
When Do Low-Rate Concatenated Codes
Approach The Gilbert–Varshamov Bound?

Dean Doron* Jonathan Mosheiff† Mary Wootters‡

Abstract

The Gilbert–Varshamov (GV) bound is a classical existential result in coding theory.
It implies that a random linear binary code of rate ε2 has relative distance at least
1
2 − O(ε) with high probability. However, it is a major challenge to construct explicit
codes with similar parameters.

One hope to derandomize the Gilbert–Varshamov construction is with code con-
catenation: We begin with a (hopefully explicit) outer code Cout over a large alphabet,
and concatenate that with a small binary random linear code Cin. It is known that
when we use independent small codes for each coordinate, then the result lies on the
GV bound with high probability, but this still uses a lot of randomness. In this paper,
we consider the question of whether code concatenation with a single random linear
inner code Cin can lie on the GV bound; and if so what conditions on Cout are sufficient
for this.

We show that first, there do exist linear outer codes Cout that are “good” for con-
catenation in this sense (in fact, most linear codes codes are good). We also provide
two sufficient conditions for Cout, so that if Cout satisfies these, Cout ◦ Cin will likely lie
on the GV bound. We hope that these conditions may inspire future work towards
constructing explicit codes Cout.

*Ben-Gurion University of the Negev. deand@bgu.ac.il. Supported in part by NSF-BSF grant #2022644.
†Ben-Gurion University of the Negev. mosheiff@bgu.ac.il. Supported by an Alon Fellowship.
‡Stanford University. marykw@stanford.edu. Partially supported by NSF grants CCF-2231157 and CCF-

2133154.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 91 (2024)

1 Introduction

An error correcting code (or just a code) is a subset C ⊆ Σn, for some alphabet Σ. We think of
a code C being used to encode messages in Σk for k = log|Σ| |C|. That is, for any m ∈ Σk, we
can identify m with a codeword C(m) ∈ C.1 The idea is that encoding m into the codeword
C(m) will introduce redundancy that can later be used to correct errors. In this work we
focus on linear codes C, which are codes where Σ = F is a finite field and C ⊆ Fn is a linear
subspace of Fn.

Two important properties of error correcting codes are the rate R and the relative dis-
tance δ. For a code C ⊆ Σn, the rate is defined as R =

log|Σ| |C|
n

= k
n
, and it quantifies how

large the code is. The rate is between 0 and 1, and typically we want it to be as close to
1 as possible; this means that the encoding map does not introduce much redundancy.
The (relative) distance of C ⊆ Σn is defined as δ = 1

n
minc ̸=c′∈C ∆(c, c′), where ∆(·, ·) is

Hamming distance. Again, the relative distance is between 0 and 1, and again we typ-
ically want it to be as close to 1 as possible; this means that the code can correct many
worst-case errors.

These two quantities—rate and distance—are in tension. The larger the rate is, the
smaller the distance must be. For binary codes (that is, codes where Σ = F2), it is a
major open question to pin down the best trade-off possible between rate and distance.
However, we know that good trade-offs are possible: The best known possibility result in
general is the Gilbert–Varshamov (GV) bound (Theorem 2.1).

In this paper we focus on low rate codes. In this parameter regime, the GV bound
implies that there exist binary linear codes with relative distance 1−ε

2
and rate Ω(ε2), for

small ε > 0. In fact, Varshamov’s proof shows that a random binary linear code achieves
this with high probability.

Constructing such codes explicitly, hopefully accompanied by an efficient decoding
algorithm, has been subject to extensive and fruitful research in the past decades (e.g.,
[NN93, ABN+92, AGHP92, BT13, GI05, Ta-17, BD22]), with several exciting breakthroughs
in recent years. These breakthroughs include explicit constructions of codes with distance
δ = 1−ε

2
and rate R = Ω(ε2+o(1)), even with efficient algorithms (see Section 1.1). However,

there are still open questions. For example, we do not know how to attain δ = 1−ε
2

and
R = Ω(ε2) (without any o(1) term) explicitly, and we do not have explicit constructions
approaching the GV bound with rates bounded away from zero. Motivated by these ques-
tions, we consider concatenated codes, possibly with some randomness, which we discuss
next.

Concatenated Codes, and Our Question. A natural candidate for explicit (for low ran-
domness) codes on the GV bound are concatenated linear codes. These codes are built out
of two ingredients: a (hopefully explicit) linear outer code Cout ⊆ Fn

q with dimension k for
some large q; and a smaller inner binary linear code Cin ⊆ Fn0

2 , with dimension k0 = log2 q.

1Here and throughout the paper, we will abuse notation and use C both as the code itself (a subset of
Σn) and also as an encoding map C : Σk → Σn.

2

We define the concatenated code C = Cout ◦Cin ⊆ Fn0·n
2 by first encoding a message m ∈ Fk

q

(which can also be thought of as m ∈ Fk0·k
2) with Cout. Then, we encode each symbol of the

resulting codeword using Cin. That is, for a message m,

C(m) = (Cin(Cout(m)1), Cin(Cout(m)2), · · · , Cin(Cout(m)n)) ∈ Fn0·n
2 .

It is not hard to see that the rate of C is the product of the rates of Cin and Cout, and that the
distance of C is at least the product of the distances of Cin and Cout.

The natural approach to constructing a good concatenated code is to choose Cout and
Cin with the best known trade-offs: Since Cout is over a large alphabet, we know explicit
constructions of codes with optimal rate-distance trade-off2; and if n0 is sufficiently small,
we can find a Cin on the GV bound either deterministically by brute force or else with low
randomness, depending on the size of n0.

However, in general this approach will not achieve the GV bound. If we do not assume
any additional properties of Cout and Cin, and simply use the concatenation properties,
then setting the parameters so that C = Cout ◦ Cin has distance 1−ε

2
, the rate of C will be

at most roughly ε3. This is known as the Zyablov bound [Zya71] (see also [GRS]). As
we discuss more in Section 1.1, concatenation has been a popular approach to obtain
fully explicit codes with good rate-distance trade-offs, but none of these constructions are
known to beat the Zyablov bound.

Instead of using a single inner code, several works have focused on a related construc-
tion originally due to Thommesen [Tho83], which uses multiple inner codes. More pre-
cisely, this construction uses i.i.d. random linear inner codes for each coordinate. It can
be shown [Tho83] that the resulting code does lie on the GV bound with high probabil-
ity, and if Cout is chosen appropriately there are even efficient decoding algorithms for
it [GI04, Rud07, HRZW19]. However, this approach relies heavily on the fact that the
inner codes are independent, and as a result uses a lot of randomness.

This state of affairs motivates the following question (also asked in the title of this
paper):

Question 1. Are there concatenated linear codes Cout◦Cin (with a single random linear inner code
Cin) that meet the GV bound with high probability over Cin?3 If so, are there sufficient conditions
on Cout that will guarantee this?

In this paper, we show that yes, there are concatenated codes that meet the GV bound,
and we also give two sufficient conditions on Cout for this to hold. Our existential result is
non-constructive, but it is our hope that our sufficient conditions will lead to explicit con-
structions of appropriate Cout-s, which would lead to explicit (or at least pseudo-random,
depending on the alphabet size of Cout) concatenated codes on the GV bound.

2For codes over large alphabets, the best possible trade-off is the Singleton bound, or R = 1 − δ. This is
achievable, for example, by Reed–Solomon codes.

3Of course, if the length of either the inner code or the outer code is 1, the this question reduces to the
non-concatenated setting; we are interested in parameter regimes where n0 is non-trivial.

3

Remark 1 (Motivation for Question 1). Above, we have motivated Question 1 as an avenue
towards explicit or pseudo-random binary codes on the GV bound, and indeed this is our original
motivation. But we point out that Question 1 is also interesting in its own right. Concatenated
codes are a classical construction, going back to the 1960’s [For65], and have been used in many
different settings over the decades. It seems like a fundamental question to understand when these
codes can attain the GV bound.

Remark 2 (Focus on Linear Codes). In Question 1 and in this paper, we focus on linear codes.
This is because if we used, say, a uniformly random non-linear code as the inner code, it would
require exponentially more randomness than a random linear inner code, so this does not seem like
a hopeful avenue for derandomization. We note however that the question is much easier for non-
linear codes. For example, suppose that Cout is a Reed–Solomon code of rate ε so that each symbol
is additionally tagged with its evaluation point: that is, the symbol corresponding to α ∈ Fq is
(α, f(α)) ∈ F2

q . For the inner code, we use a completely random (non-linear) code of rate ε. Then
since all of the symbols in each outer codeword are different by construction, each codeword is
essentially uniformly random, and it is not hard to show that the result is close to the GV bound in
the sense that a code of rate O(ε2) will have distance 1/2− O(ε) with high probability. This same
argument will not work when Cin is linear, since the different symbols of codewords of Cout will still
have F2-linear relationships.

Our Contributions. Our main results are:

1. Existence of concatenated codes on the GV bound. We answer the first part of
Question 1: there are concatenated codes Cout ◦ Cin that achieve the GV bound, in a
wide variety of parameter regimes. In particular, we show that most codes Cout are
actually good:

Theorem 1.1 (Informal; Theorem 4.2). Suppose that Cout ⊆ Fn
q and Cin ⊆ Fn0

2 are random
linear codes of rate ε, so that q ≥ 2Ω(ε−3). Then C = Cout ◦ Cin has rate ε2, and with high
probability, the relative distance of C is at least 1/2−O(ε).

While Theorem 1.1 seems intuitive (in the sense that a random linear code lies on the
GV bound with high probability, so why not concatenated random linear codes?),
to the best of our knowledge it has not appeared in the literature before, and the
proof was not obvious (to us).4 One challenge is that a codeword c ∈ Cout ◦ Cin is
not uniformly random in FN

2 . In particular, the natural strategy of “show that each
non-zero codeword has high weight with high probability and union bound” that is
used to establish the Gilbert–Varshamov bound will not work in this setting, as we
do not have enough concentration.

4We note that earlier work by Barg, Justesen and Thomessen [BJT01] also addresses random linear outer
codes concatenated with an arbitrary (fixed) inner code, using very different techniques than we do. They
do not explicitly state a statement like Theorem 1.1 above, though it is plausible that their techniques could
be used to prove something similar. We discuss their techniques and the relationship to our work in Sec-
tion 1.1.

4

2. Sufficient conditions for Cout. Our existence result above uses a random linear code
as the outer code, which does not help in the quest for explicit constructions. How-
ever, our proof techniques inspire two sufficient conditions on Cout. That is, if Cout
satisfies these conditions, then Cout ◦ Cin will meet the GV bound with high proba-
bility when Cin is a random linear code. Our hope is that formalizing these will lead
to explicit constructions in the future.

We give an overview and intuition for our two sufficient conditions here. We note
that both conditions are only sufficient when the alphabet size q for Cout is suitably
large (exponential in 1/ poly(ε)); see Theorem 5.1 and Theorem 6.2 for details.

• Sufficient Condition 1: A soft-decoding-like condition on C⊥
out. Our first suf-

ficient condition, formalized in Theorem 5.1, is a soft-list-decoding-like condi-
tion on C⊥

out. More precisely, we define a distribution D5 on the alphabet Fq; the
condition is that

Pr
x∼Dn

[x ∈ C⊥
out \ {0}] ≤

1

qk
(1 + ∆) (1)

for some small ∆. Note that 1/qk is the probability that a completely random
vector is in C⊥

out, so this condition is saying that if the coordinates of x are drawn
i.i.d. from the same distribution D, then x not much more likely to be in C⊥ than
in a uniformly random vector. We show that if this holds, then Cout ◦ Cin lies on
the GV bound with high probability over the choice of a random linear inner
code Cin.
It’s not hard to see (Remark 8) that this condition holds in expectation for a
random linear code Cout, and in particular there exist linear codes Cout that have
this property.
This condition is reminiscent of C⊥

out being list-decodable from soft information
(e.g., [KV03]). In soft-list-decoding, one typically gets a distribution Di for each
i ∈ [n], interpreted as giving “soft information” about the i’th symbol. If one
can show that a vector drawn from D1 × · · · × Dn is unlikely to be in the code,
this implies that there are not too many codewords that are likely given the soft
information we hare received. However, there are several differences between
existing work on soft list-decoding and our work, notably that our distribution
D is a particular one and is the same for all i, and also there are some differences
in the parameter settings.
This condition can also be seen as a soft form of list-recovery, where we have
the same list in each coordinate.6 In more detail, if the support of D is con-
centrated on a small set S (which ours is for reasonable settings of n0, ε, see

5The distribution D is intuitively defined as follows. Let Cin be the inner code, and suppose that it has a
generator matrix G0 ∈ Fn0×k0

2 . Then to sample from D, we take a random sparse linear combination of the
rows of G0 (over F2), and interpret the result in Fk0

2 as an element of Fq , which we return.
6Informally, a code C ⊆ Σn is said to be list-recoverable if for any small sets S1, . . . , Sn ⊆ Σ, there are not

too many codewords c ∈ C so that ci ∈ Si for many values of i.

