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Abstract

We present the first efficient averaging sampler that achieves asymptotically optimal ran-
domness complexity and near-optimal sample complexity for natural parameter choices. Specif-
ically, for any constant α > 0, for δ > 2− poly(1/ε), it uses m+O(log(1/δ)) random bits to output
t = O(log(1/δ)/ε2+α) samples Z1, . . . Zt ∈ {0, 1}m such that for any function f : {0, 1}m → [0, 1],

Pr

[∣∣∣∣∣1t
t∑

i=1

f(Zi)− E f

∣∣∣∣∣ ≤ ε

]
≥ 1− δ.

The sample complexity is optimal up to the O(εα) factor.
We use known connections with randomness extractors and list-decodable codes to give

applications to these objects.

1 Introduction

Randomization plays a crucial role in computer science, offering significant benefits across various
applications. However, obtaining true randomness can be challenging. It’s therefore natural to
study whether we can achieve the benefits of randomization while using few random bits.

One of the most basic uses of randomness is sampling. Given oracle access to an arbitrary
function f : {0, 1}m → [0, 1] on a large domain, our goal is to estimate its average value. By
drawing t = O(log(1/δ)/ϵ2) independent random samples Z1, . . . , Zt ∈ {0, 1}m, the Chernoff bound
guarantees that the average value

∣∣1
t

∑t
i=1 f(Zi)− E f

∣∣ ≤ ε with probability at least 1 − δ. This
method uses full independence in sampling, but we can also pursue more efficient strategies. This
leads to the following definition:

Definition 1.1 ([BR94]). A function Samp : {0, 1}n → ({0, 1}m)t is a (δ, ε) averaging sampler
with t samples using n random bits if for every function f : {0, 1}m → [0, 1], we have

Pr
(Z1,...,Zt)∼Samp(Un)

[∣∣∣∣∣1t ∑
i

f(Zi)− E f

∣∣∣∣∣ ≤ ε

]
≥ 1− δ.
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We would like to construct explicit samplers using few random bits that have sample complexity
close to the optimal. Researchers have made progress towards this goal, and a summary is given
in Table 1. Bellare and Rompel [BR94] suggested that interesting choices of parameters are ε =
1/poly(m) and δ = exp(−poly(m)). This enables us to use poly(m) random bits and generate
poly(m) samples.

Due to Method Random Bits Sample Complexity

[CEG95] Lower Bound m+ log(1/δ)− log(O(t)) Ω(log(1/δ)/ε2)

[CEG95] Non-Explicit m+ 2 log(2/δ) + log log(1/ε) 2 log(4/δ)/ε2

Standard Full Independence O(m log(1/δ)/ε2) O(log(1/δ)/ε2)

[CG89] Pairwise Independence 2m O(1/(δε2))

[Gil98] Expander Walks m+O(log(1/δ)/ε2) O(log(1/δ)/ε2)

[BR94] Iterated Sampling O(m+ (logm) log(1/δ)) poly(1/ε, log(1/δ), logm)

[Zuc97] Hash-Based Extractors (1 + α)(m+ log(1/δ)) poly(1/ε, log(1/δ),m)

[RVW00] Zig-Zag Extractors m+ (1 + α) log(1/δ) poly(1/ε, log(1/δ))

Here
[RVW00]

m+O(log(1/δ)) O(log(1/δ)/ε2+α)
+ Almost ℓ-wise Uniform

Table 1: Comparison of averaging samplers, α any positive constant, ε = 1/poly(m), and δ =
exp(−poly(m)).

The best existing randomness-efficient averaging sampler comes from the equivalence between
averaging samplers and extractors [Zuc97]. Improving Zuckerman’s construction, Reingold, Vad-
han, and Wigderson [RVW00] gave a (δ, ε) averaging sampler for domain {0, 1}m that uses m +
(1 + α) log(1/δ) random bits for any positive constant α. This almost matches the lower bound
in [CEG95]. However, a notable gap remains in sample complexity: the existing construction’s com-
plexity poly(1/ε, log(1/δ)) does not align with the optimal O(log(1/δ)/ε2). This raised an open
problem: Can we design an averaging sampler that not only meets the O(m + log(1/δ)) random
bit requirement but also achieves the more efficient sample complexity of O(log(1/δ)/ε2) [BR94,
Zuc97, Gol11]?

