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Abstract

Suppose Alice has collected a small number of samples from an unknown distribution, and
would like to learn about the distribution. Bob, an untrusted data analyst, claims that he ran
a sophisticated data analysis on the distribution, and makes assertions about its properties.
Can Alice efficiently verify Bob’s claims using fewer resources (say in terms of samples and
computation) than would be needed to run the analysis herself?

We construct an interactive proof system for any distribution property that can be decided
by uniform polynomial-size circuits of bounded depth: the circuit gets a complete description
of the distribution and decides whether it has the property. Taking N to be an upper bound
on the size of the distribution’s support, the verifier’s sample complexity, running time, and the
communication complexity are all sublinear in N : they are bounded by Õ(N1−α + D) for a
constant α > 0, where D is a bound on the depth of the circuits that decide the property. The
honest prover runs in poly(N) time and has quasi-linear sample complexity. Moreover, the proof
system is tolerant: it can be used to approximate the distribution’s distance from the property.
We show similar results for any distribution property that can be decided by a bounded-space
Turing machine (that gets as input a complete description of the distribution). We remark that
even for simple properties, deciding the property without a prover requires quasi-linear sample
complexity and running time. Prior work [Herman and Rothblum, FOCS 2023] demonstrated
sublinear interactive proof systems, but only for the much more restricted class of label-invariant
distribution properties.
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1 Introduction

What can we learn about the properties of an unknown distribution by drawing i.i.d. samples?
How many samples are required, and what is the computational complexity of learning? These are
foundational questions. An emerging line of works asks a new question:

Can an untrusted prover convince a verifier that an unknown distribution has some property?
How efficient can verification be? What is the cost of generating the proof?

We are interested in proofs that can be verified using fewer samples and computational resources
than it would take to perform (without a prover) a data analysis that determines whether the
distribution has the property. We are particularly interested in doubly-efficient proof systems,
where the proof can be generated in polynomial time and sample complexity.

We focus on verifying distribution properties via an interactive proof system [GMR85], where a
probabilistic verifier has sampling access to the distribution and communicates with an untrusted
prover. This continues a study of proof systems for distribution properties initiated by Chiesa
and Gur [CG18]. Drawing inspiration from the property testing literature [GGR98, RS96], the
prover’s claim is that the distribution has (or is close to having) a property. If the prover’s claim
is approximately correct, the verifier accepts with high probability. If the claim is far from correct,
i.e. the distribution is far from the property, then no matter what strategy a cheating prover might
follow, the verifier rejects with high probability.

Recently, Herman and Rothblum [HR22, HR23] showed that the family of label invariant
distribution properties (see below) has doubly-efficient proof systems with efficient verification: for
many well-studied properties in this family, verification can be almost quadratically more efficient
than deciding the property in the standalone setting (without an untrusted prover). In a label-
invariant distribution property (sometimes referred to as a symmetric property), changing the
labels of elements in the support of a distribution does not change membership in the property.1

While several well-studied properties are label-invariant, this is a restrictive class: many interesting
data analyses consider the particular features of data elements, and are thus inherently not label-
invariant. Examples include verifying a distribution’s distance from being monotone [BKR04, RS05,
RV20] or a junta [ABR16], verifying the results of machine learning algorithms that try to learn
to predict an element’s label from its features, or verifying demographic statistics that depend
the features of each individual. Thus, while prior work demonstrated that there are interesting
properties for which verification can be more efficient than performing the analysis, it was not clear
whether this can be the case for a more general class of analyses.

1.1 This Work: Proof Systems for General Distribution Properties

We show that a rich class of distribution properties can be verified using sample complexity,
communication and verifier time that are sublinear in the support size of the distribution. Our
new doubly-efficient proof system applies to any distribution property that can be approximately
decided by a circuit of bounded depth (or a Turing machine of bounded space, see Appendix A.
For ease of presentation we focus on bounded-depth circuits for most of this introduction).

1More formally, for a distribution D over the domain [N ], and a permutation π : [N ] → [N ], we let π(D) be
the distribution obtained by sampling from D and applying the permutation π to the outcome. A property P is
label-invariant if for every distribution D ∈ P, and every permutation π over D’s domain, π(D) ∈ P.
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We proceed to detail this result: a distribution property is a set of distributions (similarly to
the way a language is a set of strings), parameterized by the size of the domain N . We measure
the distance of a distribution D from a property P by D’s total variation distance to the closest
distribution in P. We study families of properties characterized by the computational complexity
of deciding, given the full specification of a distribution, whether it is δc-close to the property
(the YES case), or δf -far from the property (the NO case). A circuit (or TM) for this problem
gets as its input the parameters δc, δf and a list ((i,D[i]))i∈[N ] specifying the probability of each
element in the support. Taking ρ = (δf − δc) ≥ poly(1/N), the probabilities are specified up to

to precision poly(ρ), and the representation is thus of length Õ(N).2 Note that this is a purely
computational problem: the distribution is fully specified, there is no need to draw samples. We say
that a distribution property can be ρ(N)-approximately decided (or “approximated”) by a circuit
family of depth D(N) and size S(N) if there exists a family of logspace uniform Boolean circuits
with fan-in 2 with the specified depth and size that decides the aforementioned decision problem
for every δc, δf s.t. (δf − δc) ≥ ρ(N).

Theorem 1.1 (Main result: IPs for depth-bounded properties). There exists a constant α > 0
s.t. for every approximation parameter ρ = ρ(N) ∈ (0, 1), and every property that can be ρ(N)-
approximately decided by a circuit family of depth D = D(N) and size S = S(N), there is an
interactive proof system as follows. The prover and the verifier both get as input an integer N and
proximity parameters εc, εf ∈ [0, 1] s.t. εf − εc ≥ Θ(ρ), as well as sampling access to a distribution
D over the domain [N ], where

• Completeness: if D is εc-close to the property and the prover follows the protocol, then the
verifier accepts with all but small constant probability.

• Soundness: if D is εf -far from the property, then, no matter how the prover cheats, the
verifier rejects with all but small constant probability.

• Efficient verification: the verifier’s sample complexity is N1−α·poly(1/ρ, log(N)). The protocol’s
communication complexity and verifier runtime are N1−α · poly(1/ρ, log(N))+D · polylog(S).
The protocol has O(D · log(S)) rounds.

• Doubly-efficient prover: the honest prover’s sample complexity is N · poly(1/ρ, log(N)) and
its runtime is poly(S) + (N · poly(1/ρ), log(N)).

See Appendix A for a statement for bounded-space computations. We emphasize that the
protocol achieves tolerant verification [PRR06]: the verifier should accept even if the distribution
is not in the property, so long as it is close to the property. The complexity is polynomial in the
gap ρ = (εf − εc) between the distances. Tolerant verification can be used to approximately verify
the distribution’s distance to the property: if the prover claims the distance is δ, we can verify
this (up to distance ρ) by setting εc = δ and εf = δ + ρ in our proof system. We remark that in
the distribution testing setting (without a prover) tolerant testing for many well-studied problems
requires quasi-linear sample complexity (see below).

We make several remarks about the protocol’s complexities. The sample and communication
complexities are sublinear: their dependence on N is Õ(N1−α). For the sample complexity, the

2One can consider different natural representations. Many of these are equivalent under NC or log-space reductions.
They are thus interchangable for our purposes, and we fix the presentation discussed above.
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concrete bound achieved by our protocol is Õ(N1− 1
19 ) and for the communication complexity it is

Õ(N1− 1
38 ), see the discussion concluding Section 2 for further details and open questions that could

lead to improvements in the exponent. In contrast, for distribution testing without a prover, and
especially for tolerant testing, many properties require linear or quasi-linear Ω(N/ log(N)) sample
complexity. For many of these properties, verification requires Ω(

√
N) samples (regardless of the

communication or round complexities) [CG18, HR22]. Finally, we remark that our protocol makes
extensive use of private coins. For clarity of exposition, protocols are presented as if the honest
prover has perfect knowledge of the distribution, but this idealized honest prover can implemented
by an honest prover that learns a sufficiently-accurate approximation to the distribution.

Huge domain, bounded support. We extend Theorem 1.1 to distributions over a huge domain
U , so long as the support size of the distribution is bounded (in both the YES case and the NO
case). The complexities are only poly-logarithmic in |U| (verification is sublinear in the support
size). This is quite a natural setting, e.g. if the distribution is over at most M individuals, but each
individual’s representation can come from a rich domain. We show the extension using a general
domain-reduction technique, see Section 7 for further details and formal statements.

Corollary 1.2. The result of Theorem 1.1 can be extended to properties of distributions over a
domain U = U(N) where the support is of size at most M = M(N). The bound on the support
size needs to hold for both completeness and soundness. In terms of complexity, the verifier’s
sample complexity is Õ((M · log(|U|))1−α · poly(1/ρ)). The communication complexity and verifier
runtime are (Õ(M1−α · poly(log(|U|), (1/ρ)) +D · log(S)). The honest prover’s sample complexity
is Õ(M) · log |U| · poly(1/ρ) and its runtime is (poly(S) + Õ(M) · poly(log(|U|), (1/ρ)).

Comparison to known results. Compared to the [HR23] protocol, our protocol applies to
a much more general class of properties (namely, properties that are not label-invariant). The
verifier’s complexity in our protocol is Õ(N1−α), whereas they have a Õ(

√
N) verifier. Our round

complexity is also considerably larger, whereas they had a 2-message protocol (the protocol in
Appendix A, which applies to bounded-depth computations, has constant round complexity).
Chiesa and Gur [CG18] showed a result for general distribution properties: verification requires
quasi-linear communication and verification time, but only O(

√
N) samples. The main distinction

with our work is that we focus on verification that is simultaneously efficient in terms of the verifier’s
running time, of the communication complexity, and of the sample complexity.

An application to verifying machine learning from samples. Theorem 1.1 is very general,
and can be applied in different settings. We highlight an application to a particular machine learning
task. Suppose that Alice and Bob can both sample from a dataset X = ((x1, y1), . . . , (xN , yN )) of
labeled examples. Alice asks Bob to run an empirical risk minimization algorithm M on the entire
dataset, to produce a classifier whose empirical loss is approximately minimal in a benchmark class
H w.r.t a loss function L. Bob responds with a classifer h with loss β and claims that h is an
approximate empirical loss minimizer, that is

β =
∑
i∈[N ]

L(h(xi), yi) ≤ min
h′∈H

∑
i∈[N ]

L(h′(xi), yi)

+ ε. (1)
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Alice can draw a few samples from the dataset to verify that h’s empirical loss is approximately
β, but how can she verify that the empirical loss is minimal within H without running M herself on
the entire dataset X? This is similar in spirit to verifying PAC learning [GRSY21, GJK+24], but
here we are focused on the empirical loss (rather than the loss w.r.t. the underlying distribution),
and we assume that M is guaranteed to output an (approximate) empirical risk minimizer.

If the algorithm M can be run in bounded-depth or bounded-space, then Alice can use the
protocol of Theorem 1.1 to verify the claim in Equation (1) using only Õ(N1−α ·poly(1/ε)) samples.
If, for example, the size of the dataset is roughly the VC dimension of H (the optimal sample
complexity for agnostic learning), then the verification is sublinear in the VC dimension: in this
setting, for any task that has a bounded-space or bounded-depth learning algorithm with optimal
sample complexity, verification is provably more efficient than learning would be!

To verify the empirical loss, Alice and Bob run the protocol on the circuit that, on input a
distribution describing X (a list of the elements, each with probability 1/N), runs M, computes the
loss of the resulting empirical risk minimizer h∗, and outputs 1 if this best loss is at least (β − ε) .
If Bob was honest, then this circuit should accept the dataset X and Alice will accept. If, however,
there is a risk minimizer h∗ whose empirical loss is smaller than h’s by Ω(ε), then X is at Hamming
distance Ω̃(ε) from a dataset X ′ for which the best loss is (β − ε). Thus, the distribution induced
by sampling from X is at a similar statistical distance from satisfying the circuit, and Alice will
reject w.h.p. We remark that the distribution can be over a huge domain, but its support is over
the N elements {(xi, yi)} (see Section 7). Note that the labels (i.e. the features) of data items are
quite important for the property being verified, so verification for label invariant properties (as in
[HR23]) does not seem helpful. We also remark that in recent work, Gur et al. [GJK+24] give a
general result for verifying machine learning using few labeled examples, assuming that the prover
is unbounded and the verifier is allowed to draw many unlabeled samples from the underlying
distribution. In the application we consider here, the prover knows the entire distribution (random
samples from the dataset), but our verifier does not use access to additional unlabeled examples: it
is truly sublinear in the size of the dataset. We conclude by remarking that the novelty here is that
verification can be performed using only sample access to the dataset X (otherwise, if the verifier
has query access, it can use an interactive proof of proximity (IPP), see Section 1.2).

1.2 Further Related Work

We study the verification of distribution properties via interactive proofs. Interactive proof systems
were introduced by Goldwasser, Micali and Rackoff [GMR85] in the context of proving computational
statements about an input that is fully known to the prover and the verifier. In our work, the
distribution can be thought of as the input, but it is not fully known to the verifier. We aim for
verification without examining the distribution in its entirety, using minimal resources (samples,
communication, runtime, etc.). Our work builds on a line of work that studies the power of sublinear
time verifiers, who cannot read the entire input [EKR04, RVW13, GR18], on verifying properties
of distributions using a small number of samples [CG18, HR22, HR23], and on verifying the result
of machine learning algorithms using a small number of labeled examples [GRSY21, GJK+24].
Goldberg and Rothblum [GR22] study sample-based IPPs, where the input is a string x ∈ {0, 1}n
and the verifier has sampling access to uniformly random input locations, i.e. samples (i, xi) where
i is uniform in [n]. There is some similarity to our model in the fact that the verifier only gets
samples from a certain distribution, but the setting is quite different: the input is still a string
(rather than a distribution), and the samples are guaranteed to be uniformly random over the
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support {(i, xi)}i∈[n]. Aaronson et al. [AGRR23] define and construct distribution-free IPPs, where
the verifier should reject inputs that are far from the language according to a distance measured by
an unknown underlying distribution D over the input locations [n]. The verifier has query access
to x (as usual in an IPP), and also gets sampling access to (i, xi) where i is chosen by D. Here
too, the verifier has access to samples from an unknown distribution, but the setting is again quite
different in talking about properties of strings rather than distributions. On a technical level, the
protocol behind Theorem 1.1 does build on an IPP where some of the verifier’s queries are sampled
by a distribution Y , but the fact that a query was sampled from Y should not be revealed to the
prover (this is different from the setting and the construction in [AGRR23]), see Section 4.3.

2 Technical Overview of Theorem 1.1

At a very high level idea, the protocol is structured as follows:

• The prover and the verifier define a representation of the distribution D as a bit string XD of
quasi-linear length in N , and a bounded-depth circuit C. If D is close to the property then
C accepts XD, and if D is far from the property, then XD is far (in Hamming distance) from
satisfying C. The representation is via a hash table, where each element z in the support
of D is hashed to several locations (using several hash functions). The number of locations
z is hashed into is proportional to the probability that D assigns to z. The honest prover
knows XD explicitly. The verifier, on the other hand, only has restricted access to XD: it
can draw samples from D, and each sample tells it about the value of a number of locations
in XD. A central challenge is that the verifier doesn’t know what z’s probability by D is, so
it doesn’t know which hash entries z affects. We elaborate on this below, but for now assume
the verifier knows the probability of each sample z, so it can also determine the values of the
appropriate locations in the hash table.

• The prover and the verifier run an Interactive Proof of Proximity (IPP, see below) for verifying
that XD satisfies the circuit. The IPP verifier needs to query a sublinear number of locations
in the input XD. Our verifier cannot do so, as its access to XD is very restricted. Thus, the
verifier asks the (untrusted) prover to provide the values of XD at the locations queried by
the IPP. Of course, a cheating prover might lie about some values. To detect this kind of
cheating, the verifier chooses its query set in the IPP to include hidden queries about locations
chosen by drawing samples from D (as above). This means that the verifier knows the value
of XD at some of the locations queried by the IPP, and the prover doesn’t know exactly
which locations those are (the prover does know, for example, that the hidden queries are to
non-empty hash table entries, but it doesn’t know much more). We use a robust IPP, where
the prover needs to lie on many input locations to pass the verifier’s tests, including also on
hidden queries. We carefully design tests that ensure the prover has to cheat on some of the
hidden queries, which will lead the verifier to reject.

• A sample z drawn from D conveys information about one or more locations in the hash table
XD. The set of locations depends on z’s probability mass (by D), but the verifier doesn’t
know z’s probability. It can ask the prover for the probability, but the prover might lie. Thus,
we use a protocol of Herman and Rothblum [HR23], which allows the verifier to check alleged
probabilities provided by an untrusted prover for a collection of samples from D. The protocol
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guarantees that the probabilities will be good approximations w.h.p. Our verifier needs to
know the probabilities before running the IPP (so it knows which locations to query), but it
needs to keep the hidden samples z secret from the prover. In our protocol, the verifier guesses
these probabilities and runs the IPP using hidden queries derived from its guesses. After the
IPP ends and the prover provides the alleged values of XD in the queried locations, the verifier
reveals the hidden samples and uses the [HR23] protocol to obtain approximations for their
probabilities. We design tests that ensure the prover has to lie on the values of (many) hidden
queries where the verifier’s guesses were good enough. If the verifier learns the locations of
queries where its guesses were good enough, it will see that the prover lied on such locations,
and reject w.h.p. The prover can try to hide the fact that the verifier’s guesses were good by
misreporting those elements’ probabilities, but this will be detected by the [HR23] protocol.

We proceed with a more comprehensive overview of the protocol. We begin in Section 2.1 with
a warm-up for the case where there is a promise that the distribution D is exactly uniform over an
(unknown) set of size S. In Section 2.2 we extend the warm-up to the case of a general distribution
where the verifier knows the probability of each sample. That warm-up already describes the way
we represent a distribution as a bit string in the full protocol. Finally, we highlight challenges and
ideas from the full protocol in Section 2.3.

2.1 Warm-up I: Uniform Over a Set of Size S

We begin with a warm-up: we assume that the unknown distribution is uniform over an (unknown)
set of a known size S = Θ(N). Membership of the distribution in the property depends on the
specific set over which it is uniform (the property is not label-invariant). We assume that this
promise holds in both the YES case and the NO case. While this is mainly intended as a warm-up,
the restriction can be interesting in its own right: for example, it would apply to a distribution
obtained by random sampling from a population of individuals with distinct features (further, the
case where S ≪ N can be handled using a general domain-reduction technique, see Section 7).

Representation. A key step in our construction is representing the distribution D (over domain
[N ]) as an M -bit string XD. We highlight two important properties of the representation: the first
is correctness: D can be reconstructed from XD (up to small statistical distance) by a logspace
uniform NC1 circuit. The circuit takes as input the string XD and outputs the list containing
each element’s probability by D. We refer to (the functionality computed by) this circuit as the
reconstruction function. The second property is distance preservation: the reconstruction of any
string that is close to XD in Hamming distance gives a distribution that is close to D in statistical
distance. By composing the reconstruction circuit with the approximate decision circuit guaranteed
by Theorem 1.1, we get a bounded-depth circuit that accepts XD if D is close to the property, and
rejects XD if D is far. The prover and the verifier run an IPP for the language specified by this
circuit on the input XD. If the verifier had query access to XD it could now verify that XD is in
the language L, and hence D is not far from the property. The challenge is that the verifier only
has limited access to XD, so we will need to carefully design tests for verifying that XD ∈ L using
only limited access to XD (more on this below).

For the warm-up we use a simple representation: XD is an N -bit string, where XD[z] = 1 iff z is
one of the S elements in D’s support. The reconstruction of a given string X ′ ∈ {0, 1}N verifies that
it has Hamming weight S (otherwise it rejects), and outputs the distribution that is uniform over
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the 1’s of XD (entries where XD equals 1). The correctness property follows: under the promise
that D is uniform over S elements, the reconstruction of XD always outputs (a representaiton
of) D. For distance preservation, if X ′ is δ-close to XD in Hamming distance, then either the
reconstruction rejects it or it outputs a distribution D′ that is uniform over S elements, where the
supports of D and of D′ differ in at most (δ ·N) elements, so D′ is Θ(δ)-close to D.

