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Abstract

Error reduction procedures play a crucial role in constructing weighted PRGs

[PV21, CDR+21], which are central to many recent advances in space-bounded deran-

domization. The fundamental method driving error reduction procedures is Richardson

iteration, which is adapted from the literature on fast Laplacian solvers. In the context

of space-bounded derandomization, where time is not the primary concern, can addi-

tional insights from optimization theory lead to improved error reduction procedures?

The results of this paper reveal an inherent barrier for using optimization-based

techniques for error reduction in the context of space-bounded derandomization. To

this end, we develop an abstract framework for error reduction based on polynomials

which in particular encompasses all optimization-based error reduction techniques, and

consequently, puts a limit on constructing improved weighted PRGs based on current

approaches. Our work also sheds light on the necessity of negative weights within

existing methods.

From the technical viewpoint, we establish lower bounds on various important pa-

rameters of error reduction polynomials. This includes a lower bound on the degree d

of the polynomial, and an nΩ(d) lower bound on L1-norm of an n-variate polynomial.

These lower bounds hold both when there are no “correlations” between different ap-

proximations and in the presence of such. A delicate use of these correlations has re-

cently been exploited for constructing improved weighted PRGs for various restricted

models [PV21, CHL+23].
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1 Introduction

BPL vs. L—a fundamental problem in computational complexity theory [AKL+79, BCP83,

Jun81]—centers on whether randomness enhances the computational capabilities of space-

bounded algorithms. Specifically, the question is whether every probabilistic algorithm can

be fully derandomized with only a constant factor increase in space. Despite numerous

attempts to resolve this problem, it remains open, although it is generally believed that

BPL = L, a conclusion supported by plausible circuit lower bounds [KvM02, DT23, DPT24].

Moreover, unlike the time setting, there are currently no known barriers to the unconditional

derandomization of BPL. The primary strategy for tackling BPL vs. L involves the use of

pseudorandom generators (PRGs), specifically for the corresponding nonuniform model of

read-once branching programs, abbreviated as ROBPs1. In his seminal paper, Nisan [Nis92]

constructed an explicit ε-error PRG for ROBPs of length n and width w, with a seed length

of O(log(n) · log(nw
ε
)). Most of the PRGs designed for general ROBPs draw inspiration

from Nisan’s prototype. We refer the reader to Hoza’s survey [Hoz22] on recent advances in

derandomizing space-bounded computation.

A common feature of these generators is their recursive design, where a PRG for length-n

ROBPs is constructed using PRGs for length-n
2
ROBPs. This recursive construction leads

to “error deterioration”; that is, if the error for the half-length PRG is ε, the error of the

resulting PRG, for length n, at least doubles. Consequently, it is necessary to start with an

initial error of roughly ε
n
to achieve a final error of ε. Specifically, an error of 1

n
must be

maintained throughout the recursion, even if the target is merely a constant error ε, which

is indeed the main setting of parameters for derandomization. This error deterioration

underpins the log2 n dependency of the seed length in Nisan’s PRG and its subsequent

developments.

1.1 The BCG Construction

Motivated by the challenge of constructing a PRG for length-n ROBPs with a logarithmic

dependence on n, Braverman, Cohen, and Garg [BCG18] directed their focus toward the error

parameter. Their objective was to design a PRG that provides a slower error deterioration.

Although they successfully improved the control on the error parameter, achieving near-

optimal error dependence on ε in the seed length, the quadratic dependence log2 n persisted

in their seed length for a different, more subtle reason.

Interestingly, the BCG construction is not a PRG per se but rather a variant called

weighted PRG (WPRG). In a weighted PRG, each seed is associated with a weight, which

1We use the standard model of (standard-order) ROBPs as can be found, e.g., in [Hoz22, Definition 3.2.1].

1



is a real number that can be either positive or negative and is unbounded in absolute value.

The desired ε-approximation is achieved through a weighted sum, rather than an average,

as in traditional PRGs. More precisely, a weighted PRG is a function WPRG : {0, 1}s →
{0, 1}n × R with the following property: For any length-n ROBP P , the sum of the real-

valued weights—corresponding to the seeds that lead to an accepting state of P—provides

an ε-approximation of the probability that n truly uniform bits will lead to an accepting

state (see [Hoz22, Defintion 6]).

The BCG construction is also influenced by Nisan’s PRG but is significantly more complex.

This complexity makes it challenging to integrate with other work, particularly when seeking

improvements for constrained models such as regular ROBPs. Moreover, the role of the

somewhat enigmatic negative weights remains elusive and unclear. Chattopadhyay and Liao

[CL20] managed to simplify the construction slightly, yet it still follows to the general ideas

proposed by BCG and remains highly intricate (see also [Koz20]).2

1.2 Error Reduction via Richardson Iteration

In concurrent and independent works, Pyne and Vadhan [PV21] and Cohen, Doron, Renard,

Sberlo, and Ta-Shma [CDR+21] devised an alternative method to that of BCG for achieving

improved error dependence. Rather than constructing a WPRG from scratch, these papers

have introduced (the same) error reduction procedure – a technique for transforming a PRG

for length-n, width-w ROBPs with a seed length of s = s(n,w) into an ε-error WPRG with a

seed length of Õ(s+log 1
ε
). Crucially, this method requires the initial PRG to have an error of

approximately 1
n
. When instantiated with Nisan’s PRG, this approach produces results that

are quantitatively comparable to—and slightly improve upon—those of BCG. Consequently,

Hoza improved these constructions by eliminating all doubly-logarithmic factors [Hoz21].

The error-reduction procedures that were devised in these works draws on the Richardson

iteration method, a strategy adopted from nearly linear-time Laplacian solvers (starting from

[ST04]), which is also commonly employed in numerical linear algebra and optimization. This

method marks a departure from the recursive powering approach central to Nisan’s PRG

and its variants, including BCG.

At its core, the Richardson iteration is an iterative process. The error reduction approach,

first used in the context of space-bounded computation (in the non black-box setting) by

Murtagh, Reingold, Sidford, and Vadhan [MRSV17] begins by deriving a real-valued poly-

nomial in non-commutative variables from this iterative method, which we refer to as the

2It is worth mentioning that optimal hitting set generators in the low-error regime (which are a weaker

variant of PRGs and WPRGs), turned out to have simple constructions which utilize different properties

and techniques [HZ20].
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Richardson polynomial. More specifically, a family of polynomials can be generated based

on the number k of iterations performed. The polynomial from the k-th iteration, which

has a degree of O(k), is denoted as Richk. For the sake of simplicity in this informal discus-

sion, we assume all layers of the branching program are the same, represented by a common

transition matrix A. Our objective is then to approximate the matrix An. Under this sim-

plification, Richk is a polynomial in n non-commutative variables and meets the following

condition: If Ã2, . . . , Ãn are ε-approximations for the respective powers of A, defined such

that ∥Ãj − Aj∥ ≤ ε for all j (denoted Ãj ≈ε A
j), then

Richk
(
A, Ã2, . . . , Ãn

)
≈εk An,

where εk ≈ (n · ε)k. The choice of norm is arbitrary provided that it is sub-multiplicative

and we will further assume that ∥A∥ ≤ 1.

The second phase of the error-reduction procedure involves deriving the final WPRG

from the Richardson polynomial Richk and the PRGs used to obtain the approximations

Ã2, . . . , Ãn. This step incorporates a second PRG for ROBPs aimed at reusing the seeds of

the original PRG.We shall not elaborate further on this step here (we do so in Section 2.3) but

highlight that this method can be applied with any polynomial, not exclusively Richardson

polynomials. Properties of the polynomial, such as its degree, sparsity, and the L1-norm of

the coefficient vector, can be used for establishing bounds on the final error of the WPRGs.

Error reduction procedures: A broader context. Error reduction procedures are

not limited to space-bounded derandomization and are prevalent throughout theoretical

computer science. For instance, Raz, Reingold, and Vadhan devised an error-reduction

procedure for seeded extractors [RRV99]. More recently, Ta-Shma’s breakthrough work on

constructing small-bias sets relied on an innovative method to reduce the error, or bias, of

an existing small-bias set [Ta-17]. Furthermore, techniques such as derandomized squaring

[RV05, MRSV17, MRSV19, AKM+20, HPV21, CCMP23], distance amplification in error-

correcting codes [AL96, KMRZS17, CY21, CY22], and gap amplification in PCPs [Din07]

are all examples of error-reduction procedures. These procedures are evaluated based on the

spectral gap, code distance, and PCP gap, respectively. Notably, even Reingold’s Theorem,

SL = L, [Rei08] involves a bespoke error reduction procedure tailored to the specific graph

in question.

In the realm of space-bounded derandomization, the focus on the error parameter and

specifically error-reduction procedures forms the foundation of many recent advancements in

this area (e.g., [BCG18, HPV21, PV21, Hoz21, CHL+23]). The incorporation of ideas from

fast Laplacian solvers and general optimization theory has injected new and exciting results

into the field. Consequently, the primary aim of this paper is to explore whether further
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results can be expected from these disciplines or if we have encountered a fundamental limit.

Unfortunately, our work suggests that the latter scenario is more likely.

A closer look at Richardson iteration. So far we have not discussed the way in which

the Richardson polynomials, Richk, are generated. Indeed, these are obtained in a somewhat

roundabout way. The Richardson iteration is actually a way of improving the approximation

of a matrix inverse. More precisely, given an invertible matrix L and an initial approximation

L̃−1 to its inverse, the Richardson iteration refines it into a more accurate approximation of

L−1, where with each iteration a stronger approximation is guaranteed.

To utilize this in matrix powering (the more general case of iterated matrix multiplication

is similar), one constructs an (n+ 1)× (n+ 1) block matrix L, with Iw on the diagonal and

−A on the sub-diagonal. Clearly, L is an invertible matrix where, crucially, the bottom-left

block of L−1 equals An. Moreover, L−1 itself is lower triangular, with the (i, j)-th block being

Ai−j. With this in mind, the approximation L̃−1 is then naturally constructed by setting

each (i, j)-th block, lying below the diagonal, to Ãi−j. Applying Richardson iteration to L

and L̃−1 yields a refined approximation of L−1, from which we extract the bottom-left block

as the improved approximation for An.

For example, one iteration of the Richardson iteration applied to L and L̃−1 takes the

form R1 = 2L̃−1 − L̃−1LL̃−1. So, for approximating, say, the fourth power, A4, one first

constructs the matrices

L =


I 0 0 0 0

−A I 0 0 0

0 −A I 0 0

0 0 −A I 0

0 0 0 −A I

 L̃−1 =


I 0 0 0 0

A I 0 0 0

Ã2 A I 0 0

Ã3 Ã2 A I 0

Ã4 Ã3 Ã2 A I

 . (1)

It then follows by a direct calculation that the bottom-left block of R1 is

A2Ã2 + Ã2A2 − (Ã2)2.

Put differently,

Rich1(x1,x2,x3,x4) = x2
1x2 + x2x

2
1 − x2

2. (2)

Using a similar calculation, the values of Rich1 for any given n can be determined:

Rich1(x1, . . . ,xn) = x1xn−1 +
n−2∑
i=1

xi (x1xn−i−1 − xn−i) . (3)
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For k ≥ 1, the Richardson iteration induces a very simple polynomial, namely, the poly-

nomial corresponding to k iterations is given by

Rk =
k∑

i=0

(
I − L̃−1L

)i
L̃−1. (4)

From this, with some effort, one can construct the Richardson polynomial, Richk, for any

k ≥ 2. For instance, the bottom-left block of R2, set with n = 6, is given by

Ã2A4 + A2Ã2A2 −
(
Ã2
)2

A2 + A4Ã2 − A2
(
Ã2
)2

− Ã2A2Ã2 +
(
Ã2
)3

.