We note that such algorithms do exist for general samplers, which queries f and computes
the estimation of E f by an arbitrary computation [BGG93]. However, many applications require
the use of averaging samplers, such as the original use in interactive proofs [BR94]. Beyond these
applications, averaging samplers act as a fundamental combinatorial object that relate to other
notions such as randomness extractors, expander graphs, and list-decodable codes [Zuc97, Vad07].

1.1 Our Sampler

In this paper, we construct a polynomial-time computable (δ, ε) averaging sampler with near-
optimal sample complexity using an asymptotically optimal number of random bits. In fact, the
sampler we constructed is a strong sampler, defined as follows:

Definition 1.2. A (δ, ε) averaging sampler Samp is strong if for every sequence of t functions
f1, . . . , ft : {0, 1}m → [0, 1], we have

Pr
(Z1,...,Zt)∼Samp(Un)

[∣∣∣∣∣1t ∑
i

(fi(Zi)− E fi)

∣∣∣∣∣ ≤ ε

]
≥ 1− δ.

We then state our main theorem:
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Theorem 1. For every constant α > 0, there exists an efficient strong (δ, ε) averaging sampler for

domain {0, 1}m with O( 1
ε2+α log 1

δ ) samples using m+O((1 + log log(1/δ)
log(1/ε) ) log 1

δ ) random bits.

We have the next immediate corollary.

Corollary 2. For arbitrary positive constants α and C, given any (δ, ε) such that log(1/δ) < ε−C ,
there exists an explicit (δ, ε) averaging sampler for domain {0, 1}m with O( 1

ε2+α log 1
δ ) samples using

m+O(log 1
δ ) random bits.

In particular, when ε = 1/poly(m) and δ = exp(−poly(m)), our sampler achieves O( 1
ε2+α log 1

δ )
sample complexity while using m+O(log 1

δ ) random bits, which is optimal up to the εα factor.

1.2 Randomness Extractors

Our sampler construction has implications for randomness extractors. A randomness extractor is
a function that extracts almost-uniform bits from a low-quality source of randomness. We define
the quality of a random source as its min-entropy.

Definition 1.3. The min-entropy of a random variable X is

H∞(X) := min
x∈supp(X)

log

(
1

Pr[X = x]

)
.

An (n, k)-source is a random variable on n bits with min-entropy at least k.

Then a randomness extractor is defined as:

Definition 1.4 ([NZ96]). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε) extractor if for
every (n, k)-source X, the distribution Ext(X,Ud) ≈ε Um. We say Ext is a strong (k, ε) extractor
if for every (n, k)-source X, the distribution (Ext(X,Y ), Y ) ≈ε Um+d, where Y is chosen from Ud.

Randomness extractors are used in many areas within theoretical computer science. However,
there has been little study of explicit extractors with the right dependence on ε. This is a particular
concern in cryptography, where ε is often very small. Existentially, there are extractors with seed
length d = log(n− k) + 2 log(1/ε) +O(1), and there is a matching lower bound [RT00].

Zuckerman [Zuc97] showed that averaging samplers are essentially equivalent to extractors.
Specifically, an extractor Ext : {0, 1}n × [2d] → {0, 1}m can be seen as a sampler that generates
Ext(X, i) as its i-th sample point using the random source X. Using this equivalence, we can show
that our sampler implies an extractor with almost optimal dependence on ε.

Theorem 3. For any positive constants C and α, all ε ≥ 0, and all k such that k ≥ n − ε−C ,
there exists an efficient strong (k, ε) extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with m = Ω(k) and
d = log(n− k) + (2 + α) log(1/ε) +O(1).

