofs of XOR-PAIRS

Proof. First we fix that all Z-bits are less significant than all X-bits, otherwise the cumulator
function is affected by the variable ordering. We begin by arguing that the cumulative function
for XOR-PAIRS is easy to compute. This comes from the fact the truth function itself behaves in
a way that makes it amenable to counting, it only ever increases by one, once for each complete
assignment to X. There is a function p : 2X → 2Z that maps the binary assignment α on X to the
unique assignment in Z such that ϕ(α, p(α)) for every α.

We can construct a multi-output circuit P (a sequence of circuits Pi,j for i, j ∈ {|X|}) for p,
easily through O(Z) many gates.

Pi,j(X) = (xi ∨ xj) ∧ (xi ∨ xj)

We then express the cumulative function in a cumulator circuit that we will use for CLIP.
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ξ(α, β) =

{
α β < P (α)

α+ 1 β ≥ P (α)
Note that since ξ(α, β) outputs in binary we can actually express each digit as a Boolean circuit:

ξ(α, β)i = (L(β, P (α)) ∧ αi) ∨ (L(β, P (α)) ∧ (αi ⊕
∧i<j

j≤n αj))
Now we have to argue why the remaining propositional proof is easy for eFrege. Omitting

num−1, the propositional formula (lip(ξ) from Definition 5) is:(
E(AX , 0) ∨ E(AZ , 0) ∨ ϕ(AX , AZ) ∨ E(ξ(AX , AZ), 0)

)
∧(

E(AX , 0) ∨ E(AZ , 0) ∨ ϕ(AX , AZ) ∨ T (ξ(AX , AZ), 0)
)
∧(

E(BX , AX) ∨ T (BZ , AZ) ∨ ϕ(BX , BZ) ∨ E(ξ(BX , BZ), ξ(AX , AZ))
)
∧(

E(BX , AX) ∨ T (BZ , AZ) ∨ ϕ(BX , BZ) ∨ T (ξ(BX , BZ), ξ(AX , AZ))
)
∧(

T (BX , AX) ∨ E(BZ , 0) ∨ E(AZ , 2
|Z| − 1) ∨ ϕ(BX , BZ) ∨ E(ξ(BX , BZ), ξ(AX , AZ))

)
∧(

T (BX , AX) ∨ E(BZ , 0) ∨ E(AZ , 2
|Z| − 1) ∨ ϕ(BX , BZ) ∨ T (ξ(BX , BZ), ξ(AX , AZ))

)
∧(

E(AX , 2
|X| − 1) ∨ E(AZ , 2

|Z| − 1) ∨ E(ξ(A), k)
)

This is basically a number of tautological implications we have to show individually The idea
is to break each implication into a number of cases. Case analysis is typically easy for eFrege as it
is just resolving with a disjunction of possibilities. This is where we use Lemma 60 which gives us
the disjunction of possibilities.
Base case: If AX = 0, P (AX) always evaluates to 0. If AZ is also 0, ϕ(AX , AZ) evaluates to true,
while L(AZ , P (AX)) evaluates to false (because of strictness). This makes ξ(α, β) evaluate to the
integer 1 (in other words ξ(α, β)i = 1 if and only if i = n). Each of these evaluations are shown
in eFrege through the extension clauses. These will satisfy the two disjunctions that use the base
case.
Inductive Step: Here we firstly argue that ϕ(BX , BZ)↔ E(BZ , P (BX)) has a short eFrege proof.
We show that for each pair i, j the four clauses are implied by (xi ∨ xj) ∧ (xi ∨ xj) ↔ zi,j . And
then we show the four clauses show the truth table for(xi ∨ xj)∧ (xi ∨ xj)↔ zi,j . The proof size is
linear.

If BX = AX and BZ = AZ + 1, we use Lemma 60 to make 3 cases.