Thus,

Rich2(x1, . . . ,x6) = x2x
4
1 + x2

1x2x
2
1 − x2

2x
2
1 + x4

1x2 − x2
1x

2
2 − x2x

2
1x2 + x3

2.

Richardson iteration via gradient descent. Equation (4) can be derived from an opti-

mization point of view. To see this, assume as before that we are given a crude approximation

L̃−1 to L−1 as well as L itself, and we wish to find a better approximation for L−1, making

use of the fact that the crude approximation L̃−1 is available to us. Assume for simplicity

that L is positive-definite (otherwise, consider LTL instead of L in what follows). Finding a

better approximation for L−1 effectively means that we would like to approximate, given a

vector b, the solution x⋆ to the system of linear equations Lx⋆ = b, in a way which is, in a

sense, independent of b.

We can now utilize the fact that we have access to L̃−1 and reduce the condition number

of the linear system, by instead solving L̃−1Lx⋆ = L̃−1b ≜ b0. The iterative approach

now presents itself: Starting with the initial point x0 = αL̃−1b, set according to some

parameter α > 0 which will also serve as our step size, we generate a sequence x0, x1, . . . , xk

of solutions, where we wish to minimize the error vectors xi − x⋆. It makes sense to use

the geometry of the problem and measure this error vector in a suitable norm, in particular,

ei = ∥xi − x⋆∥
L̃−1L

. Thus, we have the optimization problem in which we wish to minimize

f(x) = 1
2
xTL̃−1Lx− bT0 x. This can be done using gradient descent, noting that the gradient

∇f(x) = L̃−1Lx − b0 is convex. The unique minimum is thus obtained when ∇f(x) = 0,

namely, at x⋆.

The gradient descent iteration xi+1 = xi−α∇f(xi) then becomes xi+1 = (I−αL̃−1L)xi+

αb0, and so

xk = α

k∑
i=0

(
I − αL̃−1L

)i
L̃−1b ≜ Rk(α)b. (5)

Importantly, Rk(α) is indeed independent of the choice of b. Note that xk−x⋆ = Pk(x0−x⋆),

where Pk = (I − αL̃−1L)k. Thus, the error ek is dominated by ∥Pk∥ ≤ ∥I − αL̃−1L∥k.
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The familiar Richardson iteration used in the context of space-bounded derandomization

amounts to taking α = 1, but optimizing α based on the system’s condition number leads to

better convergence rate, although not in a way that would improve upon the space-bounded

literature.

In fact, it is known that any first-order method, where xi+1 ∈ x0+Span {∇f(x0), . . . ,∇f(xi)} ,
can be expressed as a polynomial iteration akin to Equation (5) and in which xk − x⋆ =

P k(x0 − x⋆) for some degree-k polynomial P k (see [dST+21, Section 2]). This observation

allows one to study optimal polynomials, and indeed, using shifted Chebyshev polynomials

gives rise to better iterations, improving quadratically on the degree of Rk but again, not in

a way that would improve upon the state-of-the-art in space-bounded derandomization.

2 Error Reduction: The Abstract Framework

The above discussion raises a natural question: Can we gain by moving beyond first-order

methods? Richardson iteration and gradient descent are typical first-order methods suitable

for nearly-linear time algorithms. We, however, are focused on minimizing space, which

allows us the flexibility to employ second- or higher-order methods. Specifically, it is con-

ceivable to design a convex program that is more sophisticated than the quadratic program

previously discussed, embedding more detailed information about L and L̃−1 into its geome-

try. Subsequently, an approximate solution could be derived using a second- or higher-order

method whose steps make a better use of L and L̃−1. This approach would likely result in

a new polynomial, similar to what was mentioned earlier.

Informally speaking, the main result of this work identifies a barrier to developing error-

reduction procedures based on this approach. Our work suggests that the Richardson itera-

tion is essentially optimal among error-reduction procedures derived from optimization-based

approaches. To formalize, and prove, this somewhat vague assertion, we will develop an ab-

stract framework for error reduction in the next section. This framework has the structure

of an affine subspace, with each point representing a distinct error-reduction procedure, one

of which is the familiar Richardson iteration based error reduction. This abstract approach

will enable us to consider, and argue about, all error-reduction procedures simultaneously.

2.1 The Polynomial Error-Reduction Framework

Our first key observation is that iterative methods invariably generate polynomials, with

the polynomial’s degree corresponding to the number of iterations performed. The abstract

framework that we introduce encompasses all bounded-degree polynomials, not just those

derived from optimization theory. To describe our framework, and gain some intuition,
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we will begin with a sequence of examples. Our examples, and the framework in general,

focuses on error reduction for numbers rather than for matrices. Our work reveals a barrier

for achieving better-than-Richardson error-reduction procedures that is not due to the non-

commutative nature of the matrices involved. Instead, it is a numerical phenomenon that

manifests even in the case of numbers.3

Degree-3 error-reduction polynomials for approximating a 4-th power. Let a

represent the number—rather than a matrix—whose n-th power we aim to approximate. As

an initial example, consider the simple case where n = 4. In this scenario, we are given a

along with approximations for its powers, which we denote as ã2, ã3, and ã4. Our objective

is to devise a polynomial that, when provided with these four values as inputs, produces

a better approximation than those initially given. Evidently, a polynomial of degree 4—or

indeed a polynomial of degree n in general—can simply compute an while disregarding the

provided approximations. However, this approach results in an error-reduction procedure

that is inefficient due to the significant computational cost associated with higher degrees

(see Section 2.3). Specifically, such error reduction may completely disregard the given

approximation, rendering it moot. Therefore, our goal is to develop a polynomial of lower

degree. In this example, where n is small to begin with, we aim to construct a polynomial

of degree d = 3.

How can we find such a polynomial? As a starting point, we consider all potential poly-

nomials, specifically, any general degree-3 polynomial Q(x1,x2,x3,x4) ∈ R[x1,x2,x3,x4],

or complex-valued polynomials for that matter. However, upon reflection, we should focus

only on those monomials that, after substituting a for x1 and ãj for xj (where j = 2, 3, 4),

result in an “effective degree” of a being 4 (this is in fact without loss of generality, see

Lemma 4.2). Therefore, the polynomial can be expressed as a combination of basis mono-

mials x2
1x2, x1x3, x

2
2, and x4 (whereas monomials such as x1x2, x1x3 and x3

1 are ignored),

taking the form

Q(x1,x2,x3,x4) = Ax2
1x2 +Bx1x3 + Cx2

2 +Dx4

for some coefficients A,B,C, and D. With this formulation, we seek for the constraints,

under which, if |ãj − aj| ≤ ε0 for j = 2, 3, 4, then∣∣∣Q(a, ã2, ã3, ã4)− a4
∣∣∣≪ ε0. (6)

3One can be convinced that reducing errors when dealing with numbers in the range [0, 1] is indeed

simpler than the corresponding task for general stochastic matrices. The latter are equivalent to general

ROBPs, but may involve a larger alphabet, Σ. However, well-known reductions can be applied to convert

these to a binary alphabet.
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Let us denote ãj = aj + εj. Then,

Q(a, ã2, ã3, ã4) = Q(a, a2 + ε2, a
3 + ε3, a

4 + ε4)

= Aa2(a2 + ε2) +Ba(a3 + ε3) + C(a2 + ε2)
2 +D(a4 + ε4).

We have now expressed Q in terms of ε2, ε3, ε4, and a, rather than x1,x2,x3,x4, which

enables us to better concentrate on the errors rather than on the approximations. Expanding

Q with respect to these variables yields

Q(a, ã2, ã3, ã4) = (A+B + C +D)a4 + (A+ 2C)a2ε2 +Baε3 + Cε22 +Dε4. (7)

Since our goal is to approximate a4, the affine equation

A+B + C +D = 1 (8)

must be satisfied 4.

To formalize Equation (6), in this instance, we require the coefficients of the linear error

terms, ε2, ε3 and ε4, to vanish, leaving us only with the quadratic error term. The rationale is

that in developing an error-reduction procedure, we cannot assume any relationship between

the errors ε2, ε3, and ε4. Based on this observation, we establish the principle that underlies

our methodology, treating these errors as algebraically independent, or formal, variables. We

will reexamine this foundational assumption in our abstract formal framework in Section 2.4.

At any rate, this approach introduces three additional homogeneous linear constraints to

the affine Equation (8): A + 2C = 0 and B = D = 0. Crucially, these linear equations

are independent of a. This is the way in which the remarkable existence of black-box error

reduction—unaffected by the specific number provided (a principle confirmed by Richard-

son iteration)—manifests itself in our abstract framework. Indeed, if the equations were

dependent on a, it would compromise the black-box nature of the error reduction.

Returning back to the specific example, these four conditions completely determine the

polynomial: A = 2, B = D = 0, and C = −1, resulting in

Q(x1,x2,x3,x4) = 2x2
1x2 − x2

2. (9)

Looking back at Equation (7), and using that C = −1 and that |ε2| ≤ ε0, the error produced

by this polynomial is |Q(a, ã2, ã3, ã4) − a4| = ε22 ≤ ε20, and so we have reduced the error

quadratically. Interestingly, due to its uniqueness, this is the exact polynomial obtained

through the Richardson iteration as described in Equation (2), adjusted for commutativity.

4Technically, a RHS value close to 1, within the required approximation guarantee, would also be accept-

able as it would lead to the desired approximation. However, our results are applicable to any nonzero value;

therefore, we naturally choose to set the RHS to 1.
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Here, however, we have constructed this polynomial not through optimization techniques

but using elementary linear algebra principles. This approach offers a significant advantage:

we now understand that this is the only degree-3 polynomial capable of reducing the error

quadratically.

The uniqueness of this particular polynomial implies that there is no degree-2 error-

reduction polynomial where all linear error terms vanish. With the ideas discussed above,

the diligent reader might want to prove that no such polynomial exists for any n > 2. Before

drawing further general conclusions, let us consider a second example.

Degree-3 error-reduction polynomials for approximating a 5-th power. We can

do the same process for error reduction of the 5-th power of a number. This time, the

polynomial takes the general form

Q(x1, . . . ,x5) = Ax2
1x3 +Bx1x4 + Cx1x

2
2 +Dx2x3 + Ex5.

Using the same notation as in Section 2.1, we can express Q(a, ã2, . . . , ã5) in terms of the

variables ε2, . . . , ε5, and a to get

(A+B + C +D + E)a5 + (2C +D)a3ε2 + (A+D)a2ε3 +Baε4 + Eε5 + Caε22 +Dε2ε3.

As in Equation (8), we encounter the affine constraint A+B+C+D+E = 1. If our aim

here is also to eliminate the linear error terms, we obtain the following linear homogeneous

constraints: 2C +D = 0, A+D = 0 as well as B = E = 0. These constraints yield a unique

solution in which A = 2, C = 1, and D = −2, resulting in the polynomial

Q(x1, . . . ,x5) = 2x2
1x3 + x1x

2
2 − 2x2x3. (10)

Given its uniqueness, this polynomial must be the one derived from the Richardson iteration,

for one iteration 5 set with n = 5. The error associated with this polynomial is given by∣∣∣Q(a, ã2, . . . , ã5)− a5
∣∣∣ = ∣∣aε22 − 2ε2ε3

∣∣ ≤ 3ε20.

