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Abstract

We prove that random low-degree polynomials (over F2) are unbiased, in an extremely general sense.
That is, we show that random low-degree polynomials are good randomness extractors for a wide class
of distributions. Prior to our work, such results were only known for the small families of (1) uniform
sources, (2) affine sources, and (3) local sources. We significantly generalize these results, and prove the
following.

1. Low-degree polynomials extract from small families. We show that a random low-degree poly-
nomial is a good low-error extractor for any small family of sources. In particular, we improve
the positive result of Alrabiah, Chattopadhyay, Goodman, Li, and Ribeiro (ICALP 2022) for local
sources, and give new results for polynomial and variety sources via a single unified approach.

2. Low-degree polynomials extract from sumset sources. We show that a random low-degree poly-
nomial is a good extractor for sumset sources, which are the most general large family of sources
(capturing independent sources, interleaved sources, small-space sources, and more). Formally,
for any even d, we show that a random degree d polynomial is an ε-error extractor for n-bit sumset
sources with min-entropy k = O(d(n/ε2)2/d). This is nearly tight in the polynomial error regime.

Our results on sumset extractors imply new complexity separations for linear ROBPs, and the tools
that go into its proof may be of independent interest. The two main tools we use are a new structural
result on sumset-punctured Reed-Muller codes, paired with a novel type of reduction between extractors.
Using the new structural result, we obtain new limits on the power of sumset extractors, strengthening
and generalizing the impossibility results of Chattopadhyay, Goodman, and Gurumukhani (ITCS 2024).

*UC Berkeley. oalrabiah@berkeley.edu. Supported by a Saudi Arabian Cultural Mission (SACM) Scholarship, NSF
Award CCF-2210823, and a Simons Investigator Award (Venkatesan Guruswami).

†UT Austin. jpmgoodman@utexas.edu. Supported by a Simons Investigator Award (#409864, David Zuckerman).
‡Ben-Gurion University. mosheiff@bgu.ac.il. Supported by an Alon Fellowship and by DOE grant # DE-SC0024124

while visiting the Simons Institute for the Theory of Computing
§Instituto de Telecomunicações and Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa.
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1 Introduction

In this work, we are interested in the following open-ended question:

How biased is a random degree d polynomial f : Fn
2 → F2?

By random degree d polynomial, we mean a polynomial of the form

f(x) =
∑

S⊆[n]:|S|≤d

αS · xS ,

where xS :=
∏

i∈S xi and the coefficients αS are sampled independently and uniformly at random from F2.
And by bias, perhaps the most basic definition is to simply check the difference between how many inputs
are mapped to 0 and 1. Or more formally, letting Un denote the uniform distribution over Fn

2 ,

bias(f) := Pr
x∼Un

[f(x) = 0]− Pr
x∼Un

[f(x) = 1].

For these definitions of random and bias, Ben-Eliezer, Hod, and Lovett [BHL12] – building on a pair of ear-
lier papers [KS05, ABK08] – provided a complete answer to the above question. In particular, they showed
sharp concentration bounds on | bias(f)|, concluding that a random degree d polynomial is essentially un-
biased on a uniform input, with extremely high probability. More precisely, they proved the following.

Theorem 0 (Random low-degree polynomials are unbiased [BHL12, Lemma 1.2]). For every δ ∈ (0, 1)
there is a constant c > 0 such that the following holds. Let d ∈ N be an integer satisfying 1 ≤ d ≤ (1−δ)k.
Then for a random degree d polynomial f : Fn

2 → F2,

Pr
f

[
|bias(f)| > 2−cn/d

]
≤ 2

−c( n
≤d).

They showed these bounds were tight, and a later work extended these results to all prime fields [BOY20].
While Theorem 0 is interesting in its own right (since low-degree polynomials are fundamental objects),

its pursuit was largely motivated by applications in coding theory, complexity theory, and pseudorandom-
ness. Indeed, given this new result, Ben-Eliezer, Hod, and Lovett immediately obtained important corol-
laries in each of these areas. In coding theory, they obtained new tail bounds on the weight distribution
of Reed-Muller codes. In complexity theory, they showed that (random) low-degree polynomials cannot
be approximated by polynomials of smaller degree. And in pseudorandomness, they obtained new lower
bounds on the seed length of pseudorandom generators (PRGs) for low-degree polynomials.

Since we now understand the bias of a random low-degree polynomial on a uniform input, it is natural to
ask whether a more general result can be proven for weakly random inputs - especially given the connection
this problem has to pseudorandomness. But in order to make this question formal, we’ll need a more general
definition of bias, which allows the function to receive a weakly random input. Towards this end, given a
random variable (“source”) X over Fn

2 , we define

biasX(f) := Pr
x∼X

[f(x) = 0]− Pr
x∼X

[f(x) = 1].

Given this definition, a simple observation is that biasUn(f) = bias(f), and thus establishing concentration
bounds for | biasX(f)| is a strictly more general problem than doing so for |bias(f)|. But how should we use
this generality? And for what distributions X is it actually interesting to understand |biasX(f)|? Recall that
we would like to understand |biasX(f)| for weakly random X, but it is still not clear what weakly random
should mean. To answer all of these questions and more, we enter the world of randomness extraction.
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Randomness extractors

Randomness extractors are fundamental objects in pseudorandomness and complexity theory. They are
motivated by the fact that nature can only provide us with weak sources of randomness, yet most applications
in computer science require perfectly uniform bits. Formally, they are defined as follows.

Definition 1 (Randomness extractor). Let X be a family of sources X ∼ {0, 1}n. A deterministic function
Ext : {0, 1}n → {0, 1}m is an extractor for X with error ε if for any X ∈ X ,

∆(Ext(X),Um) ≤ ε,

where ∆(·, ·) denotes statistical distance. For short, we also call Ext an ε-extractor for X .

Ever since extractors were first introduced, they have found countless unexpected applications in complexity,
cryptography, pseudorandomness, and theoretical computer science. For a survey, see [Vad12, Goo23].

In this paper, we will focus on extractors that output one bit.1 In this case, the requirement in Definition 1
reduces to a requirement that for any X ∈ X , it holds that |Pr[Ext(X) = 1]− 1/2| ≤ ε. Or in other words,

|biasX(Ext)| ≤ 2ε.

Thus, returning to our original discussion, we see that getting good bounds on | biasX(f)| for a random low-
degree polynomial f is equivalent to showing that a random low-degree polynomial is a good extractor for
X. Thus, in order to figure out interesting distributions X for which to pursue upper bounds on | biasX(f)|,
it is only natural to borrow some motivation from extractor theory. We do so, below.

Key questions

In order to show that a random low-degree polynomial extracts from a distribution X ∼ {0, 1}n (equiva-
lently, in order to upper bound |biasX(f)|), it is easy to see that an absolute minimum requirement is that X
contains some “randomness.” To formalize this notion, it is standard to use min-entropy, defined as follows.

H∞(X) := min
x∈supp(X)

log

(
1

Pr[X = x]

)
.

If X has min-entropy H∞(X) ≥ k, we often refer to it as an (n, k)-source.
Unfortunately, a well-known impossibility result says that even if each source X ∈ X has nearly full

min-entropy, it is still impossible to extract [CG88].2 Thus, in order to make extraction possible, we not
only need a lower bound on the min-entropy of each X ∈ X , but we also need to assume that each X ∈ X
has some structure. Towards this end, the oldest trick in the book is to assume that the family X is not
too large. In this case, since a uniformly random function extracts from one source X (with a min-entropy
guarantee) with extremely high probability [Vad12, Proposition 6.12], a simple union bound allows one to
conclude that there exists a single function that extracts from all sources X ∈ X .

Given the above discussion, it is natural to ask whether an analogous fundamental result can be estab-
lished for uniformly random low-degree polynomials, which immediately raises the question,

How biased is a random degree d polynomial on a single (n, k)-source X?

1As we will see, there are often relatively standard tricks that can boost the output length of an extractor, once one bit is obtained.
2Crucially, this is because the extractor Ext must be a single function that works for all X ∈ X .
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If we can show that |biasX(f)| is low with extremely high probability over f , then we can conclude that
random low-degree polynomials extract from any small family X of sources. Importantly, many well-
studied families of sources are, in fact, very small. In particular, this is true of all families for which random
low-degree polynomial extractors have been studied: uniform sources [BHL12], affine sources [CT15], and
local sources [ACG+22].3 Thus, showing that a random low-degree polynomial is unbiased on any single
source X of min-entropy k could lead to a result that subsumes (and greatly generalizes) all previous work.

Unfortunately, several important families of sources X are quite large. For these, the above approach
cannot be used to show that random low-degree polynomials extract. Here, the most general (well-studied)
family is the family X of sumset sources [CL16], a model inspired by fundamental structures in addi-
tive combinatorics. Formally, an (n, k)-sumset source is defined to have the form X = A + B, where
A,B ∼ {0, 1}n are independent sources of min-entropy at least k, and + denotes bitwise XOR. Sumset
sources generalize a huge number of other well-studied large families [CL16, CG22, CL22], including:
independent sources [CG88], interleaved sources [RY11], and small-space sources [KRVZ11] (and affine
sources [BSHR+01], though this family is small). Thus, to complement our first question, we also ask:

How good is a random degree d polynomial as an extractor
for the family of (n, k)-sumset sources?

In the remainder of this paper, our goal is to answer both of the questions presented above. In doing
so, we hope to provide new insight into the power of a fundamental computational model (low-degree
polynomials) for a fundamental computational task (randomness extraction). As it turns out, however, there
are a few other reasons why answering these questions might be useful. Before we formally present our
main results, we highlight some of these, below.

Pseudorandomness Low-complexity extractors have important applications in the real world and theory.
In the real world, low-complexity extractors are more likely to be implemented and exhibit a reasonable
running time. In theory, low-complexity extractors serve as fundamental building blocks in the construction
of key cryptographic [Lu02, Vad04] and pseudorandom primitives [Li11, LZ24].4 Their study has also led
to important structural results for well-studied families of distributions [CT15, ACG+22]. Because of this,
low-complexity extractors have received a lot of attention in the literature [DM02, Lu02, Vad04, Vio05,
DT09, Li11, BG13, GVW15, CT15, CL18, ACG+22, HIV22, CW24, LZ24], with the works of Cohen and
Tal [CT15] and Alrabiah, Chattopadhyay, Goodman, Li, and Ribeiro [ACG+22] specifically focusing on the
power of random low-degree polynomials as extractors (for affine sources and local sources, respectively).

Coding theory Low-degree polynomials are fundamental objects in both algebra and coding theory, and
studying whether they are good extractors ultimately requires proving new structural results about them
(leading to new insights in these two areas). As an example, the work of Ben-Eliezer, Hod, and Lovett

3The family of uniform sources is the trivial family X = {Un}, while the family of affine sources (of min-entropy k) consists
of all X ∼ Fn

2 that are uniform over a k-dimensional affine subspace of Fn
2 . Local sources, on the other hand, consist of sources of

the form X = f(Uℓ), where f is some function where each output bit depends on a bounded number of input bits.
4In fact, several well-known explicit extractors are themselves low-degree polynomials [CG88, BNS92, BSHR+01, Bou05,

Dvi09, LZ19]! For example, the inner-product extractor [CG88, BSHR+01] is a degree 2 polynomial of its input, while the
generalized inner-product extractor [BNS92, Dvi09, LZ19] is its natural extension to degree d. A version of Bourgain’s two-
source extractor [Bou05] can also be seen as a low-degree polynomial over F3. More precisely, the version of Bourgain’s extractor
Bou(x, y) = ⟨(x, x2), (y, y2)⟩, where ⟨·, ·⟩ denotes the inner product over F3, with x, y ∈ Fn

3 for n prime and x2 and y2 computed
in F3n (see [Dvi12, Section 3.5.2]), is a degree ≤ 4 F3-polynomial, since the representations in Fn

3 of x2 and y2 can be computed
as n-variate F3-polynomials of x and y of degree ≤ 2 [Kop10, Lemma 2.3.1].
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[BHL12] (on low-degree extractors for uniform sources) immediately gave new bounds on the weight dis-
tribution of Reed-Muller codes. On the other hand, the results of Cohen and Tal [CT15] (on low-degree
extractors for affine sources) showed that every low-degree polynomial must have a big subspace in its solu-
tion set. And the paper of Alrabiah, Chattopadhyay, Goodman, Li, and Ribeiro [ACG+22] (on low-degree
extractors for local sources) proved a new type of “Chevalley-Warning theorem,” which established that
every (small) system of low-degree polynomial equations must have a solution with low Hamming weight.

Complexity theory Finally, low-complexity extractors can help us establish fine-grained complexity sep-
arations (as advocated for in, e.g., [HHTT23]). In more detail, extractors are known to exhibit strong lower
bounds against a variety of well-studied complexity classes, including low-depth circuits [HR15, GKW21],
general circuits [DK11, GK16, FGHK16, GKW21, LY22], various flavors of branching programs [HR15,
CGZ22, GPT22, CL23], and more [CS16, GKW21, GG25, CG25]. Showing that there exist extractors in a
low-level complexity class C would allow one to separate C from the classes above.

1.1 Our results

In this paper, we show that random low-degree polynomials extract from any small family of sources, and
from the (large) family of sumset sources. This answers both questions presented in the introduction, and
we present these two results (respectively) in Sections 1.1.1 and 1.1.2.

1.1.1 Low-degree polynomials extract from small families

In order to prove that random low-degree polynomials can extract from any small family, we first show that
a random low-degree polynomial extracts from a single source. In particular, we prove the following, which
can be viewed as both (1) a “low-degree” version of the classical fact that a random function extracts from
a single source [Vad12, Proposition 6.12], and (2) a generalization of the result that a random low-degree
polynomial has low bias [BHL12, Lemma 1.2] (Theorem 0).

Theorem 1 (Low-degree polynomials extract from a single source). For every δ ∈ (0, 1) there is a constant
c > 0 such that the following holds. Let X ∼ Fn

2 be a source with min-entropy at least k, and let d ∈ N be
an integer satisfying 1 ≤ d ≤ (1− δ)k. Then for a random degree d polynomial f : Fn

2 → F2,

Pr
f

[
|biasX(f)| > 2−ck/d

]
≤ 2

−c( k
≤d).

We highlight some key aspects of this result. First, it has a simple proof, which follows by combining
[BHL12, Lemma 1.2] (Theorem 0) with the leftover hash lemma [HILL99]. Second, it is easy to verify that
it is tight.5 Third, we emphasize that the above result works for any distribution of min-entropy at least k,
not just those that are “flat” (uniform over a subset S ⊆ Fn

2 of size 2k). This is crucial in some applications.6

We also note that by a standard application of the XOR lemma [DLWZ14, Lemma 3.8], it is straightfor-
ward to extend Theorem 1 to show that a sequence of independent, uniformly random degree d polynomials
f1, f2, . . . , fm : Fn

2 → F2 can be concatenated to create a multi-bit extractor for X.7 In fact, this can further

5This follows by considering the (n, k)-source X which is uniform on the first k bits and constantly 0 on the remaining bits,
combined with the tightness of Theorem 0.

6Even though arbitrary (n, k)-sources are known to be convex combinations of flat (n, k)-sources [Vad12, Lemma 6.10], this
convex combination may end up bringing the source X out of the “small family” X .

7In order to apply the XOR lemma, the only observation needed is that the XOR of (any number of) independent, uniformly
random degree d polynomials applied to X is, itself, a uniformly random degree d polynomial applied to X.
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be extended to show that the sequence f1, f2, . . . , fm not only extracts m uniform bits from X, but has
low correlation with any (short) fixed function g applied to X.8 Finally, if we set k = n, m = 1, and g
to have output length 1, this result can be interpreted as nontrivial bounds on the list-size of Reed-Muller
codes at the extreme (relative) radius of 1/2− 2−Ω(n/d). This appears to be the first result of this form (c.f.
[KLP12, ASW15, ASY20]), and naturally extends to punctured Reed-Muller codes (by picking k < n).

