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Abstract

One of the major open problems in complexity theory is to demonstrate an explicit
function which requires super logarithmic depth, a.k.a, theP versusNC1 problem. The
current best depth lower bound is (3− o(1)) · log n, and it is widely open how to prove
a super-3 log n depth lower bound. Recently Mihajlin and Sofronova (CCC’22) show if
considering formulas with restriction on top, we can break the 3 log n barrier. Formally,
they prove there exist two functions f : {0, 1}n → {0, 1}, g : {0, 1}n → {0, 1}n, such
that for any constant 0 < α < 0.4 and constant 0 < ϵ < α/2, their XOR composition
f(g(x)⊕y) is not computable by an AND of 2(α−ϵ)n formulas of size at most 2(1−α/2−ϵ)n.
This implies a modified version of Andreev function is not computable by any circuit
of depth (3.2− ϵ) log n with the restriction that top 0.4− ϵ layers only consist of AND
gates for any small constant ϵ > 0. They ask whether the parameter α can be push up
to nearly 1 thus implying a nearly-3.5 log n depth lower bound.

In this paper, we provide a stronger answer to their question. We show there exist
two functions f : {0, 1}n → {0, 1}, g : {0, 1}n → {0, 1}n, such that for any constant
0 < α < 2− o(1), their XOR composition f(g(x)⊕ y) is not computable by an AND of
2αn formulas of size at most 2(1−α/2−o(1))n. This implies a (4− o(1)) log n depth lower
bound with the restriction that top 2−o(1) layers only consist of AND gates. We prove
it by observing that one crucial component in Mihajlin and Sofronova’s work, called
the well-mixed set of functions, can be significantly simplified thus improved. Then
with this observation and a more careful analysis, we obtain these nearly tight results.
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1 Introduction

One of the major open problems in complexity theory is to demonstrate an explicit function
which requires super logarithmic depth, a.k.a, the P versus NC1 problem. The current best
depth lower bound [H̊as98, Tal14, Tal16] is (3 − o(1)) · log n, and we still don’t even know
how to obtain a lower bound strictly larger than 3 log n. One promising approach to tackle
this problem was suggested by Karchmer, Raz and Wigderson [KRW95], they proposed that
we should understand the complexity of (block)-composition of Boolean functions. Given
two functions f : {0, 1}m → {0, 1}, g : {0, 1}n → {0, 1}, we define their composite function
f ⋄ g : ({0, 1}n)m → {0, 1} as: f ⋄ g (x1, . . . , xm) = f (g (x1) , . . . , g (xm)) . Given any Boolean
function f , we denote the depth complexity of f by D(f), that is the minimal depth of a
circuit of AND, OR and NOT gates of fan-in 2 that computes f . And it is easy to see the
depth complexity of f ⋄ g is upper-bounded by D(f) +D(g) and it is natural to ask whether
the depth complexity of f ⋄ g is far from this upper bound. Karchmer, Raz and Wigderson
[KRW95] conjectured that the depth complexity of f ⋄ g is not far from its upper bound:

Conjecture 1.1. Given two arbitrary non-constant Boolean functions f : {0, 1}m → {0, 1}
and g : {0, 1}n → {0, 1}, then D(f ⋄ g) ≈ D(f) + D(g).

If the conjecture is proved and the “approximate equality” is instantiated with proper pa-
rameters, by an argument of iterative composition [KRW95], we will obtain an explicit func-
tion with super-logarithmic depth, which separates P from NC1. Many restricted cases of
KRW conjecture have been proved to be true. For example, there are composition theorems
when the inner function g satisfies certain property [H̊as98, Tal14, DM18, FMT21]. There are
composition theorems about universal relation [EIRS01, HW93, GMWW17, KM18, MS21,
Wu23]. There are composition theorems where the composition itself is restricted such
as monotone composition, semi-monotone composition [dRMN+20] and strong composition
[Mei23]. There are also some variants [EIRS01, Mei20, MS21] of original conjecture with the
similar effect to the P versus NC1 problem, but we don’t know how to prove them either.
Maybe to prove the general form of KRW conjecture is far out of our reach now.

Note that we don’t even know how to prove a super-3 log n depth lower bound, maybe
we should consider following weaker conjecture which suffices to break the 3 log n barrier in
the first place.

