
Models That Prove Their Own Correctness

Noga Amit∗

UC Berkeley
nogamit@berkeley.edu

Shafi Goldwasser∗

UC Berkeley
shafi.goldwasser@gmail.com

Orr Paradise∗

UC Berkeley
orrp@eecs.berkeley.edu

Guy N. Rothblum∗

Apple
rothblum@alum.mit.edu

Abstract

How can we trust the correctness of a learned model on a particular input of interest? Model
accuracy is typically measured on average over a distribution of inputs, giving no guarantee for
any fixed input. This paper proposes a theoretically-founded solution to this problem: to train
Self-Proving models that prove the correctness of their output to a verification algorithm V via
an Interactive Proof.

Self-Proving models satisfy that, with high probability over an input sampled from a given
distribution, the model generates a correct output and successfully proves its correctness to V.
The soundness property of V guarantees that, for every input, no model can convince V of the
correctness of an incorrect output. Thus, a Self-Proving model proves correctness of most of
its outputs, while all incorrect outputs (of any model) are detected by V . We devise a generic
methods for learning Self-Proving models, and prove its convergence under certain assumptions.

The theoretical framework and results are complemented by experiments on an arithmetic
capability: computing the greatest common divisor (GCD) of two integers. Our learning method
is used to train a Self-Proving transformer that computes the GCD and proves the correctness
of its answer.

1 Introduction

Bob is studying for his algebra exam and stumbles upon a question Q that he cannot solve. He
queries a Large Language Model (LLM) for the answer, and it responds with a number: 42. Bob
is aware of recent research showing that the LLM attains a 90% score on algebra benchmarks (cf.
Frieder et al. 2023), but should he trust that the answer to his particular question Q is indeed 42?

Bob could ask the LLM to explain its answer in natural language. Though he must proceed
with caution, as the LLM might try to convince him of an incorrect answer [Turpin et al., 2023].
Moreover, even if 42 is the correct answer, the LLM may fail to produce a convincing proof [Wang
et al., 2023]. If only the LLM could formally prove its answer, Bob would verify the proof and be
convinced.

This paper initiates the study of Self-Proving models (Fig. 1) that prove the correctness of their
answers via an Interactive Proof system [Goldwasser et al., 1985]. Self-Proving models successfully

∗Authors listed alphabetically.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 98 (2024)

nogamit@berkeley.edu
shafi.goldwasser@gmail.com
orrp@eecs.berkeley.edu
rothblum@alum.mit.edu

Figure 1: Self-Proving models. For input
x, Self-Proving model Pθ generates an output
y and sends it to a Verification Algorithm V .
Then, over i ∈ [R] rounds, V sends query qi,
and receives an answer ai from Pθ. Finally, V
decides (“accept/reject”) whether it is convinced
that y is a correct output for x.

Guarantee Type Def.

V Completeness
& Soundness

Worst-case
∀x, y

3.2

Pθ Verifiability Average-case
x ∼ µ, y ∼ Pθ(x)

3.4

Table 1: Formal guarantees. Completeness
and soundness are fundamental guarantees of
a verification algorithm V . Verifiability (novel
in this work) is a feature of a model Pθ with
respect to a verifier V and input distribution µ.
Importantly, V ’s soundness holds for any input
x and output y.

convince a verification algorithm V with worst-case soundness guarantees: for any question, V
rejects all incorrect answers with high probability over the interaction. This guarantee holds even
against provers that have access to V ’s specification, and unbounded computational power.

Our contributions are as follows.

• We define Self-Proving models (Section 3).

• We propose two methods for learning Self-Proving models in Section 4. The first, Transcript
Learning (TL), relies on access to transcripts of accepting interactions and is the focus of this
paper; we prove convergence bounds for TL under convexity and Lipschitzness assumptions.
The second method, Reinforcement Learning from Verifier Feedback (RLVF), trains a model
by emulating interaction with the verifier. We also present variants of these algorithms that
use Annotations to improve learning in practice.

• We empirically study TL and Annotated-TL (ATL) for training Self-Proving transformers
that compute the Greatest Common Divisor (GCD) of two integers. Table 2 demonstrates
the efficacy of our methods, with additional experiments in Section 5. Our results may be of
independent interest for research on the arithmetic capabilities of transformers (e.g. Charton
2024, Lee et al. 2024). Code, data and models will be made available upon publication.

Scope. This paper contains a theory of learned models that prove their own correctness via an
Interactive Proof system. The fascinating and well-studied question of which settings are verifiable
in an Interactive Proof system is beyond our scope. Our theory is general in that it pertains to any
such setting, e.g., any decision problem solvable in polynomial space [Shamir, 1992]. See Goldreich
[2008a] for a primer on Proof systems more broadly.

2

Learning method Correctness Verifiability
GPT (baseline) 99.8% -

GPT+TL 98.8% 60.3%
GPT+ATL 98.6% 96.7%

Table 2: Self-Proving transformers computing the GCD. We train a 6.7M parameter GPT to
compute the GCD of two integers sampled log-uniformly from [104]. Vanilla GPT correctly generates
the GCD for almost all inputs, but does not prove correctness to a simple verification algorithm.
GPT trained with Transcript Learning (GPT+TL) proves its answer 60.3% of the time; training
with Annotated Transcript Learning (GPT+ATL) increases this to 96.7%. See Section 5 for details.

2 Related Work

This paper is situated at the intersection of machine learning (ML) theory and Interactive Proof
systems (IPs). We briefly discuss recent relevant work from these literatures.

ML and IPs. IPs have found numerous applications in ML towards a diverse set of goals. Anil
et al. [2021] introduce Prover–Verifier Games, a game-theoretic framework for learned provers and
verifiers. Wäldchen et al. [2024] cast the problem of model interpretability as a Prover–Verifier
interaction between a learned feature selector and a learned feature classifier. Debate systems
[Condon et al., 1995], a multiprover variant of IPs, were considered for aligning models with human
values [Irving et al., 2018, Brown-Cohen et al., 2023]. In such Debate systems, two competing models
are each given an alleged answer y ̸= y′, and attempt to prove the correctness of their answer to a
(human or learned) judge. Lastly, Murty et al. [2023] define Pseudointelligence: a model learner LM

and an evaluator learner LE are each given samples from a ground-truth; LM learns a model of the
ground-truth, while LE learns an evaluator of such models; the learned evaluator then attempts to
distinguish between the learned model and the ground-truth in a Turing Test-like interaction.

All of these works consider learned verifiers, whereas our work focuses on training models that
interact with a manually-defined verifier. More related in this regard is IP-PAC [Goldwasser et al.,
2021], in which a learner proves that she learned a model that is Probably Approximately Correct
[Valiant, 1984]. We, however, consider models that prove their own correctness on a per-input basis,
rather than learners that prove average-case correctness of a model.

Models that generate formal proofs. Self-Proving models are verified by an algorithm with
formal completeness and soundness guarantees (see Definition 3.2). In this sense, Self-Proving models
generate a formal proof of the correctness of their output. Several works propose specialized models
that generate formal proofs.