1. Let BZ = P (BX), we can get a short eFrege proof that L(BZ , P (BX)) is false (Lemma 60)
and that L(AZ , P (AX)) is true (Lemma 64). And thus a proof of T (ξ(BX , BZ), BX) and
E(ξ(AX , AZ), AX), we use BX = AX to show T (ξ(BX , BZ), ξ(AX , AZ)). ϕ(BX , BZ) ↔
E(BZ , P (BX)) is a proven tautology.

2. Let BZ < P (BX), we know immediately that L(BZ , P (BX)) is true and also a short proof that
L(AZ , P (AX)) is true. And thus a proof that E(ξ(BX , BZ), BX) and E(ξ(AX , AZ), AX), we
use BX = AX to show E(ξ(BX , BZ), ξ(AX , AZ)). ϕ(BX , BZ) falls into provable contradiction
with L(BZ , P (BX)) by showing a bit must be different.

3. Let BZ > P (BX), we can get a short eFrege proof that L(BZ , P (BX)) is false (Lemma 60) and
that L(AZ , P (AX)) is false (Lemma 62). And thus a proof that T (ξ(BX , BZ) = BX +1) and
T (ξ(AX , AZ) = AX + 1), we use BX = AX to show E(ξ(BX , BZ), ξ(AX , AZ)). ϕ(BX , BZ)
falls into provable contradiction with L(P (BX), BZ).

Now consider ||BX = AX + 1||, ||BZ = 0|| and ||AZ = 2|Z| − 1||. Part of the trichotomy is
impossible. We can prove L(P (BX), BZ) fails when ||BZ = 0||. For the remaining cases we firstly
prove that ¬||2|Z| − 1 < P (AX)|| which is proven from the fact that one digit must be 0 to be less
than. Therefore ξ(AX , AZ) = AX + 1 in both cases.
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1. Let BZ = P (BX) then we can get a short eFrege proof that L(BZ , P (BX)) is false and so
ξ(BX , BZ) = BX+1 = AX+1+1 = ξ(AX , AZ)+1. We can use the T function and Lemma 63
to find an equality proof here. ϕ(BX , BZ)↔ E(BZ , P (BX)) is a tautology,

2. Let L(BZ , P (BX)) be true so ξ(BX , BZ) = BX = AX +1 = ξ(AX , AZ). ϕ(BX , BZ) falls into
provable contradiction with L(BZ , P (BX)).

For the final case, we once again use ¬||2|Z| − 1 < P (AX)||, hence ξ(2|X| − 1, 2|Z| − 1) =
2|X| − 1 + 1 = 2|X|.

7.3 Permutation matrices

Consider the Boolean function fSymm
2 which verifies if a Boolean [n × n] matrix is a permutation

matrix, i.e. each row and each column contains exactly one entry 1. The satisfying models, i.e.
f−1
Symm(1) are all n! row-permutations of the n-by-n identity matrix. This function is hard to repre-
sent as a dec-DNNF [34, Theorem 10.3.8][1, Corollary 3.8] and hence it is hard to count models of
the CNF representing fSymm (Definition 66) with the existing static proof system KCPS(#SAT) [12].
Since extraction of dec-DNNFs is easy for MICE′ [6], this is also a lower bound for MICE′. We show
that these formulas are easy in CLIP (Theorem 67).

Definition 66. Let every cell in an [n×n] matrix be a variable xi,j where i is the row number and
j is the column number. The CNF Symmn with O(n3) clauses is defined as follows:

C1
i,j := xi,j → (xi,1 ∧ ... ∧ xi,j−1 ∧ xi,j+1 ∧ ... ∧ xi,n ∧ x1,j ∧ ... ∧ xi−1,j ∧ xi+1,j ∧ ... ∧ xn,j),

C2
i := (xi,1 ∨ xi,2 ∨ ... ∨ xi,n), C3

i := (x1,i ∨ x2,i ∨ ... ∨ xn,i)
Symmn :=

∧
i,j∈[n]

C1
i,j ∧

∧
i∈[n]

C2
i ∧

∧
i∈[n]

C3
i .

