
Near-Optimal Averaging Samplers and Matrix Samplers

Zhiyang Xun∗

Department of Computer Science
The University of Texas at Austin

zxun@cs.utexas.edu

David Zuckerman†

Department of Computer Science
The University of Texas at Austin

diz@utexas.edu

August 15, 2025

Abstract

We present the first efficient averaging sampler that achieves asymptotically optimal ran-
domness complexity and near-optimal sample complexity. For any δ < ε and any constant
α > 0, our sampler uses m + O(log(1/δ)) random bits to output t = O((1

ε2 log 1
δ)1+α) samples

Z1, . . . , Zt ∈ {0, 1}m such that for any function f : {0, 1}m → [0, 1],

Pr

[∣∣∣∣∣1t
t∑

i=1

f(Zi) − E[f]

∣∣∣∣∣ ≤ ε

]
≥ 1 − δ.

The randomness complexity is optimal up to a constant factor, and the sample complexity is
optimal up to the O((1

ε2 log 1
δ)α) factor.

Our technique generalizes to matrix samplers. A matrix sampler is defined similarly, ex-
cept that f : {0, 1}m → Cd×d and the absolute value is replaced by the spectral norm.

Our matrix sampler achieves randomness complexity m + Õ(log(d/δ)) and sample complex-
ity O((1

ε2 log d
δ)1+α) for any constant α > 0, both near-optimal with only a logarithmic factor

in randomness complexity and an additional α exponent on the sample complexity.
We use known connections with randomness extractors and list-decodable codes to give

applications to these objects. Specifically, we give the first extractor construction with optimal
seed length up to an arbitrarily small constant factor above 1, when the min-entropy k = βn
for a large enough constant β < 1. Finally, we generalize the definition of averaging sampler to
any normed vector space.

1 Introduction

Randomization plays a crucial role in computer science, offering significant benefits across various
applications. However, obtaining true randomness can be challenging. It’s therefore natural to
study whether we can achieve the benefits of randomization while using few random bits.

One of the most basic uses of randomness is sampling. Given oracle access to an arbitrary
function f : {0, 1}m → [0, 1] on a large domain, our goal is to estimate its average value. By
drawing t = O(log(1/δ)/ε2) independent random samples Z1, . . . , Zt ∈ {0, 1}m, the Chernoff bound
guarantees that the average value

∣∣1
t

∑t
i=1 f(Zi) − E f

∣∣ ≤ ε with probability at least 1 − δ. This
method uses full independence in sampling, but more efficient strategies can be pursued. This leads
to the following definition:

∗Supported by NSF Grant CCF-2312573, a Simons Investigator Award (#409864, David Zuckerman), NSF award
CCF-2008868 and the NSF AI Institute for Foundations of Machine Learning (IFML).

†Supported by NSF Grant CCF-2312573 and a Simons Investigator Award (#409864).

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 5 of Report No. 97 (2024)

Definition 1 ([BR94]). A function Samp : {0, 1}n → ({0, 1}m)t is a (δ, ε) averaging sampler with
t samples using n random bits if for every function f : {0, 1}m → [0, 1], we have

Pr
(Z1,...,Zt)∼Samp(Un)

[∣∣∣∣∣1t ∑
i

f(Zi) − E f

∣∣∣∣∣ ≤ ε

]
≥ 1 − δ.

The goal is to construct explicit samplers using a small number of random bits that have sample
complexity close to the optimal. Researchers have made significant progress toward this goal, and
a summary is presented in Table 1. Bellare and Rompel [BR94] suggested that interesting choices
of parameters are δ = exp(−poly(m)) and ε = 1/poly(m), which allow us to use poly(m) random
bits and generate poly(m) samples. For simplicity, we assume δ ≤ ε throughout the paper (see
Remark 10 for further discussion).

Reference Method Random Bits Sample Complexity

[CEG95] Lower Bound m + log(1/δ) − log(O(t)) Ω(log(1/δ)/ε2)

[CEG95] Non-Explicit m + 2 log(2/δ) + log log(1/ε) 2 log(4/δ)/ε2

Standard Full Independence O(m log(1/δ)/ε2) O(log(1/δ)/ε2)

[CG89] Pairwise Independence O(m + log(1/δ)) O(1/(δε2))

[Gil98] Expander Walks m + O(log(1/δ)/ε2) O(log(1/δ)/ε2)

[BR94] Iterated Sampling O(m + (logm) log(1/δ)) poly(1/ε, log(1/δ), logm)

[Zuc97] Hash-Based Extractors (1 + α)(m + log(1/δ)) poly(1/ε, log(1/δ),m)

[RVW00] Zig-Zag Extractors m + (1 + α) log(1/δ) poly(1/ε, log(1/δ))

Theorem 1
Compose [RVW00]

m + O(log(1/δ)) O((log(1/δ)/ε2)1+α)
With Almost ℓ-wise Ind.

Table 1: Comparison of averaging samplers, α any positive constant.

The best existing randomness-efficient averaging sampler comes from the equivalence between
averaging samplers and extractors [Zuc97], which we will elaborate on later in the paper. Improving
Zuckerman’s construction, Reingold, Vadhan, and Wigderson [RVW00] provided a (δ, ε) averaging
sampler for domain {0, 1}m that uses m + (1 + α) log(1/δ) random bits for any positive constant
α. This almost matches the lower bound in [CEG95]. However, a notable gap remains in sam-
ple complexity: the existing construction’s complexity poly(1/ε, log(1/δ)) does not align with the
optimal O(log(1/δ)/ε2). This raised the following open problem (see, e.g., [Vad12, Open Problem
4.24], [Gol11, Section 6]):

Problem 1. Can we explicitly design a (δ, ε) averaging sampler for domain {0, 1}m that uses
O(m + log(1/δ)) random bits and only O(log(1/δ)/ε2) samples?

We note that such algorithms do exist for general samplers, which query f and estimate E f
through a more complicated computation than taking the average [BGG93]. However, many appli-
cations require the use of averaging samplers, such as the original use in interactive proofs [BR94].
Beyond these applications, averaging samplers act as a fundamental combinatorial object that re-
late to other notions such as randomness extractors, expander graphs, and list-decodable codes
[Zuc97; Vad07].

1.1 Our Averaging Sampler

In this paper, we construct a polynomial-time computable (δ, ε) averaging sampler with near-
optimal sample complexity using an asymptotically optimal number of random bits. In fact, the

2

sampler we constructed is a strong sampler, defined as follows:

Definition 2. A (δ, ε) averaging sampler Samp is strong if for every sequence of t functions
f1, . . . , ft : {0, 1}m → [0, 1], we have

Pr
(Z1,...,Zt)∼Samp(Un)

[∣∣∣∣∣1t ∑
i

(fi(Zi) − E fi)

∣∣∣∣∣ ≤ ε

]
≥ 1 − δ.

We now state our main theorems about averaging samplers, which follow from a more general
theorem that is slightly more complicated to state, Theorem 21.

Theorem 1. For every constant α > 0, there exists an efficient strong (δ, ε) averaging sampler for
domain {0, 1}m that uses m + O(log(1/δ)) random bits and O((1

ε2
log 1

δ)1+α) samples.

This nearly resolves Problem 1. We also give a sampler with asymptotically optimal sample
complexity but a worse randomness complexity.

Theorem 2. There exists an efficient strong (δ, ε) averaging sampler for domain {0, 1}m that uses
m + O(log 1

δ (log 1
ε + log log 1

δ)) random bits and O(1
ε2

log 1
δ) samples.

1.2 Matrix Samplers

A natural generalization of the classic Chernoff bound is the Matrix Chernoff Bound [Rud99; AW02;
Tro12]. Suppose we wish to estimate E f for a matrix-valued function f : {0, 1}m → Cd×d satisfying
∥f(x)∥ ≤ 1. By drawing t = O(log(d/δ)/ε2) independent random samples Z1, . . . , Zt ∈ {0, 1}m,
the Matrix Chernoff Bound guarantees that

Pr

[∥∥∥∥∥1

t

t∑
i=1

f(Zi) − E f

∥∥∥∥∥ ≤ ε

]
≥ 1 − δ,

where ∥·∥ denotes the spectral norm. As in the real-valued case, we wish to derandomize this process
without increasing the sample complexity too much. To address this, Wigderson and Xiao [WX05]
initiated the study of randomness-efficient matrix samplers:

Definition 3. A function Samp : {0, 1}n → ({0, 1}m)t is a d-dimensional (δ, ε) matrix sampler
with t samples using n random bits if the following holds: For any function f : {0, 1}m → Cd×d

such that ∥f(x)∥≤ 1 for all x ∈ {0, 1}m, we have

Pr
(Z1,...,Zt)∼Samp(Un)

[∥∥∥∥∥1

t

∑
i

f(Zi) − E f

∥∥∥∥∥ ≤ ε

]
≥ 1 − δ.

Extending the construction of non-explicit standard averaging samplers [CEG95], we can show
that there exists a non-explicit matrix sampler that requires only an additional 2 log d bits of
randomness compared to averaging samplers while achieving asymptotically optimal sample com-
plexity.

Proposition 4. There exists a (non-explicit) d-dimensional (δ, ε) matrix sampler for domain
{0, 1}m using O(1

ε2
log d

δ) samples and m + 2 log 1
δ + 2 log d + log log d

ε random bits.

3

Reference Method Random Bits Sample Complexity

Proposition 4 Non-Explicit m + 2 log(1/δ) + 2 log d O(log(d/δ)/ε2)

[AW02] Matrix Chernoff Bound O(m log(d/δ)/ε2) O(log(d/δ)/ε2)

[WX05] Union Bound Over Entries m + O(log(d/δ)) O((d/ε)2+α · log1+α(1/δ))

[GLSS18] Expander Walks m + O((1/ε2) · log(d/δ)) O(log(d/δ)/ε2)

Theorem 3 Iterated Sampler Composition m + O(log(1/δ) + log d log log d) O((log(d/δ)/ε2)1+α)

Table 2: Comparison of matrix samplers, α any positive constant, ε = 1/poly(m), δ =
exp(−poly(m)), ignoring lower order terms. The complexity of the union bound sampler depends
on the complexity of the “base” averaging sampler, and we use the bound in Theorem 1 here.

However, explicitly constructing randomness-efficient matrix samplers turns out to be very
challenging. While a union bound over matrix entries suggests that a randomness-optimal averaging
sampler directly implies a randomness-optimal matrix sampler (see Lemma 17), this method incurs
an unavoidable d2 factor in sample complexity, making the dependence on d exponentially worse
than optimal. This raises an open question: can we construct a matrix sampler with (nearly)
optimal randomness complexity and polynomial sample complexity, analogous to the averaging
samplers in [BR94] and [Zuc97]?

Problem 2. Can we explicitly design a d-dimensional (δ, ε) matrix sampler for domain {0, 1}m
that uses O(m + log(d/δ)) random bits and poly(1/ε, log(1/δ), log d) samples?