AlphaGeometry [Trinh et al., 2024] is capable of formally proving olympiad-level geometry
problems; Gransden et al. [2015], Polu and Sutskever [2020], Yang et al. [2023] and others train
models to produce proofs in Coq, Metamath and Lean [de Moura et al., 2015]; FunSearch [Romera-
Paredes et al., 2024] evolves LLM-generated programs by systematically evaluating their correctness.
Indeed, all of these can be cast as Self-Proving models developed for specific proof systems. Meanwhile,
this work defines and studies the class of such models in general. Several works (e.g. Welleck et al.
2022) consider models that generate natural language proofs or explanations, which are fundamentally
different from formal proofs (or provers) verified by an algorithm.

3

Training on intermediate steps. Chain-of-Though (CoT, Wei et al. 2022) refers to additional
supervision on a model in the form of intermediate reasoning steps. CoT is known to improve
model performance whether included in-context [Wei et al., 2022] or in the training phase itself
[Yang et al., 2022]. Transcript Learning (TL, Section 4.1) can be viewed as training the model on a
Chain-of-Thought induced by the interaction of a verifier and an honest prover (Definition 3.2).

To complete the analogy, let us adopt the terminology of Uesato et al. [2022], who consider
outcome supervision and process supervision. In our case, the outcome is the decision of the verifier,
and the process is the interaction between the verifier and the model. Thus, Reinforcement Learning
from Verifier Feedback (RLVF, Section 4.2) is outcome-supervised while TL is process-supervised.
In a recent work, Lightman et al. [2024] find that process-supervised transformers outperform
outcome-supervised ones on the MATH dataset [Hendrycks et al., 2021].

Transformers for arithmetic. In Section 5 we train and evaluate Self-Proving transformers to
generate the GCD of two integers and prove its correctness to a verifier. These experiments leverage
a long line of work on neural models of arithmetic tasks originating with Siu and Roychowdhury
[1992]. Of particular relevance is the recent paper of Charton [2024], who trains transformers to
generate the GCD—without a proof of correctness. We benefit from conclusions suggested in their
work and start from a similar (scaled-down) experimental setup. Our main challenge (obtaining
Self-Proving models) is overcome by introducing Annotated Transcript Learning (ATL).

We conduct ablation experiments to find two deciding factors in ATL. First, we study the effect
of the amount of annotation given in the form of intermediate steps [Lee et al., 2024], which is related
to autoregressive length complexity [Malach, 2023]. Second, we characterize ATL efficacy in terms
of an algebraic property of the tokenization scheme (cf. Nogueira et al. 2021, Charton 2022, 2024).

3 Self-Proving models

We introduce and formally define our learning framework in which models prove the correctness of
their output. We start with preliminaries from the learning theory and proof systems literatures in
Section 3.1. We then introduce our main definition in Section 3.2.

3.1 Preliminaries

Let Σ be a set of finite tokens and Σ∗ denote the set of finite sequences of such tokens. We consider
sequence-to-sequence models Fθ : Σ

∗ → Σ∗, which are total functions that produce an output for
each possible sequence. A model is parameterized by a real-valued, finite dimensional vector θ. We
consider models as randomized functions, meaning that Fθ(x) is a random variable over Σ∗, of which
samples are denoted by y ∼ Fθ(x).

Before we can define models that prove their own correctness, we must first define correctness.
Correctness is defined with respect to an input distribution µ over Σ∗, and a ground-truth F ∗ that
defines correct answers. For simplicity of presentation, we focus on the case that each input x ∈ Σ∗

has exactly one correct output F ∗(x) ∈ Σ∗, and a zero-one loss function on outputs (the general case
is left for future work). The fundamental goal of machine learning can be thought of as learning a
model of the ground truth F ∗. Formally,

Definition 3.1 (Correctness). Let µ be a distribution of input sequences in Σ∗ and let F ∗ : Σ∗ → Σ∗

be a fixed (deterministic) ground-truth function. For any α ∈ [0, 1], we say that model Fθ is α-correct

4

(with respect to µ) if
Pr
x∼µ

y∼Fθ(x)

[y = F ∗(x)] ≥ α.

An interactive proof system [Goldwasser et al., 1985] is a protocol carried out between an efficient
verifier and a computationally unbounded prover. The prover attempts to convince the verifier
of the correctness of some assertion, while the verifier accepts only correct claims. The prover is
powerful yet untrusted; in spite of this, the verifier must reject false claims with high probability.

In the context of this work, it is important to note that the verifier is manually-defined (as
opposed to learned). Formally, the verifier is a probabilistic polynomial-time algorithm tailored to a
particular ground-truth capability F ∗. Informally, the verifier is the anchor of trust: think of the
verifier as an efficient and simple algorithm, hosted in a trustworthy environment.

Given an input x ∈ Σ∗, the model Fθ “claims” that y ∼ Fθ(x) is correct. We now define what
it means to prove this claim. We will use Pθ to denote Self-Proving models, noting that they are
formally the same object1 as non-Self-Proving (“vanilla”) models Fθ. This notational change is to
emphasize that Pθ first outputs y ∼ Pθ(x) and is then prompted by the verifier, unlike Fθ who only
generates an output y ∼ Fθ(x).

A Self-Proving model proves that y ∼ Pθ(x) is correct to a verifier V over the course of R rounds
of interaction (Figure 1). In each round i ∈ [R], verifier V queries Pθ on a sequence qi ∈ Σ∗ to obtain
an answer ai ∈ Σ∗; once the interaction is over, V accepts or rejects. For fixed x, y ∈ Σ∗, the decision
of V after interacting with Pθ is a random variable over V ’s decision (accept/reject), determined by
the randomness of V and Pθ. The decision random variable is denoted by ⟨V, Pθ⟩ (x, y).

We present a definition of Interactive Proofs restricted to our setting.

Definition 3.2. Fix a soundness error s ∈ (0, 1), a finite set of tokens Σ and a ground truth
F ∗ : Σ∗ → Σ∗. A verifier V (in an Interactive Proof) for F ∗ is a probabilistic polynomial-time
algorithm that is given explicit inputs x, y ∈ Σ∗ and black-box (oracle) query access to a prover P .2 It
interacts with P over R rounds (see Figure 1) and outputs a decision ⟨V, P ⟩ (x, y) ∈ {0, 1}. Verifier
V satisfies the following two guarantees:

• Completeness: There exists an honest prover P ∗ such that, for all x ∈ Σ∗,

Pr[⟨V, P ∗⟩(x, F ∗(x)) accepts] = 1,

where the probability is over the randomness of V .3

• Soundness: For all P and for all x, y ∈ Σ∗, if y ̸= F ∗(x) then

Pr[⟨V, P ⟩ (x, y) accepts] ≤ s,

where the probability is over the randomness of V and P , and s is the soundness error.

Remark 3.3 (Verifier efficiency). Definition 3.2 requires that V is a polynomial-time algorithm
whereas provers are unbounded. This captures a requirement for efficient verification. We chose

1Both are randomized mappings from Σ∗ to Σ∗.
2We intentionally write P rather than Pθ: Interactive Proofs are defined with respect to all possible provers, not

just parameterized ones.
3WLOG, the honest prover is deterministic by fixing the optimal randomness of a randomized prover.

