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Abstract

We present the first efficient averaging sampler that achieves asymptotically optimal ran-
domness complexity and near-optimal sample complexity. For any δ < ε and any constant
α > 0, our sampler uses m + O(log(1/δ)) random bits to output t = O(( 1

ε2 log
1
δ )

1+α) samples
Z1, . . . , Zt ∈ {0, 1}m such that for any function f : {0, 1}m → [0, 1],

Pr

[∣∣∣∣∣1t
t∑

i=1

f(Zi)− E[f ]

∣∣∣∣∣ ≤ ε

]
≥ 1− δ.

The randomness complexity is optimal up to a constant factor, and the sample complexity is
optimal up to the O(( 1

ε2 log
1
δ )

α) factor.
Our technique generalizes to matrix samplers. A matrix sampler is defined similarly, ex-

cept that f : {0, 1}m → Cd×d and the absolute value is replaced by the spectral norm.

Our matrix sampler achieves randomness complexity m + Õ(log(d/δ)) and sample complex-
ity O(( 1

ε2 log
d
δ )

1+α) for any constant α > 0, both near-optimal with only a logarithmic factor
in randomness complexity and an additional α exponent on the sample complexity.

We use known connections with randomness extractors and list-decodable codes to give
applications to these objects. Specifically, we give the first extractor construction with optimal
seed length up to an arbitrarily small constant factor above 1, when the min-entropy k = βn
for a large enough constant β < 1.

1 Introduction

Randomization plays a crucial role in computer science, offering significant benefits across various
applications. However, obtaining true randomness can be challenging. It’s therefore natural to
study whether we can achieve the benefits of randomization while using few random bits.

One of the most basic uses of randomness is sampling. Given oracle access to an arbitrary
function f : {0, 1}m → [0, 1] on a large domain, our goal is to estimate its average value. By
drawing t = O(log(1/δ)/ε2) independent random samples Z1, . . . , Zt ∈ {0, 1}m, the Chernoff bound
guarantees that the average value

∣∣1
t

∑t
i=1 f(Zi)− E f

∣∣ ≤ ε with probability at least 1 − δ. This
method uses full independence in sampling, but more efficient strategies can be pursued. This leads
to the following definition:
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Definition 1.1 ([BR94]). A function Samp : {0, 1}n → ({0, 1}m)t is a (δ, ε) averaging sampler
with t samples using n random bits if for every function f : {0, 1}m → [0, 1], we have

Pr
(Z1,...,Zt)∼Samp(Un)

[∣∣∣∣∣1t ∑
i

f(Zi)− E f

∣∣∣∣∣ ≤ ε

]
≥ 1− δ.

The goal is to construct explicit samplers using a small number of random bits that have sample
complexity close to the optimal. Researchers have made significant progress toward this goal, and
a summary is presented in Table 1. Bellare and Rompel [BR94] suggested that interesting choices
of parameters are δ = exp(−poly(m)) and ε = 1/poly(m), which allow us to use poly(m) random
bits and generate poly(m) samples. For simplicity, we assume δ ≤ ε throughout the paper (see
Remark 2.1 for further discussion).

Reference Method Random Bits Sample Complexity

[CEG95] Lower Bound m+ log(1/δ)− log(O(t)) Ω(log(1/δ)/ε2)

[CEG95] Non-Explicit m+ 2 log(2/δ) + log log(1/ε) 2 log(4/δ)/ε2

Standard Full Independence O(m log(1/δ)/ε2) O(log(1/δ)/ε2)

[CG89] Pairwise Independence O(m+ log(1/δ)) O(1/(δε2))

[Gil98] Expander Walks m+O(log(1/δ)/ε2) O(log(1/δ)/ε2)

[BR94] Iterated Sampling O(m+ (logm) log(1/δ)) poly(1/ε, log(1/δ), logm)

[Zuc97] Hash-Based Extractors (1 + α)(m+ log(1/δ)) poly(1/ε, log(1/δ),m)

[RVW00] Zig-Zag Extractors m+ (1 + α) log(1/δ) poly(1/ε, log(1/δ))

Theorem 2
Compose [RVW00]

m+O(log(1/δ)) O((log(1/δ)/ε2)1+α)
With Almost ℓ-wise Ind.

Table 1: Comparison of averaging samplers, α any positive constant, ε = 1/poly(m), and δ =
exp(−poly(m)).

The best existing randomness-efficient averaging sampler comes from the equivalence between
averaging samplers and extractors [Zuc97]. Improving Zuckerman’s construction, Reingold, Vad-
han, and Wigderson [RVW00] provided a (δ, ε) averaging sampler for domain {0, 1}m that uses
m+(1+α) log(1/δ) random bits for any positive constant α. This almost matches the lower bound
in [CEG95]. However, a notable gap remains in sample complexity: the existing construction’s
complexity poly(1/ε, log(1/δ)) does not align with the optimal O((1/ε2) · log(1/δ)). This raised the
following open problem (see, e.g., [Vad12, Open Problem 4.24], [Gol11, Section 6]):

Open Problem 1. Can we explicitly design a (δ, ε) averaging sampler for domain {0, 1}m that
uses O(m+ log(1/δ)) random bits and only O((1/ε2) · log(1/δ)) samples?

We note that such algorithms do exist for general samplers, which query f and estimate E f
by an arbitrary computation [BGG93]. However, many applications require the use of averaging
samplers, such as the original use in interactive proofs [BR94]. Beyond these applications, averaging
samplers act as a fundamental combinatorial object that relate to other notions such as randomness
extractors, expander graphs, and list-decodable codes [Zuc97; Vad07].

1.1 Our Averaging Sampler

In this paper, we construct a polynomial-time computable (δ, ε) averaging sampler with near-
optimal sample complexity using an asymptotically optimal number of random bits. In fact, the
sampler we constructed is a strong sampler, defined as follows:
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Definition 1.2. A (δ, ε) averaging sampler Samp is strong if for every sequence of t functions
f1, . . . , ft : {0, 1}m → [0, 1], we have

Pr
(Z1,...,Zt)∼Samp(Un)

[∣∣∣∣∣1t ∑
i

(fi(Zi)− E fi)

∣∣∣∣∣ ≤ ε

]
≥ 1− δ.

We then state our main theorem:

Theorem 1. For any δ, ε > 0 and for any 1 ≤ s ≤ 1/δ, there exists an efficient strong (δ, ε)

averaging sampler for domain {0, 1}m with O( s
ε2

log 1
δ ) samples using m + O(( log(1/ε)+log log(1/δ)

log s +

1) log 1
δ ) random bits.

By setting s = ε−2α logα(1/δ) for an arbitrarily small constant α, we derive the following
theorem as a corollary, which nearly resolves Open Problem 1.

Theorem 2. For every constant α > 0, there exists an efficient strong (δ, ε) averaging sampler for
domain {0, 1}m with O(( 1

ε2
log 1

δ )
1+α) samples using m+O(log(1/δ)) random bits.

1.2 Matrix Samplers

A natural generalization of the classic Chernoff bound is the Matrix Chernoff Bound [Rud99; AW02;
Tro12]. Suppose we wish to estimate E f for a matrix-valued function f : {0, 1}m → Cd×d. By
taking t = O(log(d/δ)/ε2) independent random samples Z1, . . . , Zt ∈ {0, 1}m, the Matrix Chernoff
Bound guarantees that

Pr

[∥∥∥∥∥1t
t∑

i=1

f(Zi)− E f

∥∥∥∥∥ ≤ ε

]
≥ 1− δ,

where ∥·∥ denotes the spectral norm. As in the real-valued case, we wish to derandomize this process
without increasing the sample complexity too much. To address this, Wigderson and Xiao [WX05]
initiated the study of randomness-efficient matrix samplers:

Definition 1.3. A function Samp : {0, 1}n → ({0, 1}m)t is a d-dimensional (δ, ε) matrix sampler
with t samples using n random bits if the following holds: For any function f : {0, 1}m → Cd×d

such that ∥f(x)∥≤ 1 for all x ∈ {0, 1}m, we have

Pr
(Z1,...,Zt)∼Samp(Un)

[∥∥∥∥∥1t ∑
i

f(Zi)− E f

∥∥∥∥∥ ≤ ε

]
≥ 1− δ.

The lower bound for matrix samplers follows directly from the bound for real-valued samplers
by considering diagonal matrices. Specifically, any matrix must use at least t = Ω(log(d/δ)/ε2)
samples and m+ log(d/δ)− log(O(t)) random bits. In addition, we can non-explicitly construct a
matrix sampler that matches the lower bound:

Proposition 4.1. There exists a (non-explicit) d-dimensional (δ, ε) matrix sampler for domain
{0, 1}m using O( 1

ε2
log d

δ ) samples and m+ 2 log 1
δ + 2 log d+ log log d

ε random bits.