Degree-3 error-reduction polynomials for approximating a 6-th power. The sit-

uation grows more intriguing when we consider the case n = 6. In this scenario, a general

degree-3 polynomial takes the form

Q(x1, . . . ,x6) = Ax2
1x4 +Bx1x2x3 + Cx3

2 +Dx2x4 + Ex2
3. (11)

5By examining Equations (1) and (4) we see that the k-th Richardon polynomial, Richk, has degree 2k+1

in its input matrices A, Ã2, . . . , Ãn and by extension in a, ã2, . . . , ãn when considering numbers.
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An observant reader might notice that we have overlooked the perfectly valid monomials

x1x5 and x6. This omission is due to x5 and x6 only appearing in a single monomial; thus,

anticipating future developments, the coefficients of these terms must be set to zero. By a

computation similar to the previous ones, we derive the linear system:

A+B + C +D + E = 1, B + 3C +D = 0, B + 2E = 0, A+D = 0. (12)

This time, however, there is no unique solution. Instead, we find a one-dimensional affine

subspace of solutions, where the family of error-reduction polynomials is parameterized by

A ∈ R and defined by Equation (11) along with: B = 6 − 2A, C = A − 2, D = −A, and

E = A− 3. For example, setting A = 3 results in a fairly sparse polynomial as B = E = 0,

yielding the polynomial Q3(x1, . . . ,x6) = 3x2
1x4 +x3

2 − 3x2x4. The error resulting from this

choice is ∣∣∣Q3(a, ã2, ã4)− a6
∣∣∣ = ∣∣3a2ε22 + ε32 − 3ε2ε4

∣∣ ≤ 6ε20 +O(ε30). (13)

Note that we cannot expect to improve on the triangle inequality used in the last inequal-

ity, given that we have no control over the relations between the errors ε2, ε4, and the value

a. Given this observation, could there be a more optimal point within this affine subspace,

namely, a better degree-3 error-reduction polynomial? To answer this, we evaluate the error

term for general A, to find that∣∣∣QA(a, ã2, ã4)− a6
∣∣∣ = ∣∣(6− 2A)aε2ε3 − Aε2ε4 + 3(A− 2)a2ε22 + (A− 3)ε23

∣∣+O(ε30).

Based on the above reasoning, our aim should be to minimize the expression:

|6− 2A|+ |A|+ |3(A− 2)|+ |A− 3| = 3|A− 3|+ 3|A− 2|+ |A|.

The minimum of this function is attained at A = 2, yielding a bound of 5ε20 + O(ε30), which

improves upon the 6ε20 +O(ε30) bound found in Equation (13) when optimizing for sparsity.

Interestingly, by inspecting Equation (3), we see that this choice, A = 2, corresponds exactly

to the Richardson polynomial.

We make one final comment before discussing the general case. It is clear that any er-

ror reduction procedure must receive a as input. Indeed, without it, and only relying on

approximations, possibly including an approximation to a, denoted ã, there simply isn’t

enough information about a to compute, or better approximate, its n-th power. It is worth

noting how this manifests itself in our abstract framework. In the particular example above,

by referring to Equation (11) and substituting x1 with a + ε1, we introduce an additional

homogeneous constraint to the system given in Equation (12), corresponding to ε1, which is

2A+B = 0. However, recall that the original system requires B = 6− 2A which contradicts

the new constraint. This contradiction can be shown to be a general phenomenon—the pres-

ence of an error ε1 in the approximation for a invariably conflicts with the affine constraint.
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The general case. The affine space of error-reduction polynomials of degree d in n vari-

ables, where all error terms of degree at most t vanish, is denoted by E(n, d, t). The above

discussion indicates that E(n, 2, 1) = ∅ for any n > 2, and that E(5, 3, 1) consists solely of the

Richardson polynomial, thus dim E(5, 3, 1) = 0. Moreover, dim E(6, 3, 1) = 1 and similarly,

dim E(7, 3, 1) = 1 whereas dim E(8, 3, 1) = 2.

As we move to higher degrees, new phenomena emerge. For instance, dim E(5, 4, 1) = 1,

and the polynomial parameterized by A is given by

QA(x1, . . . ,x5) = Ax3
1x2 + (2− A)x2

1x3 + (1− A)x1x
2
2 + (A− 2)x2x3.

Interestingly, aiming at minimizing the error as in the 6-th power case, here an interval for

A exists where the error is optimized, specifically, A ∈ [1, 2]. We also observe that the choice

of A = 0, which results in the unique degree-3 polynomial (compare with Equation (10)), is

sub-optimal among degree-4 polynomials. Specifically, the optimal polynomials in E(5, 4, 1)
do not correspond to a Richardson polynomial, which is always of odd degree.

In general, E(n, d, t) is spanned by monomials of the form xe1
1 · · ·xen

n , where e1+ · · ·+en ≤
d, subject to certain linear constraints. More specifically, every polynomial in E(n, d, t) must

satisfy one affine constraint (as in Equation (8)) and a total of approximately nt homogeneous

constraints—one for each nonempty monomial in ε1, . . . , εn up to degree t. Therefore, even

taking into account the fact that the effective degree of the monomials should equal n, it is

plausible that as long as d ≫ t, the space E(n, d, t) will contain numerous error-reduction

polynomials. Indeed, this is confirmed simply by comparing the degrees of freedom with the

number of homogeneous constraints, provided that these constraints do not contradict the

affine constraint.

2.2 Our Results

This wealth of error-reduction polynomials suggests that there may be other polynomials

which outperform the corresponding Richardson polynomial within the same space, E(n, d, t).
For the purpose of error reduction, the properties we consider important are the polynomial’s

degree, sparsity, and the L1-norm of its coefficients.6 We will elaborate on the reasons for

this in the next section (Section 2.3). However, even at this stage, we can present our main

results, effectively demonstrating that the Richardson polynomial is essentially optimal for

space-bounded derandomization. More precisely, we prove that indeed eliminating the error

terms of degree at most t requires a degree d > t, and provide lower bounds on the sparsity

and L1-norm of all error-reduction polynomials. Interestingly, our sparsity lower bound is

proven only for the non-commutative setting.

6As usual, for Q(x1, . . . ,xn) =
∑

I cIx
I , L1(Q) =

∑
I |cI | and L0(Q) = |{I | cI ̸= 0}|.

11



Theorem 2.1 (main result; informal). For every n > d > t ≥ 1 and Q ∈ E(n, d, t) it holds
that

L0(Q) ≥
(
n
t

)(
d
t

) ≥
(n
d

)t
,

L1(Q) ≥ 2
(n
d

)t
− 1,

where the lower bound on L0(Q) holds in the non-commutative setting. Moreover, for every

t ≥ d, E(n, d, t) = ∅.

The proofs of the bounds summarized in Theorem 2.1 are detailed in Proposition 3.4,

Theorem 6.6, and Theorem 7.3, which address the degree bound, L1-bound, and L0-bound,

respectively.

For applications to space-bounded derandomization, one considers n as the primary pa-

rameter, tending towards infinity, while t increases more gradually with n, in particular,

t = poly(log n) (see Section 2.3). In this context, Theorem 2.1 suggests that the error-

reduction polynomial should have a degree d > t, with its sparsity and L1-norm being at

least nΩ(t). Moreover, achieving significantly reduced norms is only possible with very high

degrees, specifically d = n1−o(1), which are infeasible in the space-bounded setting.

To conclude, we observe another corollary from our abstract framework: error reduc-

tion procedures that rely on polynomials—specifically, those derived from optimization the-

ory—yield weighted PRGs rather than standard PRGs. The presence of negative numbers

directly stems from the homogeneous linear constraints that must be met. Although intu-

itively clear, we believe this formalizes and clarifies the essential role of negative weights in

error-reduction procedures, independent of their method of construction.

Correlated errors. As noted, Section 2.3 presents how error-reduction polynomials are

utilized in the error-reduction procedure. In Section 2.4, inspired by the recent work of

Chen, Hoza, Lyu, Tal, and Wu [CHL+23], we revisit our initial assumption regarding the

independence of errors. This assumption proves to be excessively pessimistic since correla-

tions between errors can indeed be introduced. Notably, such correlations already manifest

in existing constructions as a natural consequence of the recursive structure of Nisan’s PRG.

This would require us to revise our abstract framework to include algebraic dependencies

between the variables. Quantitative bounds comparable to those obtained in Theorem 2.1

continue to hold, although the proof is more challenging.
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2.3 The WPRGs Error Reduction Framework

We are given an ε0-PRG G0 that fools ROBPs of length n, with seed length s0 = s0(n, ε0).
7

Say we are equipped with a suitable error-reduction polynomial

Q(x1, . . . ,xn) =
∑
I∈I

cIx
I,

and our guarantee is that if, for any i ≥ 2 it holds that
∥∥∥Ãi − Ai

∥∥∥ ≤ ε0, then∥∥∥Q(A, Ã2, . . . , Ãn)− An
∥∥∥ ≤ τ

for some guaranteed bound τ that depends on ε0 and the parameters of Q discussed soon. We

do not explicitly state which (sub-multiplicative) norm are we using, since different norms

can be useful, and indeed various norms were used in the literature, depending on the model

under consideration. When G0 indeed fools arbitrary ROBPs, and we wish our error-reduced

WPRG G to fool arbitrary ROBPs as well, then the matrices we should handle are arbitrary

stochastic matrices. But of course, one can think of G0 as fooling more structured ROBPs,

say regular ROBPs. In this case, one needs to guarantee error reduction only for doubly

stochastic matrices. One can observe that in order to establish lower bounds for general

stochastic matrices, it suffices to handle real numbers.

The following natural parameters of Q will be paramount in establishing our results.

• The ℓ1-norm of its coefficient vector, namely L1(Q) =
∑

I∈I |cI|.

• Its total degree, d = maxI∈I |I|, where for I = (i1, . . . , in) we define |I| =
∑n

k=1 ik.

• Its sparsity, namely L0(Q) = #{I ∈ I : cI ̸= 0}.

We will use the parameter t to denote the number of vanishing levels. That is, the largest

integer such that Q(a, ã2, . . . , ãn) contains only monomials in ε2, . . . , εn with total degree at

least t + 1. We think of t = t(d), and naturally, for some designated t (which would mean,

for a designated ε), we would want to minimize d. For example, Richk satisfies d = 2k + 1,

and t = k.

The error reduction step. Under any choice of sub-multiplicative norm, we have that∥∥∥Q(A, Ã2, . . . , Ãn)− An
∥∥∥ = O

(
L1(Q) · (ε0n)t+1

)
,

assuming ε0 < 1
n
. However, the error reduction capabilities of Q on stochastic matrices or

subclasses of such may be better than the bound above (possibly under a suitable choice of

norm). We will consider a few examples from the space-bounded literature below.

7Here and throughout, for simplicity, we suppress the dependence on the width w (or one can think of

w = O(1)) and assume that the alphabet of G0 is Σ = {0, 1}.
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The WPRG step. Equipped with G0 and Q, we are ready to perform the error reduction,

and get a WPRG G that fools the same function class, but with a better error dependence.