Conjecture 1.2. There exist two non-constant Boolean functions f, g : {0, 1}n → {0, 1}
such that D(f ⋄ g) ≥ (1 + ϵ)n for some small constant ϵ ∈ (0, 1).

Unfortunately, we don’t even know how to prove this weaker conjecture. Currently, the
closest answer to Conjecture 1.2 is Meir’s strong composition theorem [Mei23], but we don’t
know how to prove it for the case of standard composition. Mihajlin and Sofronova [MS22]
proposed we should consider proving depth lower bound against even weaker formulas by
considering restriction on top of the formulas. They managed to prove a composition theorem
for formulas with restriction on top via XOR composition. The so-called XOR composition,
proposed by Mihajlin and Smal [MS21], is a useful special case of standard composition.
In fact, the first nontrivial composition theorem [MS21] of a universal relation and some
function is proved via XOR composition.

3



Given two functions f : {0, 1}n → {0, 1}, g : {0, 1}n → {0, 1}n, their XOR composition
f ⊞ g is defined as :

f ⊞ g(x, y) = f(g(x)⊕ y)

where ⊕ denotes the bit-wise XOR of two binary strings. Mihajlin and Sofronova [MS22]
proved following result.

Theorem 1.3 ([MS22]). If we choose a function f : {0, 1}n → {0, 1} randomly, with prob-
ability 1 − o(1), there exists a function g : {0, 1}n → {0, 1}n, such that for any constant
0 < α < 0.4 and constant 0 < ϵ < α/2, their XOR composition f ⊞ g is not computable by
an AND (or OR) of 2(α−ϵ)n formulas of size at most 2(1−α/2−ϵ)n.

This implies a super-3 log n depth lower bound for a modified version of the Andreev
function against formulas with restriction on top.

Theorem 1.4 ([MS22]). A modified version of Andreev function Andr′ is not computable
by any circuit of depth (3.2− ϵ) log n with the restriction that top 0.4− ϵ layers only consist
of AND(or OR) gates for any small constant ϵ > 0.

Such kind of super-3 log n depth lower bound is unknown before their work even for such
strong restriction. They asked whether their result can be improved as asked by following
question.

Question 1.5 ([MS22]). Is it possible to extend the range of parameter α in Theorem 1.3
to 0 < α < 1?

In this paper, we give a positive answer to their question with an even better result. In
fact, we extend the range of parameter α to 0 < α < 2− o(1) which is nearly optimal.

1.1 Our results

Our main result is an improved XOR composition theorem for formulas with restriction on
top. Formally, we have following result.

Theorem 1.6. Let L(f) be the protocol size of any Boolean function f . For most functions
f : {0, 1}n → {0, 1}, there exists a function g : {0, 1}n → {0, 1}n, such that f ⊞ g is not

computable by an AND (or OR) of 2αn formulas of size at most 2
n+log L(f)−αn−2 log logn

2 for any

0 < α < 1 + log L(f)−2 log logn
n

.

This implies a nearly-4 log n depth lower bound for formulas with restriction on top.

Theorem 1.7. A modified version of Andreev function Andr′ is not computable by any
circuit of depth (4−o(1)) log n with the restriction that top (2−o(1)) log n layers only consist
of AND (or OR) gates.

Comparing to the results of Mihajlin and Sofronova [MS22], our results are nearly tight
and our approach is much simpler to be described next.
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Our approach. Here we give a concise description of the proof idea of Theorem 1.6.
The whole proof strategy is similar to that in [MS22], we call such strategy as a double-
measurement argument, a generalized form of the double-counting argument. One crucial
component in such argument is the notion of well-mixed set of functions, and our improve-
ment is mainly due to the simplification and improvement for such well-mixed set of functions.

Let G be the set of all functions from {0, 1}n → {0, 1}n. Now given a hard function
f : {0, 1}n → {0, 1}, we want to show there exists a function g ∈ G, such that if f ⊞ g can
be computed by a formula ϕg =

∧2αn

i=1 ϕg,i, there must be a sub-formula ϕg,i such that L(ϕg,i)
is large. To show this, Mihajlin and Sofronova defined a sub-additive measure µ for Boolean
functions of two arguments and µ(f ⊞ g) is large, thus by averaging, for every g, there exists
some ig such that µ(ϕg,ig) is large enough. Note that for every g, ig, ϕg,ig computes some
function hg,ig , and let H be the set of all such functions hg,ig . If the size of H is large, by
a standard counting argument, there must be a hard function h ∈ H as required. But H
may be a small set, to prevent this, we need to show for every h ∈ H, there only exists a
small subset of Gh ⊆ G such that for every g ∈ Gh, hg,ig is the same function as h. Formally,
denote the {g|g ∈ G, hg,ig = h} by Gh. Let h⋆ be the function such that the size of Gh⋆ is
maximum among all Gh, it suffices to show Gh⋆ is a small set. To this end, we need to show
an up bound of measurement µ(h⋆) in another way and this is why the notion of well-mixed
set is involved.