5

Remark 7), then the condition in Theorem 5.1 is related to asking that the num-
ber of codewords that lie in the combinatorial rectangle given by S×S×· · ·×S
is about what it should be. Unfortunately, the definition of “small” here does
not seem to be small enough for existing constructions of list-recoverable codes
(for example folded RS codes or multiplicity codes) to yield any results.

• Sufficient Condition 2: Cout has good min-entropy. Our second sufficient
condition, formalized in Theorem 6.2, requires the codewords of Cout to be
“smooth”, meaning, roughly, that every nonzero codeword has a fairly uni-
form distribution of symbols from Fq. To illustrate why a smoothness condition
is desirable, let us consider two extreme cases.
The bad extreme is when there exists a codeword c that is supported on very
few symbols, say even on a single symbol. If c = (σ, σ, . . . , σ) for some σ ∈ Fq,
then the relative weight of c ◦ Cin, for a random binary inner code Cin of rate ε,
might be 1

2
−Ω(

√
ε), much worse than the 1

2
−O(ε) that we would want for the

GV bound.
The good (possibly unrealistic) extreme is where each nonzero codeword of Cout
has a symbol distribution that is uniform over Fq. In this case it is not hard to see
that Cout◦Cin will be close to the GV bound with high probability over a random
linear code Cin. (For this, all we need is that Cin has about the “right” weight
distribution, which a random linear code will have with high probability).
The natural question is thus how smooth the codewords of Cout should be in
order for C to have distance 1

2
− O(ε). In Section 6, we quantify this by the

smooth min-entropy of the codewords’ empirical distributions on symbols. We
show in Theorem 6.2 that if this smooth min-entropy is large enough for all
c ∈ Cout, then C = Cout ◦ Cin is likely to lie near the GV bound when Cin is a
random linear binary code.
How large is “large enough”? For this informal discussion, we give one exam-
ple of the parameter settings from Theorem 6.2: It is enough for every non-zero
codeword c ∈ Cout to have a symbol distribution that has Θ(εn) copies of the
same symbol (say, the zero symbol), while the remaining symbols in c are uni-
formly distributed over a set of size only q1−ε. By some metrics this is still a
fairly “spiky” distribution, but it is “smooth enough” for our purposes.
Note that while our soft-decoding-like condition considers C⊥

out, our smooth
min-entropy condition here considers Cout itself.

1.1 Related Work

Explicit Concatenated Codes. Concatenation (with a single inner code) has been a com-
mon approach to obtain explicit codes close to the GV bound. Here we mention a few
such places this comes up. Choosing Cout to be the Reed–Solomon code, and Cin to be
the Hadamard code, gets a code of length O(k2/ε2) for any dimension k [AGHP92], and

6

replacing Reed–Solomon with the Hermitian code gets length O((k/ε)5/4) [BT13]. Choos-
ing a different AG code for Cout can result in non-vanishing rate and in fact approach rate
ε3 (see [Ta-17]). Moreover, concatenating Reed–Solomon with the Wozencraft ensemble
gives the Justesen code [Jus72], having constant relative rate and constant relative distance.
Note that none of these concatenation-based constructions thus far have beat the Zyablov
bound.

Concatenated Codes with Random Linear Cout. Relevant to Theorem 1.1, [BJT01] stud-
ies a random linear code Cout concatenated with a fixed inner code Cin. (See also [BM10],
which applies the same techniques for an application in compressive sensing). The work
[BJT01] derives bounds on the distance of Cout ◦ Cin in terms of (moments of) the weight
distribution of Cin. These bounds imply that Cout ◦ Cin approaches the GV bound in some
cases, but doesn’t seem to immediately imply Theorem 1.1.

Before discussing their techniques more, we note that the biggest difference between
[BJT01] and our work is that their question is about the behavior of random linear codes,
and so naturally their approach crucially uses the fact that Cout is random. In contrast,
the motivation for our work is to find deterministic sufficient conditions on Cout, and we
invoke a random linear outer code as a proof of concept that our approach is realizable.

Next, we briefly describe the techniques and implications of [BJT01], relative to The-
orem 1.1. The key result of [BJT01] is an expression of the limiting trade-off between the
rate R and the distance δ of Cout◦Cin, in terms of the function ϕ(τ) = lnEX [e

τX], where X is
the weight of a random codeword from Cin and where τ ≤ 0 parameterizes the trade-off.7

They show that this trade-off meets the GV bound when Cin is the identity (trivial) code,
and investigate how it behaves when Cin is a non-trivial code. Towards this, one can use
their trade-off to work out the Taylor series for R around δ = 1/2. It is not hard to see
that under mild conditions on Cin, the first two terms of this Taylor expansion vanish and
hence we obtain R = Θ(ε2) + OCin(ε

3) when δ = 1/2 − ε, where the OCin(·) notation hides
constants that depend on Cin. This implies that if n0 is a constant, independent even of ε,
then Cout◦Cin approaches the GV bound. However, if n0 is growing relative to ε (which it is
in our case, as we take Cin to have rate ε), then the “constant” terms hiding in the OCin(ε

3)
term may depend on n0, which in turn may depend on ε. It seems plausible that when Cin
is a random linear code, this dependence is mild8 and something like Theorem 1.1 could
be established with these techniques, but to the best of our knowledge such a proof has
not appeared in the literature and does not seem to follow immediately.

Non-Concatenation-Based Explicit Constructions. As mentioned above, there have been
several breakthroughs in the past few years obtaining explicit constructions of binary
codes near the GV bound, and even efficient algorithms for them. In a breakthrough re-
sult, Ta-Shma [Ta-17] constructed explicit linear codes of relative distance 1−ε

2
having rate

7In more detail, this trade-off is given by R = 1
n0 ln(2) (τϕ

′(τ)− ϕ(τ)) and δ = ϕ′(τ)
n0

, for τ ≤ 0.
8In particular, as pointed out in [BJT01], the first d⊥ − 1 terms of the Taylor series will agree with the GV

bound, where d⊥ is the dual distance of Cin, which for a random linear code Cin is quite large.

7

ε2+o(1). Ta-Shma’s codes are also ε-balanced, i.e., ∆(x, y) ∈
[
1−ε
2
, 1+ε

2

]
, and thus give rise

to explicit ε-biased sample spaces, which are ubiquitous in pseudorandomness and de-
randomization. Works that followed gave efficient decoding of Ta-Shma codes and their
variants [AJQ+20, JQST20, JST21, RR23, JST23] (see also [BD22] for a different, random-
ized, construction that slightly improves upon the rate of [Ta-17], and admits efficient
decoding). We note that these codes are graph-based, and do not in general have a con-
catenated structure.

Results with Multiple i.i.d. Inner Codes. Thommesen showed that when the outer
code is a Reed–Solomon code, and it is concatenated with n different random linear codes,
one for each coordinate, chosen independently, then the resulting code lies on the GV
bound with high probability [Tho83]. Guruswami and Indyk devised efficient decoding
algorithms for these codes, based on list-recoverability of the outer code [GI04]. That work
used a Reed–Solomon code as the outer code, which is list-recoverable up to the Johnson
bound. Later, Rudra [Rud07] observed that the parameters could be improved by swap-
ping out the Reed–Solomon code for a code that can be list-recovered up to capacity, for
example a Folded Reed–Solomon code. Later work obtained nearly-linear-time decoding
algorithms by swapping out the outer code for a capacity-achieving list-recoverable code
with near-linear-time list-recovery algorithms [HRZW19, KRRZ+20].

We also mention the work of Guruswami and Rudra [GR10], who show that the same
construction (a list-recoverable code concatenated with n different i.i.d. random linear
codes) is list-decodable up to capacity with high probability. In the results [GI04, Rud07,
HRZW19, KRRZ+20] mentioned above, list-recovery of the outer code was needed for
algorithms, not the combinatorial result (which follows already from [Tho83]). In contrast,
in [GR10], the list-recoverability of the outer code is needed for the combinatorial result
itself. In that sense, the flavor is similar to our sufficient condition in Section 5, although
the techniques are very different, and in our work we only use one inner code.

Further Low-randomness Constructions of Binary Codes on GV Bound. If one’s goal
is to explicitly construct a binary code that achieves that GV bound, at least two types
of partial results may be considered as subgoals. In the first class of results, one seeks
explicit codes whose rate vs. distance tradeoff is as close to the GV bound as possible.
This includes the works discussed in the first two paragraphs of Section 1.1 above. A
second path is to seek codes that fully attain the GV bound, and strive to minimize the
amount of randomness used in their construction.

Varshamov’s classic result [Var57] is that a random linear code likely achieves the GV
bound. Constructing such a code of length n and rate R requires sampling either a ran-
dom generating matrix or a random parity-check matrix, and thus O(min{R, 1−R} · n2)
random bits are needed. Two classical elementary constructions—the Wozencraft ensem-
ble [Mas63] and the random Toeplitz Matrix construction (e.g., [GRS, Exercise 4.6]) —are
able to reduce the needed randomness to O(n).

8

So far, no codes achieving the GV bound using o(n) randomness are known. More-
over, there is a certain natural obstacle, which we now describe, that needs to be tackled
before sublinear randomness can be achieved. Say that a random code C ⊆ Fn

2 is uniform
if every x ∈ Fn

2 \ {0} appears in the code with the same probability, namely, pR,n = 2Rn−1
2n−1

.
It is not hard to prove via a union bound that a uniform linear code achieves the GV
bound with high probability (this is exactly Varshamov’s observation). To the best of our
knowledge, every known GV-bound construction to date, including the linear random-
ness constructions mentioned above, is uniform. Unfortunately, a uniform code ensemble
with sublinear randomness cannot exist as long as R is bounded away from 1. Indeed,
to have events that occur with probability pR,n, at least log2

1
pR,n

≈ (1 − R)n random bits
are required. Therefore, a code construction obtaining the GV bound with sublinear ran-
domness would have to do so without being uniform (see also [MRSY24, Section 5]). We
have hope that our sufficient conditions in Theorems 5.1 and 6.2 could be attained by
non-uniform codes. For example, as discussed above, the soft-decoding-like condition of
Theorem 5.1 is reminiscent of results on soft-list-decoding and soft-list-recovery, which in
different parameter regimes can even be achieved by deterministic codes.

A related line of work [GM22, PP24, MRSY24] attempts to construct codes that enjoy a
broad class of desirable combinatorial properties similar to those of random linear codes
using as little randomness as possible. Such properties include not just the GV bound, but
also list decodability up to the Elias bound (see [MRSY24]), list recoverability, and, more
generally, local similarity (see [MRSY24, Definition 2.14]) to a random linear code.

1.2 Technical Overview

In this section we give an overview of the main technical ideas. This section also serves as
an outline of the paper.

Section 3: A moment-based framework. In Section 3, we set up a framework that will
be useful for the results in Section 4 and Section 5. We describe this approach here.

Suppose that we are trying to encode a message m ∈ Fk
q with our concatenated code

C = Cout ◦ Cin, to obtain C(m) = w ∈ Fn·n0
2 . Each symbol of w is indexed by some α ∈ [n]

and some β ∈ [n0]; this symbol is equal to

(Cin(Cout(m)α))β = ⟨Cout(m)α, bβ⟩,

where bβ is the β’th row for a generator matrix G0 ∈ Fn0×k0
2 for Cin, and where the ⟨·, ·⟩

notation denotes the dot product over F2. This motivates the definition of a variable Xm ∈
R defined by

Xm =
∑
α∈[n]

∑
β∈[n0]

(−1)⟨Cout(m)α,bβ⟩.

Indeed, Xm is the bias of w = C(m); the weight of w is at least 1
2
−O(εN) if and only if Xm

is at most O(εN). Thus, to show that the code C has distance at least 1
2
−O(εN), it suffices

9

to show that
max

m∈Fk
q\{0}

Xm = O(εN).