Theorem 67. CLIPNP has short proofs of Symmn.

Proof. In order to show that Symmn is easy for CLIPNP , we first present an Algorithm which given
Symmn and a partial assignment α returns the Cmodels(α) (see Algorithm 2). Observe that any
row-permutation of an identity matrix of size [n× n] is a model of Symmn. Algorithm 2 maintains
a ascending list (i.e. pos rows array in Algorithm 2) of all rows of an identity matrix of size [n×n].
Given any total assignment α, the Algorithm breaks it row-wise as J1, ..., Jn. Starting from J1, it
compares Ji with every row in pos rows. If Ji > a row in pos rows (i.e. row in Algorithm 2), we
can include all (n − i)! additional models which have the same row as the ith row in them. If any
row-vector (i.e. row) is equal to the Ji, we remove it from the pos rows array and repeat the process
for Ji+1. As we always maintain pos rows array in the ascending order, we can stop when any Ji is
< a row and return the cumulative number of models. In the worst case, J1 is greater than n− 1
rows and equal to nth row, similarly J2 is greater than n − 2 rows and equal to (n − 1)th row and
so on, resulting in O(n2) complexity. A polynomial size cumulator for Symmn can be built based
on Algorithm 2.

We provide Example 68 to illustrate the working of Algorithm 2.

Example 68. Consider a [3 × 3] Boolean matrix (i.e. n = 3). The pos rows array for this
matrix will be := {1, 2, 4}. Consider an assignment num(α1) = 511, i.e. the last assignment where

2In [34], this function is denoted as PERM. To avoid confusion with the #P-complete problem ‘permanent’, we
denote it here as fSymm for ‘Symmetric group’ of the identity matrix along with its permutations.
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Algorithm 2 Algorithm to compute Cmodels(Symmn, α)

Require: num(α) < 2n
2
, ordering of variables is in row-major order.

(i.e x1,1, ..., x1,n, x2,1, ..., x2,n, ...)
function cumulative-perm-models(assignment α, int n)

int J1, ..., Jn = 0
for i ∈ [n] do

for j ∈ [n] do
Ji = Ji ∗ 10 + α(xi,j) /*Ji is the num(α restricted to the ith row)*/

end for
end for
int pos rows = {1, 2, 4, 8, ..., 2n−1} /* possible rows in any model*/
int i = 1, int models = 0, int flag = 0
while flag=0 do

for row ∈ pos rows do
if row < Ji then /*include all models having row as the ith row in them*/

models = models+ (n− i)!
else if row > Ji then /*break the loop and return the number of models*/

flag= 1
break-loop

else/*if Ji=row, remove row from array and start for-loop again with Ji+1*/
i++, flag= 0
pos rows = pos rows \ row
break-loop

end if
flag= 1

end for
end while

return models
end function

every variable is set to 1, in this case the Algorithm 2 should return the total #models(Symm3) =
Cmodels(Symm3, 511) = 6. In the algorithm, J1 = 7 which is greater than all elements of the pos rows
array, therefore the algorithm will return 2! + 2! + 2! = 6 in just O(n) steps.

Consider another assignment num(α2) = 154. In the algorithm, J1 = 2, J2 = 3, J3 = 2.
First J1 >pos rows[0] hence the current model count is 2!. Next, J1 =pos rows[1] hence the updated
pos rows array is := {1, 4}. Next, J2 >pos rows[0] hence current model count is 2! + 1!. Lastly
J2 <pos rows[1] therefore the algorithm stops here and returns the Cmodels(Symm3, 154) = 3. To
cross-verify the three models before α2 are 84, 98 and 140.

8 Potential for new Benchmarks

The p-simulation of CPOG provides a method to extract CLIP+DRAT proofs indirectly from model
counting programs, but the number of arithmetic lemmas may bloat the simulation.