Interactive Proofs of Proximity (IPP). We briefly recap IPPs and a specific protocol used
in our construction. IPPs, defined and studied by [EKR04, RVW13], are interactive proofs in
which the verifier has query access to the input and runs in sub-linear time. The soundness
requirement is relaxed to rejecting w.h.p. inputs that are far from the language. A sequence of
works [RVW13, RRR16, RR20] culminated in IPPs for any language decidable by a bounded-depth
circuit or a bounded-space Turing machine:

Theorem 2.1 (IPP of [RR20], informal.). For any language that can be decided by log-space uniform
circuits of depth D and polynomial size, and any desired proximity parameter δ there is a doubly-
efficient public-coins IPP for δ-proximity with communication complexity Õ(δ · n+D). At the end
of the interaction, before it accesses the input, the verifier either rejects, or it outputs a partition
{Pi ⊂ [n]}i∈[(n/u)] of the input into subsets or blocks of size u = Õ(1/δ), and a decision predicate
ϕi : {0, 1}u → {0, 1} for each block, where:

• Completeness. If the input x is in the language, then for every i: ϕi(x|Pi) = 1.

• Soundness. There is a universal constant β > 0 s.t. if the input x is δ-far from the language

Pr
i∈[(n/u)]

[ϕi(x|Pi) = o] ≥ β.

The parition and the decision predicates are succinctly described by small NC1 circuits.

See Theorem 4.7 for a formal statement. We remark that this statement makes explicit some
helpful aspects of the [RR20] protocol: the interaction in the protocol is run without the verifier
ever needing to examine the input. At the end of this interaction the input is partitioned into
subsets of size u, and the prover has made (via the decision predicates) claims about each such
subset. In the soundness case, the claims will be false for a constant fraction of the subsets. Thus,
the verifier can choose a random subset, query its bits, and check if the decision predicate accepts.
This gives constant soundness and query complexity Õ(1/δ). In our work, we repeat the sampling
process r times: we derive r claims about disjoint subsets of the input bits. In the soundness case,
a constant fraction of the claims are false. In particular, the set of queries bits will be at absolute
distance Θ(r) from satisfying all of those subsets’ decision predicates. We leverage this robustness
in our construction (see Section 4.2 for further discussion about robust IPPs).

Running the IPP. The simple representation described above already highlights a key difficulty:
the verifier doesn’t have query access to XD. The only access that the verifier does have is by
sampling random elements from D: for any sampled element z ∼ D, the verifier knows that
XD[z] = 1. Thus, the verifier has sample access to the 1’s of XD. However, for an arbitrary query
index, or even for a uniformly random index in [N ], the verifier has no idea whether XD is 0 or 1.

Nonetheless, in our construction, the prover and the verifier run the IPP of Theorem 2.1 to
verify that XD ∈ L. In the IPP, the verifier either rejects, or it outputs a (succinct description of
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a) partitioning of the input into (n/u) sets {Pi}i∈[(n/u)], each of size u, and a decision predicate ϕi

for each set in the partition. If XD is far from L, then ϕi(XD|Pi) = 0 for a constant fraction of
these sets. We emphasize that the verifier can run the (public coins) interactive phase of the IPP
without any access to the input XD. Of course, the verifier can’t query the input’s values at any of
the sets Pi, so it cannot directly check whether the decision predicates accept. Instead, the verifier
picks r of the sets (Pi1 , . . . , Pir), and asks the prover to send the values of the input at each of
those sets. It checks that the decision predicates accept the values sent by the prover and rejects
immediately if this is not the case. To avoid these checks failing, the prover needs to lie on at least
one of the bits in Ω(r) of the sets. In our protocol, the verifier embeds hidden D-queries, locations
that were sampled from D, among its queries. Our goal is showing that the prover cannot cheat
on many of the query locations without also claiming that XD[z] = 0 for some hidden D-query z.
Since the verifier knows that z was sampled from D, it knows that XD[z] = 1, and it can catch the
cheating prover and reject. In the protocol, for each ℓ ∈ [r], the verifier chooses the partition Piℓ by
either (with probability 1/2) choosing a random partition (we refer to these as U -queries), or (with
probability (1/2)), choosing zℓ ∼ D and taking Piℓ to be the set in the partition that includes zℓ (a
hidden D-query). We emphasize that the verifier only sends to the prover the vector (i1, . . . , ir) of
sets in the partition that were chosen. It does not reveal how each subset was chosen (uniformly
at random or via a D-sample). The prover responds with the claimed values v̄ ∈ {0, 1}r·u of the
input in all locations specified by the verifier’s queries. We show that: (i) there are many “1→0
errors” in the values sent by the prover (queried locations where the prover claimed the value is 0,
but the true value is 1), and (ii) at least one of the 1→0 errors is on a hidden D-query.

Detecting errors in v. To show the properties claimed above, we need the input to be permuted
using an almost k = Θ(log(N))-wise independent permutation Π from [N ] to [N ], so each set in
the partition is approximately k-wise independent. We remark that if we don’t permute the input,
the support of D might be isolated to certain subsets of the partition, and the prover can avoid any
cheating on those. The verifier chooses the permutation and sends it to the prover before running
the IPP. Note that the circuit verifying membership in L needs to invert the permutation, but this
can be done in NC1 (see Section 3.1). The following claim shows that w.h.p. there will be many
1→0 errors in the values v sent by the prover (the probability is over the verifier’s public and secret
coin tosses, including the choice of the permutation Π).

Claim 2.2 (Many 1→0 errors). There exists r = Õ(t) s.t. for any cheating prover strategy, w.h.p.
there are Ω(r) query subsets Piℓ where there is a 1→0 error.

Proof sketch. While the IPP guarantees that there will be Ω(r) errors on the U -queries, they might
all be 0→1 errors (the cheating prover can choose where to insert adversarial errors). However, this
would result in the verifier seeing significantly more 1-answers than it would expect. To circumvent
this type of cheating, we add an additional 1-counting test: the verifier checks that the fraction of
1-values in v̄ in the prover’s answers to U -queries is close to its expectation. Taking r = Õ(t), we
show that w.h.p. the prover must insert Ω(r) errors of the 1→0 type (or be detected).

We need to show that there will also be at least one 1→0 error on a hidden D-query. The
following claim shows that for any query to a 1-location in XD, the conditional probability that
the query was a hidden D-query is not much smaller than (1/t) (this is the best we could hope for,
since at most a (1/t)-fraction of the queries are hidden D-queries). In particular, this means that
w.h.p. at least one of the (many) 1→0 errors will be on a hidden D-query.
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Claim 2.3 (Density of D-queries). W.h.p. over the verifier’s choice of Π and its coins, for every
query q in the verifier’s query set s.t. XD[q] = 1 simultaneously, the probability that q is a hidden
D-query conditioned on the entire tuple of queries made by the verifier is Ω(1/(t·logN)). Moreover,
for queries in different sets Piℓ these probabilities are independent.

Complexity. The protocol’s sample complexity is r = Õ(t). The communication complexity is
dominated by the IPP, where it is Õ(N/t), and by the cost of sending v̄, which is (r · t). Taking
t ≈ N1/3 gives Õ(N2/3) communication and Õ(N1/3) samples.

Discussion. Looking ahead, one thing that makes the warm-up case much easier than the general
case, is that the verifier knows with certainty that the answers on hidden D-queries should be 1,
so it can immediately reject as soon as there’s even a single 1→0 error on such a query. In the
general case, on the other hand, the verifier’s access to XD is much more restricted: if there are
many 1→0 errors in the prover’s answers this can be detected, but the cost of detecting is inversely
polynomial in the fraction of errors. This is the main reason that we incur much larger sample and
communication complexities in our general protocol.

2.2 Warm-up II: Known Sample Probabilities

A representation for general distributions. We begin with the case that the distribution
is (γ/N)-grained for γ ∈ (0, 1): the probability of each element is an integer multiple of (γ/N)
[GR21]. We represent the distribution using a hash table XD ∈ {0, 1}M , hashing units of (γ/N)
mass in D to M “hash buckets”. Hashing is performed using a k = Θ(log(N))-wise independent
hash function h : [N ]× [N/γ]→ [M ] that is chosen by the verifier. The representation is computed
as follows: for each element z in the distribution’s support, let (T · γ/N) be z’s probability by D
(the distribution is grained, so T is an integer). For each such z, we set the entries {h(z, t)}t∈[T ] in
XD to be 1. The remaining entries are set to 0. The reconstruction procedure gets a string, and for
each element z ∈ [N ] it looks for the longest “prefix” of 1’s along the hash locations corresponding
to z, i.e. the largest Tz s.t. ∀t ∈ [Tz], XD[h(z, t)] = 1. The probability of z is set to (Tz ·γ/N) (these
probabilities can be normalized so they sum up to 1). Note that this computation can be performed
in NC1: the probabilities of different elements can be computed in parallel. The non-grained case
is handled by randomized rounding (see below).

We remark that the reconstruction is not perfect (unlike Section 2.1): hash collisions might
cause some probabilities to be over-estimated. Taking a hash table of size M = Õ(N/γ), we can
bound the effect of such collisions. To argue that strings that are close to XD in hamming distance
will be reconstructed into distributions that are close to D, we need to add some additional checks
to the reconstruction procedure. For example, we check that for any entry in the hash table, the
number of pairs (z, t) (recovered in the reconstruction procedure) hashed to that entry is at most
O(log(N)), otherwise the reconstruction procedure rejects. This bounds the effect that flipping an
entry in XD from 0 to 1 can have on the resulting distribution. See Section 5 for the full details.

Key points in the protocol. We extend the analysis to the case where the verifier knows the
probability D[z] of each element sampled from D. This means that the verifier can still sample
from the 1-entries in XD by drawing z ∼ D, choosing a random hash index t ∈ [Tz = D[z] · (N/γ)]
and considering the entry h(z, t). We show that YD is close to uniform over 1-entries in XD.
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The ability to sample from the 1-entries of XD puts us in a situation that is quite similar to the
protocol for uniform distributions. In particular, we run the IPP on XD exactly as described in
Section 2.1. The distribution YD plays the same role as D in the verifier’s choice of query subsets.
The prover responds to the verifier’s queries with alleged values v̄ for those queries. For Claim
2.2 to hold, the verifier needs to know a high-probability upper bound for the number of 1-entries
within its U -queries. We show that the expected number of 1’s is the very close for any underlying
distribution D (this is why we need randomized rounding for non-grained distributions), and the
observed number of 1’s will be close to the expectation w.h.p. The proof of Claim 2.3 also follows
by carefully accounting for the effect of hash collisions.

2.3 Towards General Distributions

In the full protocol, the verifier doesn’t know the probabilities of elements sampled from D. Instead,
it uses a query distribution YD over [M ] defined as follows: the verifier draws z ∼ D and guesses
its probability using a (roughly) log-uniform distribution: it guesses τ ∈ [1, log(N/γ)] uniformyl at
random, takes Tz = 2τ and chooses t ∼ [Tz]. The query location is h(z, t). We say that the guess
was “good” if t ≤ (D[z] ·N/γ). If the guess is good, then the value of XD in the queried location
should be 1. Indeed, conditioning YD on the guess being good gives a sample distribution that
is “well-spread” over the 1’s in XD. We show that the guess is good with (inverse) logarithmic
probability, and the set of hidden D-queries with good guesses plays an important role in the
analysis. The verifier proceeds to run the IPP as in the Section 2.2, picking subsets of the partition
either uniformly at random or by drawing q ∼ YD and choosing the subset that includes q. This
process is repeated r times, resulting in a query set that is sent to the prover. The prover responds
with the alleged values v̄ of XD at all queried locations. As before, there must be many 1→0
errors on the U -queries. We further show that many of these errors will fall on hidden D-queries,
similarly to Claim 2.3 (this entails showing upper and lower bounds for the probability that the
query distribution YD assigns to any 1-entry of XD). In fact, we show that the fraction of 1→0
errors is also roughly maintained among the hidden D-queries with good guesses (note that, at this
point, neither the prover nor the verifier know which queries are in this set).

At this point, we diverge from the warm-ups. There, the verifier knew that the value of XD

on any hidden D-query should be 1. Here, however, it only knows that the value should be 1 if
the guess was good. To separate the good guesses from the other D-queries, the verifier needs to
learn (good approximations to) the probabilities of its samples from D. To do so, we employ the
protocol of [HR23], where the verifier sends its samples to the prover, who responds with their
alleged probabilities. If the alleged probabilities are far from the truth then the verifier rejects
w.h.p. (see Theorem 3.9 for a formal statement). The verifier checks that, for each D-query where
the alleged probability indicates that its guess was good, the value specified by v̄ is 1 (otherwise it
rejects immediately). The cheating prover wants to convince the verifier that the good-guess query
locations where it inserted 1→0 errors were not, in fact, good guesses. To do so, it needs to report
alleged probabilities that are lower than the true probabilities for the elements that lead to those
queries. We argue that such mis-reporting will lead to rejection in the [HR23] protocol.

Complexity. As in the prior sections, the number of samples drawn from D in the IPP is r,
and the communication complexity is Õ((N/u) + r · u). The fraction of 1→0 errors on the hidden
D-queries with good guesses will be Ω̃(1/u). To run the [HR23] protocol on the samples used in the
IPP we need r to be Õ(

√
N/σc), where c is a constant and σ is a measure of the distance between
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the alleged and true probabilities (this omits several additional steps and technical conditions,
see Theorem 3.9). To avoid detection, the cheating prover’s lies must create a σ = Ω̃(1/u2)
distance. We get that the sample complexity is Õ(

√
N · u2c), and the communication complexity

is Õ((N/u) + (
√
N · u2c+1)). Balancing these terms, we take u = Θ̃(N1/(4(c+1))) and get

samples = Õ
(√

N ·N
2c

4(c+1)

)
= Õ

(
N

1− 1
2(c+1)

)
.

communication = Õ
(√

N ·N
2c+1
4(c+1)

)
= Õ

(
N

1− 1
4(c+1)

)
.

Taking c = 8.5, as in [HR23], gives sample complexity Õ
(
N1− 1

19

)
and communication Õ

(
N1− 1

38

)
.

Digest. Our protocol can be viewed as a reduction from verifying membership in a general
distribution property, to verifying the probabilities of a collection of samples from the distribution.
This latter task has been explored in recent work [HR23], but is not yet well understood. In
particular, to the best of our knowledge the only know lower bound on the sample complexity is
Ω(
√
N/σ2) [CG18, HR22]. A protocol matching this lower bound, i.e. with c = 2, would improve

the sample complexity for general properties to Õ(N1− 1
6 ) and the communication to Õ(N1− 1

12 ). In
terms of the reduction itself, one primary source of overhead is that the prover can “cover up” an η
fraction of 1→0 errors (among the hiddenD queries with good guesses) by “moving” a quadratically
smaller mass in the reported probabilities (σ ≈ η2). Improving the quadratic dependence in the
reduction is a fascinating open question for future work.

Organization of Paper. Preliminaries and definition are in Section 3. In Section 4 we cover the
IPPs used in our result. In Section 5 we construct the representation of the distributionD as a string
XD over {0, 1}M , and prove that this construction features the desired properties outlined above.
The full protocol is in Section 6. Lastly, in Section 7 we extend our main result to distribution
properties over large domains (see Definition 3.4).

3 Preliminaries

For an integer n ∈ N, we use [n] to denote the set {1, . . . , n}. For integers r, t ∈ N, we identify
the set [r · t] with the set [r] × [t] in the natural way. For a vector x ∈ Σn and a set S ⊆ [n], we
use (x|S) or x[S] to denote the restriction of the vector to the subset of coordinates in S. For a
discrete set S, a partition P of S is a collection of subsets, where each P ∈ P is a subset of S, the
subsets are all disjoint, and their union is the set S.

A machine A with oracle access (or query access) to a string x ∈ {0, 1}n is an oracle Turing
Machine with access to the function f : [n] → {0, 1} where ∀i ∈ [n], f(i) = xi. We refer to x as
A’s implicit input. The machine A can also have explicit input. We denote the output of A with
oracle access to x ∈ {0, 1}n and with explicit input z by Ax(z) ∈ {0, 1}.

Let x, y ∈ Σn be two strings of length n ∈ N over a (finite) alphabet Σ. We define the (relative

Hamming) distance of x and y as Ham(x, y) = ∆ (x, y)
def
= |{xi ̸= yi : i ∈ [n]}| /n. If ∆ (x, y) ≤ ε,

then we say that x is ε-close to y, and otherwise we say that x is ε-far from y. We define the distance

of x from a (non-empty) set S ⊆ Σn as ∆ (x, S)
def
= miny∈S ∆(x, y). If ∆ (x, S) ≤ ε, then we say

that x is ε-close to S and otherwise we say that x is ε-far from S. We extend these definitions from
strings to functions by identifying a function with its truth table.
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Definition 3.1 (NC1 circuit families). Throughout this work we use NC1 to refer to the class of
logspace uniform Boolean circuits of logarithmic depth and constant fan-in. Namely, L ∈ NC1 if
there exists a logspace Turing machine M that on input 1n outputs a full description of a logarithmic
depth circuit C : {0, 1}n → {0, 1} such that for every x ∈ {0, 1}n it holds that C(x) = 1 if and only
if x ∈ L.

Definition 3.2. The total variation distance (alt. statistical distance) between distributions P and
Q over a finite domain X is defined as:

δTV(P,Q) =
1

2

∑
x∈X
|P (x)−Q(x)|

Theorem 3.3 (Folklore distribution learner [Gol17]). There exists an algorithm that given sample
access to a distribution P over the domain [N ], and an accuracy parameter α ∈ (0, 1), it runs in
time Õ(N/α2), takes O(N/α2) samples, and with probability at least 0.99 outputs a full description
of a distribution Papprox such that δTV(P, Papprox) ≤ α.

Definition 3.4 (Distribution property). We say the P = (PN )N∈N is a distribution property if
PN ⊆ ∆N , where ∆N is the set of all distributions over domain [N ].
We say that P = (PN )N∈N is a distribution property over a large domain U = (UN ), if PN
is a collection of distributions over domain UN with support of size at most N , and we assume
|UN | = ω(N).

Definition 3.5 (Distribution tester for property P). Let δ be some distance measure between
distributions, P a distribution property. A tester T of property Π is a probabilistic oracle machine,
that on input parameters N and ε, and oracle access to a sampling device for a distribution D over
a domain of size [N ], outputs a binary verdict that satisfies the following two conditions:

1. If D ∈ PN , then Pr(TD(N, ε) = 1) ≥ 2/3.

2. If δTV(D,PN ) > ε, then Pr(TD(N, ε) = 0) ≥ 2/3.

In the context of this work, the relevant distance measure is statistical distance as defined above.
An extension of this definition, introduced by Parnas, Ron, and Rubinfeld [PRR06] is the following:

Definition 3.6 ((εc, εf )-tolerant distribution property tester). For parameters εc, εf ∈ [0, 1] such
that εc < εf , a (εc, εf )-tolerant tester T of property Π is a probabilistic oracle machine, that on
inputs N, εc, εf and given oracle access to a sampling device for distribution D over a domain of
size N , outputs a binary verdict that satisfies the following two conditions:

1. If δ(D,ΠN ) ≤ εc, then Pr(TD(N, εc, εf ) = 1) ≥ 2/3.

2. If δ(D,ΠN ) ≥ εf , then Pr(TD(N, εc, εf ) = 0) ≥ 2/3.

Note that a tolerant distribution test is for some property Π is at least as hard as a standard
non-tolerant tester for the same property.

Definition 3.7 (Proof system for tolerant distribution testing problems). A proof system for a
tolerant distribution testing problem P with parameters εc and εf is a two-party game, between a
verifier executing a probabilistic polynomial time strategy V , and a prover that executes a strategy
P . Given that both V and P have black-box sample access to distribution D over the domain [N ],
and are given N , the interaction should satisfy the following conditions:
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• Completeness: For every D over domain of size at most N , such that δTV(D,PN ) ≤ εc,
the verifier V , after interacting with the prover P , accepts with probability at least 2/3.

• Soundness: For every D over domain of size at most N such that δTV(D,PN ) ≥ εf , and
every cheating strategy P ∗, the verifier V , after interacting with the prover P ∗, rejects with
probability at least 2/3.

The complexity measures associated with the protocol are: the sample complexity of the verifier as
as the honest prover (strategy P), the communication complexity, the runtime of both agents, and
the round complexity (how many messages were exchanged).

Definition 3.8 (Label invariant distribution property). A distribution property P is called label
invariant if for all N ∈ N, it holds that any permutation σ over N elements satisfies that D ∈ PN
if and only if σ(D) ∈ PN .

Obtaining a verified tagged sample. Herman and Rothblum [HR23] constructed protocols for
verifying label-invariant properties of an unknown distribution D over [N ]. Their protocol allows a
verifier, interacting with the untrusted prover, to obtain a set x1, . . . , xS ∼ D of i.i.d. samples from
D, together with alleged probabilities for those samples. The probability that the verifier accepts
and the alleged probabilities are σ-far from the truth (by the distance measure below) is small.