We summarize prior matrix sampler constructions in Table 2. The best existing construction,
a matrix analog of the expander walks sampler, was provided by Garg, Lee, Song, and Srivas-
tava [GLSS18]. Similar to expander walks for real-valued sampling, this construction gives asymp-
totically optimal sample complexity, but the randomness complexity is worse than optimal by a
poly(1/ε) factor. We note that even if we allow the the matrix sampler to be non-averaging, no
known better construction is currently known.

In this work, we construct a polynomial-time computable (δ, ε) matrix sampler with near-
optimal randomness and sample complexity. The randomness complexity is optimal up to a loga-
rithmic factor, and the sample complexity is within a (1

ε2
log d

δ)α factor of optimal for arbitrarily
small constant α > 0. This brings us close to resolving Problem 2.

Theorem 3. For any constant α > 0: There exists an efficient d-dimensional (δ, ε) matrix sampler
for domain {0, 1}m that uses m+O(log(1/δ) + log(d/ε) log log d) random bits and O((1

ε2
log d

δ)1+α)
samples.

Additionally, we construct a matrix sampler achieving asymptotically optimal randomness com-
plexity, though at the cost of increased sample complexity. This breaks the d2 barrier in sample
complexity for randomness-optimal matrix samplers.

Theorem 4. For any constant α > 0, there exists an efficient d-dimensional (δ, ε) matrix sampler
for domain {0, 1}m that uses m + O(log(d/δ)) random bits and O(dα

ε2+α log1+α 1
δ) samples.

1.3 Samplers for General Normed Vector Space

Apart from spectral norms of matrices, it is natural to study the averaging-sampling problem in
other normed vector spaces V .

4

Definition 5. A function Samp : {0, 1}n → ({0, 1}m)t is a (V,F)-sampler for a normed space V
and a class of functions F ⊆ {f : {0, 1}m → V } if, for every f ∈ F ,

Pr
(Z1,...,Zt)∼Samp(Un)

[∥∥∥∥∥1

t

∑
i

f(Zi) − E f

∥∥∥∥∥ ≤ ε

]
≥ 1 − δ.

We call Samp a V -sampler when F = {f : {0, 1}m → V | ∥f(x)∥≤ 1 for all x}.

Under this definition, a d-dimensional matrix sampler is precisely a (Cd×d, ∥·∥2)-sampler. Pre-
vious work also studied (R,F)-samplers for a broader class of F , such as subgaussian or subexpo-
nential real-valued functions [B la19; Agr19]. Extending our construction to other normed spaces
and broader function classes remains an interesting direction for future research.

1.4 Randomness Extractors

Our sampler construction has implications for randomness extractors. A randomness extractor is
a function that extracts almost-uniform bits from a low-quality source of randomness. We define
the quality of a random source as its min-entropy.

Definition 6. The min-entropy of a random variable X is

H∞(X) := min
x∈supp(X)

log

(
1

Pr[X = x]

)
.

An (n, k)-source is a random variable on n bits with min-entropy at least k.

Then a randomness extractor is defined as:

Definition 7 ([NZ96]). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε) extractor if for
every (n, k)-source X, the distribution Ext(X,Ud) ≈ε Um. We say Ext is a strong (k, ε) extractor
if for every (n, k)-source X, the distribution (Ext(X,Y), Y) ≈ε Um+d, where Y is chosen from Ud.

Randomness extractors are essential tools in theoretical computer science. However, there has
been little study of explicit extractors with the right dependence on ε for vanishing ε. This is a
particular concern in cryptography, where extractors are widely used as building blocks and security
requirements demand superpolynomially small ε [Lu02; Vad03; CDHKS00; DS02; KLRZ08; KLR09;
DW09]. Existentially, there are extractors with seed length d = log(n− k) + 2 log(1/ε) +O(1), and
there is a matching lower bound [RT00].

Zuckerman [Zuc97] showed that averaging samplers are essentially equivalent to extractors.
Specifically, an extractor Ext : {0, 1}n × [2d] → {0, 1}m can be seen as a sampler that generates
Ext(X, i) as its i-th sample point using the random source X. Using this equivalence, we give
the first extractor construction with optimal seed length up to an arbitrarily small constant factor
bigger than 1, when the min-entropy k = βn for a large enough constant β < 1.

Theorem 5. For every constant α > 0, there exists constant β < 1 such that for all ε > 0
and k ≥ βn, there is an efficient strong (k, ε) extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with
m = Ω(k) − log(1/ε) and d = (1 + α) log(n− k) + (2 + α) log(1/ε) + O(1).

Prior to our work, extractors with a seed length dependence on ε achieving 2 log(1/ε) or close
to it were based on the leftover hash lemma [ILL89; BBR88; IZ89; HILL99] and expander random
walks [Gil98; Zuc07]. Extractors using the leftover hash lemma have a seed length of n+2 log(1/ε),
which is far from optimal. Expander random walks give a (k, ε) extractor with k > (1 − Ω(ε2))n

5

and an optimal seed length of log(n−k)+2 log(1/ε)+O(1). Our extractor is better than expander
walks for all vanishing ε by allowing smaller entropy k.

In fact, if we aim to remove the α and achieve the optimal seed length of log(n−k)+2 log(1/ε)+
O(1) to match expander random walks, we can set s = 1 in Theorem 21 and get the following
extractor for entropy rate 1 −O(1/log n) for ε ≥ 1/poly(n):

Theorem 6. There exists constant β < 1 such that for all ε > 0 and k ≥ (1− β
logn+log(1/ε))n, there

is an efficient strong (k, ε) extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with m = Ω(k) − log2(1/ε)
and d = log(n− k) + 2 log(1/ε) + O(1).

This is better than expander random walks’ entropy rate of 1 −O(ε2) for all ε ≤ o(1/
√

log n).

1.5 List-Decodable Codes

Another perspective on averaging samplers is its connection to error-correcting codes. Ta-Shma and
Zuckerman [TZ04] showed that strong randomness extractors are equivalent to codes with good
soft-decision decoding, which is related to list recovery. From this perspective, the composition
scheme in our construction is similar to code concatenation.

For codes over the binary alphabet, soft decision decoding amounts to list decodability, which
we focus on here.

We give good list-decodable codes without using the composition. That is, by just applying
our almost ℓ-wise independence sampler on the binary alphabet, we can get a binary list-decodable
code with rate Ω(ε2+α) and non-trivial list size, although the list size is still exponential.

Theorem 7. For every constant α > 0: there exists an explicit binary code with rate Ω(ε2+α) that
is (ρ = 1

2 − ε, L) list-decodable with list size L = 2(1−c)n for some constant c = c(α) > 0.

Prior to our work, the best known code rate was Ω(ε3) by Guruswami and Rudra [GR08]. We
emphasize that their code achieved a list size of L = poly(n), while our list size is exponentially
large, making our code unlikely to be useful.

1.6 Techniques

1.6.1 Averaging Samplers

Our construction of the averaging sampler is very simple, and is based on two observations:

1. Rather than querying every sample point produced by a sampler Samp, we can use an inner
sampler Sampin to select a subset of samples for querying. This sub-sampling approach has
been utilized in previous sampler constructions [BR94; Gol11]. Although Sampin incurs an
additional randomness cost, the final sample complexity depends only on Sampin, leading to
reduced overall sample complexity. Since the domain of Sampin is much smaller than the
original domain, we can leverage more efficient sampling strategies.

2. The bottleneck of generating an almost ℓ-wise independent sequence over a large domain
{0, 1}m lies in sampling ℓ independent random points, which costs ℓm random bits. Since we
can only afford O(m) random bits, we are restricted to generating constant-wise independent
samples. However, for a much smaller domain, we can use few random bits to generate an
almost ℓ-wise independent sequence for large ℓ.

6

Our construction is outlined as follows. Let SampE : {0, 1}n × [t′] → {0, 1}m be the extractor-
based sampler in [RVW00]. Let Y1, . . . , Yt be an almost ℓ-wise independent sequence over domain
[t′], thinking of t ≪ t′. Our sampler is then defined by

Samp := (SampE(X,Y1), SampE(X,Y2), . . . ,SampE(X,Yt)).

In this construction, we use the almost ℓ-wise independent sequence to sub-sample from the
extractor-based sampler. This can be viewed as a composition, similar to other cases such as
Justesen codes [Jus72] and the first PCP theorem [ALMSS98], where the goal is to optimize two
main parameters simultaneously by combining two simpler schemes, each optimizing one parameter
without significantly compromising the other.

Previous works have applied almost ℓ-wise independence in extractor constructions. Srinivasan
and Zuckerman [SZ99] proved a randomness-efficient leftover hash lemma by sampling an almost
ℓ-wise independent function f using uniform seeds Ud and output f(X), where X is the weak
random source. From an extractor perspective, our inner sampler takes an inverse approach: we
use X to pick a function f in the space of almost ℓ-wise independent functions, and then output
f(Ud). Furthermore, Raz’s two-source extractor [Raz05] follows a more general framework, where
two weak random sources to sample are used – one to sample an almost ℓ-wise independent function
and the other as its input. However, directly applying Raz’s error bound in our analysis (Lemma 20)
results in a sample complexity that is off by a log(1/δ) factor.

1.6.2 Matrix Samplers

Using the connection between averaging samplers and matrix samplers (see Lemma 17), our av-
eraging sampler directly implies a (δ, ε) matrix sampler using m + O(log(d/δ)) random bits and

O((d
2

ε2
log 1

δ)1+α) samples. This already gives the best randomness-optimal matrix sampler to date;
however, its sample complexity has exponentially worse dependence on d than optimal.

Our sub-sampling technique using almost ℓ-wise independence offers a way to further reduce
sample complexity. The composition of samplers only depends on the triangle inequality, which
also applies to spectral norms. The remaining task is to verify that almost ℓ-wise independence
also provides good concentration bounds for matrix sampling, which is straightforward given the
extensive literature on moment inequalities for random matrices [CGT12; LT13; Tro+15].

Applying this composition, we get a (δ, ε) matrix sampler using m + O(log(d/δ)) random bits
and O((dα

ε2+α log1+α 1
δ)) samples, as described in Theorem 4. This is close to optimal for cases where

d < poly(1/ε, log(1/δ)), though it is not yet sufficient for larger d.
However, we can apply composition recursively. By repeating the composition O(log log d)

times, the dependence on d becomes dα
O(log log d)

= O(1). Each round of composition costs an ad-
ditional O(log(d/δ)) random bits, resulting in a (δ, ε) matrix sampler using m+O(log(d/δ) log log d)
random bits and O((1

ε2
log d

δ)1+α) samples. This already gives a matrix sampler using m+Õ(log(d/δ))
random bits and near-optimal sample complexity.