Returning to our original problem, it is straightforward to combine Theorem 1 to show our unifying
result: that random low-degree polynomials extract from any small family of sources, with exponentially
small error. We record this corollary below, and instantiate the general result with three interesting small
families of sources: local sources, polynomial sources, and variety sources. The family of local sources are
easily shown to be small, while the families of polynomial sources and variety sources were recently shown
to be small via “input reduction lemmas” [CGG24, CT15].

Corollary 1 (Low-degree polynomials extract from small families). For every δ > 0 there exists a constant
c > 0 such that for all n ≥ k ≥ d ∈ N with d ≤ (1− δ)k, the following holds. For any family X of (n, k)-

sources with size |X | < 2
c( k

≤d), a random degree d polynomial f : {0, 1}n → {0, 1} is a 2−ck/d-extractor

for X , except with probability at most 2−c( k
≤d).

In particular, we obtain the following for a sufficiently large constant C > 0 depending only on δ.

• Local sources: There exists a degree ≤ d polynomial f : {0, 1}n → {0, 1} that is a 2−ck/d-extractor
for r-local sources with min-entropy

k ≥ Cd(2rn+ rn log n)1/d.

• Polynomial sources: There exists a degree ≤ d polynomial f : {0, 1}n → {0, 1} that is a 2−ck/d-
extractor for degree r polynomial sources with min-entropy

k ≥ C

(
Crdd

rr
· n
)1/(d−r)

.

• Variety sources: There exists a degree ≤ d polynomial f : {0, 1}n → {0, 1} that is a 2−ck/d-extractor
for degree r variety sources with min-entropy

k ≥ Cdn(r+1)/d.

We make a few brief remarks about this result. First, we note that our result on local sources significantly
improves the parameters of the previous best result [ACG+22, Theorem 1.1], which required min-entropy
k ≥ C2rr2d(2rn log n)1/d and had error ε = 2−ck/(d32rr2). Second, we highlight that our result on polyno-
mial sources may be surprising, as it shows that polynomials can be used to extract from polynomial sources.
Perhaps this can be used to make progress on (the challenging goal of) constructing explicit extractors for
polynomial sources [DGW09, CGG24], as it suggests that it is possible to improve the quality of a polyno-
mial source while keeping it as a polynomial source. Third, we mention one interesting application of our re-
sult on variety sources. By exploiting known hardness results for variety extractors [LY22, GK16, GKW21],
it follows that (general) circuits of size 3.1n − o(n) cannot compute (all) degree 3 polynomials, circuits of
size 3.11n − o(n) cannot compute degree 4 polynomials, and circuits of size 3.9n − o(n) cannot compute
degree 18 polynomials. Finally, we note that in Section 4.3, we show that Corollary 1 (in fact, Theorem 0)
can be used to prove low-degree polynomials are good linear seeded extractors.9

8This can be done by first conditioning on the output of g(X), which will only cause X to lose a little bit of min-entropy.
9Recall that a linear seeded extractor only needs to be linear on the source (fixing the seed), but may be an arbitrarily high-degree

polynomial in general.
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Concurrent work In a concurrent and independent work, Golovnev, Guo, Hatami, Nagargoje, and Yan
[GGH+24] prove similar results to those presented above (in Section 1.1.1). In particular, they show that
random low-degree polynomials are good extractors for any small family of sources, and instantiate this to
obtain results similar to those presented in Corollary 1. Moreover, our proofs both rely on a similar key
ingredient on the dimension of punctured Reed-Muller codes [KS05, Theorem 1.5]. The differences are as
follows: our result achieves better error (exponentially small vs. polynomially small), and we also establish
results for sumset sources (discussed in Section 1.1.2 below). On the other hand, the work [GGH+24] proves
a significant generalization of [KS05, Theorem 1.5], in order to get interesting results in algebraic geometry.

1.1.2 Low-degree polynomials extract from sumset sources

In the second main part of our paper, we show that random low-degree polynomials are also good extractors
for sumset sources, which are the most general well-studied large family of sources.

Theorem 2 (Low-degree polynomials extract from sumset sources). There exists a constantC > 0 such that
for any n ≥ k ≥ d ∈ N and ε > 0 such that k ≥ Cd(n/ε2)1/⌊d/2⌋, a random degree d polynomial f : Fn

2 →
F2 is an ε-extractor for (n, k)-sumset sources, with probability at least 1− 2

−ε2( k/C
2⌊d/2⌋) ≥ 1− 2−n2/ε2 .

We highlight a few key specializations of the above theorem – focusing on even d, for simplicity. First,
we note that in the disperser regime,10 Theorem 2 shows that there exist degree ≤ d polynomials that
disperse from sumset sources with min-entropy k = O(dn2/d). This is nearly tight, since Cohen and Tal
[CT15] show that degree ≤ d polynomials cannot extract from affine sources (and thus sumset sources)
with min-entropy below k = Ω(dn1/(d−1)). (In Section 5.3, we show the same impossibility result holds
for independent sources, which are the other special case of sumset sources.) Second, we note that in the
polynomial error regime ε = n−γ , Theorem 2 shows that there exist degree ≤ d polynomials that are ε-
extractors for sumset sources with min-entropy k = O(dn2(1+2γ)/d). Third, in the arbitrary error regime
ε > 0, Theorem 2 shows that a random degree d = O(log(n/ε)) polynomial f is an ε-extractor for sumset
sources with min-entropy k = O(log(n/ε)). This strengthens the existential result of Mrazović [Mra16],
who obtained such a min-entropy requirement for a uniformly random function f .

Finally, we highlight that our sumset extractors have interesting consequences for linear read-once
branching programs, and our proof requires two new tools, which may be of independent interest.

Linear ROBPs In more detail, linear read-once branching programs (ROBPs) are a new type of compu-
tational model [GPT22], which simultaneously generalize both standard ROBPs and parity decision trees.
At each point in the branching program, instead of querying a single input variable, the ROBP is allowed to
query an arbitrary linear function of the input (so long as it is linearly independent of all previous queries).
We observe that by leveraging standard results on finite fields [LN97, Lemma 6.21] (see also [BV10, Lemma
17]), linear ROBPs of constant width w = O(1) can compute any polynomial of degree 2.11 On the other
hand, Theorem 2 (combined with [CL23, Theorem 1]) implies that linear ROBPs require exponential width
w = 2n−o(n) to compute polynomials of degree 4. This is a huge, perhaps surprising, jump in complexity.12

10A disperser is an extractor f : Fn
2 → F2 with nontrivial error ε < 1/2.

11In more detail, [BV10, Lemma 17] asserts that for any quadratic q : Fn
2 → F2, there is some B ∈ Fm×n

2 with full row rank
and some affine L : Fn

2 → F2 such that q(x) = ⟨(Bx)≤m/2, (Bx)>m/2⟩+L(x). Since each row in B is linearly independent, the
inner product can be computed using ≤ 2 bits of storage. Then, using ≤ 1 additional bit of storage (in case L is linearly dependent
on the rows in B), one can simultaneously compute L(x). Thus, q(x) can be computed by a constant-width linear ROBP.

12Indeed, one might expect the width w to somehow grow proportionately with the degree d of the polynomial that must com-
puted. However, this shows that the width jumps from constant to exponential, simply by moving from degree 2 to degree 4.
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Sumset-punctured Reed-Muller codes Finally, we highlight that the proof of Theorem 2 requires two
new key ingredients, which may be of independent interest. The first key ingredient is a new result about
the structure of Reed-Muller codes that are punctured on sumsets. As a bonus application, we use this to
build new “evasive sets,” which we then use to improve the extractor impossibility results of Chattopad-
hyay, Goodman, and Gurumukhani [CGG24], and to get a low-error version of Theorem 2 for the special
case of degree 4 polynomials and independent sources. Interestingly, the latter result relies on the recent
breakthrough resolution of Marton’s PFR conjecture from additive combinatorics [GGMT23].

A novel reduction between extractors The second key ingredient in the proof of Theorem 2 is a novel
type of reduction between extractors. While most reductions between extractors rely on showing that a
source can be equipped with structure by breaking it down into a convex combination of well-behaved
distributions via a deterministic process, we show that doing so via a careful (correlated) randomized process
can sometimes make this task much easier. In Appendix A, we illustrate a simpler variant of this idea in
order to give an alternative proof that a uniformly random function is an extractor for sumset sources with
min-entropy k = O(log(n/ε)) – a result first established by Mrazović [Mra16].

Organization

The remainder of the paper is organized as follows. In Section 2, we provide an overview of our main
techniques. Then, in Section 3, we record some basic preliminaries on notation, probability, and extractors.
The first main technical part of this paper is Section 4, where we show that random low-degree polynomials
extract from small families, and prove all results listed in Section 1.1.1. The second main technical part
of the paper consists of Section 5, where we prove our main result from Section 1.1.2. In Section 6, we
show that one of the key ingredients from the prior section can be used to establish the existence of “evasive
sets,” which are then used to obtain a few additional results. (In Appendix A, we show that the other key
ingredient can be used to obtain an alternative proof of the result by Mrazović [Mra16].) Finally, we wrap
up with some open problems in Section 7.

2 Overview of our techniques

2.1 Low-degree polynomials extract from small families

Recall that our goal in Theorem 1 is to obtain concentration bounds for | biasX(f)| = |Ex∼X[(−1)f(x)]|
with X an arbitrary (n, k)-source. Our simple argument combines the original result of [BHL12] for X
uniformly distributed over Fn

2 (Theorem 0) and an application of the leftover hash lemma.
We first introduce some useful concepts. For a vector x ∈ Fn

2 , we denote by evald(x) the tuple of
evaluations of all monomials of degree at most d on x, i.e.,

evald(x) =

(∏
i∈I

xi

)
I⊆[n],|I|≤d

∈ F
( n
≤d)

2 .

Given a set S ⊆ Fn
2 , we write evald(S) = {evald(x) : x ∈ S}.

In order to obtain the desired concentration, it suffices to appropriately upper bound the high-order
moments E[biasX(f)t] for a large t, which is also the approach followed in [BHL12]. And, also analogously
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to [BHL12], it is not hard to show that

Ef [biasX(f)t] = Pr
x(1),...,x(t)∼X

[evald(x
(1)) + · · ·+ evald(x

(t)) = 0]

= Pr
x(1),...,x(t)∼X

[∀p : Fn
2 → F2,deg p ≤ d : p(x(1)) + · · ·+ p(x(t)) = 0]. (1)

Intuitively, we would like to reduce the task of bounding Ef [biasX(f)t] to the task of bounding
Ef [bias(f)

t], which can be handled via the concentration bounds from [BHL12]. We establish such a
reduction via the leftover hash lemma, which guarantees the existence of a linear map L : Fn

2 → Fm
2 with

m ≈ k such that L(X) is close (in statistical distance) to the uniform distribution on Fm
2 . We claim that

Ef [biasX(f)t] ≤ Eg[biasL(X)(g)
t] (2)

where g : Fm
2 → F2 is a random degree d polynomial. This holds since, by Equation (1),

Eg[biasL(X)(g)
t] = Pr

y(1),...,y(t)∼L(X)
[∀q : Fm

2 → F2,deg q ≤ d : q(y(1)) + · · ·+ q(y(t)) = 0]

= Pr
x(1),...,x(t)∼X

[∀q : Fm
2 → F2, deg q ≤ d : q(L(x(1))) + · · ·+ q(L(x(t))) = 0]

≥ (1),

where the inequality uses the fact that q◦L : Fn
2 → F2 has degree at most d (with q◦L denoting composition),

as L is linear.
We are almost done. Informally, since L(X) ≈ Um, it is easy to show that Eg[biasL(X)(g)

t] ≈
Eg[bias(g)

t]. Moreover, we can upper bound Eg[bias(g)
t] appropriately via the known concentration bound

from [BHL12]. Combining this with Equation (2) yields the desired upper bound on Ef [biasX(f)t], which
we translate into a concentration bound on | biasX(f)| via Markov’s inequality.

2.2 Low-degree polynomials extract from sumset sources

Next, we discuss the approach behind Theorem 2. For simplicity, we focus here on the case of even degree
d, and note that it is trivial to extend to odd d (at a slight loss in parameters).

2.2.1 Low-degree polynomials disperse from sumset sources

As a warm-up, we first consider the simpler task of dispersing. In this case, we wish to show that a random
degree d polynomial f : Fn

2 → F2 will satisfy f(supp(W)) = {0, 1} simultaneously for all (n, k)-sumset
sources W with k = O(dn2/d). Then, we discuss the necessary modifications to obtain sumset extraction
with arbitrary error ε > 0.

First, as usual, we only need to focus on sumset sources W = X+Y where X and Y are independent
flat (n, k)-sources. Denote the supports of X and Y by X and Y , respectively, which have size 2k. Then,
the probability that f is identically 0 on X + Y is

Pr
f
[f(X + Y ) ≡ 0] ≤ 2− rank(evald(X+Y )). (3)

This is because we may write f(x) = ⟨v, evald(x)⟩ for a uniformly random vector v ∈ F
( n
≤d)

2 , and so (i)
f(x) is uniformly distributed over F2 for any fixed nonzero x, and (ii) f(x) and f(y) are independent (and
uniformly distributed) if evald(x) and evald(y) are linearly independent.
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Given Equation (3), it is clear that we must understand rank(evald(X + Y )). If this quantity is suitably
large, then the probability that f is constant on any such sumset X + Y is small, and we could hope to
survive a union bound over all choices of X and Y . However, this strategy cannot directly work, because
rank(evald(X+Y )) will be at most

(
n
≤d

)
while there are

(
2n

2k

)2 ≥ 22(n−k)2k ≫ 2(
n
≤d) choices for X and Y .

A possible way to overcome the barrier to the application of the union bound above is to show that there
exist appropriately small subsets X ′ ⊆ X and Y ′ ⊆ Y such that rank(evald(X ′ + Y ′)) is still large. If this
were the case, we could then just apply the union bound over all possible choices of the now much smaller
sets X ′ and Y ′. We can make this approach work by proving the following:

Claim 1 (Informal). Let A,B ⊆ Fn
2 be sets of size 2k. Then, there exist subsets A′ ⊆ A and B′ ⊆ B each

of size roughly
√(

k
≤d

)
such that rank(evald(A′ +B′)) is roughly

(
k
≤d

)
.

We sketch how Claim 1 can be applied to obtain the desired result. Setting A = X and B = Y , we

obtain X ′ ⊆ X and Y ′ ⊆ Y of size about
√(

k
≤d

)
such that evald(X ′ + Y ′) has rank about

(
k
≤d

)
. By

Equation (3), this means that the probability that f is identically 0 on X ′ + Y ′, and hence on X + Y , is

at most about 2−(
k
≤d). But now, crucially, we only have to carry out a union bound over the at most about(

2n

kd/2

)2
choices for X ′ and Y ′, which is approximately 2nk

d/2 ≪ 2(
k
≤d) when k ≥ Cdn2/d for some large

enough constant C > 0. Note that this strategy would not have worked if X ′ and Y ′ were instead of size
close to

(
k
≤d

)
.