Our strategy will be to consider a large moment of Xm over the choice of a random
nonzero message m:

Em∼Fk
q\{0}[X

r
m]

for some appropriate r. If we can show that this is smaller than (cεN)r/qk, then Markov’s
inequality will imply that

Pr
m∼Fk

q\{0}
[Xm ≥ cεN] ≤

Em∼Fk
q\{0}[X

r
m]

(cεN)r
<

1

qk
,

and in particular that there are no messages m so that Xm ≥ cεN .
In Lemma 3.3, we take a Fourier transform in order to re-write E[Xr

m] as a quantity in-
volving C⊥

out. This quantity can be thought of as follows. For every integer-valued matrix9

V ∈ Zn0×n
≥0 with entries that sum to r, we consider a vector gV ∈ Fn

q defined by considering
the matrix GT

0 · V ∈ Fk0×n
2 and then treating it as a vector gV ∈ Fn

q by identifying each of
the columns in Fk0

2 with elements of Fq. Then the quantity in Lemma 3.3 has to do with
the number of these vectors gV that are in C⊥

out. The exact expression doesn’t matter too
much for this informal discussion; instead we explain below how we use this re-writing
to prove Theorem 4.2 and Theorem 5.1.

Section 4: Most codes Cout are good. Theorem 4.2 informally says that if Cout is a random
linear code, then with high probability Cout◦Cin is near the GV bound. In the proof, we use
our framework from Section 3, and show that with high probability over Cout, the moment
Em[X

r
m] is small for an appropriate r. To do this, we need to count the number of matrices

V described above that are likely to land in C⊥
out. Since Cout is a random linear code, so

is C⊥
out, and so the probability of any particular non-zero gV landing in it is small (about

1/qk), while of course the probability that 0 is contained in C⊥
out is 1. Thus, the challenge

is understanding how many gV -s are actually zero. There are two ways that a matrix V as
described above could lead to gV = 0: Either V = 0 mod 2, or else V is non-zero mod 2
but GT

0 V = 0. The first case can be counted straightforwardly. For the second, we leverage
the weight distribution that the inner code Cin is likely to have. We note that this is the
only place (in any of our arguments) that we need Cin to be a random linear code: We just
need it to have approximately the “right” weight distribution.

Section 5: A soft-decoding-like sufficient condition. The expression that we get for
Em[X

m
r] in Lemma 3.3 directly inspires our soft-decoding-like sufficient condition in The-

orem 5.1. One can view the task of counting the matrices V so that gV ∈ C⊥
out as choosing

9In the actual quantity, the entries of this matrix are ordered, and we denote it V instead of V ; we ignore
the ordering in this discussion for simplicity.

10

a random V and asking about the probability that gV ∈ C⊥
out. If the columns of V were

independent, then this would be the same as choosing the coordinates of gV i.i.d. from
some distribution D. Thus we would get a requirement on Prx∼Dn [x ∈ C⊥

out], similar to the
condition in Equation (1) that we end up with.

Of course, the coordinates are not independent (because the total weight of V is fixed
to be r), but this can be solved. In more detail, we choose r to be a Poisson random
variable, which in this setting makes the columns of V independent. One hiccup is that
the “Poisson-ized” distribution turns out to be meaningfully different than the original
distribution, in the sense that it is much more likely that gV = 0 in the Poisson-ized ver-
sion. This means that the “natural” soft-decoding-like condition that one would get out
of this is not realizable: The probability that gV ∈ C⊥

out is much bigger than we want it
to be, for any Cout, just because gV is too likely to be zero. Fortunately, this seems to be
the only obstacle: as in Equation (1), we separate out the gV = 0 term (using the analysis
from Section 4) to arrive at a condition that is realizable. We explain why the condition is
realizable—that is, why there exists a Cout that meets it—in Remark 8.

Section 6: A smoothness condition on Cout. For our second sufficient condition, we
depart from our moment-based framework and work from first principles. Our main
theorem in Section 6 is Theorem 6.2, which informally says that if the elements of Cout
have “smooth” enough distributions of symbols, in the sense that they each have large
enough min-entropy, that C = Cout ◦ Cin will lie near the GV bound with high probability.
The basic idea is to consider a worst-case assignment of symbols in Fq to codewords in Cin;
this assignment need not be linear and can depend on a particular codeword c ∈ Cout.
Such a worst-case assignment would simply assign the lowest-weight codewords in Cin to
the most frequent symbols in a codeword c ∈ Cout. Using the weight distribution that Cin is
likely to have, along with the min-entropy assumption, we can show that this worst-case
assignment will still result in codewords w ∈ C of weight at least 1

2
−O(ε).

We note that, unlike our sufficient condition from Section 5, we don’t have a proof
of feasibility for our smoothness condition. That is, as far as we know, there may not
be any linear code Cout that is smooth in this sense. However, as a proof of concept we
mention in Remark 9 that a random linear code will have a similar property with high
probability. Moreover, we find it plausible that codewords of algebraically structured codes
(say, Folded Reed–Solomon codes, Folded Multiplicity, or even large sub-codes of plain
Reed–Solomon codes), would satisfy this property, even if a random code does not.

2 Preliminaries

Notation. For a vector x ∈ Fn, and α ∈ [n], we use xα to denote that α’th entry of x.
For x, y ∈ FN

2 , we define ⟨x, y⟩ =
∑N

α=1 xαyα ∈ F2. For fields Fq where q > 2 is a power
of 2, we use ⟨x, y⟩ = Tr(

∑
α xαyα), where Tr : Fq → F2 is the field trace defined below. (In

particular it is not the standard dot product over Fq!) The reason for this is explained later,

11

but informally it is because we will think of elements of Fq as vectors in Fk0
2 when q = 2k0 ,

and our notation matches this.

Codes, Linear Codes, and Random Linear Codes. For a finite field F, a code C ⊆ Fn is
called linear if C is a linear subspace of Fn. The dimension of C as a subspace is called the
dimension of the code. For a linear code C ⊆ Fn, we define the dual code C⊥ ⊆ Fn by

C⊥ =

g ∈ Fn :
∑
α∈[n]

gα · cα = 0 ∀c ∈ C

.

We say that a code C ⊆ Fn is a random linear code of dimension k if C is chosen uniformly
among all subspaces of Fn

2 of dimension k.

Gilbert–Varshamov Bound. In this paper, we study codes that approach the Gilbert–
Varshamov Bound, which states that there exist codes of distance δ and rate R approaching
1− h2(δ). Here, h2 is the binary entropy function, given by

h2(x) = x log

(
1

x

)
+ (1− x) log2

(
1

1− x

)
.

Theorem 2.1 (GV Bound, [Gil52, Var57]). Let δ ∈ [0, 1/2) and let η ∈ (0, 1− h2(δ)]. Then for
any n > 1/η, there exists a (linear) code code C ⊆ Fn

2 with rate

R ≤ 1− h2(δ)− η

and relative distance at least δ.

We are interested in the parameter regime where the rate R of the code is very small
and the distance δ is very large. More precisely, we will focus on the setting where δ =
1/2 − O(ε). It is not hard to see (for example, from the Taylor expansion of the entropy
function) that in this case

1− h2(1/2− ε) = Θ(ε2)

as ε → 0. Thus, our goal will be the following.

Goal 1 (What we mean by “approaching the GV bound” for low-rate codes). In this paper,
we say that a family of low-rate codes CN,ε ⊆ FN

2 “approaches the GV bound” if CN,ε has rate Ω(ε2)
and distance 1/2−O(ε), where the asymptotic notation is as ε → 0 and as N → ∞.

Concatenated Codes and Our Default Parameters. Throughout the paper, we use Cout ⊆
Fn
q and Cin ⊆ Fn0

2 as our outer and inner (linear) codes, both of rate ε. We will let k = εn
and k0 = εn0 = log(q) throughout. As mentioned in the introduction, we sometimes abuse
notation and write Cout : Fk

q → Fn
q and Cin : Fk0

2 → Fn0
2 to represent an arbitrary encoding

map for these codes.

12

Let N = n0 ·n and K = k0 · k. Abusing notation as noted above, the concatenated code
C = Cout ◦ Cin ⊆ FN

2 is given by the encoding map C : FK
2 → FN

q defined as follows. For
a message m ∈ FK

2 , we interpret m as an element of Fk
q and let c = Cout(m); then C(m) is

defined as
C(m) = (Cin(c1), Cin(c2), · · · , Cin(cn)) ∈ FN

2 .

As mentioned in the introduction, we’ll take our inner code Cin ⊆ Fn0
2 to be a random

linear code of dimension k0 = εn0. The important property we will need of Cin is that it
have about the right weight distribution, which we formalize in the following property.

Definition 2.2 (τ -niceness of the inner code). Fix parameters 0 < τ < ε. We say that the inner
code Cin ⊆ Fk0

2 is τ -nice if for any i ∈ {1, . . . , n0}, the number of c ∈ C⊥
in so that weight(c) = i is

at most (
n0

i

)
· 2−n0(ε−τ).

(Notice that we omit the “ε” from the name “τ -nice,” because ε will be the same ε throughout the
paper; it is the rate of both Cin and Cout).

Lemma 2.3. Let Cin ⊆ Fn0
2 be a random linear code of dimension k0 = εn0. Then with probability

at least 1− n0 · 2−τn0 , Cin is τ -nice.

Proof: Let Ei denote the event that C⊥
in has at most

(
n0

i

)
· 2−n0(ε−τ) codewords of weight

i. Note that the expected number of such codewords is at most
(
n0

i

)
2−n0ε, so by Markov’s

inequality,
Pr
Cin
[Ei] ≥ 1− 2−τn0 .

By a union bound,
Pr[Cinis τ -nice] ≥ 1− n02

−τn0 ,

as claimed.

We also need the following observation about random binary linear codes.

Lemma 2.4 (Negative correlation of x ∈ C and y ∈ C). Let C ⊆ Fn
2 be a random linear code

and let x, y ∈ Fn
2 \ {0} such that x ̸= y. Then,

Pr
C
[x, y ∈ C] ≤ Pr

C
[x ∈ C] · Pr

C
[y ∈ C].

Proof: A random linear code of dimension Rn contains a given d-dimensional linear sub-
space of Fn

2 with probability
∏d−1

i=0
2Rn−2i

2n−2i
. Since x and y span a 2-dimensional space, we

have

Pr[x, y ∈ C] =
(
2Rn − 1

)
·
(
2Rn − 2

)
(2n − 1) · (2n − 2)

≤
(
2Rn − 1

2n − 1

)2

= Pr[x ∈ C] · Pr[y ∈ C].

13

Fq as a vector space over F2, and Fourier Analysis. Let q = 2k0 be a power of 2; we will
set q like this for the rest of the paper. It is not hard to see that Fq is a vector space over F2

of dimension k0. In particular, we can identify elements of Fk0
2 with Fq by simply writing

elements of Fq out in any basis of Fq over F2. For convenience, we will choose a particular
basis, which interacts nicely with the trace map, defined by

Tr(x) = x+ x2 + · · ·+ x2k0−1

.

It is well-known that Tr is both F2-linear and also that its image is indeed F2. In that sense,
Tr(·, ·) : Fq ×Fq → F2 behaves a bit like a dot product, and in fact this can be made formal.

In more detail, for any k0 > 0 there always exists a self-dual basis ν1, . . . , νk0 of Fq = F2k0

over F2 (e.g., [SL80, JMV90]); that is, this basis has the property that Tr(νiνj) = 1[i = j].
In particular, this means that if we choose such a basis in order to identify Fq with Fk0

2 , we
have

Tr(α · β) = ⟨α, β⟩
for any α, β ∈ Fq ∼ Fk0

2 , where on the left hand side we treat α and β as elements of Fq,
and on the right hand side we treat them as elements of Fk0

2 .10

The reason we want to do our identification between Fq and Fk0
2 is because it will make

the notation a bit easier for Fourier transforms. For a function φ : Fn
q → R, we define the

Fourier transform of φ, denoted φ̂ : Fn
q → R, by

φ̂(ω) =
1

qn

∑
x∈Fn

q

φ(x)(−1)Tr(⟨ω,x⟩).

Notice that if we were to replace the elements of Fq with their corresponding elements of
Fk0
2 , and treat ω ∈ Fn

q as ω ∈ Fk0n
2 in the natural way, by the above correspondence we can

write this as
φ̂(ω) =

1

2k0n

∑
x∈Fk0n

2

φ(x)(−1)⟨ω,x⟩.

Thus, we will drop the trace notation for the rest of the paper, and just use the above
definition. Not only does this simplify the notation for Fourier transforms, but it allows
us to move back and forth between elements of Fq and elements of Fk0

2 , which we will
want to do anyway as we have to identify elements of Fq as messages for Cin in Fk0

2 .
Next, we record a few useful facts about the Fourier transform. The first is that the

Fourier transform can be inverted: For any function φ : Fn
q → R and any x,

φ(x) =
∑
ω∈Fn

q

φ̂(ω)(−1)⟨x,ω⟩. (2)

The second is that for any Fq-subspace V ⊆ Fn
q , and for any g ∈ Fn

q , we have

1̂V (g) =
|V |
qn

1V ⊥(g). (3)

10Indeed, if we write α =
∑k0

i=1 αiνi and β =
∑k0

j=1 βjνj as elements of Fq , and hence as (α1, . . . , αk0
) and

(β1, . . . , βk0
) as elements of Fk0

2 , then by F2-linearity, Tr(α · β) =
∑

i,j αiβjTr(νi · νj) =
∑

i αiβi = ⟨α, β⟩.