The construction follows by evaluating each term Ãi by a suitable instantiation of G0. To

approximate an entire monomial, rather than choosing independent seeds for each invocation

of G0, an “auxiliary PRG” Gaux (say, the [INW94] PRG) is employed. The auxiliary PRG

needs to fool length-d ROBPs with alphabet {0, 1}s0 and error O
(

ε
L1(Q)

)
. The seed for G

then comprises a seed for Gaux, and an additional seed of length O(logL0(Q)) to index a

specific monomial.8 Plugging-in the parameters for Gaux,
9 the seed length of G then becomes

s(n, ε0, ε) = O

(
s0(n, ε0) + logL0(Q) + log d ·

(
log d+ logL1(Q) + log

1

ε

))
. (14)

In the typical setting where log d is (at most) logarithmic in log(1/ε), we can write

s(n, ε0, ε) = O(s0(n, ε0)) + Õ

(
log (L1(Q)L0(Q)) + log

1

ε

)
. (15)

The full details can be found in [PV21, CDR+21].

Let us illustrate how this framework is employed in [PV21, CDR+21] for ROBPs, and

in [PV21] for permutation ROBPs. For arbitrary ROBPs, we take Nisan’s generator as G0,

and use Richk as the error-reduction polynomial for k = O(t) = O(d), and we have that

ε = n · (n · ε0)t+1, so t = O
(

log(n/ε)
log(1/(nε0))

)
. Indeed, this can be inferred both from a simple L1

bound, as above, or by employing the “optimization-based” analysis that was described in

Section 1.2. Then, choosing ε0 ≈ 1
n
, and noticing that that L1(Q), L0(Q) = nO(k), we get a

WPRG with seed length s = O(log2 n) + Õ(log(1/ε)). Observe that it is indeed a WPRG

and not a PRG, since inherently, some cI-s are negative.

For permutation branching programs, one can start with s0(n, ε0) = O(log n · log(1/ε0)).10

Although [PV21] still uses Rich as the error reduction polynomial, they show by a sophisti-

cated argument (following [AKM+20]), that the error ε satisfies ε ≈ n · (log n · ε0)t+1 under

a suitable choice of norm. And so, in the error reduction step, they obtain an improvement

over the L1-norm based analysis. Plugging-in parameters, the resulting WPRG has seed of

length

s = Õ

(
log n · log(1/ε0) +

log(n/ε)

log(1/ε0)
· log n+ log

1

ε

)
. (16)

8We skip the details of how to compute the WPRG itself, based on Q, G0, and Gaux. Recall that given a

seed, we need to output an instruction in Σn, together with the instruction’s weight. The complete details

appear in [PV21, CDR+21] for Q = Rich, but a similar analysis extends to an arbitrary Q.
9The approach in [Hoz21] can be used to eliminate the doubly-logarithmic factors, which in our case

amounts to the log d multiplicative factor.
10For w = O(1), this follows from the PRGs of [KNP11, De11, Ste12]. When w is non-constant, a better

seed can be obtained by using the PRGs in [BRRY14, HPV21].
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Balancing parameters, we see that the best choice of parameters becomes ε0 = 2−
√

log(n/ε),

and the seed length amounts to s = Õ(log n ·
√
log(n/ε) + log(1/ε)). In particular, for error

ε = 1
poly(n)

, we get s = Õ(log3/2 n). A similar balancing of parameters appears in the more

recent work of [CHL+23], which will be discussed soon, when we talk about the potential

benefit of working with correlated errors.

The WPRG seed length using our bound. Having seen two explicit installations of

Equation (15), let us inspect what our lower bounds from Theorem 2.1 tell us about the

seed length that can be obtained by using the [PV21, CDR+21] framework. Up to poly-

logarithmic factors, we get

s(n, ε0, ε) = s0(n, ε0) + t(n, ε0, ε) · log n+ log
1

ε
.

And indeed, when ε = O(L1(Q) · (nε0)t+1) (which is what one gets from the simple L1

bound), t = Ω
(

log(1/ε)
log(1/(nε0))

)
, roughly matching [PV21, CDR+21] for standard ROBPs. In the

case of permutation branching programs, wherein t = Ω
(

log(n/ε)
log(1/(logn·ε0))

)
, the lower bound

on the seed becomes, up to poly-logarithmic factors, s0(n, ε0) +
log(n/ε)
log(1/ε0)

+ log 1
ε
, matching

Equation (16) for the suitable s0(n, ε0).

To conclude this section, we make the following important observations and comments:

• Even when the L1-norm does not play a role in the error reduction itself, say in the

case for permutation and regular branching programs, it does manifest itself when

employing it to get a WPRG, as evident from Equation (16), where we still had to

take L1(Q) = nΩ(k).11

• If d were extremely small, and we could still keep t sufficiently large, one can consider

not using Gaux, which would lead to seed length O(d · s0(n, ε0) + logL0(Q)). However,

the bound on d (as well as on L1(Q) and L0(Q)) from Theorem 2.1 imply that we

need to use Gaux, and that even a very good s0(n, ε0) will not lead to a near-optimal

dependence on ε (as apparent from Equation (14)).

• It is possible that a deeper understanding of the structure of the error reduction poly-

nomial Q, beyond the parameters we have bounded (specifically, L0(Q), L1(Q), and

the degree of Q), could lead to a more refined analysis of the error reduction proce-

dure described above (or of other error reduction procedures) when instantiated with

11Indeed, in the non black-box setting, when we’re not aiming for a PRG, [AKM+20] obtains a high-

precision algorithm that approximates random walks over Eulerian directed graphs and runs in space

Õ(log n).
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Q. However, a general barrier result, like the one obtained in this work, inevitably

relies on shared characteristics across all instances it aims to address and cannot be

expected to be tailored to any specific instance. In this spirit, it is worth noting that

several other properties of polynomials, which our result does not fully exploit, may

exist—such as the possibility that small coefficients could have a damping effect on

the error, among others.

2.4 Revisiting Our Underlying Assumption: Correlated Errors

In this section, we reassess the foundational assumption of our abstract framework concern-

ing the independence of errors. This assumption proves to be excessively pessimistic since

correlations between errors can indeed be introduced. Notably, such correlations already

manifest in existing constructions as a natural consequence of the recursive structure of

Nisan’s PRG, and were exploited in error reduction procedures by Chen, Hoza, Lyu, Tal,

and Wu [CHL+23] for width-3 and for bounded-width regular ROBPs.

To illustrate the role of correlations within our abstract framework, let us reconsider

Equation (1) and focus on the term Ã3. Due to Nisan’s recursive setup, this entry of the

matrix is constructed either by combining Ã2A or AÃ2, depending on the implementation.

More broadly, Ãk is generated by multiplying approximations of the powers-of-two of A that

align with the bits in the binary representation of k. For instance, Ã11 is the product of the

matrices A, Ã2, and Ã8, in varying orders.

This structure leads to a scenario where the independently generated error terms are

ε2i for i = 1, 2, ..., ⌊log2 n⌋. The remaining, vast majority of the error terms, however, are

derived from these and from the number a that we aim to approximate, thereby introducing

dependencies. For example: a3 + ε3 = ã3 = aã2 = a(a2 + ε2) = a3 + aε2, thus, ε3 = aε2.

Similar calculations reveal that ε5 = aε4. However, the dependencies gradually become more

complex, e.g., ε6 = a2ε4 + a4ε2 + ε2ε4.

These correlations effectively reduce the number of independent error terms from n to

log n. This raises an important question: do our impossibility results, given by Theorem 2.1,

still apply in the presence of correlations? At first it may appear that the answer is no,

as the correlations can facilitate the development of error-reduction procedures that are

unattainable under the assumption of independent errors. To illustrate this point, consider

the fact that no error-reduction polynomial of degree-2 exists when assuming independent

errors. However, this is not the case when errors are correlated.

To see this, let’s revisit our initial example where n = 4, but now with d = 2. The general

form of the polynomial is given by

Ax1x3 +Bx2
2, (17)
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where again we omit the monomial x4 with hindsight. Under the assumption of independent

errors, such a polynomial cannot eliminate the linear error terms because the inevitable

homogeneous constraints A = B = 0 lead to the zero polynomial. However, with the

introduction of correlations as discussed earlier, the algebraic relation x3 = x1x2 emerges

within our revised abstract framework. Consequently, Equation (17) transforms into

Ax2
1x2 +Bx2

2 = Aa2(a2 + ε2) +B(a2 + ε2)
2 = (A+B)a4 + (A+ 2B)a2ε2 +Bε22.

This allows for the elimination of the linear error term. It is achieved by setting A = 2 and

B = −1, resulting in the polynomial 2x1x3 − x2
2.

Although correlations significantly reduce the number of independent errors terms, the

complex nature of the correlations leads to some unexpected effects due to “monomial col-

lapse”, which arises from the algebraic relations induced by these correlations. To see this

collapsing phenomena in action, consider again the case of degree d = 2 polynomials, now

with n = 5. The relevant monomials are x1x4, x2x3, and x5. However, the latter monomial,

x5, collapses into the first monomial x1x4, resulting in a loss of one degree of freedom. This

leaves us with a polynomial of the form

Ax1x4 +Bx2x3 = Ax1x4 +Bx1x
2
2

= Aa(a4 + ε4) +Ba(a2 + ε2)
2 = (A+B)a5 + 2Ba3ε2 + Aaε4 +Baε22,

from which it is evident that eliminating the linear error terms requires setting A = B = 0,

contradicting the affine constraint A + B = 1. For n = 7, the collapses become even more

significant, leaving us with only a single monomial, x1x2x4. As a result, no error reduction

procedure exists.

Having said that, to further appreciate the power of the correlated errors setting, we

note that in the latter it is possible to construct low degree polynomials in which also the

quadratic error terms vanish. The smallest such example is when n = 6 and the degree

d = 4. In this case, the polynomial 3x3
1x3 − 3x2

3 + x3
2 when expressed in terms of a and ε2

simplifies to a6 + ε32. One requires significantly higher degrees, as well as a higher value of

n, to eliminate the quadratic terms in the non-correlated setting.

In summary, although the number of independent error terms in the correlated setting

is significantly reduced from n to log n, resulting in only approximately (log n)t linear con-

straints rather than nt, the degrees of freedom are also reduced. More importantly, the

structure of these degrees of freedom remains elusive, making it more difficult to argue

about in general.

Another way to view the correlated setting is as a mechanism that effectively “buys”

a factor of approximately log n in the degree, albeit in a complex manner. For instance,

the degree-1 monomial x15 is equivalent to the degree-4 monomial x1x2x4x8. Generally,
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a variable xk is equivalent to a monomial whose degree is the count of ‘1’s in the binary

representation of k. This log n factor would have had far-reaching consequences within the

context of space-bounded derandomization, as can be inferred from Section 2.3. Nonetheless,

control over this aspect is limited due to the intricate nature of the correlations. Given the

above discussion and examples, it is not a priori clear whether correlated errors can lead to

more effective error-reduction procedures.

As suggested in earlier sections, our second main result is a negative answer to this

question. Somewhat surprisingly, we establish bounds that are comparable to those derived

in Theorem 2.1 for the correlated setting as well, the only difference being a slightly weaker

bound on the degree (see Theorem 3.5). Nonetheless, the proofs turned out to be more

complex.

More general decompositions of correlated errors. Although we are mainly focused

on correlated errors specifically in settings similar to Nisan’s, some of our results also work

for a more general decomposition. For example, in a more generalized setting, the Ãk-s may

be generated by multiplying A, Ã3, Ã9, Ã27, · · · . In this case, the degree-1 monomial x15

is equivalent to x2
3x9. Theorem 6.6 and Theorem 7.3 also work for such more generalized

decompositions with certain properties. Detailed discussions can be found in Section 6 and

Section 7.

A simultaneous bound. Finally, in Section 8, we address the feasibility of the following

scenario: What if the large L1 bound is concentrated only on monomials of small degree,

whereas restricted to the high-degree monomials, the L1 norm is small? This could conceiv-

ably offer a way to bypass the barriers towards constructing better WPRGs, presented in

Section 2.3. Unfortunately, as shown by Theorem 8.1, this cannot be the case.