One alternative is to avoid the second part of the p-simulation that constructs the proof and
directly find the proof through a SAT solver. Without having implemented this ourselves it is
unclear how well this works in practice. We suggest that the next step would be to create UNSAT
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benchmarks from the lip formulas for known families of model counting problems, such as XOR-pairs
using the cumulator we construct in Section 7.

8.1 DQBF Benchmarks

QBF (Quantified Boolean Formulas) extend propositional logic with a quantifier prefix over the
propositional variables. The range of the quantifiers are the Boolean constants {0, 1}. DQBF
(Dependency Quantified Boolean Formulas) extends QBF by forgoing the linear quantifier ordering.
In S-form a DQBF has a number of universal variables ∀u1 . . . up and a number of existential
variables written in the form ∃x1(D1) . . . xq(Dq). The sets Di are subsets of the universal variables
that xi depends on.

We can formulate the lip statement without a specific cumulator in mind, by asking if there
exists a cumulator.
∀X1∀X2∃Z1(X1)∃Z1(X1)
(X1 = X2)→ (Z1 = Z2)∧
E(X1,num

−1(0))→
(
(ϕ(X1)→ E(Z1,num

−1(0))) ∧ (ϕ(X1)→ T (Z1,num
−1(0)))

)
∧

T (X2, X1)→
(
(ϕ(X2)→ E(Z2, Z1))) ∧ (ϕ(X2)→ T (Z2, Z1))

)
∧

E(X1,num
−1(2|vars(ϕ)| − 1))→ E(Z1,num

−1(k))
When we ask whether Z1 variables exists, we are asking if there is an output identical to a

correct cumulator for the X1. Z2 is the same for X2 variables, and Z1 and Z2 are forced to have
the same Skolem functions by the new constraint.

We use DQBF because we do not want Z1 to “cheat” by changing depending on X2 variables
(which could be used to trivially satisfy the statement).

New benchmarks for DQBF are hard to come by. A certifying DQBF solver (like Pedant [31])
may output circuits for the Skolem functions. Unfortunately, for modern DQBF solvers it is very
likely to be hard in that case except in the smallest of examples.

9 Conclusion

We have introduced the CLIP framework for propositional model counting. We have demonstrated
the advantages CLIP has by having an unrestricted underlying circuit format. Our approach here
has been theoretical and no version of CLIP has been implemented.

The main checking task in CLIP proofs can use existing tools in SAT such as DRAT-trim
[35]. We have given a p-simulation of all other #SAT proof systems, in theory this can be used
to extract CLIP+eFrege (or CLIP+DRAT) proofs from #SAT solvers. However the number of
arithmetic lemmas may make the complete programming of the extractor a difficult task. It could
be compensated with assistance from a certifying SAT solver.

Future work should take into account weighted and projected model counting.
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Appendix

A Algorithm from Section 4.1

We provide a more detailed version of Algorithm 1.

Algorithm 1 Fenwick tree [20] based algorithm to find D(0, J)

Require: J < 2n

function Fenwick-assignments(int J , int n)
int α := {}, dash:= {}
int indx← J + 1 /*assignments ∈ [0, 2n − 1] but the Fenwick tree handles [1, 2n] */
while indx > 0 do

parent = indx− (indx & − indx) /*& is the bit-wise AND operator*/
α.append(parent)
dash.append(log(indx − parent)) /*records number of variables to forget from the corre-

sponding total assignment α*/
indx← parent

end while
int len = |α|, D[len, n]
/*D is a 2d array where every row is a partial assignment of length n*/
for i ∈ [len] do

for j ∈ [n− dash[i]− 1] do
if binary(α[i])[j] == 1 then /* if jth bit in binary representation(α[i])= 1 */

D[i, j] := 2
else

D[i, j] := 1 /* if jth bit in binary representation(α[i])= 0 */
end if

end for
for j ∈ [n− dash[i], n− 1] do

D[i, j] := 0 /* if jth variable is not included in partial assignment */
end for

end for
/* if αi(xj) = 1→ D[i, j] = 2, if αi(xj) = 0→ D[i, j] = 1, if xj ̸∈ vars(αi)→ D[i, j] = 0*/
return D
end function
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B Short proofs on basic arithmetic properties

Extended Frege can handle basic tautologies on its own. In fact, it is unlikely that a given well-
known identity would turn out the be a lower bound for eFrege. It could be said the short proofs
of basic arithmetic properties of gates are academic folklore. For the sake clarifying to the reader
that we have not obscured any difficult lemmas into this, we give an overview of the construction
of each of the proofs.