Before discussing the simple proof of Claim 1, it is instructive to consider existing results of a simi-
lar flavor. Keevash and Sudakov [KS05] (and later Ben-Eliezer, Hod, and Lovett [BHL12, Lemma 1.4])
proved that for any set S ⊆ Fn

2 of size 2k there exists a subset S′ ⊆ S of size at least
(

k
≤d

)
such that

rank(evald(S
′)) = |S′|. This lemma is one of the most important steps in the proof of the main result

of [BHL12], and its proof hinges on the construction of an intricate “rank-preserving surjection” from S to
Fk
2 . More precisely, this is a map g : Fn

2 → Fk
2 that is surjective on S and satisfies

rank(evald(S)) ≥ rank(evald(g(S))) = rank(evald(Fk
2)) =

(
k

≤ d

)
.

Applying this same rank-preserving surjection in the setting of Claim 1 is not guaranteed to work, because

now the subset that witnesses the
(

k
≤d

)
rank lower bound must be a sumset A+ B with |A|, |B| ≈

√(
k
≤d

)
.

We overcome this by observing that if we are fine with worse constants, then we can replace the complicated
rank-preserving surjection from [KS05, BHL12] with a linear map, guaranteed by the leftover hash lemma.
In fact, by the leftover hash lemma, there exists a linear map L : Fn

2 → Fk′
2 , for k′ = Ω(k), which is

surjective on both X and Y . We choose X ′ ⊆ X and Y ′ ⊆ Y such that L(X ′) = L(Y ′) = Bk′

d/2(0), the

radius-d/2 Hamming ball in Fk′
2 centered at 0. Then, the linearity of L plus basic properties of evaluation

vectors allows us to conclude that

rank(evald(X
′ + Y ′)) ≥ rank(evald(L(X

′ + Y ′)))

= rank(evald(Bk′

d/2(0) + Bk′

d/2(0))) = rank(evald(Bk′
d (0))),

and it is well known that rank(evald(Bk′
d (0))) =

(
k′

≤d

)
.
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2.2.2 From dispersers to extractors via random convex combinations

The argument discussed above shows that a random degree d polynomial is a k-sumset disperser for min-
entropy k = O(dn2/d) with high probability. It remains to see how we can extend this to get sumset
extraction for similar min-entropy k with arbitrary error ε > 0.

Our first observation is that if W = X+Y is a sumset source with flat X and Y whose supports X and
Y satisfy rank(evald(X + Y )) = |X| · |Y |, then Pr[f(W) = 0] ≈ 1/2 holds with high probability over
the choice of a random degree d polynomial f . In other words, f(W) is close (in statistical distance) to
uniformly distributed over {0, 1} with high probability over the choice of f .13 This happens because, under
the conditions above, W is a flat source and all the vectors in evald(X+Y ) are linearly independent, which
means that the bits (f(w) = ⟨v, evald(w)⟩)w∈X+Y are independent and uniformly distributed when v is a

uniformly random vector over F
( n
≤d)

2 .
Now, set k = Cd(n/ε2)2/d for a large enough constant C > 0, and call a sumset source W = X +Y

special if X and Y are flat, rank(evald(X + Y )) = |X| · |Y |, and |X|, |Y | ≈
√(

k
≤d

)
. Combining the

previous paragraph with a union bound over the choices of X and Y (analogous to the one in Section 2.2.1)
shows that a random degree d polynomial will be, with high probability, an ε-extractor for the class of
special sumset sources.

Of course, most sumset sources are far from special. We overcome this by showing that every (n, k)-
sumset source W = X +Y with flat X and Y is 2−Ω(k)-close to a convex combination of special sumset
sources. Combining this with the observations above lets us conclude that a random degree d polynomial
will be a (k, ε′ = 2−Ω(k) + ε ≈ ε)-sumset extractor with high probability.

It remains to argue why every (n, k)-sumset source W = X + Y with flat X and Y is 2−Ω(k)-close
to some convex combination of special sumset sources. To better highlight the main underlying ideas, we
consider here only the particular case where k = n and X and Y are uniformly distributed over Fk

2 , and
present a less optimized version of our final argument. It is not hard to reduce the general case to a scenario
very similar to this particular case through an application of the leftover hash lemma.

We consider an alternative way of (approximately) sampling from W = X + Y – the convex com-
bination will be implicit in this sampling procedure. The idea is to first sample uniformly random subsets

X ′ ⊆ X = Fk
2 and Y ′ ⊆ Y = Fk

2 each of size
(k/3
d/2

)
(which is very roughly

√(
k
≤d

)
), and then sample X′

and Y′ uniformly at random from X ′ and Y ′, respectively. If X ′ and Y ′ are sampled independently, then it
is not hard to show that W′ = X′ +Y′ is distributed exactly like W. However, we would like to claim that
the resulting sumset source X′ +Y′ will be special with high probability over the choice of subsets X ′ and
Y ′. To this end, we do not sample the subsets X ′ and Y ′ independently from each other, but rather couple
the randomness used in their sampling carefully. This coupling will ensure that W′ = X′ +Y′ is always a
special sumset source for any fixing of X ′ and Y ′, while we still have W′ ≈2−Ω(k) W.

To sample the (correlated) random subsetsX ′ and Y ′, we proceed as follows. LetB1 = {u1, . . . , ut} be
the set of weight-d/2 vectors supported on {1, . . . , k/3}, and letB2 = {v1, . . . , vt} be the set of weight-d/2
vectors supported on {2k/3 + 1, . . . , k}. Since any two vectors ui and vj have disjoint supports and are
non-zero, each sum ui + vj is a distinct non-zero vector in the radius-d Hamming ball, and so

rank evald(B1 +B2) = |B1| · |B2| =
(
k/3

d/2

)2

.

We couple the sampling of X ′ and Y ′ by choosing a uniformly random invertible matrix L ∈ Fk×k
2 and

13The exact shape of the “high probability” comes from a standard Chernoff bound.
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setting X ′ = LB1 = {Lu1, . . . ,Lut} and Y ′ = LB2 = {Lv1, . . . ,Lvt}. Now, because L is invertible, we
know that

rank evald(X
′ + Y ′) = rank evald(B1 +B2) = |B1| · |B2| = |X ′| · |Y ′|.

Therefore, if X′ and Y′ are sampled independently and uniformly at random from X ′ and Y ′, respectively,
then W′ = X′ +Y′ is a special sumset source, as desired.

However, because the choices of X ′ and Y ′ are now correlated, we still need to argue that this overall
sampling process produces something statistically close to W = X + Y, with X and Y independent and
uniformly distributed over Fk

2 . If L ∈ Fk×k
2 was a uniformly random matrix, then this would be immediate.

Indeed, let I and J be the random indices associated to the choices of X′ and Y′ from X ′ and Y ′. Then,
X′ = LuI and Y′ = LvJ would be independent and uniformly distributed over Fk

2 , since uI and vJ are
linearly independent for all choices of I and J . To argue that this is still approximately true when L is
required to be invertible, we use the fact that the supports of uI and vJ lie in a subset of 2k/3 coordinates.
Therefore, it suffices to focus on 2k/3 columns of L. Since a collection of 2k/3 uniformly random vectors
over Fk

2 will be linearly independent except with probability 2−Ω(k), we conclude that any collection of
2k/3 columns of L will be 2−Ω(k)-close in statistical distance to a collection of 2k/3 uniformly random
vectors. This gives that (X′,Y′) ≈2−Ω(k) (X,Y), where X and Y are independent, and so W′ = X′ +Y′

is 2−Ω(k)-close to the true sumset W = X+Y.

3 Preliminaries

Notation We denote random variables by boldfaced uppercase letters such as X and Y and denote sets by
uppercase letters such as A and B or, at times, by calligraphic uppercase letters. In this work we focus on
random variables supported on finite sets, and write supp(X) for the support of the random variable X. We
denote the uniform distribution over Fm

2 by Um, and we write log for the base-2 logarithm. We use wt(x)
to denote the Hamming weight of a vector x ∈ Fn

2 , and we let Bn
r (v) denote the Hamming ball in Fn

2 that is
centered at v and has radius r. Finally, we define

(
n
≤r

)
=
∑r

i=0

(
n
i

)
.

Binomial coefficients We will need the following fact about binomial coefficients.

Fact 1 ([BHL12, Proposition 8]). For any β, δ ∈ (0, 1), there exists a constant γ > 0 such that the following
holds for all n ∈ N. If 1 ≤ d ≤ δn, t ≥ d, and t ≥ (1− γ/d)n, then it holds that

(
t
≤d

)
≥ β

(
n
≤d

)
.

3.1 Probability

In this section we collect some basic notions from probability theory that will be useful throughout.

Definition 2 (Statistical distance). The statistical distance between discrete random variables X and Y
supported on S, denoted ∆(X,Y), is given by

∆(X,Y) = max
T⊆S

|Pr[X ∈ T ]− Pr[Y ∈ T ]| = 1

2

∑
x∈S

|Pr[X = x]− Pr[Y = x]| .

We say that X and Y are ε-close, and write X ≈ε Y, if ∆(X,Y) ≤ ε.

We will heavily exploit the following standard result about statistical distance.
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Fact 2 (Data-processing inequality). For any random variables X,Y ∼ V and function f : V →W ,

∆(X,Y) ≥ ∆(f(X), f(Y)).

Definition 3 (Min-entropy). The min-entropy of a random variable X is defined as

H∞(X) := min
x∈supp(X)

log

(
1

Pr[X = x]

)
.

Definition 4 ((n, k)-source). We say that X ∼ Fn
2 is an (n, k)-source if H∞(X) ≥ k.

Definition 5 ((n, k)-sumset source). We say that W ∼ Fn
2 is an (n, k)-sumset source if there exist indepen-

dent (n, k)-sources X,Y ∼ Fn
2 such that W = X+Y.

We also use the following version of the Chernoff bound, which can be found in [Vad12, Theorem 2.21].

Lemma 1 (Chernoff bound). Let X1, . . . ,Xt be independent random variables supported on [0, 1], and let
X = 1

t

∑t
i=1Xi. Then,

Pr[|X− E[X]| > ε] ≤ 2 · e−ε2t/4.

Finally, we will need the following result from [CG25]. We include its short proof, for completeness.

Definition 6. We say that g : Y → X is a pseudoinverse of f : X → Y if f(g(f(x))) = f(x) for all
x ∈ X .

Lemma 2 (Dependency reversal [CG25]). For any random variable X ∼ X and deterministic function
f : X → Y , there exists an independent random variable A ∼ A and deterministic function g : Y ×A→ X
such that

g(f(X),A) ≡ X,

and such that g(·, a) is a pseudoinverse of f , for all a ∈ A.

Proof. We define an independent random variable A ∼ A := XY as a sequence of independent random
variables A = (Ay)y∈Y where each Ay ∼ X is defined as

Pr[Ay = x] := Pr[X = x | f(X) = y] for all x ∈ X.

If we then define the deterministic function g : Y ×A→ V as

g(y, a) := ay,

it directly follows that g(f(X),A) ≡ X via the law of total probability, as desired.

3.2 Extractors

This section collects additional basic definitions of randomness extractors and useful auxiliary results.

Definition 7 (Strong seeded extractor). A function Ext : Fn
2 × Fs

2 → Fm
2 is said to be a (k, ε)-strong seeded

extractor if for every (n, k)-source X it holds that

Ext(X,Us),Us ≈ε Um,Us,

where Us is independent of X and Um. Moreover, we say that Ext is linear if Ext(·, y) is a linear function
for all y ∈ Fs

2.
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Lemma 3 (Leftover Hash Lemma [HILL99]). For every 0 < k < n, ε > 0, and m ≤ k − 2 log(1/ε) there
exists an explicit linear (k, ε)-strong seeded extractor Ext : Fn

2 × Fn
2 → Fm

2 .

We will use the following simple corollary of Lemma 3.

Lemma 4. For every n > k > 100 there exists a family of linear maps L : Fn
2 → Fk/100

2 such that for every
(n, k)-source X we have that at least a 0.8-fraction of linear maps in the family are surjective on supp(X).

Proof. We apply the leftover hash lemma with ε = 2−k/5 and m = k/100 ≤ k − 2 log(1/ε) = 3k/5. Fix
any flat (n, k)-source X. By an averaging argument, we have L(X) ≈10ε U1 for more than a 0.8-fraction of
linear maps L in the family given by the leftover hash lemma. Since 10ε < 2−k/100 = 2−m when k > 100,
we conclude that every such map L is surjective on supp(X).

The lemma below is a special case of a much more general result of Dhar and Dvir on leftover hashing
with ℓ∞ guarantees [DD22, Theorem II.4].

Lemma 5 ([DD22, Theorem II.4, special case]). There exists a constant C > 0 such that for all n ≥ k ≥ 2,
the following holds. Fix any set S ⊆ Fn

2 of size 2k. Then at least 0.99 fraction all linear maps L : Fn
2 → Fm

2

with output length m = ⌊k − C log k⌋ are surjective when restricted to S.

We now define various special types of extractors and dispersers.

Definition 8 (Two-source disperser). A function Disp : Fn
2 ×Fn

2 → F2 is said to be a k-two-source disperser
if for any two independent (n, k)-sources X and Y it holds that supp(Disp(X,Y)) = {0, 1}.

Definition 9 (Two-source extractor). A function Ext : Fn
2 × Fn

2 → Fm
2 is said to be a (k, ε)-two-source

extractor if for any two independent (n, k)-sources X and Y it holds that

Ext(X,Y) ≈ε Um.

Definition 10 (Sumset disperser). A function Disp : Fn
2 → F2 is said to be a k-sumset disperser if for any

(n, k)-sumset source W it holds that supp(Disp(W)) = {0, 1}.

Definition 11 (Sumset extractor). A function Ext : Fn
2 → Fm

2 is said to be a (k, ε)-sumset extractor if for
any (n, k)-sumset source W it holds that

Ext(W) ≈ε Um.

Note that every k-sumset disperser Disp induces a k-two-source disperser Disp′ by setting Disp′(x, y) =
Disp(x+ y). The same holds in the setting of extractors.

4 Low-degree polynomials extract from small families

4.1 Low-degree polynomials extract from a single source

In this section we prove Theorem 1, which we restate here.

Theorem 1 (Low-degree polynomials extract from a single source). For every δ ∈ (0, 1) there is a constant
c > 0 such that the following holds. Let X ∼ Fn

2 be a source with min-entropy at least k, and let d ∈ N be
an integer satisfying 1 ≤ d ≤ (1− δ)k. Then for a random degree d polynomial f : Fn

2 → F2,

Pr
f

[
|biasX(f)| > 2−ck/d

]
≤ 2

−c( k
≤d).
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Recall that for a function f : Fn
2 → F2 and a random variable X ∼ Fn

2 we define the bias of f with
respect to X as

biasX(f) = Pr
x∼X

[f(x) = 0]− Pr
x∼X

[f(x) = 1] = Ex∼X

[
(−1)f(x)

]
.

When X is uniformly distributed over a set X ⊆ Fn
2 , we may write biasX(f) = biasX(f), and when

X = Fn
2 we simply write bias(f) for biasX(f). We will need the following characterization about the

moments of the bias, whose statement and proof are analogous to those of [BHL12, Claim 2.1] for the
special case of a uniform input distribution.

Lemma 6 (Simple extension of [BHL12, Claim 2.1]). If f : Fn
2 → F2 is a random degree d polynomial, it

holds that

Ef

[
biasX(f)t

]
= Pr

x(1),...,x(t)∼X
[∀p : Fn

2 → F2,deg(p) ≤ d : p(x(1)) + · · ·+ p(x(t)) = 0]

for any random variable X ∼ Fn
2 .

Proof. The argument follows the same lines as that behind [BHL12, Claim 2.1]. Observe that the lemma
statement follows immediately if we show that

Ef [biasX(f)t] = Pr
x(1),...,x(t)∼X

[
evald(x

(1)) + · · ·+ evald(x
(t)) = 0

]
.