Now consider this functionMf,Gh⋆
(x, y) =

∨
g∈Gh⋆

f(g(x)⊕y). LetMx
f,Gh⋆

be the function

Mf,Gh⋆
with the first argument is fixed to be some x ∈ {0, 1}n, we want to show if the set Gh⋆

is large, there are many xs such that Mx
f,Gh⋆

is almost a constant function, and it eventually

implies µ(h⋆) is small which contradicts the fact that µ(h⋆) is already large. This is essentially
the property that Mihajlin and Sofronova wanted for Gh⋆ , or in their terms, Gh⋆ is well-mixed
for function f . In their work, Mihajlin and Sofronova used a rather complicated probabilistic
method to show that property.

We will show such complication is entirely unnecessary and the well-mixed property
could be obtained by a simple counting argument if you choose the function f properly.
For convenience, let N = 2n, now choose a hard function f : {0, 1}n → {0, 1} such that

density(f−1(1)) = |f−1(1)|
N

≥ δ, typically, we set δ to be 1
4
. Note that given any fixed x,

Mx
f,Gh⋆

(y) = 1 if there is a function g ∈ Gh⋆ such that (g(x) ⊕ y) ∈ f−1(1). Given any

x ∈ {0, 1}n, denote the set {z|∃g ∈ Gh⋆ , g(x) = z} by Gh⋆(x). Similarly, given x, y ∈ {0, 1}n,
we denote the set {z|∃g ∈ Gh⋆ , g(x)⊕y = z} by Gh⋆(x)⊕y. Given an x, if |Gh⋆(x)| > N(1−δ),
for any fixed y, we also have |Gh⋆(x)⊕y| > N(1−δ), since for any fixed y, z⊕y is permutation
function of z. When |Gh⋆(x)⊕ y| > N(1− δ), (Gh⋆(x)⊕ y)∩ f−1(1) is not empty, this means
there exists g ∈ Gh⋆ such that for that x, f(g(x)⊕ y) = 1.

Now we say x is bad, if |Gh⋆(x)| ≤ N(1− δ). If Gh⋆ is a dense subset of G, the number of
bad xs is small. Assume the size of Gh⋆ is (at least) |G| · (1− δ)P , then there are at most P
bad xs. If not, the number of functions in Gh⋆ is less than

(N(1− δ))P ·NN−P = NN · (1− δ)P = |G| · (1− δ)P

which is a contradiction. This means, given any x which is not bad, the functionMx
f,Gh⋆

(y) =

1 for any y, thus Mx
f,Gh⋆

is a constant function. This eventually implies µ(h⋆) is small which
leads to the desired contradiction. Finally, since Gh⋆ has to be a small set, the set H must be
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a large set of functions which contains a hard function h ∈ H as required. See more details
in Lemma 3.2 and Theorem 3.3.

Other related works. Besides Mihajlin and Sofronova’s work, we note that Bathie and
Williams [BW24] established a super-3 log n depth lower bound against uniform circuits con-
sisting of only NAND gates. Since their result is against uniform circuits, it is incomparable
to ours. They also pointed out that results similar to Mihajlin and Sofronova’s work could
be obtained from average-case lower bounds [KRT17] via restriction-based techniques but
they didn’t provide further details. In a personal communication, Meir [Mei24] pointed out
that results similar to Mihajlin and Sofronova’s work can also be obtained via techniques
from communication complexity but it is not clear whether such results are as tight as ours.

1.2 Organization of the rest of the paper

The rest of the paper is organized as follows. In Section 2, we provide necessary preliminaries.
In Section 3, we prove Theorem 1.6, an improved XOR composition theorem of formulas with
restriction on top. In Section 4, we prove Theorem 1.7, a nearly-4 log n depth lower bound
for formulas with restriction on top. In Section 5, we conclude and make some discussion
about future directions.