We take for granted that eFrege can deal with a constant number of cases, in fact we can see
this from a simulation of truth table. eFrege can also handle proofs by induction formalising a
polynomial number of inductive steps into extension variables.

Definition 69 (Signed Binary number). A signed binary number X contains a sign bit sx and
a number of binary bits xn−1, xn−2 . . . x1, x0, x−1 . . . x−m. sx is 1 if X is positive, allowing for
straightforward addition. Binary fractions are used for CPOG.

Definition 70 (Addition Operator). We use ⊕ for exclusive or.
We first define the carry bits

Ci =

{
Xi ∧ Yi i = −m
(Xi ∧ Yi) ∨ (Xi ∧ Ci−1) ∨ (Yi ∧ Ci−1) −m < i < n

And then the bits of the sum

Ai =

{
Xi ⊕ Yi i = −m
Xi ⊕ Yi ⊕ Ci−1 −m < i < n

Where X + Y = A = (Ai)
i<n
i>−m

For signed integers we define sa+b = (sA ∧ sA) ∨ (sA ∧ Cn) ∨ (sB ∧ Cn). It works like the nth
carry bit.

Lemma 71 (Additive Associativity). Given vectors of propositional variables X,Y, Z there are
short eFrege proofs of ||X + (Y + Z) = (X + Y ) + Z||.

Proof. Let V be defined as (X + Y ) and W be defined as (Y + Z). Let P be defined as (V + Z)
and Q be defined as (X+W ) Let CV , CW , CP , CQ be the carry functions for each of the respective
sums.

We show CW
i ⊕ C

Q
i = CV

i ⊕ CP
i by induction on i. The inductive step can be expanded into

a tautology of seven variables: CV
i+1, C

P
i+1, C

W
i+1, C

Q
i+1, Xi, Yi, Zi. Since this can be proven by truth

table, we have short eFrege proofs.

Lemma 72 (Additive Commutativity). Given vectors of propositional variables A,B there are
short eFrege proofs of ||A+B = B +A||.

Proof. We consider both A + B and B + A and show each output bit and carry bit are equal
inductively. Each induction step requires a constant bounded number of variables.

Lemma 73 (Additive Identity). Given any vector of propositional variables A there are short
eFrege proofs of ||0+A = A||.

Proof. We show each bit in 0 + A is equal to the bit in the summand A and each carry bit is 0.
Proving the carry bit is 0 takes |A| many induction steps, but each induction step only involves a
constant number of variables.
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Definition 74 (Additive Inverse). The additive inverse of a is defined as

(−a)i =

{
ai i = −m
ai ⊕ ci−1 i > −m

The definition ci =

{
(ai ∧ (−a)i) ∨ (ai ∧ ci−1) ∨ ((−a)i ∧ ci−1) i = −m
ai ⊕ ci i > −m

s(−a) = ¬sa

Lemma 75 (Additive Inverse). Gievn a vector of propositional variables A there are short eFrege
proofs of A+ (−A) = 0

It turns out the carry bit used in the definition will be the same as the carry bit used when
adding a value to its inverse.

Proof. We prove inductively that if two bits to be summed have parity 1, the previous carry bit
is 1. Likewise if the carry bit is present the two summand bits have parity 1. In other words
ai ⊕ (−a)i ⊕ ci−1 = 0. We can break each inductive step (and the base case) into a finite case
analysis, thus short proofs.

Only the sign bit is allowed to be different but then the final carry bit changes that to 1.