5

polynomial time as a measure of efficiency because it is common Proof systems literature. That
said, one could adapt Definition 3.2 to fit alternative efficiency measures, such as space complexity
[Condon and Lipton, 1989] or circuit depth [Goldwasser et al., 2007]. Regardless of which measure
is taken, to avoid a trivial definition it is crucial that V should be more efficient than the honest
prover P ∗; else, V can simply execute P ∗ to perform the computation itself.

By definition, the soundness error s of a verifier V bounds the probability that it is mistakenly
convinced of an incorrect output; in that sense, the smaller s, the “better” the verifier V . In our
setting, we think of a manually-defined verifier V who is formally proven (by a human) to have a
small soundness error by analysis of V ’s specification.

As depicted in Figure 1, each of the model’s answers depends on all previous queries and answers
in the interaction. This captures the setting stateful models, e.g. a session with a chatbot.

Towards defining Self-Proving models (Section 3.2), let us observe the following. Completeness
and soundness are worst-case guarantees, meaning that they hold for all possible inputs x ∈ Σ∗.
In particular, completeness implies that for all x ∈ Σ∗, the honest prover P ∗ convinces V of the
correctness of F ∗(x); in classical proof systems there is no guarantee that an “almost honest” prover
can convince the verifier (cf. Paradise [2021]). Yet, if we are to learn a prover Pθ, we cannot expect
it to agree with P ∗ perfectly, nor can we expect it to always output F ∗(x). Indeed, Self-Proving
models will have a distributional guarantee with respect to inputs x ∼ µ.

3.2 Self-Proving models

We define the Verifiability of a model Pθ with respect to an input distribution µ and a verifier V .
Intuitively, Verifiability captures the ability of the model to prove the correctness of its answer
y ∼ Pθ(x), when the input x is sampled from µ. We call models capable of proving their own
correctness as Self-Proving models.

Definition 3.4 (Self-Proving model). Fix a verifier V for a ground-truth F ∗ : Σ∗ → Σ∗ as in
Definition 3.2, and a distribution µ over inputs Σ∗. The Verifiability of a model Pθ : Σ

∗ → Σ∗ is
defined as

verV,µ(θ) := Pr
x∼µ

y∼Pθ(x)

[⟨V, Pθ⟩ (x, y) accepts] . (1)

We say that model Pθ is β-Self-Proving with respect to V and µ if verV,µ(θ) ≥ β.

Remark 3.5 (Verifiability =⇒ correctness). Notice that the ground-truth F ∗ does not appear in
Definition 3.4 except for the first sentence. Indeed, once it is established that V is a verifier for
F ∗ (as per Definition 3.2), then Verifiability w.r.t V implies correctness w.r.t F ∗: Consider any
input distribution µ, ground-truth F ∗, and a verifier V for F ∗ with soundness error s. By a union
bound, if model Pθ is β-Verifiable, then it is (β − s)-correct. That is to say, Verifiability is formally
a stronger guarantee than correctness when V has small soundness error s.

As depicted in Figure 1, a Self-Proving model Pθ plays a dual role: first, it generates an output
y ∼ Pθ(x), and then it proves the correctness of this output to V . Note also that Self-Provability is a
feature of a model, unlike completeness and soundness which are features of a verifier (see Table 1).

The benefit of Verifiability over correctness is captured by the following scenario. Alice wishes
to use a model Pθ to compute some functionality F ∗ on an input x0 in a high risk setting. Alice
generates y0 ∼ Pθ(x0). Should Alice trust that y0 is correct? If Alice has a held-out set of labeled

6

samples, she can estimate Pθ’s average correctness on µ. Unfortunately, (average) correctness
provides no guarantee regarding for the correctness of the particular (x0, y0) that Alice has in hand.
If, however, Alice has access to a verifier V for which Pθ is Self-Proving, then she can trust the
model on an input-by-input (rather than average-case) basis: Alice can execute V on (x0, y0) and
black-box access to Pθ. Soundness of V guarantees that if y0 is incorrect, then V rejects with high
probability, in which case Alice should either generate Pθ(x0) again—or find a better model.

4 Learning Self-Proving Autoregressive Models

With a sound verifier V at hand, obtaining Self-Proving models with respect to V holds great
promise: a user that prompts the model with input x does not need to take it on good faith that
Pθ(x) is correct; she may simply verify this herself by executing the verification protocol. How, then,
can we learn models that are not just approximately-correct, but Self-Proving as well?

The challenge is to align the model with a verifier. We assume that the learner has access to input
samples x ∼ µ and correct outputs F ∗(x), as well as the verifier specification (code). Additionally,
the learner can emulate the verifier, as the latter is required to be computationally efficient.4

Our focus is on autoregressive sequence-to-sequence (Self-Proving) models Pθ [Elman, 1990].
Such models generate their output by recursively prompting a randomized sampling from a base
distribution pθ over tokens Σ. For an input z ∈ Σ∗, the output w ∼ Pθ(z) is generated as follows:

• Sample w1 ∼ pθ(z).

• Let j = 1. While wj is not the end-of-sequence token EOS ∈ Σ∗:

– Sample wj+1 ∼ pθ(zw1 · · ·wj).

• Output w = w1w2 · · ·wj .

For any z ∈ Σ∗, it is useful to consider the vector of log-proabilities over Σ, denoted by log pθ(z) ∈ R|Σ|.
We assume that each coordinate in this vector is differentiable with respect to θ.

Our general approach is inspired by Reinforcement Learning from Human Feedback [Christiano
et al., 2017], a method for aligning models with human preferences, which has recently been used
to align sequence-to-sequence models [Ouyang et al., 2022]. However, there are two important
differences between humans and algorithmic verifiers: (1) Verifiers are efficient algorithms which
may be emulated by the learner. This is unlike humans, whose preferences are costly to obtain. On
the other hand, (2) verifiers make a single-bit decision at the end of an interaction, but cannot guide
the prover (model) in intermediate rounds. In RL terms, this is known as the exploration problem
for sparse reward signals (e.g. Ladosz et al. 2022).

Section 4.1 introduces Transcript Learning (TL), a learning algorithm that overcomes the
exploration problem mentioned in the second point under the assumption that the learner has access
to transcripts of interactions in which the verifier accepts. We prove convergence bounds for TL
(Appendix A.1) and analyze it experimentally (Section 5).

Access to accepting transcripts is a reasonable assumption, for example, when there is an efficient
honest prover that can generate such transcripts [Goldwasser et al., 2015]. When there is no access
to accepting transcripts, we propose Reinforcement Learning from Verifier Feedback (Section 4.2).

4We refer the reader to classical literature on Interactive Proof systems for formal definitions of computational
efficiency (e.g. Goldreich 2008b).