Prior to our work, extractors with a seed length dependence on ε achieving 2 log(1/ε) or close to
it were based on the leftover hash lemma [BBR88, IZ89, HILL99] and expander random walks [Gil98,
Zuc07]. Extractors using the leftover hash lemma have a seed length of n + 2 log(1/ε), which is
far from optimal. Expander random walks give a (k, ε) extractor with k > (1 − Ω(ε2))n and an
optimal seed length of log(n− k) + 2 log(1/ε) +O(1). Our extractor allows for smaller k whenever
ε < 1/nc for an arbitrarily small constant c > 0.
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1.3 Techniques

Our construction is very simple, and is based on two observations:

1. Rather than querying every sample point produced by a sampler Samp, we can use a second
sampler Samp′ to pick certain samples for querying. This reduces the sample complexity
because the number of queried samples just depends on Samp′. Since the domain of Samp′ is
much smaller than the original domain, this allows more efficient sampling strategies. This
observation has been utilized in previous sampler constructions [BR94, Gol11].

2. The bottleneck of generating an almost ℓ-wise uniform sequence over a large domain {0, 1}m
lies in sampling ℓ independent random points, which costs ℓm random bits. Since we can
only afford O(m) random bits, we are restricted to generating constant-wise uniform samples.
However, for a much smaller domain, we can use few random bits to generate an almost ℓ-wise
uniform sequence for large ℓ.

Our construction is outlined as follows. Let Ext : {0, 1}n× [t′] → {0, 1}m be the extractor-based
sampler in [RVW00]. Let Y1, . . . , Yt be an almost ℓ-wise uniform sequence over domain [t′], thinking
of t ≪ t′. Our sampler is then defined by

Samp := (Ext(X,Y1),Ext(X,Y2), . . . ,Ext(X,Yt)).

In this construction, we use the almost ℓ-wise uniform sequence to sub-sample from the extractor-
based sampler. This can be viewed as a composition, similar to other cases such as Justesen
codes [Jus72] and the first PCP theorem [ALM+98], where the goal is to optimize two main param-
eters simultaneously by combining two simpler schemes, each optimizing one parameter without
significantly compromising the other.

Previous works have also applied almost ℓ-wise independence in extractor constructions. Srini-
vasan and Zuckerman [SZ99] proved a randomness-efficient leftover hash lemma by sampling an
almost ℓ-wise independent function using uniform seeds and inputting a weak random source. Our
construction inverts this process: we generate an ℓ-wise uniform sequence using a weak random
source and then choose an index uniformly. Furthermore, Ran Raz’s two-source extractor [Raz05]
utilized two weak random sources to sample an almost ℓ-wise uniform sequence and an index sep-
arately. This is a more general construction, but if we directly apply Raz’s error bound in our
analysis Lemma 3.3, the final sample complexity will be off by a log(1/δ) factor.

It might be of independent interest to readers who are familiar with the Nisan-Zuckerman
pseudorandom generator [NZ96]. Our sampler has the same structure as the Nisan-Zuckerman
generator, and one can view our construction from the perspective of pseudorandom generators.
In the classical analysis of the Nisan-Zuckerman generator, ensuring a success probability of 1− δ
demands an extractor error smaller than δ, since an error at any step implies a complete loss of
control. However, in our setting, every output sample has a very small effect on the final answer.
This enables us to use an extractor with much larger error than δ here.

1.4 List-Decodable Codes

Another perspective on averaging samplers is its connection to error-correcting codes. Ta-Shma and
Zuckerman [TZ04] showed that strong randomness extractors are equivalent to codes with good
soft-decision decoding, which is related to list recovery. From this perspective, the composition
scheme in our construction is similar to code concatenation.
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For codes over the binary alphabet, soft decision decoding amounts to list decodability, which
we focus on here. We give good list-decodable codes without using the composition. That is, by
just applying our almost ℓ-wise uniform sampler on the binary alphabet, we can get a binary list-
decodable code with rate Ω(ε2+α) and non-trivial list size, although the list size is still exponential.

Theorem 4. For every constant α > 0: there exists an explicit binary code with rate Ω(ε2+α) that
is (ρ = 1

2 − ε, L) list-decodable with list size L = 2(1−c)n for some constant c = c(α) > 0.