Theorem 3.9 (Verifiable tagged sample protocol [HR23]). Set c = 8.5. For any σ = σ(n) ∈
(0, 1), and distribution D over domain [N ] such that D(x) ≤ σc

√
N
, there is a doubly efficient two-

message protocol between a verifier V, who has sample access to an unknown distribution D, and
an untrusted prover, as follows. In its first message, the verifier sends a sample S = (z1, . . . , zs)

of size s = Õ
(√

N · σ−c
)
, where each zi is independently drawn either from D (w.p. 1/2) or from

UN (w.p. 1/2), where the information which is which is a secret held by V. The prover responds
with the alleged probability π(zi) of each zi by D. Taking SD ⊆ [S] to be the subset of samples that
were drawn by D, let the distance of the tags be

∆Z,SD
(π,D) =

1

|SD|
·
∑
i∈SD

(
1−min

{
π(zi)

D(zi)
,
D(zi)

π(zi)

})
Then the following holds:

• If the prover is honest, then w.h.p. ∆Z,SD
(π,D) ≤ σ2.

• For any cheating prover, the probability that ∆Z,SD
(π,D) > σ and V accepts is small.

The size of S, the communication complexity, and V’s overall sample complexity are all Õ(
√
Nσ−c).

The honest prover sample complexity and runtime are both Õ
(
Npoly(σ−1)

)
.

In our construction we run this protocol with tiny (inverse polynomial) error parameter σ, so
the polynomial dependence on (1/σ) shows up as an N c factor in the sample and communication
complexity bounds of Theorem 1.1, see the discussion in Section 2.3.
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3.1 Pairwise and k-Wise Independence

We review definitions and constructions of k-wise independent functions and permutations, a notion
of k-wise paritions uses in our work, and a concentration inequality for k-wise random variables.

Definition 3.10 (k-wise independent functions). A family F of functions mapping [N ] to [M ] is
k-wise independent if for every x1, . . . , xk ∈ [N ], taking a random function f from the family, the
distribution of f(x1), . . . , f(xk) is uniformly random in [M ]k.

Definition 3.11 (k-wise independent permutations). A family F of permutations mapping [N ]
to [N ] is k-wise independent if for every x1, . . . , xk ∈ [N ], taking a random function f from the
family, the distribution of f(x1), . . . , f(xk) is γ-close to a sequence of k random distinct elements
from [N ].

Definition 3.12 (k-wise partition). A partition P over domain [N ] divides its domain into t
disjoint ordered sets of equal sizes {Pi ∈ [N ](N/t)}. A family P of partitions over [N ] is a k-wise
γ-dependent if for every fixed (i1, . . . , ik) and (j1, . . . , jk), for a random partition P from the family,
the distribution of Pi1 [j1], . . . , Pik [jk] is γ-close to a sequence of k random distinct elements from
[N ].

In this work whenever we refer to a k-wise independent partition, the partition is generated by
taking a k-wise permutation of the elements of [N ] and then applying a fixed partition.

Claim 3.13 (construction of k-wise independent functions). For k = k(N) = O(log(N)) there is
an ensemble of k-wise independent families of functions from [N ] to [N ]. A random function f in
the family can be sampled in polylog(N) time (and has a polylog(N)-size representation). The value
of f on an input x ∈ [N ] can be computed by a log(N)-space uniform circuit of depth O(log(N))
and size polylog(N).

Proof sketch. We assume w.l.o.g. that N is a power of 2. The construction is achieved by taking
the function to be a random polynomial over a field of size N . Healy and Viola [HV06] showed
that exponentiation and iterated addition can be performed by very uniform TC0 circuits of the
appropriate sizes and the claim follows.

Claim 3.14 (construction of k-wise independent permutations). There is an ensemble of pairwise
families of permutations from [N ] to [N ]. A random permutation π in the family can be sampled
in O(log(N) time (and has a O(log(N))-size representation). The permutation π can be computed
and inverted by a log(N)-space uniform circuit of depth O(log(N)) and siace polylog(N).

The above construction is obtained by sampling uniformly random a and b from a finite field,
where a is non-zero, and mapping x to (a · x+ b).

Claim 3.15 (construction of k-wise independent permutations). For k = k(N) = O(log(N)) and
any desired γ = γ(N) there is an ensemble of k-wise γ-dependent families of permutations from
[N ] to [N ]. A random permutation π in the family can be sampled in polylog(N, 1/γ) time (and
has a polylog(N, 1/γ)-size representation). The value of π on an input x ∈ [N ] can be computed
in polylog(N, 1/γ) time. There is a log-space uniform NC1 circuit (of poly(N, log(1/γ)) size) that
inverts the permutation.
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Proof sketch. We use Naor and Reingold’s construction [NR99], which is in the Luby-Rackoff
framework [LR88]. The construction uses two (perfectly) pairwise independent permutations from
[N ] to [N ] (see Claim 3.14) and two k-wise independent functions from [N ] to [N ] (see Claim
3.13). Each of these objects can be evaluated by a O(log(N)-space uniform circuit of depth log(N)
and size polylog(N), and so can the entire construction. This gives γ′ = Ω̃(1/

√
N) dependence.

Composing the construction O(log√N (1/γ)) times reduces the dependence to γ-dependence (see
[KNR09]). The resulting circuit has depth O(log(N/γ)) and size polylog(N, 1/γ). The circuit for
inverting the function produces (in parallel) the entire truth table (of size (N log(N))) and performs
one lookup to this table.

Remark 3.16. Composing a k-wise γ-dependent permutation with a (perfectly) pairwise independent
permutation gives a permutation that is simultaneously k-wise γ-dependent and perfectly pairwise
independent.

We conclude with a concentration bound for k-wise independent RVs.

Claim 3.17 (2k-wise independent sampling [Gol17]). For k ≤ n/2, let X1, . . . Xn ∈ [0, 1] be 2k-
wise independent random variables and µ = 1

n

∑
i∈[n] E [Xi]. Suppose that Var [Xi] ≤ β for every

i ∈ [n]. Then, for every ε > 0, it holds that:

Pr

∣∣∣∣∣∣ 1n
∑
i∈[n]

Xi − µ

∣∣∣∣∣∣ ≥ ε

 ≤ (3kβ

nε2

)k

4 Interactive Proofs of Proximity (IPPs)

4.1 Succinct Descriptions

Following [RR20], we define a notion of succinct representation of circuits. This notion is helpful for
specifying the complexity of the verifier in their IPP protocol (see Section 4.3). Loosely speaking,
a function f : {0, 1}n → {0, 1} has a succinct representation if there is a short string ⟨f⟩, of
poly-logarithmic length, that describes f . That is, ⟨f⟩ can be expanded to a full description of
f . The actual technical definition is slightly more involved and in particular requires that the full
description of f be an NC1 (i.e., logarithmic depth) circuit:

Definition 4.1 (Succinct Description of Functions). We say that a function f : {0, 1}n → {0, 1}
has a succinct description if there exists a string ⟨f⟩ of length polylog(n) and a logspace Turing
machine M (of constant size, independent of n) such that on input 1n, the machine M outputs a
full description of an NC1 circuit C s.t. for every x ∈ {0, 1}n, C(⟨f⟩ , x) = f(x). In particular, C
(and thus f) can be evaluated in poly(n) time. We refer to ⟨f⟩ as the succinct description of f .

We also define succinct representation for sets S ⊆ [k]. Roughly speaking, this means that the
set can be described by a string of length polylog(k):

Definition 4.2 (Succinct Description of Sets). We say that a set S ⊆ [k] of size s has a succinct
description if there exists a string ⟨S⟩ of length polylog(k) and a logspace Turing machine M
such that on input 1k, the machine M outputs a full description of a depth polylog(k) and size
poly(s, log k) circuit (of constant fan-in) that on input ⟨S⟩ outputs all the elements of S as a list
(of length s · log(k)).
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We emphasize that the size of the circuit that M outputs is proportional to the actual size of
the set S, rather than the universe size k.

4.2 Robust IPPs: Definition

IPPs, defined and studied by [EKR04, RVW13], are interactive proofs in which the verifier runs in
sub-linear time in the input length, where the soundness requirement is relaxed to rejecting inputs
that are far from the language w.h.p. (for inputs that are not in the language, but are close to it,
no requirement is made). We further consider IPPs for pair languages: the input of the verifier is
composed of two parts: an explicit input y ∈ {0, 1}nexp , to which the verifier has direct access, and
an implicit (longer) input x ∈ {0, 1}n, to which the verifier has oracle access. The goal is for the
verifier to run in time that is sub-linear in n and to verify that x is far from any x′ such that the
pair (y, x′) are in the pair language.

We define robust IPPs, which have a stronger soundness guarantee: the verifier’s (sublinear)
view of the implicit input should be far from a view that would make it accept (given of its random
coins and the transcript of its communication with the prover). This notion of robustness follows
the PCP and PCPP literature [BGH+06]. Robustness was also considered for probabilistically
checkable IPs [RRR16, RR22]. We emphasize that in this work we are concerned with robustness
with respect to the bits the verifier reads from the input (rather than robustness w.r.t. queries
from the communication transcript).

For our definition, we consider an IPP that proceeds in two phases: a communication phase,
where the prover and the verifier exchange messages, but the verifier does not query the input, and
a subsequent query phase, where the verifier queries the input. The verifier then applies a decision
predicate to its views in the communication phase and the query phase (including any random
coins it may toss), and rejects or accepts. See [GRS23] for a more thorough structural study of
IPP verifiers. Let Q be the (sublinear) set of bits queried by the verifier in the query phase. In a
ρ-robust IPP, if the (implicit) input x is far from the language, then w.h.p. the restriction (x|Q)
of the input to the query set is ρ-far from satisfying the verifier’s decision predicate (w.r.t. the
transcript from the communication phase and the verifier’s random coins).

Definition 4.3 (Robust Interactive Proof of Proximity (IPP)). A robust interactive proof of proximity
(IPP) for the pair language L is an interactive protocol with two parties: a (computationally
unbounded) prover P and a computationally bounded verifier V. Both parties get an explicit input
y ∈ {0, 1}nexp , a proximity parameter ε ∈ (0, 1), and a robustness parameter ρ ∈ (0, ε). The verifier
also gets oracle access to x ∈ {0, 1}n, whereas the prover has full access to x.

The protocol is divided into two phases. In the interaction phase the two parties interact, but
the verifier does not access the implicit input. The interaction produces a communication transcript
τ . In the subsequent query phase, the verifier makes its queries Q into the implicit input (based on
the explicit input, the transcript τ , and its random coins r). The verifier then applies a decision
predicate ϕV to its views from both phases and accepts or rejects, where the following conditions
hold:

1. Completeness: For every pair (x, y) ∈ L, ε > 0 and ρ ∈ (0, ε) it holds that

Pr
(r,τ,Q)←

(
P(x),Vx

)
(y,|x|,ε,ρ)

[
ϕV(y, r, τ, (x|Q)) = 1

]
= 1.
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2. Soundness: For every ε > 0, ρ ∈ (0, ε), y ∈ {0, 1}nexp and x that is ε-far from the set
{x′ : (x′, y) ∈ L}, and for every computationally unbounded (cheating) prover P∗ it holds that

Pr
(r,τ,Q)←

(
P∗(x),Vx

)
(y,|x|,ε,ρ)

[
∆((x|Q), {z : ϕV(y, r, τ, z) = 1}) ≤ ρ

]
≤ 1/2.

An IPP for L is said to have query complexity q = q(n, nexp , ε) if, for every ε > 0 and (x, y) ∈ L,
the verifier V makes at most q(|x|, |y|, ε) queries to y when interacting with P. The IPP is said
to have communication complexity cc = cc(n, nexp , ε) if, for every ε > 0 and pair (x, y) ∈ L, the
communication between V and P consists of at most cc(|x|, |y|, ε) bits. If the honest prover’s
running time is polynomial in n and nexp , then we way that the IPP is doubly-efficient.

We make several remarks on the robustness of IPPs.

Remark 4.4 (Optimal robustness). An IPP for ε-proximity cannot (in general) have robustness
larger than ε: if the implicit input x is ε-close to the language, then a cheating prover can pretend
that the input is a fictitious x′ that is in the language (following the honest prover strategy for x′).
It might be the case that x and x′ differ in a random ε-fraction of their indices. Since the verifier
would accept if x′ was its input, the values it reads from x will not be at a distance large than ε
from satisfying the decision predicate.

Remark 4.5 (Inherent robustness of IPPs). Any IPP has robustness (1/q): in the soundness
condition, w.h.p. the q bits queried by the verifier will not satisfy the decision predicate. For a
natural class of protocols, independent repetitions of the query phase can (roughly) maintain this
relative robustness, while increasing the absolute distance of the values queried from satisfying the
decision predicate (this will be helpful for our construction). If we perform r repetitions of the
query phase, then the number of queries can grow by an r multiplicative factor, but we can hope
that the absolute distance between the input bits queried and values that would satisfy all r runs
increases to Ω(r). This will be the case, so long as, once we condition on the verifier’s view in the
communication phase, independent runs of the query phase query disjoint sets of indices w.h.p.

Remark 4.6 (Generality of two-phase structure). Any public-coins IPP protocol can be transformed
into an IPP that is divided into a communication phase and a query phase as specified in Definition
4.3. To do so, the verifier sends to the prover any queries made during the interaction (indeed,
since the protocol is public coins, the prover should know these values itself, since they can only
depend on the coins sent by the verifier). For each query to an index i, the prover sends back the
alleged value of y[i]. For the remainder of the interaction phase, the verifier takes the prover’s
claims at face value, and proceeds as if these are the bit values read from the implicit input. Then,
in the query phase, the verifier can query the input and substantiate all claims made by the prover.
This transformation increases the communication complexity by the query complexity of the original
protocol, it increases the round complexity by (at most) a multiplicative factor of 2, and preserves
soundness so long as the original protocol was public coins.

4.3 Robust IPP Constructions

Rothblum and Rothblum [RR20] constructed an IPP for bounded-depth computations (or bounded-
space computations) whose query-communication tradeoff is optimal up to polylog(n) factors. We
use several structural properties of their construction: first, it has some inherent robustness (along
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similar lines to Remark 4.5). Second, the verifier’s queries can be made k-wise independent by
simply applying a k-wise independent permutation chosen by the verifier to the input (the circuit
needs to invert the permutation, this can be done in NC1 using the construction in Claim 3.15).
Lastly, we use the fact that, after the communication phase, the verifier’s possible query sets form
a partition of the implicit input (thus the absolute distance from satisfying the decision predicate
canbe amplified, a la Remark 4.5).

Theorem 4.7 (Robust IPP, k-wise queries). Let δ = δ(n) be a proximity parameter and let L be
a pair language computable by logspace-uniform Boolean circuits of Depth D = D(n) ≥ log(n) and
size S = S(n) ≥ n with fan-in 2 (where n is the size of the implicit input x and nexp ≤ n is the
size of the explicit input xexp). Then L has a public-coin Θ(δ)-robust IPP for δ-proximity.

Taking t = Õ(1/δ) , for any desired integer r = r(n) and independences parameters k = k(n) =
O(log(n)), γ = γ(n) = exp(−polylog(n)) the protocol has

• Query complexity q = Õ(t · r) = Õ
(
r
δ

)
.

• Communication complexity: cc = (δ · n · polylog(n) +D · polylog(S)).

• Round complexity: O(D · log(S)) + polylog(n).

• Verifier running time:
((
δ · n+ r

δ

)
· polylog(n) + (D + nexp) · polylog(S)

)
.

• Honest prover running time: poly(S). .

Furthermore, at the end of the communication phase, w.h.p. either the verifier rejects, or in time
((δ · n) · polylog(n) + ((D + nexp) · polylog(S))) it outputs a succinct description ⟨P ⟩ of a function
P : [⌈n/t⌉]→ [n]t and a succinct description ⟨ϕ⟩ of a predicate ϕ : [⌈n/t⌉]× {0, 1}q → {0, 1} where

1. The sets (Pi = P (i))i∈[(n/t)] are a k-wise γ-dependent partition of [n] (see Definition 3.12).3

2. In the soundness case (i.e. when the input is far from the language) there exists a universal
constant β > 0 s.t.:

Pr
i∼[⌈n/t⌉]

[ϕ(i,X|P (i)) = 0] ≥ β. (2)

In the protocol, the verifier chooses a uniformly random set R ⊆ [⌈n/t⌉] of size r and queries the
set Q =

⋃
i∈R P (i). The verifier accepts the implicit input x if and only if ∀i ∈ R,ϕ(i, (x|P (i))) = 1.

Thus, the protocol is Θ(δ)-robust.

The theorem follows directly from the IPP protocol of [RR20]. The only novelty is in the k-wise
independence requirement from the partition. To obtain this property, the prover and the verifier
permute the input using a k-wide γ-dependent permutation from [n] to [n] before running the IPP
(see Definition 3.11). The verifier chooses the permutation and sends it to the prover. The verifier
then needs to be able to compute the permutation so it knows which input index corresponds to
a queried location in the IPP. The circuit on which we run the IPP needs to be able to invert
the permutation (so it can undo the permutation and compute the original circuit). Thus, we
use a permutation from [n] to [n] that can be represented using polylog(n) bits, is computable in
polylog(n) time and can be inverted using a logspace-uniform circuit of poly(n) size and polylog(n)
depth, as in Claim 3.15.

3We assume t and (n/t) are integers (otherwise we pad the input with 0’s to ensure this is the case).
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4.4 A Protocol for Checking D-queries

We use IPPs towards our main construction. The setting is one in which the verifier has limited
access to an implicit input: the verifier cannot query the input directly, nor can it sample random
indices together with their values, as in the sample-based setting [GR22]. Instead, there is an
underlying distribution D over [n] (the indices of the implicit input), and the verifier has (weak)
signals about the value of the input at locations drawn from D. In this setup we cannot directly
run an IPP on the input (nor can we run a sample-free IPP [AGRR23], see below). Instead, we use
a robust IPP to obtain claims about the input (and particularly about the values of the input at
locations drawn from D). We use the robustness of the IPP to show that a cheating prover’s claims
about the locations drawn from D are far from the truth. Elsewhere, when we use the protocol, we
show how this can be detected using only weak signals about the input’s values at those locations.

Relationship to Distribution-Free IPPs. In a recent work, Aaronson et al. [AGRR23] define
distribution-free IPPs, where the verifier gets sampling access to a distribution D over [n] and
should reject inputs that are far from the language, where the distance is measured according to
the distribution D. They construct protocols that achieve this goal for general distributions. The
verifier’s access to the distribution D can be similar to the protocol of Figure 4.7.1.

The major difference is that in our setting, the verifier does not have direct access to the values
of the input x at locations drawn from D, it can only get weak signals about their true values. Thus,
after running the IPP, the verifier asks the prover to supply the values of all queried indices. The
prover’s goal is to concentrate its lies outside theD-queries. It is crucial that the protocol (including
the choice of the query set) does not reveal which queries were made by D. This goal is not present
in the work of [AGRR23], and indeed their protocol explicitly reveals the D-queries made by the
verifier. On the other hand, in their work they can handle general distributions, whereas we focus
on “well spread” distributions (in particular, if the distribution D is very concentrated on a few
indices then the prover will always know which queries were made by D-samples).

Protocol overview. We construct a protocol for checking the values of D-queries. Towards
this, we use the IPP of Theorem 4.3. The interaction phase is unchanged. Recall that after the
interaction, in the query phase, the input has been partitioned into disjoint query sets {Pi}, each
of size t. For a constant β fraction of these query sets, the decision predicate rejects the input
(or rather its restriction to that set, i.e. (x|Pi)). The verifier chooses r sets to query. Each set is
either, w.p. 1/2, chosen by drawing a sample from D (a “hidden D-query”) and querying the set
that contains that sample, or, w.p. 1/2 it is a uniformly random set in the partition (we refer the
queries in sets drawn this way as “U -queries”). By the IPP guarantee, the decision predicate will
reject a constant fraction of the U -query sets. Intuitively, if D is “well spread” and puts weight
at least (µ/n) on each index j ∈ [n], then the prover can’t have confidence about which sets have
hidden D queries, nor about where the hidden D-query in a particular query set might be.

After running the IPP and choosing its r query sets, the verifier asks the prover to supply the
values of the input on all indices in those query sets. It checks that the values satisfy the decision
predicate (otherwise it rejects immediately). To satisfy the decision predicate, the prover needs to
lie about the values of Ω(r) locations in the U -query sets. Since the verifier can (for the most part)
only verify values drawn by D, we want to show that the prover also has to cheat on many of the
“D-queries”. In particular, we need to ensure that, even given the query set, the prover cannot
separate the queries that were specified by D-samples from the other queries (and thus cheat only
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Protocol for Checking D-queries

Verifier Input. Full access to explicit input y ∈ {0, 1}nexp , sampling access to a distribution D over [n]
(no acces to the implicit input x).
Prover Input. Full access to the explicit and implicit inputs y ∈ {0, 1}nexp , x ∈ {0, 1}n.

Parameters: Proximity parameter δ ∈ (0, 1), arity parameter t ∈ N, number of repetitions r.