14

3 A Useful Moment Computation

In this section, we define a random variable Xm that quantifies how “bad” a message
m is for our concatenated code, and we prove (Lemma 3.3) that the moments of Xm are
well-behaved.

We use the notation set up in Section 2. Namely, we fix ε > 0, an integer n, and a
power of two q = 2k0 . We consider the concatenated Cout ◦ Cin for linear codes Cout ⊆ Fn

q of
dimension k = εn and Cin ⊆ Fn0

2 of dimension k0 = εn0. We let N = n · n0.
In this section, we think of both Cout and Cin as fixed. The only randomness will be

in choosing a random message m ∈ Fk
q \ {0}. Before we begin, we introduce one more

definition.

Definition 3.1. For a code Cin ⊆ Fn0
2 of dimension k0, let G0 ∈ Fn0×k0

2 be an (arbitrary) generator
matrix for Cin. That is,

Cin = {G0 · x : x ∈ Fk0
2 }.

Let Ω ⊆ Fk0
2 denote the set of rows of G0, so |Ω| = n0. By identifying Fk0

2 with Fq (as described in
Section 2, using a self-dual basis), we may also treat Ω as a subset of Fq. We say that Ω is the set
derived from Cin.

Remark 3. Since G0 can be an arbitrary generator matrix, there is some freedom in defining the set
Ω derived from Cin. It won’t matter for the results in this paper, but it may matter for instantiating
our sufficient condition in Section 5.

Next, we define the random variable whose moments we want to bound.

Definition 3.2. For a message of the outer code m ∈ Fk
q , define

Xm ≜
∑
α∈[n]

∑
b∈Ω

(−1)⟨Cout(m)α,b⟩.

Observe that Xm is the bias (namely, the difference between the zeros and ones) of the
codeword C(m) = Cout(m) ◦ Cin. In particular, if Xm = O(εN) for all nonzero m, this will
imply that the distance of C is least 1/2− O(ε). Thus, our goal will be to show that Xm is
small. Towards that end, we will compute the r-th moment of Xm (over the randomness
of a random nonzero message m), for a suitable large r. Finally, given an ordered list V of
pairs in [n] × Ω, for every α ∈ [n] we denote by Vα the multiset Vα = {b : (α, b) ∈ V} (so b
appears twice in Vα if (α, b) appears twice in V).

The following lemma characterizes the r-th moment of Xm in terms of the dual code
C⊥
out.

Lemma 3.3. Suppose that Ω is derived from Cin. Using the notation above, for every r ≥ 1, it
holds that

E
m∼Fk

q\{0}
[Xr

m] =
1

qk − 1

∑
V∈([n]×Ω)r

(
qk · 1[gV ∈ C⊥

out]− 1
)
,

where V ranges over all tuples ((α1, b1), . . . , (αr, br)), and gV ∈ Fn
q is such that (gV)α =

∑
b∈Vα

b.

15

Remark 4 (Fq-linear codes over Fs
q.). Several constructions of potential outer codes (for example,

Folded RS codes [GR08] or univariate multiplicity codes [Kop15, GW13]) are not linear over their
alphabets but instead are linear over a subfield. That is, the alphabets for these codes are Fs

q for
some s > 1, and the codes are Fq-linear. An inspection of the proof shows that Lemma 3.3 still
holds in this case: The only thing that changes is that we need to define the dual code C⊥

out by
first “unfolding” the original code to treat it as a subspace of (Fq)

sn, taking the dual, and “re-
folding.” Intuitively, the proof goes through because the definition of the Fourier transform is the
same whether the relevant vectors lie in (Fs

q)
n or (Fq)

sn. Similarly, Lemma 3.3 holds when Cout is
any F2-linear code (rather than Fq-linear).

More generally, it is not hard to see that all of the results in the paper go through for Fq-linear
codes over Fs

q (or even any F2-linear codes) Cout. Indeed, the results in Section 4 and Section 5
essentially rely only on Lemma 3.3; while the results in Section 6 are separate but are already
stated for F2-linear codes and can easily be seen to extend to larger alphabets.

Proof of Lemma 3.3: First, we can write, for any m ∈ Fk
q ,

Xr
m =

∑
V=⟨(α1,b1),...,(αr,br)⟩

r∏
j=1

(−1)⟨Cout(m)αj ,bj⟩

Taking the expectation over a random m ∈ Fk
q \ {0}, we have

E
m∼Fk

q\{0}
[Xr

m] =
1

qk − 1

∑
m∈Fk

q\{0}

∑
V

r∏
j=1

(−1)⟨Cout(m)αj ,bj⟩

=
1

qk − 1

∑
m∈Fk

q\{0}

∑
V

∏
α∈[n]

(−1)⟨Cout(m)α,
∑

b∈Vα
b⟩, (4)

where we use the convention that
∑

b∈Vα
b is the zero vector whenever Vα is empty.

Now, for any α ∈ [n], let
φα(x) = (−1)⟨x,

∑
b∈Vα

b⟩.

Taking the Fourier transform over Fk0
2 , we get for every w,

φ̂α(w) =
1

q

∑
x∈Fk0

2

(−1)⟨x,
∑

b∈Vα
b⟩ · (−1)⟨w,x⟩

=
1

q

∑
x∈Fk0

2

(−1)⟨x,w+
∑

b∈Vα
b⟩ = 1

[
w =

∑
b∈Vα

b

]
.

Let us abbreviate m = Cout(m). Plugging the above back to Equation (4), and using the

16

inverse Fourier transform, we get

E
m∼Fk

q\{0}
[Xr

m] =
1

qk − 1

∑
m∈Fk

q\{0}

∑
V

∏
α∈[n]

φα(mα)

=
1

qk − 1

∑
m∈Fk

q\{0}

∑
V

∏
α∈[n]

∑
w∈Fk0

2

φ̂α(w) · (−1)⟨w,mα⟩


=

1

qk − 1

∑
m∈Fk

q\{0}

∑
V

∑
g : [n]→Fk0

2

∏
α∈[n]

φ̂α(gα)

∏
α∈[n]

(−1)⟨gα,mα⟩

.

Moving the sum over m inside, we have

E
m∼Fk

q\{0}
[Xr

m] =
1

qk − 1

∑
V

∑
g∈Fn

q

∏
α∈[n]

φ̂α(gα)

 ∑
m∈Fk

q\{0}

(−1)
∑

α∈[n]⟨gα,mα⟩


=

1

qk − 1

∑
V

∑
g∈Fn

q

∏
α∈[n]

φ̂α(gα)

 ∑
m∈Fk

q\{0}

(−1)⟨g,m⟩

, (5)

where in the second equation we have treated g,m as elements of Fk0n
2 in the natural way.

Next, we observe that

∑
m∈Fk

q\{0}

(−1)⟨g,m⟩ =

{
qk − 1 g ∈ C⊥

out,

−1 otherwise.
(6)

Indeed, we have∑
m∈Fk

q

(−1)⟨g,m⟩ = qn · 1̂Cout(g) = |Cout| · 1C⊥
out
(g) = qk · 1C⊥

out
(g),

and then we subtract off the zero term, where the penultimate inequality follows from
Equation (3).

Thus, given Equation (6), we can write Equation (5) as

E
m∼Fk

q\{0}
[Xr

m] =
1

qk − 1

∑
V

∑
g∈Fn

q

∏
α∈[n]

φ̂α(gα)

(qk · 1[g ∈ C⊥
out

]
− 1
)
. (7)

Recalling our expression for φ̂α, observe that

∏
α∈[n]

φ̂α(gα) = 1

[
∀α ∈ [n], gα =

∑
b∈Vα

b

]
.

17

Thus, in Equation (7), the only nonzero term in the sum over the g-s is gV , which was
indeed defined as gV(α) =

∑
b∈Vα

b. We can then conclude that

E
m∼Fk

q\{0}
[Xr

m] =
1

qk − 1

∑
V

(
qk · 1

[
gV ∈ C⊥

out

]
− 1
)
.

4 Most Linear Codes Cout Work Well

In this section we show that there exist low-rate concatenated linear codes approaching
the GV bound, and in fact most codes Cout will work when concatenated with a random
linear inner code Cin. In more detail, keeping the notation as Section 2 and Section 3, we
show that C = Cout ◦ Cin has distance 1

2
− O(ε), with high probability, when both Cout and

Cin are random linear codes of rate ε. Before our proof, we will set further notation that
will be useful in later sections as well.

Definition 4.1. For a sequence of tuples V = ((α1, b1), . . . , (αr, br)), we define V = V (V) ∈
Nn×n0 to be the “unordered” version of V , that is, V [α, b] is the number of times that the pair (α, b)
appears in V . Further, let B = B(V) simply be V mod 2, where the modulo is taken element-wise.
We refer to the number of 1-s in the matrix as the weight of B, denoted ∥B∥.

Theorem 4.2. There exist constants c, c̄, c̃ > 0 such that the following holds. Fix any integer
k > 0, any ε > 0 sufficiently small (in terms of c̃), and any power-of-two q = 2k0 . Let n0 = k0/ε
and n = k/ε, and let N = n0n. Suppose that q ≥ 2c̃/ε

3 . Let Cin ⊆ Fn0
2 be a linear code of

dimension k0 that is τ -nice, for τ = 1/
√
n0. Let Cout ⊆ Fn

q be an independent random linear code
of dimension k. Then, with probability at least 1 − 2−ε2N/c̄ over the choice of Cout, the relative
distance of C = Cout ◦ Cin ⊆ FN

2 is at least 1
2
− c · ε.

Remark 5 (τ -niceness of inner code). Note that, by Lemma 2.3, a random linear code Cin is τ -
nice for τ = 1/

√
n0 with probability at least 1−2−Ω(

√
n0). Thus, Theorem 4.2 implies that Cout◦Cin

approaches the GV bound with high probability over a random Cin and a random Cout.

Proof: Pick r = ε2N . More precisely, we will choose r to be the smallest even integer
that is larger than ε2N ; we assume without loss of generality that r = ε2N , which will
only affect the constants in the theorem statement, and will make the computations much
more readable. Lemma 3.3 implies that for any fixed Cin (and thus any fixed Ω, the set
derived from Cin, as in Definition 3.1),

E
m∼Fk

q\{0}
[Xr

m] =
1

qk − 1

∑
V∈([n]×Ω)r

(
qk · 1[gV ∈ C⊥

out]− 1
)
. (8)

In order to make the dependence on Cout and Cin more explicit, we will write Xr
m(Cout,Ω).

18

Our strategy will be to take the expectation of Equation (8) over the randomness in
Cout, and use Markov’s inequality. To that end, note that for every sequence of tuples
V = V(Ω), it holds that

Pr
Cout

[
gV ∈ C⊥

out

]
=

{
1 gV = 0,
qn−k−1
qn−1

otherwise.

This is since C⊥
out is a random linear code of dimension n − k. Therefore, upon taking the

expectation over Cout, for any fixed Ω, Equation (8) becomes

E
Cout,m∼Fk

q\{0}
[Xr

m(Cout,Ω)] =
1

qk − 1

∑
V

(
qk Pr

Cout

[
gV ∈ C⊥

out

]
− 1

)
=
∑
V

(
1[gV = 0]− 1

qn − 1
· 1[gV ̸= 0]

)
≤
∑
V

1[gV = 0]. (9)

Thus, we are left with bounding the number of V-s for which gV = 0, recalling that (gV)α =∑
b∈Vα

b.
Using the notation of Definition 4.1, each V gives rise to V (V) ∈ Nn×n0 and B(V) ∈

Fn×n0
2 . Note that gV = 0 if and only if every row of B(V) is a left kernel vector of G0 ∈

Fn0×k0
2 , where G0 is the generating matrix of Cin. That is, if and only if every row of B(V)

belongs to C⊥
in.

We also need the following claim, whose proof we defer.

Claim 4.3. Fix a linear code Cin ⊆ Fn0
2 of dimension k0 that is τ -nice for τ = 1/

√
n0. Let ε ≜ k0

n0

and let r ∈ N. Let G0 ∈ Fn0×k0
2 be a matrix whose left kernel is C⊥

in, and denote

W = {V ∈ ([n]× Ω)r : B(V) ·G0 = 0}.

Then
|W | ≤ (8N)r · (r/N)r/2 · 2

2N√
n0

+log2 N ·max

{
1,
(re

ε2N

)r/2}
.

Now we finish the proof, given Claim 4.3. Let τ = 1/
√
n0 as in the theorem statement.