Prior to our work, the best known code rate was Ω(ε3) by Guruswami and Rudra [GR08]. We
emphasize that their code achieved a list size of L = poly(n), while our list size is exponentially
large, making our code unlikely to be useful.

2 Preliminaries

Notations. We use [t] to represent set {1, . . . , t}. For integer m, Um is a random variable dis-
tributed uniformly over {0, 1}m. For random variables X and Y , we use X ≈ε Y to represent
the statistical distance (total variation distance) between X and Y is at most ε. We use the term
“efficient” to mean polynomial-time computable.

2.1 Extractor-Based Sampler

As mentioned above, averaging samplers are equivalent to extractors. We will introduce this in
detail in Section 4.1. Reingold, Vadhan, and Wigderson used this equivalence to achieve the
following:

Theorem 2.1 ([RVW00, Corollary 7.3], see also [Gol11, Theorem 6.1]). For every constant α > 0,
there exists an efficient (δ, ε) averaging sampler over {0, 1}m with poly(1/ε, log(1/δ)) samples using
m+ (1 + α) · log2(1/δ) random bits.

For ease of presentation, we often denote an extractor-based averaging sampler by Ext : {0, 1}n×
{0, 1}d → {0, 1}m, where Ext(X, i) is the i-th output sample point of the sampler using randomness
input X. Therefore, the sample complexity of Ext is 2d.

2.2 Almost ℓ-wise Uniform

An almost ℓ-wise uniform sequence is a sequence of random variables such that the marginal
distribution of every ℓ of them is close to uniform.

Definition 2.2 ([NN93]). A sequence of random variables Z1, . . . , Zt ∈ {0, 1}m is said to be γ-
almost ℓ-wise uniform if for all subsets S ⊆ [t] such that |S|≤ k,

(Zi)i∈[S] ≈γ Um×|S|.

Lemma 2.3 ([NN93]). There exists an efficient algorithm that uses O(ℓm + log(1/γ) + log log t)
random bits to generate a γ-almost ℓ-wise uniform sequence z1, . . . , zt ∈ {0, 1}m.

Using standard techniques, we have the following concentration bound for almost ℓ-wise uniform
sequences (see Appendix A for the proof). Bellare and Rompel [BR94] derived a similar bound for
exact ℓ-wise uniform sequences.
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Lemma 2.4. Let Z1, . . . , Zt ∈ {0, 1}m be a sequence of γ-almost ℓ-wise uniform variables for an
even integer ℓ. Then for every sequence of functions f1, . . . , ft : {0, 1}m → [0, 1],

Pr

[∣∣∣∣∣1t
t∑

i=1

(fi(Zi)− E fi)

∣∣∣∣∣ ≤ ε

]
≥ 1−

(
5
√
ℓ

ε
√
t

)ℓ

− γ

εℓ
.

2.3 Composition of Samplers

The idea of composing samplers has been studied before. More specifically, Goldreich proved the
following proposition.

Proposition 2.5 ([Gol11]). Suppose we are given two efficient samplers:

• A (δ, ε) averaging sampler for domain {0, 1}m with t1 samples using n1 random bits.

• A (δ′, ε′) averaging sampler for domain {0, 1}log t1 with t2 samples using n2 random bits.

Then, there exists an efficient (δ+ δ′, ε+ ε′) averaging sampler for domain {0, 1}m with t2 samples
using O(n1 + n2) random bits.

3 Main Results

Our construction is based on a reduction lemma that constructs a sampler for domain {0, 1}m
based on a sampler for domain {0, 1}O(log(1/ε)+log log(1/δ)). We exploit the fact that when composing
averaging samplers, the final sample complexity depends on only one of the samplers. Our strategy
is:

• Apply the extractor sampler in Theorem 2.1 as a (δ/2, ε/2) sampler over domain {0, 1}m.
This uses m+O(log(1/δ)) random bits and generates poly(1/ε, log(1/δ)) samples.

• By Proposition 2.5, we only need to design a (δ/2, ε/2) averaging sampler over domain
{0, 1}O(log(1/ε)+log log(1/δ)) using O(log(1/δ)) random bits. The total sample complexity will
be equal to the sample complexity of this sampler. For this sampler, we use almost ℓ-wise
uniformity.