Outputs: The verifier rejects or produces public and private outputs.
The public output is a query set Q ∈ [n]r·t, and a vector v̄ ∈ {0, 1}r·t.
The private output includes two disjoint sets ID, IQ ⊆ [r · t].

The Protocol:

1. The prover and verifier run the interaction phase of the IPP of Theorem 4.7. The verifier rejects or
outputs the (succinct description of the) partition and the decision predicate {Pi, ϕi}i∈[(n/t)].

2. The verifier paritions [r] into two sets, LD and LU , where each ℓ ∈ [r] is in LD w.p. 1/2
(independently), and otherwise it is in LU . For each ℓ ∈ LU , the verifier picks an independent
partition element iℓ ∼ U[n/t]. For each ℓ ∈ LD, the verifier picks jℓ ∼ D and let iℓ ∈ [(n/t)] be the
index of the (unique) set s.t. jℓ ∈ Piℓ . Further, let hℓ ∈ [t] be the index of jℓ within the parition Piℓ .

The verifier sends the selected sets (iℓ)ℓ∈[r] to the prover.

3. The prover sends the alleged values v̄ = ((x|Piℓ))ℓ∈[r] ∈ {0, 1}r·t of the input at the selected sets.

4. The verifier checks that for each selected set, the alleged values satisfy the decision predicate: ∀ℓ ∈
[r], ϕiℓ(v̄ℓ) = 1, and rejects immediately if this is not the case.

Otherwise, the verifier’s public output is Q = (Piℓ)ℓ∈[r] and v̄ = (v̄ℓ)ℓ∈[r].

The private output is ID = {(ℓ, hℓ)}ℓ∈LD
and IU = {(ℓ, h) : ℓ ∈ LU , h ∈ [t]}.

Figure 4.7.1: Protocol for Checking D-queries

on the latter). This follows from the fact that the distribution is well spread (we also need a bound
on the maximal probability of any element). In fact, we show that for any (large enough) set S
of query locations, the density of hidden D-queries in that set will be Ω̃(µ/t), which is not too far
from their density within the entire query set. In particular, taking S to be the set of locations on
which the prover supplies false answers, we get that there are many false claims about D-queries
(in our use of this protocol we will take S to be the set of locations where the prover cheats by
saying that x has value 0, whereas the true value is 1). The above applies to any set S chosen
by the prover adaptively and adversarially as a function of the queries made by the verifier. The
protocol is in Figure 4.7.1 and its guaranteed are in Lemma 4.8.

Lemma 4.8 (Protocol for checking D-queries). Let {Dn} be an ensemble of distributions, where
for each n ∈ N the distribution Dn is over [n]. In the protocol of Figure 4.7.1, applied to languages
and parameters as in the IPP of Theorem 4.7, the verifier rejects or outputs a tuple Q ∈ [n]r·t of
queries and a vector of alleged values v̄ ∈ {0, 1}r·t. The verifier also produces a private output: two
disjoint subsets of the queries, ID, IU ⊂ [r · t]. We refer to Q[ID] as the “D-queries” and to Q[IU ]
as the “U -queries”.

The protocol has the following guarantees:
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1. Completeness: If (x, y) ∈ L and the prover follows the protocol, then the verifier doesn’t
reject and (x|Q) = v̄.

2. Robust soundness on U-queries. If x is δ-far from {x′ : (x′, y) ∈ L}, then with all but
exp(−Θ(r)) probability:

∆((X|Q[IU ]), v̄[IU ]) = Θ(δ). (3)

3. Query distributions. With high probability the sizes of ID and IQ is Θ(r) and the size of IQ
is Θ(r · t). The D-queries Q[ID] are independent samples from D. The U -queries are divided
into independent batches of size t, where each batch is a draw from a k-wise γ-dependent
partition of [n] into partitions of size t.

4. Density of D-queries in adversarial sets. Let µ = µ(n) ∈ (0, 1) be a parameter. If:

∀j ∈ [n], D[j] ∈
[
µ

n
,
t

n

]
, (4)

then for any subset S ⊆ [r · t] of absolute size at least Θ(
√
r · t · log(n)/µ), where S can be

chosen adaptively and adversarially as a function of the protocol’s public outputs, with high
probability:

∣∣S ∩ ID
∣∣ ≥ Θ

(
µ

t · log(n)
· |S|

)
. (5)

The probability is over the verifier’s coin tosses and its choice of QD.

The complexity of the protocol is as in the protocol of Theorem 4.7, where the communication
complexity incurs an additional O(r · t) additive overhead.

Proof. The protocol complexity and the claims about the distribution of the queries follow by
construction, as does the protocol’s completeness.

Robustness on U-queries (Equation (3)). By the robustness of the IPP of Theorem 4.3
(Equation (2)), w.h.p. an almost β-fraction of ℓ ∈ LU have ϕiℓ(x|Piℓ) = 0 (since the tests in
LU are chosen uniformly at random). Thus, w.h.p. the absolute distance of (X|(Q[IU ])) from
v̄(Q[IU ]) is Θ(r), and the relative distance is Θ(1/t) = Θ(δ).

Density of D-queries (Equation (5)). We analyze the conditional distribution of ID given Q,
v̄ and S (v̄ and S are a function of Q, so we omit them from the conditioning). The conditional
distribution has two components:

1. The set LD ⊂ [r] of partitions where there a hidden D-query. By Bayes rule, for each ℓ ∈ [r],
the conditional probability that ℓ ∈ LD is:

Pr[ℓ ∈ LD|Q] =
D[Piℓ ]/2

D[Piℓ ]/2 + (t/n)/2
,

and the events that ℓ ∈ LD are all independent.
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2. For each ℓ ∈ LD, the index hℓ ∈ [t] of the hidden D-element, where:

Pr[(ℓ, hℓ) ∈ ID|Q,LD] =
D[Piℓ [hℓ]]

D[Piℓ ]
,

and these distributions are independent (for different ℓ ∈ LD).

We want to show that w.h.p. the queries in S are “well represented” in the set ID. Towards
this, we first show that, since the maximal probability D assigns to any element is at most (t/n),
w.h.p. over the choice of the partition, there is no set Pi whose probability by D is “too high”.

Claim 4.9. W.h.p. over the choice of the partition {Pi}i∈[(n/t)], for every i ∈ [(n/t)] simultaneously:

D[Pi] = O

(
log(n) · t

n

)
.

The proof is by a balls and bins argument, we defer the details for now (see the full proof below).
Given this claim, the robustness property follows. For each ℓ ∈ [r], hℓ ∈ [t] :

Pr[(ℓ, hℓ) ∈ ID] =
D[Piℓ ]/2

D[Piℓ ]/2 + (t/n)/2
· D[Piℓ [hℓ]]

D[Piℓ ]

=
1

2
· D[Piℓ [hℓ]]

D[Piℓ ]/2 + (t/n)/2

= Ω

(
µ · (µ/n)

log(n) · (t/n)

)
= Ω

(
µ

t · log(n)

)
.

Moreover, these events are independent for different ℓ’s.
Consider now the set S ⊆ [r · t]. By the above (and using the linearity of expectation), the

expectation of |S ∩ ID| is Ω
(

µ
t·log(n) · |S|

)
. We want to show that |S ∩ ID| is concentrated around

its expectation. Towards this, for ℓ ∈ [r], let Sℓ be the set of locations in S with prefix ℓ. Then:

|S ∩ ID| =
∑
ℓ∈[r]

1(ID∩Sℓ )̸=∅.

Consider the RVs 1(ID∩Sℓ) ̸=∅. These are r independent {0, 1} random variables. We use Azuma’s
inequality to bound the probability that their sum deviates from its expectation:

Pr

[∣∣S ∩ ID
∣∣ ≤ (E [∣∣S ∩ ID

∣∣]−Θ

(
µ

t · log(n)
· |S|

))]
= exp

(
−Θ

(
µ2 · |S|2

r · t2 · log2(n)

))
.

This probability is small so long as S is larger than Θ
(√

r·t·log(n)
µ

)
.

Proof of Claim 4.9. We begin by restricting our attention to the set M of elements in [n] whose
probability by D is above (100/n). The set M is of size at most (n/100), and we want to bound
the max contribution that the elements in M make to any one “bin” in the partition (in terms of
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that bin’s probability by D). We analyze this as a balls and bins process: tossing the “balls” in M
into the (n/t) bins of the partition (note that the “bins” are of bounded size t, but we can ignore
this since w.h.p. the maximum number of elements in any bin will be at most say (t/50)).

We recall (rather relaxed) max load bounds for such a processes when c balls are tossed into
d bins using a O(log(c))-wise independent hash function. In the “many balls” case, where c ≥
2d log(d), w.h.p. the max load is O(c/d). In the “few balls” case, where c < 2d log(d), w.h.p. the
max load is at most O(log(c)).

Recall that the maximal probability of any element by D is bounded by (t/n). We partition
the elements of M into B = O(log(n)) buckets according to their probabilities, where for b ∈ [B],
the b-th bucket is:

Mb = {z ∈ [n] : D[z] ∈ (2−b · t
n
, 2−(b−1) · t

n
]},

where |Mb| ≤ 2b·n
t . The max contribution of elements in M to the mass of any set Pi in the partition

is thus: ∑
b∈[B]

D[Pi ∩Mb] ≤
∑
b∈[B]

2−(b−1) · t
n
· |Pi ∩Mb|

= O

 t

n
·
∑
b∈[B]

2−(b−1)max{log |Mb|,
|Mb|
(n/t)

}


= O

 t

n
·
∑
b∈[B]

2−(b−1)max{log(n), 2b}


= O

(
t · log(n)

n

)
.

We emphasize that w.h.p. this bound applies to all sets in the partition simultaneously. The
elements not in M can contribute at most (100t/n) probability to any set in the partition, and the
claim follows.

5 Representation

In this section we formally define the representation of a distribution D over domain [N ] as a
string XD ∈ {0, 1}M for M = Õ

(
Nγ−1

)
, where γ ∈ (0, 1) is some accuracy parameter. The

representation of D is one of the main pillars of our construction. For a detailed discussion about
the representation and its desired properties, see section 2.1 for a detailed discussion. Throughout
this section we also assume that distribution D satisfies D(x) ≤ N−f for some f ∈ (0.5, 1), this
assumption is later justified in Remark 6.2.

Construction 5.1 (String Representation of Distribution D). Assume D is a distribution over
[N ], satisfying D(x) ≤ 1

Nf for some f ∈ (0, 1). The string representation of distribution D is
parameterized by:
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• Granularity parameter γ ∈ (0, 1).

• Embedding function h : [N ]×
[⌈
N1−f/γ

⌉]
→ [M ], such that M = 100

⌈
N
γ log

(
N
γ

)⌉
.

• Rounding function hγ : [N ]→
[
0, γ

N , 2γN , . . . , γ
]
. Denote hγ(x) = γx.

The representation of D given the parameters above is the string XD ∈ {0, 1}M defined as so: for
every y ∈ [M ], XD(y) = 1 if there exist (x, t) ∈ Supp(D)×

[⌈
N1−f/γ

⌉]
such that h(x, t) = y, and

t · γ
N ≤ D(x) + γx

N ; otherwise XD(y) = 0.

Concerning the functions h and hγ that play a critical role in the construction above, we
show that taking the function h to be randomly chosen from a 10 log (N/γ)-wise independent hash
family H, and hγ chosen from a pairwise independent hash family Hγ , the construction above has
the following desirable properties:

• Proposition 5.2 shows that the number of entries y ∈ [M ] for which XD(y) = 1 is well
concentrated, and can be approximated. This means that every uniformly drawn sample
from [M ] has a known probability to hit a location y ∈ [M ] such that XD(y) = 1. This
property of the representation is used in the final protocol presented in Section 6. In a
nutshell, in the final protocol, the verifier draws many (almost) uniform samples from [M ]
and requires the prover to provide the value of XD in these locations, since the verifier cannot
know their values. Since the number of 1’s in the string XD is well concentrated, the prover
cannot lie and claim that many locations y have value 0 when in fact XD(y) = 1 without also
reporting that other locations which have value 1 have value 0. Since our protocol relies on
catching the prover when it mislabels entries has having value 0 instead of 1, this property of
the representation is key.

• In Proposition 5.3 we argue thatXD can be used to reconstruct a distributionD′ over [N ] that
Õ(γ) close to D in total variation distance; and we argue that every string close to XD can
either be translated to a distribution close to D, or has a structure that’s not characteristic
of a string which is the product of Construction 5.1. This last feature is discussed in depth
in Section 2.1, and is used to show that there exists a circuit C ′N over which the IPP can be
carried.

• We also present in this section the Representation Sampler in Construction 5.4. This mechanism
allows drawing locations in y ∈ [M ] in such a way that maintains a connection to distribution
D (see Section 2.1 for a high level discussion of this mechanism). In the IPP protocol we
employ, the verifier plants samples drawn through this sampler in way that’s only weakly
traceable by the prover. We show that if the prover lies about many entries as explained
above, it will do so over entries drawn according to the sampler. We leverage this point in
order to run the Verified Tagged Sample protocol as explain in the Technical Overview.

The proofs to all these propositions can be found in the subsequent sections.

Proposition 5.2. Fix distribution D over domain [N ] such that for all x ∈ [N ], D(x) ≤ N−f ,
and let XD be its representation obtained through Construction 5.1 with functions h and hγ drawn
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from a 10 log (N/γ)-wise independent and pairwise independent hash families respectively. With
probability at least 0.98 over the choice of h and hγ:∣∣∣∣∣∣∣M · wt (XD)−

N

γ
−

log(N/γ1/2)∑
k=2

(
N/γ

k

)(
1

M

)k−1

∣∣∣∣∣∣∣ ≤ 500 log2 (N/γ)

√
N/γ (6)

Proposition 5.3. Fix distribution D over domain [N ] such that for every x ∈ [N ], D(x) ≤ N−f ,
and parameter γ ∈ (0, 1). There exists an algorithm implementable by an NC1 circuit that given

X ∈ {0, 1}M , as well as functions h : [N ] ×
[⌈
N1−f/γ

⌉]
→ [M ] and hγ : [N ] →

{
0, γ

N , 2γN , . . . , γ
}

satisfies the following:

• If X = XD was produced from a distribution D using h and hγ as described in Construction
5.1: then if the functions h and hγ were drawn from a 10 log (N/γ)-wise independent and
pairwise independent hash families respectively, with probability at least 0.99 over the choice
of h and hγ, the algorithm doesn’t reject, and outputs

(
DX

x

)
x∈[N ]

such that:∑
x∈[N ]

∣∣D(x)−DX
x

∣∣ ≤ γ · logN

• For any δ ∈ (0, 1), if X differs from XD in at most N
γ logN ·δ, then either the algorithm rejects,

or outputs
(
DX

x

)
x∈[N ]

such that: ∑
x∈[N ]

∣∣D(x)−DX
x

∣∣ ≤ δ

Construction 5.4 (Representation Sampler). We define following process sampling process:

1. First, sample (x, t) ∈ [N ]×
[⌈
N1−f/γ

⌉]
through distribution Y pair defined as follows:

(a) Flip a fair coin b. If b = 0, draw x ∼ D; otherwise, draw x ∼ UN .

(b) Draw tmax uniformly at random from the set
{
logN, 2 logN, . . . 2i logN, . . . , N

1−f

γ

}
.

(c) Draw t uniformly at random from the set {1, 2, 3, . . . , ⌈tmax⌉}.

2. Set y = h(x, t), and output ((x, t), b, y).

Definition 5.5. We define the following distributions implicit in the construction above:

• Let ((x, t), b, y) be a sample drawn according to Construction 5.1. Define Y to be the marginal
distribution over y defined over domain [M ].

• Denote by Y pair
D the distribution over [N ] ×

[⌈
N1−f/γ

⌉]
defined to be Y pair restricted to the

event that the coin flipped b satisfies b = 0, i.e. that x was drawn from D.

• Denote by Y pair
U the distribution over [N ] ×

[⌈
N1−f/γ

⌉]
defined to be Y pair restricted to the

event that the coin flipped b satisfies b = 1, i.e. that x was drawn from U[N ].
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In order to state the important properties of the sampler, we need to first introduce the following
notion, which will also be used thoroughly in the process of proving all the propositions in this
section:

Definition 5.6 (Trigger Pairs). Fix some function of (γx)x∈[N ]. We call a pair (x, t) ∈ Supp(D)×[⌈
N1−f

γ

⌉]
a trigger pair if γ

N · t ≤ D(x) + γx
N . We define TRIG to be the set of all trigger pairs,

and denote P = |TRIG|

Proposition 5.7. [Properties of Sampler 5.4] With probability at least 0.99 over the choice of h,
the following holds:

1. For every y ∈ [M ] such that XD(y) = y, if we denote trigy = {(x, t) ∈ TRIG : h(x, t) = y},
then:

Pr
Y pair
D

(
trigy

)
PrY (y)

≥ γ

1100 log4 (N/γ)

2. For every y ∈ [M ]:

Pr
Y

(y) ∈
[
1/ (8 log (N/γ))

M
,
1100 log (N/γ) /γ

Nf

]

3. Assume that the pair (x, t) drawn by Y pair
D is a trigger pair. Then, for every ρ ∈ (0, 1), with

probability at least (1− ρ), t satisfies:

t · γ
N
≤ D(x) (1− ρ)

5.1 Proofs of the Propositions in Section 5

5.1.1 Proving Proposition 5.2

We prove this proposition in stages. We first estimate the amount of trigger pairs (x, t) ∈ Supp(D)×[
N1−f/γ

]
, i.e. pairs that satisfy t · γ

N ≤ D(x) + γx. Note that by construction, for every entry
y ∈ [M ] such that XD(y) = 1, there exists such a pair (x, t) for which h(x, t) = y, and every such
pair satisfies XD (h(x, t)) = y. We first prove that taking hγ from a pairwise uniform hash family,
the number of trigger pairs is strongly concentrated around N/γ. Therefore, if h had no collisions
between trigger pairs, we’d expect wt(XD) = |TRIG| ≈ N/γ, where TRIG is the set of all trigger
pairs. However, since M is not considerably larger that TRIG, we expect such collisions to appear.
And so, in order to bound wt(XD), we are left to estimate how many collisions are there, and get an
approximation for

∣∣Im (h∣∣
TRIG

)∣∣. Concretely, we show that if h : [N ]×
[
N1−f/γ

]
→ [M ] was drawn

from a 10 log (N/γ)-wise independent hash family, with high probability wt(XD) =
∣∣Im (h∣∣

TRIG

)∣∣
satisfies Inequality (6).

Claim 5.8. Assume (γx)x were chosen by drawn hγ from a 2-wise independent hash family, then
with probability at least 0.999 over the choice of hγ, the number of trigger pairs P , satisfies P ∈
N
γ ± 110

√
N
γ .
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Proof. Denote by trigx =
∣∣{t ∈ N : t · γ

N ≤ D(x) + γx
N

}∣∣, the random variable that counts the
number of trigger pairs associated with support element x. Note that this variable depends only

on choice of γx, and takes either the value
⌊
D(x)
γ/N

⌋
or the value

⌊
D(x)
γ/N

⌋
+ 1.

trigx assumes the value
⌊
D(x)
γ/N

⌋
if γ

N ·
((⌊

D(x)
γ/N

⌋)
+ 1
)
−D(x) > γx. If γx were chosen uniformly

from [0, γ] this probability would be
γ
N
·
((⌊

D(x)
γ/N

⌋)
+1

)
−D(x)

γ/N =
⌊
D(x)
γ/N

⌋
+ 1− D(x)

γ/N . Since γx is chosen

from a γ/N discretization of [0, γ], the true probability is
⌊
D(x)
γ/N

⌋
+1− D(x)

γ/N −δx where δx ∈ [0, γ/N ].

And so, for every x ∈ Supp(D):

Eγx [trigx] =

⌊
D(x)

γ/N

⌋
·
(⌊

D(x)

γ/N

⌋
+ 1− D(x)

γ/N
− δx

)
+

(⌊
D(x)

γ/N

⌋
+ 1

)
·
(
D(x)

γ/N
−
⌊
D(x)

γ/N

⌋
+ δx

)
=

D(x)

γ/N
+ δx

And so, by the linearity of expectation, we conclude that:

E [P ] = E(γx)

[∑
x

trigx

]
=

N

γ
+
∑
x

δx

Since δx ∈ [0, γ/N ] we get that E [P ] ∈
[
N
γ ,

N
γ + γ

]
. Next, we show that P is well concentrated

around its mean. Note that P is a sum of 2-wise independent Bernoulli random variables P =∑
x trigx. For every x, Var [trigx] ≤ 2, since the difference between the largest and smallest value

every variable trigx assumes is 1.
The choice of (γx) is pairwise independent, and so Var[P ] = Var [

∑
x trigx] ≤

∑
xVar [trigx] ≤

2N ≤ E [P ], and by Chebichev’s Inequality:

Pr
hγ

(|P − E [P ]| > 100E [P ]) ≤ 1

10000

We thus conclude that with probability at least 0.999 over the choice of hγ :

P ∈ N

γ
± 110

√
N

γ

Recall that TRIG is the set of all trigger pairs, and observe that wt (XD) =
∣∣Im (h∣∣

TRIG

)∣∣. For
hash function h as described in Construction 5.1, and define:

Sk = |{S ⊆ TRIG : |S| = k, ∃y ∈ [M ] ∀(x, t) ∈ S h(x, t) = y}|

.