To further improve the dependence on δ in randomness complexity and achieve the bound in
Theorem 3, we introduce an alternative way of composing samplers:

Proposition 8. Suppose we are given two efficient matrix samplers:

• Let Sampout : {0, 1}n1 × [t1] → {0, 1}m be a (δ1, ε1) matrix sampler.

• Let Sampin : {0, 1}n2 × [t2] → {0, 1}n1 be a (δ2, ε2) averaging sampler.

7

Then, for uniformly random sources X ∼ Un2,

Samp(X) := (Sampout(Sampin(X, i), j))i∈[t2],j∈[t1]

is an efficient (δ2, 2δ1 + 2ε2 + ε1) matrix sampler for domain {0, 1}m with t1 · t2 samples using n2

random bits.

This essentially says, composing a good (ε, ε) matrix sampler Sampout and a good (δ, ε) standard
averaging sampler Sampin would give a good (δ,O(ε)) matrix sampler. Although this slightly
increases the sample complexity, we can use our sub-sampling technique to reduce it later.

Unlike sub-sampling, in the composition of Proposition 8, Sampin generates multiple random
seeds for Sampout, and we query all the samples it produces. This approach effectively reduces the
error probability of Sampout from ε to δ. The key idea is that only an O(ε) fraction of the seeds
generated by Sampin lead to failure in Sampout, contributing only a tolerable O(ε) additive error in
the estimate of E f . The reasoning is straightforward: at most an ε fraction of all possible seeds for
Sampout cause failure, and with probability 1 − δ, Sampin does not oversample these failure seeds
by more than an additional ε proportion. As a result, the final proportion of failure seeds remains
bounded by O(ε).

Remark 9. We can also define strong matrix samplers as a matrix analog of strong averaging
samplers. All results for matrix samplers in this paper would hold for strong matrix samplers as
well, with proofs following similar arguments. However, for simplicity, we present our results in
the non-strong case only.

2 Preliminaries

Notation. We use [t] to represent set {1, . . . , t}. For integer m, Um is a random variable dis-
tributed uniformly over {0, 1}m. For random variables X and Y , we use X ≈ε Y to represent the
statistical distance (total variation distance) between X and Y is at most ε, i.e.,

max
T⊆supp(X)

∣∣∣∣ Pr
x∼X

[x ∈ T] − Pr
y∼Y

[y ∈ T]

∣∣∣∣ ≤ ε.

We refer to an algorithm as “efficient” if it is polynomial-time computable. For simplicity, we
omit domain sizes for samplers and matrix dimensions when context permits. Unless otherwise
specified, statements such as “there exists a (δ, ε) sampler” mean that for all 0 < δ ≤ ε < 1, there
exists a (δ, ε) sampler with the stated properties.

Remark 10. The condition δ ≤ ε is very mild and holds in nearly all applications. This requirement
can be relaxed to δ ≤ εα for averaging samplers, and to δ ≤ dεα for matrix samplers, where α is an
arbitrarily small positive constant. Such relaxations do not alter the results.

In the extreme case where δ > εα for every constant α > 0, pairwise independence is already a
near-optimal averaging sampler (see Lemma 12). Specifically, this yields an efficient strong sampler
with O(1/(δε2)) ≤ O(1/ε2+α) samples, using only O(m + log(1/ε)) random bits. Similarly, for
matrix samplers under the condition δ > dεα for all α > 0, pairwise independence also achieves
near-optimal efficiency with O(1/ε2+α) samples and O(m + log(1/ε)) random bits.

8

2.1 Extractor-Based Sampler

As mentioned above, averaging samplers are equivalent to extractors. We will introduce this in
detail in Section 5.1. Reingold, Vadhan, and Wigderson used this equivalence to achieve the
following:

Theorem 11 ([RVW00, Corollary 7.3], see also [Gol11, Theorem 6.1]). For every constant α > 0,
there exists an efficient (δ, ε) averaging sampler over {0, 1}m with poly(1/ε, log(1/δ)) samples using
m + (1 + α) · log2(1/δ) random bits.

For ease of presentation, we often denote an extractor-based averaging sampler by SampE :
{0, 1}n × {0, 1}d → {0, 1}m, where SampE(X, i) is the i-th output sample point of the sampler
using randomness input X. Therefore, the sample complexity of SampE is 2d.

2.2 Almost ℓ-wise Independence

A sequence Z1, . . . , Zt is pairwise independent if the marginal distribution of every pair (Zi1 , Zi2)
is uniformly random. Chor and Goldreich [CG89] proved that using pairwise independence, we can
have a sampler using few random bits but with unsatisfying sample complexity.

Lemma 12 ([CG89]). For all δ, ε > 0, there exists an efficient strong (δ, ε) averaging sampler for
domain {0, 1}m sampler with O(1/(δε2)) samples using O(m + log(1/δ) + log(1/ε)) random bits.

Generalizing pairwise independence, an almost ℓ-wise independent sequence is a sequence of
random variables such that the marginal distribution of every ℓ of them is close to uniform.

Definition 13 ([NN93]). A sequence of random variables Z1, . . . , Zt ∈ {0, 1}m is said to be γ-almost
ℓ-wise independent if for all subsets S ⊆ [t] such that |S|≤ ℓ,

(Zi)i∈[S] ≈γ Um×|S|.

In particular, the pairwise independent sequence mentioned above is a 0-almost 2-wise indepen-
dent sequence. Naor and Naor proved that such sequences can be randomness-efficiently generated.

Lemma 14 ([AGHP92]). There exists an efficient algorithm that uses (2 + o(1))(ℓm2 + log log t) +
2 log 1

γ random bits to generate a γ-almost ℓ-wise independent sequence z1, . . . , zt ∈ {0, 1}m.

Using standard techniques, we have the following concentration bound for almost ℓ-wise inde-
pendent sequences (see Appendix B for the proof). Similar bounds for exact ℓ-wise independent
sequences have been shown in [BR94; Dod00].

Lemma 15. Let Z1, . . . , Zt ∈ {0, 1}m be a sequence of γ-almost ℓ-wise independent variables for
an even integer ℓ. Then for every sequence of functions f1, . . . , ft : {0, 1}m → [0, 1],

Pr

[∣∣∣∣∣1t
t∑

i=1

(fi(Zi) − E fi)

∣∣∣∣∣ ≤ ε

]
≥ 1 −

(
25ℓ

ε2t

)ℓ/2

− γ

εℓ
.

2.3 Composition of Samplers

The idea of composing samplers has been studied before. More specifically, Goldreich proved the
following proposition.

Proposition 16 ([Gol11]). Suppose we are given two efficient samplers:

9

• A (δ, ε) averaging sampler for domain {0, 1}m with t1 samples using n1 random bits.

• A (δ′, ε′) averaging sampler for domain {0, 1}log t1 with t2 samples using n2 random bits.

Then, there exists an efficient (δ + δ′, ε+ ε′) averaging sampler for domain {0, 1}m with t2 samples
using O(n1 + n2) random bits.

2.4 Averaging Samplers Imply Matrix Samplers

When Wigderson and Xiao first introduced matrix samplers, they observed that an averaging
sampler also functions as a matrix sampler with weaker parameters, though they did not provide
a formal proof. We formalize this observation below:

Lemma 17. A (δ, ε) averaging sampler is a d-dimensional (2d2δ, 2dε) matrix sampler.

The proof is presented in Appendix C.

3 Construction of Averaging Samplers

Our construction is based on a reduction lemma that constructs a sampler for domain {0, 1}m
based on a sampler for domain {0, 1}O(log(1/ε)+log log(1/δ)). We exploit the fact that when composing
averaging samplers, the final sample complexity depends on only one of the samplers. Our strategy
is:

• Apply the extractor sampler in Theorem 11 as a (δ/2, ε/2) sampler over domain {0, 1}m. This
uses m + O(log(1/δ)) random bits and generates poly(1/ε, log(1/δ)) samples.

• By Proposition 16, we only need to design a (δ/2, ε/2) averaging sampler over domain
{0, 1}O(log(1/ε)+log log(1/δ)) using O(log(1/δ)) random bits. The total sample complexity will
be equal to the sample complexity of this sampler. For this sampler, we use almost ℓ-wise
independence.

Following the idea of Proposition 16, we first prove that composing samplers maintains the
properties of a strong sampler.

Lemma 18 (Strong Composition). Suppose we are given two efficient averaging samplers:

• Let Sampout : {0, 1}n1 × [t1] → {0, 1}m be a (δ, ε) sampler.

• Let Sampin : {0, 1}n2 × [t2] → {0, 1}log t1 be a strong (δ′, ε′) sampler.

Then, for uniformly random sources X1 ∼ Un1 and X2 ∼ Un2,

Samp(X1 ◦X2) := (Sampout(X1, Sampin(X2, i)))i∈[t2]

is an efficient (δ + δ′, ε + ε′) strong averaging sampler for domain {0, 1}m with t2 samples using
n1 + n2 random bits.

Proof. Let f1, . . . , ft2 : {0, 1}m → [0, 1] be an arbitrary sequence of functions, and define favg :=
1
t2

∑t2
i=1 fi. Since Sampout is a (δ, ε) averaging sampler and favg is bounded in [0, 1], we have

Pr
X1∼Un1

[∣∣∣∣ E
Y∼Ulog t1

favg(Sampout(X1, Y)) − E favg

∣∣∣∣ ≤ ε

]
≥ 1 − δ.

10

Equivalently, we can express this as

Pr
X1∼Un1

[∣∣∣∣∣ 1

t2

t2∑
i=1

E
Y∼Ulog t1

fi(Sampout(X1, Y)) − 1

t2

t2∑
i=1

E fi

∣∣∣∣∣ ≤ ε

]
≥ 1 − δ. (1)

For an arbitrary x, view fi(Sampout(x, ·)) as a Boolean function on domain {0, 1}log t1 . Therefore,
since Sampin(X2, 1), . . . ,Sampin(X2, t2) are generated by a strong (δ, ε) sampler,

Pr
X2

[∣∣∣∣∣ 1

t2

t2∑
i=1

(
fi(Sampout(x,Sampin(X2, i))) − E

Y∼Ulog t1

fi(Sampout(x, Y))

)∣∣∣∣∣ ≤ ε′

]
≥ 1 − δ′. (2)

By the triangle inequality and a union bound over equations (1) and (2), we have

Pr
X1,X2

[∣∣∣∣∣ 1

t2

t2∑
i=1

(fi(Sampout(x,Sampin(X2, i))) − E fi)

∣∣∣∣∣ ≤ ε′ + ε

]
≥ 1 − δ′ − δ.

This proves that the sampler we constructed is a strong (δ + δ′, ε + ε′) averaging sampler.