However, explicitly constructing randomness-efficient matrix samplers turns out to be very
challenging. Although a union bound over matrix entries would show that a randomness-optimal
averaging sampler directly implies a randomness-optimal matrix sampler (see Lemma 2.8), this
method incurs an unavoidable d2 factor in sample complexity, making the dependence on d expo-
nentially worse than optimal. This raises an open question: can we construct a matrix sampler
with (nearly) optimal randomness complexity and polynomial sample complexity, as the averaging
samplers in [BR94] and [Zuc97]?
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Reference Method Random Bits Sample Complexity

[CEG95] Lower Bound m+ log(d/δ)− log(O(t)) Ω(log(d/δ)/ε2)

Proposition 4.1 Non-Explicit m+ 2 log(1/δ) + 2 log d O(log(d/δ)/ε2)

Standard Full Independence O(m log(d/δ)/ε2) O(log(d/δ)/ε2)

[WX05] Union Bound Over Entries m+O(log(d/δ)) O((d/ε)2+α · log1+α(1/δ))

[GLSS18] Expander Walks m+O((1/ε2) · log(d/δ)) O(log(d/δ)/ε2)

Theorem 3 Iterated Sampler Composition m+O(log(1/δ) + log d log log d) O((log(d/δ)/ε2)1+α)

Table 2: Comparison of matrix samplers, α any positive constant, ε = 1/poly(m), δ =
exp(−poly(m)), ignoring lower order terms. The complexity of the union bound sampler depends
on the complexity of the “base” averaging sampler, and we use the bound in Theorem 2 here.

Open Problem 2. Can we explicitly design a d-dimensional (δ, ε) matrix sampler for domain
{0, 1}m that uses O(m+ log(d/δ)) random bits and poly(1/ε, log(1/δ), log d) samples?

We summarize prior matrix sampler constructions in Table 2. The best existing construction,
a matrix analog of the expander walks sampler, was provided by Garg, Lee, Song, and Srivas-
tava [GLSS18]. Similar to expander walks for real-valued sampling, this construction gives asymp-
totically optimal sample complexity, but the randomness complexity is worse than optimal by a
poly(1/ε) factor.

In this work, we construct a polynomial-time computable (δ, ε) matrix sampler with near-
optimal randomness and sample complexity. The randomness complexity is optimal up to a loga-
rithmic factor, and the sample complexity is within a ( 1

ε2
log d

δ )
α factor of optimal for arbitrarily

small constant α > 0. This brings us close to resolving Open Problem 2.

Theorem 3. For any constant α > 0: There exists an efficient d-dimensional (δ, ε) matrix sampler
for domain {0, 1}m using m + O(log(1/δ) + log(d/ε) log log d) random bits and O(( 1

ε2
log d

δ )
1+α)

samples.

Additionally, we construct a matrix sampler achieving asymptotically optimal randomness com-
plexity, though at the cost of increased sample complexity. This breaks the d2 barrier in sample
complexity for randomness-optimal matrix samplers.

Theorem 4. For any constant α > 0, there exists an efficient d-dimensional (δ, ε) matrix sampler
for domain {0, 1}m using m+O(log(d/δ)) random bits and O( dα

ε2+α log1+α 1
δ ) samples.

1.3 Randomness Extractors

Our sampler construction has implications for randomness extractors. A randomness extractor is
a function that extracts almost-uniform bits from a low-quality source of randomness. We define
the quality of a random source as its min-entropy.

Definition 1.4. The min-entropy of a random variable X is

H∞(X) := min
x∈supp(X)

log

(
1

Pr[X = x]

)
.

An (n, k)-source is a random variable on n bits with min-entropy at least k.

Then a randomness extractor is defined as:
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Definition 1.5 ([NZ96]). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε) extractor if for
every (n, k)-source X, the distribution Ext(X,Ud) ≈ε Um. We say Ext is a strong (k, ε) extractor
if for every (n, k)-source X, the distribution (Ext(X,Y ), Y ) ≈ε Um+d, where Y is chosen from Ud.

Randomness extractors are essential tools in theoretical computer science. However, there has
been little study of explicit extractors with the right dependence on ε for vanishing ε. This is a
particular concern in cryptography, where extractors are widely used as building blocks and security
requirements demand superpolynomially small ε [Lu02; Vad03; CDHKS00; DS02; KLRZ08; KLR09;
DW09]. Existentially, there are extractors with seed length d = log(n− k)+ 2 log(1/ε)+O(1), and
there is a matching lower bound [RT00].

Zuckerman [Zuc97] showed that averaging samplers are essentially equivalent to extractors.
Specifically, an extractor Ext : {0, 1}n × [2d] → {0, 1}m can be seen as a sampler that generates
Ext(X, i) as its i-th sample point using the random source X. Using this equivalence, we give
the first extractor construction with optimal seed length up to an arbitrarily small constant factor
bigger than 1, when the min-entropy k = βn for a large enough constant β < 1.

Theorem 5. For every constant α > 0, there exists β < 1 such that for all ε > 0 and k ≥ βn, there
is an efficient strong (k, ε) extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with m = Ω(n) − log(1/ε)
and d = (1 + α) log(n− k) + (2 + α) log(1/ε) +O(1).

Prior to our work, extractors with a seed length dependence on ε achieving 2 log(1/ε) or close to
it were based on the leftover hash lemma [BBR88; IZ89; HILL99] and expander random walks [Gil98;
Zuc07]. Extractors using the leftover hash lemma have a seed length of n + 2 log(1/ε), which is
far from optimal. Expander random walks give a (k, ε) extractor with k > (1 − Ω(ε2))n and an
optimal seed length of log(n− k) + 2 log(1/ε) +O(1). Our extractor is better than expander walks
for all vanishing ε by allowing smaller entropy k.

In fact, if we aim to remove the α and achieve the optimal seed length of log(n−k)+2 log(1/ε)+
O(1) to match expander random walks, we can set s = 1 in Theorem 1 and get the following
extractor for entropy rate 1−O(1/log n) for ε ≥ 1/poly(n):

Theorem 6. There exists β < 1 such that for all ε > 0 and k ≥ (1 − β
logn+log(1/ε))n, there is an

efficient strong (k, ε) extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with m = Ω(n) − log2(1/ε) and
d = log(n− k) + 2 log(1/ε) +O(1).

This is better than expander random walks’ entropy rate of 1−O(ε2) for all ε ≤ o(1/
√
log n).

1.4 List-Decodable Codes

Another perspective on averaging samplers is its connection to error-correcting codes. Ta-Shma and
Zuckerman [TZ04] showed that strong randomness extractors are equivalent to codes with good
soft-decision decoding, which is related to list recovery. From this perspective, the composition
scheme in our construction is similar to code concatenation.

For codes over the binary alphabet, soft decision decoding amounts to list decodability, which
we focus on here.

We give good list-decodable codes without using the composition. That is, by just applying
our almost ℓ-wise independence sampler on the binary alphabet, we can get a binary list-decodable
code with rate Ω(ε2+α) and non-trivial list size, although the list size is still exponential.

Theorem 7. For every constant α > 0: there exists an explicit binary code with rate Ω(ε2+α) that
is (ρ = 1

2 − ε, L) list-decodable with list size L = 2(1−c)n for some constant c = c(α) > 0.
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Prior to our work, the best known code rate was Ω(ε3) by Guruswami and Rudra [GR08]. We
emphasize that their code achieved a list size of L = poly(n), while our list size is exponentially
large, making our code unlikely to be useful.

1.5 Techniques

1.5.1 Averaging Samplers

Our construction of the averaging sampler is very simple, and is based on two observations:

1. Rather than querying every sample point produced by a sampler Samp, we can use a second
sampler Samp′ to pick certain samples for querying. This reduces the sample complexity
because the number of queried samples just depends on Samp′. Since the domain of Samp′ is
much smaller than the original domain, this allows more efficient sampling strategies. This
observation has been utilized in previous sampler constructions [BR94; Gol11].

2. The bottleneck of generating an almost ℓ-wise independent sequence over a large domain
{0, 1}m lies in sampling ℓ independent random points, which costs ℓm random bits. Since we
can only afford O(m) random bits, we are restricted to generating constant-wise independent
samples. However, for a much smaller domain, we can use few random bits to generate an
almost ℓ-wise independent sequence for large ℓ.

Our construction is outlined as follows. Let SampE : {0, 1}n × [t′] → {0, 1}m be the extractor-
based sampler in [RVW00]. Let Y1, . . . , Yt be an almost ℓ-wise independent sequence over domain
[t′], thinking of t ≪ t′. Our sampler is then defined by

Samp := (SampE(X,Y1), SampE(X,Y2), . . . ,SampE(X,Yt)).

In this construction, we use the almost ℓ-wise independent sequence to resample from the extractor-
based sampler. This can be viewed as a composition, similar to other cases such as Justesen
codes [Jus72] and the first PCP theorem [ALMSS98], where the goal is to optimize two main pa-
rameters simultaneously by combining two simpler schemes, each optimizing one parameter without
significantly compromising the other.

Previous works have also applied almost ℓ-wise independence in extractor constructions. Srini-
vasan and Zuckerman [SZ99] proved a randomness-efficient leftover hash lemma by sampling an
almost ℓ-wise independent function using uniform seeds and inputting a weak random source. Our
construction inverts this process: we generate an ℓ-wise independent sequence using a weak random
source and then choose an index uniformly. Furthermore, Ran Raz’s two-source extractor [Raz05]
utilized two weak random sources to sample an almost ℓ-wise independent sequence and an index
separately. This is a more general construction, but if we directly apply Raz’s error bound in our
analysis Lemma 3.3, the final sample complexity will be off by a log(1/δ) factor.