7

4.1 Transcript Learning

We present an algorithm for learning Self-Proving models which uses access to a distribution of
accepting transcripts. This is a reasonable assumption to make when the honest prover P ∗ (see
Definition 3.2) is efficient, as in the case in Doubly-Efficient Interactive Proof systems as defined by
Goldwasser et al. [2015] and developed in other theoretical (e.g. Goldreich and Rothblum 2018) and
applied (e.g. Zhang et al. 2021) works. In this case, an honest prover P ∗ can be run by the learner
during training to collect accepting transcripts without incurring heavy computational cost.

The intuition behind Transcript Learning is that the interaction of the verifier and prover can be
viewed as a sequence itself, which is called the transcript π ∈ Σ∗. The idea is to learn a model not
just of x 7→ y∗ for a correct output y∗, but of x 7→ y∗π∗, where π∗ is a transcript of an interaction in
which the verifier accepted.

In more detail, Transcript Learning requires access to an (honest) transcript generator T ∗. Given
an input x, the generator T ∗(x) samples a sequence P ∗(x)π∗ ∈ Σ∗ such that π∗ is an accepted
transcript. The generator is autoregressive, meaning that for any prefix of an accepted transcript
π∗
≤t ∈ Σt, the learner has access to the distribution over next tokens T ∗(π≤t) ∈ Σ.5

Transcript Learning (TL) trains a Self-Provable model by autoregressively optimizing towards
generating accepting transcripts. It is described in Algorithm 1. At a very high level, it works by
repeatedly sampling x ∼ µ and transcript y∗π∗ ∼ T ∗(x), and updating the logits log pθ towards
agreeing with y∗π∗ via Gradient Ascent. We prove that, under certain conditions, it is expected to
output a Self-Provable model.

Theorem 4.1 (Theorem A.5, informal). Fix an input distribution µ, a verifier V , a transcript
generator T ∗, an autoregressive model family {Pθ}θ parameterized by θ ∈ Rd for some d ∈ N, and a
norm || · || on Rd. Assume that the agreement function A : Rd → [0, 1] defined by

A(θ) := Pr
x∼µ

π∗∼T ∗(x)

[Transcript(⟨V, Pθ⟩ (x)) = π∗]

is concave and differentiable in θ. For any ε > 0, let BNorm, BLip and C be upper-bounds such that
the following conditions hold.

• There exists θ∗ ∈ Rd with ||θ∗|| < BNorm such that A(θ∗) ≥ 1− ε/2.

• For all θ, the logits of Pθ are BLip-Lipschitz in θ.

• The total number of tokens sent by the prover to the verifier V in any interaction is at most C.

Denote by θ̄ the output of TL running for number of iterations

N ≥ 4 · C2 ·
B2

Norm ·B2
Lip

ε2
(2)

and learning rate λ = BNorm/CBLip

√
N . Then the expected Verifiability of θ̄ is at least 1− ε.

The proof (Appendix A) goes by reduction to Stochastic Gradient Descent (SGD). We show
that the learner can use only its available tools—sampling honest transcripts, emulating the verifier,

5Formally, if the generator is prompted with any string that cannot be completed to an accepted transcript, it
outputs a dummy symbol ⊥ ∈ Σ.

8

and differentiating the logits—to estimate the agreement gradient ∇A(θ). Since the agreement A(θ)
lower bounds the Verifiability of Pθ, the former can be used as a surrogate objective for the latter.

The conditions for Theorem 4.1 can be split into two. First, the standard conditions used to
prove SGD convergence: convexity,6 BNorm-boundedness, and BLip-Lipschitzness. Second, there is a
bound C on the communication complexity of the prover in the Interactive Proof system.

Quantitatively, the efficiency of TL is captured by the number of iterations N . It is desirable to
minimize N , which is also the number of samples needed from the distribution µ and the transcript
generator T ∗. Like the conditions on the theorem, the bound on N can too be decomposed into
two factors: The right factor is the complexity of SGD (B2

NormB
2
Lip/ε

2), and the left factor O(C2)
is the communication complexity of the proof system. Minimizing communication complexity has
been an overarching goal in the study of proof systems (e.g. Goldreich and Håstad 1998, Goldreich
et al. 2002, Reingold et al. 2021). Theorem 4.1 formally shows the benefit of communication-efficient
proof systems in the context of Self-Proving models.

4.2 Reinforcement Learning from Verifier Feedback (RLVF)

As mentioned in Section 4.1, Transcript Learning uses access to an honest transcript generator to
estimate gradients of (a lower bound on) the Verifiability of a model Pθ.

Reinforcement Learning from Verifier Feedback (RLVF, Algorithm 2) estimates this gradient
without access to a transcript generator. RLVF can be viewed as a modification of TL in which the
learner emulates the interaction of the verifier with its own model Pθ. Rather than directly sampling
from the generator as in TL, it collects accepting transcripts by rejection sampling on emulated
transcripts.

This rejection sampling means that RLVF requires its initial model Pθ0 to have Verifiability
bounded away from 0, so that accepting transcripts are sampled with sufficient probability. Fortu-
nately, such a Self-Proving base model can be learned using TL. This gives a learning paradigm in
which a somewhat-Self-Proving base model is first learned with TL (with Verifiability δ > 0), and
then “amplified” to a fully Self-Proving model using RLVF (cf. Nair et al. 2018).

We prove that RLVF learner can estimate the Verifiability gradient of Pθ using emulation alone
in Lemma A.6. From a broader perspective, RLVF can be derived by viewing Self-Proving as a
reinforcement learning problem in which the agent (prover) is rewarded when the verifier accepts.
Indeed, RLVF is the Policy Gradient method [Sutton et al., 1999] for a verifier-induced reward.
Convergence bounds for Policy Gradient methods are a challenging and active area of research (e.g.
Agarwal et al. 2021), and so we leave the full analysis to future work.

4.3 Learning from annotated transcripts

To minimize the length of messages exchanged in an Interactive Proof system, the honest prover is
designed to send the shortest possible message to the verifier, containing only essential information.

However, when training Self-Proving model, it may be useful for it to first generate an “annotated”
answer ã which is then trimmed down to the actual answer a to be sent to the verifier. We adapt
Sections 3 and 4 to this setting in Appendix C, where we present Annotated Transcripts. This can
be viewed as adding Chain-of-Thought [Wei et al., 2022] to the model. The Transcript Learning
algorithm naturally extends to annotated transcripts as well.

6Theorem 4.1 requires concavity because it guarantees maximization, rather than minimization. We leave it for
future work to relax the differentiability assumption.

9

5 Experimental Results

We describe our experimental setup, and present ablation studies that shed additional light on the
effect of annotation and representation on Verifiability.

5.1 Setup: Training transformers to predict the GCD of two integers

Charton [2024] empirically studies the power and limitations of learning GCDs with transformers.
We follow their setup and two conclusions on settings that make for faster learning: Training from
the log-uniform distribution, and choosing a base of representation with many prime factors.

We fix a base of representation B = 210 and use x to denote an integer x encoded as a B-ary
string.7 For sequences of integers, we write (x1x2) to denote the concatenation of x1 with x2,
delimited by a special token. The vocabulary size is needed for this representation is |Σ| ≈ 210.