Instantiating Lemma 18 with the extractor-based sampler from Theorem 11 gives:

Lemma 19 (Reduction Lemma). For any α > 0: For a sufficiently large constant C > 0, suppose
there exists an efficient (δ′, ε′) averaging sampler Sampbase for domain {0, 1}C(log(1/ε)+log log(1/δ))

with t samples using n random bits. Then there exists an efficient (δ + δ′, ε+ ε′) averaging sampler
Samp for domain {0, 1}m with t samples using m + (1 + α) log(1/δ) + n random bits. Moreover, if
Sampbase is a strong sampler, then Samp is also strong.

Proof. By Theorem 11, there exists an explicit (δ, ε) averaging sampler SampE : {0, 1}n′×{0, 1}d →
{0, 1}m with

n′ = m + (1 + α)(log(1/δ)) and d = log(poly(1/ε, log(1/δ))) ≤ C(log log(1/δ) + log(1/ε))

when C is large enough. Therefore, Sampbase can work for domain {0, 1}d.
This enables us to apply Lemma 18. The total number of random bits used is n′ + n =

m + (1 + α) log(1/δ) + n, and a total of t samples are used.

Next, we show that for domain {0, 1}m with m ≤ O(log(1/ε) + log log(1/δ)), we can use an
almost ℓ-wise independent sequence to design a strong averaging sampler with near-optimal sample
complexity.

Lemma 20. For any 2 ≤ s < 1/δ, there exists an efficient strong (δ, ε) averaging sampler for

domain {0, 1}m with O(s
ε2

log 1
δ) samples using (2+o(1))(m+2 log(1/ε)) log(1/δ)

log s + 2 log(1/δ) random bits.

Proof. We begin by setting ℓ = 2 log(2/δ)
log s , γ = δεℓ

2 , and t = 50s log(2/δ)
ε2 log s

. We then define our sampler

by outputting a γ-almost ℓ-wise independent sequence Z1, . . . , Zt ∈ {0, 1}m. Taking the parameters
of Lemma 15, observe (

25ℓ

ε2t

)ℓ/2

=

(
1

s

)ℓ/2

=

(
1

s

) log(2/δ)
log s

=
δ

2
,

and
γ

εℓ
=

δ

2
.

11

Therefore, for every sequence of functions f1, . . . , ft : {0, 1}m → [0, 1],

Pr

[∣∣∣∣∣1t
t∑

i=1

(fi(Zi) − E fi)

∣∣∣∣∣ ≤ ε

]
≥ 1 − δ.

Furthermore, Lemma 14 shows that we have an efficient algorithm that uses only

(2 + o(1))

(
ℓm

2
+ log log t

)
+ 2 · log

1

γ
=

(2 + o(1))(m + 2 log(1/ε)) log(1/δ)

log s
+ 2 · log

1

δ

random bits to generate this γ-almost ℓ-wise independent sequence.

We remark that the construction in Lemma 20 can be replaced with a perfectly ℓ-wise indepen-

dent sequence. This yields a slightly weaker sampler that uses O
((

m+log(1/ε)+log log(1/δ)
log s + 1

)
log 1

δ

)
random bits and O

(
s
ε2

· log 1
δ

)
samples. This looser construction is already sufficient to establish

Theorem 1. However, our tighter construction in Lemma 20 applies more broadly, particularly
when m is small—for example, in Lemma 36.

Combining Lemma 19 and Lemma 20, we can prove our main result about averaging samplers:

Theorem 21. For every constant α > 0, and for any m ≥ 1, δ, ε > 0, and 2 ≤ s ≤ 1/δ, there
exists an efficient strong (δ, ε) averaging sampler for domain {0, 1}m that uses

m + O

(
log(1/ε) + log log(1/δ)

log s
· log

1

δ

)
+ (3 + α) log

1

δ

random bits and O((s/ε2) · log(1/δ)) samples.

Proof. By Lemma 19, our goal is to design an efficient strong (δ/2, ε/2) averaging sampler Sampbase
for domain {0, 1}C(log(1/ε)+log log(1/δ)) for some large enough constant C. By Lemma 20, for any
2 ≤ s < 1/δ, such sampler exists using O(s

ε2
log 1

δ) samples and

O

(
(log(1/ε) + log log(1/δ)) log(1/δ)

log s

)
+ 2 · log

1

δ

Taking these into Lemma 19 gives us the desired bounds.

For an arbitrarily small constant α, by setting s = ε−2α logα(1/δ) in Theorem 21, we get The-
orem 1 as a corollary:

Theorem 1. For every constant α > 0, there exists an efficient strong (δ, ε) averaging sampler for
domain {0, 1}m that uses m + O(log(1/δ)) random bits and O((1

ε2
log 1

δ)1+α) samples.

We can also set s = 2 in Theorem 21 and get the following sampler with asymptotically optimal
sample complexity but a worse randomness complexity.

Theorem 2. There exists an efficient strong (δ, ε) averaging sampler for domain {0, 1}m that uses
m + O(log 1

δ (log 1
ε + log log 1

δ)) random bits and O(1
ε2

log 1
δ) samples.

12

4 Construction of Matrix Samplers

Before moving further, we note that non-explicitly, a good matrix sampler exists. This generalizes
the non-explicit sampler given in [CEG95], with the proof deferred to Appendix A.

Proposition 4. There exists a (non-explicit) d-dimensional (δ, ε) matrix sampler for domain
{0, 1}m using O(1

ε2
log d

δ) samples and m + 2 log 1
δ + 2 log d + log log d

ε random bits.

Our improved averaging sampler directly implies the best randomness-optimal matrix sampler
to date. Applying Lemma 17 to our sampler in Theorem 1 gives:

Lemma 22. For every constant α > 0, there exists an efficient d-dimensional (δ, ε) matrix sampler

for domain {0, 1}m using m + O(log(d/δ)) random bits and O((d
2

ε2
log 1

δ)1+α) samples.

However, compared to the optimal sample complexity given in the non-explicit construction,
our dependence on d is exponentially worse. As d is potentially very large, our goal is to utilize our
composition to reduce the sample complexity while not increasing the randomness complexity too
much.

4.1 One-Layer Composition

It is easy to verify that the composition lemma holds for matrices:

Lemma 23 (Matrix Composition). Suppose we are given two efficient matrix samplers:

• Let Sampout : {0, 1}n1 × [t1] → {0, 1}m be a (δ1, ε1) matrix sampler.

• Let Sampin : {0, 1}n2 × [t2] → {0, 1}log t1 be a (δ2, ε2) matrix sampler.

Then, for uniformly random sources X1 ∼ Un1 and X2 ∼ Un2,

Samp(X1 ◦X2) := (Sampout(X1, Sampin(X2, i)))i∈[t2]

is an efficient (δ1 + δ2, ε1 + ε2) matrix sampler for domain {0, 1}m with t2 samples using n1 + n2

random bits.

The proof is essentially the same as the proof of Lemma 18, since the triangle inequality applies
to spectral norms, but since we are not dealing with the strong case we only have to do a union
bound for two events, a bad sample from Sampout and a bad sample from Sampin.

The following lemma is the matrix version of Lemma 20, and we delay its proof to Section 4.4.

Lemma 24. For any 2 ≤ s < d/δ, there exists an efficient d-dimensional (δ, ε) matrix sampler for

domain {0, 1}m with O(s
ε2

log d
δ) samples using O((m+log(1/ε)) log(d/δ)

log s + log(d/δ)) random bits.

Composing Lemma 22 with Lemma 24 gives us the next theorem.

Lemma 25. Suppose we have an efficient d-dimensional (δ1, ε1) matrix sampler for domain {0, 1}m
with t samples using n bits. For any constant α > 0 such that (t/ε2)

α ≤ d/δ2, we can construct
an efficient d-dimensional (δ1 + δ2, ε1 + ε2) matrix sampler for domain {0, 1}m with O(tα

ε2+α
2

log d
δ2

)

samples using n + O(log(d/δ2)) bits.

13

Proof. When (t/ε2)
α ≤ d/δ, by setting s = (t/ε2)

α in Lemma 24, we have a strong (δ2, ε2) matrix
sampler for domain {0, 1}log t with O(tα

ε2+α
2

log 1
δ2

) samples using

O

(
(log t + log(1/ε2)) log(d/δ2)

log s
+ log(d/δ2)

)
= O(log(d/δ2))

random bits. Then by Lemma 23, we have the theorem we want.

Theorem 4. For any constant α > 0, there exists an efficient d-dimensional (δ, ε) matrix sampler
for domain {0, 1}m that uses m + O(log(d/δ)) random bits and O(dα

ε2+α log1+α 1
δ) samples.

Proof. Set δ1 = δ2 = δ/2 and ε1 = ε2 = ε/2 in Lemma 25 and apply it to Lemma 22 will give the
result.

4.2 Iterated Composition

Lemma 26. There’s an efficient d-dimensional (δ, ε) matrix sampler for domain {0, 1}m using
m + O(log(d/δ) log log d) random bits and O((log log dε)5 log2 d

δ) samples.

Proof. Let r = log log d. We will prove that there exists a constant C > 0 such that for each i ∈ [r],
there exists an efficient

(
iδ
r ,

iε
r

)
matrix sampler using at most m + i · C log d

δ random bits and ti
samples, where

ti = d2
3−i · C · r

5

ε5
log2

d

δ
.

The i = r case proves the lemma.
We will prove by induction on i from 1 to r.

Base Case (i = 1): By Lemma 22, there exists an efficient d-dimensional (δr ,
ε
r) matrix sampler

using m + C1(log d
δ/r) random bits and C2

d3

(ε/r)3
log1.5 r

δ samples for some constants C1, C2 > 0.

When C ≥ 2C1 and C ≥ C2, we have

m + C1

(
log

d

δ/r

)
≤ m + C

(
log

d

δ

)
and

C2
d3

(ε/r)3
log1.5

r

δ
≤ d2

2 · C · r
5

ε5
log2

d

δ
≤ t1.

Inductive Step: Assume that for some i ∈ [1, r − 1], there exists an efficient
(
iδ
r ,

iε
r

)
matrix

sampler using m+ i ·C log d
δ random bits and ti samples. By choosing some constant α < 1/2 such

that (tir/ε)
α < dr/δ in Lemma 25, we have a

(
(i+1)δ

r , (i+1)ε
r

)
matrix sampler using m+ i ·C log d

δ +

C3 log d
δ/r random bits and C4

√
ti

(ε/r)2.5
log d

δ/r samples for some constants C3 and C4. When C ≥ 2C3

and
√
C ≥ 2C4, we have

m + i · C log
d

δ
+ C3 log

d

δ/r
≤ m + (i + 1) · C log

d

δ

and

C4
ti
α

(ε/r)2+α
log

d

δ/r
≤ 2C4 ·

√
C ·
√
d23−i · r

5

ε5
log2

d

δ
≤ d2

3−(i+1) · C · r
5

ε5
log2

d

δ
≤ ti+1.

This finishes the induction and proves the lemma.