We begin by writing f as
f(x) =

∑
I⊆[n]:|I|≤d

αIxI ,

where the αI are independent and uniformly distributed over F2 and xI =
∏

i∈I xi. Then, we have that

Ef [biasX(f)t] = E{αI}

 t∏
j=1

Ex(j)∼X

[
(−1)

∑
I⊆[n]:|I|≤d αIx

(j)
I

]
= E{αI}

Ex(1),...,x(t)∼X

 t∏
j=1

(−1)
∑

I⊆[n]:|I|≤d αIx
(j)
I


= Ex(1),...,x(t)∼X

[
E{αI}

[
(−1)

∑
I⊆[n]:|I|≤d αI

(∑t
j=1 x

(j)
I

)]]

= Ex(1),...,x(t)∼X

 ∏
I⊆[n]:|I|≤d

EαI

[
(−1)

αI

(∑t
j=1 x

(j)
I

)]
= Ex(1),...,x(t)∼X

 ∏
I⊆[n]:|I|≤d

1{
x
(1)
I +···+x

(t)
I =0

}


= Ex(1),...,x(t)∼X

[
1{evald(x(1))+···+evald(x(t))=0}

]
= Pr

x(1),...,x(t)∼X

[
evald(x

(1)) + · · ·+ evald(x
(t)) = 0

]
,

as desired.
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We are now ready to prove Theorem 1.

Proof of Theorem 1. The proof follows along the same lines as the proof of [BHL12, Lemma 1.2], combined
with a linear hashing trick. For an integer t > 0, we focus on bounding the t-th moment of biasX(f). By
Lemma 6, we have that

Ef

[
biasX(f)t

]
= Pr

x(1),...,x(t)∼X
[∀p : Fn

2 → F2,deg(p) ≤ d : p(x(1)) + · · ·+ p(x(t)) = 0].

Fix any linear map L : Fn
2 → Fm

2 . Observe that

Pr
x(1),...,x(t)∼X

[∀p : Fn
2 → F2,deg(p) ≤ d : p(x(1)) + · · ·+ p(x(t)) = 0]

≤ Pr
x(1),...,x(t)∼X

[∀p : Fm
2 → F2, deg(p) ≤ d : p(L(x(1))) + · · ·+ p(L(x(t))) = 0]. (4)

This holds since deg(p ◦ L) ≤ deg(p) ≤ d, where p ◦ L denotes the composition of the polynomial p and
the linear map L. Then, Lemma 6 yields

Pr
x(1),...,x(t)∼X

[∀p : Fm
2 → F2,deg(p) ≤ d : p(L(x(1))) + · · ·+ p(L(x(t))) = 0]

= Pr
w(1),...,w(t)∼L(X)

[∀p : Fm
2 → F2, deg(p) ≤ d : p(w(1)) + · · ·+ p(w(t)) = 0]

= Eg

[
biasL(X)(g)

t
]
,

where the expectation is taken over the choice of a random degree d polynomial g : Fm
2 → F2. Therefore,

we conclude that
Ef

[
biasX(f)t

]
≤ Eg

[
biasL(X)(g)

t
]

(5)

for all linear maps L.
Let c > 0 be the absolute constant from Theorem 0. Without loss of generality, we enforce that c <

min(1/4, δ/2) (if this does not hold for the choice of c from Theorem 0, take a smaller c). Since H∞(X) =
k, the leftover hash lemma (Lemma 3) guarantees the existence of a linear map L : Fn

2 → Fm
2 with m =

k(1− 2c/d) such that
L(X) ≈2−ck/d Um. (6)

Note that, by our choice of c, we have that m ≥ (1− δ)k ≥ d. Equation (6) implies that

Pr
g

[
|biasL(X)(g)| > 2−

ck
2d

+1
]
≤ Pr

g

[
|bias(g)| > 2−

ck
2d

+1 − 2−
ck
d

]
≤ 2

−c(m
≤d). (7)

The last inequality follows from Theorem 0 applied to Fm
2 because

2−
ck
2d

+1 − 2−
ck
d ≥ 2−

ck
2d ≥ 2−cm/d,

since m = k(1− 2c/d) ≥ k/2 as we enforced that c < 1/4. Since(
m

≤ d

)
=

(
k(1− 2c/d)

≤ d

)
≥ α

(
k

≤ d

)
for some constant α > 0 depending only on c and δ, we get from Equation (7) that

Pr
g

[
|biasL(X)(g)| > 2−c1k/d

]
≤ 2

−c1( k
≤d) (8)

17



for some absolute constant c1 > 0.
We now proceed to bound the t-th moment Ef

[
biasX(f)t

]
for an appropriate t. Set t = c2 · dk ·

(
k
≤d

)
for

a sufficiently large constant c2 > 0 depending only on c1. Using Equations (5) and (8), we have that

Ef

[
biasX(f)t

]
≤ Eg

[
biasL(X)(g)

t
]

≤ 2−c1kt/d + 2
−c1( k

≤d)

≤ 2
−c3( k

≤d),

where the last equality uses our choice of t and holds for a sufficiently small constant c3 > 0. Let c4 = c3/2.
Combining the bound above with Markov’s inequality, we conclude that

Pr
f

[
|biasX(f)| > 2−c4k/d

]
≤

Ef

[
biasX(f)t

]
2−c4tk/d

≤ 2
−c4( k

≤d),

which yields the desired lemma statement with absolute constant c4 > 0.

4.2 Low-degree polynomials extract from small families

We showcase applications of Theorem 1 to some important small families of sources.

Local sources

First, we consider the scenario of locally-samplable sources [DW12, Vio14, ACG+22]. A source X ∼ Fn
2

is said to be r-local if X = g(Um), where g : Fm
2 → Fn

2 is some function such that each output bit depends
on at most r input bits and Um denotes the uniform distribution over Fm

2 . We can take m ≤ nr without loss
of generality, in which case there are at most((

nr

r

)
22

r

)n

≤ (en)rn · 22r·n ≤ 22rn logn · 22r·n = 2n(2r logn+2r)

r-local sources of length n, provided that n ≥ 4. If k = Cdn1/d(r log n+ 2r)1/d, we have that(
k

≤ d

)
≥
(
k

d

)
≥ (k/d)d = Cdn(r log n+ 2r).

Let c be the absolute constant from Theorem 1. If we take C to be large enough depending only on c so that

c ·Cdn(r log n+2r) > n(2r log n+2r), we conclude that there are fewer than 2
c( k

≤d) sources in the family.
Combining a union bound over these sources with Theorem 1 immediately yields the following result.

Corollary 2 (Low-degree polynomials are good local source extractors). For every δ ∈ (0, 1) there exist
constants c, C > 0 such that the following holds for all n: For k ≥ Cdn1/d(r log n + 2r)1/d and d ≤
(1 − δ)k, a random degree d polynomial is an (ε = 2−ck/d)-extractor for the family of length-n r-local

sources of min-entropy k with probability at least 1− 2
−c( k

≤d) over the choice of f .

Corollary 2 both improves on and simplifies the proof of [ACG+22, Theorem 1.1], which required min-
entropy k ≥ C2rr2d(2rn log n)1/d and error ε = 2−

ck
d32rr2 for some absolute constants c, C > 0 and an

intricate initial reduction to local non-oblivious bit-fixing sources. In particular, observe that when d > r,
we now get that the min-entropy is O(d(n log n)1/d). Previously, this only happened when d > 2r.
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It is also instructive to compare our improved result with the lower bound from [ACG+22, Theorem
1.2], which states that no degree-d polynomial extracts from length-n r-local sources of min-entropy k =
cd(rn log n)1/d for some absolute constant c > 0. For example, when the locality satisfies r < log log n,
Corollary 2 is optimal up to the constant factor.

Polynomial sources

A random variable X ∼ Fn
2 is a degree-r polynomial source if there exist F2-polynomials p1, . . . , pn :

Fm
2 → F2 of degree at most r for some positive integer m (the input length) such that X = P (Um),

where P = (p1, . . . , pn) and Um is uniform over Fm
2 . This is a very challenging model to extract from,

and several papers have attempted to do so [DGW09, BG13, GVJZ23, CGG24]. In the most recent work,
Chattopadhyay, Goodman, and Gurumukhani [CGG24] established the following input reduction lemma.

Lemma 7 (Input reduction lemma for polynomial sources [CGG24, Lemma 1]). There exists a constant
α > 0 such that the following holds for all positive integers n, k, r such that k ≤ n: Suppose that X ∼ Fn

2 is
a degree-r polynomial source with min-entropy k. Then, X ≈2−k Y, where Y ∼ Fn

2 is a convex combination
of degree-r polynomial sources with min-entropy k′ = k − 1 and input length m = α(k − 1).

Given Lemma 7, in order to show that a function f : Fn
2 → F2 is an (ε + 2−k)-extractor for degree-r

polynomial sources with min-entropy k it suffices to show that f is an ε-extractor for degree-r polynomial
sources with min-entropy k − 1 and input length m = α(k − 1). There are at most

2(
m
≤r)n ≤ 2(

em
r )

r
n = 2

(
β(k−1)

r

)r
n

such sources, where β = e · α and we have used the inequality
(
m
≤r

)
≤
(
e·m
r

)r valid for all m ≥ 1 and

1 ≤ r ≤ m. Set k = C
(
Crddn

rr

) 1
d−r . Then, if we take C to be a sufficiently large constant depending on β

and the constant c > 0 guaranteed by Theorem 1, we get that

2

(
β(k−1)

r

)r
n
< 2c(

k−1
d )

d

≤ 2
c(k−1

≤d ).

Therefore, we can apply Theorem 1 to the family of degree-r polynomial sources with min-entropy k − 1
and input length m = α(k − 1) to obtain the following result.

Corollary 3 (Low-degree polynomials extract from polynomial sources). For every δ ∈ (0, 1) there exist
constants c, C > 0 such that the following holds for all integers n ≥ 2: For k ≥ 2 satisfying k ≥

C
(
Crddn

rr

) 1
d−r and d ≤ (1−δ)k, a random polynomial of degree at most d is an (ε = 2−ck/d)-extractor for

the family of length-n degree-r polynomial sources of min-entropy k with probability at least 1 − 2
−c( k

≤d)

over the choice of f .
In particular, if we take d = 2r then the above holds for any k ≥ Cdn2/d for a sufficiently large constant

C > 0.

Variety sources

A random variable X ∼ Fn
2 is a variety source of degree r and min-entropy k if for some t there exist

polynomials p1, . . . , pt : Fn
2 → F2 of degree at most r such that X is uniformly distributed over the variety

V (p1, . . . , pt) = {x ∈ Fn
2 | p1(x) = p2(x) = · · · = pt(x) = 0}.
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This family of sources has received significant interest over the last decade, both over F2 and larger
fields [Dvi09, Rem16, LZ19, GVJZ23]. Sufficiently strong explicit extractors for variety sources are known
to imply breakthrough circuit lower bounds [GKW21]. In order to bound the number of variety sources we
need to handle, we use the following structural result implicit in [CT15, Theorem 5.1], which states that we
can assume the variety is defined by ≤ n+ 1 polynomials. We provide the short proof for completeness.

Lemma 8 (Input reduction lemma for variety sources [CT15, Theorem 5.1]). For any variety V (p1, . . . , pt)
of degree r, there exists a variety V (q1, . . . , qℓ) of degree r such that V (p1, . . . , pt) = V (q1, . . . , qℓ) and
ℓ = n+ 1.

Proof. To define the polynomials qi, first suppose that we sample coefficients αij uniformly at random
from F2, and set qi(x) =

∑t
j=1 αijpj(x). Then, all the qi’s have degree at most r and V (p1, . . . , pt) ⊆

V (q1, . . . , qℓ). Moreover, for each x ̸∈ V (p1, . . . , pt) we have that Pr[qi(x) = 0 for all i ∈ [ℓ]] = 2−ℓ =
2−(n+1). This means the expected number of x’s such that x ∈ V (q1, . . . , qℓ) \V (p1, . . . , pt) is at most 2n ·
2−(n+1) = 1/2. Thus, there is a fixing of the coefficients (αij) such that V (q1, . . . , qℓ) = V (p1, . . . , pt).

With the help of Lemma 8, we conclude that the number of variety sources of degree r and min-entropy
k is at most 2(n+1)( n

≤r) ≤ 2(n+1)r+1
. If k = Cd(n+ 1)

r+1
d , we have that(

k

≤ d

)
≥
(
k

d

)
≥ (k/d)d = Cd(n+ 1)r+1.

Let c > 0 be the absolute constant from Theorem 1. Then, if we take C > 0 to be sufficiently large
depending only on c so that c·Cdnr+1 > (n+1)r+1, we get that the family of variety sources of degree r and

min-entropy k has size smaller than 2
c( k

≤d), and so combining Theorem 1 and a union bound immediately
yields the following result.

Corollary 4 (Low-degree polynomials extract from variety sources). For every δ ∈ (0, 1) there exist con-
stants c, C > 0 such that the following holds for all n: For k ≥ Cdn

r+1
d and d ≤ (1 − δ)k, a random

polynomial of degree ≤ d is an (ε = 2−ck/d)-extractor for the family of length-n variety sources of degree

r and min-entropy k with probability at least 1− 2
−c( k

≤d) over the choice of f .

The best explicit extractors for variety sources over F2 either work for constant degree r and min-entropy
k = (1−cr)n [LZ19], or large degree r = nα and very high min-entropy n−nβ with α+β < 1/2 [Rem16].
By [GKW21], an explicit version of Corollary 4 would be more than enough to imply significantly improved
circuit lower bounds.

4.3 Low-degree polynomials are good linear seeded extractors

In this section we study the parameters of strong linear seeded extractors computable by low-degree poly-
nomials. Such objects are crucial in the construction of several affine extractors [Li11, LZ24]. We start with
the following basic definitions.

Definition 12 (Almost balanced codes). We say that a string x ∈ Fn
2 is ε-balanced if it has Hamming weight

1−ε
2 n ≤ wt(x) ≤ 1+ε

2 n. We say that a code C ⊆ Fn
2 is ε-balanced14 if all nonzero x ∈ C are ε-balanced.

We say that a code C ⊆ Fn
2 is δ-almost ε-balanced if Prx∼C [x is not ε-balanced] ≤ δ.

14Another standard name for this notion is “ε-biased code.”
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Definition 13 (Reed-Muller codes). We define the Reed-Muller code RM(n, d) as

RM(n, d) = {(f(x))x∈Fn
2
| f : Fn

2 → F2,deg f ≤ d}.

We will need to import the following results. The first corollary about balancedness of RM(n, d) follows
directly from [BHL12, Lemma 1.2] (Theorem 0), which corresponds to setting k = n in Theorem 1.

Corollary 5. For every γ ∈ (0, 1) there exists a constant c > 0 such that the Reed-Muller code RM(n, d)

with d ≤ (1− γ)n is δ-almost ε-balanced, where δ = 2
−c( n

≤d) and ε = 2−cn/d.

Lemma 9 (Johnson bound [GRS23, Section 7.3], adapted). Every linear ε-balanced code of length T has
list-size at most 2T at radius 1−

√
ε

2 .15

The following well-known lemma connects the list-decodability of a linear code and its performance as
a seeded extractor. See [Sha11] for a nice exposition of this result.

Lemma 10 (Extractors from codes [Tre01]). Let G ∈ FT×n
2 be the generator matrix of a linear code with

list size ≤ L at radius ≤ 1−ε
2 , and let t = log T . Then the function ExtG : Fn

2 × Ft
2 → F2 defined as

ExtG(x, y) := (Gx)y = ⟨x,Gy⟩ is a (k, ε)-strong seeded extractor for min-entropy k = logL+log(1/ε)+
1.