We choose the input distribution µ to be the log-uniform distribution on [104], and train the
transformer on sequences of the form (x1x2y), where x1, x2 ∼ µ and y = GCD(x1, x2). This is a
scaling-down of Charton [2024], to allow single GPU training of Self-Proving transformers. In all of
our experiments, we use a GPT model [Vaswani et al., 2017] with 6.3M parameters trained on a
dataset of 1024K samples in batches of 1024. Full details are deferred to Appendix E.

Proving correctness of GCD. Following Charton [2024] as a baseline, we find that transformers
can correctly compute the GCD with over 99% probability over (x1, x2) ∼ µ. To what extent can
they prove their answer? To answer this question, we first devise a natural proof system based on
Bézout’s theorem. Its specification and formal guarantees are deferred to Appendix D. We denote
its verification algorithm by V , and highlight some important features of the experimental setup:

• The proof system consists of one round (R = 1). The verifier makes no query, and simply
receives a proof π from the prover.

• Completeness: For any x1, x2, y ∈ [104] such that y = GCD(x1, x2), there exists a proof π
such that V (x1x2yπ) accepts. As detailed in Appendix D, the proof π consists of a pair of
integers who are Bézout coefficients for x1, x2.

• Soundness: If y ̸= GCD(x1, x2), then V (x1x2yπ) rejects for any alleged proof π ∈ Σ∗.

To measure Verifiability, we train a Self-Proving transformer using Transcript Learning on
sequences (x1x2yπ) and estimate for how many inputs x1, x2 ∼ µ does the model generate both the
correct GCD y and a valid proof π. We test on 1000 pairs of integers x′1, x

′
2 ∼ µ held-out of the

training set, prompting the model with (x′
1x

′
2) to obtain (y′π′), and testing whether V (x′

1x
′
2y

′π′)
accepts.

Table 2 on the second page of this paper shows that Transcript Learning for 100K iterations
(≈100M samples) results in a Self-Proving transformer that correctly proves 60.3% of its answers;
there is an additional 38.5% answers which are correct, but the transformer fails to generate an
accepted proof. Annotated Transcript Learning all but closes this gap, proving 96.7% of its answers.
We further investigate the effect of annotations next.

10

Figure 2: Verifiability with increasing amounts of annotation. T is the number of steps
added in Annotated Transcript Learning. Dashed lines indicate Euclidean depth, that bound the
Verifiability of models that prove only for integers up to a certain number of steps. Each T was run
with three seeds, with mean ± standard error depicted.

5.2 Models generalize beyond annotations

The proof π is annotated by including intermediate steps in its computation. Details are deferred to
Appendix D; roughly speaking, we observe that the proof π for input (a,b) is obtained as the last
element in a sequence a,b, π1, π2, . . . computed by the Euclidean algorithm. We annotate the proof
π by prepending to it the sequence of Euclidean steps (π1, . . . , πT) up to some fixed cutoff T .

Figure 2 shows how T affects the Verifiability of the learned model. As suggested by Lee et al.
[2024], training the model on more intermediate steps results in better performance; in our case,
increasing the number of intermediate steps T yields better Self-Proving models. One might suspect
that models only learn to execute the Euclidean algorithm in-context. To rule out this hypothesis,
we derive an upper bound on the possible efficacy of such limited models. This bound is based on
the Euclidean depth of integers (x1, x2), which we define as the number of intermediate steps that
the Euclidean algorithm makes before terminating on input (x1, x2). Indeed, a model that only
learns the to compute (in-context) the simple arithmetic of the Euclidean algorithm would only be
able to prove the correctness of inputs (x1, x2) whose depth does not exceed the annotation cutoff T .

Figure 2 tells a different story: For each cutoff T , we estimate the probability that integers
x1, x2 ∼ µ have Euclidean depth at most T on 105 sampled pairs. Larger annotation cutoff T

7B = 210 is chosen following Charton [2024] to be an integer with many prime factors.

11

increases Verifiability, but all models exceed their corresponding Euclidean depth bound.

5.3 Base of representation

Figure 3: The number of prime divisors of a base ω(B) determines Verifiability. For each
o ∈ [4], we sampled 17 bases B ∈ {2, . . . , 1386} such that ω(B) = o. A Self-Proving transformer was
trained via Transcript Learning for twenty epochs on an identical dataset of 1024K samples encoded
in base B. For each ω(B) we depict the mean ± standard error.

As mentioned previously, Charton [2024] concludes that, for a given base of representation B,
transformers correctly compute the GCD of integers x1, x2 that are products of primes dividing
B. Simply put, choosing a base B with many different prime factors yields models with better
correctness (accuracy), which suggests why base B = 210 = 2 · 3 · 5 · 7 yielded the best results.

To test whether the factorization of B has a similar effect on Verifiability as well, we train
transformers on 68 bases varying the number of prime divisors ω(B) from ω(B) = 1 (i.e., B is a
prime power) to ω(B) = 4. Figure 3 shows that ω(B) correlates not just with correctness [Charton,
2024], but also with Verifiability. Although the finding is statistically significant (no overlapping
error margins), the overall difference is by a few percentage points; we attribute this to the smaller
(10%) number of samples on which models were trained, relative to our other experiments.

6 Conclusions

Trust between a learned model and its user is fundamental. In recent decades, Interactive Proofs
[Goldwasser et al., 1985] have emerged as a general theory of trust established via verification
algorithms. This work demonstrates that models can learn to formally prove their answers in an
Interactive Proof system. We call models that possess this capability Self-Proving.

The definition of Self-Proving models forms a bridge between the rich theory of Interactive Proofs
and the contemporary topic of Trustworthy ML. Interactive Proofs offer formal worst-case soundness
guarantees; thus, users of Self-Proving models can be confident when their models generate correct
answers—and detect incorrect answers with high probability.

We demonstrate the theoretical viability of our definition with two generic learning algorithms:
Transcript Learning (TL) and Reinforcement Learning from Verifier Feedback (RLVF). The analyses
of these algorithms is informed by techniques from theories of learning, RL, and computational
complexity. This work can be extended in several directions: finding conditions for the convergence
of RLVF, improving sample complexity bounds for TL, or designing altogether different learning
algorithms (for example, by taking advantage of properties of the verifier).

To better understand the training dynamics of (Annotated) TL, we train Self-Proving transformers
for the Greatest Common Divisor (GCD) problem. We train a small (6.3M parameter) transformer
that learns to generate correct answers and proofs with high accuracy. Facing forward, we note that

12

Interactive Proofs exist for capabilities far more complex than the GCD [Shamir, 1992]; scaling up
our experiments is the next step towards bringing Self-Proving models from theory to practice.

Acknowledgments

We are grateful to Micah Carroll and Avishay Tal for their helpful comments. This research was
supported by DARPA-TA1 under grant no. HR001119S0076, and by the Simons Collaboration on
the Theory of Algorithmic Fairness.