To formally prove the reduction lemma, we establish the next lemma, which demonstrates the
explicit composition of samplers and proves that this composition maintains the properties of a
strong sampler. The proof follows from the idea of Proposition 2.5.

Lemma 3.1. Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a (δ, ε) averaging sampler, and let Sampbase
be a (δ′, ε′) averaging sampler for domain {0, 1}d. Suppose Y1, . . . , Yt ∈ {0, 1}d are the samples
generated by Sampbase, i.e., for uniformly random source R,

Sampbase(R) = (Y1, . . . , Yt).

Then, for a uniformly random X ∈ {0, 1}n,

Samp(R,X) := (Ext(X,Y1), . . . ,Ext(X,Yt))

is a (δ′ + δ, ε′ + ε) averaging sampler for domain {0, 1}m. Furthermore, if Sampbase is strong, then
Samp is also a strong (δ′ + tδ, ε′ + ε) averaging sampler.
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Proof. We only prove the case when Sampbase is a strong sampler, and the non-strong case follows
similarly. Let f1, . . . , ft : {0, 1}m → [0, 1] be an arbitrary sequence of functions. By the definition
of strong samplers, we have for every fi,

Pr
X∼Un

[∣∣∣∣ E
Y∼Ud

fi(Ext(X,Y ))− E fi

∣∣∣∣ ≤ ε

]
≥ 1− δ.

By a union bound over all f1, . . . , ft, we have 1

Pr
X∼Un

[
∀i ∈ [t] :

∣∣∣∣ E
Y∼Ud

fi(Ext(X,Y ))− E fi

∣∣∣∣ ≤ ε

]
≥ 1− tδ. (1)

For an arbitrary x, view fi(Ext(x, ·)) as a Boolean function on domain {0, 1}d. Therefore, since
Y1, . . . , Yt are generated by a strong (δ, ε) sampler,

Pr
Y1,...,Yt

[∣∣∣∣∣1t
t∑

i=1

(
fi(Ext(x, Yi))− E

Y∼Ud

fi(Ext(x, Y ))

)∣∣∣∣∣ ≤ ε′

]
≥ 1− δ′. (2)

By the triangle inequality and a union bound over equations (1) and (2), we have

Pr
X,Y1,...Yt

[∣∣∣∣∣1t
t∑

i=1

(fi(Ext(X,Yi))− E fi)

∣∣∣∣∣ ≤ ε′ + ε

]
≥ 1− δ′ − tδ.

This proves that (Ext(X,Y1), . . . ,Ext(X,Yt)) is a strong (δ′ + tδ, ε′ + ε) averaging sampler.

Instantiating Lemma 3.1 with the extractor-based sampler from Theorem 2.1 gives:

Lemma 3.2 (Main Reduction Lemma). For any α > 0: For a sufficiently large constant C > 0,
suppose there exists an efficient (δ′, ε′) averaging sampler Sampbase for domain {0, 1}C(log(1/ε)+log log(1/δ))

with t samples using n random bits. Then

• There exists an efficient (δ + δ′, ε + ε′) averaging sampler Samp for domain {0, 1}m with t
samples using m+ (1 + α) log(1/δ) + n random bits.

• If Sampbase is strong, then there exists an efficient (δ+ δ′, ε+ ε′) averaging sampler Samp for
domain {0, 1}m with t samples using m+ (1 + α) log(t/δ) + n random bits.

Proof. By Theorem 2.1, there exists an explicit (δ/t, ε) averaging sampler Ext : {0, 1}n′ ×{0, 1}d →
{0, 1}m with n′ = m+ (1 + α)(log(t/δ)) and d = log(poly(1/ε, log(t/δ))) ≤ C

2 (log log(t/δ) +
log(1/ε)) for some large enough constant C.