Let V ∈ ([n]) × Ω)r be such that gV = 0. Recall that every row of B(V) must belong to
C⊥
in, so, in particular, V must belong to W . Hence, for a large enough n0, Equation (9)

19

and Claim 4.3 yield

E
Cout,m∼Fk

q\{0}
[Xr

m(Cout,Ω)] ≤
∑
V

1[gV = 0]

= |W |
≤ (8N)r · (re/N)r/2 · 22N/

√
n0+log2 N

≤ (8N)r · (eε2)r/2 · 22Nε2/
√
c̃ ·N

=
(
8
√
e · 22/

√
c̃ ·Nε

)r
·N

≤
(
32
√
e ·Nε

)r ·N. (10)

Above, in the third line we have used the fact that r = ε2N to replace the maximum in
Claim 4.3 with er/2; in the fourth line we have plugged in r = ε2N and also the fact that
our assumption q ≥ 2c̃/ε

3 implies that n0 ≥ c̃/ε4; and in the last line we have assumed
without loss of generality that c̃ ≥ 1.

By Markov’s inequality,

Pr
Cout

[
∃m ∈ Fk

q \ {0}, Xm(Cout,Ω) > cεN
]

= Pr
Cout

[
∃m ∈ Fk

q \ {0}, Xr
m(Cout,Ω) > (cεN)r

]
≤

∑
m∈Fk

q\{0}

Pr
Cout

[Xr
m(Cout,Ω) > (cεN)r]

≤
∑

m∈Fk
q\{0}

ECout [X
r
m(Cout,Ω)]

(cεN)r

=

(
qk − 1

)
· ECout,m∼Fk

q\{0}[X
r
m(Cout,Ω)]

(cεN)r

≤
2r · ECout,m∼Fk

q\{0}[X
r
m(Cout,Ω)]

(cεN)r
,

where in the last line we have used that qk = 2Nε2 = 2r. Plugging in (10), we see that this
expression is at most (

64
√
e ·Nε

cεN

)r

·N =

(
64
√
e

c

)r

·N.

Thus if we choose c = 128
√
e, we conclude that

Pr
Cout

[∃m ∈ Fk
q \ {0}, Xm(Cout,Ω) > cεN] ≤ N · 2−r

≤ N · 2−Nε2 .

20

As we are assuming that n0 ≥ c̃/ε4, we have that

n0 ≤ 2n0ε2

as long as ε is sufficiently small relative to c̃, and in particular we have

N = n · n0 ≤ 2n·n0ε2 = 2Nε2

as we always have that n ≥ 1. Thus, the above reads

Pr
Cout

[∃m ∈ Fk
q \ {0}, Xm(Cout,Ω) > cεN] ≤ 2−Nε2/2,

which proves the claim after observing that without loss of generality we may take c̄ ≥ 2.

Finally, we prove Claim 4.3.

Proof of Claim 4.3: Let W ′ = {V (V) : V ∈ W}. Since V (V) preserves all the information
in V up to ordering, we have |W | ≤ r! · |W ′|. We turn to bound |W ′|. Let V ∈ W ′. Write
V = B + E where B is a {0, 1} matrix and E is a matrix whose entries are all even. By
abuse of notation we also think of B as a matrix in Fn×n0

2 .
Write p = r

N
. Recall that the sum of entries of V ∈ W ′ is Np. For 0 ≤ m ≤ Np, write

W ′
m for the set of matrices V = B + E ∈ W ′ where the weight of B is exactly m. We

proceed to bound |W ′
m| by separately counting the number of ways to choose E and B.

Choosing E: Given a choice of m, the matrix E has weight Np −m. Each entry of E is
even, so each non-zero entry is at least 2. Thus, there are at most Np−m

2
non-zero entries.

The number of ways to choose these entries is thus at most

Np−m
2∑

t=0

(
N

t

)
≤ 2N ·h2(

Np−m
2N

).

Subject to this choice, the number of possible matrices E is at most(Np−m
2

+Np−m− 1

Np−m

)
≤ 2

3Np
2 .

Choosing B: Let I = {i ∈ [n] : Bi ̸= 0}, where Bi stands for the i-th row of B. The
number of ways to choose I is at most 2n. Write |I| = γ · n for some γ ∈ [0, 1]. Given m
and the choice of I , we claim that there are at most

2
Nγ·

(
h2(m

γN)−ε+ 1√
n0

)

ways to choose the matrix B.

21

Indeed, recall that every row of B must lie in C⊥
in. Let B′ ∈ Fn×n0

2 be a random matrix
sampled uniformly from all matrices with weight m, whose set of non-zero rows is I .
The number of such matrices is at most

(
n0·|I|
m

)
=
(
γN
m

)
≤ 2γN ·h2(m

γN). Conditioning on the
weight of each row of B′, the fact that Cin is (1/

√
n0)-nice implies that

Pr
[
B′

i ∈ C⊥
in | |B′

i| = w
]
=

|{x ∈ C⊥
in : |x| = w}|(

n0

w

) ≤ 2−n0ε+
√
n0

for all i ∈ I . Since the rows of B′
i are independent under this conditioning, the probability

that every row of B′ lies in C⊥
in is at most 2Nγ·

(
−ε+ 1√

n0

)
. The desired bound on the number

of choices for B′ follows.

Obtaining the conclusion: Overall, writing m = αN , we conclude that

log2(|W ′
m|)

N
≤ max

γ∈[0,1]

{
3p

2
+

n

N
+ h2

(
p− α

2

)
+ γ ·

(
h2

(
α

γ

)
− ε+

1
√
n0

)}
≤ max

γ∈[0,1]

{
3p

2
+

n

N
+

1
√
n0

+

(
h2

(
p− α

2

)
+ γ ·

(
h2

(
α

γ

)
− ε

))}
≤ max

γ∈[0,1]

{
3p

2
+

1
√
n0

+
n

N
+

(p− α)

2
log2

(
2

p− α

)
+ (p− α) + α log2

(γ
α

)
+ 2α− γε

}

≤ 5p

2
+

1
√
n0

+
n

N
+

(p− α)

2
log2

(
2

p− α

)
+ α

(
log2

(
1

ε

)
+ 1− ln ln 2 + 1

ln 2

)
≤ 3p+

1
√
n0

+
n

N
+

(p− α)

2
log2

(
1

p− α

)
+ α · log2

(
1

ε

)
.

Here, the third inequality is since h2(x) ≤ −x log2 x + 2x for all x ∈ [0, 1]. The fourth
inequality is by observing that γ = α

ε ln 2
maximizes the expression.

To bound this last expression, we observe11 that it is maximized at

α = max{p− ε2/e, 0}.
11Indeed, the derivative with respect to α of this expression is

1

2 ln(2)

(
1 + ln

(
p− α

ε2

))
.

We consider two cases, one where p < ε2/e and one where p ≥ ε2/e. When p < ε2/e,

ln

(
p− α

ε2

)
< ln(1/e) = −1,

and in particular the derivative is negative for all α ∈ [0, p). This means that the maximum is attained at
α = 0. On the other hand, if p ≥ ε2/e, the derivative is non-negative at zero, and vanishes when α = p−ε2/e,
so the maximum is attained there.

22

Plugging this in, we claim that

log2(|W ′
m|)

N
≤ 3p+

1
√
n0

+
n

N
+

p

2
log2

(
max

{
1

p
,
e

ε2

})
.

In more detail, if p < ε2/e, then plugging in α = 0 yields the 1/p term inside the maxi-
mum. On the other hand, if p ≥ ε2/e, then plugging in α = p− ε2/e, we have

(p− α)

2
log2

(
1

p− α

)
+ α · log2

(
1

ε

)
=

ε2

2e
log2

(e

ε2

)
+

(
p− ε2

e

)
log2

(
1

ε

)
=

ε2

2 ln(2)e
+

p

2
log2

(
1

ε2

)
≤ p

2 ln(2)
+

p

2
log2

(
1

ε2

)
as p ≥ ε2/e

=
p

2
log2

(e

ε2

)
,

which gives us the e/ε2 term inside the maximum. Therefore,

|W | ≤ (Np)!

Np∑
m=0

|W ′
m|

≤ NNp+1 · 23Np+N/
√
n0+n · pNp/2 ·

(
max{1, p/ε2}

)Np/2

≤ (8N)r ·
(r

N

)r/2
· 22N/

√
n0+log2(N) ·

(
max

{
1,

r

ε2N

})r/2
,

where in the last line we have plugged in p = r/N and also used n = N
n0

≤ N√
n0

.

5 A Soft-Decoding Sufficient Condition for Cout
In this section we give a sufficient condition on Cout for Cout◦Cin to approach the GV bound.
This condition is similar to a soft-decoding condition, except where the distributions for
each coordinate are the same. That is, for a particular distribution D on F (defined in
Theorem 5.1 below), we imagine choosing a random word x ∈ Fn

q so that xα ∼ D for
α ∈ [n] are all i.i.d. Then we ask about the probability that x lies in C⊥

out. If this probability
is close to what it “should” be (for, say, a random linear code) then Cout ◦ Cin will approach
the GV bound with high probability over Cin. In more detail, we prove the following
theorem.

Theorem 5.1 (Sufficient soft-decoding condition for Cout). There are constants c̃, c > 0 so
that the following holds. Let ε > 0. Suppose that Cin ⊆ Fn0

2 is a binary linear code of dimension
k0 = εn0 that is τ -nice for τ = 1/

√
n0. Further assume that n0 ≥ 64/ε4. Let Ω ⊆ Fq be the set

defined from Cin as per Definition 3.1.

23

Let Y ∈ F be the random variable given by

Y =
∑
b∈Ω

ζb · b,

where ζb ∼ Ber
(

1−e−2c̃ε2

2

)
are i.i.d. Bernoulli random variables, and let D be the distribution of Y .

Suppose that Cout ⊆ Fn
q is a linear code of dimension k = εn that satisfies

Pr
x∼Dn

[x ∈ C⊥
out \ {0}] ≤

1

qk
(1 + ∆), (11)

where

∆ ≤
(cε
2

)c̃ε2N+100
√
c̃ε2N

.

Then, Cout ◦ Cin is a binary linear code of rate ε2 with relative distance at least 1−cε
2

.

Remark 6 (τ -niceness of inner code). Note that, by Lemma 2.3, a random linear code Cin is
τ -nice for τ = 1/

√
n0 with probability at least 1 − 2−Ω(

√
n0). Thus, Theorem 5.1 implies that if

Cout satisfies Equation (11), then Cout ◦ Cin approaches the GV bound with high probability over a
random Cin.

Remark 7 (The distribution D is somewhat concentrated.). We note that (1 − e−2c̃ε2)/2 =
Θ(ε2) for small ε > 0. In particular, the random variables ζb in the distribution D that appears
in Theorem 5.1 is Ber(p) for p = Θ(ε2). This means that a “typical” draw from D will be a sum
of Θ(ε2n0) elements of Ω, so D has most of its mass on about qO(ε log(1/ε)) elements of Fq, out of q.
In this sense, the condition in Theorem 5.1 is reminiscent of a list-recovery-type condition on C⊥

out,
where the input lists are all the same and have size about ℓ = qO(ε log(1/ε)).

Remark 8 (Codes satisfying Equation (11) exist). While the eventual goal is to explicitly con-
struct a code Cout that satisfies Equation (11), as a proof of concept we remark that such codes do
exist. Indeed, imagine taking a random linear code Cout of dimension k = εn. It is not hard to see
that

E
Cout

[
Pr

x∼Dn
[x ∈ C⊥

out \ {0}]
]
= q−k − q−n.

In particular, there exists a linear code Cout of dimension k so that

Pr
x∼Dn

[x ∈ C⊥
out \ {0}] ≤

1

qk
,

satisfying the condition of Theorem 5.1 with ∆ = 0. (Notice that in the theorem, it is okay if
Prx∼Dn [x ∈ C⊥

out \ {0}] is smaller than 1/qk, it just should not be much larger).

We prove the theorem at the end of the section, after putting a few preliminaries in
place. For the rest of the section, let c̃ and c be the constants in Theorem 5.1.

For a message m ∈ Fk \ {0}, say that m is bad if |Xm| ≥ cεN , where Xm is as defined in
Section 3. Thus, if there are no bad messages, then the conclusion of Theorem 5.1 holds.

24

For any r ≥ 0, define

Br(Cout, Cin) ≜
qk

qk − 1
· 1

(cεN)r
·
∑

V∈(Λ×Ω)r

(
qk · 1[gV ∈ C⊥

out]− 1
)
.

Observation 5.2. For any r, the number of bad messages m ∈ Fk \ {0} is at most Br(Cout, Cin).