1.5.2 Matrix Samplers

Using the connection between averaging samplers and matrix samplers (see Lemma 2.8), our av-
eraging sampler directly implies a (δ, ε) matrix sampler using m + O(log(d/δ)) random bits and

O((d
2

ε2
log 1

δ )
1+α) samples. This already gives the best randomness-optimal matrix sampler to date;

however, its sample complexity has exponentially worse dependence on d than optimal.
Our resampling technique using almost ℓ-wise independence offers a way to further reduce

sample complexity. The composition of samplers only depends on the triangle inequality, which
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also applies to spectral norms. The remaining task is to verify that almost ℓ-wise independence
also provides good concentration bounds for matrix sampling, which is straightforward given the
extensive literature on moment inequalities for random matrices [CGT12; LT13; Tro+15].

Applying this composition, we get a (δ, ε) matrix sampler using m + O(log(d/δ)) random bits
and O(( dα

ε2+α log1+α 1
δ )) samples, as described in Theorem 4. This is close to optimal for cases where

d < poly(1/ε, log(1/δ)), though it is not yet sufficient for larger d.
However, we can apply composition recursively! By repeating the composition O(log log d)

times, the dependence on d becomes dα
O(log log d)

= O(1). Each round of composition costs an ad-
ditional O(log(d/δ)) random bits, resulting in a (δ, ε) matrix sampler using m+O(log(d/δ) log log d)
random bits andO(( 1

ε2
log d

δ )
1+α) samples. This already gives a matrix sampler usingm+Õ(log(d/δ))

random bits and near-optimal sample complexity.
To further improve the dependence on δ in randomness complexity and achieve the bound in

Theorem 3, we introduce an alternative way of composing samplers:

Lemma 4.8. Suppose we are given two efficient matrix samplers:

• Let Sampout : {0, 1}n1 × [t1] → {0, 1}m be a (δ1, ε1) matrix sampler.

• Let Sampin : {0, 1}n2 × [t2] → {0, 1}n1 be a (δ2, ε2) averaging sampler.

Then, for uniformly random sources X ∼ Un2,

Samp(X) := (Sampout(Sampin(X, i), j))i∈[t2],j∈[t1]

is an efficient (δ2, 2δ1 + 2ε2 + ε1) matrix sampler for domain {0, 1}m with t1 · t2 samples using n2

random bits.

This essentially says, composing a good (ε, ε) matrix sampler Sampout and a good (δ, ε) averaging
sampler Sampin would give a good (δ,O(ε)) matrix sampler. Although this slightly increases the
sample complexity, we can use our resampling technique to reduce it later.

In this composition, instead of resampling, Sampin generates multiple random seeds for Sampout,
and we query all the samples it produces. This approach effectively reduces the error probability
of Sampout from ε to δ. The key idea is that, among the seeds generated by Sampin, only an
O(ε) fraction cause failure in Sampout, which introduces only a tolerable O(ε) additive error in the
estimate of E f . The reason is straightforward: only an ε fraction of all possible seeds for Sampout
cause failure; and with probability 1 − δ, Sampin oversamples these failure seeds by at most an
additional ε proportion. Thus, the final proportion of ”failure seeds” remains bounded by O(ε).

Remark 1.6. We can also define strong matrix samplers as a matrix analog of strong averaging
samplers. All results for matrix samplers in this paper would hold for strong matrix samplers as
well, with proofs following similar arguments. However, for simplicity, we present our results in
the non-strong case only.

2 Preliminaries

Notation. We use [t] to represent set {1, . . . , t}. For integer m, Um is a random variable dis-
tributed uniformly over {0, 1}m. For random variables X and Y , we use X ≈ε Y to represent the
statistical distance (total variation distance) between X and Y is at most ε, i.e.,

max
T⊆supp(X)

∣∣∣∣ Prx∼X
[x ∈ T ]− Pr

y∼Y
[y ∈ T ]

∣∣∣∣ ≤ ε.
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We refer to an algorithm as “efficient” if it is polynomial-time computable. For simplicity, we
omit domain sizes for samplers and matrix dimensions when context permits. Unless otherwise
specified, statements such as “there exists a (δ, ε) sampler” mean that for all 0 < δ ≤ ε < 1, there
exists a (δ, ε) sampler with the stated properties.

Remark 2.1. The condition δ ≤ ε is very mild and holds in nearly all applications. This require-
ment can be relaxed to δ ≤ εα for averaging samplers, and to δ ≤ dεα for matrix samplers, where
α is an arbitrarily small positive constant. Such relaxations do not alter the results.

In the extreme case where δ > εα for every constant α > 0, pairwise independence is already
a near-optimal averaging sampler (see Lemma 2.3). Specifically, this yields an efficient strong
sampler with O(1/(δε2)) ≤ O(1/ε2+α) samples, using only O(m+log(1/ε)) random bits. Similarly,
for matrix samplers under the condition δ > dεα for all α > 0, pairwise independence also achieves
near-optimal efficiency with O(1/ε2+α) samples and O(m+ log(1/ε)) random bits.

2.1 Extractor-Based Sampler

As mentioned above, averaging samplers are equivalent to extractors. We will introduce this in
detail in Section 5.1.

Reingold, Vadhan, and Wigderson used this equivalence to achieve the following:

Theorem 2.2 ([RVW00, Corollary 7.3], see also [Gol11, Theorem 6.1]). For every constant α > 0,
there exists an efficient (δ, ε) averaging sampler over {0, 1}m with poly(1/ε, log(1/δ)) samples using
m+ (1 + α) · log2(1/δ) random bits.

For ease of presentation, we often denote an extractor-based averaging sampler by SampE :
{0, 1}n × {0, 1}d → {0, 1}m, where SampE(X, i) is the i-th output sample point of the sampler
using randomness input X. Therefore, the sample complexity of SampE is 2d.

2.2 Almost ℓ-wise Independence

A sequence Z1, . . . , Zt is pairwise independent if the marginal distribution of every pair (Zi1 , Zi2)
is uniformly random. Chor and Goldreich [CG89] proved that using pairwise independence, we can
have a sampler using few random bits but with unsatisfying sample complexity.

Lemma 2.3 ([CG89]). For all δ, ε > 0, there exists an efficient strong (δ, ε) averaging sampler for
domain {0, 1}m sampler with O(1/(δε2)) samples using O(m+ log(1/δ) + log(1/ε)) random bits.

Generalizing pairwise independence, an almost ℓ-wise independent sequence is a sequence of
random variables such that the marginal distribution of every ℓ of them is close to uniform.

Definition 2.4 ([NN93]). A sequence of random variables Z1, . . . , Zt ∈ {0, 1}m is said to be γ-
almost ℓ-wise independent if for all subsets S ⊆ [t] such that |S|≤ ℓ,

(Zi)i∈[S] ≈γ Um×|S|.

In particular, the pairwise independent sequence mentioned above is a 0-almost 2-wise indepen-
dent sequence. Naor and Naor proved that such sequences can be randomness-efficiently generated.

Lemma 2.5 ([NN93], see also [AGHP92]). There exists an efficient algorithm that uses
O(ℓm + log(1/γ) + log log t) random bits to generate a γ-almost ℓ-wise independent sequence

z1, . . . , zt ∈ {0, 1}m.
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Using standard techniques, we have the following concentration bound for almost ℓ-wise inde-
pendent sequences (see Appendix B for the proof). Similar bounds for exact ℓ-wise independent
sequences have been shown in [BR94; Dod00].

Lemma 2.6. Let Z1, . . . , Zt ∈ {0, 1}m be a sequence of γ-almost ℓ-wise independent variables for
an even integer ℓ. Then for every sequence of functions f1, . . . , ft : {0, 1}m → [0, 1],

Pr

[∣∣∣∣∣1t
t∑

i=1

(fi(Zi)− E fi)

∣∣∣∣∣ ≤ ε

]
≥ 1−

(
5
√
ℓ

ε
√
t

)ℓ

− γ

εℓ
.

2.3 Composition of Samplers

The idea of composing samplers has been studied before. More specifically, Goldreich proved the
following proposition.

Proposition 2.7 ([Gol11]). Suppose we are given two efficient samplers:

• A (δ, ε) averaging sampler for domain {0, 1}m with t1 samples using n1 random bits.

• A (δ′, ε′) averaging sampler for domain {0, 1}log t1 with t2 samples using n2 random bits.

Then, there exists an efficient (δ+ δ′, ε+ ε′) averaging sampler for domain {0, 1}m with t2 samples
using O(n1 + n2) random bits.

2.4 Averaging Samplers Imply Matrix Samplers

When Wigderson and Xiao first introduced matrix samplers, they observed that an averaging
sampler also functions as a matrix sampler with weaker parameters, though they did not provide
a formal proof. We formalize this observation below:

Lemma 2.8. A (δ, ε) averaging sampler is a d-dimensional (2d2δ, 2dε) matrix sampler.