Using these, we are ready to show that low-degree polynomials can function as strong linear seeded
extractors. Our key tool is the following.

Lemma 11 (Random subcodes of almost-balanced codes are balanced). Let G ∈ Fn×k
2 be the generator

matrix of a δ-almost ε-balanced code. Then, for a uniformly random H ∈ Fk×ℓ
2 we have that

Pr
H
[GH is not the generator matrix of an ε-balanced code] ≤ δ · (2ℓ − 1).

Proof. When we refer to a matrix G as a code, we are referring to the code generated by G. We have

Pr
H
[GH is not an ε-balanced code] = Pr

H
[∃x ̸= 0 : (GH)x is not ε-balanced]

= Pr
H

∨
x ̸=0

(GH)x is not ε-balanced


≤
∑
x ̸=0

Pr
H
[(GH)x is not ε-balanced]

=
∑
x ̸=0

Pr
y∼Fk

2

[Gy is not ε-balanced]

≤ (2ℓ − 1) · δ.

Theorem 3 (Strong seeded extractors from random subcodes of linear almost-balanced codes). Let G ∈
FT×r
2 be the generator matrix of a δ-almost ε-balanced code and let t = log T . For any matrix H ∈ Fr×n

2 ,
define the function ExtGH : Fn

2 × Ft
2 → F2 as ExtGH(x, y) := (GHx)y. Then for k := log(2T ) +

log(1/
√
ε) + 1 and a uniformly random H , it holds that

Pr
H
[ExtGH is not a (k,

√
ε)-strong seeded extractor] ≤ δ · 2n.

15A code C ⊆ Fn
q has list-size at most L at radius ρ if |{c ∈ C : wt(c− x) ≤ ρn}| ≤ L for all vectors x ∈ Fn

q .
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Proof. By Lemma 11, we know that GH is the generator of an ε-balanced code, except with probability at
most δ · 2n. By the Johnson bound (Lemma 9), this implies that GH is the generator of a code with list
size at most 2T at radius at most 1−

√
ε

2 , except with probability at most δ · 2n. This immediately implies via
Lemma 10 that ExtGH is a (k,

√
ε)-strong seeded extractor, except with probability at most δ · 2n.

Using this, we obtain the following.

Theorem 4 (Strong seeded extractors from random subcodes of Reed-Muller codes). For any γ > 0 there

exists a constant c = c(γ) > 0 such that for any d ≤ (1 − γ)n, the following holds. Let G ∈ F
T×( t

≤d)
2

be a generator matrix of the Reed-Muller code RM(t, d). For any matrix H ∈ F
( t
≤d)×n

2 , define the function
ExtGH : Fn

2 × Ft
2 → F2 as ExtGH(x, y) := (GHx)y. Then for k := log(2T ) + log(1/

√
ε) + 1 and

ε := 2−ct/d and δ := 2
−c( t

≤d) and a uniformly random H , it holds that

Pr
H

[
ExtGH is not a (k,

√
ε)-strong seeded extractor

]
≤ δ · 2n.

Furthermore, for any H it holds that ExtGH has left-degree at most 1 and right-degree at most d, i.e., any
monomial in ExtGH contains at most one variable from the left source and at most d variables from the right
source.

Proof. The claim that ExtGH is a strong seeded extractor follows immediately by combining the fact that
the Reed-Muller code RM(t, d) is linear and δ-almost ε-balanced (Corollary 5) with the fact that random
subcodes of linear δ-almost ε-balanced codes give strong seeded extractors (Theorem 3). All that remains is
to show that ExtGH will have left-degree at most 1 and right-degree at most d for any H . To see why, recall

that, since G ∈ F
T×( t

≤d)
2 is a generator of RM(t, d), there exist degree ≤ d polynomials p1, . . . , p( t

≤d)
:

Ft
2 → F2 whose truth tables make up the columns of G. Thus, if we let Li : Fn

2 → F2 define the linear
function Li(x) := ⟨Hi, x⟩ for each row Hi of H , we can write Ext(x, y) as

ExtGH(x, y) := (GHx)y =
∑

i∈( t
≤d)

pi(y) · Li(x),

and thus it has left-degree at most 1 and right-degree at most d, as desired.

This immediately gives the following.

Theorem 5. For any γ ∈ (0, 1) there exist constants c, C > 0 such that the following holds. For any
d ≤ (1− γ)n and k ≥ Cdn1/(d−1), there exists a linear (k, ε)-strong seeded extractor Ext : Fn

2 ×Fk
2 → F2

of degree ≤ d with error ε = 2−ck/d.

Proof. Set t = k = O(dn1/(d−1)) in Theorem 4.

5 Low-degree polynomials extract from sumset sources

5.1 Low-degree polynomials disperse from sumset sources

As a warmup, we prove a disperser version of Theorem 2 (with a slightly better bound on the probability).
For simplicity, we focus here on the case of even degree d.
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Theorem 6. There exist constants C, c > 0 such that for any n ≥ k ≥ d ∈ N (with d even) satisfying
d ≤ c logn

log logn and k ≥ Cdn2/d, a random degree d polynomial f : Fn
2 → F2 is a disperser for (n, k)-sumset

sources, with probability at least 1− 2
−c( k

≤d).

Our key lemma (recall the informal Claim 1) states that for any two large subsets A and B we can find
appropriately small subsets A′ ⊆ A and B′ ⊆ B such that rank(evald(A′ +B′)) is large.

Lemma 12. There exists a constant C > 0 such that for all n ≥ k ≥ d ∈ N (with d even) satisfying
k ≥ C(1 + log n), the following holds. Let A,B ⊆ Fn

2 be sets of size 2k. Then, there exist subsets A′ ⊆ A
and B′ ⊆ B such that |A′|, |B′| =

(k−C logn
≤d/2

)
and rank(evald(A

′ +B′)) ≥
(
k−C logn

≤d

)
.

Before we proceed to the (simple) proof of Lemma 12, we note some basic properties of evaluation
vectors. First, it is well known that rank(evald(Bn

d (0))) =
(
n
≤d

)
, as Bn

d (0) is an interpolating set for degree
≤ d polynomials (see, e.g., [O’D14, Proposition 6.21]). Moreover, we have the following property.

Claim 2. If L : Fn
2 → Fm

2 is a linear map, then

rank(evald(S)) ≥ rank(evald(L(S)))

for every set S ⊆ Fn
2 .

Proof. Suppose that x1, . . . , xr ∈ S are distinct vectors such that the associated evaluation vectors
evald(x1), . . . , evald(xr) satisfy

∑r
i=1 evald(xi) = 0. Equivalently, for every polynomial f of degree at

most d it holds that
r∑

i=1

f(xi) = 0.

It suffices to show that the vectors evald(L(x1)), . . . , evald(L(xr)) also satisfy

r∑
i=1

evald(L(xi)) = 0. (9)

Fix a set U ⊆ [m] such that |U | ≤ d. Note that L(x)U =
∏

j∈U L(x)j can be written as fL,U (x) for some
polynomial fL,U of degree at most |U | ≤ d which depends only on L and U . Therefore, we have

r∑
i=1

L(xi)
U =

r∑
i=1

fL,U (xi) = 0,

which establishes Equation (9).

By combining the above property with the leftover hash lemma, we can now prove Lemma 12.

Proof of Lemma 12. Fix arbitrary sets A,B ⊆ Fn
2 of size 2k. By Lemma 5 and a union bound, there exists

a linear map L : Fn
2 → Ft

2 with output length t = k − C(1 + log n) that is surjective on both A and B. In
particular, there are subsets A′ ⊆ A and B′ ⊆ B of size

(
t

≤d/2

)
such that L(A′), L(B′) = Bt

d/2(0). Since L
is linear, we have that L(A′ +B′) = L(A′) + L(B′) = Bt

d(0), and so

rank(evald(A
′ +B′)) ≥ rank(evald(L(A

′ +B′))) = rank(evald(Bt
d(0))) =

(
t

≤ d

)
,

where we have invoked Claim 2.
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Next, since it will be useful in Section 6, we state here an alternative version of Lemma 12, which is
more helpful when k is very small. Its proof follows in exactly the same manner as that of Lemma 12, with
the exception that we invoke Lemma 4 instead of Lemma 5.

Lemma 13. For all n ≥ k ≥ d ∈ N (with d even) satisfying k > 100, the following holds. Let A,B ⊆ Fn
2

be sets of size 2k. Then, there exist subsets A′ ⊆ A and B′ ⊆ B such that |A′|, |B′| =
(k/100
≤d/2

)
and

rank(evald(A
′ +B′)) ≥

(k/100
≤d

)
.

We now use Lemma 12 to prove Theorem 6.

Proof of Theorem 6. Without loss of generality, we may assume that X and Y are uniformly distributed
over sets A,B ⊆ Fn

2 , respectively, each of size 2k. By Lemma 12, there exist subsets A′ ⊆ A and B′ ⊆ B
of size

(
t

≤d/2

)
such that

rank(evald(A
′ +B′)) ≥

(
t

≤ d

)
,

with t = k − C0(1 + log n) for an absolute constant C0 > 0. Since A′ + B′ ⊆ A+ B, it follows that f is
constant on A+B with probability at most

2 · 2− rank(evald(A
′+B′)) ≤ 2

−( t
≤d)+1

.

By taking a union bound over all the at most(
2n(
t

≤d/2

))2

≤ 2
2n( t

≤d/2)

choices of A′ and B′, we conclude that the probability that f is constant on some set A+B is at most

2
2n( t

≤d/2) · 2−(
t

≤d)+1 ≤ 2
2n( k

≤d/2)+1 · 2−(
t

≤d). (10)

We will now invoke Fact 1 with β = δ = 1/2, k in place of n, and t = k − C0(1 + log n). Let γ > 0
be the absolute constant correspoding to β = δ = 1/2 in Fact 1. By hypothesis, we have k ≥ Cdn2/d

and d ≤ c logn
log logn < k/2 = δk for C > 0 an appropriately large constant and c > 0 an appropriately small

constant. In particular, this means that we can enforce 0 < c < 1 and choose C > 0 large enough depending

on γ and C0 so that k ≥ Cdn
2 log logn

logn ≥ Cd log n satisfies t = k −C0(1 + log n) ≥ d and t ≥ (1− γ/d)k.
By Fact 1, we then get that

(
t
≤d

)
≥ 1

2

(
k
≤d

)
. Plugging this into Equation (10), we conclude that the failure

probability is at most

2
2n( k

≤d/2)+1 · 2−
1
2(

k
≤d). (11)

We also have

2n

(
k

≤ d/2

)
≤ 2dn

(
2ek

d

)d/2

≤ 1

4
(k/d)d ≤ 1

4

(
k

≤ d

)
,

where the second inequality uses that k ≥ Cdn2/d for a sufficiently large constant C > 0. Plugging this
into Equation (11), we conclude that the probability that f is constant on A+B is at most

2
2n( k

≤d/2)+1 · 2−
1
2(

k
≤d) ≤ 2

− 1
4(

k
≤d)+1

.
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5.2 Low-degree polynomials extract from sumset sources

In this section, we prove Theorem 2 in full generality. We begin with the following definition of a special
type of sumset sources, for which it will be easy to show that random low-degree polynomials extract.

Definition 14. We say that a sumset source W = X + Y has full evald-rank if the set evald(supp(X) +
supp(Y)) is a collection of |supp(X)| · |supp(Y)| linearly independent vectors.

We proceed with a simple proof that random low-degree polynomials extract from sumset sources with
full eval-rank. Then, for the main part of the proof, we show that every sumset source is close to a convex
combination of sumset sources with full eval-rank.

Lemma 14. For any t, n ∈ N and ε > 0 such that t ≥ 64n/ε2, the following holds with probability at least
1− 2 · 2−ε2t2/32 over the selection of a random degree d polynomial f : Fn

2 → F2. For any sets X,Y ⊆ Fn
2

of size t satisfying rank(evald(X + Y )) = t2, we have that

| biasX+Y(f)| ≤ ε,

where X and Y are uniformly distributed over X and Y , respectively.

Proof. Fix any sets X,Y ⊆ Fn
2 of size t satisfying rank(evald(X + Y )) = t2. By this rank condition, we

know that the t2 random variables {f(x+ y)}(x,y)∈X×Y are independent and uniform over F2. Thus, if we
define for every (x, y) ∈ X × Y the indicator random variable Zx,y := 1[f(x+ y) = 0], then

biasX+Y(f) = 2

(
1

t2

∑
x,y

Zx,y −
1

2

)
= 2

(
1

t2

∑
x,y

Zx,y − E

[
1

t2

∑
x,y

Zx,y

])
,

and a direct application of the Chernoff bound (Lemma 1) yields

Pr
f
[| biasX+Y | > ε] ≤ 2e−ε2t2/16.

Finally, by taking a union bound over all the at most
(
2n

t

)2 ≤ 22nt choices of X and Y , we conclude that
the probability that | biasX+Y(f)| > ε for some sets X,Y is at most

22nt · 2e−ε2t2/16,

which is at most 2 · 2−ε2t2/32 when t ≥ 64n/ε2, as desired.

Next, we show every sumset source is close to a convex combination of sumset sources with full evald-rank.

Lemma 15. There exists a constant c > 0 such that for all n ≥ k ≥ d ∈ N, the following holds. Let
W = X + Y be an (n, k)-sumset source. Then W is 2−ck-close to a convex combination of flat sumset
sources W⋆ = X⋆ +Y⋆ with full evald-rank and such that |supp(X⋆)| = |supp(Y⋆)| =

( k/6
⌊d/2⌋

)
.

Proof. Let Ext : Fn
2 → Fm

2 be a linear map such that m = k/2 and

Ext(X) ≈2ε Um (12)

Ext(Y) ≈2ε Um. (13)
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This map is guaranteed to exist by the leftover hash lemma (Lemma 3) with ε = 2−k/4 and a union bound.
Using the dependency reversal lemma (Lemma 2), there exist functions Ext−1

X and Ext−1
Y and random vari-

ables A = (A0, . . . ,At) and B = (B0, . . . ,Bt) such that

X ≡ Pick
(
Ext−1

X (Ext(X),A0), . . . ,Ext
−1
X (Ext(X),At);U

)
Y ≡ Pick

(
Ext−1

Y (Ext(Y),B0), . . . ,Ext
−1
Y (Ext(Y),Bt);U

′) ,
where A0, . . . ,At,B0, . . . ,Bt,U,U

′,X,Y are mutually independent, U,U′ ∼ {0, . . . , t} and Pick uses
its last argument to pick among its first t+ 1 arguments (i.e., Pick(v0, v1, . . . , vt; i) outputs vi). To see why
the above is true, we consider an arbitrary fixing of U,U′ and simply apply the dependency reversal lemma.

Now, by Equation (13) and the independence of X and Y, there are random variables R,R′ ∼ Fm
2

independent of each other and the rest that are both uniformly random over Fm
2 and such that we can replace

Ext(X),Ext(Y) with them. Recalling that X,Y are independent, we get from an application of the data-
processing inequality and Equation (13) that

Pick
(
Ext−1

X (Ext(X),A0), . . . ,Ext
−1
X (Ext(X),At);U

)
≈2ε Pick

(
Ext−1

X (R,A0), . . . ,Ext
−1
X (R,At);U

)
,

Pick
(
Ext−1

Y (Ext(Y),B0), . . . ,Ext
−1
Y (Ext(Y),Bt);U

′) ≈2ε Pick
(
Ext−1

Y (R′,B0), . . . ,Ext
−1
Y (R′,Bt);U

′) .
(14)

We now couple the randomness of R,R′ in a specific way. Let L ∼ Fm×m
2 be a uniformly random

invertible matrix (L is obtained by sampling its i-th column uniformly at random from Fm
2 conditioned on it

being linearly independent of the previous i − 1 columns). Intuitively, we take appropriate disjoint subsets
B0 and B1 of the radius-d/2 Hamming ball, and replace R and R′ by applications of L to vectors in these
sets. More precisely, consider the sets B0,B1 ⊆ Fm

2 defined as

B0 = {u ∈ Fm
2 : wt(u) = ⌊d/2⌋, supp(u) ⊆ {1, . . . ,m/3}},

B1 = {v ∈ Fm
2 : wt(v) = ⌊d/2⌋, supp(v) ⊆ {2m/3 + 1, . . . ,m}}.