3 Bounds On Error Reduction Polynomials

In this section we formally state our derived bounds on error reduction polynomials, namely

the bounds on their degree, L1 and L0 norms. The proofs for these bounds are included in

the following sections.

Preliminaries. We make use of the following notation and definitions. Unless stated

otherwise, all logarithms in this paper are taken to the base 2. The set of natural numbers

is N = {0, 1, 2, . . .}. For n ∈ N, n ≥ 1, we use [n] to denote the set {1, . . . , n}. For a vector

I = (i1, . . . , in) of non-negative integers, we denote |I| =
∑n

k=1 ik and w(I) =
∑n

k=1 k · ik. For
x = (x1, . . . ,xn), let R[x] = R[x1, . . . ,xn] be the ring of polynomials in variables x1, . . . ,xn
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and coefficients in the ring R. For Q ∈ R[x1, . . . ,xn] we use deg(Q) to denote the total

degree of Q, and degxi
(Q) the denote the individual degree in xi. We will use xI to denote

the monomial
∏n

k=1 x
ik
k ∈ R[x].

We now provide formal definitions that capture the concept of an error-reduction polyno-

mial in the different scenarios presented earlier.

Definition 3.1 (error reduction polynomial; uncorrelated errors). Let n, d, t ∈ N be such

that d < n. We say that a polynomial Q(x1, . . . ,xn) ∈ R[x1, . . . ,xn] is a (d, t)-error reduc-

tion polynomial (for uncorrelated errors) if Q is of total degree at most d, and there exist

polynomials {cI(a)}I=(i2,...,in)∈Nn−1 ⊆ R[a] such that

Q
(
a,a2 + ε2, . . . ,a

n + εn
)
= an +

∑
I=(i2,...,in)∈Nn−1

|I|>t

cI(a) ε
I , (18)

where ε = (ε2, . . . , εn) and the equality is in the polynomial ring R[a, ε2, . . . , εn].

Remark 3.2. We require that d < n since otherwise for d ≥ n the polynomial xn
1 would be

a trivial (d, t)-error reduction polynomial for every t ∈ N.

Definition 3.3 (error reduction polynomial; correlated errors). Let n, d, t ∈ N be such

that d < n and set s = ⌊log n⌋. We say that a polynomial Q(x1, . . . ,xn) ∈ R[x1, . . . ,xn]

is a (d, t)-error reduction polynomial for correlated errors if its total-degree is at most d,

and there exist polynomials {cI(a)}I∈Ns ⊆ R[a] such that the following equality holds over

R[a, ε1, . . . , εs]:
Q
(
ã1, ã2, ã3, . . . , ãn

)
= an +

∑
I=(i1,...,is)∈Ns

|I|>t

cI(a) ε
I , (19)

where ε = (ε1, . . . , εs) and for every r ∈ [n] such that r =
∑s

i=0 2
iri for ri ∈ {0, 1},

ãr = ar0

s∏
i=1

(
a2i + εi

)ri
∈ R[a, ε1, . . . , εs].

We say that a polynomial Q(x0,x1, . . . ,xs) ∈ R[x0,x1, . . . ,xs] is a reduced (d, t)-error

reduction polynomial (for correlated errors) if each of its individual degrees is at most d,

and there exist polynomials {c′I(a)}I∈Ns ⊆ R[a] such that the following equality holds over

R[a, ε1, . . . , εs]:
Q
(
ã1, ã2, ã4, . . . , ã2s

)
= an +

∑
I∈Ns

|I|>t

c′I(a) ε
I , (20)

where ε = (ε1, . . . , εs), ã1 = a, and for every i ∈ [s]

ã2i = a2i + εi ∈ R[a, ε1, . . . , εs].
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We can now give the formal statements for Theorem 2.1. We begin with the bounds on

the degree of an error reduction polynomial, which are proved in Section 5.

Proposition 3.4 (degree bound, uncorrelated errors). Let n, d, t ∈ N and let Q(x1, . . . ,xn)

be a (d, t)-error reduction polynomial for uncorrelated errors. Then, d > t.

As mentioned in Section 2.4, for the correlated errors setting we have a slightly weaker

bound:

Theorem 3.5 (degree bound, correlated errors). Let n, d, t ∈ N be such that t < n and let

Q(x1, . . . ,xn) ∈ R[x1, . . . ,xn] be a (d, t)-error reduction polynomial for correlated errors.

Then, d > t/2.

In Section 6 we prove the following lower bound on the L1-norm:

Theorem 3.6 (L1 bound). Let n, d, t ∈ N be such that t < n. Then, for every (d, t)-error

reduction polynomial Q(x1, . . . ,xn), correlated or uncorrelated,

L1(Q) ≥ 2
(n
d

)t
− 1.

An analogue definition for an error reduction polynomial for the non-commutative setting

is given in Section 7, where we also prove the following lower bound on the L0 norm:

Theorem 3.7. Let n > d′ ≥ d > t ≥ 1. If Q(x1, . . . ,xn) ∈ Rnc[x1, . . . ,xn] is a (d′, t)-error

reduction polynomial (for the non-commutative setting), such that degx1
(Q) ≤ d, then

L0(Q) ≥
(
n
t

)(
d
t

) .
4 Reduced Forms of Error Reduction Polynomials

The following claim demonstrates the relationship between the concepts of (d, t)-error re-

duction polynomials for correlated error, and reduced (d, t)-error reduction polynomials for

correlated errors, defined in Definition 3.3.

Claim 4.1. For every (d, t)-error reduction polynomial for correlated errors Q(x1, . . . ,xn)

there exists a polynomial Q′(x′
0,x

′
1, . . . ,x

′
s) which is a reduced (d, t)-error reduction polyno-

mial for correlated errors.

Moreover, each monomial
∏s

j=0(x
′
j)

vj which appears in Q′ satisfies
∑s

j=0 2
j ·vj = w(I) for

some I ∈ Nn such that xI appears in Q.
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Proof. For every monomial xI for I ∈ Nn which appears in Q we will have an equivalent

monomial of Q′. The conversion is done by using the rule xr =
∏

i∈ {0,...,s}|ri=1 x
′
i where for

every r ∈ [n] r0, . . . , rs ∈ {0, 1} are the binary representation of r, r =
∑s

i=0 2
iri. If we

convert every monomial xI of Q according to this rule, every variable x′
i for i ∈ {0, . . . , s}

will have individual degree at most d since x′
i appears at most once when substituting each

of the variables of xI. It is immediate that if Q satisfied Equation (19) then Q′ satisfies

Equation (20). As for the moreover part of the claim, one can observe that the described

conversion transforms each monomial xI in Q to a monomial of the form
∏s

j=0(x
′
j)

vj with∑s
j=0 2

j · vj = w(I).

Occasionally, it may be convenient to assume that all the monomials xI which appear

in an error-reduction polynomial Q(x1, . . . ,xn) satisfy w(I) = n. To facilitate this, the

following lemma will prove to be useful.

Lemma 4.2. Let Q(x1, . . . ,xn) =
∑

v∈Nn γvx
v be a (d, t)-error reduction polynomial for

uncorrelated (resp. correlated) errors. Then, the polynomial

Q′(x1, . . . ,xn) =
∑
v∈Nn

w(v)=n

γvx
v

is also a (d, t)-error reduction polynomial for uncorrelated (resp. correlated) errors.

Proof. Set s = ⌊log n⌋. We will prove the lemma by establishing the following fact. For any

polynomial Q(x1, . . . ,xn) if

Q(x1, . . . ,xn) =
∑
v∈Nn

γvx
v, (21)

satisfies Equation (18), then

Q′(x1, . . . ,xn) =
∑

v∈Nn|w(v)=n

γvx
v (22)

also satisfies Equation (18). Before we turn to prove this fact, we argue that indeed it implies

the lemma. First, in the case of uncorrelated errors the implication is trivial, since clearly

if Q is of total degree at most d then so is Q′, and we have that like Q, Q′ also satisfies

Equation (18) – and so Q′ is a (d, t)-error reduction polynomial.

Secondly, we argue that in the case of correlated errors the implication holds as well. This

follows by observing that a polynomial Q(x1, . . . ,xn) satisfies Equation (19) if and only if

the polynomial Q̂(x̂1, . . . , x̂n) satisfies Equation (18), where the polynomial Q̂(x̂1, . . . , x̂n) is

obtained from Q(x1, . . . ,xn) by substituting every variable xr, for r ∈ [n], which appears in

Q, with the product
∏

i∈ {0,...,s}|ri=1 x̂2i where r0, . . . , rs ∈ {0, 1} are the binary representa-

tion of r, r =
∑s

i=0 2
iri. The observation is immediate by inspecting Equation (19). Thus,
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if Q(x1, . . . ,xn) is a (d, t)-error reduction polynomial for correlated errors then it satisfies

Equation (19), and so Q̂(x̂1, . . . , x̂n) satisfies Equation (18). Now by the assumed fact, we

have that (Q̂)′(x̂1, . . . , x̂n) also satisfies Equation (18). Note that (Q̂)′ = (̂Q′) as the substi-

tution rule defining Q̂ maintains the weight w(v) of a monomial xv. Hence, equivalently, we

have that (̂Q′) satisfies Equation (18). Therefore, again by the observation, Q′(x1, . . . ,xn)

satisfies Equation (19), and so it is a (d, t)-error reduction polynomial for correlated errors.

Now, we can proceed to proving the claimed fact. Towards that, we assume that Q satisfies

Equation (18), and we write

Q′(x1, . . . ,xn) =
∑

v∈Nn:w(v)=n

γvx
v =

∑
v∈Nn

γ′
vx

v, (23)

where for every v, γ′
v = γv if w(v) = n, and γ′

v = 0 otherwise. In order to show that Q′ also

satisfies Equation (18), let us first define two polynomials P,P′ ∈ R[a, ε2, . . . , εn] by

P ≜ Q(a,a2 + ε2, . . . ,a
n + εn) =

∑
v∈Nn

γv a
v1

n∏
i=2

(ai + εi)
vi , (24)

and similarly

P′ ≜ Q′(a,a2 + ε2, . . . ,a
n + εn) =

∑
v∈Nn

γ′
v a

v1

n∏
i=2

(ai + εi)
vi . (25)

To simplify notation, through the remaining part we will use [M ]f to denote the coefficient

of the monomial M in a polynomial f . As Q satisfies Equation (18) we have that for every

j ∈ N and I = (I2, . . . , In) ∈ Nn−1 such that |I| ≤ t,

[
ajεI

]
P
=

{
1 j = n and I = 0;

0 otherwise.

Moreover, a simple inspection of the RHS of Equation (24) and Equation (25) yields

[an]P′ =
∑
v∈Nn,
w(v)=n

γ′
v =

∑
v∈Nn,
w(v)=n

γv = [an]P = 1, (26)

and that for every j ̸= n, [
aj
]
P′ =

∑
v∈Nn,
w(v)=j

γ′
v =

∑
v∈Nn,
w(v)=j

0 = 0.
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Furthermore, for every j ∈ N and I = (I2, . . . , In) ∈ Nn−1 such that 0 < |I| ≤ t,

[
ajεI

]
P′ =

∑
v∈Nn,

w(v)=j+
∑n

i=2 iIi

γ′
v

n∏
i=2

(
vi
Ii

)
.