The proof is presented in Appendix C.

3 Construction of Averaging Samplers

Our construction is based on a reduction lemma that constructs a sampler for domain {0, 1}m
based on a sampler for domain {0, 1}O(log(1/ε)+log log(1/δ)). We exploit the fact that when composing
averaging samplers, the final sample complexity depends on only one of the samplers. Our strategy
is:

• Apply the extractor sampler in Theorem 2.2 as a (δ/2, ε/2) sampler over domain {0, 1}m.
This uses m+O(log(1/δ)) random bits and generates poly(1/ε, log(1/δ)) samples.

• By Proposition 2.7, we only need to design a (δ/2, ε/2) averaging sampler over domain
{0, 1}O(log(1/ε)+log log(1/δ)) using O(log(1/δ)) random bits. The total sample complexity will
be equal to the sample complexity of this sampler. For this sampler, we use almost ℓ-wise
independence.

Following the idea of Proposition 2.7, we first prove that composing samplers maintains the
properties of a strong sampler.

9



Lemma 3.1 (Strong Composition). Suppose we are given two efficient averaging samplers:

• Let Sampout : {0, 1}n1 × [t1] → {0, 1}m be a (δ, ε) sampler.

• Let Sampin : {0, 1}n2 × [t2] → {0, 1}log t1 be a strong (δ′, ε′) sampler.

Then, for uniformly random sources X1 ∼ Un1 and X2 ∼ Un2,

Samp(X1 ◦X2) := (Sampout(X1, Sampin(X2, i)))i∈[t2]

is an efficient (t2δ + δ′, ε+ ε′) strong averaging sampler for domain {0, 1}m with t2 samples using
n1 + n2 random bits.

Proof. Let f1, . . . , ft2 : {0, 1}m → [0, 1] be an arbitrary sequence of functions. Since Sampout is a
(δ, ε) averaging sampler, we have for every fi,

Pr
X1∼Un1

[∣∣∣∣ E
Y∼Ulog t1

fi(Sampout(X1, Y ))− E fi

∣∣∣∣ ≤ ε

]
≥ 1− δ.

By a union bound over all f1, . . . , ft2 , we have

Pr
X1∼Un1

[
∀i ∈ [t2] :

∣∣∣∣ E
Y∼Ulog t1

fi(Sampout(X1, Y ))− E fi

∣∣∣∣ ≤ ε

]
≥ 1− t2δ. (1)

For an arbitrary x, view fi(Sampout(x, ·)) as a Boolean function on domain {0, 1}log t1 . Therefore,
since Sampin(X2, 1), . . . ,Sampin(X2, t2) are generated by a strong (δ, ε) sampler,

Pr
X2

[∣∣∣∣∣ 1t2
t2∑
i=1

(
fi(Sampout(x,Sampin(X2, i)))− E

Y∼Ulog t1

fi(Sampout(x, Y ))

)∣∣∣∣∣ ≤ ε′

]
≥ 1− δ′. (2)

By the triangle inequality and a union bound over equations (1) and (2), we have

Pr
X1,X2

[∣∣∣∣∣ 1t2
t2∑
i=1

(fi(Sampout(x, Sampin(X2, i)))− E fi)

∣∣∣∣∣ ≤ ε′ + ε

]
≥ 1− δ′ − t2δ.

This proves that the sampler we constructed is a strong (tδ + δ′, ε+ ε′) averaging sampler.

Instantiating Lemma 3.1 with the extractor-based sampler from Theorem 2.2 gives:

Lemma 3.2 (Reduction Lemma). For any α > 0: For a sufficiently large constant C > 0, suppose
there exists an efficient (δ′, ε′) averaging sampler Sampbase for domain {0, 1}C(log(1/ε)+log log(1/δ))

with t samples using n random bits. Then

• There exists an efficient (δ + δ′, ε + ε′) averaging sampler Samp for domain {0, 1}m with t
samples using m+ (1 + α) log(1/δ) + n random bits.

• If Sampbase is strong, then there exists an efficient (δ+ δ′, ε+ ε′) averaging sampler Samp for
domain {0, 1}m with t samples using m+ (1 + α) log(t/δ) + n random bits.

10



Proof. We only verify the strong case, and the non-strong case follows similarly. By Theorem 2.2,
there exists an explicit (δ/t, ε) averaging sampler SampE : {0, 1}n′ × {0, 1}d → {0, 1}m with n′ =
m+ (1 + α)(log(t/δ)) and d = log(poly(1/ε, log(t/δ))) ≤ C

2 (log log(t/δ) + log(1/ε)) for some large
enough constant C.

First, we need to verify that Sampbase can work for domain {0, 1}d, i.e., that d ≤ C(log(1/ε) +
log log(1/δ)). Without loss of generality, we assume log t ≤ C(log(1/ε) + log log(1/δ)); otherwise,
we can just use the trivial sampler that outputs the whole domain. Thus, Sampbase can successfully
work for {0, 1}d since

d ≤ C

2
(log(1/ε) + log log(1/δ)) +

C

2
log log t ≤ C(log(1/ε) + log log(1/δ))

Next, we analyze the number of random bits that Samp needs. We need n′ random bits to
generate x and we need n bits to generate y1, . . . , yt.

Therefore, the total number of random bits we need is n′ + n = m+ (1 + α) log(t/δ) + n. The
lemma then follows from Lemma 3.1.

Next, we show that for domain {0, 1}m with m ≤ O(log(1/ε) + log log(1/δ)), we can use an
almost ℓ-wise independent sequence to design a strong averaging sampler with near-optimal sample
complexity.

Lemma 3.3. For any 1 < s < 1/δ, there exists an efficient strong (δ, ε) averaging sampler for

domain {0, 1}m with O( s
ε2

log 1
δ ) samples using O( (m+log(1/ε)) log(1/δ)

log s + log(1/δ)) random bits.

Proof. We begin by setting ℓ = 2 log(2/δ)
log s , γ = δεℓ

2 , and t = 50s log(2/δ)
ε2 log s

. We then define our sampler

by outputting a γ-almost ℓ-wise independent sequence Z1, . . . , Zt ∈ {0, 1}m. Taking the parameters
of Lemma 2.6, observe (

25ℓ

ε2t

)ℓ/2

=

(
1

s

)ℓ/2

=

(
1

s

) log(2/δ)
log s

=
δ

2
,

and
γ

εℓ
=

δ

2
.

Therefore, for every sequence of functions f1, . . . , ft : {0, 1}m → [0, 1],

Pr

[∣∣∣∣∣1t
t∑

i=1

(fi(Zi)− E fi)

∣∣∣∣∣ ≤ ε

]
≥ 1− δ.

Furthermore, Lemma 2.5 shows that we have an efficient algorithm that uses onlyO( (m+log(1/ε)) log(1/δ)
log s +

log(1/δ)) random bits to generate this γ-almost ℓ-wise independent sequence.

Combining Lemma 3.2 and Lemma 3.3, we can prove our main theorem.

Theorem 1. For any δ, ε > 0 and for any 1 ≤ s ≤ 1/δ, there exists an efficient strong (δ, ε)

averaging sampler for domain {0, 1}m with O( s
ε2

log 1
δ ) samples using m + O(( log(1/ε)+log log(1/δ)

log s +

1) log 1
δ ) random bits.

11



Proof. By Lemma 3.2, our goal is to design an efficient strong (δ/2, ε/2) averaging sampler Sampbase
for domain {0, 1}C(log(1/ε)+log log(1/δ)) for some large enough constant C. The theorem is proved if for

any 1 < s < 1/δ, Sampbase generates O( s
ε2

log 1
δ ) samples using O(( log(1/ε)+log log(1/δ)

log s + 1) log(1/δ))
random bits. The almost ℓ-wise independence sampler defined in Lemma 3.3 for m = C(log(1/ε)+
log log(1/δ)) satisfies these conditions, and proves the theorem.

For an arbitrarily small constant α, by setting s = ε−2α logα(1/δ), we get the next corollary:

Theorem 2. For every constant α > 0, there exists an efficient strong (δ, ε) averaging sampler for
domain {0, 1}m with O(( 1

ε2
log 1

δ )
1+α) samples using m+O(log(1/δ)) random bits.

We can also set s = 1 in Theorem 1 and get the following sampler with asymptotically optimal
sample complexity but a worse randomness complexity.

Corollary 3.4. There exists an efficient strong (δ, ε) averaging sampler for domain {0, 1}m with
O( 1

ε2
log 1

δ ) samples using m+O(log 1
δ (log

1
ε + log log 1

δ )) random bits.

4 Construction of Matrix Samplers

Before moving further, we note that non-explicitly, a matrix sampler that matches the lower bound
exists. This generalizes the non-explicit sampler given in [CEG95], with the proof deferred to Ap-
pendix A.

Proposition 4.1. There exists a (non-explicit) d-dimensional (δ, ε) matrix sampler for domain
{0, 1}m using O( 1

ε2
log d

δ ) samples and m+ 2 log 1
δ + 2 log d+ log log d

ε random bits.