14

Using Lemma 25, we have the following lemma:

Lemma 27. For any constant α > 0: There exists an efficient d-dimensional (δ, ε) matrix sampler
for domain {0, 1}m using m + O(log(d/δ) log log d) random bits and O((1

ε2
log d

δ)1+α) samples.

Proof. Set δ1 = δ2 = δ/2 and ε1 = ε2 = ε/2 in Lemma 25 and apply it to Lemma 26 will give the
result.

4.3 Another Composition Scheme

To further reduce the number of random bits used in Lemma 27, we introduce another way of
composing matrix samplers. Instead of sub-sampling the samples, we sample the random seeds
here.

Proposition 8. Suppose we are given two efficient matrix samplers:

• Let Sampout : {0, 1}n1 × [t1] → {0, 1}m be a (δ1, ε1) matrix sampler.

• Let Sampin : {0, 1}n2 × [t2] → {0, 1}n1 be a (δ2, ε2) averaging sampler.

Then, for uniformly random sources X ∼ Un2,

Samp(X) := (Sampout(Sampin(X, i), j))i∈[t2],j∈[t1]

is an efficient (δ2, 2δ1 + 2ε2 + ε1) matrix sampler for domain {0, 1}m with t1 · t2 samples using n2

random bits.

Proof. Let f : {0, 1}m → Cd×d be a function such that ∥f(x)∥≤ 1 for all x ∈ {0, 1}m. We define
hf : {0, 1}n1 → {0, 1} as follows:

hf (x) := 1

[∥∥∥∥∥ 1

t1

t1∑
i=1

f(Sampout(x, i)) − E f

∥∥∥∥∥ > ε1

]
.

Then Ehf < δ1. One good property of hf is that∥∥∥∥∥ 1

t1

t1∑
i=1

f(Sampout(x, i)) − E f

∥∥∥∥∥ ≤ 2hf (x) + ε1.

For Z1, . . . , Zt2 the output of Sampin, we have

Pr

[∣∣∣∣∣ 1

t2

∑
i

hf (Zi) − Ehf

∣∣∣∣∣ ≤ ε2

]
≥ 1 − δ2.

Therefore, with 1 − δ2 probability,

1

t2

∑
i

hf (Zi) < δ1 + ε2.

Then we have∥∥∥∥∥∥ 1

t1t2

t2∑
i=1

t1∑
j=1

f(Sampout(Zi, j)) − E f

∥∥∥∥∥∥ ≤ 1

t2

t2∑
i=1

∥∥∥∥∥∥ 1

t1

t1∑
j=1

f(Sampout(Zi, j)) − E f

∥∥∥∥∥∥
≤ 1

t2

t2∑
i=1

(2hf (Zi) + ε1)

≤ ε1 +
2

t2

∑
i

hf (Zi).

15

This show that, with probability 1 − δ2, the error of Samp is at most ε1 + 2δ1 + 2ε2.

Theorem 3. For any constant α > 0: There exists an efficient d-dimensional (δ, ε) matrix sampler
for domain {0, 1}m that uses m+O(log(1/δ) + log(d/ε) log log d) random bits and O((1

ε2
log d

δ)1+α)
samples.

Proof. We apply Proposition 8 with the following choices:

• Sampout: Use the (ε/5, ε/5) matrix sampler for domain {0, 1}m in Lemma 27 by choosing
α = 0.5. This uses m + O(log(d/ε) log log d) random bits and O((1

ε2
log d

ε)1.5) samples.

• Sampin: Use the (δ, ε/5) averaging sampler for domain {0, 1}m+O(log(d/ε) log log d) in Theo-
rem 1 by choosing α = 0.5. This uses m + O(log(1/δ) + log(d/ε) log log d) random bits and
O((1

ε2
log 1

δ)1.5) samples.

This gives as an efficient (δ, ε) matrix sampler using m + O(log(1/δ) + log(d/ε) log log d) random
bits and O((1

ε2
log d

ε)1.5 · (1
ε2

log 1
δ)1.5) samples.

Set δ1 = δ2 = δ/2 and ε1 = ε2 = ε/2 in Lemma 25 and apply it to this sampler will reduce the
sample complexity to O((1

ε2
log d

δ)1+α) for any constant α > 0.

4.4 Proof of Lemma 24

4.4.1 Concentration of Random Matrices

The goal of this section is to prove Lemma 30, an analog of Lemma 15 for random Hermitian
matrices. Our approach follows standard techniques from the random matrix literature [Tom74;
CGT12; LT13].

Lemma 28. Let {Xi}i∈[t] be a sequence of independent, mean-zero, self-adjoint random matrices
of size d× d such that ∥Xi∥< 1 for every i ∈ [t]. Then, for every even interger q ≥ 2, we have

E

[
Tr

((
t∑

i=1

εiXi

)q)]
≤ d(qt)q/2,

where the sequence {εi} consists of independent Rademacher random variables.

Proof. Note that

E

[
Tr

((
t∑

i=1

εiXi

)q)]
=

∑
v=(v1,...,vq)∈[t]q

E
[
Tr(εv1Xv1 . . . εvqXvq)

]
When some index appears an odd number of times in the word v = (v1, . . . , vq), the corresponding
term vanishes. Hence we may restrict the sum to

T = {v ∈ [t]q : every index in v appears an even number of times},

and we have

E

[
Tr

((
t∑

i=1

εiXi

)q)]
=
∑
v∈T

E
[
Tr(εv1Xv1 . . . εvqXvq)

]
≤
∑
v∈T

dE
[
∥Xv1 . . . Xvq∥

]
≤
∑
v∈T

d,

where the last inequality comes from the fact that ∥Xi∥≤ 1 always holds for every i.

16

It remains to bound |T |. Since each index appearing in v ∈ T must occur an even number of
times, one can group the q positions into exactly q/2 unordered pairs so that the two entries in
each pair carry the same index. The number of ways to pair is bounded by qq/2. For each pairing
there are t choices of index per pair. Therefore,

|T |≤ qq/2 · tq/2 ≤ (qt)q/2.

Therefore,

E

[
Tr

((
t∑

i=1

εiXi

)q)]
≤ d(qt)q/2 ≤ d|T |≤ d(qt)q/2,

which proves the lemma.

Using a standard symmetrization trick, we get the following lemma, which is an analog of
Proposition 39:

Lemma 29. Let {Xi}i∈[t] be a sequence of independent, mean-zero, self-adjoint random matrices
of size d× d such that ∥Xi∥< 1 for every i ∈ [t]. Then, for every even interger q ≥ 2, we have

E

[
Tr

((
t∑

i=1

Xi

)q)]
≤ d (4qt)q/2 .

Proof. Let us write

S :=
t∑

i=1

Xi, S′ :=
t∑

i=1

X ′
i,

where {X ′
i}ti=1 is an independent copy of {Xi}ti=1, independent also of the original Xi’s. Since each

Xi has mean zero, we have

E [Tr (Sq)] = E
[
Tr
(
(S − E[S′])q

)]
≤ E

[
Tr
(
(S − S′)q

)]
,

where the last inequality follows from Jensen’s inequality.
Next, observe that

S − S′ =
t∑

i=1

(
Xi −X ′

i

)
.

Introduce a fresh sequence of Rademacher random variables {εi}ti=1, independent of everything
else. Then, conditional on {Xi, X

′
i}ti=1, the random matrix

t∑
i=1

εi
(
Xi −X ′

i

)
has the same distribution as S − S′. Consequently,

E
[
Tr
(
(S − S′)q

)]
= E

X,X′
E
ε

[
Tr

((
t∑

i=1

εi(Xi −X ′
i)

)q)]
.

Note that for each fixed (X,X ′, ε),

Tr

((
t∑

i=1

εi(Xi −X ′
i)

)q)
≤ 2q−1

(
Tr

(
(

t∑
i=1

εiXi)
q

)
+ Tr

(
(

t∑
i=1

εiX
′
i)
q

))
.

17

Taking Eε, then EX,X′ , and using that {X ′
i} has the same law as {Xi} gives

E
[
Tr
(
(S − S′)q

)]
= E

X,X′
E
ε

[
Tr

(
(

t∑
i=1

εi(Xi −X ′
i))

q

)]
≤ 2q E

X
E
ε

[
Tr

(
(

t∑
i=1

εiXi)
q

)]
.

In combination with the symmetrization bound E[Tr(Sq)] ≤ E[Tr((S − S′)q)], this yields

E [Tr(Sq)] ≤ 2q E

[
Tr

(
(

t∑
i=1

εiXi)
q

)]
.

Taking in the bound in Lemma 28, we have

E

[
Tr

((
t∑

i=1

Xi

)q)]
≤ 2q · d(qt)

q
2 = d

(
22qt

) q
2 = d (4qt)

q
2 .

Lemma 30. Let Z1, . . . , Zt ∈ {0, 1}m be a sequence of γ-almost ℓ-wise independent variables for
a positive even integer ℓ. Then for any f : {0, 1}m → Cd×d such that for all x ∈ {0, 1}m, f(x) is
Hermitian and ∥f(x)∥≤ 1, we have

Pr

[∥∥∥∥∥1

t

t∑
i=1

f(Zi) − E f

∥∥∥∥∥ ≤ ε

]
≥ 1 − d

(
16ℓ

ε2t

)ℓ/2

− 2ℓγd

εℓ
.

Proof. Let Wi := (f(Zi) − E f)/2. We have

Pr

[∥∥∥∥∥1

t

t∑
i=1

f(Zi) − E f

∥∥∥∥∥ > ε

]
= Pr

[∥∥∥∥∥
t∑

i=1

Wi

∥∥∥∥∥ >
tε

2

]
≤

E
[∥∥∑t

i=1Wi

∥∥ℓ]
(tε/2)ℓ

.

Note that each Wi is always a Hermitian matrix, so their sum is always Hermitian and therefore
normal. Then we have ∥∥∥∥∥

t∑
i=1

Wi

∥∥∥∥∥
ℓ

=

∥∥∥∥∥∥
(

t∑
i=1

Wi

)ℓ
∥∥∥∥∥∥ .

Moreover, since ℓ is a positive even integer, (
∑t

i=1Wi)
ℓ is positive semidefinite. Therefore,∥∥∥∥∥∥

(
t∑

i=1

Wi

)ℓ
∥∥∥∥∥∥ ≤ Tr

(t∑
i=1

Wi

)ℓ
 = Tr

 ∑
i1,...,iℓ∈[t]

Wi1Wi2 . . .Wiℓ

 =
∑

i1,...,iℓ∈[t]

Tr (Wi1Wi2 . . .Wiℓ) .