2 Preliminaries

Definition 2.1 (De Morgan formula). A De Morgan formula ϕ is a binary tree, its internal
vertices are gates such as AND(∧) or OR(∨), its leaves are literals such as xi or its negation
¬xi. The depth of a formula is the depth of underling tree of the formula. The size of a
formula is the number of its leaves.

Definition 2.2. The formula complexity of a boolean function f : {0, 1}n → {0, 1}, denoted
L(f), is the size of the smallest formula that computes f. The depth complexity of f, denoted
D(f), is the smallest depth of a formula that computes f .

We will need following fact, given a large set of distinct functions, there is a function
with large formula size in that set.

Fact 2.3 ([Juk12], Theorem 1.23). Let F be a set of distinct Boolean functions with input

length n, then there exists a function f ∈ F such that L(f) ≥ log |F|
logn+4

.

Definition 2.4 (XOR composition of two functions, [MS21]). Let f : {0, 1}n → {0, 1}, g :
{0, 1}n → {0, 1}n be two functions, their XOR composition f ⊞g : {0, 1}n×{0, 1}n → {0, 1}
is defined as follows:

f ⊞ g(x, y) = f(g(x)⊕ y)

where ⊕ denotes the bit-wise XOR of two binary strings.

We recall a measure µ(h) of any Boolean function h of two arguments defined in [MS22].
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Definition 2.5 ([MS22]). Let h be a Boolean function of two arguments, given any fixed x
as the first argument, we define the function hx by setting hx(y) = h(x, y) and define

µ(h) =
∑
x∈X

L(hx).

Fact 2.6 ([MS22]). µ(f ⊞ g) ≥ 2n · L(f) and for every x, L(hx) ≤ L(h).

The measure µ is sub-additive in the following sense:

Lemma 2.7 ([MS22]). Let h(x, y) = ◦(g1, g2, . . . , gk)(x, y), where ◦ is ∧ or ∨. Then µ(h) ≤
µ(g1) + . . .+ µ(gk).

Matrix representation for a function of two arguments. For convenience, we follow
a notation in [MS22] which treats a Boolean function of two arguments as a Boolean matrix.

Definition 2.8. Set X = {0, 1}n, Y = {0, 1}n, given a function h : X × Y → {0, 1}, define
a corresponding matrix Mh such that

� the rows of Mh are indexed by x ∈ X and the columns are indexed by y ∈ Y ,

� and Mh(x, y) = h(x, y) for every x, y.

Similarly, given two functions f : {0, 1}n → {0, 1}, g : {0, 1}n → {0, 1}n, define a matrix
Mf,g such that Mf,g(x, y) = f(g(x)⊕ y) for every x, y.

Furthermore, given a function f : {0, 1}n → {0, 1} and a set Z of functions from {0, 1}n →
{0, 1}n, define a matrix Mf,Z such that for every x, y,

Mf,Z(x, y) =
∨
g∈Z

f(g(x)⊕ y).

Finally, given a subset of indexes A ⊆ X for rows in a matrix M, the matrix MA is a
sub-matrix of M restricted to rows indexed by A.

Concentration of measure

Theorem 2.9 (Chernoff bound). Given n independent random variables X1, . . . , Xn which
distribute in {0, 1}, let X =

∑n
i=1 Xi be their sum and E[X] = µ. For any constant δ such

that 0 < δ < 1, we have

Pr(X ≥ (1 + δ)µ) ≤ e−
δ2µ
2+δ

and

Pr(X ≤ (1− δ)µ) ≤ e−
δ2µ
2 .

By Chernoff bound, we have following fact.

Fact 2.10. Let N = 2n. If we choose a function f : {0, 1}n → {0, 1} randomly, then

Pr( |f
−1(1)|
N

< 1
4
) ≤ e−Ω(N) and Pr( |f

−1(0)|
N

< 1
4
) ≤ e−Ω(N).
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3 An improved XOR composition theorem for formu-

las with restriction on top

In this section, we prove Theorem 1.6. At first, let’s recall the notion of well-mixed set of
functions.

Definition 3.1 (Well-mixed set of functions, [MS22]). A set of functions G from {0, 1}n →
{0, 1}n is (Q,D, P )-well-mixed for f if ∀Z ⊆ G, |Z| ≥ Q, there exist a set K ⊆ {0, 1}n, |K| ≤
P , such thatMX\K

f,Z has no more thanD zeroes in total whereMf,Z(x, y) =
∨

g∈Z f(g(x)⊕y).