Claim 5.9.
∣∣Im (h∣∣

TRIG

)∣∣ = P −
∑P

k=2 (−1)
k Sk
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Proof. Fix some k0 ≤ P , and function h. Assume that there are no hash collisions of size larger
than k0. That is:

k0 = max
{
k : ∃ ((xi, ti))i∈[k] , s.t. ∀i ̸= j ∈ [k], (xi, ti) ̸= (xj , tj) , h(xi, ti) = h(xj , tj)

}
If we show that for all k0 ≤ P it holds that

∣∣Im (h∣∣
TRIG

)∣∣ = P −
∑k0

k=2 (−1)
k Sk, we are done. We

do so by induction. First, note that this holds for k0 = 2, since if there are only 2-collisions, and
no 3-collisions, every element in y ∈ [M ] such that XD(y) = 1 has either one trigger pair mapped
to it, or two. Therefore, the size of the image would be P − S2.

Next, fix some k′ ∈ {2, . . . P − 1}, and assume that any function h : TRIG → [M ] satisfies

Sk′ > 0 and Sk′+1 = 0, then:
∣∣Im (h∣∣

TRIG

)∣∣ = P −
∑k′

k=2 (−1)
k Sk. Consider the case that some

function h satisfies the condition that Sk′+1 > 0 but Sk′+2 = 0.
First, define the set B ⊆ TRIG to be the set of all trigger pairs that collide with at least k′

other pairs:

B =
⋃
{S ⊆ TRIG : |S| = k + 1, ∃y ∈ [M ] ∀(x, t) ∈ S h(x, t) = y}

Next, since M ≫ P = |TRIG|, consider the function h′ obtained from h by assigning each element
in B a unique image under h′, and define Sk

h′ to be the random variable that counts the number of
k-collisions in h′. By the induction assumption, h′ has at most k′ collisions, and so:

∣∣Im (h′∣∣
TRIG

)∣∣ = P −
k′∑

k=2

(−1)k Sk
h′

Observe that |B| = Sk′+1·(k′ + 1). This is true since by definition it holds that |B| ≤ Sk′+1·(k′ + 1),
however, if |B| < Sk′+1 · (k′ + 1) it would imply that Sk′+2 > 0, against the assumption. Therefore,
we need to consider every (k′ + 1)-collision under h, as a single element in the image, and so:∣∣Im (h′∣∣

TRIG

)∣∣− ∣∣Im (h∣∣
TRIG

)∣∣ = Sk′+1 · k′
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Next, observe that for every k ≤ k′, it holds that Sk = Sk
h′ + Sk′+1 ·

(
k′+1
k

)
. Therefore:∣∣Im (h∣∣

TRIG

)∣∣ = ∣∣Im (h′∣∣
TRIG

)∣∣− Sk′+1 · k′

= P −
k′∑

k=2

(−1)k Sk
h′ − Sk′+1 · k′

= P −
k′∑

k=2

(−1)k
(
Sk − Sk′+1 ·

(
k′ + 1

k

))
− Sk′+1 · k′

= P −
k′∑

k=2

(−1)k Sk − Sk′+1
k′∑

k=2

(−1)k
(
k′ + 1

k

)
− Sk′+1 · k′

= P −
k′∑

k=2

(−1)k Sk − Sk′+1

(
k′+1∑
k=0

(−1)k
(
k′ + 1

k

)
−
(
1− (k′ + 1) + (−1)k

′+1
)
+ k′

)

= P −
k′∑

k=2

(−1)k Sk − (−1)k
′+1 Sk′+1

= P −
k′+1∑
k=2

(−1)k Sk

We thus approximate with high probability the random variables
(
Sk
)
. We divide this collection

into two, and show that: Sk such that k ≤ k0 =
⌈
log
(
N/γ1/2

)⌉
+ 1, are well concentrated around

their mean; while the sum of all Sk for which k > k0 is with high probability very small.

Claim 5.10. For k0 =
⌈
log
(
N/γ1/2

)⌉
+ 1, :

• For every k ≤ k0, E
[
Sk
]
=
(
P
k

) (
1
M

)k−1
, and with probability at least 0.99 over the choice of

h, for all k ≤ k0:
∣∣Sk − E

[
Sk
]∣∣ <√E [Sk] (400 log (N/γ))

•
∑P

k=k0+1 E
[
Sk
]
≤ 1.

Proof. For every S ⊆ TRIG denote by CS the Bernoulli random variable that indicates that all
elements in S were hashed to the same y ∈ [M ]. By definition:

Sk =
∑

S:|S|=k

CS

For every k ≤ T/2, and for every CS such that |S| = k, it holds that E [CS ] =
(

1
M

)k−1
, and so

E
[
Sk
]
=
(
P
k

) (
1
M

)k−1
.

Since k0 ≤ T/2 where h was drawn from a T = 10 log (N/γ)-independent hash family, and

M ≥ 16P , we get that by choice of k0, E
[
Sk0
]
≤ P · 24(k0−1) ≤

( γ
N2

)4
. Since by definition the

sequence Sk is monotonically decreasing, for every k ≥ k0, E
[
Sk
]
≤ E

[
Sk0
]
. Therefore, by linearity

of expectation, E
[∑P

k′=k0
Sk
]
≤ P ·

( γ
N2

)4 ≤ 1, where the last inequality holds since P = O (N/γ).
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Next, in order to approximate Sk with high probability for k ≤ k0, we show that for all such
k, Var

[
Sk
]
= O

(
E
[
Sk
])
, and then use Chebichev’s Inequality to argue that Sk is concentrated

around its mean.
Fix such k ∈ {2, 3, . . . , k0}. Note that:

Var[Sk] =
∑

S0,S1⊆TRIG:
|S0|=|S1|=k

Cov [CS0 , CS1 ]

Consider Cov [CS0 , CS1 ] for some two sets S0, S1 of size k. Denote |S0 ∩ S1| = k′ ≤ k. Note that the

Bernoulli random variable CS0 · CS1 satisfies E [CS0 · CS1 ] =
(

1
M

)2k−k′−1
, and so Cov [CS0 , CS1 ] ≤(

1
M

)2k−k′−1
.

For every k′ ≤ k, there are at most
(
P
k

)
·
(

k
k−k′

)
·
(
P−k
k−k′

)
pairs of sets S0, S1 of size k that intersect

on k′ elements. Therefore:

Var
[
Sk
]
=

∑
S0,S1:

|S0|=|S1|=k

Cov [CS0 , CS1 ] (7)

=
k∑

k′=0

∑
S0,S1:

|S0|=|S1|=k
|S0∩S1|=k′

Cov [CS0 , CS1 ] (8)

≤
k∑

k′=0

(
P

k

)
·
(

k

k − k′

)
·
(
P − k

k − k′

)(
1

M

)2k−k′−1
(9)

≤
(
P

k

)(
1

M

)k−1 k∑
k′=0

(
k

k − k′

)
·
(
P − k

k − k′

)(
1

M

)k−k′

(10)

≤
(
P

k

)(
1

M

)k−1 k∑
k′=0

(
k

k − k′

)
P k−k′

(
1

M

)k−k′

(11)

≤
(
P

k

)(
1

M

)k−1
· P k ·

k∑
k′=0

(
k

k − k′

)(
1

P

)k′ ( 1

M

)k−k′

(12)

≤
(
P

k

)(
1

M

)k−1
· P k ·

(
1

P
+

1

M

)k

(13)

≤
(
P

k

)(
1

M

)k−1
·
(
1 +

P

M

)k

(14)

≤ 2

(
P

k

)(
1

M

)k−1
· e

P
M
·k (15)

(16)

For every k ≤ k0, E
[
Sk
]
=
(
P
k

) (
1
M

)k−1
, and since k ≤ k0 ≤

⌈
log
(
N/γ1/2

)⌉
≤ M

P , we get e
P
M
·k ≤ 3.

Therefore we get that for every such k:

Var
[
Sk
]
≤ 3E

[
Sk
]
·
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By Chebichev’s Inequality, for every k ≤ k0:

Pr

(∣∣∣Sk − E
[
Sk
]∣∣∣ ≥√E [Sk] (100T ) /3

)
≤ 1

100T
(17)

Recall that k0 ≤ T/2, thus, taking the union bound over all k ≤ k0, with probability at least 0.99,
it holds that for all for all k ≤ k0:∣∣∣Sk − E

[
Sk
]∣∣∣ <√E [Sk] (100T ) /3 (18)

Plugging the value of T yields the desired result.

Claim 5.11. Let k0 be as in Claim 5.10, then:

• E[wt (XD)] = P −
∑k=k0

k=2 (−1)k
(
P
k

)
·
(

1
M

)k−1 ± 1

• With probability at least 0.98 over the choice of h:

|wt (XD)− E [wt (XD)]| ≤ 170 log2 (N/γ)
√
P

Proof. By the inclusion-exclusion principle, wt(XD) = P −
∑P

k=2 (−1)
k Sk. By Claim 5.10 and the

linearity of expectation:

E [XD] = P −
P∑

k=2

(−1)k E
[
Sk
]
= P −

k=k0∑
k=2

(−1)k
(
P

k

)
·
(

1

M

)k−1
± 1

By the linearity of expectation as well as the triangle inequality we get:∣∣∣∣∣
k0∑
k=2

(−1)k Sk − E

[
k0∑
k=2

(−1)k Sk

]∣∣∣∣∣ ≤
k0∑
k=2

∣∣∣(−1)k (Sk − E
[
Sk
])∣∣∣ ≤ k0∑

k=2

∣∣∣(Sk − E
[
Sk
])∣∣∣ (19)

By Claim 5.10 with probability at least 0.99, for all k ≤ k0,
∣∣Sk − E

[
Sk
]∣∣ < √

E [Sk] (100T ) /3.
Assuming this holds, we get that:∣∣∣∣∣

k0∑
k=2

(−1)k Sk − E

[
k0∑
k=2

(−1)k Sk

]∣∣∣∣∣ ≤
k0∑
k=2

√
E [Sk] (100T ) /3 (20)

≤

√√√√64T

k0∑
k=2

E [Sk] ·
√
k0 (21)

≤ 16
√
T log (N/γ)

√√√√ k0∑
k=2

E [Sk] (22)

Where the second inequality is due to the Cauchy Schwarz Inequality. With probability at least
0.99 by Markov’s Inequality and Claim 5.10:

P∑
k′=k0

Sk ≤ 100E

 P∑
k′=k0

Sk

 ≤ 100 (23)
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Thus, assuming further that
∑P

k=k0
Sk ≤ 100, we get that:

|wt (XD)− E [wt (XD)]| ≤
P∑

k=2

∣∣∣Sk − E
[
Sk
]∣∣∣ (24)

≤ 16
√
T log (N/γ)

√√√√ k0∑
k=2

E [Sk] + 100 (25)

≤ 16
√
T log (N/γ)

√
k0E [S2] + 100 (26)

(27)

Where the last inequality is justified by the fact that E
[
Sk
]
is monotonically decreasing. Recall

that E
[
S2
]
=
(
P
2

)
1
M ≤ P · PM , and also P

M · T · k0 ≤ 100 log3 (N/γ). Plugging this in the inequality

above (as well as assuming that
√
P ≥ 100), we get:

|wt (XD)− E [wt (XD)]| ≤ 170 log2 (N/γ)
√
P (28)

By Claim 5.10, we get that with probability at least 0.98 the above inequality holds as required.

We are now set to prove Proposition 5.2:

Proof of Proposition 5.2. By Claim 5.11, with probability at least 0.98 over the choice of h:

|wt (XD)− E [wt (XD)]| ≤ 170 log2 (N/γ)
√
P

And from Claim 5.8, and since 110
√

N
γ ≤

N
γ (which happens since we assume N

γ ≥ 1102):

|wt (XD)− E [wt (XD)]| ≤ 170 log2 (N/γ) ·

√√√√N

γ
+ 110

√
N

γ
(29)

≤ 250 log2 (N/γ) ·

√
N

γ
(30)
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Denote denote d = 110
√

N/γ. Observe that for every k ≤ P/2, :

E
[(

P

k

)]
≤
(N

γ + d

k

)
(31)

=

(
N/γ

k

) d∏
i=1

(
N/γ + i

N/γ − k + i

)
(32)

≤
(
N/γ

k

) d∏
i=1

(
N/γ + i

N/γ − k + i

)
(33)

=

(
N/γ

k

) d∏
i=1

(
1 +

k

N/γ − k + i

)
(34)

≤
(
N/γ

k

)(
1 +

k

N/γ − k

)d

(35)

≤
(
N/γ

k

)(
1 +

2kd

N/γ − k

)
(36)

(37)

Where the last inequality is justified by the fact that kd
N/γ−k ≪ 1, and so,

(
1 + k

N/γ−k

)d
≤

e
d· 2k

N/γ−k ≤ 1 + 2kd
N/γ−k .

Similarly, we also get that:

E
[(

P

k

)]
≥
(N

γ − d

k

)
(38)

=

(
N/γ

k

) d∏
i=1

(
N/γ − k − (i− 1)

N/γ − (i− 1)

)
(39)

=

(
N/γ

k

) d∏
i=1

(
1− k

N/γ − (i− 1)

)
(40)

≥
(
N/γ

k

) d∏
i=1

(
1− k

N/γ

)
(41)

≥
(
N/γ

k

)(
1− 2kd

N/γ

)
(42)

And so, we conclude that
∣∣∣E[(Pk)]− (N/γ

k

)∣∣∣ ≤ (N/γ
k

)
· 2kd
N/γ−k ≤

(N/γ
k

)
· 4kd
N/γ . And so:∣∣∣∣∣E[wt (XD)]−

(
N

γ
−

k0∑
k=2

(
N/γ

k

)(
1

M

)k−1
)∣∣∣∣∣ ≤

∣∣∣∣E[P ]− N

γ

∣∣∣∣+ k0∑
k=2

(
N/γ

k

)
· 4kd
N/γ

·
(

1

M

)k−1

(43)

≤ d+
4k0d

N/γ
· 1

M
≤ 2d (44)
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Where the last inequality is justified since k0· = O(
√

N/γ log2 (N/γ)) ≪ M · N/γ, we conclude
that: ∣∣∣∣∣E[wt (XD)]−

(
N

γ
−

k0∑
k=2

(
N/γ

k

)(
1

M

)k−1
)∣∣∣∣∣ ≤ 2d = 220

√
N/γ

And so, by Inequality (29), with probability at least 0.98 over the choice of h:∣∣∣∣∣wt (XD)−

(
N

γ
−

k0∑
k=2

(
N/γ

k

)(
1

M

)k−1
)∣∣∣∣∣ ≤ 220

√
N/γ + 250 log2 (N/γ) ·

√
N

γ
(45)

≤ 500 log2 (N/γ)
√
N/γ (46)

5.1.2 Proof of Proposition 5.3

Algorithm 5.11.1: Distribution Reconstruction Algorithm

Input: string X ∈ {0, 1}M , parameter γ ∈ (0, 1), as well as hash function h, hγ .
Output: if didn’t reject, outputs (DX

x )x∈[N ].

1. For every x ∈ [N ], compute tx = max {t : X (h(x, t)) = 1}, by querying X in locations
h(x, 1), h(x, 2), . . . , until reaching t such that X (h(x, t)) = 0 or t =

⌈
N1−f/γ

⌉
, then set tx = t− 1,

and DX
x = γ

N · tx−
γx

N . For every y ∈ [M ] keep a counter cy that counts how many pairs (x, t) satisfy
h(x, t) = y and t ≤ tx. If there exists cy such that cy ≥ logN , reject.

2. For every x ∈ [N ], check that the set of locations
{
h(x, t) : t ∈

{
tx + 1, tx + 2, . . . , N1−f/γ

}}
does

not contain logN consecutive 1’s: i.e. for every i0 ∈
{
tx + 1, . . . , N1−f/γ − logN

}
and Vtx+i0 =

{(x, tx + i) : i ∈ {1, 2, . . . logN}}, check that there exists (x′, t′) ∈ Vtx+i0 such that y = h(x′, t′) and
X(y) = 0. Reject otherwise.

3. Output
(
DX

x

)
x∈[N ]

This section is devoted to showing that Algorithm 5.11.1 satisfies the conditions of Proposition
5.3.

First, we show the following structural claim about the representation XD obtained through
Construction 5.1:

Claim 5.12. For every D, with probability at least 0.999 over the choice of h drawn from a
10 log (N/γ)-wise independent hash family, if XD is the representation of D achieved through
Construction 5.1 then: for every x ∈ [N ] and t0 ∈

[
N1−f/γ − logN

]
there doesn’t exist a tuple of

trigger pairs ((xj , tj))j∈[logN ] such that for all j, xj ̸= x and:

∀j ∈ [logN ] h (x, t0 + j) = h (xj , tj) (47)

Proof. Fix x ∈ [N ] and t0 ∈
[
N1−f/γ

]
, and let K be some integer such that K ≤ 10 log (N/γ).

For every tuple of trigger pairs ((xj , tj))j∈[K] such that xj ̸= x for all j, since h was drawn from a
T -independent hash family, the probability that:

∀j ∈ [K] h (xj , tj) = h (x, tx + i0 + j) (48)
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Is at most
(

1
M

)K
. The total number of different tuples of size K of trigger pairs is at most:(

P

K

)
·K! ≤ (P ·K)K

Therefore, by the union bound, the probability that there exists one such tuple that satisfies
Equations (48) is at most:

(P ·K)K ·
(

1

M

)K

=

(
P

M
·K
)K

Applying the union bound once more over all the possible values of t0, for a fixed x ∈ [N ], the
probability that exists some t0 and tuple ((xj , tj))j for which Equation (23) holds, is at most:

N1−f

γ

(
P

M
·K
)K

(49)

Recall that P
M ≤

1
20 log(N/γ) , and so, setting K = logN we get that

(
P
M ·K

)K ≤ ( 1
20

)logN ≤ γ
N4 .

Finally, taking the union bound over all x yields the desired result.

We now show that Algorithm 5.11.1 satisfies the first condition of Proposition 5.3

Claim 5.13. With probability at least 0.99 over the choice of h, it holds that given input XD

produced from D through Construction 5.1, with probability at least 0.99 over the choice of h,
Algorithm 5.11.1 doesn’t reject XD, and outputs for every x the value DXD

x that satisfies:∣∣DXD
x −D(x)

∣∣ ≤ γ

N
· logN

Proof. Denote:

ttruex = max
{
t ∈

[
N1−f/γ

]
: t · γ

N
≤ D(x) +

γx
N

}
By definition of XD, it holds that tx, as defined in Algorithm 5.11.1, satisfies tx ≥ ttruex . We show
that with high probability, for all x, tx ≤ ttruex + logN . By Claim 5.12, with probability at least
0.99 over the choice of h, there doesn’t exist a tuple of trigger pairs ((xj , tj)) such that:

∀i ∈ [logN ], h (xi, ti) = h
(
x, ttruex + i

)
(50)

And so, with probability at least 0.99 over the choice of h, for every x, and every i0 ∈
{
0, N1−f/γ − logN

}
satisfies that the locations

(
h
(
x, ttruex + i0 + j

))
j∈[logN ]

contain some location y such that XD(y) =

0, and by the construction of Algorithm 5.11.1 it holds that
∣∣D(x)−DXD

x

∣∣ ≤ logN γ
N .

Moreover, with high probability over the choice of h, XD isn’t rejected by the algorithm. First,
note that since the function h was drawn from a 10 log (N/γ)-independent family, the probability
that there exist logN trigger pairs that are hashed to the same y ∈ [M ] is at most:(

P

logN

)(
1

M

)logN−1
≤ P ·

(
P

M

)logN−1
≤ P ·

(
1

log (N/γ)

)logN−1
≤ 1

N2

From which we conclude that XD isn’t rejected in Step (1) of the algorithm. Next, by Claim 5.12
with high probability over the choice of h, also Step (2) doesn’t result in rejection.
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Next, we prove that Algorithm 5.11.1 satisfies the second condition of Proposition 5.3

Lemma 5.14 (Distance Translation). Fix a distribution D, and δ ∈ (0, 1). With high probability
over the choice of h, any string X0 that differs from XD in at most N

γ log2 N
· δ locations, is either

rejected by Algorithm 5.11.1, or the reconstructed output
((
x,DX0

x

))
x∈[N ]

satisfies:∑
x∈[N ]

∣∣DX0
x −D(x)

∣∣ ≤ δ

Proof. Fix X0 ∈ {0, 1}M such that:

• X0 isn’t rejected by Algorithm 5.11.1.