Thus, if j and I satisfy in addition that j +
∑n

i=2 iIi = n, then

[
ajεI

]
P′ =

∑
v∈Nn,
w(v)=n

γ′
v

n∏
i=2

(
vi
Ii

)
=

∑
v∈Nn,

w(v)=j+
∑n

i=2 iIi

γv

n∏
i=2

(
vi
Ii

)
=
[
ajεI

]
P
= 0. (27)

Otherwise,

[
ajεI

]
P′ =

∑
v∈Nn,

w(v)=j+
∑n

i=2 iIi

γ′
v

n∏
i=2

(
vi
Ii

)
=

∑
v∈Nn,

w(v)=j+
∑n

i=2 iIi

0 ·
n∏

i=2

(
vi
Ii

)
= 0. (28)

In summary, for every j ∈ N and I = (I2, . . . , In) ∈ Nn such that |I| ≤ t, we have

[
ajεI

]
P′ =

{
1 j = n and I = 0;

0 otherwise.

From which we conclude that Q′ satisfies Equation (18). The fact, and the claim, follow.

5 Proof of the Degree Bound

In this section, we establish our lower bounds for the degree of error-reduction polynomials.

The uncorrelated setting, which we cover next, has a simple and straightforward proof.

5.1 Uncorrelated Errors

Proof of Proposition 3.4. Assume for the sake of contradiction that d ≤ t. Since Q is a

(d, t)-error reduction polynomial, there exist {cI(a)}I=(i2,...,in)∈Nn−1 ⊆ R[a] such that

Q
(
a,a2 + ε2, . . . ,a

n + εn
)
= an +

∑
I=(i2,...,in)∈Nn−1

|I|>t

cI(a) ε
I,

where ε = (ε2, . . . , εn). It must be that∑
I=(i2,...,in)∈Nn−1

|I|>t

cI(a) ε
I = 0
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as otherwise we would have that d ≥ deg(Q) > t, contrary to our assumption. Thus,

Q
(
a,a2 + ε2, . . . ,a

n + εn
)
= an.

Substituting εi = −ai for all 2 ≤ i ≤ n, we get that Q(a, 0, . . . , 0) = an in the ring R[a].
But this contradicts the fact that

n = degQ(a, 0, . . . , 0) ≤ degQ(x1, . . . ,xn) ≤ d < n,

where the last inequality follows by Definition 3.1.

5.2 Correlated Errors

The correlated setting, which is now discussed, proves to be more challenging.

Proof of Theorem 3.5. Let s = ⌊log n⌋ and D = {0, . . . , d}. We start by observing that by

Lemma 4.2 we can assume without loss of generality that every monomial xv for v ∈ Nn,

supported on Q(x1, . . . ,xn), satisfies w(v) = n. We further observe that by Claim 4.1, it is

enough to show that for Q′(y0, . . . ,ys) a reduced (d, t)-error reduction polynomial for cor-

related errors, satisfying that for every monomial yu for u = (u0, . . . , us) ∈ Ds+1 supported

on Q′
s∑

i=0

2iui = n, (29)

it must be that d > t/2. We therefore proceed to show d > t/2 assuming such Q′.

Towards that we first write Q′ as a polynomial arranged by the set of “high order” mono-

mials {
s∏

i=w

yui
i : uw, . . . , us ∈ D

}
for w = ⌈log(n/t)⌉. That is, viewing Q′ as an element of the ring

(R [y0, . . . ,yw−1]) [yw, . . . ,ys],

we write

Q′ =
∑

uw,...,us∈D

Quw,...,us(y0, . . . ,yw−1)
s∏

i=w

yui
i .

where for every uw, . . . , us, Quw,...,us ∈ R[y0, . . . ,yw−1] is a polynomial of individual degree

at most d. We observe that for every uw, . . . , us such that Quw,...,us ̸= 0 it must be that

s∑
i=w

ui ≤ t. (30)
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Indeed, by Equation (29),
∑s

i=w 2iui ≤ n, and in particular,

2log(n/t)
s∑

i=⌈log(n/t)⌉

ui =
n

t

s∑
i=⌈log(n/t)⌉

ui ≤ n.

The rest of the argument will use the properties of Q′ under the assignment y0 =

ã20 , . . . ,ys = ã2s , where recall that ã1 = a and ã2i = a2i + εi for i ∈ [s]. Therefore,

for ease of notation, we define

P ≜ Q′
(
ã1, ã2, ã4, . . . , ã2s

)
,

Puw,...,us ≜ Quw,...,us

(
ã1, ã2, . . . , ã2w−1

)
,

where P ∈ R[a, ε1, . . . , εs] and Puw,...,us ∈ R[a, ε1, . . . , εw−1] for every uw, . . . , us ∈ D. By

Equation (20), P is only supported on monomials ajεI such that if |I| ≠ 0 then

|I| > t. (31)

Next, we turn to inspect Puw,...,us when assigning the “low order” errors to be zero, that

is, when setting ε1 = 0, . . . , εw−1 = 0.

Claim 5.1. For every (uw, . . . , us) ̸= (0, . . . , 0), it holds that

Puw,...,us(a, 0, . . . , 0) = 0.

Proof. Assume for the sake of contradiction that the opposite is true. Let

(u∗
w, . . . , u

∗
s) ̸= (0, . . . , 0)

be a “maximal” tuple for which Pu∗
w,...,u∗

s
(a, 0, . . . , 0) ̸= 0. By maximal we mean that every

other tuple (uw, . . . , us), such that uw ≥ u∗
w ∧ · · · ∧us ≥ u∗

s, satisfies Puw,...,us(a, 0, . . . , 0) = 0

(in particular, (u∗
w, . . . , u

∗
s) ̸= (0, . . . , 0)). In this case, we have that the polynomial P under

the assignment of the low order errors to zero

P(a, 0, . . . , 0, εw, . . . , εs) =
∑

uw,...,us∈D

Puw,...,us(a, 0, . . . , 0)
s∏

i=w

(a2i + εi)
ui

is supported on the error term
∏s

i=w ε
u∗
i

i . However, by our choice
∑t

i=w u∗
i > 0, and by

Equation (30),
∑t

i=w u∗
i ≤ t, this stands in contradiction to Equation (31). We remark in

addition to that as we chose (u∗
w, . . . , u

∗
s) to be maximal, it cannot be that the non-zero term

Pu∗
w,...,u∗

s
(a, 0, . . . , 0)

s∏
i=w

ε
u∗
i

i
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coming from

Pu∗
w,...,u∗

s
(a, 0, . . . , 0)

s∏
i=w

(a2i + εi)
u∗
i ε

u∗
i

i

is canceled out by other terms of P(a, 0, . . . , 0, εw, . . . , εs), since for other non-zero

Puw,...,us(a, 0, . . . , 0)
s∏

i=w

(a2i + εi)
ui

it must be that for some i, ui < u∗
i , and so all its monomials fall short from cancelling

Puw,...,us(a, 0, . . . , 0)
s∏

i=w

ε
u∗
i

i ,

which completes the proof.

As a final step, we proceed by further consider P under the assignment that sets all error

terms to 0. On the one hand, we have that

P(a, 0, . . . , 0) = Q′(a,a2, . . . ,a2s) = an,

by virtue of Q′ being a (d, t)-error reduction polynomial. On the other hand, by Claim 5.1,

Q′(a,a2, . . . ,a2s) =
∑

uw,...,us∈D

Puw,...,us(a, 0, . . . , 0)
s∏

i=w

a2iui

= P0,...,0(a, 0, . . . , 0),

and therefore

deg(P0,...,0(a, 0, . . . , 0)) = n.

Now, recall that

P0,...,0(a, 0, . . . , 0) = Q0,...,0

(
a,a2, . . . ,a2w−1

)
,

where the individual degree of Q0,...,0(y0, . . . ,yw−1) is at most d. Therefore,

deg(P0,...,0(a, 0, . . . , 0)) ≤
w−1∑
i=0

2i · d

=

⌈log(n/t)⌉−1∑
i=0

2i · d

= (2⌈log(n/t)⌉ − 1)d.

Hence, it must be that

(2⌈log(n/t)⌉ − 1)d ≥ n,

from which it readily follows that d > t/2, as desired.
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6 L1 Norm Bound

In this section we show that a (d, t)-error reduction polynomial must have a large L1-norm.

Recall that the L1-norm of a polynomial Q ∈ R[x1, . . . ,xn],

Q(x1, . . . ,xn) =
∑

(v1,...,vn)∈Nn

c(v1,...,vn)x
v1
1 · · ·xvn

n

is
∑

(v1,...,vn)∈Nn |c(v1,...,vn)|. For every n ∈ N and d ∈ N, define

M(n, d) =

{
(v1, . . . , vn) ∈ Nn : v1 ≤ d,

n∑
i=1

i · vi = n

}
.

In words, M(n, d) describes the set of (powers of) “monomials”, where we will think of each

such monomial as being av1(a2 + ε2)
v2 · · · (an + εn)

vn ∈ R[a, ε2, . . . , εn]. When defining this

set we only consider powers whose weighted sum is equal to n, and the power of a is at most

d. We now start by defining a representation of a (d, t)-error reduction polynomial that will

be useful for lower-bounding the L1-norm.

Definition 6.1. We say that γ̄ = (γm)m∈M(n,d), where each γm ∈ R is a (d, t)-coefficient

vector if ∑
m∈M(n,d)

γm = 1, (32)

and for every I = (I2, . . . , In) ∈ Nn−1 such that 0 <
∑

Ii ≤ t, it holds that∑
(v1,...,vn)∈M(n,d)

γ(v1,...,vn)

n∏
i=2

(
vi
Ii

)
= 0. (33)

The L1-norm of γ̄ is
∑

m∈M(n,d) |γm|.

Indeed, a (d, t)-error reduction polynomial implies a (d, t)-coefficient vector, as we have

in the following claim.

Claim 6.2. Let Q(x1, . . . ,xn) be a (d, t)-error reduction polynomial of L1-norm ℓ, for un-

correlated or correlated errors. Then, there exists a (d, t)-coefficient vector with L1-norm at

most ℓ.

Proof. For a set M ⊆ M(n, d) and coefficients γ̄ = (γv)v∈M , let γ̄M(n,d) be the extension of γ̄

to M(n, d) defined by setting γv = 0 for v ∈ M(n, d) \M . We start the proof by noting that

if for a set M ⊆ M(n, d) we have that

Q(x1, . . . ,xn) =
∑
v∈M

γvx
v
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satisfies Equation (18), then γ̄M(n,d) for γ̄ = (γv)v∈M , is a (d, t)-coefficient vector. In-

deed, the fact that γ̄M(n,d) satisfies Equation (32) can be seen by considering the coeffi-

cient [an]P mentioned in Equation (26). Further, γ̄M(n,d) satisfies Equation (33) for every

I = (I2, . . . , In) ∈ Nn−1 such that 0 <
∑

Ii ≤ t, and this follows by considering the coeffi-

cients mentioned in Equation (27) and Equation (28).

We start by proving the claim for the case of uncorrelated errors. We have that if Q is

a (d, t)-error reduction polynomial for uncorrelated errors, then by Lemma 4.2, without loss

of generality, it is of the form

Q(x1, . . . ,xn) =
∑

v∈Nn,|v|≤d∑
ivi=n

γvx
v.

Thus, in this case we have that M = {n ∈ Nn : |v| ≤ d,
∑

ivi = n} and γ̄ = (γv)v∈M , and

we can take γ̄M(n,d) to be the desired (d, t)-coefficient vector. Notice that indeed we have

M ⊆ M(n, d) as |v| ≤ d implies v1 ≤ d in particular.