Now we show given any approximately balanced function f , the set G of all functions
{0, 1}n → {0, 1}n is already a well-mixed set of functions for f .

Lemma 3.2. Let f : {0, 1}n → {0, 1} be a function, G be the set of all functions {0, 1}n →
{0, 1}n. For convenience, let N = 2n and X = {0, 1}n. Assume density(f−1(1)) = |f−1(1)|

N
≥

δ, then G is (|G|·(1−δ)P , 0, P )-well-mixed for f . Particularly, let Z ⊆ G be a set of functions

and density(Z) = |Z|
|G| , there exists a set K ⊆ {0, 1}n such that |K| = P ≤ log density(Z)

log(1−δ)
and

all entries in MX\K
f,Z are ones.

Proof. Let Z ⊆ G be a set of functions, given any x ∈ {0, 1}n, denote the set {z|∃g ∈
Z, g(x) = z} by Z(x), and we say x is bad if |Z(x)| ≤ N(1−δ). Similarly, given x, y ∈ {0, 1}n,
we denote the set {z|∃g ∈ Z, g(x)⊕ y = z} by Z(x)⊕ y.

Now assume there are P bad xs, the number of functions in Z is at most

(N(1− δ))P ·NN−P = NN · (1− δ)P = |G| · (1− δ)P .

This implies density(Z) = |Z|
|G| ≤ (1− δ)P , this means P ≤ log density(Z)

log(1−δ)
.

Now we show when x is not bad, for every y ∈ {0, 1}, Mf,Z(x, y) =
∨

g∈Z f(g(x)⊕y) = 1.
Since |Z(x)| > N(1 − δ), we have |Z(x) ⊕ y| > N(1 − δ). Since |Z(x) ⊕ y| > N(1 − δ),
(Z(x)⊕ y) ∩ f−1(1) is not empty, there must be a g ∈ Z such that g(x)⊕ y ∈ f−1(1), thus∨

g∈Z f(g(x)⊕ y) must be 1 as required.

Now we are ready to prove Theorem 1.6 rephrased as follows. It is proved via a similar
idea in [MS22] and a more careful analysis.

Theorem 3.3. Let f : {0, 1}n → {0, 1} be a function and density(f−1(1)) ≥ 1
4
, there exists a

function g : {0, 1}n → {0, 1}n, such that f ⊞ g is not computable by an AND of 2αn formulas

of size at most 2
n+log L(f)−αn−2 log logn

2 for any 0 < α < 1 + log L(f)−2 log logn
n

.

Proof of Theorem 3.3. We prove it by contradiction. Let G be the set of all functions
{0, 1}n → {0, 1}n. Assume the contrary that for all g ∈ G the XOR composition f ⊞ g
is computable by AND of small enough formulas. That is, for any g ∈ G, there is a formula
ϕg computing f ⊞ g and ϕg is of following form

ϕg =
2αn∧
i=1

ϕg,i
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where the size of every ϕg,i is at most 2
n+log L(f)−αn−2 log logn

2 . Now let hg,i be the function that

ϕg,i computes, thus L(hg,i) ≤ 2
n+log L(f)−αn−2 log logn

2 and f ⊞ g can be represented as
∧2αn

i=1 hg,i.
Recall that for every g ∈ G, µ(f ⊞ g) ≥ 2n · L(f). By Lemma 2.7, there must be an

ig ∈ [2αn] such that, the measure µ(hg,ig) is large:

µ(hg,ig) ≥ 2(1−α)n · L(f).

Now we collect all such functions hg,ig and let H be the set of all such functions hg,ig . We
want to show that the size of H is large, thus by a standard counting argument, there must
be a function h ∈ H which requires large formulas which contradicts the hypothesis.

Given any h ∈ H, denote the {g|g ∈ G, hg,ig = h} by Gh. Let h⋆ be the function such
that the size of Gh⋆ is maximum among all Gh. We will prove

−4 log density(Gh⋆) · L(h⋆) ≥ µ(h⋆) ≥ 2(1−α)n · L(f),

before proving this, let’s show it indeed leads to the contradiction required. Recall by

assumption L(h⋆) ≤ 2
n+log L(f)−αn−2 log logn

2 , this means

density(Gh⋆) ≤ 2−2
n+log L(f)−αn+2 log logn−4

2 .