Our improved averaging sampler directly implies the best randomness-optimal matrix sampler
to date. Applying Lemma 2.8 to our sampler in Theorem 2 gives:

Lemma 4.2. For every constant α > 0, there exists an efficient d-dimensional (δ, ε) matrix sampler

for domain {0, 1}m using m+O(log(d/δ)) random bits and O((d
2

ε2
log 1

δ )
1+α) samples.

However, compared to the optimal sample complexity given in the non-explicit construction,
our dependence on d is exponentially worse. As d is potentially very large, our goal is to utilize our
composition to reduce the sample complexity while not increasing the randomness complexity too
much.

4.1 One-Layer Composition

It is easy to verify that the composition lemma holds for matrices:

Lemma 4.3 (Matrix Composition). Suppose we are given two efficient matrix samplers:

• Let Sampout : {0, 1}n1 × [t1] → {0, 1}m be a (δ1, ε1) matrix sampler.

• Let Sampin : {0, 1}n2 × [t2] → {0, 1}log t1 be a (δ2, ε2) matrix sampler.

Then, for uniformly random sources X1 ∼ Un1 and X2 ∼ Un2,

Samp(X1 ◦X2) := (Sampout(X1, Sampin(X2, i)))i∈[t2]

is an efficient (δ1 + δ2, ε1 + ε2) matrix sampler for domain {0, 1}m with t2 samples using n1 + n2

random bits.

12



The proof is essentially the same as the proof of Lemma 3.1, since the triangle inequality applies
to spectral norms, but since we are not dealing with the strong case we only have to do a union
bound for two events, a bad sample from Sampout and a bad sample from Sampin.

The following lemma is the matrix version of Lemma 3.3, and we delay its proof to Section 4.4.

Lemma 4.4. For any 1 < s < d/δ, there exists an efficient d-dimensional (δ, ε) matrix sampler

for domain {0, 1}m with O( s
ε2

log d
δ ) samples using O( (m+log(1/ε)) log(d/δ)

log s + log(d/δ)) random bits.

Composing Lemma 4.2 with Lemma 4.4 gives us the next theorem.

Lemma 4.5. Suppose we have an efficient d-dimensional (δ1, ε1) matrix sampler for domain
{0, 1}m with t samples using n bits. For any constant α > 0 such that (t/ε2)

α ≤ d/δ2, we can
construct an efficient d-dimensional (δ1 + δ2, ε1 + ε2) matrix sampler for domain {0, 1}m with
O( tα

ε2+α
2

log d
δ2
) samples using n+O(log(d/δ2)) bits.

Proof. When (t/ε2)
α ≤ d/δ, by setting s = (t/ε2)

α in Lemma 4.4, we have a strong (δ2, ε2) matrix
sampler for domain {0, 1}log t with O( tα

ε2+α
2

log 1
δ2
) samples using

O

(
(log t+ log(1/ε2)) log(d/δ2)

log s
+ log(d/δ2)

)
= O(log(d/δ2))

random bits. Then by Lemma 4.3, we have the theorem we want.

Theorem 4. For any constant α > 0, there exists an efficient d-dimensional (δ, ε) matrix sampler
for domain {0, 1}m using m+O(log(d/δ)) random bits and O( dα

ε2+α log1+α 1
δ ) samples.

Proof. Set δ1 = δ2 = δ/2 and ε1 = ε2 = ε/2 in Lemma 4.5 and apply it to Lemma 4.2 will give the
result.

4.2 Iterated Composition

Lemma 4.6. There’s an efficient d-dimensional (δ, ε) matrix sampler for domain {0, 1}m using
m+O(log(d/δ) log log d) random bits and O(( log log dε )5 log2 d

δ ) samples.

Proof. Let r = log log d. We will prove that there exists a constant C > 0 such that for each i ∈ [r],
there exists an efficient

(
iδ
r ,

iε
r

)
matrix sampler using at most m + i · C log d

δ random bits and ti
samples, where

ti = d2
3−i · C · r

5

ε5
log2

d

δ
.

The i = r case proves the lemma.
We will prove by induction on i from 1 to r.

Base Case (i = 1): By Lemma 4.2, there exists an efficient d-dimensional ( δr ,
ε
r ) matrix sampler

using m + C1(log
d

δ/r ) random bits and C2
d3

(ε/r)3
log1.5 r

δ samples for some constants C1, C2 > 0.

When C ≥ 2C1 and C ≥ C2, we have

m+ C1

(
log

d

δ/r

)
≤ m+ C

(
log

d

δ

)
and

C2
d3

(ε/r)3
log1.5

r

δ
≤ d2

2 · C · r
5

ε5
log2

d

δ
≤ t1.

13



Inductive Step: Assume that for some i ∈ [1, r − 1], there exists an efficient
(
iδ
r ,

iε
r

)
matrix

sampler using m + i · C log d
δ random bits and ti samples. By choosing some constant α < 1/2

such that (tir/ε)
α < dr/δ in Lemma 4.5, we have a

(
(i+1)δ

r , (i+1)ε
r

)
matrix sampler using m + i ·

C log d
δ +C3 log

d
δ/r random bits and C4

√
ti

(ε/r)2.5
log d

δ/r samples for some constants C3 and C4. When

C ≥ 2C3 and
√
C ≥ 2C4, we have

m+ i · C log
d

δ
+ C3 log

d

δ/r
≤ m+ (i+ 1) · C log

d

δ

and

C4
ti
α

(ε/r)2+α
log

d

δ/r
≤ 2C4 ·

√
C ·
√
d23−i · r

5

ε5
log2

d

δ
≤ d2

3−(i+1) · C · r
5

ε5
log2

d

δ
≤ ti+1.

This finishes the induction and proves the lemma.

Using Lemma 4.5, we have the following lemma

Lemma 4.7. For any constant α > 0: There exists an efficient d-dimensional (δ, ε) matrix sampler
for domain {0, 1}m using m+O(log(d/δ) log log d) random bits and O(( 1

ε2
log d

δ )
1+α) samples.

Proof. Set δ1 = δ2 = δ/2 and ε1 = ε2 = ε/2 in Lemma 4.5 and apply it to Lemma 4.6 will give the
result.

4.3 Another Composition Scheme

To further reduce the number of random bits used in Lemma 4.7, we introduce another way of
composing matrix samplers. Instead of resampling the samples, we sample the random seeds here.

Lemma 4.8. Suppose we are given two efficient matrix samplers:

• Let Sampout : {0, 1}n1 × [t1] → {0, 1}m be a (δ1, ε1) matrix sampler.

• Let Sampin : {0, 1}n2 × [t2] → {0, 1}n1 be a (δ2, ε2) averaging sampler.

Then, for uniformly random sources X ∼ Un2,

Samp(X) := (Sampout(Sampin(X, i), j))i∈[t2],j∈[t1]

is an efficient (δ2, 2δ1 + 2ε2 + ε1) matrix sampler for domain {0, 1}m with t1 · t2 samples using n2

random bits.

Proof. Let f : {0, 1}m → Cd×d be a function such that ∥f(x)∥≤ 1 for all x ∈ {0, 1}m. We define
hf : {0, 1}n1 → {0, 1} as follows:

hf (x) := 1

[∥∥∥∥∥ 1t1
t1∑
i=1

f(Sampout(x, i))− E f

∥∥∥∥∥ > ε1

]
.

Then Ehf < δ1. One good property of hf is that∥∥∥∥∥ 1t1
t1∑
i=1

f(Sampout(x, i))− E f

∥∥∥∥∥ ≤ 2hf (x) + ε1.
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For Z1, . . . , Zt2 the output of Sampin, we have

Pr

[∣∣∣∣∣ 1t2 ∑i hf (Zi)− Ehf

∣∣∣∣∣ ≤ ε2

]
≥ 1− δ2.

Therefore, with 1− δ2 probability,

1

t2

∑
i

hf (Zi) < δ1 + ε2.

Then we have∥∥∥∥∥∥ 1

t1t2

t2∑
i=1

t1∑
j=1

f(Sampout(Zi, j))− E f

∥∥∥∥∥∥ ≤ 1

t2

t2∑
i=1

∥∥∥∥∥∥ 1t1
t1∑
j=1

f(Sampout(Zi, j))− E f

∥∥∥∥∥∥
≤ 1

t2

t2∑
i=1

(2hf (Zi) + ε1)

≤ ε1 +
2

t2

∑
i

hf (Zi).

This show that, with probability 1− δ2, the error of Samp is at most ε1 + 2δ1 + 2ε2.

Theorem 3. For any constant α > 0: There exists an efficient d-dimensional (δ, ε) matrix sampler
for domain {0, 1}m using m + O(log(1/δ) + log(d/ε) log log d) random bits and O(( 1

ε2
log d

δ )
1+α)

samples.

Proof. We apply Lemma 4.8 with the following choices:

• Sampout: Use the (ε/5, ε/5) matrix sampler for domain {0, 1}m in Lemma 4.7 by choosing
α = 0.5. This uses m+O(log(d/ε) log log d) random bits and O(( 1

ε2
log d

ε )
1.5) samples.