References

Simon Frieder, Luca Pinchetti, Alexis Chevalier, Ryan-Rhys Griffiths, Tommaso Salvatori, Thomas
Lukasiewicz, Philipp Petersen, and Julius Berner. Mathematical capabilities of chatgpt.
In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey
Levine, editors, Advances in Neural Information Processing Systems 36: Annual Conference
on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, De-
cember 10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
58168e8a92994655d6da3939e7cc0918-Abstract-Datasets_and_Benchmarks.html.

Miles Turpin, Julian Michael, Ethan Perez, and Samuel R. Bowman. Language models don’t
always say what they think: Unfaithful explanations in chain-of-thought prompting. In Al-
ice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine,
editors, Advances in Neural Information Processing Systems 36: Annual Conference on
Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, De-
cember 10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
ed3fea9033a80fea1376299fa7863f4a-Abstract-Conference.html.

Boshi Wang, Xiang Yue, and Huan Sun. Can chatgpt defend its belief in truth? evaluating LLM
reasoning via debate. In Houda Bouamor, Juan Pino, and Kalika Bali, editors, Findings of
the Association for Computational Linguistics: EMNLP 2023, Singapore, December 6-10, 2023,
pages 11865–11881. Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023.
FINDINGS-EMNLP.795. URL https://doi.org/10.18653/v1/2023.findings-emnlp.795.

Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proof-systems (extended abstract). In Robert Sedgewick, editor, Proceedings of the 17th Annual
ACM Symposium on Theory of Computing, May 6-8, 1985, Providence, Rhode Island, USA, pages
291–304. ACM, 1985. doi: 10.1145/22145.22178. URL https://doi.org/10.1145/22145.22178.

François Charton. Can transformers learn the greatest common divisor? In The Twelfth Interna-
tional Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 6-11, 2024.
OpenReview.net, 2024.

Nayoung Lee, Kartik Sreenivasan, Jason D. Lee, Kangwook Lee, and Dimitris Papailiopoulos.
Teaching arithmetic to small transformers. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 6-11, 2024. OpenReview.net, 2024.

13

http://papers.nips.cc/paper_files/paper/2023/hash/58168e8a92994655d6da3939e7cc0918-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/58168e8a92994655d6da3939e7cc0918-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/ed3fea9033a80fea1376299fa7863f4a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/ed3fea9033a80fea1376299fa7863f4a-Abstract-Conference.html
https://doi.org/10.18653/v1/2023.findings-emnlp.795
https://doi.org/10.1145/22145.22178

Adi Shamir. IP = PSPACE. J. ACM, 39(4):869–877, 1992. doi: 10.1145/146585.146609. URL
https://doi.org/10.1145/146585.146609.

Oded Goldreich. Probabilistic proof systems: A primer. Found. Trends Theor. Comput. Sci., 3(1):
1–91, 2008a. doi: 10.1561/0400000023. URL https://doi.org/10.1561/0400000023.

Cem Anil, Guodong Zhang, Yuhuai Wu, and Roger B. Grosse. Learning to give checkable answers with
prover-verifier games. CoRR, abs/2108.12099, 2021. URL https://arxiv.org/abs/2108.12099.

Stephan Wäldchen, Kartikey Sharma, Berkant Turan, Max Zimmer, and Sebastian Pokutta. Inter-
pretability guarantees with Merlin-Arthur classifiers. In Sanjoy Dasgupta, Stephan Mandt, and
Yingzhen Li, editors, Proceedings of The 27th International Conference on Artificial Intelligence
and Statistics, volume 238 of Proceedings of Machine Learning Research, pages 1963–1971. PMLR,
02–04 May 2024. URL https://proceedings.mlr.press/v238/waldchen24a.html.

Anne Condon, Joan Feigenbaum, Carsten Lund, and Peter W. Shor. Probabilistically checkable
debate systems and nonapproximability of pspace-hard functions. Chic. J. Theor. Comput. Sci.,
1995, 1995. URL http://cjtcs.cs.uchicago.edu/articles/1995/4/contents.html.

Geoffrey Irving, Paul F. Christiano, and Dario Amodei. AI safety via debate. CoRR, abs/1805.00899,
2018. URL http://arxiv.org/abs/1805.00899.

Jonah Brown-Cohen, Geoffrey Irving, and Georgios Piliouras. Scalable AI safety via doubly-
efficient debate. CoRR, abs/2311.14125, 2023. doi: 10.48550/ARXIV.2311.14125. URL https:
//doi.org/10.48550/arXiv.2311.14125.

Shikhar Murty, Orr Paradise, and Pratyusha Sharma. Pseudointelligence: A unifying lens on
language model evaluation. In Houda Bouamor, Juan Pino, and Kalika Bali, editors, Findings
of the Association for Computational Linguistics: EMNLP 2023, Singapore, December 6-10,
2023, pages 7284–7290. Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023.
FINDINGS-EMNLP.485. URL https://doi.org/10.18653/v1/2023.findings-emnlp.485.

Shafi Goldwasser, Guy N. Rothblum, Jonathan Shafer, and Amir Yehudayoff. Interactive proofs for
verifying machine learning. In James R. Lee, editor, 12th Innovations in Theoretical Computer
Science Conference, ITCS 2021, January 6-8, 2021, Virtual Conference, volume 185 of LIPIcs,
pages 41:1–41:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi: 10.4230/LIPICS.
ITCS.2021.41. URL https://doi.org/10.4230/LIPIcs.ITCS.2021.41.

Leslie G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, 1984. doi:
10.1145/1968.1972. URL https://doi.org/10.1145/1968.1972.

Trieu H. Trinh, Yuhuai Wu, Quoc V. Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nat., 625(7995):476–482, 2024. doi: 10.1038/S41586-023-06747-5.
URL https://doi.org/10.1038/s41586-023-06747-5.

Thomas Gransden, Neil Walkinshaw, and Rajeev Raman. SEPIA: search for proofs using inferred
automata. In Amy P. Felty and Aart Middeldorp, editors, Automated Deduction - CADE-25
- 25th International Conference on Automated Deduction, Berlin, Germany, August 1-7, 2015,
Proceedings, volume 9195 of Lecture Notes in Computer Science, pages 246–255. Springer, 2015.
doi: 10.1007/978-3-319-21401-6_16. URL https://doi.org/10.1007/978-3-319-21401-6_16.

14

https://doi.org/10.1145/146585.146609
https://doi.org/10.1561/0400000023
https://arxiv.org/abs/2108.12099
https://proceedings.mlr.press/v238/waldchen24a.html
http://cjtcs.cs.uchicago.edu/articles/1995/4/contents.html
http://arxiv.org/abs/1805.00899
https://doi.org/10.48550/arXiv.2311.14125
https://doi.org/10.48550/arXiv.2311.14125
https://doi.org/10.18653/v1/2023.findings-emnlp.485
https://doi.org/10.4230/LIPIcs.ITCS.2021.41
https://doi.org/10.1145/1968.1972
https://doi.org/10.1038/s41586-023-06747-5
https://doi.org/10.1007/978-3-319-21401-6_16

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.
CoRR, abs/2009.03393, 2020. URL https://arxiv.org/abs/2009.03393.