• The output DX0
x satisfies: ∑

x∈[N ]

∣∣DX0
x −D(x)

∣∣ ≥ δ

Consider some x ∈ [N ]. Denote DX0
x − D(x) = δx, and define δ+x = max {0, δx}, and δ−x =

−min {0, δx}. Consider all x such thatDX0
x −D(x) = δ+x > 0. Set tx = max

{
t : t · γ

N ≤ D(x) + γx
N

}
.

By assumption, in X0, the locations yi = h(x, t0 + i) for i ∈
{
1, 2, . . . , δx

(γ/N)

}
satisfy X0(yi) = 1.

However, inXD, by Claim 5.12, with probability at least 0.999 over the choice of h, for every x ∈ [N ]
and t0 > tx, the tuple ((x, t0 + j))j∈[logN ] contains entry (x, t0 + j0) such that XD (h (x, t0 + j0)) =

0. Therefore, for every x ∈ [N ] there are in XD at least δ+x
γ/N ·

1
logN locations y ∈ [M ] such that

XD(y) = 0 and X0(y) = 1. In total, denote the set of pairs (x, t) for which XD(h(x, t)) = 0 and

X0(h(x, t)) = 1 by L, and by the above, we know that |L| ≥
∑

x
δ+x
γ/N ·

1
logN . Assuming that X0

wasn’t rejected by the circuit we know that every y ∈ [M ] such that X0(y) = 1 has at most logN

trigger pairs associated with it, which implies that
∣∣Im (h∣∣

L

)∣∣ ≥∑x
δ+x
γ/N ·

1
log2 N

. We thus conclude

that XD and X0 differ in at most
∑

x δ+x
γ/N · 1

log2 N
locations.

Consider next x ∈ [N ] such that X0 satisfies D(x) − DX0
x ≥ δx > 0, and denote ttruex,X0

to be

such that DX0
x = γ

N · t
true
x,X0

. By assumption, X0 wasn’t rejected by the algorithm, therefore, for

every x ∈ [N ], and any set of locations
(
h
(
x, ttruex,X0

+ j
))

j∈[logN ]
there exists a location y such that

X0(y) = 0, therefore, following the same line of argument as above, X0 and XD differ on at least∑
x

δ−x
γ/N ·

1
logN pairs. Since with high probability XD doesn’t fail the reconstruction algorithm, this

implies, as above that the number of entries y ∈ [M ] for which they differ is at least
∑

x
δ−x
γ/N ·

1
log2 N

Putting everything together, we get that:

M ·Ham(X0, XD) ≥
∑
x

δ+x
γ/N

· 1

log2N
+
∑
x

δ−x
γ/N

· 1

log2N
= δ · N

γ
· 1

log2N

Finally, consider the counter-positive with high probability over the choice of h, ifM ·Ham(X0, XD) ≤
N

γ log2 N
· δ, then

∑
x

∣∣DX0
x −D(x)

∣∣ ≤ δ.

Finally, we argue that Algorithm 5.11.1 can indeed be implementable by a NC1 circuit.
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Claim 5.15. Algorithm 5.11.1 can be implemented by a logspace uniform NC1 circuit family.

Proof. Observe that for every x ∈ [N ] computing tx can be implemented as follows: for every
t ∈ [N1−f/γ] add a gate Gx

t that checks for all i < t XD(h(x, i)) = 1 AND XD(h(x, t)) = 0, then,
have for every x a selection gate that selects the only gate Gx

t with value 1, and then computes the
binary representation of t for the output. These are all AC0 gadgets.

Next, we show that both checks can implemented by NC1 circuits:

• In order to check cy ≤ logN for all y ∈ [M ] we do the following: for every i ∈ [M ], and
for every (x, t) ∈ [N ]× [N1−f/γ], such that h(x, t) = i, define T i

x,t,i that to be the gate that
checks t ≤ tx (computed as explained above). Then, for every i, have a gate Ci that counts
how many T i

x,t have value 1, and assumes the value 0 if there are more than logN such gates

(counting and comparing can be done in NC1). Then, the circuit outputs 0 if ANDi∈[M ]Ci = 0.

• In order to implement the check in Step (2): for every x ∈ [N ] and every t ∈
[(
N1−f/γ

)
− logN

]
,

define a gate Sx,t if t < tx, then Sx,t assumes the value 1, otherwise, it checks that for
NOTANDi∈[logN ]h(x, t+ i) = 1. Finally, taking an AND gate over all Sx,t yields the check in Step

(2). Note again that all these are AC0 gadgets and so can be implemented by an NC1 gadget.

5.1.3 Proof of Proposition 5.7

This section is devoted for proving Proposition 5.7:

• Claim 5.16 and Claim 5.17 provide bounds on the probability that y ∈ [M ] such that XD(y) =
1 was drawn by Y pair

D by either a trigger pair, or not through a trigger, respectively. In
combination with Claim 5.19 that gives an upper bound on the probability of y according to
Y pair
U , we prove the first condition of the proposition.

• Next, in order to bound the probability of every y ∈ [M ] according to Y , on top of the above-
mentioned claims, we also show that for every y, we can bound from above the probability
it was reached through Y pair

D (Claim 5.18), and lower bound the probability it was reached

through Y pair
U (Claim 5.20). And so, we provide both an upper and lower bound for PrY (y).

• Lastly, Claim 5.22 proves the third condition of Proposition 5.7.

The claims are proven individually, and are put together to prove the Proposition in Proof 5.1.3.

Claim 5.16. For any trigger pair (x, t) it holds that:

Pr
Y pair
D

((x, t)) ≥ 1

M logN

Proof. Fix trigger pair (x, t). The first coordinate x was drawn from D with probability D(x).
Since tmax is sampled from the set

{
logN, . . . , 2i logN, . . . , N1−f/γ

}
, then with probability at least

1
log(N/γ) , tmax was sampled such that: D(x) ≤ tmax · γ

N ≤ D(x) · logN , and D(xy) ≥ γ
N (tmax − 1).
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Given that such tmax drawn, then, the probability that t was selected is at least
(
D(x)·logN

γ/N

)−1
.

Putting it all together, the probability that trigger pair (x, y) was drawn is at least:

D(x) · 1

log (N/γ)
· γ/N

D(x) · logN
=

100

100(N/γ) log (N/γ)
· 1

logN
≥ 1

M logN

Claim 5.17. With probability at least 0.999 over the choice of h, for every y ∈ [M ], if XD(y) = 1,
it holds that the probability that a pair (x, t) was sampled by Y pair

D such that h(x, t) = y and (x, t)
isn’t a trigger pair is at most:

1100 log4 (N/γ)

M

Proof. Consider the following division of all non-trigger tuples (x, t):

Bi,j =

{
(x, t) : D(x) ∈

[
2i−1

γ

N
, 2i

γ

N

)
, t ∈

[
2j−1, 2j

)
, t >

D(x) + γx
γ/N

}
Note that every non-trigger pair is contained in some set Bi,j , and that these sets contain only
non-trigger pairs.

Observe that by definition of Bi,j and Y pair
D , for every (x0, t0), (x1, t1) ∈ Bi,j it holds that

Pr(Y=(x0,t0))
Pr(Y=(x1,t1))

∈ [0.5, 2]. Moreover, by definition if (x, t) ∈ Bi,j , then: the probability that (x, t)

was drawn by Y pair
D is at most D(x) · 1t ≤

γ
N due to the fact (x, t) is a non-trigger pair, and so

t · γ
N > D(x). We thus conclude that the probability of each element in Bi,j according to Y is at

most min
{

4
|Bi,j |

γ
N

}
.

First, fix some i, j such that |Bi,j | ≤ M , then, since the function h is (10 log (N/γ))-wise
independent, we get that with probability at most 1

100M there exists y ∈ [M ] such that more than
10 log (N/γ) elements from Bi,j were hashed to y, and so, the probability that y was sampled by
Y through (x, t) ∈ Bi,j is at most:

γ

N
· 10 log (N/γ) ≤ 100 log (N/γ)

M
· 10 log (N/γ) ≤ 1000 log (N/γ)2

M

As there are at most polylog(N/γ) possible choices of (i, j), taking the union bound over all of them
we get that with probability at least 0.999 over h, for all (i, j) such that |Bi,j | ≤M , the probability
that an element y was sampled by Y through a non-trigger pair (x, t) such that (x, t) ∈ Bi,j is at
most

1000 log4 (N/γ)

M
(51)

Next, Fix i, j such that |Bi,j | > M . There are at most N/γ
2i−1 elements in Supp(D) with probability

in the range
[
2i−1 γ

N , 2i γN
)
. Moreover, there 2j−1 possible values in the range

[
2j−1, 2j

)
. Therefore:

|Bi,j | = 2j−1 · N/γ

2i−1
= 2j−i

N

γ
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For every y ∈ [M ] consider the random variable Ly
i,j which counts how many (x, t) ∈ Bi,j were

hashed to y (the load of y with respect to Bi,j). Observe that:

Ly
i,j =

∑
(x,t)∈Bi,j

1h(x,t)=y

And since for all (x, t), Pr (h(x, t) = y) = 1
M , we get that Var

[
1h(x,t)=y

]
≤ E

[
1h(x,t)=y

]
= 1

M ,

and by the linearity of expectation: E
[
Ly
i,j

]
=
|Bi,j |
M . Since the function h is (10 log (N/γ))-wise

independent, by Claim 3.17:

Pr
h

(∣∣∣∣Ly
i,j −

|Bi,j |
M

∣∣∣∣ >
√

60 log (N/γ) · |Bi,j |
M

)
≤

 30 log (N/γ) · 1
M

|Bi,j | ·
(√

60 log(N/γ)
M |Bi,j |

)2


10 log
(

N
γ

)
(52)

≤
(
1

2

)10 log
(

N
γ

)
(53)

≤ 1

1000M2
(54)

Taking the union bound over all y ∈ [M ], we get that with probability at most 1
1000M there exists

some y ∈ [M ] such that:

Ly
i,j >

|Bi,j |
M

+

√
60 log (N/γ) · |Bi,j |

M

Next, observe that by definition of Bi,j and Y , for every (x0, t0), (x1, t1) ∈ Bi,j it holds that
Pr(Y=(x0,t0))
Pr(Y=(x1,t1))

∈ [0.5, 2]. And so, we conclude that the probability of each element in Bi,j according

to Y is at most 4
|Bi,j | , therefore, for a fixed i, j and every y ∈ [M ], we get that with probability at

least 1− 1
1000M the probability that y was sampled according to Y through a tuple (x, t) ∈ Bi,j is

at most:(
|Bi,j |
M

+

√
60 log (N/γ) · |Bi,j |

M

)
· 4

|Bi,j |
≤ 4

M
+

√
60 log (N/γ) · 1

M |Bi,j |
≤

100
√
60 log (N/γ)

M

Again, taking the union bound with respect to all choices of i, j, we get that with probability at
least 0.999 over the choice of h for all y ∈ [M ], the probability that y was sampled by Y through a
trigger pair (x, t) such that (x, t) ∈ Bi,j and |Bi,j | > M is at most:

100 log3 (N/γ)

M
(55)

To conclude, we get that with probability at least 0.99 over the choice of h, for every y ∈ [M ]
the probability it was sampled by Y through a non-trigger pair (x, t) such that (x, t) ∈ Bi,j where

|Bi,j | ≤M is at most 1000 log4(N/γ)
N , and the probability it was sampled by (x, t) such that (x, t) ∈ Bi,j

where |Bi,j | > m is at most 100 log3(N/γ)
M . Summing up, the probability that y was sampled by Y

through a non-trigger pair is at most:

1100 log4 (N/γ)

M
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Claim 5.18. With probability at least 0.999 over the choice of h, for every y ∈ [M ], if XD(y) = 1,
it holds that the probability that a pair (x, t) was sampled by Y pair

D such that h(x, t) = y and (x, t)
is a trigger pair is at most:

5 log (N/γ)

Nf

Proof. Recall that with probability at least 0.999 over the randomness of the representation, there

are P ≤ N
γ +100

√
N
γ ≤M/2 trigger pairs, that are hashed into [M ] by a 10 log (N/γ)-wise uniform

hash function, therefore, the probability that for a given y ∈ [M ] there are at least 5 log (N/γ)
trigger pairs that were hashed to it is at most:(

P

5 log (N/γ)

)(
1

M

)5 log(N/γ)

≤
(
P

M

)5 log(N/γ)

≤
(
1

2

)5 log(N/γ)

≤ 1

M2

Taking the union bound over all y ∈ [M ] we get that with probability at least 0.9999 over the
randomness of the representation, it holds that every y ∈ [M ] has at most 5 log (N/γ) trigger pairs
hashed to it. Since the probability of each trigger pair is at most

(
maxx∈[N ]D(x)

)
· 1
logN

≤ 1
Nf log2(N)

,

we get that with high probability over the randomness of the representation, for every y ∈ [M ], the
probability that a pair (x, t) was sampled by Y pair

D such that h(x, t) = y and (x, t) is a trigger pair
is at most:

5 log (N/γ) · 1

Nf log2(N)
≤ 5 log (N/γ)

Nf

Claim 5.19. With probability at least 0.99 over the choice of h, for every y ∈ [M ]:

Pr
Y pair
U

({(x, t) : h(x, t) = y}) ≤ 20 log3 (N/γ) /γ

M

Proof. Denote by Y pair
T the marginal distribution of Y pair with respect to the second coordinate.

Divide the set [N ]×
[
N1−f/γ

]
into log subsets, in the following way:

∀i ∈
{
1, 2, . . . log

(
N1−f/γ

)}
Bi =

{
(x, t) : t ∈

[
2i−1 logN, 2i logN

]}
And also define B0 = {(x, t) : t ∈ [1, logN ]}. For every i ∈

{
1, . . . , log

(
N1−f/γ

)}
:

|Bi| = N · 2i−1 logN

If |Bi| ≤ M , then, the probability that there exists some y ∈ [M ] for which there are more than
logN is at most:

M ·
(
|Bi|
logN

)(
1

M

)logN

≤M

(
|Bi|
M

)logN

·
(

1

logN

)(logN)/2

≤M ·
(
1

2

)16 logN

≤ 1

N

Taking the union bound over all such subsets i, we get that with probability at least 0.999 over
the choice of h, it holds that for every y ∈ [M ], there are at most (logN) pairs (x, t) such that
h(x, t) = y, and (x, t) ∈ Bi such that |Bi| ≤ M . Note that every Pr

Y pair
U

(x, t) ≤ 1
N ·

1
t . Therefore,
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for every y ∈ [M ] and every bucket i such that |Bi| ≤ M it holds that the probability that (x, t)
was drawn by Y pair

U such that h(x, t) = y and (x, t) ∈ Bi is at most:

(logN) · 1
N
· 1
t
≤ 1

N
≤ 10 log (N/γ) /γ

M

Where the first inequality above is justified since by definition of Y pair
U , the probability of sampling

t is at most min
{

1
logN , 1t

}
. Taking the union over all Bi such that |Bi| ≤ M , we get that with

probability at least 0.999 over the choice of h, for all y ∈ [M ], the probability that (x, t) was
sampled by Y pair

U such that h(x, t) = y and (x, t) ∈ Bi for which |Bi| ≤M is at most:

10 log3 (N/γ) /γ

M

Next, fix some i such that |Bi| > M . For every y ∈ [M ], denote by Ly
i = |{(x, t) ∈ Bi : h(x, t) = y}|.

Note that Ly
i =

∑
(x,t)∈Bi

1h(x,t)=y. Observe that E
[
1h(x,t)=y

]
= 1

M , this implies that both

E [Ly
i ] =

|Bi|
M and Var

[
1h(x,t)=y

]
≤ 1

M . Since h is drawn from a 10 log (N/γ)-wise uniform hash
family, by Claim 3.17 it holds that:

Pr
h

(∣∣∣∣Ly
i −
|Bi|
M

∣∣∣∣ >
√

60 log (N/γ) · |Bi|
M

)
≤

 30 log (N/γ) · 1
M

|Bi| ·
(√

60 log(N/γ)
M |Bi|

)2


10 log
(

N
γ

)
(56)

≤
(
1

2

)10 log
(

N
γ

)
(57)

≤ 1

M2
(58)

Taking the union over all y ∈ [M ], we get that with probability at least 1
M over the choice of h, for

all y ∈ [N ]:

Ly
i <
|Bi|
M

+

√
60 log (N/γ) · |Bi|

M

Note thatfor all i and (x, t) ∈ Bi, PrY pair
U

((x, t)) ≤ 1
|Bi| . And so, for every i such that |Bi| > M .

We thus conclude that for every i such that |Bi| > M , with probability at least 1 − 1
M over the

choice of h, for all y ∈ [M ], the probability that (x, t) was sampled by Y pair
U such that h(x, t) = y

and (x, t) ∈ Bi, is at most:

Ly
i ·

1

|Bi|
≤

(
|Bi|
M

+

√
60 log (N/γ) · |Bi|

M

)
· 1

|Bi|
≤ 1

M
+

1

M

√
60 log (N/γ) ≤ 10 log (N/γ)

M

Where the second to last inequality is due to the assumption that |Bi| > M . Taking the union
bound over all Bi such that |Bi| > M , we get that with probability at least 0.999 for all i such that
|Bi| > M , the probability that (x, t) was sampled by Y pair

U such that h(x, t) = y and (x, t) ∈ Bi

such that |Bi| > M is at most:
10 log3 (N/γ)

M
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And we thus conclude that with probability at least 0.99 over the choice of h, for every y ∈ [Y ],
the probability that (x, t) was sampled by Y pair

U such that h(x, t) = y is at most:

20 log3 (N/γ) /γ

M

Claim 5.20. With probability at least 0.999 over the choice of h, for every y ∈ [M ], PrY (y) ≥
1

8M log(N/γ)

Proof. Note that PrY (y) ≥ 1
2 PrY pair

U
({(x, t) : h(x, t) = y}). We therefore bound Pr

Y pair
U

({(x, t) : h(x, t) = y})
from below. First, note that with probability at least 1

2 log(N/γ) , tmax was drawn to be the

maximum value. Assume that this value was drawn. Then, (x, t) is drawn uniformly from the
space [N ]×

[
N1−f/γ

]
of size N2−f/γ. Denote Ly the random variable dependent on h that counts

how many pairs (x, t) were hashed to y. Note that:

Ly =
∑

(x,t)∈[N ]×[N1−f/γ]

1h(x,t)=y

Observe that Var
[
1h(x,t)=y

]
≤ E

[
1h(x,t)=y

]
≤ 1

M , and since h is 10 log (N/γ)-wise independent, by
Claim 3.17 we get for a fixed y:

Pr
h

∣∣∣∣Ly −
1

M
· N

2−f

γ

∣∣∣∣ > 10

√
1

M
· N

2−f

γ

 ≤
 3 log (N/γ) · 1

M

N2−f

γ

(
10

√
1
M

N2−f

γ

)2


10 log(N/γ)

≤ 1

M2

Taking a union bound over all possible y, we get that with probability at least 1 − 1
M over the

choice of h, for every y ∈ [M ]:

Ly >
1

M
· N

2−f

γ
− 10

√
1

M
· N

2−f

γ

Therefore, assuming that tmax was chosen to be the largest possible value, we get that the probability
that y was drawn according to Y pair

U is at least: 1

M
· N

2−f

γ
− 10

√
1

M
· N

2−f

γ

 · γ

N2−f ≥
1

2M

And since drawn the maximal tmax occurs with probability at least 1
2 log(N/γ) , with probability at

least 0.999 over h, it holds that for very y ∈ [M ]:

Pr
Y

(y) ≥ 1

2
Pr

Y pair
U

({(x, t) : h(x, t) = y}) ≥ 1

8M log (N/γ)
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Claim 5.21. With probability at least 0.999 over the choice of h, for all y ∈ [M ], it holds that:

Pr
Y pair
D

({(x, t) : h(x, t) = y}) ≤ 10 log4 (N/γ)

Nf

Proof. Since with probability at least 0.999 over the randomness of the representation, the set of

trigger pairs TRIG contains at most P ≤ N
γ + 100

√
N
γ pairs, and since M = 100N

γ · log
(
N
γ

)
,

with probability at least 0.999 over the choice of h, since h is 10 log (N/γ)-wise independent, the
probability that there are more than 10 log (N/γ) trigger pairs that are hashed by h to the same
y ∈ [M ] is:(

P

10 log (N/γ)

)(
1

M

)10 log(N/γ)

≤
(
P

M

)10 log(N/γ)

·
(

1

10 log (N/γ)

)10 log(N/γ)

(59)

≤
(

1

10 log (N/γ)

)10 log(N/γ)

(60)

≤ 1

1000
(61)

And so, we conclude that every y ∈ [M ] contains at most 10 log (N/γ) trigger pairs. Since the
probability under Y pair

D of every trigger pair is at most 1
Nf · 1

log2 N
, we get that with high probability

over h, for every y ∈ [M ], the probability that y was sampled by Y pair
D through trigger pair (x, t)

such that h(x, t) = y is at most:

1

Nf
· 10 log (N/γ)

log2N
· ≤ 10 log (N/γ)

Nf

Recall that by Claim 5.17, the probability that (x, t) was drawn according to Y pair
D such that

h(x, t) = y and (x, t) isn’t a trigger pairs, is at most 1100 log4(N/γ)
M . And so, we get that with

high probability over the choice of h, for every y ∈ [M ]: Pr
Y pair
D

(y) ≤ 1100 log4(N/γ)
M + 10 log(N/γ)

Nf ≤
10 log4(N/γ)

Nf

Claim 5.22. Assume that the pair (x, t) drawn by Y pair
D is a trigger pair. Then, for every ρ ∈ (0, 1),

with probability at least (1− ρ), t satisfies:

t · γ
N
≤ D(x) (1− ρ)

Proof. Let t1, t2 be such that t1 < t2 and both (x, t1) and (x, t2) are trigger pairs, then, by definition
of Y pair

D , it holds that Pr
Y pair
D

∣∣∣
X=x

(t2) ≤ Pr
Y pair
D

∣∣∣
X=x

(t1), since for every tmax drawn by Y pair
D that

satisfies t2 ≤ tmax, it also holds that t1 < tmax, and so, both t1 and t2 in this case will be equally
likely to be sampled.