Proof: By Lemma 3.3, we have

E
m∼Fk\{0}

[Xr
m] =

1

qk − 1

∑
V∈([n]×Ω)r

(qk · 1[gV ∈ C⊥
out]− 1).

Markov’s inequality along with the definition of Br(Cout, Cin) implies that

Pr
m∼Fk\{0}

[Xm ≥ CεN] ≤ 1

qk
Br(Cout, Cin).

Thus, the total number of of bad m-s is bounded by Br(Cout, Cin), as desired.

We may re-write the sum over V ∈ ([n] × Ω)r as an expectation over a corresponding
distribution Dr on g ∈ Fn

q . That is, to sample from Dr, we choose a sequence V of pairs
(αi, bi) ∈ [n]×Ω for i ∈ [r] independently and uniformly at random; let g ∈ Fn

q be given by

gα =
∑
b∈Vα

b

for α ∈ [n], as we did in Section 3. Thus, the above becomes

Br(Cout, Cin) =
qk

qk − 1
·
(

N

cεN

)r

· Eg∼Dr

(
qk · 1[g ∈ C⊥

out]− 1
)

=
qk

qk − 1
·
(

1

cε

)r

·
(
qk Pr

g∼Dr

[g ∈ C⊥
out]− 1

)
. (12)

This inspires a nice condition for Cout; we want Prg∼Dr [g ∈ C⊥
out] to be about 1/qk. This is

reminiscent of a soft-decoding problem, but one difference is that coordinates gα for α ∈
[n] are not independent. In order to make them independent, as they are in the statement
of Theorem 5.1, we will first choose r randomly from an Poisson distribution. That is, we
will choose

r ∼ Poi(c̃ε2N).

We first observe that choosing r at random like this and then choosing g ∼ Dr results in
the product distribution Dn in Theorem 5.1.

25

Claim 5.3. Suppose that r ∼ Poi(c̃ε2N) and g ∼ Dr. The the joint distribution of the gα is given
by

gα =
∑
b∈Ω

ζα,b · b,

where

ζα,b ∼ Ber

(
1− e−2c̃ε2

2

)
are i.i.d. Bernoulli random variables. In particular, the gα are all independent and identically
distributed for each α ∈ [n].

Proof: We may view the process of choosing the (αi, bi) as dropping r balls into N bins,
with each bin corresponding to a tuple (α, b) ∈ [n]×Ω. Since r ∼ Poi(c̃ε2N), the occupancy
Yα,b of each bin (α, b) is independent, and distributed as

Yα,b ∼ Poi(c̃ε2).

Notice that Yα,b is the number of times that b appears in the multiset Vα. Thus, by defini-
tion, each gα is of the form

gα =
∑
b∈Ω

Yα,bb =
∑
b∈Ω

ζα,bb,

where
ζα,b = Yα,b mod 2.

Above, we can replace Yα,b with ζα,b since we are working over a field of characteristic two.
Since the Yα,b are all independent, so are the ζα,b. Further, ζα,b is a Bernoulli random

variable, and the probability that it is equal to one is the probability that Yα,b is odd. Since
Yα,b ∼ Poi(c̃ε2), this is

Pr[ζα,b = 1] = Pr[Yα,b odd] =
∞∑
j=0

(c̃ε2)2je−c̃ε2

(2j)!
= e−c̃ε2

(
ec̃ε

2 − e−c̃ε2

2

)
=

1

2

(
1− e−2c̃ε2

)
.

This proves the claim.

Given Claim 5.3, we return to (12), and break it up into two terms, one corresponding

26

to the event that g = 0, and one corresponding to the event that g ̸= 0. We have

Br(Cout, Cin) =
qk

qk − 1

(
1

cε

)r

·
(
qk Pr

g∼Dr

[g ∈ C⊥
out]− 1

)
=

qk

qk − 1

(
1

cε

)r

· Pr
g∼Dr

[g = 0] ·
(
qk Pr

g∼Dr

[g ∈ C⊥
out | g = 0]− 1

)
+

qk

qk − 1

(
1

cε

)r

· Pr
g∼Dr

[g ̸= 0] ·
(
qk Pr

g∼Dr

[g ∈ C⊥
out | g ̸= 0]− 1

)
= qk

(
1

cε

)r

· Pr
g∼Dr

[g = 0]

+
qk

qk − 1

(
1

cε

)r

· Pr
g∼Dr

[g ̸= 0] ·
(
qk Pr

g∼Dr

[g ∈ C⊥
out | g ̸= 0]− 1

)
= qk

(
1 +

1

qk − 1

)(
1

cε

)r

· Pr
g∼Dr

[g = 0] (13)

+
qk

qk − 1

(
1

cε

)r

·
(
qk Pr

g∼Dr

[g ∈ C⊥
out \ {0}]− 1

)
(14)

Above, in the second-to-last equality we simplified the first summand by noting that
Prg∼Dr [g ∈ C⊥

out | g = 0] = 1 and canceling the qk − 1 terms. In the final equality, we
distributed Prg∼Dr [g ̸= 0] = 1−Prg∼Dr [g = 0] inside the sum in the second summand, and
moved a resulting 1

qk−1

(
1
cε

)r
Prg∼Dr [g = 0] term to the first summand. We handle the two

terms (13) and (14) separately. The first one we will show is small; and the second we will
show is small if Cout has a particular soft-decoding-like guarantee.

Claim 5.4. Suppose that the constants c, c̃ satisfy

c̃ ≥ 4 ln(2) and c ≥ 72c̃,

and that n is sufficiently large. Suppose that r ∼ Poi(c̃ε2N) as above, and further suppose that
n0 ≥ 64/ε4. Then the expectation over r of the term (13) satisfies

Er[(13)] ≤ 2−ε2N/2.

Proof: First, observe that for fixed r, the probability that g ∼ Dr is zero is precisely what
is bounded in Claim 4.3, and we have

Pr
g∼Dr

[g = 0] ≤ 8r ·
(r

N

)r/2
· 2

2N√
n0

+log2(N) ·
(
max

{
1,

er

ε2N

})r/2
.

Let λ = c̃ε2N be the mean of the Poisson distribution that r is drawn from. Taking the

27

expectation over r and plugging the result of Claim 4.3, the expected value of (13) is:

E
r

[
qk
(

qk

qk − 1

)(
1

cε

)r

Pr
g∼Dr

[g = 0]

]
≤ qk23N/

√
n0

∑
r≥0

(
1

cε

)r

8r
(r

N

)r/2(
max

{
1,

er

ε2N

})r/2
Pr[Poi(λ) = r]

= qk23N/
√
n0

∑
r≥0

(
1

cε

)r

8r
(r

N

)r/2(
max

{
1,

er

ε2N

})r/2(λre−λ

r!

)

= e−λqk23N/
√
n0

∑
r≥0

1

r!

(
8λ
√
r/N

cε

)r(
max

{
1,

er

ε2N

})r/2
= e−λqk23N/

√
n0

ε2N/e∑
r=0

1

r!

(
8λ
√

r/N

cε

)r

+
∑

r>ε2N/e

1

r!

(
8
√
eλr

cε2N

)r

.


Consider each of the two summations above. The first one is bounded by

ε2N/e∑
r=0

1

r!

(
8λ
√

r/N

cε

)r

≤
∞∑
r=0

1

r!

(
8λ
√

ε2/e

cε

)r

= exp

(
8

c
√
e
· λ
)
.

Meanwhile, the second term is bounded by∑
r>ε2N/e

1

r!

(
8
√
eλr

cε2N

)r

≤
∑

r>ε2N/e

(
8e
√
eλr

cε2rN

)r

using r! ≥ (r/e)r

=
∑

r>ε2N/e

(
8e
√
ec̃

c

)r

≤ 2−ε2N/e < 1

provided that c ≥ 16e
√
ec̃. Then, we have

E
r

[
qk
(

1

cε

)r

Pr
g∼Dr

[g = 0]

]
≤ e−λqk23N/

√
n0(exp(8λ/c) + 1)

≤ 2e−λqk23N/
√
n0 exp(8λ/c)

≤ exp
(
ln(2)

(
4N/

√
n0 + ε2N

)
− λ(1− 8/c)

)
.

Above, in the final line we used the fact that qk = 2ε
2N . Plugging in λ = c̃ε2N , we get

Er

[
qk
(

1

cε

)r

Pr
g∼Dr

[g = 0]

]
≤ exp

(
ε2N(ln(2)− c̃(1− 8/c)) +

4 ln(2)N
√
n0

)
.

28

Provided that
c̃ ≥ 4 ln(2) and c ≥ 16,

(which both follow from the assumptions in the theorem statement) we get

Er

[
qk
(

1

cε

)r

Pr
g∼Dr

[g = 0]

]
≤ exp2

(
−ε2N

(
1− 4

ε2
√
n0

))
≤ exp2

(
−ε2N/2

)
,

finally using our assumption that n0 ≥ 64/ε4.

Finally we are ready to prove Theorem 5.1.

Proof of Theorem 5.1: The rate of the code Cout ◦ Cin follows by definition, so we only
need to establish the bound on the relative distance. By Observation 5.2, the number of
bad messages is at most Br(Cout, Cin) for any r, so it suffices to show that there exists an r
so that Br(Cout, Cin) < 1. We will choose r ∼ Poi(λ), where λ = c̃ε2N , as above. As above,
for any r we can write

Br(Cout, Cin) = (13) + (14),

and Claim 5.4 implies that
Er[(13)] ≤ 2−ε2N/2.

In particular, by Markov’s inequality, with probability at least 1 − 2−ε2N/4 over the choice
of r, we have

(13) ≤ 2−ε2N/4. (15)

Now we turn our attention to the term (14):

(14) =
qk

qk − 1

(
1

cε

)r

·
(
qk Pr

g∼Dr

[g ∈ C⊥
out \ {0}]− 1

)
.

Note that, by Claim 5.3, when r ∼ Poi(λ), the distribution Dr is the same as the distribu-
tion Dn from the statement of the theorem. Thus, by the assumption of the theorem,

qk Pr
r∼Poi(λ),g∼Dr

[g ∈ C⊥
out \ {0}]− 1 ≤ ∆ ≤

(cε
2

)λ+100
√
λ

.

Further, by a Chernoff bound for Poisson random variables (e.g., [MU17]),

Pr[r ≥ λ+ 100
√
λ] ≤ exp

(
−1002λ

λ+ 100
√
λ

)
≤ exp(−1002/2)

for sufficiently large N . Thus, union bounding over the event that Equation (15) occurs
and that r ≤ λ+ 100

√
λ, we see that with probability at least

1− 2−ε2N/2 − exp(−1002/2) > 0,

29

over the choice of r, we have

Br(Cout, Cin) ≤ 2−ε2N/4 +
qk

qk − 1

(
1

cε

)λ+100
√
λ

·
(cε
2

)λ+100
√
λ

≤ 2−ε2N/4 + 2−c̃ε2N

< 1.

As this is (much) less than 1 for sufficiently large N , we conclude that in particular there
exists an r so that Br(Cout, Cin) < 1, which proves the theorem.

6 A High Min-Entropy Sufficient Condition for Cout
In this section, we give a second sufficient condition under which Cout will be “good” for
concatenation with a random linear inner code. This second sufficient condition, infor-
mally, says that the codewords of Cout should have “mildly flat” symbol distributions.

In more detail, given a word c ∈ Fn
q , let Dc denote the empirical distribution of symbols

in c. That is, for σ ∈ Fq,
Pr
Dc

[σ] = Pr
α∼[n]

[cα = σ].

(For example, if c = (σ, σ, . . . , σ), then c is the distribution on Fq with 100% of the mass
on σ; and if n = q and c has one of each different symbol in Fq, then c is uniform on Fq).
Given a word c ∈ Fn

q , the min-entropy of the distribution Dc is given by

H∞(c) ≜ − log2max
σ

Pr
Dc

[σ].

Observe that H∞(c) ≤ log2(q).
Our condition will be about a smoothed notation of min-entropy, which informally

allows a small η-fraction of the mass of Dc to have high min-entropy. Formally, for some
smoothness parameter η > 0, we define the smoothed min-entropy Hη

∞ by

Hη
∞(Dc) ≜ max

Dc′ :∆TV(Dc,Dc′)≤η
H∞(Dc′),

where for two distributions Dc, Dc′ , ∆TV is the total variation distance.
Before we state our main theorem in this section (Theorem 6.2 below), we state a

Lemma that we will eventually apply to the inner code Cin.

Lemma 6.1. For any n ∈ N, 8√
n
≤ γ ≤ 1

3
, and integers 24 logn

γ
≤ k ≤ n

5
and 22k/3 ≤ T ≤

2(1−γ)k, a random linear code C ⊆ Fn
2 of dimension k satisfies the following with probability

1− 2−Ω(γk+γ2n+
√
n).