Let W ′
1, . . . ,W

′
t be a sequence of independent random variables where W ′

i := fi(U{0,1}m) − E fi.
Since the Wi’s are γ-almost ℓ-wise independent and |Wi|≤ 1, we have

E

∥∥∥∥∥
t∑

i=1

Wi

∥∥∥∥∥
ℓ
 ≤ E

 ∑
i1,...,iℓ∈[t]

Tr (Wi1Wi2 . . .Wiℓ)


=

∑
i1,...,iℓ∈[t]

E [Tr (Wi1Wi2 . . .Wiℓ)]

≤
∑

i1,...,iℓ∈[t]

E
[
Tr
(
W ′

i1W
′
i2 . . .W

′
iℓ

)]
+ γdtℓ

= E

Tr

(t∑
i=1

W ′
i

)ℓ
+ γdtℓ.

18

Therefore, by Lemma 29, we have

E

∥∥∥∥∥
t∑

i=1

Wi

∥∥∥∥∥
ℓ
 ≤ E

Tr

(t∑
i=1

W ′
i

)ℓ
+ γdtℓ ≤ d (4ℓt)ℓ/2 + γdtℓ.

Hence,

Pr

[∥∥∥∥∥
t∑

i=1

Wi

∥∥∥∥∥ >
tε

2

]
≤

E
[∥∥∑t

i=1Wi

∥∥ℓ]
(tε/2)ℓ

≤ d

(
16ℓ

ε2t

)ℓ/2

+
2ℓγd

εℓ
.

4.4.2 Almost ℓ-wise independence for small domains

We first prove that the concentration analysis for Hermitian matrices directly implies the general
case.

Lemma 31. Let Samp : {0, 1}n → ({0, 1}m)t be a function. Suppose for any f : {0, 1}m → C2d×2d

such that for all x ∈ {0, 1}m, f(x) is Hermitian and ∥f(x)∥≤ 1,

Pr
(Z1,...,Zt)∼Samp(Un)

[∥∥∥∥∥1

t

∑
i

f(Zi) − E f

∥∥∥∥∥ ≤ ε

]
≥ 1 − δ.

Then Samp is a d-dimensional (δ, ε) matrix sampler.

Proof. Let (Z1, . . . , Zt) ∼ Samp(Un). We are going to prove that for any function f : {0, 1}m →
Cd×d such that ∥f(x)∥≤ 1 for all x ∈ {0, 1}m, we have

Pr

[∥∥∥∥∥1

t

∑
i

f(Zi) − E f

∥∥∥∥∥ ≤ ε

]
≥ 1 − δ.

For any matrix A ∈ Cd×d, its Hermitian dilation H(A) ∈ C2d×2d is defined by

H(A) :=

[
0 A
A∗ 0

]
.

It is easy to verify that ∥A∥ = ∥H(A)∥. Then, for function g : x 7→ H(f(x)), we have

Pr

[∥∥∥∥∥1

t

∑
i

g(Zi) − E g

∥∥∥∥∥ ≤ ε

]
≥ 1 − δ.

Note that we have∥∥∥∥∥1

t

∑
i

f(Zi) − E f

∥∥∥∥∥ =

∥∥∥∥∥H
(

1

t

∑
i

f(Zi) − E f

)∥∥∥∥∥ =

∥∥∥∥∥1

t

∑
i

g(Zi) − E g

∥∥∥∥∥ .
Hence,

Pr

[∥∥∥∥∥1

t

∑
i

f(Zi) − E f

∥∥∥∥∥ ≤ ε

]
≥ 1 − δ.

19

Now we are ready to prove Lemma 24.

Lemma 24. For any 2 ≤ s < d/δ, there exists an efficient d-dimensional (δ, ε) matrix sampler for

domain {0, 1}m with O(s
ε2

log d
δ) samples using O((m+log(1/ε)) log(d/δ)

log s + log(d/δ)) random bits.

Proof. We begin by setting ℓ = 2 log(2d/δ)
log s , γ = δεℓ

2ℓ+1d
, and t = 16ℓs

ε2
. We then define our sampler by

outputting a γ-almost ℓ-wise independent sequence Z1, . . . , Zt ∈ {0, 1}m. Taking the parameters of
Lemma 30, observe

d

(
16ℓ

ε2t

)ℓ/2

≤ d

(
1

s

)ℓ/2

= d

(
1

s

) log(2d/δ)
log s

=
δ

2
,

and
2ℓγd

εℓ
=

δ

2
.

Let Samp : {0, 1}n → ({0, 1}m)t be a function. Suppose for any f : {0, 1}m → C2d×2d such that
for all x ∈ {0, 1}m, f(x) is Hermitian and ∥f(x)∥≤ 1,

Pr
(Z1,...,Zt)∼Samp(Un)

[∥∥∥∥∥1

t

∑
i

f(Zi) − E f

∥∥∥∥∥ ≤ ε

]
≥ 1 − δ.

Then Samp is a d-dimensional (δ, ε) matrix sampler by Lemma 31. Therefore, by Lemma 30, we
have

Pr

[∣∣∣∣∣1t
t∑

i=1

(f(Zi) − E f)

∣∣∣∣∣ ≤ ε

]
≥ 1 − δ.

Our sampler uses

t = O

(
ℓs

ε2

)
= O

(
s

ε2 log s
log

d

δ

)
samples. Furthermore, Lemma 14 shows that we have an efficient algorithm that uses only

O(ℓm + log(1/γ) + log log t) = O (ℓm + ℓ log(1/ε) + log(d/δ) + log log s)

= O

(
(m + log(1/ε)) log(d/δ)

log s
+ log(d/δ)

)
random bits to generate this γ-almost ℓ-wise independent sequence.

Remark 32. The initial work by Wigderson and Xiao [WX05] on matrix samplers focused on
Hermitian matrices, where each f(x) was assumed to be Hermitian. Nevertheless, as shown in
Lemma 31, any sampler that works for Hermitian matrices can naturally be applied to general
matrices as well.

5 Applications to Extractors and Codes

5.1 Applications to Extractors

Zuckerman showed that averaging samplers are equivalent to randomness extractors [Zuc97]. Here
we state the only direction that we need.

Lemma 33 ([Zuc97]). An efficient strong (δ, ε) averaging sampler Samp : {0, 1}n → ({0, 1}m)t

gives an efficient strong (n− log(1/δ) + log(1/ε), 2ε) extractor Ext : {0, 1}n × {0, 1}log t → {0, 1}m.

20

Applying Lemma 33 on Theorem 1 gives Theorem 5:

Theorem 5. For every constant α > 0, there exists constant β < 1 such that for all ε > 0
and k ≥ βn, there is an efficient strong (k, ε) extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with
m = Ω(k) − log(1/ε) and d = (1 + α) log(n− k) + (2 + α) log(1/ε) + O(1).

Proof. By Theorem 1, for any positive constant α > 0, there exists a constant λ > 1 such that
there exists an efficient strong (δ, ε) averaging sampler for domain {0, 1}m with O(1

ε2+α log1+α 1
δ)

samples using λ(m + log 1
δ) random bits.

To construct the required strong (k, ε) extractor for every n, we set δ such that log(1/δ) =
n
2λ + log(1/ε). Then, we construct an efficient strong (δ, ε) sampler Samp for domain {0, 1}m where

m =
n

λ
− log(1/δ) >

n

2λ
− log(1/ε) = Ω(n) − log(1/ε).

By the above, Samp uses n random bits and generates O(1
ε2+α log1+α 1

δ) samples.
By Lemma 33, Samp implies an efficient strong (n − log(1/δ) + log(1/ε), 2ε) extractor Ext :

{0, 1}n × {0, 1}d → {0, 1}m with d ≤ (1 + α) log(n− k) + (2 + α) log(1/ε) + O(1). It is only left to
verify that n− log(1/δ) + log(1/ε) ≤ βn for some constant β < 1. We have

n− log(1/δ) + log(1/ε) = n− n

2λ
≤ 2λ− 1

2λ
n.

This proves the theorem.

If we would like an extractor with the optimal seed length of d = log(n−k) + 2 log(1/ε) +O(1),
we can have the following extractor using Theorem 2.

Theorem 6. There exists constant β < 1 such that for all ε > 0 and k ≥ (1− β
logn+log(1/ε))n, there

is an efficient strong (k, ε) extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with m = Ω(k) − log2(1/ε)
and d = log(n− k) + 2 log(1/ε) + O(1).

Proof. By Theorem 2, there exists a constant λ > 1 such that there exists an efficient strong (δ, ε)
averaging sampler for domain {0, 1}m with O(1

ε2
log 1

δ) samples using m + λ log 1
δ (log log(1/δ) +

log(1/ε)) random bits.
To construct the required strong (k, ε) extractor for every n, we set δ such that log(1/δ) =

1
2λ(n

logn+log(1/ε)) + log(1/ε). Then, we construct an efficient strong (δ, ε) sampler Samp for domain

{0, 1}m where

m = n− λ log
1

δ
(log log(1/δ) + log(1/ε))

≥ n− n

2

log log(1/δ) + log(1/ε)

log n + log(1/ε)
− log2(1/ε) − log(1/ε) log n

≥ Ω(n) − log2(1/ε).

By the above, Samp uses n random bits and generates O(1
ε2

log 1
δ) samples.

By Lemma 33, Samp implies an efficient strong (n − log(1/δ) + log(1/ε), 2ε) extractor Ext :
{0, 1}n × {0, 1}d → {0, 1}m with d = log(n − k) + 2 log(1/ε) + O(1). It is only left to verify that
n− log(1/δ) + log(1/ε) ≤ (1 − β

logn+log(1/ε))n for some constant β < 1. We have

n− log(1/δ) + log(1/ε) = n− 1

2λ
(

n

log n + log(1/ε)
) ≤ (1 − 1

2λ(log n + log(1/ε))
)n.

This proves the theorem.

21

5.2 Application to List-Decodable Codes

Error-correcting codes are combinatorial objects that enable messages to be accurately transmitted,
even when parts of the data get corrupted. Codes have been extensively studied and have proven
to be extremely useful in computer science. Here we focus on the combinatorial property of list-
decodability, defined below.

Definition 34. A code ECC : {0, 1}n → ({0, 1}m)t is (ρ, L) list-decodable if for every received
message r ∈ ({0, 1}m)t, there are at most L messages x ∈ {0, 1}n such that dH(ECC(x), r) ≤ ρt,
where dH denotes the Hamming distance. A code is binary if m = 1.

We focus on the binary setting, i.e., m = 1.

Lemma 35 ([TZ04]). An efficient strong (δ, ε) averaging sampler Samp : {0, 1}n → {0, 1}t over
the binary domain gives an efficient binary code that is (ρ = 1

2 − ε, δ2n) list-decodable with code
rate R = n/t.

To construct our codes, we will use our almost ℓ-wise independence sampler in Lemma 20
directly.

Lemma 36. For all constant α > 0, there exists an efficient strong (δ, ε) averaging sampler for
binary domain with O(1

ε2+α log 1
δ) samples using n = C log(1/δ) random bits for some constant

C ≥ 1.