Note that vectors in B0 and B1 are nonzero and have disjoint supports. Moreover, B0 +B1 is a subset of the
radius-d Hamming ball, and so rank(evald(B0 + B1)) = |B0| · |B1|.

Let u0, . . . , ut be the elements in B0, and let v0, . . . , vt be the elements in B1. We argue that(
Pick

(
Ext−1

X (R,A0), . . . ,Ext
−1
X (R,At);U

)
,Pick

(
Ext−1

Y (R′,B0), . . . ,Ext
−1
Y (R′,Bt);U

′))
≈m2−m/3

(
Pick

(
Ext−1

X (Lu0,A0), . . . ,Ext
−1
X (Lut,At);U

)
,Pick

(
Ext−1

Y (Lv0,B0), . . . ,Ext
−1
Y (Lvt,Bt);U

′))
:= (X∗,Y∗). (15)

To see why this holds, consider an arbitrary fixing of (U,U′) = (i, j). Then, by an application of the data-
processing inequality, it suffices to show that (Lui,Lvj) ≈m2−m/3 (R,R′). Towards this end, recall that
for any i, j ∈ [t], the vectors ui and vj are nonzero with disjoint supports of size m/3 each. Let L′ denote
the m × (2m/3) matrix obtained by selecting columns of L indexed by the supports of ui and vj . Then,
we have that L′ ≈m2−m/3 M′, where M′ is a uniformly random m× (2m/3) matrix. To see this, note that
a uniformly random vector in Fm

2 will be linearly independent from any given collection of 2m/3 vectors
with probability at least 1 − 2−m/3, and then apply a union bound over all the 2m/3 < m columns of L′.
Therefore, letting u′i and v′j denote the restrictions of ui and vj to the coordinates in supp(ui)∪supp(vj), we
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have that (Lui,Lvj) ≈m2−m/3 (M′u′i,M
′v′j) ≡ (R,R′). The last step holds because u′i and v′j are linearly

independent, so the random variables M′u′i and M′v′j are independent and uniformly distributed over Fm
2 .

We now analyze the evald-rank of X∗ + Y∗. Consider any fixing of the random variables L and
A0, . . . ,At,B0, . . . ,Bt. Upon such a fixing, (X∗,Y∗) becomes of the form (X⋆,Y⋆), where X⋆,Y⋆

are independent and uniform over the sets

X⋆ := {Ext−1
X (Lu0, a0), . . . ,Ext

−1
X (Lut, at)},

Y ⋆ := {Ext−1
Y (Lv0, b0), . . . ,Ext

−1
Y (Lvt, bt)},

respectively. Then, notice that the support of X⋆ +Y⋆ is exactly

S⋆ := {Ext−1
X (Lui, ai) + Ext−1

Y (Lvj , bj)}i,j∈[t].

To analyze the evald-rank of S⋆, recall from Claim 2 that applying linear transformations can only decrease
the evald-rank. Furthermore, note that for any i, j ∈ [t] it holds that

L−1(Ext(Ext−1
X (Lui, ai) + Ext−1

Y (Lvj , bj))) = ui + vj .

Furthermore, the composition L−1 ◦ Ext is linear, since L was linear (and invertible) and Ext is also linear
(since it comes from the leftover hash lemma). Thus,

rank(evald(S
⋆)) ≥ rank(evald(L

−1(Ext(S⋆)))) = rank(evald({ui + vj}i,j)) = rank(evald(B0 + B1)).

Since |S⋆| ≤ |B0| · |B1|, we get that rank(evald(S⋆)) = |B0| · |B1|, and so X⋆ + Y⋆ has full evald-rank.
Recalling Equations (14) and (15) and the parameter settings m = k/2 and ε = 2−k/4, this means that
the sumset source X + Y is ε⋆-close to a convex combination of flat sumset sources X⋆ + Y⋆ with full
evald-rank and support sizes |supp(X⋆)|, |supp(Y⋆)| =

(m/3
⌊d/2⌋

)
=
( k/6
⌊d/2⌋

)
, where ε⋆ = 4ε + m2−m/3 ≤

4 · 2−k/4 + (k/2) · 2−k/6 ≤ 5k · 2−k/6. This is at most 2−k/7 as long as k exceeds a big enough constant C.
Since the lemma is straightforward to obtain whenever k ≤ C,16 this completes the proof.

Finally, we show how to combine Lemma 14 and Lemma 15 to get Theorem 2, restated here for convenience.

Theorem 2 (Low-degree polynomials extract from sumset sources). There exists a constantC > 0 such that
for any n ≥ k ≥ d ∈ N and ε > 0 such that k ≥ Cd(n/ε2)1/⌊d/2⌋, a random degree d polynomial f : Fn

2 →
F2 is an ε-extractor for (n, k)-sumset sources, with probability at least 1− 2

−ε2( k/C
2⌊d/2⌋) ≥ 1− 2−n2/ε2 .

Proof. Fix any n ≥ k ≥ d ∈ N and ε > 0 such that k ≥ Cd(n/ε2)1/⌊d/2⌋, where C is a sufficiently large
constant,17 and define ε0 := ε/2. By Lemma 15, every (n, k)-sumset source W = X+Y is 2−c0k-close to
a convex combination of sumset sources W⋆ = X⋆ +Y⋆ with full evald-rank and

t := |supp(X⋆)| = |supp(Y⋆)| =
(
k/6

⌊d/2⌋

)
,

where c0 > 0 is some constant. By the lower bound on k and the fact that C is a sufficiently large constant,

t =

(
k/6

⌊d/2⌋

)
≥
(
k/6

⌊d/2⌋

)⌊d/2⌋
≥ (C/3)⌊d/2⌋n/ε2 = (C/3)⌊d/2⌋n/(4ε20) ≥ 64n/ε20.

16This is because 1−2−2k ≤ 2−ck whenever k ≤ C, provided that c > 0 is a small enough constant that depends on C. Thus, in
this regime, the lemma amounts to simply finding a sumset source W⋆ with full evald-rank that shares at least one support element
with W, which is straightforward.

17What exactly “sufficiently large” means will become clear later in the proof.
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Thus, Lemma 14 tells us that a random degree d polynomial f : Fn
2 → F2 is an (ε0 + 2−c0k)-extractor for

(n, k)-sumset sources with k ≥ Cd(n/ε2)1/⌊d/2⌋, except with probability at most 2 · 2−ε20t
2/32.

We now argue that ε0 + 2−c0k ≤ ε. For this, it suffices to argue that 2−c0k ≤ ε0 (which was set to
ε/2). Thus, given the lower bound on k, we just need 2−c0Cd(n/ε2)1/⌊d/2⌋ ≤ ε. For this, it suffices to show
2−c0Cd(1/ε)1/⌊d/2⌋ ≤ ε. And if C is a sufficiently large constant C ≥ (log2 e)/(2c0), then it suffices to show
2−(log2 e)(d/2)(1/ε)

1/⌊d/2⌋ ≤ ε, or e⌊d/2⌋(1/ε)
1/⌊d/2⌋ ≥ 1/ε, which is e(1/ε)

1/⌊d/2⌋ ≥ (1/ε)1/⌊d/2⌋. And this
follows from the standard inequality x ≤ ex for all real x.

Finally, it is easy to verify that 2 · 2−ε20t
2/32 ≤ 2

−ε2( k/C
2⌊d/2⌋), using our definitions of ε0 and t above, and

the fact that k ≥ Cd(n/ε2)1/⌊d/2⌋ for a sufficiently large constant C.

5.3 Impossibility results

Above, we proved that random low-degree polynomials are good extractors for sumset sources (Theorem 2).
Given this result, it is natural to ask just how tight it is: in particular, can one show that every low-degree
polynomial is nevertheless constant on some relatively large sumset source? As it turns out, the work of
Cohen and Tal [CT15] already gives an answer to this question. Indeed, they show that every low-degree
polynomial is constant on some relatively large affine source, which is a special case of a sumset source.
Thus, their result already implies that every degree d polynomial f : Fn

2 → F2 is constant on some (n, k)-
sumset source W with k ≥ Ω(dn

1
d−1 ), proving that Theorem 2 is tight up to the constant 2 in the exponent.

In this section, we instead ask whether such a result can be obtained for two independent sources – which
can be viewed as the other well-known specialization of sumset sources. We prove such a result below, and
show that it holds even if we consider the following (more general) family of functions f : Fn

2 × Fn
2 → F2.

Definition 15 (Left-degree). We say that a function f : Fn
2 × Fn

2 → F2 has left-degree d if for any fixed
y ∈ Fn

2 , the restricted function f(·, y) can be written as an F2-polynomial of degree ≤ d.

Note that every polynomial of degree ≤ d also has left degree ≤ d, but a function with left degree
≤ d can be much more complex than a degree ≤ d polynomial. Now, given this definition, we prove the
following impossibility result for two-source dispersers that are computed by functions with low left-degree.

Theorem 7. There is a constant c > 0 such that for every positive integers n and d ≤ c log n, the following
holds. For any function f : Fn

2 × Fn
2 → F2 with left-degree ≤ d, there exist independent (n, k)-sources

X,Y with k ≥ cdn1/d such that f(X,Y) is constant.

Before we prove Theorem 7, we present a corollary for degree ≤ d polynomials.

Corollary 6. There is a constant c > 0 such that for every positive integers n and d ≤ c log n, the following
holds. For every polynomial f : F2n

2 → F2 with degree ≤ d, there exist independent (n, k)-sources X,Y
with k ≥ cdn

1
d−1 such that f(X,Y) is constant.

Proof. Every polynomial f : F2n
2 → F2 of degree at most d can be written as

f(x, y) = g(x, y) + h(x),

such that g has degree at most d and does not feature monomials of f containing only variables from
{x1, . . . , xn}, and h collects all remaining monomials. Note that g has left-degree at most d − 1. Thus, by
Theorem 7, there exist independent (n, k)-sources X,Y with k ≥ cdn

1
d−1 such that g(X,Y) is constant.
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Next, without loss of generality, assume that Pr[h(X) = 0] ≥ 1/2. In this case, the random variable
X′ = (X | h(X) = 0) satisfies

H∞(X′) ≥ H∞(X)− 1 ≥ k − 1 ≥ c′dn
1

d−1

for some absolute constant c′ > 0. Since f(X′,Y) = g(X′,Y) is constant, the desired result follows.

Now, in order to prove Theorem 7, we revisit the argument used by Cohen and Tal [CT15] in the context
of affine sources. In particular, we will use the following result from [CT15, Appendix B], which is a
consequence of the Chevalley-Warning theorem. It says that if a low-degree polynomial f vanishes on a
subspace V , then it also vanishes on many shifts of that subspace.

Lemma 16 ([CT15, Appendix B]). Consider a subspace V ⊆ Fn
2 of dimension t and a polynomial f :

Fn
2 → F2 of degree at most d such that f(v) = 0 for all v ∈ V . Then, it holds that

|{x ∈ Fn
2 : ∀v ∈ V, f(x+ v) = 0}| ≥ 2

n−
∑d−1

j=0 (d−j)(tj).

With this tool in hand, we are ready to prove Theorem 7.

Proof of Theorem 7. We may alternatively see a function f : Fn
2 × Fn

2 → F2 of left-degree at most ≤ d as a
collection of 2n polynomials {fy : Fn

2 → F2}y∈Fn
2

, each of degree ≤ d, where fy(x) := f(x, y). Without
loss of generality, we assume that fy(0) = 0 for at least 2n−1 choices of y. The desired result follows if we
can find sets X,Y ⊆ Fn

2 , each of size at least 2cdn
1/d

, such that fy(x) = 0 for every y ∈ Y and x ∈ X .
Indeed, we can then take X and Y to be uniformly distributed over X and Y , respectively.

Towards this end, consider sampling a subspace V ⊆ Fn
2 of dimension

t =

⌊
d

e

( en
4d3

− 1
)1/d⌋

by iteratively sampling vi uniformly at random from Fn
2 \ span(v1, . . . , vi−1) for i = 1, . . . , t. Looking

ahead, we will choose c > 0 small enough (i.e., smaller than 1
4 log(2e) ) so that d ≤ t−1

2 for d ≤ c log n.
Using Lemma 16, the probability that some fixed polynomial f : Fn

2 → F2 of degree at most d with
f(0) = 0 satisfies f(x) = 0 for all x ∈ V is at least

t−1∏
i=0

2
n−

∑d−1
j=0 (d−j)(ij) − 2i

2n
≥

t−1∏
i=0

2
n−1−

∑d−1
j=0 (d−j)(ij)

2n
(16)

= 2
−t−

∑t−1
i=0

∑d−1
j=0 (d−j)(ij)

≥ 2−t−d2t(et/d)d−1
(17)

≥ 2−n/2. (18)

Equation (16) holds because

n−
d−1∑
j=0

(d− j)

(
t− 1

j

)
≥ n− d2

(
et

d

)d−1

≥ 3n/4 ≥ 2t,
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which follows from the fact that d ≤ t−1
2 and by our choice of t. Equation (17) uses the fact that

t−1∑
i=0

d−1∑
j=0

(d− j)

(
i

j

)
≤ d2t

(
et

d

)d−1

< n/4,

again by our choice of t.
Now, if A ∼ [2n] denotes the number of polynomials in the collection {fy : y ∈ Fn

2 , fy(0) = 0} such
that fy(v) = 0 for all v ∈ V , then by linearity of expectation and Equation (18), we have

E[A] ≥ 2n−1 · 2−n/2 = 2n/2−1 ≥ 2t.

Therefore, by an averaging argument, there exist a t-dimensional subspace V and a set Y ⊆ Fn
2 of size at

least 2t such that fy(V ) ≡ 0 for all y ∈ Y . Taking X = V and this Y (and X and Y uniformly distributed
over these subsets, respectively) concludes the argument.

6 Low-degree polynomials yield evasive sets

6.1 Low-degree, low-error two-source extractors

Recall that in Theorem 2, we showed that a random degree d polynomial f : Fn
2 → F2 is an ε-extractor for n-

bit sumset sources with min-entropy k = O(d(n/ε2)1/⌊d/2⌋). While this can handle any range of parameters,
notice that in order to achieve “low error” ε = k−ω(1), it requires superconstant degree d = ω(1). It is natural
to ask whether low error can still be achieved with polynomials of constant degree d = O(1).

As a step in this direction, in this section, we show the existence of a low-error two-source extractor for
arbitrary linear min-entropy k = δn, which is computable by a degree ≤ 4 polynomial. In contrast, the best
known explicit constructions of low-error two-source extractors require min-entropy k ≈ 0.44n [Bou05,
Lew19]. More precisely, we prove the following.

Theorem 8 (Low-degree low-error two-source extractor). For every δ > 0 there is some ζ > 0 such that
there exists a (k = δn, ε = 2−ζn)-two-source extractor Ext : Fn

2 × Fn
2 → F2 that is computable by an

F2-polynomial of degree ≤ 4. Moreover, such a function Ext can be sampled with probability 0.99 in time
O(n3), and Ext(x, y) can be evaluated in time O(n3) for every input (x, y).