For 0 ≤ j ≤ n, let ∆j be the number of codewords of C of Hamming weight j, and denote by
j⋆ the minimal j for which

∑j
i=0∆i ≥ T . Then,

30

1. It holds that j⋆ ≥ αn, for some α ≥ h−1
2

(
1− 2 · k−log T

n

)
.

2. It holds that
∑j⋆

i=0 i·∆i∑j⋆

i=0 ∆i
≥ (1− 2γ)j⋆.

3. It holds that ∆j⋆+1∑j⋆

i=0 ∆i
≤ 2

√
n.

We defer the proof to the end of the section. Our main result for this section is the
following.

Theorem 6.2. Fix any sufficiently small ε > 0. For any integers k, q ∈ N, so that q = 2k0 is a
power of 2. Let n0 = k0/ε and n = k/ε. Let Cout ⊆ Fn

q be an F2-linear code of rate ε, and let
Cin ⊆ Fn0

2 be a random linear code of rate ε.
Assume further that there exist constants c̄γ, c̄η such that for every nonzero c ∈ Cout,

H c̄ηε
∞ (c) ≥ (1− c̄γε) log q,

and that n0 = Ωc̄γ

(
log(1/ε)

ε2

)
. Then, with probability at least

1− 2−Ωc̄γ (ε
2n0+

√
n0)

over the choice of Cin, the concatenated code C = Cout ◦ Cin has relative distance 1
2
−Oc̄γ ,c̄η(ε).

Remark 9 (Do there exist good Cout?). It is not clear (to us) whether a random linear code
satisfies the min-entropy condition of Theorem 6.2 with high probability (if it did, it would give an
alternate proof of Theorem 4.2). However, as a proof of concept we note that a random linear code
does satisfy the property that the symbols of every nonzero codeword are not contained in a set of
size smaller than q1−γ . Note that this is necessary from any c with H∞(c) ≥ (1− γ) log2(q).

Indeed, taking a random linear code Cout of dimension k = εn, the probability that a given
nonzero codeword violates that constraint is

∑q1−γ

i=1

(
q
i

)
(i/q)n ≈ q−γ(n−q1−γ). Taking the union

bound over all qk codewords in Cout, we get that no nonzero codewords violates the constraint with
high probability, say for γ = 1

2
ε, assuming q = O(n).

Proof of Theorem 6.2: Throughout the proof, let

γ = c̄γε and η = c̄ηε,

where c̄γ and c̄η are the constants from the theorem statement.
As C = Cout ◦Cin is a linear code, to lower bound the distance it suffices to lower bound

the minimum-weight codeword. To that end, fix any nonzero codeword c ∈ Cout, and
consider the word

w = (Cin(c1), Cin(c2), . . . , Cin(cn)).

Order the elements of Fq as σ0, σ1, . . . , σq−1 so that

Pr
Dc

[σ0] ≥ Pr
Dc

[σ1] ≥ · · · ≥ Pr
Dc

[σq−1],

31

and define
pt(c) = Pr

Dc

[σt]

for t ∈ {0, 1, . . . , q − 1}.
To bound the weight of w, it suffices to do so under a worst-case (not necessarily linear)

mapping from Fq to Cin. That is, this worst-case mapping will map the most frequent
symbols in w to the lowest-weight codewords in Cin. Concretely for j ∈ {0, 1, . . . , n0}, let

∆j = {x ∈ Cin : weight(x) = j}

be the number of codewords of Cin of weight j, and let

ℓj = ∆0 +∆1 + · · ·+∆j

be the number of codewords of Cin of weight at most j, with the convention that ℓ−1 = 0.
Then we consider a worst-case encoding of Fq to Cin so that the set of symbols{

σℓ(j−1)
, σℓ(j−1)+1, . . . , σℓj−1

}
maps to the set of ∆j codewords of Cin of weight j. Note that some of these sets may be
empty. For example, Cin is not expected have any small-weight nonzero codewords, so,
e.g., ∆1 is very likely zero.

With this notation, we can bound the weight of w = c ◦ Cin by weight(w) ≥ d(c), where

d(c) ≜ n ·
n0∑
j=0

 ℓj−1∑
t=ℓj−1

pt(c)

 · j

 = n ·
n0∑

j=din

 ℓj−1∑
t=ℓj−1

pt(c)

 · j

, (16)

where din denotes the minimum distance of Cin.
Next, we lower bound d(w) by considering a worst-case empirical distribution Dc for

the symbols in c. That is, we will find the values for pt that minimize Equation (16) while
still corresponding to a distribution p that obeys our assumption that Hη

∞(p) ≥ (1 −
γ) log2(q). For convenience, let

b = (1− γ) log q

be our bound on the smoothed min-entropy.
Formally, we have that for all non-zero c ∈ Cout,

d(c) ≥ d ≜ min
p:Hη

∞(p)≤b
n ·

n0∑
j=din

 ℓj−1∑
t=ℓ(j−1)

pt

 · j

, (17)

where the minimum is over all distributions p = (p0, p1, . . . , pq−1) so that p0 ≥ p1 ≥ · · · ≥
pq−1 ≥ 0 and Hη

∞(p) ≤ b.
For intuition, consider what this worst-case distribution p would be if our requirement

were only that the non-smoothed entropy H∞(p) ≥ b. Then the worst-case distribution

32

p would be the distribution that is uniform on the set of 2b symbols σ that map to the
lowest-weight codewords; in particular, we’d have pt = 2−b for t = 0, . . . , 2b − 1. Given
the η-smoothing allowance, then, the worst-case distribution would simply shift η of this
mass to the symbol that is mapped to the zero codeword. This means that the worst-case
distribution p is the one given by values pt(b) so that:

pt(b) =


η + 2−b t = 0

2−b t = 1, . . . , (1− η)2b − 1

0 else

For a reason that will be apparent soon, we will in fact work with a slightly smaller
entropy bound b′ < b. Towards defining b′, set

T ≜ (1− η)2b,

and let
j⋆ = min{j ≤ n0 : ℓj⋆ ≥ T}.

We then set b′ so that
ℓj⋆−1 = (1− η)2b

′
≜ T ′.

Clearly, the worst-case pt(b
′) is even worse than pt(b). Also note that T

T ′ ≤ 1 +
∆j⋆

ℓj⋆−1
.

Now that we know what the worst-case p looks like, and we still need to bound the
value d in Equation (17). Given our expression for p, we see that

d ≥ n

j⋆−1∑
j=din

 ℓj−1∑
t=ℓ(j−1)

2−b

 · j

 =
n

2b′

j⋆−1∑
j=din

(∆j · j), (18)

Next, we will apply Lemma 6.1 with our choice of γ, and T ′. We conclude that with
probability at least

1− 2−Ω(γk0+γ2n0+
√
n0) = 1− 2−Ωc̄γ (ε

2n0+
√
n0)

over the choice of Cin, the favorable case holds. (Note that we could indeed apply Lemma 6.1,
since γ ≥ 8√

n0
and k0 ≥ 24 logn0

γ
by our lower bound on n0.)

The first conclusion of Lemma 6.1 implies that j⋆ − 1 = αn0 for some α ∈ [0, 1] that
satisfies

α ≥ h−1
2

(
1− 2 · log q − log T ′

n0

)
= h−1

2

(
1− 2 · log q − log T + (log T − log T ′)

n0

)
≥ h−1

2

(
1− 2 ·

log q − log T +
√
n0 + 1

n0

)
≥ h−1

2

(
1− 2 · log q − log T

n0

− 2
√
n0

)
,

33

where the bound on log T−log T ′ follows from the third conclusion of Lemma 6.1. Further,

α ≥ h−1
2

1− 2ε ·

γ +
log
(

1
1−η

)
log q

− 2
√
n0


≥ h−1

2

(
1− 2ε

(
γ +

2η

log q

)
− ε

)
≥ h−1

2 (1− 4εγ) ≥ 1

2
−
√

γε ln 2

where we have used the fact that h−1
2 (1− x2) ≤ 1

2
−

√
ln 2
2

x (see, e.g., [GRS, Lemma B.2.4]),
and that n0 ≥ 4ε−2. We also used the fact that we may assume that ε ≤ 1

2
and q is larger

than some constant depending on c̄γ, c̄η.
Next, the second conclusion of Lemma 6.1 implies that

j⋆−1∑
j=0

(∆j) · j ≥ (1− 2γ) · (j⋆ − 1) ·

(
j⋆−1∑
j=0

∆j

)
≥ (1− 2γ) · αn0 · T ′,

Thus, returning to Equation (18), we have

d

n0 · n
≥ 1

n0 · 2b′
j⋆−1∑
j=0

(∆j · j)

≥ (1− 2γ) · α · T
′

2b′
= (1− 2γ) · α · (1− η),

using the definition of T ′ in the final line. Since N = n0n is the length of the code C =
Cout ◦ Cin, altogether we have that the relative distance of C = Cout ◦ Cin is at least

d

N
≥ (1− 2γ)(1− η)α

≥ (1− 2γ)(1− η)

(
1

2
−
√

γε ln 2

)
≥ 1

2
−
(√

c̄γ ln 2 + c̄γ +
1

2
c̄η

)
ε =

1

2
−Oc̄γ ,c̄η(ε),

as desired.

We are left with proving Lemma 6.1.

Proof of Lemma 6.1: Similarly to what we did in the proof of Theorem 4.2, we will work
with codes whose weight distribution deviates only slightly from that of a random code.
While Theorem 4.2 required only an upper bound on the weights, here we also need a
lower bound.

34

Write p = 2−(n−k) and p′ = 2−(n−k) ·
(
1− 2−k

)
and fix 1 ≤ i ≤ n. Observe that(

n

i

)
· p′ ≤ E

C
[∆i] =

(
n

i

)
· 2

k − 1

2n − 1
≤
(
n

i

)
· p

and

Var
C
[∆i] ≤

(
n

i

)
· p,

where the latter follows from Lemma 2.4. Fix a τ > 0 to be determined soon. Markov’s
inequality now yields

Pr
C

[
∆i ≥ 2τn ·

(
n

i

)
· p
]
≤ 2−τn

and Chebyshev’s inequality yields

Pr

[
∆i ≤

(
n
i

)
· p

2τn

]
≤ 1

(1− 2−τn − 2−k)2 ·
(
n
i

)
· p

.

Fixing any 1 ≤ ℓ ≤ n
2

and taking a union bound, it holds with probability at least 1− n
2τn

−
n

(1−2−τn−2−k)2·(nℓ)·p
that

∆i ≤ 2τn ·
(
n

i

)
· p for all 1 ≤ i ≤ n (19)

and

∆i ≥
(
n
i

)
· p

2τn
for all ℓ ≤ i ≤ n

2
. (20)

Note that Equation (19) means that C⊥ is τ -nice, in the sense of Definition 2.2. Take

τ = min

{
1

8
γ2 ·

(
h−1
2

(
1− k

n

))2

,
k · γ
n

− log n

n

}
, ℓ =

⌊
h−1
2

(
1− 2

3
· k
n

)
n

⌋
.

We bound the probability that Equations (19) and (20) then hold simultaneously, ac-
cording to which of the two terms above minimize τ . If it is the first one, then the proba-
bility is at least

1− n

2
1
8
γ2·(h−1

2 (1− k
n))

2
·n
− n(

1− 2−
1
8
γ2·(h−1

2 (1− k
n))

2
·n − 2−k

)2
·
(
n
ℓ

)
· p

≜ 1− δ1 − δ2.

To bound δ1, we use the fact that h−1
2 (1 − x) ≥ 1

2
− 5x2 whenever x ≤ 1

4
[GRS, Lemma

B.2.4], and get nδ1 ≤ 2−(γ2/128)n, since h−1
2 (1− k

n
) ≥ 1

4
follows from our upper bound on k.

To bound δ2, first note that 1 − 2−γ2·(h−1
2 (1− k

n))
2
·n − 2−k ≥ 1

2
since γ is large enough. Next,(

n
ℓ

)
≥ 1√

2n
2(1−

2k
3n

)n, so
(
n
ℓ

)
p ≥ 1√

2n
2k/3 ≥ 2k/4 (using our lower bound on k). We then have

35

δ2 ≤ n · 2−k/4, and overall, δ1 + δ2 ≤ 2−(γ2/256)n + 2−k/6, again using our lower bound on k
and the fact that γ is large enough.