Proof. By setting s = 1/εα and m = 1 in Lemma 20, we have that whenever 1/εα ≤ 1/δ, we have
a strong (δ, ε) sampler with O(1

ε2
log 1

δ) samples using O(log(1/δ)) random bits. When 1/εα >
1/δ. Using the pairwise independence sampler in Lemma 12 for binary domain will satisfy the
condition.

Applying Lemma 35 to Lemma 36 gives Theorem 7:

Theorem 7. For every constant α > 0: there exists an explicit binary code with rate Ω(ε2+α) that
is (ρ = 1

2 − ε, L) list-decodable with list size L = 2(1−c)n for some constant c = c(α) > 0.

Proof. We use the (δ, ε) sampler in Lemma 36, where we choose δ such that n = C log(1/δ).
Applying Lemma 35 to this sampler implies Theorem 7, where c(α) = 1/C here.

6 Open Problems

Our work raises interesting open problems.

• Comparing to the sampler in [RVW00] which uses m + (1 + α) log(1/δ) random bits, our
averaging sampler requires m + O(log(1/δ)) random bits. Can we improve our randomness
efficiency while maintaining a good sample complexity?

• Is there a way to eliminate the additional α in the sample complexity? For ε = 1/poly(m)
and δ = exp(−poly(m)), can we design an efficient averaging sampler that is asymptotically
optimal in both randomness and sample complexity?

• Can we further improve the randomness complexity of our matrix samplers to fully re-
solve Problem 2?

• Is it possible to reduce the list size of the list-decodable codes in Theorem 7 to poly(n) using
the structure of the list?

• Can we construct randomness-efficient V -samplers on other normed spaces V ?

22

Acknowledgements

We thank Kuan Cheng for introducing us to the matrix sampler problem. We thank Shravas Rao
for simplifying and slightly improving Lemma 30 (although this didn’t improve our final result).
We thank Oded Goldreich, Dana Moshkovitz, Amnon Ta-Shma, Salil Vadhan, and anonymous
reviewers for helpful comments.

References

[AGHP92] Noga Alon, Oded Goldreich, Johan H̊astad, and René Peralta. “Simple constructions
of almost k-wise independent random variables”. In: Random Structures & Algorithms
3.3 (1992), pp. 289–304.

[Agr19] Rohit Agrawal. “Samplers and Extractors for Unbounded Functions”. In: Approx-
imation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques (APPROX/RANDOM 2019). Ed. by Dimitris Achlioptas and László A. Végh.
Vol. 145. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Ger-
many: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019, 59:1–59:21. isbn:
978-3-95977-125-2. doi: 10.4230/LIPIcs.APPROX-RANDOM.2019.59. url: https:
//drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.

2019.59.

[ALMSS98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
“Proof verification and the hardness of approximation problems”. In: J. ACM 45.3
(May 1998), pp. 501–555. issn: 0004-5411. doi: 10.1145/278298.278306. url:
https://doi.org/10.1145/278298.278306.

[AW02] Rudolf Ahlswede and Andreas Winter. “Strong converse for identification via quan-
tum channels”. In: IEEE Transactions on Information Theory 48.3 (2002), pp. 569–
579.

[BBR88] Charles H Bennett, Gilles Brassard, and Jean-Marc Robert. “Privacy amplification
by public discussion”. In: SIAM journal on Computing 17.2 (1988), pp. 210–229.

[BGG93] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. “Randomness in interactive
proofs”. In: Computational Complexity 3 (1993), pp. 319–354.

[B la19] Jaros law B lasiok. “Optimal streaming and tracking distinct elements with high prob-
ability”. In: ACM Transactions on Algorithms (TALG) 16.1 (2019), pp. 1–28.

[BR94] Mihir Bellare and John Rompel. “Randomness-efficient oblivious sampling”. In: Pro-
ceedings 35th Annual Symposium on Foundations of Computer Science. IEEE. 1994,
pp. 276–287.

[CDHKS00] Ran Canetti, Yevgeniy Dodis, Shai Halevi, Eyal Kushilevitz, and Amit Sahai. “Exposure-
Resilient Functions and All-or-Nothing Transforms”. In: Advances in Cryptology -
EUROCRYPT 2000, International Conference on the Theory and Application of
Cryptographic Techniques, Bruges, Belgium, May 14-18, 2000, Proceedings. Springer,
2000, pp. 453–469.

[CEG95] Ran Canetti, Guy Even, and Oded Goldreich. “Lower bounds for sampling algorithms
for estimating the average”. In: Information Processing Letters 53.1 (1995), pp. 17–
25.

23

https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.59
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2019.59
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2019.59
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2019.59
https://doi.org/10.1145/278298.278306
https://doi.org/10.1145/278298.278306

[CG89] Benny Chor and Oded Goldreich. “On the power of two-point based sampling”. In:
Journal of Complexity 5.1 (1989), pp. 96–106.

[CGT12] Richard Y Chen, Alex Gittens, and Joel A Tropp. “The masked sample covariance
estimator: an analysis using matrix concentration inequalities”. In: Information and
Inference: A Journal of the IMA 1.1 (2012), pp. 2–20.

[Dod00] Yevgeniy Dodis. PhD thesis: Exposure-resilient cryptography. English (US). Mas-
sachusetts Institute of Technology, Sept. 2000.

[DS02] Yevgeniy Dodis and Joel Spencer. “On the (Non)Universality of the One-Time Pad”.
In: 43rd Symposium on Foundations of Computer Science (FOCS 2002), 16-19 Novem-
ber 2002, Vancouver, BC, Canada, Proceedings. IEEE Computer Society, 2002, pp. 376–
385.

[DW09] Yevgeniy Dodis and Daniel Wichs. “Non-Malleable Extractors and Symmetric Key
Cryptography from Weak Secrets”. In: Proceedings of the 41st Annual ACM Sympo-
sium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2,
2009. ACM, 2009, pp. 601–610.

[Gil98] David Gillman. “A Chernoff bound for random walks on expander graphs”. In: SIAM
Journal on Computing 27.4 (1998), pp. 1203–1220.

[GLSS18] Ankit Garg, Yin Tat Lee, Zhao Song, and Nikhil Srivastava. “A matrix expander
chernoff bound”. In: Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing. 2018, pp. 1102–1114.

[Gol11] Oded Goldreich. “A sample of samplers: A computational perspective on sampling”.
In: Studies in Complexity and Cryptography. Miscellanea on the Interplay between
Randomness and Computation: In Collaboration with Lidor Avigad, Mihir Bellare,
Zvika Brakerski, Shafi Goldwasser, Shai Halevi, Tali Kaufman, Leonid Levin, Noam
Nisan, Dana Ron, Madhu Sudan, Luca Trevisan, Salil Vadhan, Avi Wigderson, David
Zuckerman. Springer, 2011, pp. 302–332.

[GR08] Venkatesan Guruswami and Atri Rudra. “Explicit Codes Achieving List Decoding
Capacity: Error-Correction With Optimal Redundancy”. In: IEEE Transactions on
Information Theory 54.1 (2008), pp. 135–150. doi: 10.1109/TIT.2007.911222.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A Levin, and Michael Luby. “A pseudo-
random generator from any one-way function”. In: SIAM Journal on Computing 28.4
(1999), pp. 1364–1396.

[ILL89] R. Impagliazzo, L. A. Levin, and M. Luby. “Pseudo-random generation from one-way
functions”. In: Proceedings of the Twenty-First Annual ACM Symposium on Theory
of Computing. STOC ’89. Seattle, Washington, USA: Association for Computing
Machinery, 1989, pp. 12–24. isbn: 0897913078. doi: 10.1145/73007.73009. url:
https://doi.org/10.1145/73007.73009.

[IZ89] Russell Impagliazzo and David Zuckerman. “How to recycle random bits”. In: FOCS.
Vol. 30. 1989, pp. 248–253.

[Jus72] Jørn Justesen. “Class of constructive asymptotically good algebraic codes”. In: IEEE
Transactions on information theory 18.5 (1972), pp. 652–656.

24

https://doi.org/10.1109/TIT.2007.911222
https://doi.org/10.1145/73007.73009
https://doi.org/10.1145/73007.73009

[KLR09] Yael Tauman Kalai, Xin Li, and Anup Rao. “2-Source Extractors under Computa-
tional Assumptions and Cryptography with Defective Randomness”. In: 50th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2009, October 25-27,
2009, Atlanta, Georgia, USA. IEEE Computer Society, 2009, pp. 617–626.

[KLRZ08] Yael Tauman Kalai, Xin Li, Anup Rao, and David Zuckerman. “Network Extractor
Protocols”. In: 49th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA. IEEE Computer Society,
2008, pp. 654–663.

[LT13] Michel Ledoux and Michel Talagrand. Probability in Banach Spaces: isoperimetry and
processes. Springer Science & Business Media, 2013.

[Lu02] Chin-Laung Lu. “Hyper-encryption against space-bounded adversaries from on-line
strong extractors”. In: Advances in Cryptology - CRYPTO 2002, 22nd Annual In-
ternational Cryptology Conference, Santa Barbara, California, USA, August 18-22,
2002, Proceedings. Springer, 2002, pp. 257–271.

[NN93] Joseph Naor and Moni Naor. “SMALL-BIAS PROBABILITY SPACES-EFFICIENT
CONSTRUCTIONS AND APPLICATIONS”. In: SIAM Journal on Computing 22.4
(1993), pp. 838–856.

[NZ96] Noam Nisan and David Zuckerman. “Randomness is linear in space”. In: Journal of
Computer and System Sciences 52.1 (1996), pp. 43–52.

[Raz05] Ran Raz. “Extractors with weak random seeds”. In: Proceedings of the thirty-seventh
annual ACM symposium on Theory of computing. 2005, pp. 11–20.

[RL01] Yao-Feng Ren and Han-Ying Liang. “On the best constant in Marcinkiewicz–Zygmund
inequality”. In: Statistics & probability letters 53.3 (2001), pp. 227–233.

[RT00] Jaikumar Radhakrishnan and Amnon Ta-Shma. “Bounds for dispersers, extractors,
and depth-two superconcentrators”. In: SIAM Journal on Discrete Mathematics 13.1
(2000), pp. 2–24.

[Rud99] Mark Rudelson. “Random vectors in the isotropic position”. In: Journal of Functional
Analysis 164.1 (1999), pp. 60–72.

[RVW00] Omer Reingold, Salil Vadhan, and Avi Wigderson. “Entropy waves, the zig-zag graph
product, and new constant-degree expanders and extractors”. In: Proceedings 41st
Annual Symposium on Foundations of Computer Science. IEEE. 2000, pp. 3–13.

[SZ99] Aravind Srinivasan and David Zuckerman. “Computing with very weak random
sources”. In: SIAM Journal on Computing 28.4 (1999), pp. 1433–1459.

[Tom74] Nicole Tomczak-Jaegermann. “The moduli of smoothness and convexity and the
Rademacher averages of the trace classes S{p} (1 ≤ p < ∞)”. eng. In: Studia Math-
ematica 50.2 (1974), pp. 163–182. url: http://eudml.org/doc/217886.