• Sampin: Use the (δ, ε/5) averaging sampler for domain {0, 1}m+O(log(d/ε) log log d) in Theo-
rem 2 by choosing α = 0.5. This uses m + O(log(1/δ) + log(d/ε) log log d) random bits and
O(( 1

ε2
log 1

δ )
1.5) samples.

This gives as an efficient (δ, ε) matrix sampler using m + O(log(1/δ) + log(d/ε) log log d) random
bits and O(( 1

ε2
log d

ε )
1.5 · ( 1

ε2
log 1

δ )
1.5) samples.

Set δ1 = δ2 = δ/2 and ε1 = ε2 = ε/2 in Lemma 4.5 and apply it to this sampler will reduce the
sample complexity to O(( 1

ε2
log d

δ )
1+α) for any constant α > 0.

4.4 Proof of Lemma 4.4

4.4.1 Concentration of Random Matrices

The goal of this section is to prove Lemma 4.12, an analog of Lemma 2.6 for random Hermitian
matrices.

Lemma 4.9 (Matrix Moment Inequality [CGT12]). Assume that d ≥ 3. Suppose that q ≥ 2, and
let r = max{q, 2 log d}. Consider a finite sequence {Yi} of Hermitian matrices with dimension d×d,
where each Yi is an independent symmetric random variable 1. Then

E

(∥∥∥∥∥∑
i

Yi

∥∥∥∥∥
q)1/q

≤
√
er

∥∥∥∥∥∥
(∑

i

EY 2
i

)1/2
∥∥∥∥∥∥+ 2er

(
Emax

i
∥Yi∥1/q

)
.

1That is, for all A, Pr[Yi = A] = Pr[Yi = −A], or its continuous analog.
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Lemma 4.10 ([LT13, Lemma 6.3]). Let f : R>0 → R>0 be convex. Then, for any finite sequence
{Xi} of independent mean zero random matrices such that E f(∥Xi∥) < ∞ for every i,

E f

(
1

2

∥∥∥∥∥∑
i

εiXi

∥∥∥∥∥
)

≤ E f

(∥∥∥∥∥∑
i

Xi

∥∥∥∥∥
)

≤ E f

(
2

∥∥∥∥∥∑
i

εiXi

∥∥∥∥∥
)
,

where the sequence {εi} consists of independent Rademacher random variables.

Using these two inequalities, we have the following lemma, which is an analog of Proposition B.1:

Lemma 4.11. Let {Xi}i∈[t] be a sequence of independent mean zero random self-adjoint matrices
such that ∥Xi∥< 1. Then,

E

[∥∥∥∥∥∑
i

Xi

∥∥∥∥∥
q]1/q

≤ 2
√
ert+ 4er,

where r ≥ max(q, 2 log d).

Proof. Take function f in Lemma 4.10 as the q-th power and we have

E

[∥∥∥∥∥∑
i

Xi

∥∥∥∥∥
q]1/q

≤ 2 · E

[∥∥∥∥∥∑
i

εiXi

∥∥∥∥∥
q]1/q

.

Since each εiXi is a symmetric random variable, we can apply Lemma 4.9. We have∥∥∥∥∥∥
(∑

i

E
[
(εiXi)

2
])1/2

∥∥∥∥∥∥ =

∥∥∥∥∥∑
i

E
[
(εiXi)

2
]∥∥∥∥∥

1/2

≤
√
t.

Then,

E

[∥∥∥∥∥∑
i

εiXi

∥∥∥∥∥
q]1/q

≤
√
ert+ 2er.

Thus,

E

[∥∥∥∥∥∑
i

Xi

∥∥∥∥∥
q]1/q

≤ 2
√
ert+ 4er.

Lemma 4.12. Let Z1, . . . , Zt ∈ {0, 1}m be a sequence of γ-almost ℓ-wise independent variables for
a positive even integer ℓ. Then for any f : {0, 1}m → Cd×d such that for all x ∈ {0, 1}m, f(x) is
Hermitian and ∥f(x)∥≤ 1, we have

Pr

[∥∥∥∥∥1t
t∑

i=1

f(Zi)− E f

∥∥∥∥∥ ≤ ε

]
≥ 1− d

(
4
√
ert+ 8er

εt

)ℓ

− 2ℓγd

εℓ
,

for r ≥ max(ℓ, 2 log d).
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Proof. Let Wi := (f(Zi)− E f)/2. We have

Pr

[∥∥∥∥∥1t
t∑

i=1

f(Zi)− E f

∥∥∥∥∥ > ε

]
= Pr

[∥∥∥∥∥
t∑

i=1

Wi

∥∥∥∥∥ >
tε

2

]
≤

E
[∥∥∑t

i=1Wi

∥∥ℓ]
(tε/2)ℓ

.

Note that each Wi is always a Hermitian matrix, so their sum is always Hermitian and therefore
normal. Then we have ∥∥∥∥∥

t∑
i=1

Wi

∥∥∥∥∥
ℓ

=

∥∥∥∥∥∥
(

t∑
i=1

Wi

)ℓ
∥∥∥∥∥∥ .

Moreover, since ℓ is a positive even integer, (
∑t

i=1Wi)
ℓ is positive semidefinite. Therefore,∥∥∥∥∥∥

(
t∑

i=1

Wi

)ℓ
∥∥∥∥∥∥ ≤ tr

( t∑
i=1

Wi

)ℓ
 = tr

 ∑
i1,...,iℓ∈[t]

Wi1Wi2 . . .Wiℓ

 =
∑

i1,...,iℓ∈[t]

tr (Wi1Wi2 . . .Wiℓ) .

Let W ′
1, . . . ,W

′
t be a sequence of independent random variables where W ′

i := fi(U{0,1}m)− E fi.
Since the Wi’s are γ-almost ℓ-wise independent and |Wi|≤ 1, we have

E

∥∥∥∥∥
t∑

i=1

Wi

∥∥∥∥∥
ℓ
 ≤ E

 ∑
i1,...,iℓ∈[t]

tr (Wi1Wi2 . . .Wiℓ)


=

∑
i1,...,iℓ∈[t]

E [tr (Wi1Wi2 . . .Wiℓ)]

≤
∑

i1,...,iℓ∈[t]

E
[
tr
(
W ′

i1W
′
i2 . . .W

′
iℓ

)]
+ γdtℓ

= E

tr
( t∑

i=1

W ′
i

)ℓ
+ γdtℓ.

Therefore,

E

∥∥∥∥∥
t∑

i=1

Wi

∥∥∥∥∥
ℓ
 ≤ E

tr
( t∑

i=1

W ′
i

)ℓ
+γdtℓ ≤ dE

∥∥∥∥∥∥
(

t∑
i=1

W ′
i

)ℓ
∥∥∥∥∥∥
+γdtℓ = dE

∥∥∥∥∥
t∑

i=1

W ′
i

∥∥∥∥∥
ℓ
+γdtℓ.

We have

E

∥∥∥∥∥
t∑

i=1

W ′
i

∥∥∥∥∥
ℓ
 ≤ (2

√
ert+ 4er)ℓ,

where r = max(ℓ, 2 log d). Therefore,

Pr

[∥∥∥∥∥
t∑

i=1

Wi

∥∥∥∥∥ >
tε

2

]
≤

E
[∥∥∑t

i=1Wi

∥∥ℓ]
(tε/2)ℓ

≤ d

(
4
√
ert+ 8er

εt

)ℓ

+
2ℓγd

εℓ
,

where r = max(ℓ, 2 log d).
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4.4.2 Almost ℓ-wise independence for small domains

We first prove that the concentration analysis for Hermitian matrices directly implies the general
case.

Lemma 4.13. Let Samp : {0, 1}n → ({0, 1}m)t be a function. Suppose for any f : {0, 1}m → C2d×2d

such that for all x ∈ {0, 1}m, f(x) is Hermitian and ∥f(x)∥≤ 1,

Pr
(Z1,...,Zt)∼Samp(Un)

[∥∥∥∥∥1t ∑
i

f(Zi)− E f

∥∥∥∥∥ ≤ ε

]
≥ 1− δ.

Then Samp is a d-dimensional (δ, ε) matrix sampler.

Proof. Let (Z1, . . . , Zt) ∼ Samp(Un). We are going to prove that for any function f : {0, 1}m →
Cd×d such that ∥f(x)∥≤ 1 for all x ∈ {0, 1}m, we have

Pr

[∥∥∥∥∥1t ∑
i

f(Zi)− E f

∥∥∥∥∥ ≤ ε

]
≥ 1− δ.

For any matrix A ∈ Cd×d, its Hermitian dilation H(A) ∈ C2d×2d is defined by

H(A) :=

[
0 A
A∗ 0

]
.

It is easy to verify that ∥A∥ = ∥H(A)∥. Then, for function g : x 7→ H(f(x)), we have

Pr

[∥∥∥∥∥1t ∑
i

g(Zi)− E g

∥∥∥∥∥ ≤ ε

]
≥ 1− δ.