We prove Theorem 8 by combining a previously known connection between subspace-evasive sets (over
F2) and low-error two-source extractors for linear min-entropy, and a construction of such subspace-evasive
sets from degree-2 polynomials. This connection was originally conditional on (a weak form of) the approxi-
mate duality conjecture [BR15]. However, this conjecture is now a theorem since it is implied by the Polyno-
mial Freiman-Ruzsa theorem, which was recently proved by Gowers, Green, Manners, and Tao [GGMT23].

A known reduction to low-degree subspace-evasive sets

We make the connection clear here for completeness. We need the following definition and previously
known results.

Definition 16 (Rank of a function). We say that a function f : Fn
2 × Fn

2 → F2 has rank at most r if there
exist functions g1, g2 : Fn

2 → Fr
2 such that

f(x, y) = ⟨g1(x), g2(y)⟩.

Equivalently, f has rank at most r if and only if its 2n × 2n truth table has rank at most r over F2.
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A uniformly random function will have exponentially large rank with high probability. The following
result states that every linear-rank two-source disperser for linear min-entropy is also a low-error two-source
extractor for essentially the same min-entropy.

Theorem 9 ([BR15, Lemma 2.17] and Polynomial Freiman-Ruzsa [GGMT23]). For everyC, γ, ρ > 0 there
exists η > 0 such that the following holds for all n: Let f : Fn

2 × Fn
2 → F2 be a (k = ρn)-two-source

disperser with rank at most Cn. Then, f is also a (k′ = (ρ+ γ)n, ε = 2−ηn)-two-source extractor.

Ben-Sasson, Lovett, and Ron-Zewi [BLR12] obtained an entropy-error tradeoff for this result, which
allows one to drop the min-entropy k′ toO(n/ log n) while having error 2−Ω(

√
n). For the sake of exposition,

we do not use this alternative version, but remark that it can be applied here as well.
Based on the theorem above, our goal is to construct a linear-rank two-source disperser for any sublinear

min-entropy. We use a simple observation already present in [PR04, BR15], whose short proof we include
for completeness.

Lemma 17 ([PR04, BR15]). If A,B ⊆ Fn
2 are sets such that18 dimA+ dimB > n+ 1, then

⟨A,B⟩ := {⟨a, b⟩ : a ∈ A, b ∈ B} = {0, 1}.

Proof. First, suppose that ⟨A,B⟩ = {0}. This means that B lies in the subspace orthogonal to span(A),
and so dimA + dimB ≤ n. On the other hand, if ⟨A,B⟩ = {1}, then fix any a ∈ A and consider instead
the set A′ = A − a. Note that ⟨A′, B⟩ = {0} and that dimA′ ≥ dimA − 1. By the argument above, we
must have dimA′ + dimB ≤ n, and so also dimA+ dimB ≤ n+ 1.

Given an input length n and min-entropy requirement k ≤ n, Lemma 17 suggests building an encoding
function h : Fn

2 → Fr
2 that is subspace-evasive in the sense of Pudlák and Rödl [PR04].

Definition 17 (Subspace-evasive sets and functions). A set S ⊆ Fr
2 is said to be (ℓ, 2k)-subspace-evasive if

|S ∩V | < 2k for any dimension-ℓ subspace V of Fr
2. An injective function h : Fn

2 → Fr
2 is (ℓ, 2k)-subspace-

evasive if h(Fn
2 ) is (ℓ, 2k)-subspace-evasive.

Given a function h : Fn
2 → Fr

2, we consider the two-source extractor

Exth(x, y) = ⟨h(x), h(y)⟩.

The following lemma relates the subspace-evasiveness of h to the dispersion and rank of Exth.

Lemma 18. Given an injective (ℓ = r/2, 2k)-subspace-evasive function h : Fn
2 → Fr

2, it follows that Exth
is a k-two-source disperser of rank at most r.

Proof. Fix any two sets A,B ⊆ Fn
2 of size 2k each. We have that dimh(A), dimh(B) ≥ r/2 + 1, since h

is (r/2, 2k)-subspace-evasive. In particular, this means that dimh(A) + dimh(B) > r+1. By Lemma 17,
we conclude that Exth(A,B) = ⟨h(A), h(B)⟩ = {0, 1}.

Combining Lemma 18 with Theorem 9, we immediately obtain the following theorem, which reduces
constructing a low-error two-source extractor for any linear min-entropy to constructing an appropriate
subspace evasive set.

Theorem 10. For every C, γ, ρ > 0 there exists η > 0 such that the following holds for all n: Let h :
Fn
2 → Fr

2 be an injective (ℓ = r/2, 2k = 2ρn)-subspace-evasive function with r ≤ Cn. Then, Exth(x, y) =
⟨h(x), h(y)⟩ is a (k′ = (ρ+γ)n, ε = 2−ηn)-two-source extractor. Moreover, if h is explicit, then so is Exth.

18We take dimA to mean dim span(A).
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A random construction of low-degree subspace-evasive sets

With Theorem 10 in mind, it remains to construct an (ℓ, 2k)-subspace-evasive function h : Fn
2 → Fn+r

2

with r = O(n), k = o(n), and ℓ = n+r
2 . Furthermore, we would like to construct h in a way that Exth is

computable by a low-degree F2-polynomial. Towards this end, we consider the function

h(x) = (x1, . . . , xn, f1(x), f2(x), . . . , fr(x)),

where f1, . . . , fr : Fn
2 → F2 are random degree d polynomials.

Theorem 11. Let k = 10dn1/d and r = 11n. Then, with probability at least 1 − 2−3n2
over the sampling

of f1, . . . , fr we have that h is an injective (ℓ = n+r
2 , 2k)-subspace-evasive function.

Sudakov and Tomon [ST23] also consider subspace-evasive sets induced by collections of multivari-
ate polynomials, but they analyze instead the setting where the field is large and both the dimension and
intersection size are small. Next, we need the following lemma.

Lemma 19 ([BHL12, Lemma 1.4] and [KS05, Theorem 1.5], adapted). For any set S ⊆ Fn
2 of size 2k we

have that rank(evald(S)) ≥
(

k
≤d

)
.

With this lemma in hand, we are ready to prove Theorem 11.

Proof of Theorem 11. The injectivity of h holds by construction, so we focus on the subspace-evasiveness
of h. We need to show that with high probability it holds that for any set A ⊆ Fn

2 of size 2k we have
dimh(A) > r+n

2 . We may write h(x) = (x,M evald(x)), where M is an r ×
(
n
≤d

)
matrix with i.i.d.

uniformly random F2 entries.
Fix such a set A. Then, by Lemma 19, there exists a subset S ⊆ A of size r = 10n ≤

(
k
≤d

)
such that

the vectors in evald(S) are all linearly independent. It suffices to show that dim(M evald(S)) >
r+n
2 =

5.5n. Choose n+r
2 vectors in evald(S) = {v1, v2, . . . , vr}. Without loss of generality, we may take these

vectors to be v1, . . . , vn+r
2

. Since the vi’s are linearly independent, the random variables (Mvi)i∈[r] are

also independent. For a fixed i > n+r
2 , the probability that Mvi lies in span(Mv1, . . . ,Mvn+r

2
) is 2−

r−n
2 .

Therefore, the probability that Mvn+r
2

+1, . . . ,Mvr all lie in this subspace is

(2−
r−n
2 )r−

n+r
2 = 2−25n2

.

Then, a union bound over the
( |S|

n+r
2

)
=
(

r
n+r
2

)
choices for the initial set of n+r

2 vectors from evald(S) shows

that the probability that dimh(S) ≤ n+r
2 is at most(

r
n+r
2

)
· 2−25n2 ≤ 2r · 2−25n2

= 211n−25n2 ≤ 2−14n2
.

Finally, we take a union bound over all the
(
2n

r

)
choices of S to conclude that the probability that h is not

subspace-evasive is at most (
2n

r

)
· 2−14n2 ≤ 2nr−14n2

= 2−3n2
.

We can now combine Theorem 11 for degree d = 2 with Theorem 10 to immediately obtain a low-error
two-source extractor for arbitrary linear min-entropy, which in particular yields Theorem 8.
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Corollary 7. Set r = 11n. Sample r random degree 2 polynomials f1, . . . , fr : Fn
2 → F2 and define

h : Fn
2 → Fn+r

2 as h(x) = (x1, . . . , xn, f1(x), . . . , fr(x)). Then, with probability at least 1 − 2−3n2
over

the sampling of f1, . . . , fr the following holds: For any δ > 0 there exists c > 0 such that the function
Exth : Fn

2 × Fn
2 → F2 given by

Exth(x, y) = ⟨h(x), h(y)⟩

is a (k′ = δn, ε = 2−cn)-two-source extractor. Furthermore, Exth is computable by a 2n-variate F2-
polynomial of degree at most 4.

6.2 Improved impossibility results for dispersing from polynomial and variety sources

In this section, we show how to construct what we call sumset-evasive sets using low-degree polynomials.
Then, we show how our constructions yield new impossibility results for dispersing from polynomial and
variety sources using sumset dispersers, improving and simplifying results of Chattopadhyay, Goodman,
and Gurumukhani [CGG24].

Definition 18 (Sumset-evasive sets and functions). A set S ⊆ Fr
2 is said to be ℓ-sumset-evasive if for any sets

A,B ⊆ Fr
2 each of size 2ℓ it holds that A+B ̸⊆ S. We say that a function f : Fn

2 → Fr
2 is ℓ-sumset-evasive

if the image f(Fn
2 ) ⊆ Fr

2 is ℓ-sumset-evasive.

We show that the same construction we used to obtain low-degree subspace-evasive sets above also
works for sumset-evasiveness, if we use our new Lemma 13 instead of Lemma 19. To keep things simple,
we focus here on even degree d, and note that it is straightforward to extend our results to hold for all degrees
d, at a slight loss in parameters (as was done for our fully general result on sumset extractors in Section 5.2).

Theorem 12. There exist constants C, c > 0 such that the following holds for all positive integers k ≥
t ≥ 200d with d even and

(t/100
≤d/2

)
≥ 4d2(2e)d. Let f1, . . . , fr : Fk

2 → F2 be independent random degree d
polynomials with

r ≥ 8d2(2e)dk(t/100
≤d/2

) .

Consider the function h : Fk
2 → Fk+r

2 defined as h(x) = (x, f1(x), . . . , fr(x)). Then

Pr
f1,...,fr

[
h(Fk

2) is not t-sumset-evasive
]
≤ 2

− r
2
·(t/100≤d ).

Proof. Let S ⊆ Fk+r
2 denote the image of h, and recall it is of the form

S = {(x, f(x)) : x ∈ Fk
2},

where f : Fk
2 → Fr

2 is defined as f(x) := (f1(x), . . . , fr(x)). First, suppose there exist A,B ⊆ Fn
2 each

of size at least 2t such that A + B ⊆ S. Since the first k bits of S determine the rest, the same is true
of both A and B. In particular, there must exist some A′, B′ ⊆ Fk

2 each of size at least 2t and functions
ϕ, ψ : Fk

2 → Fr
2 such that

A = {(a, ϕ(a)) : a ∈ A′},
B = {(b, ψ(b)) : b ∈ B′}.
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Furthermore, again because A+B ⊆ S, we know that for every a ∈ A′, b ∈ B′,

(a, ϕ(a)) + (b, ψ(b)) = (a+ b, ϕ(a) + ψ(b)) = (a+ b, f(a+ b)).

In particular, this implies that f(a+ b) = ϕ(a) + ψ(b) for every a ∈ A′, b ∈ B′.
Next, since A′, B′ each have size at least 2t, we know by Lemma 13 that there must exist some A′′ ⊆

A′, B′′ ⊆ B′ each of size τ =
(t/100
≤d/2

)
such that

rank(evald(A
′′ +B′′)) ≥

(
t/100

≤ d

)
≥ (2e)−dd−2τ2 =: τ ′. (19)

The rightmost inequality uses the fact that
(t/100

≤d

)
≥
(

t
100d

)d and that τ2 =
(t/100
≤d/2

)2
≤ d2

(
2et
100d

)d, which in
turn use the standard inequalities

(
u
≤v

)
≥
(
u
v

)
≥ (u/v)v and

(
u
≤v

)
≤ v
(
u
v

)
≤ v (eu/v)v, valid for v ≤ u/2.

Furthermore, if we define ϕ′′ : A′′ → Fr
2, ψ

′′ : B′′ → Fr
2 to denote the restrictions of ϕ, ψ to A′′, B′′

respectively, it still holds that f(a + b) = ϕ′′(a) + ψ′′(b) for all a ∈ A′′, b ∈ B′′. Now, note that by
Equation (19) there are at least τ ′ choices of pairs a ∈ A′′, b ∈ B′′ such that the corresponding random
variables f(a+ b) are independent and uniformly distributed over Fr

2, while ϕ′′(a) +ψ′′(b) is a fixed value.
Thus, the probability that f(a + b) = ϕ′′(a) + ψ′′(b) is precisely 2−r. Therefore, by the independence
of f(a + b) for the choices of a ∈ A′′ and b ∈ B′′ above, the probability they are equal for every fixed
pair a ∈ A′′, b ∈ B′′ above is precisely 2−r·τ ′ . Applying a union bound over all possible choices of
A′′, B′′, ϕ′′, ψ′′ yields that the probability that such objects exist is at most

2−rτ ′ ·
(
2k

τ

)2

· ((2r)τ )2 ≤ 2−rτ ′+2kτ+2rτ ,

which is at most 2−rτ ′/2 provided that r ≥ 4τk
τ ′−4τ = 4k

(2e)−dd−2τ−4
, the result follows by noting that our

hypotheses implies (2e)−dd−2τ − 4 ≥ (2e)−dd−2τ/2, so it suffices to choose any r ≥ 8d2(2e)dk/τ .

Note that for the functions h from Theorem 12 we have that Z = h(Uk) is a degree ≤ d polynomial
source of length n = k+ r and min-entropy k such that, with high probability over the choice of h, it holds
that supp(Z) does not contain any sumset A+B with |A|, |B| ≥ 2t. Moreover, the entropy gap of Z is

n− k = r = O

8d2(2e)dk(t/100
≤d/2

)
 = O

(
8d2(2e)dn

(
100d

2t

)d/2
)

≤ n

(
Cd

t

)d/2

,

for a sufficiently large constant C > 0. The third equality uses the fact that k ≤ n and
(
a
≤b

)
≥
(
a
b

)
≥
(
a
b

)b.
Using this and setting t = α log n for a sufficiently small constant α > 0 yields the following corollary
of Theorem 12, which states that there exist polynomial NOBF sources19 with extremely high min-entropy
that avoid even very tiny sumsets.

Corollary 8. For any constant c > 0 there exists a constant C > 0 such that the following holds for all
positive integers n ≥ C and even degrees d. There exists a degree d polynomial NOBF source Z ∼ Fn

2

with min-entropy H∞(Z) ≥ n − n
(

Cd
logn

)d/2
such that supp(Z) does not contain any sumset A + B with

|A|, |B| ≥ nc.
19Following [CGG24, Definition 4], a degree d polynomial NOBF source Z ∼ Fn

2 with min-entropy k is a degree d polynomial
source with the following structure: There exists a set G ⊆ [n] of k good coordinates which are independent and uniformly
distributed, and each coordinate outside G is computed by a degree ≤ d polynomial of the coordinates in G. Polynomial NOBF
sources are a special case of both polynomial sources and variety sources.
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Corollary 8 generalizes [CGG24, Theorem 5.11], which worked for d = 2 only, to all even degrees d, and
it has a simpler proof. It also yields the following corollary, extending the impossibility result from [CGG24,
Section 5.3] on using sumset dispersers to disperse from polynomial NOBF sources in a black-box manner
to larger degrees d > 2.