The proof for correlated errors is similar albeit less direct. Assume that Q(x1, . . . ,xn)

is a (d, t)-polynomial for correlated errors and is of the same form as above, however, now

we do not have that Q satisfies Equation (18). Set s = ⌊log n⌋. Similarly to the begin-

ning of the proof for Lemma 4.2, we consider the polynomial Q̂(x̂1, . . . , x̂n), achieved from

Q(x1, . . . ,xn) by substituting every variable xr, for r ∈ [n], which appears in Q, with

the product
∏

i∈ {0,...,s}:ri=1 x̂2i where r0, . . . , rs ∈ {0, 1} are the binary representation of r,

r =
∑s

i=0 2
iri. As in the proof for Lemma 4.2, since Q(x1, . . . ,xn) satisfies Equation (19),

Q̂(x̂1, . . . , x̂n) satisfies Equation (18). Notice that Q̂(x̂1, . . . , x̂n) is a polynomial of individ-

ual degree at most d, and like Q, is supported only on monomials of weight n (as mentioned

in the proof for Lemma 4.2 the transformation from Q to Q̂ preserves the weight of mono-

mials), and it is easy to check that its L1-norm is smaller or equal to that of Q. Therefore,

we can define M = {n ∈ Nn : max(v1, . . . , vn) ≤ d,
∑

ivi = n} and have that

Q̂(x̂1, . . . , x̂n) =
∑
v∈M

γ̂vx̂
v

satisfies Equation (18), and M ⊆ M(n, d) since v ∈ M in particular implies v1 ≤ d. There-

fore, by the account above, γ̄M(n,d) for γ̄ = (γ̂v)v∈M is a (d, t)-coefficient vector as desired,

completing the proof.

Remark 6.3. (More general decomposition of correlated errors.) Actually Claim 6.2

also works for more general decomposition of correlated errors. Note that in the proof of

Claim 6.2, we only require that the individual degree of x̂1 in Q̂(x̂1, . . . , x̂n) is at most d,

which is followed by the fact that the decomposition of each xi contains at most one x̂1.

Therefore, in a more general decomposition, suppose the decomposition of each xi contains at
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most c x̂1-s, (where c = 1 in the standard decomposition,) a (d, t)-error reduction polynomial

of L1-norm ℓ for correlated error gives a (cd, t)-coefficient vector with L1-norm at most ℓ. It

is reasonable to assume c is small, since if c is large, generating the xi-s from x̂j-s is already

costly. Furthermore, in Theorem 6.6, the bound for such more general decomposition is

L1(Q) = 2
(

n
cd

)t − 1.

Before proving our main result for this section, we will give two auxiliary claims.

Claim 6.4. The set of equations given in Equation (33) imply that for every I = (I2, . . . , In) ∈
Nn−1 such that 0 <

∑
Ii ≤ t, ∑

(v1,...,vn)∈M(n,d)

γ(v1,...,vn)

n∏
i=2

vi
Ii = 0. (34)

Proof. Let I = (I2, . . . , In) ∈ Nn−1 be such that 0 <
∑

Ii ≤ t. Note that for each k ∈ N+

there exist βk,1, . . . , βk,k ∈ R such that

xk =
k∑

r=1

βk,r

(
x

r

)
(as xk belongs to the span of the generalized binomial coefficients {

(
x
1

)
, . . . ,

(
x
k

)
} ⊆ R[x]).

Let us fix some j ∈ {2, . . . , n} with Ij > 0. Consider the expression obtained by taking the

LHS of Equation (33) and replacing in it
(
vj
Ij

)
with vj

Ij :

∑
(v1,...,vn)∈M(n,d)

γ(v1,...,vn) · vjIj
∏

i∈{2,...,n}\{j}

(
vi
Ii

)
=

∑
(v1,...,vn)∈M(n,d)

γ(v1,...,vn)

Ij∑
r=1

βIj ,r

(
vj
r

) ∏
i∈{2,...,n}\{j}

(
vi
Ii

)
=

Ij∑
r=1

βIj ,r

∑
(v1,...,vn)∈M(n,d)

γ(v1,...,vn) ·
(
vj
r

) ∏
i∈{2,...,n}\{j}

(
vi
Ii

)
.

Now, let r ∈ [Ij] and consider the vector J obtained from I by replacing its entry Ij with r

(notice that 0 <
∑

Ji ≤ t as 1 ≤ r ≤ Ij). Thus, by Equation (33) which corresponds to the

vector J , we have ∑
(v1,...,vn)∈M(n,d)

γ(v1,...,vn) ·
(
vj
r

) ∏
i∈{2,...,n}\{j}

(
vi
Ii

)
= 0.

It follows that ∑
(v1,...,vn)∈M(n,d)

γ(v1,...,vn) · vjIj
∏

i∈{2,...,n}\{j}

(
vi
Ii

)
= 0.
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To conclude, we can continue with the same process, replacing all remaining
(
vi
Ii

)
(for which

Ii > 0) with vIii .

Claim 6.5. Let I = {I = (I2, . . . , In) ∈ Nn−1 | 0 <
∑

Ii ≤ t}. Then there exists a sequence

{δI}I∈I ⊆ R such that for every m = (v1, . . . , vn) ∈ M(n, d),∑
I=(I2,...,In)∈Nn−1

0<
∑

Ii≤t

δIv
In
n · · · vI22 = nt − vt1.

Proof. Let m = (v1, . . . , vn) ∈ M(n, d) be arbitrary. Then(
v1 +

n∑
i=2

i · vi

)t

= nt.

Hence,
t−1∑
h=0

(
t

h

)
vh1

(
n∑

i=2

i · vi

)t−h

= nt − vt1.

Plugging v1 = n−
∑n

i=2 i · vi we obtain

t−1∑
h=0

(
t

h

)(
n−

n∑
i=2

i · vi

)h( n∑
i=2

i · vi

)t−h

= nt − vt1.

It is easy to see that the left hand side is a polynomial in the variables v2, . . . , vn of total

degree at most t with no free term. Thus we can write∑
I=(I2,...,In)∈Nn−1

0<
∑

Ii≤t

δIv
In
n · · · vI22 = nt − vt1,

where {δI} ⊆ R and each δI depends on n, t (but not on m), as required.

We are now ready to prove that a (d, t)-error reduction polynomial has a large L1-norm.

Theorem 6.6 (L1 bound). Let n, d, t ∈ N be such that t < n. Then, for every (d, t)-error

reduction polynomial Q(x1, . . . ,xn), correlated or uncorrelated,

L1(Q) ≥ 2
(n
d

)t
− 1.

Proof. Let (γ)m∈M(n,d) be a (d, t)-coefficient vector. By Claim 6.2 it suffices to show that the

L1-norm of (γ)m∈M(n,d) is at least 2
(
n
d

)t − 1. To this end, we first recall that by Claim 6.5,
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for some {δI ∈ R}I=(I2,...,In)∈Nn−1,0<
∑

Ii≤t we have that for every monomial m = (v1, . . . , vn) ∈
M(n, d) it holds that ∑

I=(I2,...,In)∈Nn−1

0<
∑

Ii≤t

δIv
In
n · · · vI22 = nt − vt1.

Dividing by dt

2
gives

∑
I=(I2,...,In)∈Nn−1

0<
∑

Ii≤t

2δI
dt

vInn · · · vI22 = 2
(n
d

)t
− 2

vt1
dt
.

As 0 ≤ v1 ≤ d (by the definition of M(n, d)), we see that∑
I∈(I2,...,In)∈Nn−1

0<
∑

Ii≤t

2δI
dt

vInn · · · vI22 ∈
[
2
(n
d

)t
− 2, 2

(n
d

)t]
. (35)

Now, for every I = (I2, . . . , In) ∈ Nn−1 such that 0 <
∑

Ii ≤ t we proceed by multiplying

Equation (34) in Claim 6.4 by 2δI
dt

and summing all equations together to get that

∑
I=(I2,...,In)∈Nn−1

0<
∑

Ii≤t

∑
(v1,...,vn)∈M(n,d)

2δI
dt

γ(v1,...,vn)

n∏
i=2

vi
Ii = 0.

Changing the order of summation,

∑
(v1,...,vn)∈M(n,d)

γ(v1,...,vn)
∑

I=(I2,...,In)∈Nn−1

0<
∑

Ii≤t

2δI
dt

n∏
i=2

vi
Ii = 0. (36)

Next we multiply Equation (32) by 2
(
n
d

)t − 1 to get that

∑
m∈M(n,d)

γm

(
2
(n
d

)t
− 1

)
= 2

(n
d

)t
− 1.

Subtracting Equation (36) from the above equation, we get that

∑
m∈M(n,d)

γm

2
(n
d

)t
− 1−

∑
I=(I2,...,In)∈Nn−1

0<
∑

Ii≤t

2δI
dt

n∏
i=2

vi
Ii

 = 2
(n
d

)t
− 1.
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Hence,

2
(n
d

)t
− 1 =

∑
m∈M(n,d)

γm

2
(n
d

)t
− 1−

∑
I=(I2,...,In)∈Nn−1

0<
∑

Ii≤t

2δI
dt

n∏
i=2

vi
Ii



≤
∑

m∈M(n,d)

|γm|

∣∣∣∣∣∣∣∣2
(n
d

)t
− 1−

∑
I=(I2,...,In)∈Nn−1

0<
∑

Ii≤t

2δI
dt

n∏
i=2

vi
Ii

∣∣∣∣∣∣∣∣
≤

∑
m∈M(n,d)

|γm| · 1,

where that the last inequality is by Equation (35). This gives us the required bound.

7 L0 Norm Bound, in the Non-Commutative Setting

In this section, we show that in the non-commutative setting, we can establish a bound on

the L0-norm of an error-reduction polynomial. Let us take the error reduction polynomial

from Equation (9) as an example to illustrate the difference between the commutative and

the non-commutative settings. In the commutative setting, Equation (9) takes the form

Q(x1,x2,x3,x4) = 2x2
1x2 − x2

2.

However, in the non-commutative setting, to achieve ε ≪ ε0, the error reduction polynomial

should be

Q(x1,x2,x3,x4) = x2
1x2 + x2x

2
1 − x2

2.

This shows that distinct terms in the non-commutative setting might be merged in the

commutative setting. Thus, the L0 norms in the commutative and non-commutative settings

are quite different.

We first need some new definitions for the non-commutative setting.

Definition 7.1. Define

N(n) ≜ {(k, v1, . . . , vk) : k ≥ 1, v1, . . . , vk ∈ [n], v1 + · · ·+ vk = n}.

Then, any monomial over non-commutative variables x1, . . . ,xn such that the sum of the

indices is n has form xv1xv2 · · ·xvk for some (k, v1, . . . , vk) ∈ N(n).
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Let Rnc[x1, . . . ,xn] be the set of all real-coefficient degree-n homogeneous polynomials

over non-commutative variables x1, . . . ,xn. Moreover, for

Q(x1, . . . ,xn) =
∑

(k,v1,...,vk)∈N(n)

ck,v1,...,vkxv1 . . .xvk ,

recall that we define

L0(Q) =
∑

(k,v1,...,vk)∈N(n)

I[ck,v1,...,vk ̸= 0].

Definition 7.2. Define

N ′(n) ≜

{
(k, v1, . . . , vk, w1, . . . , wk+1) : k ≥ 0, vi ∈ [n], wi ∈ N,

k∑
i=1

vi +
k+1∑
i=1

wi = n

}
.