Note that we have∥∥∥∥∥1t ∑
i

f(Zi)− E f

∥∥∥∥∥ =

∥∥∥∥∥H
(
1

t

∑
i

f(Zi)− E f

)∥∥∥∥∥ =

∥∥∥∥∥1t ∑
i

g(Zi)− E g

∥∥∥∥∥ .
Hence,

Pr

[∥∥∥∥∥1t ∑
i

f(Zi)− E f

∥∥∥∥∥ ≤ ε

]
≥ 1− δ.

Now we are ready to prove Lemma 4.4.

Lemma 4.4. For any 1 < s < d/δ, there exists an efficient d-dimensional (δ, ε) matrix sampler

for domain {0, 1}m with O( s
ε2

log d
δ ) samples using O( (m+log(1/ε)) log(d/δ)

log s + log(d/δ)) random bits.

Proof of Lemma 4.4. We begin by setting ℓ = 2 log(2d/δ)
log s , γ = δεℓ

2ℓ+1d
, r = ℓ+2 log d, and t = 32ers

ε2
. We

then define our sampler by outputting a γ-almost ℓ-wise independent sequence Z1, . . . , Zt ∈ {0, 1}m.
Taking the parameters of Lemma 4.12, observe

d

(
4
√
ert+ 8er

εt

)ℓ

≤ d

(
1√
s

)ℓ

= d

(
1√
s

) 2 log(2d/δ)
log s

=
δ

2
,
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and
2ℓγd

εℓ
=

δ

2
.

Let Samp : {0, 1}n → ({0, 1}m)t be a function. Suppose for any f : {0, 1}m → C2d×2d such that for
all x ∈ {0, 1}m, f(x) is Hermitian and ∥f(x)∥≤ 1,

Pr
(Z1,...,Zt)∼Samp(Un)

[∥∥∥∥∥1t ∑
i

f(Zi)− E f

∥∥∥∥∥ ≤ ε

]
≥ 1− δ.

Then Samp is a d-dimensional (δ, ε) matrix sampler by Lemma 4.13. Therefore, by Lemma 4.12,
we have

Pr

[∣∣∣∣∣1t
t∑

i=1

(f(Zi)− E f)

∣∣∣∣∣ ≤ ε

]
≥ 1− δ.

Our sampler uses

t = O
(rs
ε2

)
= O

(
s

ε2
log

d

δ

)
samples. Furthermore, Lemma 2.5 shows that we have an efficient algorithm that uses only

O(ℓm+ log(1/γ) + log log t) = O (ℓm+ ℓ log(1/ε) + log(d/δ) + log log s)

= O

(
(m+ log(1/ε)) log(d/δ)

log s
+ log(d/δ)

)
random bits to generate this γ-almost ℓ-wise independent sequence.

Remark 4.14. The initial work by Wigderson and Xiao [WX05] on matrix samplers focused on
Hermitian matrices, where each f(x) was assumed to be Hermitian. Nevertheless, as shown in
Lemma 4.13, any sampler that works for Hermitian matrices can naturally be applied to general
matrices as well.

5 Applications to Extractors and Codes

5.1 Applications to Extractors

Zuckerman showed that averaging samplers are equivalent to randomness extractors [Zuc97]. Here
we state the only direction that we need.

Lemma 5.1 ( [Zuc97]). An efficient strong (δ, ε) averaging sampler Samp : {0, 1}n → ({0, 1}m)t

gives an efficient strong (n− log(1/δ) + log(1/ε), 2ε) extractor Ext : {0, 1}n × {0, 1}log t → {0, 1}m.

Applying Lemma 5.1 on Theorem 2 gives Theorem 5:

Theorem 5. For every constant α > 0, there exists β < 1 such that for all ε > 0 and k ≥ βn, there
is an efficient strong (k, ε) extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with m = Ω(n) − log(1/ε)
and d = (1 + α) log(n− k) + (2 + α) log(1/ε) +O(1).

Proof. By Theorem 2, for any positive constant α > 0, there exists a constant λ > 1 such that
there exists an efficient strong (δ, ε) averaging sampler for domain {0, 1}m with O( 1

ε2+α log1+α 1
δ )

samples using λ(m+ log 1
δ ) random bits.
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To construct the required strong (k, ε) extractor for every n, we set δ such that log(1/δ) =
n
2λ +log(1/ε). Then, we construct an efficient strong (δ, ε) sampler Samp for domain {0, 1}m where

m =
n

λ
− log(1/δ) >

n

2λ
− log(1/ε) = Ω(n)− log(1/ε).

By the above, Samp uses n random bits and generates O( 1
ε2+α log1+α 1

δ ) samples.
By Lemma 5.1, Samp implies an efficient strong (n − log(1/δ) + log(1/ε), 2ε) extractor Ext :

{0, 1}n × {0, 1}d → {0, 1}m with d ≤ (1 + α) log(n− k) + (2 + α) log(1/ε) +O(1). It is only left to
verify that n− log(1/δ) + log(1/ε) ≤ βn for some constant β < 1. We have

n− log(1/δ) + log(1/ε) = n− n

2λ
≤ 2λ− 1

2λ
n.

This proves the theorem.

If we would like an extractor with the optimal seed length of d = log(n−k)+2 log(1/ε)+O(1),
we can have the following extractor using Corollary 3.4.

Theorem 6. There exists β < 1 such that for all ε > 0 and k ≥ (1 − β
logn+log(1/ε))n, there is an

efficient strong (k, ε) extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with m = Ω(n) − log2(1/ε) and
d = log(n− k) + 2 log(1/ε) +O(1).

Proof. By Corollary 3.4, there exists a constant λ > 1 such that there exists an efficient strong
(δ, ε) averaging sampler for domain {0, 1}m with O( 1

ε2
log 1

δ ) samples usingm+λ log 1
δ (log log(1/δ)+

log(1/ε)) random bits.
To construct the required strong (k, ε) extractor for every n, we set δ such that log(1/δ) =

1
2λ(

n
logn+log(1/ε)) + log(1/ε). Then, we construct an efficient strong (δ, ε) sampler Samp for domain

{0, 1}m where

m = n− λ log
1

δ
(log log(1/δ) + log(1/ε))

≥ n− n

2

log log(1/δ) + log(1/ε)

log n+ log(1/ε)
− log2(1/ε)− log(1/ε) log n

≥ Ω(n)− log2(1/ε).

By the above, Samp uses n random bits and generates O( 1
ε2

log 1
δ ) samples.

By Lemma 5.1, Samp implies an efficient strong (n − log(1/δ) + log(1/ε), 2ε) extractor Ext :
{0, 1}n × {0, 1}d → {0, 1}m with d = log(n − k) + 2 log(1/ε) + O(1). It is only left to verify that
n− log(1/δ) + log(1/ε) ≤ (1− β

logn+log(1/ε))n for some constant β < 1. We have

n− log(1/δ) + log(1/ε) = n− 1

2λ
(

n

log n+ log(1/ε)
) ≤ (1− 1

2λ(log n+ log(1/ε))
)n.

This proves the theorem.

5.2 Application to List-Decodable Codes

Error-correcting codes are combinatorial objects that enable messages to be accurately transmitted,
even when parts of the data get corrupted. Codes have been extensively studied and have proven
to be extremely useful in computer science. Here we focus on the combinatorial property of list-
decodability, defined below.
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Definition 5.2. A code ECC : {0, 1}n → ({0, 1}m)t is (ρ, L) list-decodable if for every received
message r ∈ ({0, 1}m)t, there are at most L messages x ∈ {0, 1}n such that dH(ECC(x), r) ≤ ρt,
where dH denotes the Hamming distance. A code is binary if m = 1.

We focus on the binary setting, i.e., m = 1.

Lemma 5.3 ([TZ04]). An efficient strong (δ, ε) averaging sampler Samp : {0, 1}n → {0, 1}t over
the binary domain gives an efficient binary code that is (ρ = 1

2 − ε, δ2n) list-decodable with code
rate R = n/t.

To construct our codes, we will use our almost ℓ-wise independence sampler in Lemma 3.3
directly.

Lemma 5.4. For all constant α > 0, there exists an efficient strong (δ, ε) averaging sampler for
binary domain with O( 1

ε2+α log 1
δ ) samples using n = C log(1/δ) random bits for some constant

C ≥ 1.

Proof. By setting s = 1/εα and m = 1 in Lemma 3.3, we have that whenever 1/εα ≤ 1/δ,
we have a strong (δ, ε) sampler with O( 1

ε2
log 1

δ ) samples using O(log(1/δ)) random bits. When
1/εα > 1/δ. Using the pairwise independence sampler in Lemma 2.3 for binary domain will satisfy
the condition.

Applying Lemma 5.3 to Lemma 5.4 gives Theorem 7:

Theorem 7. For every constant α > 0: there exists an explicit binary code with rate Ω(ε2+α) that
is (ρ = 1

2 − ε, L) list-decodable with list size L = 2(1−c)n for some constant c = c(α) > 0.

Proof. We use the (δ, ε) sampler in Lemma 5.4, where we choose δ such that n = C log(1/δ).
Applying Lemma 5.3 to this sampler implies Theorem 7, where c(α) = 1/C here.

6 Open Problems

Our work raises interesting open problems.

• Comparing to the sampler in [RVW00] which uses m + (1 + α) log(1/δ) random bits, our
averaging sampler requires m + O(log(1/δ)) random bits. Can we improve our randomness
efficiency while maintaining a good sample complexity?