Kaiyu Yang, Aidan M. Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil,
Ryan J. Prenger, and Animashree Anandkumar. Leandojo: Theorem proving with retrieval-
augmented language models. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko,
Moritz Hardt, and Sergey Levine, editors, Advances in Neural Information Processing Systems 36:
Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans,
LA, USA, December 10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/
2023/hash/4441469427094f8873d0fecb0c4e1cee-Abstract-Datasets_and_Benchmarks.html.

Leonardo Mendonça de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von
Raumer. The lean theorem prover (system description). In Amy P. Felty and Aart Middeldorp,
editors, Automated Deduction - CADE-25 - 25th International Conference on Automated Deduction,
Berlin, Germany, August 1-7, 2015, Proceedings, volume 9195 of Lecture Notes in Computer
Science, pages 378–388. Springer, 2015. doi: 10.1007/978-3-319-21401-6_26. URL https:
//doi.org/10.1007/978-3-319-21401-6_26.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468–475, 2024.

Sean Welleck, Jiacheng Liu, Ximing Lu, Hannaneh Hajishirzi, and Yejin Choi. Natu-
ralprover: Grounded mathematical proof generation with language models. In Sanmi
Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh, editors, Ad-
vances in Neural Information Processing Systems 35: Annual Conference on Neural In-
formation Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28
- December 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
1fc548a8243ad06616eee731e0572927-Abstract-Conference.html.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh,
editors, Advances in Neural Information Processing Systems 35: Annual Conference on Neu-
ral Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November
28 - December 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html.

Mengjiao Yang, Dale Schuurmans, Pieter Abbeel, and Ofir Nachum. Chain of thought imitation with
procedure cloning. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and
A. Oh, editors, Advances in Neural Information Processing Systems 35: Annual Conference on
Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November
28 - December 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
ebdb990471f653dffb425eff03c7c980-Abstract-Conference.html.

Jonathan Uesato, Nate Kushman, Ramana Kumar, H. Francis Song, Noah Y. Siegel, Lisa Wang,
Antonia Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-

15

https://arxiv.org/abs/2009.03393
http://papers.nips.cc/paper_files/paper/2023/hash/4441469427094f8873d0fecb0c4e1cee-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/4441469427094f8873d0fecb0c4e1cee-Abstract-Datasets_and_Benchmarks.html
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
http://papers.nips.cc/paper_files/paper/2022/hash/1fc548a8243ad06616eee731e0572927-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/1fc548a8243ad06616eee731e0572927-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/ebdb990471f653dffb425eff03c7c980-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/ebdb990471f653dffb425eff03c7c980-Abstract-Conference.html

and outcome-based feedback. CoRR, abs/2211.14275, 2022. doi: 10.48550/ARXIV.2211.14275.
URL https://doi.org/10.48550/arXiv.2211.14275.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 6-11,
2024. OpenReview.net, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
Joaquin Vanschoren and Sai-Kit Yeung, editors, Proceedings of the Neural Information Processing
Systems Track on Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, Decem-
ber 2021, virtual, 2021. URL https://datasets-benchmarks-proceedings.neurips.cc/paper/
2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html.

Kai-Yeung Siu and Vwani P. Roychowdhury. Optimal depth neural networks for multiplication and
related problems. In Stephen Jose Hanson, Jack D. Cowan, and C. Lee Giles, editors, Advances in
Neural Information Processing Systems 5, [NIPS Conference, Denver, Colorado, USA, November
30 - December 3, 1992], pages 59–64. Morgan Kaufmann, 1992. URL http://papers.nips.cc/
paper/657-optimal-depth-neural-networks-for-multiplication-and-related-problems.

Eran Malach. Auto-regressive next-token predictors are universal learners. CoRR, abs/2309.06979,
2023. doi: 10.48550/ARXIV.2309.06979. URL https://doi.org/10.48550/arXiv.2309.06979.

Rodrigo Frassetto Nogueira, Zhiying Jiang, and Jimmy Lin. Investigating the limitations of the
transformers with simple arithmetic tasks. CoRR, abs/2102.13019, 2021. URL https://arxiv.
org/abs/2102.13019.

François Charton. Linear algebra with transformers. Trans. Mach. Learn. Res., 2022, 2022. URL
https://openreview.net/forum?id=Hp4g7FAXXG.

Anne Condon and Richard J. Lipton. On the complexity of space bounded interactive proofs (extended
abstract). In 30th Annual Symposium on Foundations of Computer Science, Research Triangle
Park, North Carolina, USA, 30 October - 1 November 1989, pages 462–467. IEEE Computer Society,
1989. doi: 10.1109/SFCS.1989.63519. URL https://doi.org/10.1109/SFCS.1989.63519.

Shafi Goldwasser, Dan Gutfreund, Alexander Healy, Tali Kaufman, and Guy N. Rothblum. Verifying
and decoding in constant depth. In David S. Johnson and Uriel Feige, editors, Proceedings
of the 39th Annual ACM Symposium on Theory of Computing, San Diego, California, USA,
June 11-13, 2007, pages 440–449. ACM, 2007. doi: 10.1145/1250790.1250855. URL https:
//doi.org/10.1145/1250790.1250855.

Orr Paradise. Smooth and strong pcps. Comput. Complex., 30(1):1, 2021. doi: 10.1007/
S00037-020-00199-3. URL https://doi.org/10.1007/s00037-020-00199-3.

Oded Goldreich. Computational complexity - a conceptual perspective. Cambridge University Press,
2008b. ISBN 978-0-521-88473-0. doi: 10.1017/CBO9780511804106. URL https://doi.org/10.
1017/CBO9780511804106.

16

https://doi.org/10.48550/arXiv.2211.14275
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
http://papers.nips.cc/paper/657-optimal-depth-neural-networks-for-multiplication-and-related-problems
http://papers.nips.cc/paper/657-optimal-depth-neural-networks-for-multiplication-and-related-problems
https://doi.org/10.48550/arXiv.2309.06979
https://arxiv.org/abs/2102.13019
https://arxiv.org/abs/2102.13019
https://openreview.net/forum?id=Hp4g7FAXXG
https://doi.org/10.1109/SFCS.1989.63519
https://doi.org/10.1145/1250790.1250855
https://doi.org/10.1145/1250790.1250855
https://doi.org/10.1007/s00037-020-00199-3
https://doi.org/10.1017/CBO9780511804106
https://doi.org/10.1017/CBO9780511804106

Jeffrey L. Elman. Finding structure in time. Cogn. Sci., 14(2):179–211, 1990. doi: 10.1207/
S15516709COG1402_1. URL https://doi.org/10.1207/s15516709cog1402_1.

Paul F. Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei.
Deep reinforcement learning from human preferences. In Isabelle Guyon, Ulrike von Luxburg,
Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Gar-
nett, editors, Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA,
USA, pages 4299–4307, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
d5e2c0adad503c91f91df240d0cd4e49-Abstract.html.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton,
Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Chris-
tiano, Jan Leike, and Ryan Lowe. Training language models to follow instructions with human
feedback. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh,
editors, Advances in Neural Information Processing Systems 35: Annual Conference on Neu-
ral Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November
28 - December 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
b1efde53be364a73914f58805a001731-Abstract-Conference.html.