First, we need to verify that Sampbase can work for domain {0, 1}d, i.e., that d ≤ C(log(1/ε) +
log log(1/δ)). Without loss of generality, we assume log t ≤ C(log(1/ε) + log log(1/δ)); otherwise,
we can just use the trivial sampler that outputs the whole domain. Thus, Sampbase can successfully
work for {0, 1}d since

d ≤ C

2
(log(1/ε) + log log(1/δ)) +

C

2
log log t ≤ C(log(1/ε) + log log(1/δ))

Next, we analyze the number of random bits that Samp needs. We need n′ random bits to
generate x and we need n bits to generate y1, . . . , yt.

Therefore, the total number of random bits we need is n′ + n = m+ (1 + α) log(t/δ) + n. The
lemma then follows from Lemma 3.1.

1Note that for the non-strong case, we don’t need a union bound here. Thus, we can save a factor of t in the error
parameter.
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Next, we show that for domain {0, 1}m with m ≤ O(log(1/ε) + log log(1/δ)), we can use an
almost ℓ-wise uniform sequence to design a strong averaging sampler with near-optimal sample
complexity.

Lemma 3.3. For any constant α > 0, there exists an efficient strong (δ, ε) averaging sampler for

domain {0, 1}m with O( 1
ε2+α log 1

δ ) samples using O(m log(1/δ)
log(1/ε) + log(1/δ)) random bits.

Proof. We begin by setting ℓ = 2 log(2/δ)
α log(1/ε) , γ = δεℓ

2 , and t = 50 log(1/δ)
αε2+α log(1/ε)

. We then define our sampler

by outputting a γ-almost ℓ-wise uniform sequence Z1, . . . , Zt ∈ {0, 1}m. Taking the parameters of
Lemma 2.4, observe (

5
√
ℓ

ε
√
t

)ℓ

= (εα/2)
2
α
logε

δ
2 =

δ

2
,

and
γ

εℓ
=

δ

2
.

Therefore, for every sequence of functions f1, . . . , ft : {0, 1}m → [0, 1],

Pr

[∣∣∣∣∣1t
t∑

i=1

(fi(Zi)− E fi)

∣∣∣∣∣ ≤ ε

]
≥ 1− δ.

Furthermore, Lemma 2.3 shows that we have an efficient algorithm that uses only O(m log(1/δ)
log(1/ε) +

log(1/δ)) random bits to generate this γ-almost ℓ-wise uniform sequence.

Combining Lemma 3.2 and Lemma 3.3, we prove the main theorem.

Proof of Theorem 1. By Lemma 3.2, our goal is to design an efficient strong (δ/2, ε/2) averaging
sampler Sampbase for domain {0, 1}C(log(1/ε)+log log(1/δ)) for some large enough constant C. The

theorem is proved if Sampbase generates O( 1
ε2+α log 1

δ ) samples using O( log(1/δ) log log(1/δ)log(1/ε) +log(1/δ))

random bits. The almost ℓ-wise uniform sampler defined in Lemma 3.3 for m = C(log(1/ε) +
log log(1/δ)) satisfies these conditions, and proves the theorem.

Remark 3.4. Instead of using an almost ℓ-wise uniform sequence, we can also use a perfectly
ℓ-wise uniform sequence to establish Theorem 1. Specifically, an ℓ-wise uniform sequence would
give a strong (δ, ε) averaging sampler with O( 1

ε2+α log 1
δ ) samples using O(m log(1/δ)

log(1/ε) + log(1/δ) +
log(1/δ) log log(1/δ)

log(1/ε) ) random bits. This matches the bound of the almost ℓ-wise uniform sampler

in Lemma 3.3 when m = Θ(log(1/ε)+log log(1/δ)). However, it performs poorly for small domains,
making it unable to yield Theorem 4.

4 Applications to Extractors and Codes

4.1 Applications to Extractors

Zuckerman showed that averaging samplers are equivalent to randomness extractors [Zuc97]. Here
we state the only direction that we need.

Lemma 4.1 ([Zuc97]). An efficient strong (δ, ε) averaging sampler Samp : {0, 1}n → ({0, 1}m)t

gives an efficient strong (n− log(1/δ) + log(1/ε), 2ε) extractor Ext : {0, 1}n × {0, 1}log t → {0, 1}m.