• Is there a way to eliminate the additional α in the sample complexity? For ε = 1/poly(m)
and δ = exp(−poly(m)), can we design an efficient averaging sampler that is asymptotically
optimal in both randomness and sample complexity?

• Can we further improve the randomness complexity of our matrix samplers to fully re-
solve Open Problem 2?

• Is it possible to reduce the list size of the list-decodable codes in Theorem 7 to poly(n) using
the structure of the list?
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Lemma A.1. Let Samp be a d-dimensional (δ, ε) matrix sampler for domain {0, 1}m using t
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ε + 1 random bits and t samples.

Proof. Our goal is to construct a (2δ, 3ε) matrix sampler Samp′ based on Samp.
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Output Approximation via Discretization. We construct a discretization grid G ⊂ C by

G := {a∆+ b∆i | a, b ∈ Z and |a|2 + |b|2 ≤ ∆−2},

where ∆ = ε
d . For each x ∈ {0, 1}m, define an approximation function f ′ that rounds each entry

of f(x) to the nearest point in G, yielding f ′ : {0, 1}m → Gd×d. Since each entry in f(x) differs
from f ′(x) by at most ∆, the total approximation error per matrix (in spectral norm) is bounded
by d∆ ≤ ε according to Proposition C.1. Thus, f ′ has an average that approximates the average of
f within ε, and the set of all such approximations f ′ forms a finite function class, which we denote
F .

Bounding the Size of F . Each entry of a matrix in Gd×d has at most 1/∆2 possible values.
The number of possible matrices is therefore bounded by(

1

∆2

)d2

=

(
d

ε

)2d2

,

so the total number of functions in F is

|F | ≤

((
d

ε

)2d2
)2m

= 22
m+1d2 log d

ε .

Probabilistic Reduction of Random Bits. For each function f ′ ∈ F , let a random seed be
called bad if the estimate of Samp deviates from the true average of f ′ by more than ε. Since Samp
is a (δ, ε)-sampler, the fraction of bad random seeds for any f ′ ∈ F is at most δ. By Hoeffding’s
inequality, if we select k random seeds independently at random, the probability that more than
2δk of them are bad is at most 2e−2δ2k. Applying a union bound over all f ′ ∈ F , the probability
that there exists any f ′ with more than 2δk bad seeds is at most |F | · 2e−2δ2k.

Choosing k and Applying Probabilistic Method. Set

k =
ln|F |+ ln 2.01

2δ2
≤

2md2 log d
ε + 1

δ2

so that |F |·2e−2δ2k < 1. With this choice, there exists a set K of k random seeds such that, for all
f ′ ∈ F , the fraction of bad seeds in K is at most 2δ. The number of random bits required to select
a sequence ρ ∈ K is

log k ≤ m+ 2 log
1

δ
+ 2 log d+ log log

d

ε
+ 1.

Defining the New Sampler Samp′. We define Samp′ as follows: Select a random seed ρ ∈ K,
and run Samp(ρ) to get samples Z1, . . . , Zt ∈ {0, 1}m. With 1− 2δ probability, we have∥∥∥∥∥1t

t∑
i=1

f(Zi)− E f

∥∥∥∥∥ ≤

∥∥∥∥∥1t
t∑

i=1

(
(f(Zi)− f ′(Zi)) + (f ′(Zi)− E f ′) + (E f ′ − E f)

)∥∥∥∥∥ ≤ 3ε.

Samp′ is then a (2δ, 3ε) matrix sampler, using only

m+ 2 log
1

δ
+ 2 log d+ log log

d

ε
+ 1

random bits. This completes the proof.
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Theorem A.2 (Matrix Chernoff Bound, see [Tro+15]). Let X1, . . . , Xk be independent d × d
complex random matrices. Suppose ∥Xi∥≤ 1 for all i ∈ [k]. Then, for any ε > 0, the following
inequality holds:

Pr

(∥∥∥∥∥1t
t∑

i=1

(Xi − E[Xi])

∥∥∥∥∥ > ε

)
≤ 2d · exp

(
−3

8
tε2
)
.

Applying matrix chernoff bound, we can prove Proposition 4.1.

Proposition 4.1. There exists a (non-explicit) d-dimensional (δ, ε) matrix sampler for domain
{0, 1}m using O( 1

ε2
log d

δ ) samples and m+ 2 log 1
δ + 2 log d+ log log d

ε random bits.

Proof. By Theorem A.2, taking t = 24
ε2

log 4d
δ independent samples in {0, 1}m would give a d-

dimensional (δ/2, ε/3) matrix sampler for domain {0, 1}m using t samples and tm random bits.
Applying Lemma A.1, we get a d-dimensional (δ, ε) matrix sampler for domain {0, 1}m using
O( 1

ε2
log d

δ ) samples and m+ 2 log 1
δ + 2 log d+ log log d

ε random bits.

B Proof of Lemma 2.6

Proposition B.1 (Marcinkiewicz–Zygmund inequality [RL01]). Let {Xi, i ≥ 1} be a sequence of
independent random variables with EXi = 0, E|Xi|p< ∞. Then for p ≥ 2:

E

∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣
p

≤ C(p)np/2−1
n∑

i=1

E|Xi|p,

where C(p) ≤ (3
√
2)ppp/2.

Lemma 2.6. Let Z1, . . . , Zt ∈ {0, 1}m be a sequence of γ-almost ℓ-wise independent variables for
an even integer ℓ. Then for every sequence of functions f1, . . . , ft : {0, 1}m → [0, 1],

Pr

[∣∣∣∣∣1t
t∑

i=1

(fi(Zi)− E fi)

∣∣∣∣∣ ≤ ε

]
≥ 1−

(
5
√
ℓ

ε
√
t

)ℓ

− γ

εℓ
.

Proof. Let Wi := fi(Zi)− E fi. We have

Pr

[∣∣∣∣∣
t∑

i=1

Wi

∣∣∣∣∣ > tε

]
≤

E
[∣∣∑t

i=1Wi

∣∣ℓ]
(tε)ℓ

.

Let W ′
1, . . . ,W

′
t be a sequence of independent random variables where W ′

i := fi(U{0,1}m) − E fi.
Since the Wi’s are γ-almost ℓ-wise independent and |Wi|≤ 1, we have

E

∣∣∣∣∣
t∑

i=1

Wi

∣∣∣∣∣
ℓ
 = E

( t∑
i=1

Wi

)ℓ
 ≤ E

( t∑
i=1

W ′
i

)ℓ
+ γtℓ = E

∣∣∣∣∣
t∑

i=1

W ′
i

∣∣∣∣∣
ℓ
+ γtℓ.

Since EW ′
i = 0 and |W ′

i |≤ 1, they satisfy the conditions for Marcinkiewicz–Zygmund inequality.
We have

E

∣∣∣∣∣
t∑

i=1

W ′
i

∣∣∣∣∣
ℓ
 ≤ (3

√
2)ℓℓℓ/2tℓ/2−1

t∑
i=1

E|W ′
i |ℓ≤ (5

√
ℓt)ℓ.
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Therefore,

E
[∣∣∑t

i=1Wi

∣∣ℓ]
(tε)ℓ

≤

(
5
√
ℓ

ε
√
t

)ℓ

+
γ

εℓ
.

C Proof of Lemma 2.8

To prove Lemma 2.8, we need the following property of matrix norms:

Proposition C.1. Let A ∈ Cd×d and define

r = max
i,j

|Aij |.

Then the spectral norm of A satisfies
r ≤ ∥A∥≤ dr.

Proof. Select standard basis vectors ei, ej ∈ Cd such that |Aij |= r. Then,

∥A∥≥ |e∗iAej |
∥ei∥2∥ej∥2

= |Aij |= r.

We also have

∥A∥≤ ∥A∥F=

√√√√ d∑
i=1

d∑
j=1

A2
ij ≤ dr.

Lemma 2.8. A (δ, ε) averaging sampler is a d-dimensional (2d2δ, 2dε) matrix sampler.

Proof. Let Z1, . . . , Zt be the sampler’s output. We define

A :=
1

t

t∑
i=1

f(Zi).

Now we fix some i, j ∈ [d]. For all x ∈ {0, 1}m, we have |f(x)ij |≤ ∥f(x)∥ ≤ 1 by Proposition C.1.
Then, since Z ′

is are the output of a (δ, ε) averaging sampler, we have

Pr [|Re(Aij)− Re((E f)ij)| ≤ ε] ≥ 1− δ and Pr [|Im(Aij)− Im((E f)ij)| ≤ ε] ≥ 1− δ,

where Re(x) and Im(x) are the functions that extract the real part and imaginary part of x
respectively. Take a union bound, we have with 1− 2δ probability,

|Aij − (E f)ij | ≤ |Re(Aij − (E f)ij)|+ |Im(Aij − (E f)ij)| ≤ 2ε.

By a union bound over all entries, with 1 − 2d2δ probability, all entries have an additive error
bounded by 2ε, and this implies that ∥A− E f∥≤ 2dε by Proposition C.1.
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