Corollary 9 (Sumset dispersers cannot disperse from high-entropy polynomial NOBF sources and variety
sources, any even degree d). Fix any even degree d ∈ N. Then, there exists a constant C > 0 such that
for any integer n ≥ C the following holds. Sumset dispersers cannot be used to disperse from degree d

polynomial NOBF sources over Fn
2 with min-entropy k = n − n

(
Cd
logn

)d/2
in a black-box manner. In

particular, this also means that sumset dispersers cannot be used to disperse from degree d variety sources
with the same min-entropy k in a black-box manner.

Proof. In order to be able to conclude that k′-sumset disperser is also a disperser for another class of sources
C using only its black-box property (i.e., that it is not constant on any sumset A + B with |A|, |B| ≥ 2k

′
),

one needs that for every X ∈ C, supp(X) contains a sumset A+ B with |A|, |B| ≥ 2k
′
. Since we can take

k′ = α log n for an arbitrarily small constant α > 0 and there are no sumset dispersers for such k′ (because
every function is constant on an Ω(log n)-dimensional subspace, and affine sources are sumset sources), the
result follows. To see the “In particular” part, it suffices to note that degree d polynomial NOBF sources
with min-entropy k are also degree d variety sources with min-entropy k [CGG24, Claim 1].

7 Open problems

We list here some of our favorite directions for future research:

• In Theorem 2, we showed that most degree ≤ d polynomials are sumset dispersers (in fact, extractors)
for min-entropy k = O(dn1/⌊d/2⌋). On the other hand, we also know that no degree ≤ d polynomial
is a sumset disperser for min-entropy k = c ·dn1/(d−1), where c > 0 is some constant. Can we narrow
this gap?

• We conjecture that most degree ≤ d polynomials are sumset extractors with exponentially small error
for min-entropy k = CdnC/d for some constant C > 0, even when d is a constant.20 We think that
even showing this for small linear min-entropy would already be quite interesting.

• In Theorem 8, we showed that there exist degree ≤ 4 low-error two-source extractors for any linear
min-entropy via approximate duality. This approach, however, provably cannot go below min-entropy√
n [BLR12]. Can we show the existence of low-degree low-error two-source extractors for min-

entropy below
√
n?
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A Existential results for sumset extractors via a uniformly random function

As a special case of our second main result (Theorem 2), we know that a random degree d = O(log(n/ε))
polynomial is an ε-extractor for (n, k)-sumset sources with min-entropy k = O(log(n/ε)). A natural
question is whether there is a simpler proof that a uniformly random function can achieve this min-entropy
requirement. In this section, we show that the answer is yes, and give a simple proof of the following.

Theorem 13 (Existential result for sumset extractors, originally proved in [Mra16]). For every constant
γ > 0 there exists a constant C > 0 such that for any n ≥ k ∈ N and ε > 0 such that k ≥ (2 + γ) log n+
(4 + 2γ) log(1/ε) + C, the following holds. A uniformly random function f : Fn

2 → F2 is a (k, ε)-sumset
extractor with probability at least 0.99.

Theorem 13 was posed as an open problem by Chattopadhyay and Liao at STOC 2022 [CL22], and the
previous version of our work claimed to resolve it for the first time.21 However, it turns out that this result
was already known in the Cayley sum graph literature since 2015. Namely, Mrazović [Mra16] showed that a
uniformly random function is, with high probability, a (k, ε)-sumset extractor for k = 2 log n+6 log(1/ε)+
O(1). Later work by Konyagin and Shkredov [KS18] improved the constant in front of the log n term at
the expense of a worse dependence on ε. More recently, Conlon, Fox, Pham, and Yepremyan [CFPY24]
extended this to more groups (among other results).

Thus, the existential result presented in Theorem 13 is not novel, and should be attributed to Mrazović.
However, we opted to keep this section in the current version of our work, since our proof seems somewhat
novel,22 and because we believe the presentation here may nevertheless be helpful to other people in the
field. In what follows, we give an overview of our proof of Theorem 13 vs. the proof of Mrazović, and
conclude with a formal presentation of our proof.

Our approach vs. the original proof of Mrazović Unlike many pseudorandom objects, it is not easy to
show that a uniformly random function f : Fn

2 → F2 is a good extractor for (n, k)-sumset sources. This is
because a naive counting argument shows that there are ≈

(
2n

2k

)(
2n

2k

)
≥ 22(n−k)2k such sources, but some of

these sources only have 2k elements in their support (for example, if the sumset source is actually an affine
(n, k)-source). Thus, even if one had access to a perfect concentration bound, a naive application of the
probabilistic method is destined to fail (since 2−2k · 22(n−k)2k ≥ 1).

In order to get around this issue, the key observation is as follows. While it seems difficult to dramatically
improve the naive count of (n, k)-sumset sources, it does seem like most (n, k)-sumset sources should have
≫ 2k elements in their support. And if we restrict our attention to (n, k)-sumset sources of this type, then
there is some hope that the naive probabilistic argument (outlined above) will go through.

As it turns out, this is exactly the case. In particular, if we only consider the family Y of (n, k)-sumset
sources W = X+Y with low additive energy,23 then it is easy to show that a uniformly random function

21In fact, in the previous version of our work, Theorem 2 only worked for polynomially small error, and thus did not show that
degree d = O(log(n/ε)) polynomials can extract from sumset sources with min-entropy k = O(log(n/ε)) (as it does now). Thus,
in the previous version of our work, Theorem 13 was presented as a completely separate result that established the existence of
sumset extractors for min-entropy k = O(log(n/ε)), instead of as a “simpler version” of Theorem 2.

22In particular, our proof follows immediately from a seemingly novel structural result for sumset sources (Lemma 20). This
structural result can be thought of as a simpler version of our key structural result used in the low-degree setting (Lemma 15), and
the proof of Lemma 20 can be viewed as a simpler variant of the randomized convex combination approach used in the proof of
Lemma 15. Moreover, as we will soon discuss, the structural result in Lemma 20 implies the (“one-sided” version of the) main
structural result used in the work of Mrazović [Mra16].

23Having low additive energy can be thought of as a stronger (statistical) version of having support size ≫ 2k - see Definition 19.
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is an excellent extractor for Y . This idea first appeared in the work of Mrazović [Mra16], and subsequently
in the work of Chattopadhyay and Liao [CL22].

The final (and main) step is to show (via a structural result) that an extractor for sumset sources with
low additive energy is automatically an extractor for all sumset sources. This is the step that is missing in
[CL22], and provided by both Mrazović [Mra16, Proposition 4] and, subsequently, our work (Lemma 20,
below). We outline and compare these structural results, below.

For his structural result, Mrazović shows that for any fixed function f : Fn
2 → F2 and sets X,Y ⊆ Fn

2 ,
there exist slightly smaller sets X⋆, Y ⋆ ⊆ Fn

2 that (1) have low additive energy, and (2) have the property
that bias(f(X + Y )) ≤ bias(f(X⋆ + Y ⋆)) + γ for some small γ.24 As a result, it follows that any extractor
for sumset sources with low additive energy automatically works for all sumset sources.25 Mrazović shows
the existence of such sets X⋆, Y ⋆ by taking them to be uniformly random subsets of X,Y (respectively) of
an appropriate size.

For our structural result, we show that every sumset source X +Y is a convex combination of sumset
sources X⋆ + Y⋆ with low additive energy. This also shows that any extractor for sumset sources with
low additive energy automatically works for all sumset sources. Furthermore, it implies the (one-sided)
structural result of Mrazović (even with γ = 0), by an averaging argument over the participants in the convex
combination. In order to obtain our structural result, we assume (without loss of generality) that X,Y are
uniform over some sets X,Y , and randomly partition these sets into subsets {X⋆

i }, {Y ⋆
i } that each have the

same size. The participants in our convex combination are then taken to be all random variables of the form
X⋆

i +Y⋆
j , where X⋆

i ,Y
⋆
j are uniform over X⋆

i , Y
⋆
j .

A formal presentation of our approach

We now present our formal proof of Theorem 13. For this, we need the notion of additive energy between
two sets X,Y (which is closely related to the collision probability, or Rényi entropy H2, of their sum).

Definition 19 ([TV06, Definition 2.8]). The additive energy between two sets X,Y ⊆ Fn
2 is defined as

E(X,Y ) :=
∑
w∈Fn

2

|{(x, y) ∈ X×Y : x+y = w}|2 = |{(x, y, x′, y′) ∈ X×Y ×X×Y : x+y = x′+y′}|.

Theorem 13 is an easy consequence of the following structural lemma, which states that every pair of
independent flat sources can be exactly partitioned into pairs of independent flat sources with low additive
energy with slightly lower min-entropy. We prove this result by analyzing random partitions of the supports
of the two independent sources.

Lemma 20. Let X,Y ⊆ Fn
2 be sets of size at least 2k each. Then, we can partition X and Y into T = 2t

subsets (Xi)i∈[T ] and (Yj)j∈[T ], respectively, such that |Xi|, |Yj | = 2k−t and E(Xi, Yj) ≤ ℓ2 · 22(k−t) for
all pairs (i, j) ∈ [T ]2, provided that ℓ ≥ 4 and t ≥ k

ℓ−1(1 + ℓ/2).
In particular, this means that we can write X and Y uniformly distributed over X and Y , respectively,

as convex combinations X =
∑

i piXi and Y =
∑

j qjYj for random variables Xi and Yj uniformly
distributed over sets Xi and Yj , respectively, satisfying the properties detailed above.

24Mrazović actually shows the slightly stronger result |bias(f(X + Y )) − bias(f(X⋆ + Y ⋆))| ≤ γ, but only the “one-sided”
version, stated above, is actually needed/used.

25This can be seen by taking f in property (2), above, to be the extractor.
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Proof. Fix ℓ ≥ 4 and t ≥ k
ℓ−1(1+ℓ/2). Note that these constraints guarantee that t ≤ k. Consider randomly

partitioning each of X and Y (without replacement) into T = 2t subsets X1, . . . , XT and Y1, . . . , YT ,
respectively, of size exactly 2k−t. Define Aw = {(x, y) ∈ X × Y : x + y = w} and Ai,j

w = {(x, y) ∈
Xi×Yj : x+ y = w}. We show that we will sample with positive probability partitions (Xi) and (Yj) such
that |Ai,j

w | ≤ ℓ for all w ∈ Fn
2 and pairs (i, j). In turn this implies that

E(Xi, Yj) =
∑
w∈Fn

2

|Ai,j
w |2 ≤ ℓ2 · 22(k−t),

since the set Ai,j
w is non-empty for at most |Xi| · |Yj | = 22(k−t) choices of w, as desired.

Fix a vector w ∈ Fn
2 and distinct pairs (x(1), y(1)), . . . , (x(ℓ), y(ℓ)) ∈ Aw. Note that, since x(i) + y(i) =

x(j)+y(j), it follows that x(1), . . . , x(ℓ) are pairwise distinct, and the same holds for y(1), . . . , y(ℓ). Therefore,
the probability that the pairs (x(1), y(1)), . . . , (x(ℓ), y(ℓ)) all end up in the same product set Xi×Yj for some
(i, j) is at most26 (

1

T 2

)ℓ−1

= 2−2t(ℓ−1).

For each vector w ∈ Fn
2 , define sw = |Aw|, and, for pairs (x(a), y(a))a∈[ℓ] ∈ Aℓ

w, let Z(x(a),y(a))a∈[ℓ]

be the indicator random variable of the event that (x(a), y(a)) ∈ Xi × Yj for all a ∈ [ℓ] and some indices
i, j ∈ [T ]. Then, taking the expectation over the sampling of the partitions X1, . . . , XT and Y1, . . . , YT , we
have

E

∑
w∈Fn

2

∑
(x(i),y(i))i∈[ℓ]∈Aℓ

w

Z(x(i),y(i))i∈[ℓ]

 ≤
∑
w∈Fn

2

(
sw
ℓ

)
2−2t(ℓ−1)

≤
∑

w∈Fn
2 :sw ̸=0

(
2k

ℓ

)
2−2t(ℓ−1)

< 22k · 2kℓ · 2−2t(ℓ−1)

≤ 1.

The second inequality uses the fact that sw ≤ 2k for all w ∈ Fn
2 . The third inequality holds because(

2k

ℓ

)
< 2kℓ when ℓ ≥ 4 and because

∑
w∈Fn

2
sw ≤ 22k, meaning that there are at most 22k vectors w such

that sw ̸= 0. The last inequality follows from the choice t ≥ k
ℓ−1(1 + ℓ/2). This implies that there must

exist a partition of X and Y into X1, . . . , XT and Y1, . . . , YT , respectively, such that the associated sum
inside the expectation is 0, which means that |Ai,j

w | ≤ ℓ for all i, j ∈ [T ], as desired.

This lemma guarantees that to extract from any k-sumset source it suffices to extract from any k-sumset
source W = X+Y such that X and Y are uniformly distributed over setsX and Y , respectively, of slightly
smaller size and such that the additive energy E(X,Y ) is appropriately small. The proof of Theorem 13 is
then a consequence of Lemma 20, the following lemma of Chattopadhyay and Liao [CL22] (which shows
that random functions extract from sumset sources with low additive energy), and a union bound.

Lemma 21 ([CL22, Lemma B.2]). For any independent flat k-sources X,Y ∼ Fn
2 , a uniformly random

function f : Fn
2 → F2 satisfies f(X+Y) ≈ε U1 with probability at least 1− 2 · 2−

2ε224k

E(X,Y ) .

26This uses the fact that a−1
b−1

≤ a
b

whenever a ≤ b.
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We are now ready to prove Theorem 13.

Proof of Theorem 13. Without loss of generality, fix a k-sumset X+Y ∼ Fn
2 with X and Y flat k-sources.

Set ℓ = 1+k(1/2−α) for an arbitrary constant α > 0 and t ≥ k
ℓ−1(1+ℓ/2) = (1+β)k2+O(1). According

to Lemma 20, we can then write
X+Y =

∑
i,j∈[T ]

pi,j(Xi +Yj),

where (Xi,Yj) are independent flat k′-sources with k′ = k − t = (1 − β)k2 − O(1) and supports Xi and
Yj satisfying E(Xi, Yj) ≤ ℓ2 · 22(k−t) = ℓ2 · 22k′ , for T = 2t and some (pi,j)i,j∈[T ]. Therefore, it suffices
to show that a uniformly random function f : Fn

2 → F2 satisfies f(X′ +Y′) ≈ε U1 simultaneously for all
pairs (X′,Y′) of independent flat k′-sources with E(X′,Y′) ≤ ℓ222k

′
with the desired probability.

Lemma 21 guarantees that, for a fixed pair (X′,Y′) as above, f(X′ +Y′) ≈ε U1 holds for a uniformly
random function f with probability at least

1− 2 · 2−
2ε224k

′

E(X′,Y′) ≥ 1− 2 · 2−
2ε222k

′

ℓ2 .

Since there are at most
(
2n

2k′
)2 ≤ 22n2

k′
such pairs of sources, a union bound over all these pairs shows that

a uniformly random function satisfies the desired property except with probability at most

22n2
k′ · 2 · 2−

2ε222k
′

ℓ2 = 2 · 2
2k

′
(
2n− 2ε22k

′

ℓ2

)
. (20)

Setting k = (2+γ)(log n+2 log(1/ε))+C for γ > 0 an arbitrarily small constant and C > 0 a sufficiently
large constant gives that the term in Equation (20) is strictly smaller than 1.
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