Now we are ready to lower bound the size of |H|, that is the number of distinct functions in
H. Since |H| · |Gh⋆| ≥ |G|,

|H| ≥ 1

density(Gh⋆)
≥ 22

n+log L(f)−αn+2 log logn−4
2 .

By Fact 2.3, there exists an h ∈ H such that

L(h) ≥ 2
n+log L(f)−αn+2 log logn−4

2

log 2n+ 4

> 2
n+log L(f)−αn−2 log logn

2 ,when n is large enough,

which is a contradiction to the assumption. Now we show −4 log density(Gh⋆) ·L(h⋆) ≥ µ(h⋆)
by considering the matrix Mf,Gh⋆

. By Lemma 3.2,

� there exists a set K ⊆ {0, 1}n such that

|K| ≤ log density(Gh⋆)

log(1− 1/4)

≤ −4 · log density(Gh⋆), since log
3

4
≈ −0.415 thus 1 <

log 3
4

−0.25
.

� And all entries in MX\K
f,Gh⋆

are ones.

Now we have following key fact about the function h⋆.

Fact 3.4. For every x, y ∈ {0, 1}n, Mf,Gh⋆
(x, y) = 1 implies h⋆(x, y) = 1.
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Proof. Recall that Mf,Gh⋆
(x, y) =

∨
g∈Gh⋆

(f ⊞ g)(x, y). If Mf,Gh⋆
(x, y) = 1, there must be

some g ∈ Gh⋆ such that (f ⊞ g)(x, y) = 1. Furthermore, by assumption f ⊞ g is simply∧2αn

i=1 hg,i and h⋆ = hg,i for some i, thus h⋆(x, y) must be 1 as well.

By Fact 3.4, given any x ∈ X \K, for every y ∈ {0, 1}n, hx
⋆(y) = 1 , in other words, hx

⋆

is a constant function and L(hx
⋆) = 0. Now we are ready to up bound µ(h⋆) and have

µ(h⋆) =
∑
x

L(hx
⋆) =

∑
x∈K

L(hx
⋆) +

∑
x/∈K

L(hx
⋆)

=
∑
x∈K

L(hx
⋆)

≤ |K| · L(h⋆)

≤ −4 · log density(Gh⋆) · L(h⋆).

as required.

Remark 3.5. We want to point out the AND(∧) gate can be replaced with OR(∨) gate and
since we use the counting argument to show there exists a hard function in the set H, this
result can be extended to the case of formula over full binary basis.

4 A nearly-4 log n depth lower bound for formulas with

restriction on top

We will prove a depth lower bound for a modified Andreev function defined in [MS22].

Definition 4.1 ([MS22]). The modified Andreev function Andr′ : {0, 1}n × {0, 1}n logn ×
{0, 1}n×2 logn → {0, 1} is defined as follows:

Andr′(TTf , TTg, x1, . . . , x2 logn) = (f ⊞ g) (⊕(x1), . . . ,⊕(x2 logn))

where TTf is a truth table of some function f from {0, 1}logn → {0, 1},TTg is a truth table
of some function g from {0, 1}logn → {0, 1}logn, for every i ∈ [2 log n], xi is a binary string
of length n and ⊕(·) is the parity function.

Theorem 4.2. There exist two parameters γ = o(1), ϵ = o(1), for every constant α such
that 0 < α < 2 − γ, the modified Andreev function Andr′ is not computable by an AND of
nα formulas of size at most n3−α/2−ϵ.

In terms of depth lower bound, the modified Andreev function Andr′ is not computable
by any circuit of depth (3 + α/2− ϵ) log n with the restriction that top α layers only consist
of AND gates where 0 < α < 2− γ. Choose α = 2− o(1) properly, Theorem 1.7 follows.

Remark 4.3. Note that the input length of the modified Andreev function Andr′ is n′ =
(3 log n+1)n, writing the results in terms of n′ doesn’t change them essentially. For example,
(4− o(1)) log n > (4− o(1)) log n′

4 logn
> (4− o(1)) log n′

4 logn′ = (4− o(1)− log logn′+2
logn′ ) log n′ =

(4− o(1)) log n′. Similarly, in the restriction for top gates, AND could be replaced by OR.
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Theorem 4.2 is proved via the same idea from [MS22], the only differences here are details
of parameters. For completeness of this paper, we present the proof here. At first, we recall
the standard notion of random restriction.