Therefore, the distribution T over
{
1, 2, . . . , D(x)+γx

γ/N

}
induced by the marginal distribution of

t according to Y pair
D , given that x was sampled and (x, t) is a trigger pair satisfies the condition

that T (i) ≥ T (i + 1). Observe that the probability that t0 drawn according to T satisfies t0 >

(1− ρ)D(x)+γx
γ/N is at most ρ.
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We are set to prove Proposition 5.7:

Proof of Proposition 5.7. For every y denote trigy = {(x, t) /∈ TRIG : h(x, t) = y}. Observe that
for every y:

Pr
Y pair
D

(
trigy

)
PrY (y)

=
Pr

Y pair
D

(
trigy

)
Pr

Y pair
D

(
trigy

)
+ Pr

Y pair
D

(
trigy

)
+ Pr

Y pair
U

(y)

Plugging in Claims 5.17 and 5.19 we get:

Pr
Y pair
D

(
trigy

)
PrY (y)

≥

(
Pr

Y pair
D

(
trigy

))
·

(
Pr

Y pair
D

(
trigy

)
+

1100 log4 (N/γ)

M
+

20 log3 (N/γ) γ

M

)−1
Since by Claim 5.16 Pr

Y pair
D

(
trigy

)
≥ 50

M logN , we get that:

Pr
Y pair
D

(
trigy

)
PrY (y)

≥ 50/ logN

(50/ logN) + 1100 log4 (N/γ) + 20 log3 (N/γ) /γ
≥ γ

1100 log4 (N/γ)

This concludes the first part of Proposition 5.7.
Next, note that for every y ∈ [M ]:

Pr
Y

(y) =
1

2
Pr

Y pair
D

({(x, t) : h(x, t) = y}) + 1

2
Pr

Y pair
U

({(x, t) : h(x, t) = y}) (62)

=
1

2

(
Pr

Y pair
D

(
trigy

)
+ Pr

Y pair
D

(
trigy

))
+

1

2
Pr

Y pair
U

({(x, t) : h(x, t) = y}) (63)

With probability at least 0.95 over the choice of h: by Claim 5.18, (Pr
Y pair
D

(
trigy

)
≤ 5 log(N/γ)

Nf ;

by Claim 5.17, Pr
Y pair
D

(
trigy

)
≤ 1100 log4(N/γ)

M ; and by Claim 5.19, Pr
Y pair
U

({(x, t) : h(x, t) = y}) ≤
20 log3(N/γ)/γ

M . Plugging this in Equation 62:

Pr
Y

(y) ≤ 1100 log (N/γ) /γ

Nf

The lower bound for PrY (y) is obtained through Claim 5.20. This conclude the proof of second
clause of Proposition 5.7. Claim 5.22 provides the proof for the third clause.

6 Full Protocol

Having established all the building blocks of the protocol in the previous sections, we show that
Protocol 6.0.1 satisfies the conditions of Theorem 1.1.

Proposition 6.1. Assume distribution D over [N ] satisfies the condition that for every x ∈ [N ],

D(x) ≤ N
1− 1

2(c+1) , where c is the constant from Theorem 3.9. Let P be a distribution property
that’s ρ-approximately decidable by a logspace uniform family of NC1 circuits. Let 0 ≤ εc < εf ≤ 1

be such that
εf−εc

3 > ρ. With high probability over the randomness of Protocol 6.0.1:
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Protocol 6.0.1: General Distribution Property Verification Protocol

Input: Parameter N ∈ N, black-box sample access to a distribution D over domain [N ] such that for all
x ∈ [N ], D(x) ≤ 1

Nf , for f = 1 − 1
2(c+1) , where c is the constant featured in Theorem 3.9; parameters

0 ≤ εc(N) < εf (N) ≤ 1, satisfying εf (N)− εc(N) > poly(1/N) and a distribution property P = (PN ) that

is ρ = ρ(N) =
εf (N)−εc(N)

3 -approximately decidable by a family of logspace uniform NC1 circuits (CN )N .

1. V: set γ = ρ/ logN and M = M(N) as defined in Construction 5.1. Draw functions h : [N ] ×[
N1−f/γ

]
→ [M ], and hγ : [N ] →

{
0, γ

N , 2γ
N , . . . , γ

}
from a 10 log (N/γ)-wise independent hash

family and a pairwise independent hash family, respectively. Send h, hγ to P.

2. V-P: let XD be the representation of D as described in Construction 5.1, and let C ′
N be the circuit

defined in Claim 5.21. Run the IPP protocol outlined in Figure 4.7.1 over the implicit input, XD,
the circuit C ′

N , and the explicit input εc, εf , h, hγ (all serve as parameters to C ′
N as explained in

Claim 5.21), with parameter r = Nf , u = N
1

4(c+1) . Upon invoking the Y -sampler, the verifier draws
a sample ((x, t), b, y) according to the Representation Sampler described in Construction 5.4, and
uses y ∈ [M ] as the Y sample. At the end of this step, either the verifier rejects or it obtains:

• Query set Q ∈ [M ]r·c as well as the alleged values of XD on Q, v̄ ∈ {0, 1}Q.
• The secret output of the verifier: IY , IU , substrings of Q.

• The output of the Representation Sampler SY = (((x, t), b, y)).

3. V: check that the number of 1’s in v̄ [IU ] satisfies Inequality (64), reject otherwise.

4. V-P: the verifier sets S =
(
x : ((x, t), b, y) ∈ SY

)
, secretly divided into SD =

(
x : ((x, t), 1, y) ∈ SY

)
and SU =

(
x : ((x, t), 0, y) ∈ SY

)
. Then, the parties run the Verified Tagged-Sample Protocol (see

Theorem 3.9) over distribution D with sample S, secret input SD and SU , and distance parameter

σ = 1
200

(
δ·γ

2000 log4(N/γ)

)2
, for δ = Θ

(
1
u ·

1
log3 M

)
. Reject if protocol rejects. Otherwise, obtain(

D̃x

)
x∈SD

.

5. V: for every ((x, t), 1, y) ∈ SY , if v̄ (y) = 0, set cx = γ
N · t. Accept unless there exists x s.t. D̃x ≥ cx.

• If δTV (D,PN ) ≤ εc, the verifier accepts.

• If δTV (D,PN ) ≥ εf , for every prover strategy P ∗, with high probability, the verifier rejects.

Moreover, ignoring polynomial dependence on
(
1
ρ

)
, Protocol 6.0.1 has verifier sample complexity

of Õ
(
N

1− 1
2(c+1)

)
, its communication complexity and verifier runtime are both Õ

(
N

1− 1
4(c+1)

)
, the

number of rounds is O(logN), and the protocol is doubly efficient.

Remark 6.2. Observe that Protocol 6.0.1 assumes that for all x ∈ [N ], D(x) ≤ N−f = N
1− 1

2(c+1) .
In general, we can’t assume a given distribution D satisfies this condition. However, in the vein of
Herman and Rothblum [HR23], we can consider the following pre-processing phase to Protocol 6.0.1.
First, the verifier takes a sample of size Õ

(
Nf
)
. With high probability, this sample will contain

all elements x such that D(x) ≥ N−f , if there are any. The verifier will classify all the elements
sampled as heavy, and denote them as H. Then, the verifier proceeds to first estimate D (H) by
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taking poly(1/ρ) samples. If this quantity is smaller than ρ, the verifier can ignore the set H in its
entirety, and think of all the elements inside as having probability 0 according to D. Otherwise, the
verifier can estimate D

∣∣
H up to accuracy ρ with Õ

(
Nf/ρ2

)
samples using the Folklore Distribution

Learner from Theorem 3.3. Then, we consider the explicit description of D
∣∣
H as part of the implicit

input to C ′N , in the form of hard-wired bits in the input string. Note that this separation of high-

probability elements and low-probability elements requires only Õ
(
Nf · ρ−2

)
samples, and as such,

does not exceed the sample complexity of the protocol.

The rest of this section is devoted to proving Proposition 6.1. We first show the existence of
the circuit C ′N used in the protocol:

Claim 6.3. Let P be a distribution property that’s ρ(N)-approximately decidable by a logspace
uniform NC1 circuit family. For every N ∈ N: set γ = γ(N) = ρ(N)/ logN , and let h and hγ
be functions as described in Construction 5.1 drawn from (10 log (N/γ))-wise independent hash
family and a pairwise independent hash family respectively (note that h and hγ also depend on
N). Then if we fix some distribution D over [N ] with representation XD ∈ {0, 1}M as described
in Construction 5.1, there exists a circuit C ′N that takes as input X ∈ {0, 1}M , h, hγ, as well as
εc = εc(N), εf = εf (N) ∈ (0, 1) such that εf − εc > ρ(N) = ρ, and with probability at least 0.99
over the choice of h and hγ:

• If δTV (D,P) < εc, then XD ∈ L(C ′N ).

• If δTV (D,PN ) > εf , then Ham (XD,L (C ′N )) ≥ ρ
log3 M

.

Moreover, the family (C ′N )N is a logspace-uniform NC1 circuit family.

Proof. Fix γ = ρ/ logN and distribution D over [N ]. Let (RN ) be the log-space uniform NC1

circuit family that satisfies the conditions of Proposition 5.3.
Since we assumed distribution property P is ρ(N) ≤ εf−εc

3 -approximately decidable by some
family of logspace uniform NC1 circuits (CN )N , then, setting δc = εc + ρ and δf = εf − ρ, we get
that δf − δc > ρ. Therefore, with high probability over the choice of h and hγ :

• If D satisfies δTV (D,PN ) ≤ εc, then by Proposition 5.3:

δTV(RN (XD),P) ≤ δTV (RN (XD), D) + δTV (D,P) ≤ εc + γ · logN ≤ εc + ρ ≤ δc

And so CN (RN (XD)) = 1.

• If D is εf -far from P, then for every X0 and for every δ ∈ (0, ρ), that differs from XD in at
least N

γ log2 N
·δ ≤M · δ

log3(M)
locations, either RN rejects, or δTV (RN (X0), D) ≤ δ. Therefore:

δTV (RN (X0),P) ≥ δTV (D,P)− δTV (RN (X0), D) ≥ εf − δ ≥ δf

And so CN (RN (X)) = 0, and we conclude that XD satisfies Ham (XD, X) ≥ ρ
log3 M

for every

X ∈ L (CN (RN (x))).

Therefore, it we set for every N , set the circuit C ′N = CN ◦RN , since (CN ) and (RN ) are logspace-
uniform NC1 circuit families, so is their composition. And we get that (C ′N ) satisfies all the
conditions of the above claim.
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Claim 6.4. With probability at least 0.999 over the randomness of the verifier:∣∣∣∣∣∣∣wt (XD | Q[IU ])−
1

M

N

γ
−

log(N/γ1/2)∑
k=2

(
N/γ

k

)(
1

M

)k−1

∣∣∣∣∣∣∣ ≤

400√
|IU |
·
√

N/γ

M
(64)

Proof. Recall that IU is the set of locations in Q, sampled in the following way: the verifier drew a
pairwise random permutation of the domain, and according to it a partition, {Pi}i∈[M/u]

4. Then,
the verifier samples r partition sets uniformly at random, and then adds the entire partition sets
to the query set Q, while keeping in IU the index of these entries in Q (we assume that when the
verifier selects Pi to be added to Q it also chooses a random order to add it, in order to ignore the
ordering inside each partition). Note that for every y ∈ [M ] and i ∈ IU the probability over the
randomness of the partition and the randomness of the verifier that Q (i) = y is 1

M .
Next, define the random variable Si to be the indicator that yi = Q(IU (i)) satisfies XD(y) = 1.

Since by definition for a uniformly chosen y ∈ [M ], Pr(XD(y) = 1) = wt(XD) and since yi is
distributed uniformly over [M ], we get that E [Si] = wt(XD). For any i, i′ ∈ |IU |, assume Si = 1.
Since the partition is taken from a pairwise independent permutation, the distribution of yi′ given

the value of yi is uniform over [M ], and so E
[
Si′ = 1

∣∣
Si=1

]
= Mwt(XD)−1

M−1 .

By definition wt (XD | Q[IU ]) = 1
|IU |

∑
i∈[|IU |] Si. Note that by the above argument for every

i ̸= i′:

Cov [Si, Si′ ] ≤ wt(XD) ·
(
Mwt(XD)− 1

M − 1

)
− (wt(XD))

2 ≤ wt2(XD)

2M

Therefore:

Var

∑
i∈IU

Si

 ≤∑
i∈IU

Var[Si] +
∑

i,i′∈IU

Cov[Si, Si′ ] ≤ 2
∑
i∈IU

E[Si] = 2E

∑
i∈IU

Si


And so, by Chebichev’s Inequality:

Pr


∣∣∣∣∣∣E
∑
i∈IU

Si

−∑
i∈IU

Si

∣∣∣∣∣∣ ≥ 200

√√√√√E

∑
i∈IU

Si


 ≤ 1

10000

And so, with high probability if the prover is honest

||IU |wt (XD | Q[IU ])− |IU |wt(XD)| ≤ 200
√
|IU |wt(XD)

Since wt (XD) is well concentrated around its mean as shown in Proposition 5.2, we get that w.h.p.:∣∣∣∣|IU | · wt (XD | Q[IU ])−
|IU |
M

(
N

γ
−

log(N/γ1/2)∑
k=2

(
N/γ

k

)(
1

M

)k−1

∣∣∣∣∣∣∣ (65)

≤ 200

√
|IU |N/γ

M
+

200 log3(M) |IU |
M

·
√

N/γ (66)

≤ 400

√
|IU |

N/γ

M
(67)

4see Section 3.1 for more on this. In particular, the verifier drew a k-wise independent γ-close partition, but we
consider it in this section as a pair-wsie partition following Remark 3.16
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Claim 6.5. For any δ ∈ (0, 1) such that δ = ω
(

1√
r
+ log2 M√

M

)
and δ ≤ ρ, and if u ≥ 1100N1−f

γ2 log (M):

with high probability over the randomness of Protocol 4.7.1 and the choice of h and hγ:

• If δTV (D,PN ) ≤ εc, both Step (2) and Step (3) of Protocol 6.0.1 do not result in rejection.

• If δTV (D,PN ) ≥ εf for any prover strategy P ∗, if both Step (2) and Step (3) passed, then:

1

|SD|
∑

x:(x,t,i)∈SD

(
1−min

{
cx

D(x)
,
D(x)

cx

})
≥ 1

200

(
δ · γ

2000 log4 (N/γ)

)2

(68)

Proof. Assume first that the prover is honest and δTV (D,PN ) ≤ εc. If so, by Claim 6.3, with
probability at least 0.99 over the randomness of the representation, XD ∈ L (C ′N ), and by Lemma
4.8, the verifier doesn’t reject and (XD | Q) = v̄, and in particular,wt (v̄ | Q[IU ]) = wt (XD | Q[IU ]),
by Claim 6.4, Step (3) passes with high probability.

Next, assume δTV (D,PN ) ≥ εf . Fix δ ≤ ρ. Then, by Claim 6.3, with high probability, XD is
differs from any X ∈ L(C ′N ) in at least M · δ/ log3M locations. This implies through Lemma 4.8,
that with all but exp (−θ (r)) probability:

∆ ((XD|Q[IU ]), v̄[IU ]) = Θ
(
δ/ log3M

)
.

In particular, assuming Step (3) of Protocol 6.0.1 passed, we know that:

|IU | · wt (v̄[IU ]) ∈
|IU |
M

N

γ
−

log(N/γ1/2)∑
k=2

(
N/γ

k

)(
1

M

)k−1
± 400 ·

√
|IU | ·

√
N/γ

M
(69)

And from Claim 6.4:

|IU | · wt (XD[IU ]) ∈
|IU |
M

N

γ
−

log(N/γ1/2)∑
k=2

(
N/γ

k

)(
1

M

)k−1
± 400 ·

√
|IU | ·

√
N/γ

M

Therefore, if we denoteRU
1→0 = {y ∈ IU : XD(y) = 1, v̄(y) = 0} andRU

0→1 = {y ∈ IU : XD(y) = 1, v̄(y) = 0}.
By definition, it holds that

∣∣RU
1→0

∣∣+ ∣∣RU
0→1

∣∣ = |IU | ·∆((XD|Q[IU ]), v̄[IU ]), and so, it follows that:

∣∣∣∣RU
1→0

∣∣− ∣∣RU
0→1

∣∣∣∣ ≤ 800 ·
√
|IU | ·

√
N/γ

M
(70)

Since otherwise, Inequality (69) would not have held. And in particular:

∣∣RU
1→0

∣∣ ≥ 1

2
· |IU | ·∆((XD|Q[IU ]), v̄[IU ])− 800 ·

√
|IU | ·

√
N/γ

M
(71)

≥ Θ

(
|IU |

(
δ/ log3M − 1√

|IU | log (N/γ)

))
(72)

≥ |IU |Θ
(
δ/ log3M

)
(73)
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Where the last inequality is justified by the assumption that δ = Θ
(

1
u ·

1
log3(M)

)
, while 1√

|IU |
=

Θ
(

1√
r·u

)
, and since r ≫ u, it follows that 1√

|IU |
= o(δ/ log3(M)). DenoteR1→0 = {y ∈ Q : XD(y) = 1, v̄(y) = 0}

the set of all queries where the prover claimed the value if 0, but the true value in XD is 1, including
locations from both IU and IY . By Inequality (71) and since RU

1→0 ⊆ R1→0, we conclude that:

|R1→0| ≥ |IU |Θ
(
δ/ log3M

)
(74)

By Proposition 5.7, for all y ∈ [M ]:

Y (y) ∈
[
1/ (8 log (N/γ))

M
,
1100 log (N/γ) /γ

Nf

]
⊆

1/ (8 log (N/γ))

M
,
1100 log (M) · N1−f

γ2

M


Also, by Lemma 4.8, we know that |IU | = Θ(r · u), and so, since we assumed δ = ω

(
1√
r

)
, it holds

that |R1→0| ≥ Θ(δ · r · u) ≥ Θ(
√
r · u · log (M) · 8 log (M)). Therefore, again by Lemma 4.8, it

holds that:

|R1→0 ∩ IY | ≥ Θ

(
1

u · logM · logM
|R1→0|

)
≥ Θ

(
r · δ

log3M

)
Since by Proposition 5.7, |IY | = Θ(r), we get that |R1→0∩IY |

|IY | ≥ Θ
(

δ
log3 M

)
. Finally, plugging

η = Θ
(

δ
log3 M

)
in Claim 6.6 concludes the proof.