[Tro+15] Joel A Tropp et al. “An introduction to matrix concentration inequalities”. In: Foun-
dations and Trends® in Machine Learning 8.1-2 (2015), pp. 1–230.

[Tro12] Joel A Tropp. “User-friendly tail bounds for sums of random matrices”. In: Founda-
tions of computational mathematics 12 (2012), pp. 389–434.

[TZ04] Amnon Ta-Shma and David Zuckerman. “Extractor codes”. In: IEEE transactions
on information theory 50.12 (2004), pp. 3015–3025.

25

http://eudml.org/doc/217886

[Vad03] Salil P. Vadhan. “On constructing locally computable extractors and cryptosystems
in the bounded storage model”. In: Advances in Cryptology - CRYPTO 2003, 23rd
Annual International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 17-21, 2003, Proceedings. Springer, 2003, pp. 61–77.

[Vad07] Salil Vadhan. “The unified theory of pseudorandomness: guest column”. In: ACM
SIGACT News 38.3 (2007), pp. 39–54.

[Vad12] Salil P. Vadhan. “Pseudorandomness”. In: Foundations and Trends® in Theoretical
Computer Science 7.1–3 (2012), pp. 1–336.

[WX05] Avi Wigderson and David Xiao. “A randomness-efficient sampler for matrix-valued
functions and applications”. In: 46th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’05). IEEE. 2005, pp. 397–406.

[Zuc07] David Zuckerman. “Linear Degree Extractors and the Inapproximability of Max
Clique and Chromatic Number”. In: Theory of Computing 3.6 (2007), pp. 103–128.
doi: 10.4086/toc.2007.v003a006. url: https://theoryofcomputing.org/

articles/v003a006.

[Zuc97] David Zuckerman. “Randomness-optimal oblivious sampling”. In: Random Structures
& Algorithms 11.4 (1997), pp. 345–367.

A Proof of Proposition 4

In this section, we extend the non-explicit averaging sampler construction from [CEG95] to matrix
samplers.

Lemma 37. Let Samp be a d-dimensional (δ, ε) matrix sampler for domain {0, 1}m using t samples.
Then there exists a d-dimensional (2δ, 3ε) matrix sampler for domain {0, 1}m using m + 2 log 1

δ +

2 log d + log log d
ε + 1 random bits and t samples.

Proof. Our goal is to construct a (2δ, 3ε) matrix sampler Samp′ based on Samp.

Output Approximation via Discretization. We construct a discretization grid G ⊂ C by

G := {a∆ + b∆i | a, b ∈ Z and |a|2 + |b|2 ≤ ∆−2},

where ∆ = ε
d . For each x ∈ {0, 1}m, define an approximation function f ′ that rounds each entry

of f(x) to the nearest point in G, yielding f ′ : {0, 1}m → Gd×d. Since each entry in f(x) differs
from f ′(x) by at most ∆, the total approximation error per matrix (in spectral norm) is bounded
by d∆ ≤ ε according to Proposition 40. Thus, f ′ has an average that approximates the average of
f within ε, and the set of all such approximations f ′ forms a finite function class, which we denote
F .

Bounding the Size of F . Each entry of a matrix in Gd×d has at most 1/∆2 possible values.
The number of possible matrices is therefore bounded by(

1

∆2

)d2

=

(
d

ε

)2d2

,

so the total number of functions in F is

|F | ≤

((
d

ε

)2d2
)2m

= 22
m+1d2 log d

ε .

26

https://doi.org/10.4086/toc.2007.v003a006
https://theoryofcomputing.org/articles/v003a006
https://theoryofcomputing.org/articles/v003a006

Probabilistic Reduction of Random Bits. For each function f ′ ∈ F , let a random seed be
called bad if the estimate of Samp deviates from the true average of f ′ by more than ε. Since Samp
is a (δ, ε)-sampler, the fraction of bad random seeds for any f ′ ∈ F is at most δ. By Hoeffding’s
inequality, if we select k random seeds independently at random, the probability that more than
2δk of them are bad is at most 2e−2δ2k. Applying a union bound over all f ′ ∈ F , the probability
that there exists any f ′ with more than 2δk bad seeds is at most |F | · 2e−2δ2k.

Choosing k and Applying Probabilistic Method. Set

k =
ln|F |+ ln 2.01

2δ2
≤

2md2 log d
ε + 1

δ2

so that |F |·2e−2δ2k < 1. With this choice, there exists a set K of k random seeds such that, for all
f ′ ∈ F , the fraction of bad seeds in K is at most 2δ. The number of random bits required to select
a sequence ρ ∈ K is

log k ≤ m + 2 log
1

δ
+ 2 log d + log log

d

ε
+ 1.

Defining the New Sampler Samp′. We define Samp′ as follows: Select a random seed ρ ∈ K,
and run Samp(ρ) to get samples Z1, . . . , Zt ∈ {0, 1}m. With 1 − 2δ probability, we have∥∥∥∥∥1

t

t∑
i=1

f(Zi) − E f

∥∥∥∥∥ ≤

∥∥∥∥∥1

t

t∑
i=1

(
(f(Zi) − f ′(Zi)) + (f ′(Zi) − E f ′) + (E f ′ − E f)

)∥∥∥∥∥ ≤ 3ε.

Samp′ is then a (2δ, 3ε) matrix sampler, using only

m + 2 log
1

δ
+ 2 log d + log log

d

ε
+ 1

random bits. This completes the proof.

Theorem 38 (Matrix Chernoff Bound, see [Tro+15]). Let X1, . . . , Xk be independent d×d complex
random matrices. Suppose ∥Xi∥≤ 1 for all i ∈ [k]. Then, for any ε > 0, the following inequality
holds:

Pr

(∥∥∥∥∥1

t

t∑
i=1

(Xi − E[Xi])

∥∥∥∥∥ > ε

)
≤ 2d · exp

(
−3

8
tε2
)
.

Applying matrix chernoff bound, we can prove Proposition 4.

Proposition 4. There exists a (non-explicit) d-dimensional (δ, ε) matrix sampler for domain
{0, 1}m using O(1

ε2
log d

δ) samples and m + 2 log 1
δ + 2 log d + log log d

ε random bits.

Proof. By Theorem 38, taking t = 24
ε2

log 4d
δ independent samples in {0, 1}m would give a d-

dimensional (δ/2, ε/3) matrix sampler for domain {0, 1}m using t samples and tm random bits. Ap-
plying Lemma 37, we get a d-dimensional (δ, ε) matrix sampler for domain {0, 1}m using O(1

ε2
log d

δ)

samples and m + 2 log 1
δ + 2 log d + log log d

ε random bits.

27

B Proof of Lemma 15

Proposition 39 (Marcinkiewicz–Zygmund inequality [RL01]). Let {Xi, i ≥ 1} be a sequence of
independent random variables with EXi = 0, E|Xi|p< ∞. Then for p ≥ 2:

E

∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣
p

≤ C(p)np/2−1
n∑

i=1

E|Xi|p,

where C(p) ≤ (3
√

2)ppp/2.

Lemma 15. Let Z1, . . . , Zt ∈ {0, 1}m be a sequence of γ-almost ℓ-wise independent variables for
an even integer ℓ. Then for every sequence of functions f1, . . . , ft : {0, 1}m → [0, 1],

Pr

[∣∣∣∣∣1t
t∑

i=1

(fi(Zi) − E fi)

∣∣∣∣∣ ≤ ε

]
≥ 1 −

(
25ℓ

ε2t

)ℓ/2

− γ

εℓ
.

Proof. Let Wi := fi(Zi) − E fi. We have

Pr

[∣∣∣∣∣
t∑

i=1

Wi

∣∣∣∣∣ > tε

]
≤

E
[∣∣∑t

i=1Wi

∣∣ℓ]
(tε)ℓ

.

Let W ′
1, . . . ,W

′
t be a sequence of independent random variables where W ′

i := fi(U{0,1}m) − E fi.
Since the Wi’s are γ-almost ℓ-wise independent and |Wi|≤ 1, we have

E

∣∣∣∣∣
t∑

i=1

Wi

∣∣∣∣∣
ℓ
 = E

(t∑
i=1

Wi

)ℓ
 ≤ E

(t∑
i=1

W ′
i

)ℓ
+ γtℓ = E

∣∣∣∣∣
t∑

i=1

W ′
i

∣∣∣∣∣
ℓ
+ γtℓ.

Since EW ′
i = 0 and |W ′

i |≤ 1, they satisfy the conditions for Marcinkiewicz–Zygmund inequality.
We have

E

∣∣∣∣∣
t∑

i=1

W ′
i

∣∣∣∣∣
ℓ
 ≤ (3

√
2)ℓℓℓ/2tℓ/2−1

t∑
i=1

E|W ′
i |ℓ≤ (5

√
ℓt)ℓ.

Therefore,

E
[∣∣∑t

i=1Wi

∣∣ℓ]
(tε)ℓ

≤
(

25ℓ

ε2t

)ℓ/2

+
γ

εℓ
.

C Proof of Lemma 17

To prove Lemma 17, we need the following property of matrix norms:

Proposition 40. Let A ∈ Cd×d and define

r = max
i,j

|Aij |.

Then the spectral norm of A satisfies
r ≤ ∥A∥≤ dr.

28

Proof. Select standard basis vectors ei, ej ∈ Cd such that |Aij |= r. Then,

∥A∥≥ |e∗iAej |
∥ei∥2∥ej∥2

= |Aij |= r.

We also have

∥A∥≤ ∥A∥F=

√√√√ d∑
i=1

d∑
j=1

A2
ij ≤ dr.

Lemma 17. A (δ, ε) averaging sampler is a d-dimensional (2d2δ, 2dε) matrix sampler.

Proof. Let Z1, . . . , Zt be the sampler’s output. We define

A :=
1

t

t∑
i=1

f(Zi).

Now we fix some i, j ∈ [d]. For all x ∈ {0, 1}m, we have |f(x)ij |≤ ∥f(x)∥ ≤ 1 by Proposition 40.
Then, since Z ′

is are the output of a (δ, ε) averaging sampler, we have

Pr [|Re(Aij) − Re((E f)ij)| ≤ ε] ≥ 1 − δ and Pr [|Im(Aij) − Im((E f)ij)| ≤ ε] ≥ 1 − δ,

where Re(x) and Im(x) are the functions that extract the real part and imaginary part of x
respectively. Take a union bound, we have with 1 − 2δ probability,

|Aij − (E f)ij | ≤ |Re(Aij − (E f)ij)| + |Im(Aij − (E f)ij)| ≤ 2ε.

By a union bound over all entries, with 1 − 2d2δ probability, all entries have an additive error
bounded by 2ε, and this implies that ∥A− E f∥≤ 2dε by Proposition 40.

29
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