Next, we bound the probability that Equations (19) and (20) in the case where τ =
k·γ
n

− logn
n

, namely,

1− n

2(
k·γ
n

− logn
n)n

− n(
1− 2−(

k·γ
n

− logn
n)n − 2−k

)2
·
(
n
ℓ

)
· p

≜ 1− δ′1 − δ′2

In this case, δ′1 can be upper bounded by 2−(γ/4)k since logn
n

≤ k·γ
n

and by our lower bound
on k. For δ′2, we again use the fact that

(
n
ℓ

)
p ≥ 2k/4, and we also have that 1−2−τ ·n−2−k ≥ 1

2
,

again from our lower bound on k. Thus, δ′1 + δ′2 ≤ 2−Ω(γk).
Assuming Equations (19) and (20) hold, we show that they imply Items 1 and 2, and

begin with Item 1. By Equation (19), in order to bound j⋆, it suffices to solve the following
equation for j:

j∑
i=0

(
n

i

)
2−(n−k−τn) ≥ T.

Writing j = αn and using standard bounds on the sum of binomial coefficients, we need
to find the smallest α for which αn is an integer, and

2h2(α)n− 1
2
logn−1 · 2−n+k+τn ≥ T.

Thus, the α for which j⋆ = αn satisfies

α ≥ h−1
2

(
1− τ − k − log T + log n

n

)
≥ h−1

2

(
1− 2 · k − log T

n

)
,

since τ ≤ k·γ
n

− logn
n

≤ k−log T−logn
n

.
We now prove Item 2. Let j′ = ⌈α · (1− γ) · n⌉. By Equation (19),

A ≜
j′−1∑
i=0

∆i ≤
j′−1∑
i=0

(
n

i

)
· 2−n+k+τn ≤ 2n(h2(α(1−γ))+τ+ k

n
−1).

By Item 1 and our assumption that T ≥ 2
2k
3 ,

j⋆ = α · n ≥ h−1
2

(
1− 2 · k − log T

n

)
· n ≥ h−1

2

(
1− 2

3
· k
n

)
· n ≥ ℓ.

Hence, Equation (20) yields ∆j⋆ ≥
(
n
i

)
· p · 2−τn, and so,

B ≜
j∗∑

i=j′+1

∆i ≥ ∆j⋆ ≥
(
n

j⋆

)
· p · 2−τn ≥ 2n·(h2(α)− log(2n)

2n
−1+ k

n
−τ).

36

Therefore, ∑j⋆

i=0 i ·∆i∑j⋆

i=0∆i

≥
j′ ·
∑j⋆

i=j′ ∆i∑j⋆

i=0∆i

= j′ · B

A+B
≥ (1− γ) · j⋆ · 1

1 + A
B

.

Now,

log
(
A
B

)
n

≤ h2(α(1− γ))− h2(α) + 2τ +
log(2n)

2n
≤ h2(α(1− γ))− h2(α) + 4τ by the lower bound on γ

≤ −(αγ)2 + 4τ since h′
2(x) ≥ 0 and h′′

2(x) ≤ −2

≤ −(αγ)2 +
1

2
γ2 ·

(
h−1
2

(
1− k

n

))2

≤ −1

2
γ2 ·

(
h−1
2

(
1− k

n

))2

≜ −θ. by Item 1 and the assumption T ≥ 2
2k
3 .

We conclude that ∑j⋆

i=0 i ·∆i∑j⋆

i=0 ∆i

≥ (1− γ)j⋆

1 + 2−θn
.

All that is left is to show that 2−θn ≤ γ. Indeed, this easily follows from our lower bound
on k.

Finally, let us prove Item 3. Following the same reasoning as above, for some τ > 0,
we have that ∆j⋆+1 ≤ 2τn ·

(
n

j⋆+1

)
· p and ∆i ≥ 2−τn ·

(
n
j⋆

)
· p with probability at least

1− 1

2τn
− 1

(1− 2−τn − 2−k)2 ·
(
n
j⋆

)
· p

, (21)

where p = 2−n+k. Now, we readily get

∆j⋆+1∑j⋆+1
i=0 ∆i

≤ ∆j⋆+1

∆j⋆
≤

2τn ·
(

n
j⋆+1

)
· p

2−τn ·
(
n
j⋆

)
· p

≤ 22τn · n− j⋆

j⋆ + 1
≤ 22τn+2,

using the fact that j⋆ ≥ 1
4
n. Set τ = 1

4
√
n

. The above bound is thus at most 2
√
n, and the

success probability, Equation (21), is at least

1− 2−
1
4

√
n − 1

4
· 2−k/4,

where we used 1− 2−τn − 2−k ≥ 1
2
, and(

n

j⋆

)
2−n+k ≥ 2(h2(α)−1+ k

n
− 2 logn

n)n ≥ 2(
k
n
−2· k−log T

n
− 2 logn

n)n ≥ 2(
k
3n

− 2 logn
n)n ≥ 2−k/4.

37

Acknowledgements

We thank Amnon Ta-Shma for helpful and interesting discussions, and collaboration at
the beginning of this work. We thank Arya Mazumdar for pointing out [BJT01] and for
helping us understand its implications. This work was done partly while the authors were
visiting the Simons Institute for the Theory of Computing.

References

[ABN+92] Noga Alon, Jehoshua Bruck, Joseph Naor, Moni Naor, and Ron M. Roth.
Construction of asymptotically good low-rate error-correcting codes through
pseudo-random graphs. Information Theory, IEEE Transactions on, 38(2):509–
516, 1992.

[AGHP92] Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. Simple con-
structions of almost k-wise independent random variables. Random Structures
& Algorithms, 3(3):289–304, 1992.

[AJQ+20] Vedat Levi Alev, Fernando Granha Jeronimo, Dylan Quintana, Shashank Sri-
vastava, and Madhur Tulsiani. List decoding of direct sum codes. In Proceed-
ings of the 31st Symposium on Discrete Algorithms (SODA 2020), pages 1412–
1425. ACM-SIAM, 2020.

[BD22] Guy Blanc and Dean Doron. New near-linear time decodable codes closer to
the GV bound. In Proceedings of the 37th Computational Complexity Conference
(CCC 2022). Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2022.

[BJT01] Alexander Barg, Jørn Justesen, and Christian Thommesen. Concatenated
codes with fixed inner code and random outer code. IEEE Transactions on
Information Theory, 47(1):361–365, 2001.

[BM10] Alexander Barg and Arya Mazumdar. Small ensembles of sampling matri-
ces constructed from coding theory. In 2010 IEEE International Symposium on
Information Theory, pages 1963–1967. IEEE, 2010.

[BT13] Avraham Ben-Aroya and Amnon Ta-Shma. Constructing small-bias sets from
algebraic-geometric codes. Theory of Computing, 9(5):253–272, 2013.

[For65] G. David Forney. Concatenated codes. Technical Report 440, Research Labo-
ratory of Electronics, MIT, 1965.

[GI04] Venkatesan Guruswami and Piotr Indyk. Efficiently decodable codes meet-
ing gilbert-varshamov bound for low rates. In Proceedings of the 15th Sympo-
sium on Discrete Algorithms (SODA 2004), pages 756–757. ACM-SIAM, 2004.

38

[GI05] Venkatesan Guruswami and Piotr Indyk. Linear-time encodable/decodable
codes with near-optimal rate. IEEE Transactions on Information Theory,
51(10):3393–3400, 2005.

[Gil52] Edgar N. Gilbert. A comparison of signalling alphabets. The Bell system tech-
nical journal, 31(3):504–522, 1952.

[GM22] Venkatesan Guruswami and Jonathan Mosheiff. Punctured Low-Bias Codes
Behave Like Random Linear Codes. In Proceedings of the 63rd Annual Sympo-
sium on Foundations of Computer Science (FOCS 2022), pages 36–45. IEEE, 2022.

[GR08] Venkatesan Guruswami and Atri Rudra. Explicit codes achieving list decod-
ing capacity: Error-correction with optimal redundancy. IEEE Transactions on
Information Theory, 54(1):135–150, 2008.

[GR10] Venkatesan Guruswami and Atri Rudra. The existence of concatenated codes
list-decodable up to the hamming bound. IEEE Transactions on information
theory, 56(10):5195–5206, 2010.

[GRS] Venkatesan Guruswami, Atri Rudra, and Madhu Sudan. Essential Coding The-
ory.

[GW13] Venkatesan Guruswami and Carol Wang. Linear-algebraic list decoding for
variants of Reed-Solomon codes. IEEE Transactions on Information Theory,
59(6):3257–3268, 2013.

[HRZW19] Brett Hemenway, Noga Ron-Zewi, and Mary Wootters. Local list recovery of
high-rate tensor codes and applications. SIAM Journal on Computing, pages
FOCS17–157, 2019.

[JMV90] Dieter Jungnickel, Alfred J. Menezes, and Scott A. Vanstone. On the number
of self-dual bases of GF(qm) over GF(q). Proceedings of the American Mathemat-
ical Society, 109(1):23–29, 1990.

[JQST20] Fernando Granha Jeronimo, Dylan Quintana, Shashank Srivastava, and Mad-
hur Tulsiani. Unique decoding of explicit ε-balanced codes near the Gilbert–
Varshamov bound. In Proceedings of the 61st Annual Symposium on Foundations
of Computer Science (FOCS 2020), pages 434–445. IEEE, 2020.

[JST21] Fernando Granha Jeronimo, Shashank Srivastava, and Madhur Tulsiani.
Near-linear time decoding of Ta-Shma’s codes via splittable regularity. In
Proceedings of the 53rdth Annual Symposium on Theory of Computing (STOC
2021), pages 1527–1536. ACM, 2021.

[JST23] Fernando Granha Jeronimo, Shashank Srivastava, and Madhur Tulsiani. List
decoding of tanner and expander amplified codes from distance certificates.

39

In Proceedings of the 64th Annual Symposium on Foundations of Computer Science
(FOCS 2023), pages 1682–1693. IEEE, 2023.

[Jus72] Jørn Justesen. Class of constructive asymptotically good algebraic codes.
IEEE Transactions on Information Theory, 18(5):652–656, 1972.

[Kop15] Swastik Kopparty. List-decoding multiplicity codes. Theory of Computing,
11(1):149–182, 2015.

[KRRZ+20] Swastik Kopparty, Nicolas Resch, Noga Ron-Zewi, Shubhangi Saraf, and
Shashwat Silas. On list recovery of high-rate tensor codes. IEEE Transactions
on Information Theory, 67(1):296–316, 2020.

[KV03] Ralf Koetter and Alexander Vardy. Algebraic soft-decision decoding of reed-
solomon codes. IEEE Transactions on Information Theory, 49(11):2809–2825,
2003.

[Mas63] James L. Massey. Threshold decoding. Technical Report 410, Research Labo-
ratory of Electronics, MIT, 1963.

[MRSY24] Jonathan Mosheiff, Nicolas Resch, Kuo Shang, and Chen Yuan. Randomness-
efficient constructions of capacity-achieving list-decodable codes. arXiv
preprint, 2024.

[MU17] Michael Mitzenmacher and Eli Upfal. Probability and computing: Randomiza-
tion and probabilistic techniques in algorithms and data analysis. Cambridge uni-
versity press, 2017.

[NN93] Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient con-
structions and applications. SIAM Journal on Computing, 22(4):838–856, 1993.

[PP24] Aaron (Louie) Putterman and Edward Pyne. Pseudorandom Linear Codes
Are List-Decodable to Capacity. In Proceedings of the 15th Innovations in The-
oretical Computer Science Conference (ITCS 2024), pages 90:1–90:21. Schloss-
Dagstuhl-Leibniz Zentrum für Informatik, 2024.

[RR23] Silas Richelson and Sourya Roy. Gilbert and Varshamov meet Johnson: List-
decoding explicit nearly-optimal binary codes. In Proceedings of the 64th An-
nual Symposium on Foundations of Computer Science (FOCS 2023), pages 194–
205. IEEE, 2023.

[Rud07] Atri Rudra. List decoding and property testing of error-correcting codes. University
of Washington, 2007.

[SL80] Gadiel Seroussi and Abraham Lempel. Factorization of symmetric matri-
ces and trace-orthogonal bases in finite fields. SIAM Journal on Computing,
9(4):758–767, 1980.

40

[Ta-17] Amnon Ta-Shma. Explicit, almost optimal, ε-balanced codes. In Proceedings
of the 49th Annual Symposium on Theory of Computing (STOC 2017), pages 238–
251. ACM, 2017.

[Tho83] Christian Thommesen. The existence of binary linear concatenated codes
with Reed–Solomon outer codes which asymptotically meet the Gilbert–
Varshamov bound. IEEE Transactions on Information Theory, 29(6):850–853,
1983.

[Var57] Rom Rubenovich Varshamov. Estimate of the number of signals in error cor-
recting codes. Docklady Akad. Nauk, SSSR, 117:739–741, 1957.

[Zya71] Victor Vasilievich Zyablov. An estimate of the complexity of constructing
binary linear cascade codes. Problemy Peredachi Informatsii, 7(1):5–13, 1971.

41

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