Definition 76 (Multiplication Operator). The partial product pi is a multiplied by bi · 2i. We
define pi,j = bi ∧ aj−i.

The product a · b = (−1)sa+sb ·
∑

i pi

Lemma 77 (Multiply by 0). For any vector of propositional terms A. There are short eFrege
proofs that ||A · 0 = 0||

Proof. First we show show every partial product is 0. We can easily prove that each partial product
bit is 0 by definition of ∧. To finalise we then use additive identity to get 0

Lemma 78 (Multiplicative Identity).

Proof. We prove every partial product is zero except for p0, which we then prove is identical to
the multiplicand using the definition of ∧. We use the additive identity law and associativity and
commutativity of addition to get the multiplicand back.

Lemma 79 (Multiply by powers of 2). Let A be a vector of propositional variables. There are
short eFrege proofs that A · 2i = B where Bj = 0 when j < i−m and Bj = Aj−i otherwise and 2i

is defined as a constant vector.

Sketch Proof. Similar to identity except we first show only pi is potentially non zero via multipli-
cation using the definition of ∧. The defintion of ∧ also tells us the bits of pi. pi = B through
additive identity.

Lemma 80 (Binary Decomposition). Every number can be shown to be equal to a sum of powers
of two: ||A =

∑i<n
0≤i 1Ai · 2i|| where 2i is defined as a constant vector.

Proof. Outside the “diagonal” (pii) every bit is 0 and we prove as such. We show that all carry
bits for every sum is zero. Again we do this via induction. Then show ith bit of the sum is 1 if and
only if there is a 1 in the ith bit of the summand 2i. Likewise show the ith bit of the sum is 0 if
and only if the ith bit of the ith summand is 0.
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Lemma 81 (Weak Left Distributivity). Let A,B be vectors of propositional variables. There are
short eFrege proofs of ||A ·B =

∑i<n
−m≤iAi · (1Bi · 2i)||

Proof. Let pj be the jth partial product of A·B and let qij be the jth partial product of Ai ·(1Bi ·2i).
qij = 0 when j ̸= i and qjj = pj . Therefore using additive identity, commutativity and associa-

tivity A ·B is the same sum as
∑i<n

−m≤iAi · (1Bi · 2i)

Lemma 82 (Weak Right Distributivity). Let A,B be vectors of propositional variables. There are
short eFrege proofs of ||A ·B =

∑i<n
−m≤i(1Ai · 2i) ·Bi||

Proof. let pij,k be the kth bit of the jth partial product of (1Ai · 2i) ·B pij,k is only 1 when k = j− i
and Ai = 1 and Bj = 1.

Let qj be the jth partial product of A · B, qj,k = 1 only when Ak−j = 1 and Bj = 1. One can
observe that this means that qj =

∑
i p

i
j,k and we can prove that in eFrege by showing the carry

bits will never be 1.
Thus we can use associativity and commutatitivity of addition to show that A · B =

∑
j qj =∑

j

∑
i p

i
j =

∑
i(1Ai · 2i) ·B

By using the full expansion we can prove the other properties of arithmetic.

Lemma 83 (Commutativity). Let A,B be vectors of propositional variables. There are short eFrege
proofs of ||A ·B = B ·A||

Proof. We perform a full expansion on both sides and show equality through additive associativity
and commutativity.

Lemma 84 (Associativity). Let A,B,C be vectors of propositional variables. There are short
eFrege proofs of ||A · (B · C) = (A ·B) · C||

Proof. We perform a full cubic expansion, and then use additive associativity and commutativity
to show the sums are the same.

Lemma 85 (Distributivity). Let A,B,C be vectors of propositional variables. There are short
eFrege proofs of ||A · (B + C) = A ·B +A · C||

Proof. We show the partial products sum to the same value by decomposing them readjusting their
order.

Lemma 86. 1
2(a+ a) = a

Proof. We prove inductively that a + a creates a left shift. Its then relatively easy to show that
right multiplication with 1

2 is a right shift and we use commutativity.

42
ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