Definition 4.4 (Restriction). Given a Boolean function f : {0, 1}n → {0, 1}, a restriction
ρ ∈ {0, 1, ∗}n to function f is a vector of length n and for every i ∈ [n], ρi is an element from
{0, 1, ∗}. Define f |ρ to be the function restricted according to ρ as follows: if ρi is ∗ then the
i-th input bit of f is unfixed thus free to be 0 or 1; otherwise the i-th input bit of f is fixed
to be ρi.

Definition 4.5 (Random restriction). Given 0 < p < 1, the random restriction Rp randomly
samples restrictions as follows: every ρi is sampled independently such that Pr[ρi = ∗] = p
and Pr[ρi = 1] = Pr[ρi = 0] = 1−p

2
.

In the rest of this section, we will set p = 2 ln logn
n

. Mihajlin and Sofronova proved following
useful two lemmas about random restriction of the modified Andreev function implicitly in
[MS22].

Lemma 4.6 (Implicit in [MS22]). Let Andr′f,g be the Andr′ function hardwired with two
fixed functions f, g. Then with probability 1 − o(1), the random restriction Rp will turn
Andr′f,g into f ⊞ g.

Lemma 4.7 (Implicit in [MS22]). Let α, β be two parameters such that 0 < α < 2, 2 < β < 3.
Let ϕ be a formula of form

∧nα

i=1 ϕi where the size of each ϕi is at most nβ. Then with

probability 1− o(1), the random restriction Rp will turn ϕ into a formula ϕ′ of form
∧nα

i=1 ϕ
′
i

where the size of each ϕ′
i is at most nβ−2+δ for some δ = o(1).

Now we show how to prove Theorem 4.2 with above two lemmas.

Proof of Theorem 4.2. At first choose some function f from {0, 1}logn → {0, 1} and make

sure that f is the function with maximum protocol size and |f−1(1)|
n

≥ 1
4
. By Fact 2.3 and

2.10, we have L(f) ≥ log
(
(1− o(1))22

logn
)
/(log log n + 4) ≥ n/2 log log n when n is large

enough. By Theorem 3.3, we have following fact.

Fact 4.8. Let f be the function chosen above, there exists a function g : {0, 1}logn →
{0, 1}logn, such that f ⊞ g is not computable by an AND of nα formulas of size at most

n1−α/2− 2 log log logn
logn for any 0 < α < 2− 4 log log logn

logn
when n is large enough.

Let δ be the same parameter from Lemma 4.7, γ = 4 log log logn
logn

and ϵ = δ + γ/2. Choose

some α such that 0 < α < 2− γ and set β = 3− α/2− ϵ. Now assume Theorem 4.2 is false,
that is Andr′ is computable by formula ϕ of form

∧nα

i=1 ϕi where the size of each ϕi is at
most nβ, and so is Andr′f,g. By Lemma 4.6 and 4.7, f ⊞ g is computable by a formula ϕ′ of

form
∧nβ

i=1 ϕ
′
i where the size of each ϕ′

i is at most

nβ−2+δ = n1−α/2−ϵ+δ = n1−α/2− 2 log log logn
logn

which contradicts Fact 4.8.

11



5 Conclusion and discussion

In this paper, we obtain a nearly-tight XOR composition theorem for formulas with restric-
tion on top and with this composition theorem we have a nearly-4 log n depth lower bound
for formulas with restriction on top. Intuitively, in such the depth lower bound, we trade one
unrestricted layer to nearly two layers of AND gates on top of the circuit and our trade-off
is nearly optimal.

The next nature question as pointed out by Mihajlin and Sofronova [MS22] is to prove
the case with AC0 formula on top. But it turns out even to prove the case of depth-2 formula
with unbounded fan-in is difficult. The obstacle to extending current approach to the case
of depth-2 formula on top is that we don’t know how to find the sub-formula h⋆ such that
the measure µ(h⋆) is large enough meanwhile h⋆ is correlated with f⊞g properly like that in
Fact 3.4. This difficulty also appears in the approach via communication complexity [Mei24],
since such result shares the same feature with a composition theorem of a depth-2 formula
and a De Morgan formula, but we don’t even know how to prove a composition theorem
of two depth-2 formulas in general. New ideas are needed, maybe we should try to prove a
general composition theorem of two depth-2 formulas in the first place.
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