For n, d, t ∈ N and a polynomial Q(x1, . . . ,xn) ∈ Rnc[x1, . . . ,xn], we say Q is a (d, t)-error

reduction polynomial (for the non-commutative setting), if the total degree of Q is at most

d, and there exist real coefficients {cv}v∈N ′(n) such that

Q(a,a2 + ε2, . . . ,a
n + εn)− an

=
∑

v=(k,v1,...,vk,w1,...,wk+1)∈N ′(n)
k≥t+1

cva
w1εv1a

w2εv2 · · ·awkεvka
wk+1 .

i.e., in Q(a,a2 + ε2, . . . ,a
n + εn)−an, the total degree of ε2, . . . , εn is at least t+ 1 in each

non-zero term.

Then, we state and prove our bound for L0 in the non-commutative setting. We also

handle the correlated errors simultaneously.

Theorem 7.3. Let n > d′ ≥ d > t ≥ 1. If Q(x1, . . . ,xn) ∈ Rnc[x1, . . . ,xn] is a (d′, t)-error

reduction polynomial (for the non-commutative setting), such that degx1
(Q) ≤ d, then

L0(Q) ≥
(
n
t

)(
d
t

) .
Remark 7.4. Note that since the total degree of a polynomial is at least the degree of

x1, Theorem 7.3 implies that for any (d, t)-error reduction polynomial Q, we have L0(Q) ≥(
n
t

)
/
(
d
t

)
. We need to mention that the correlated error in the non-commutative setting is

more complicated. In the commutative setting, for example, we have

(a11 + ε11) = a(a2 + ε2)(a
8 + ε8).
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However, for the non-commutative setting, the order of a, (a2+ε2), (a
8+ε8) can be arbitrary,

and the order might even be different between the different appearances of (a11 + ε11) in

the expression of Q. Nonetheless, as long as the number of a-s in the decomposition of each

(ar + εr) is bounded by 1, degree-d error reduction polynomials (with correlated errors)

can be captured by degx1
≤ d. So Theorem 7.3 still gives a bound for L0 in the correlated

error setting. Furthermore, in more general decompositions where the number of a-s in the

decomposition of each (ar + εr) is bounded by c, degree-d error reduction polynomials can

be captured by degx1
≤ cd, and a bound on L0 norm follows.

Proof of Theorem 7.3. For I ⊆ [n] define monomial BI(a, ε) = y1y2 · · ·yn, here yi = ε if

i ∈ I and yi = a if i /∈ I. Consider

R(a, ε) ≜ Q(a+ ε, (a+ ε)2 + (a2 − (a+ ε)2), . . . , (a+ ε)n + (an − (a+ ε)n)).

By the definition of (d, t)-error reduction polynomial, we can write

R(a, ε)− (a+ ε)n

=
∑

v=(k,v1,...,vk,w1,...,wk+1)∈N ′(n)
k≥t+1

cv(a+ ε)w1(av1 − (a+ ε)v1) · · · (a+ ε)wk(avk − (a+ ε)vk)(a+ ε)wk+1

= (−1)k
∑

v=(k,v1,...,vk,w1,...,wk+1)∈N ′(n)
k≥t+1

∅̸=I1⊆[v1],...,∅̸=Ik⊆[vk]

cv(a+ ε)w1BI1(a, ε) · · · (a+ ε)wkBIk(a, ε)(a+ ε)wk+1 .

The last equation can be written as ∑
I⊆[n],|I|≥t+1

λIBI(a, ε)

for some real numbers {λI}I⊆[n]. Therefore,

R(a, ε) =
∑

I⊆[n],|I|≤t

BI(a, ε) +
∑

I⊆[n],|I|≥t+1

(λI + 1)BI(a, ε). (37)

On the other hand, suppose

Q(x1, . . . ,xn) =
∑

(k,v1,...,vk)∈N(n)

µk,v1,...,vkxv1 · · ·xvk .

Since degx1
(Q) ≤ d, we know that for each non-zero µk,v1,...,vk , there are at most d 1-s in

v1, . . . , vk. Thus,

R(a, ε) =
∑

(k,v1,...,vk)∈N(n)
|{i∈[k] : vi=1}|≤d

µk,v1,...,vkyv1 · · ·yvk ,
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here y1 ≜ (a + ε) and yi ≜ ai for i ≥ 2. For each non-zero µk,v1,...,vk , yv1 · · ·yvk is a

multiplication of some (a + ε)-s and a-s, and since |{i ∈ [k] : vi = 1}| ≤ d, we know there

are at most d (a+ ε)-s in the multiplication. Thus, for each v = (k, v1, . . . , vk) ∈ N(n) such

that |{i ∈ [k] : vi = 1}| ≤ d, we can assign a set Jv ⊆ [n] such that yv1 · · ·yvk = BJv(a,a+ε)

and |Jv| ≤ d. Thus,

R(a, ε) =
∑

v∈N(n),µv ̸=0

µvBJv(a,a+ ε)

=
∑

v∈N(n),µv ̸=0
I⊆Jv

µvBI(a, ε). (38)

Let us compare Equation (37) and Equation (38). Consider writing R(a, ε) into a weighted

sum of BI(a, ε)-s (I ⊆ [n]). By Equation (38) we know that the number of non-zero BI(a, ε)-

s (|I| = t) is bounded above by ∑
v∈N(n),µv ̸=0

(
|Jv|
t

)
≤ L0(Q) ·

(
d

t

)
.

On the other hand by Equation (37) we know the coefficient of each BI(a, ε) (|I| = t) is

non-zero, so the number of non-zero BI(a, ε)-s (|I| = t) is =
(
n
t

)
. Note that this crucially

depends on the non-commutative setting. Therefore
(
n
t

)
≤ L0(Q) ·

(
d
t

)
, which completes the

proof.

8 A Simultaneous L1 and Degree Bound

Recall our discussion from Section 2.3 about the WPRGs error reduction framework, wherein

we use an auxiliary PRG Gaux to “derandomize” each monomial. As we also noted in

Section 2.3, a very small degree d may remove the need to use Gaux, and thereby avoid the

dependence on L1(Q). As previous results show, unfortunately, dmust be large. A contrarian

reader may suggest the following avenue towards evading the degree barrier: Suppose that

Q, restricted to high-degree monomials, had small L1 norm. Then, we could derandomize

high-degree monomials and use independent seeds to approximate the low-degree monomials.

This way, we could conceivably avoid paying for the (large) L1 norm of the polynomial itself.

In this section, we show that this cannot be the case. For concreteness, let us focus on

(a specific instantiation of) correlated errors12, and readily start with the reduced setting

12Recall that in an error reduction polynomial for correlated errors, as used in the “WPRG step” of

Section 2.3, the total degree is counted in terms of the number of approximations of A2i (including multi-

plicities). This is a suitable notion of degree when we need to pay for each power-of-two that we approximate,

like in Nisan’s PRG. In Theorem 8.1 we consider individual degrees, which in particular bound the total

degree, as defined here.
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(which we know, by Claim 4.1 suffices).

Theorem 8.1 (simultaneous bound). Let n, d ∈ N such that d < n and set s = log n,

where we assume that n is a power of 2. Let Q(x0, . . . ,xs) be a reduced (d, 1)-error reduction

polynomial for correlated errors. Further, assume that for any ε0 and a ∈ [0, 1], and any

ã2, ã4, . . . , ã2s such that
∣∣∣a2i − ã2i

∣∣∣ ≤ ε0, it holds that∣∣∣Q(a, ã2, ã4, . . . , ã2s)− an
∣∣∣ ≤ τ

for some 0 < τ = τ(n, ε0) ≤ ε0
4
.13 Then, L1(QR) = Ω(n/d), where QR is the restriction of Q

to monomials of total degree at least logn
2 log d

.

Proof. Write Q =
∑

I∈I cIx
I where I ⊆ {0, . . . , d}s+1, and recall that we can assume that

for every I ∈ I for I = (i0, . . . , is) has effective degree n, namely w(I) =
∑s

k=0 2
k · ik = n.

We first observe that any monomial in Q which has x as a term (i.e., i0 ≥ 1) must have high

degree.

Claim 8.2. For every I = (i0, . . . , is) ∈ I in which i0 ≥ 1 it holds that |I| ≥ logn
2 log d

.

Proof. Since w(I) = n, we can write
∑s

k=1 2
k · ik = n − i0. This readily implies that there

must be at least logn
2 log d

values of k for which ik ̸= 0.

Now, write Q as Q(x0, . . . ,xs) = Z(x1, . . . ,xs) + R(x0, . . . ,xs), where Z contains all

I = (i0, . . . , is) ∈ I for which i0 = 0, and similarly R contains all I-s for which i0 ̸= 0. Set

a1 = 1, and a2 = 1− ε0
n
. We can write

Q(a1, 1, . . . , 1) = Z(1, . . . , 1) + R1(a1, 1, . . . , 1)

and

Q(a2, 1, . . . , 1) = Z(1, . . . , 1) + R2(a2, 1, . . . , 1),

observing that indeed, the “Z part” in both polynomials is the same. Moreover, each I in R

satisfies |I| ≥ logn
2 log d

, by Claim 8.2. Now, since |an2 − 1| ≤ 1− (1− ε0/n)
n ≤ ε0 (and obviously

the same is true for a1), we have that

τ ≥ |an1 − Q(a1, 1, . . . , 1)| = |1− Z(1, . . . , 1)− R1(a1, 1, . . . , 1)| , (39)

and

τ ≥ |an2 − Q(a2, 1, . . . , 1)| = |an2 − Z(1, . . . , 1)− R2(a2, 1, . . . , 1)| , (40)

13Note that we do not simply require the linear terms in ε to vanish – which would naively say that

τ ≤ L1(Q)ε
2
0. Indeed, we must assume that establishing the error-reduction capabilities of Q do not go

through the L1 norm, since we already know it’s large.
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recalling that τ = τ(n, ε0). Writing ρ = 1 − Z(1, . . . , 1), Equation (39) tells us that

|R1(a1, 1, . . . , 1)−ρ| ≤ τ , and Equation (40) tells us that |R2(a2, 1, . . . , 1)−ρ| ≥ (1−an2 )− τ .

From these inequalities we can infer that

|Q(a2, 1, . . . , 1)− Q(a1, 1, . . . , 1)| = |(R1(a1, 1, . . . , 1)− ρ)− (R2(a2, 1, . . . , 1)− ρ)| ≥
|R2(a2, 1, . . . , 1)− ρ| − |R1(a1, 1, . . . , 1)− ρ| ≥ (1− an2 )− 2τ ≥ ε0/2− 2τ,

where the last inequality follows from the fact that an2 ≤ e−ε0 ≤ 1− ε0
2
. Since τ ≤ ε0/4, we

get that |Q(a2, 1, . . . , 1)− Q(a1, 1, . . . , 1)| ≥ ε0
4
. But

|Q(a2, 1, . . . , 1)− Q(a1, 1, . . . , 1)| =

∣∣∣∣∣ ∑
I∈I:i0 ̸=0

cI
(
ai12 − 1

)∣∣∣∣∣ ≤ ∑
I∈I:i0 ̸=0

|cI| ·
∣∣ai12 − 1

∣∣ .
Recall that i1 ≤ d, so |ai12 − 1| ≤ ε0d

n
. Thus,∑
I∈I:i0 ̸=0

|cI| ≥
n

4d
,

as desired.

We remark that in the case of a more general decomposition, for example where n is a

power of 3 and given approximations for a3, a9, . . ., the only change is in Claim 8.2 and a

similar bound is derived.
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