Claim 6.6. Let (cx) be as defined in Protocol 6.0.1 and R1→0 = {y ∈ Q : XD(y) = 1, v̄(y) = 0}.
With high probability over the samples drawn from Y , if |R1→0∩IY |

|IY | = η, then:

1

|SD|
∑

x:(x,t,i)∈SD

(
1−min

{
cx

D(x)
,
D(x)

cx

})
≥ 1

200

(
η · γ

2000 log4 (N/γ)

)2

Proof. Observe that all samples in IY by definition were first sampled by Y pair, then were hashed

to a value y ∈ [M ]. For every y ∈ [M ] denote by ptrigy =
Pr

Y
pair
D

(y)

PrY (y) . Define:

I ′Y = {(y, b) ∈ IY × {0, 1} : b = 1 ⇐⇒ y drawn by trigger pair (x, t), and x by D}

Consider an alternative process of generating I ′Y : for every y ∈ IY , set by = 1 with probability ptrigy ,
and 0 otherwise, then define:

I ′′Y = {(y, by) ∈ IY × {0, 1}}

Note that only given IY , the distribution of I ′′Y is identical to the distribution of I ′Y . Therefore, if
we consider any prover strategy P ∗ that seeks to miss-classify y ∈ IY for which XD(y) = 1 and
claim that v̄(y) = 0, we can analyze the outcome according to I ′′Y , where the value yb can be chosen
after the prover’s response independently for each y.

Concretely, fix IY and some prover’s claim v̄, which induces a setR1→0. Assume that |R1→0∩IY |
|IY | =

η, i.e. |R1→0 ∩ IY | ≥ η · |IY |. Then, for every y ∈ IY denote 1by=1 to indicate by = 1. Then, if

we denote RY,trig
1→0 ⊆ R1→0 ∩ IY to be the random set that contains all entries in y ∈ R1→0 ∩ IY
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such that (y, 1) ∈ I ′′Y , then, by definition
∣∣∣RY,trig

1→0

∣∣∣ = ∑
y∈R1→0∩IY 1by=1 is a sum of independent

Bernoulli variables, so by the Chernoff Inequality:

Pr
I′′Y

(∣∣∣∣∣∣RY,trig
1→0

∣∣∣− E
[∣∣∣RY,trig

1→0

∣∣∣]∣∣∣ >√30E
[∣∣∣∣∣∣RY,trig

1→0

∣∣∣∣∣∣]) ≤ 2e
30
3 ≤ 1

10000

And since by Proposition 5.7, for every ptrigy ≥ γ
1100 log4(N/γ)

≥ γ
1100 log4(M)

, it holds that:

E
[∣∣∣RY,trig

1→0

∣∣∣] = E

 ∑
y∈R1→0∩IY

1by=1

 ≥ |R1→0 ∩ IY | ·
γ

1100 log4 (N/γ)
≥ η · γ

1100 log4 (N/γ)
|IY |

And so, we conclude that with high probability over the randomness of Y , for any prover strategy
P ∗, if |R1→0∩IY |

|IY | = η, then:

∣∣∣RY,trig
1→0

∣∣∣ ≥ η · γ
1100 log4 (N/γ)

|IY | −
√

30η · γ
1100 log4 (N/γ)

|IY | ≥
η · γ

1500 log4 (M)
|IY |

Define η′ = η·γ
2000 log4(N/γ)

. Next, for every y ∈ RY,trig
1→0 denote (xy, ty) the (trigger) pair drawn by

Y pair by which y was sampled. By Proposition 5.7 we get that the expected number of y ∈ Rtrig
1→0

such that trigger pairs (xy, ty) satisfy γ
N · ty ≥ (1 − η′/200)D(x) is η′

200 . Therefore, by Markov’s
Inequality, with probability at most least 0.99, the fraction of y ∈ [M ] for which (xy, ty) satisfies
γ
N · ty ≥ (1 − η′/200)D(x) is at most η′

2 . Therefore, at least (1 − η′

2 )-fraction of RY,trig
1→0 satisfies

γ
N · ty < (1−η′/200)D(x). However, since for every y ∈ Rtrig

1→0 the prover claimed that v̄(y) = 0, the

prover effectively claims that the probability of x according to D is smaller that (1− η′

200)D(x). And

so, setting cx as in Protocol 6.0.1, we conclude that for at least (1 − η/2)-fraction of y ∈ RY,trig
1→0 ,

it holds that (xy, ty) satisfies
(
1−min

{
cx

D(x) ,
D(x)
cx

})
≥ η′

200 . Therefore, let S be as defined in

Protocol 6.0.1, then:

1

|SD|
∑

x:(x,t,i)∈SD

(
1−min

{
cx

D(x)
,
D(x)

cx

})
≥ 1

|SD|
·
∣∣∣RY,trig

1→0

∣∣∣ · η′

200
=

1

|SD|
· |IY | · η′ ·

η′

200
≥ η′2

200

Where the final equality stems from the fact that |SD| < |IY |.

We are now set to Proposition 6.1:

Proof of Proposition 6.1. Assume first δTV (D,PN ) ≤ εc. By Claim 6.5, with high probability,
Steps (2) and Step (3) of Protocol 6.0.1 don’t result in rejection. Next, from the completeness of
the protocol satisfying the conditions of Theorem 3.9, Step (4) also passes with high probability.
Since the prover is honest, for all x D(x) ≤ cx, and Step (5) also passes.

Assume next that δTV (D,PN ) ≥ εf . By Claim 6.5, since δ = 1
u = 1

N14(c+1) = ω
(

1√
r
+ 1√

M

)
with high probability over the randomness of the protocol, it holds that for any prover strategy
P ∗, if both Steps (2) and (3) passed, then Inequality (68) holds. Assume Step (4) doesn’t result
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in rejection. This means that with high probability over the randomness of the Tagged-Sample-
Protocol, according to Theorem 3.9, it holds that:

∆S,SD
((D̃x), D) =

1

|SD|
·
∑
i∈SD

(
1−min

{
D̃x

D(zi)
,
D(zi)

D̃x

})
≤ σ2

However, by Claim 6.5 we know that with high probability Inequality (68) holds. And since in
Step (5) we check that cx ≥ D̃x, and by assumption we know that cx < D(x), we get that
these two inequalities contradict. More concretely, Inequality (68) implies ∆S,SD

((D̃x), D) = 1
|SD| ·∑

i∈SD

(
1−min

{
D̃x

D(zi)
, D(zi)

D̃x

})
≥ σ. And so, we conclude that assuming Steps (2) and (3) passed,

then for every prover strategy P ∗, with high probability either Step (4) or Step (5) fails, and the
verifier rejects.

Next, we analyze the complexity of the protocol:

• V’s sample complexity. The verifier takes samples as part of running the IPP protocol
from Lemma 4.8, and in the Verified-Tagged-Sample Protocol from Theorem 3.9. In total, the

first subprotocol requires r = Θ
(
Nf
)
= Θ

(
N

1
2(1+

c
c+1)

)
= Θ

(
N

1− 1
2(c+1)

)
samples, and the

second requires Õ
(
N1/2 · σ−c

)
= Õ

(
N1/2 ·

(
1
u2

)−c)
= Õ

(
N1/2 ·N

c
2(c+1)

)
= Õ

(
N

1− 1
2(c+1)

)
.

• Communication complexity and V’s runtime. The communication is dominated by the
communication of the two sub-protocols. By Lemma 4.8, the communication complexity of the

first subprotocol is Õ (r · u+M/u) = Õ
(
N

1− 1
4(c+1)

)
, which also dominates the communication

complexity of the second protocol. The verifier runtime matches the communication complexity
(the most computationally taxing task is to read the prover’s message).

• Round count. The number of rounds is dominated by the IPP subprotocol, and is polylog(N)

• Double Efficiency. The honest prover in Protocol 6.0.1 has to run the prover of Protocol
4.7.1 as well as the prover in the Verified Tagged Sample protocol from Theorem 3.9, both of
which are doubly efficient. This makes Protocol 6.0.1 doubly efficient as well.

7 Domain Reduction

We show a domain reduction technique that takes a distribution D over a huge domain U , whose
support is of size at most N , and produces a distribution D′ over domain [M ] for M ≈ (N · log |U|),
where D′ “encodes” most of the information about D. Indeed, a complete representation of D can
be (approximately) reconstructed from the complete representation of D′ by a uniform low-depth
circuit. This reconstruction procedure is distance-preserving, in the sense that any distribution
that is close to D′ is reconstructed to a distribution that is close to D (or rejected). Finally, we can
generate a sample from D′ by post-processing a (single) sample from D. Thus, we can reduce from
verifying a property of D (over a huge domain) to verifying a property of D′ (over a manegable
domain), and use the protocol of Theorem 1.1 for this latter task.
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Domain Reduction

Parameters. a data universe U = {0, 1}u, support size S ∈ N, error parameter ε ∈ (0, 1). Take
V = {0, 1}v to be a hash range of size O(S/ε), and ECC : {0, 1}u → {0, 1}u/η to be an error-correcting
code with constant rate η. The reduction’s target domain is of size M = O(S · log |U|/ε)

Key generator. Gen(u, s) outputs a hash function h : U → V from a pairwise independent hash family.

Domain reducer. Reduceh gets as input an element x ∈ U and h generated by Gen. It outputs y ∈ [M ]:

1. draw a uniformly random j ∈ [(u/η)].

2. output y = (h(x), j,ECC(x)j).

We think of Reduceh(D) as a distribution over tuples in V × [(u/η)]× {0, 1}.

Reconstruction. Reconsth gets as input a complete description of a distribution F over [M ] with support
size at most S (as a list of the elements and their probabilities) and either rejects or outputs a complete
description of a distribution over U (also of support size at most S).

1. For an element z ∈ V that appears in a tuple in F ’s support, let pz > 0 be the total probability that
F assigns to tuples that begin with z. For each such z, verify that for all j ∈ [(u/η)], the probabilities
of the prefixes (z, j) are identical, i.e. that {F (z, j, 0)+F (z, j, 1)} are all the same. Reject otherwise.

2. For each z ∈ V in F ’s support say that z has a unique answer w ∈ {0, 1}(u/η) if for each j ∈ [(u/η)],
F assigns non-zero probability to (z, j, wj) and zero probability to (z, j, (1 − wj)). Verify that the
sum of probabilities pz for z’s that do not have unique answers is at most Θ(ε). Reject otherwise.

3. For each z ∈ V in F ’s support that has a unique answer w, decode the vector w ∈ {0, 1}u/η using
the code ECC and let x ∈ U be the resulting decoded element, reject if the decoding failed. Assign
probability pz to x in the list of elements in the support of the reconstructed distribution.

Protocol 7.0.1: Domain Reduction

Taking ε to be an error parameter, the construction hashes the elements of U into a domain
V of size (N/ε) using a pairwise independent hash function h. For x ∼ D, taking z = h(x) we
“encode” the information about x as a collection of tuples with prefix z in the support of D′. To do
so, we take w = ECC(x) to be an error correcting encoding of x, and output (z, j, wj), where j is a
random index in the encoding. This defines the distribution D′, and note that it is over a domain
of size O((N/ε) · log(|U|)) (we take ECC to be a good error correcting code, with constant rate
and distance). Observe that D′ assigns to the set of tuples with prefix z = h(x) total probability
exactly D[x], and we can recover x from these tuples. Further, changing the distribution of D′ over
elements with prefix z so that the reconstructed element is x′ ̸= x requires making large changes
to the probabilities of such tuples in D′ (because of the encoding). The full statement and details
are below.

Lemma 7.1. Let U = U(n) be a data universe, S = S(n) ≤ |U| a bound on the support size, and
ε = ε(n), σ = σ(n) ∈ (0, 1) be error parameters. Let ECC be a binary error correcting code with
constant rate η and constant distance. The construction of Figure 7.0.1 reduces a domain of size
|U| to a range of size M = O(S · log |U|/ε). For an appropriate choice of the code, the algorithms
Gen, Reduce and Reconst can all be implemented by logspace uniform NC1 circuits. For every
distribution D over U they guarantee the following:
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• Reconstructability: with 0.99 probability over h← Gen(1n),

∆(D,Reconsth(Reduceh(D))) ≤ O (ε)

• Distance preservation: with 0.99 probability over h ← Gen(1n), for every distribution
F over the range [M ] of Reduce simultaneously , if ∆(Reduceh(D), F ) ≤ σ then either
Reconsth(F ) rejects or it holds that

∆(D,Reconsth(F )) = O(σ + ε).

Proof. We show that the domain reduction in Figure 7.0.1 satisfies the conditions of Lemma 7.1.
We begin by showing reconstructability: fix a distribution D over U such that |Supp(D)| ≤ S.
Let x ∈ Supp(D) be such that for all x′ ∈ Supp(D) such that x ̸= x, h(x) ̸= h(x′). Then, by

construction, for every j ∈ [(u/η)], the probability of (h(x), j,ECC(x)j) =
D(x)
u/η , and by assumption

(h(x), j, 1− ECC(x)j) = 0. Therefore, Reconsth(Reduceh(D))(x) = D(x). We are left to show that
the mass of D lost to collisions under h is small. Indeed, for every x ̸= x′ ∈ Supp(D), since h was

drawn from a pairwise uniform family, it holds that Prh (h(x) = h(x′)) = O
(

1
S/ε

)
, and so, for every

x, id we denote Ix be the indicator of the event that there exists some x′ for which h(x) = h(x′),
the E [Ix] ≤ |Supp(D)| · O

(
ε
S

)
= O(ε), where the last inequality is due to the assumption that

|Supp(D)| ≤ S. Consider L =
∑

x∈Supp(D)D(x) · Ix to be the random variable representing the
mass of D on elements colliding under h. From the above it holds that E [L] = O(ε), therefore, by
Markov, with probability at most 0.99, it holds that L = O(ε). We thus conclude that with high
probability over h, the algorithm Reconsth does not reject Reduceh(D) and for all x ∈ Supp(D),
but for an O(ε)-fraction of the mass, it holds that D(x) = Reconsth(Reduceh(D))(x).

Next, we show that the distance preservation property holds as well. Let F be a distribution
over [M ] such that ∆ (Reduceh(D), F ) ≤ σ. Assume distribution F is not rejected by the Reconsth
algorithm. This means that: (i) for every z ∈ V, and every j, j′ ∈ [(u/η)], the probability that
F (z, j, 0) + F (z, j, 1) = F (z, j′, 0) + F (z, j′, 1); (ii) for all but O(ε) of the mass of F , z ∈ V has a
unique answer as defined in the reconstruction algorithm.

Let z ∈ V be such that z has a unique answer, denote this by uFz . Assume first that for some
j, b, (z, j, b) ∈ Supp(D) such that z has a unique answer according to D as well, denoted by uDz .
Note that:

Reduceh(D)
(
{(z, j, b)}j,b

)
= Reconsth(Reduceh(D))(uDz )

F
(
{(z, j, b)}j,b

)
= Reconsth(F )(uFz )

If uDz = uFz = u:

|Reconsth(F )(u)− Reconsth(Reduceh(D))(u)| =
∑

j∈(u/η),b∈{0,1}

|Reduceh(D) (z, j, b)− F (z, j, b)|

Otherwise, it holds that uDz ̸= uFz . Denote the distance of the ECC by constant δ, then, by
construction, Ham

(
ECC(uDz ),ECC(u

F
z )
)
≥ δ, and so, for at least δ · (u/η) entries in the set

{(z, j, b) : j ∈ [(u/η)] , b ∈ {0, 1}} it holds that F (z, j, b) > 0 and Reduceh(D)(z) = 0 or otherwise.
Moreover, since z an a unique answer for both distributions, it holds that that if F (z, j, b) > 0, then
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F (z, j, b) = pF (z)
u/η , and if Reduceh(D)(z, j, b) > 0 then Reduceh(D)(z, j, b) = pD(z)

u/η . This implies
that:∣∣Reconsth(F )(uFz )− Reconsth(Reduceh(D))(uFz )

∣∣+ ∣∣Reconsth(F )(uDz )− Reconsth(Reduceh(D))(uDz )
∣∣

= Reconsth(F )(uFz ) + Reconsth(Reduceh(D))(uDz )

≤ 1

δ

∑
j∈(u/η),b∈{0,1}

|Reduceh(D) (z, j, b)− F (z, j, b)|

For every other z ∈ V such that it’s outside the support of one distribution and has a unique answer
in the other it follows that:∣∣Reconsth(F )(uFz )− Reconsth(Reduceh(D))(uFz )

∣∣+ ∣∣Reconsth(F )(uDz )− Reconsth(Reduceh(D))(uDz )
∣∣

= Reconsth(F )(uFz ) + Reconsth(Reduceh(D))(uDz )

=
∑

j∈(u/η),b∈{0,1}

|Reduceh(D) (z, j, b)− F (z, j, b)|

Therefore, setting BAD to be the set of (z, j, b) that don’t have a unique answer according to either
Reconsth(D) or F , then:∑

z:(z,j,b)/∈BAD

(∣∣Reconsth(F )(uFz ) − Reconsth (Reduceh(D)) (uFz )
∣∣ (75)

+
∣∣Reconsth(F )(uDz )− Reconsth (Reduceh(D)) (uDz )

∣∣ ) (76)

≤ 1

δ

∑
(z,j,b)/∈BAD

|Reduceh(D) (z, j, b)− F (z, j, b)| (77)

(78)

We are thus left to bound the sum where z : (z, j, b) ∈ BAD. Note that for these sets if we denote
BD ⊆ V the set of all elements z with unique answer according to Reduceh(D) but not according
to F , and BF in the same vein w.r.t. to F , then:∑

z∈BD

Reconsth(Reduceh(D))(uDz ) +
∑
z∈BF

Reconsth(Reduceh(D))(uFz ) (79)

≤
∑

(z,j,b)∈BAD

|Reduceh(D) (z, j, b)− F (z, j, b)|+ 2ε (80)

We thus conclude that:

∆ (D,Reconsth(F )) ≤ 1

δ
σ + 2ε = O(σ) + 2ε).

The following claim is follows directly from Lemma 7.1.

Claim 7.2. Let P = (PN ) be a distribution property over a large domain U = (UN ). Assume
P is ρ = ρ(N)-approximately decidable by a logspace uniform NC1 family of circuits. Let Gen,
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Reduce, Reconst be as in the construction of Figure 7.0.1 with parameters as in Lemma 7.1, taking
ε = Θ(ρ). There exists a logspace uniform NC1 family of circuits (C ′N )N that take as input an
explicit description of a distribution over [M ] and the function h. For a fixed distribution D over
U with support of size at most N , with high probability over h← Gen:

• If δTV (D,PN ) ≤ εc, then Reduceh(D) satisfies the circuit C ′N (h, ·) (the circuit with the
function h hardwired into it).

• If δTV (D,PN ) ≥ εf , then Reduceh(D) is
(
εf − ρ

2

)
-far from any distribution D′ that satisfies

C ′N (h, ·).

Moreover, black box sample access to D can be used to simulate black box sample access to Reduceh(D)
(each sample from D generates a single sample from Reduceh(D)).

Remark 7.3. In Theorem 1.1 we require the property over the small domain to be approximately
decidable: the approximate decision circuit should work for any distribution. In Claim 7.2, we
show that the approximate decision condition holds (w.h.p) for the specific distribution Reduceh(D)
under consideration. This suffices for guaranteeing that running the protocol of Theorem 1.1 will
result in Reduceh(D) being accepted (in the completeness case) or rejected (in the soundness case).
We obtain a complete and sound protocol for the original property P over the huge domain.
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A Bounded-Space Distribution Properties

We also get a result in the spirit of Theorem 1.1 for distribution properties that can be approximately
decided by a polynomial-time and bounded-polynomial-space Turing machine (the machine gets as
input an explicit description of the distribution, as in Theorem 1.1).

Theorem A.1 (IPs for space-bounded properties). There exist constants α, σ > 0 s.t. for every
approximation parameter ρ = ρ(N) ∈ (0, 1), and every property that can be ρ(N)-approximately
decided by a polynomial-time Turing machine that runs in space O(Nσ), there is an interactive
proof system as follows. The prover and the verifier both get as input an integer N and proximity
parameters εc, εf ∈ [0, 1] s.t. εf − εc ≥ Θ(ρ), as well as sampling access to a distribution D over
the domain [N ], where

• Completeness: if D is εc-close to the property and the prover follows the protocol, then the
verifier accepts w.h.p.

• Soundness: if D is εf -far from the property, then, no matter how the prover cheats, the
verifier rejects w.h.p.

• Efficient verification: the verifier’s sample complexity is Õ(N1−α·poly(1/ρ)). The communication
complexity and verifier runtime are (Õ(N1−α)·poly(1/ρ)). The protocol has a constant number
of rounds.

• Doubly-efficient prover: the honest prover’s sample complexity is Õ(N) · poly(1/ρ) and its
runtime is poly(N, 1/ρ).

The protocol is identical to the protocol underlying Theorem 1.1. The only difference is that
instead of using an IPP that builds on the GKR protocol [GKR15] for bounded-depth computations
(i.e., the IPP described in Theorem 2.1), we use an IPP that builds on the RRR protocol [RRR16].
See the statements about these IPP in the work of Rothlbum and Rothblum [RR20] for further
details. The exponent α that bounds the sample and communication complexities is identical to
Theorem 1.1. The exponent σ in the bound on the space of the Turing machine is derived from α
to ensure that the poly(Nσ) complexity of the RRR protocol is O(N1−α).
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