Applying Lemma 4.1 on Corollary 2 gives Theorem 3.
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4.2 Application to List-Decodable Codes

Error-correcting codes are combinatorial objects that enable messages to be accurately transmitted,
even when parts of the data get corrupted. Codes have been extensively studied and have proven
to be extremely useful in computer science. Here we focus on the combinatorial property of list-
decodability, defined below.

Definition 4.2. A code ECC : {0, 1}n → ({0, 1}m)t is (ρ, L) list-decodable if for every received
message r ∈ ({0, 1}m)t, there are at most L messages x ∈ {0, 1}n such that dH(ECC(x), r) ≤ ρt,
where dH denotes the Hamming distance. A code is binary if m = 1.

We focus on the binary setting, i.e., m = 1.

Lemma 4.3 ([TZ04]). An efficient strong (δ, ε) averaging sampler Samp : {0, 1}n → {0, 1}t over
the binary domain gives an efficient binary code that is (ρ = 1

2 − ε, δ2n) list-decodable with code
rate R = n/t.

Applying Lemma 4.3 to our almost ℓ-wise uniform sampler in Lemma 3.3 gives Theorem 4.

5 Open Problems

Our work raises interesting open problems.

• Can we remove the log(1/δ) < ε−C requirement in Corollary 2? Specifically, for constant ε
and exponentially small δ, can we design a (δ, ε) averaging sampler with O(log(1/δ)) samples
using O(m+ log(1/δ)) random bits?

• Is it possible to reduce the list size of the list-decodable codes in Theorem 4 to poly(n) b the
structure of the list?

• Comparing to the sampler in [RVW00] which uses m + (1 + α) log(1/δ) random bits, our
construction requiresm+O(log(1/δ)) random bits. Can we improve our randomness efficiency
while maintaining a good sample complexity?

• Is there a way to eliminate the εα factor in the sample complexity? For ε = 1/poly(m)
and δ = exp(−poly(m)), can we design an efficient averaging sampler that is asymptotically
optimal in both randomness and sample complexity? This will fully answer the open question
raised by Bellare and Rompel.
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A Proof of Lemma 2.4

Proposition A.1 (Marcinkiewicz–Zygmund inequality [RL01]). Let {Xi, i ≥ 1} be a sequence of
independent random variables with EXi = 0, E|Xi|p< ∞. Then for p ≥ 2:

E

∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣
p

≤ C(p)np/2−1
n∑

i=1

E|Xi|p,

where C(p) ≤ (3
√
2)ppp/2.

Proof of Lemma 2.4. Let Wi := fi(Zi)− E fi. We have

Pr

[∣∣∣∣∣
t∑

i=1

Wi

∣∣∣∣∣ > tε

]
≤

E
[∣∣∑t

i=1Wi

∣∣ℓ]
(tε)ℓ

.

Let W ′
1, . . . ,W

′
t be a sequence of independent random variables where W ′

i := fi(U{0,1}m) − E fi.
Since the Wi’s are γ-almost ℓ-wise independent and |Wi|≤ 1, we have

E

∣∣∣∣∣
t∑

i=1

Wi

∣∣∣∣∣
ℓ
 = E

( t∑
i=1

Wi

)ℓ
 ≤ E

( t∑
i=1

W ′
i

)ℓ
+ γtℓ = E

∣∣∣∣∣
t∑

i=1

W ′
i

∣∣∣∣∣
ℓ
+ γtℓ.

Since EW ′
i = 0 and |W ′

i |≤ 1. they satisfy the conditions for Marcinkiewicz–Zygmund inequality.
We have

E

∣∣∣∣∣
t∑

i=1

W ′
i

∣∣∣∣∣
ℓ
 ≤ (3

√
2)ℓℓℓ/2tℓ/2−1

t∑
i=1

E|W ′
i |ℓ≤ (5

√
ℓt)ℓ.

Therefore,

E
[∣∣∑t

i=1Wi

∣∣ℓ]
(tε)ℓ

≤

(
5
√
ℓ

ε
√
t

)ℓ

+
γ

εℓ
.
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