Pawel Ladosz, Lilian Weng, Minwoo Kim, and Hyondong Oh. Exploration in deep reinforcement
learning: A survey. Inf. Fusion, 85:1–22, 2022. doi: 10.1016/J.INFFUS.2022.03.003. URL
https://doi.org/10.1016/j.inffus.2022.03.003.

Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation: Interactive
proofs for muggles. J. ACM, 62(4):27:1–27:64, 2015. doi: 10.1145/2699436. URL https:
//doi.org/10.1145/2699436.

Oded Goldreich and Guy N. Rothblum. Simple doubly-efficient interactive proof systems for locally-
characterizable sets. In Anna R. Karlin, editor, 9th Innovations in Theoretical Computer Science
Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA, USA, volume 94 of LIPIcs, pages
18:1–18:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi: 10.4230/LIPICS.ITCS.
2018.18. URL https://doi.org/10.4230/LIPIcs.ITCS.2018.18.

Jiaheng Zhang, Tianyi Liu, Weijie Wang, Yinuo Zhang, Dawn Song, Xiang Xie, and Yupeng
Zhang. Doubly efficient interactive proofs for general arithmetic circuits with linear prover time.
In Yongdae Kim, Jong Kim, Giovanni Vigna, and Elaine Shi, editors, CCS ’21: 2021 ACM
SIGSAC Conference on Computer and Communications Security, Virtual Event, Republic of
Korea, November 15 - 19, 2021, pages 159–177. ACM, 2021. doi: 10.1145/3460120.3484767. URL
https://doi.org/10.1145/3460120.3484767.

Oded Goldreich and Johan Håstad. On the complexity of interactive proofs with bounded commu-
nication. Inf. Process. Lett., 67(4):205–214, 1998. doi: 10.1016/S0020-0190(98)00116-1. URL
https://doi.org/10.1016/S0020-0190(98)00116-1.

Oded Goldreich, Salil P. Vadhan, and Avi Wigderson. On interactive proofs with a laconic prover.
Comput. Complex., 11(1-2):1–53, 2002. doi: 10.1007/S00037-002-0169-0. URL https://doi.org/
10.1007/s00037-002-0169-0.

17

https://doi.org/10.1207/s15516709cog1402_1
https://proceedings.neurips.cc/paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://doi.org/10.1016/j.inffus.2022.03.003
https://doi.org/10.1145/2699436
https://doi.org/10.1145/2699436
https://doi.org/10.4230/LIPIcs.ITCS.2018.18
https://doi.org/10.1145/3460120.3484767
https://doi.org/10.1016/S0020-0190(98)00116-1
https://doi.org/10.1007/s00037-002-0169-0
https://doi.org/10.1007/s00037-002-0169-0

Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round interactive proofs
for delegating computation. SIAM J. Comput., 50(3), 2021. doi: 10.1137/16M1096773. URL
https://doi.org/10.1137/16M1096773.

Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Overcoming
exploration in reinforcement learning with demonstrations. In 2018 IEEE International Conference
on Robotics and Automation, ICRA 2018, Brisbane, Australia, May 21-25, 2018, pages 6292–6299.
IEEE, 2018. doi: 10.1109/ICRA.2018.8463162. URL https://doi.org/10.1109/ICRA.2018.
8463162.

Richard S. Sutton, David A. McAllester, Satinder Singh, and Yishay Mansour. Policy
gradient methods for reinforcement learning with function approximation. In Sara A.
Solla, Todd K. Leen, and Klaus-Robert Müller, editors, Advances in Neural Information
Processing Systems 12, [NIPS Conference, Denver, Colorado, USA, November 29 - Decem-
ber 4, 1999], pages 1057–1063. The MIT Press, 1999. URL http://papers.nips.cc/paper/
1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation.

Alekh Agarwal, Sham M. Kakade, Jason D. Lee, and Gaurav Mahajan. On the theory of policy
gradient methods: Optimality, approximation, and distribution shift. J. Mach. Learn. Res., 22:
98:1–98:76, 2021. URL http://jmlr.org/papers/v22/19-736.html.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike
von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Ro-
man Garnett, editors, Advances in Neural Information Processing Systems 30: Annual Con-
ference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach,
CA, USA, pages 5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learn-
ing - From Theory to Algorithms. Cambridge University Press, 2014.
ISBN 978-1-10-705713-5. URL http://www.cambridge.org/de/academic/
subjects/computer-science/pattern-recognition-and-machine-learning/
understanding-machine-learning-theory-algorithms.

Donald E. Knuth. The Art of Computer Programming, Volume II: Seminumerical Algorithms.
Addison-Wesley, 1969. ISBN 0201038021. URL https://www.worldcat.org/oclc/310551264.

E. Bezout. Theorie Generale Des Equations Algebriques. Kessinger Publishing, 1779. ISBN
9781162056128. URL https://books.google.co.il/books?id=wQZvSwAACAAJ.

A Theoretical analyses for Section 4

In this section we provide a formal description and analysis of Transcript Learning (TL, Section 4.1)
and Reinforcement Learning from Verifier Feedback (RLVF, Section 4.2). In Appendix A.1 we
prove a convergence theorem for TL under convexity and Lipschitzness assumptions. Obtaining
an analogous result for RLVF is more challenging; in lieu of a full analysis, we provide a lemma

18

https://doi.org/10.1137/16M1096773
https://doi.org/10.1109/ICRA.2018.8463162
https://doi.org/10.1109/ICRA.2018.8463162
http://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation
http://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation
http://jmlr.org/papers/v22/19-736.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
http://www.cambridge.org/de/academic/subjects/computer-science/pattern-recognition-and-machine-learning/understanding-machine-learning-theory-algorithms
http://www.cambridge.org/de/academic/subjects/computer-science/pattern-recognition-and-machine-learning/understanding-machine-learning-theory-algorithms
http://www.cambridge.org/de/academic/subjects/computer-science/pattern-recognition-and-machine-learning/understanding-machine-learning-theory-algorithms
https://www.worldcat.org/oclc/310551264
https://books.google.co.il/books?id=wQZvSwAACAAJ

showing that the gradients estimated in the algorithm approximate the Verifiability of the model in
Appendix A.2.

Specification of the learning model. We must first fully specify the theoretical framework in
which our results reside. Continuing from Section 3, we define a learner as an algorithm Λ with
access to a family of autoregressive models {Pθ}θ and samples from the input distribution x ∼ µ. In
our setting of Self-Proving models (and in consistence with the Interactive Proofs literature), we
give the learner the full specification of the verifier V . More formally,

Definition A.1 (Self-Proving model learner). A (Self-Proving model) learner is a probabilistic
oracle Turing Machine Λ with the following access:

• A family of autoregressive models {Pθ}θ∈Rd where d ∈ N is the number of parameters in the
family. Recall (Section 4) that for each θ and z ∈ Σ∗, the random variable Pθ(z) is determined
by the logits log pθ(z) ∈ R|Σ|. For any z ∈ Σ∗ and σ ∈ Σ, the learner Λ can compute the
gradient of the σth logit, that is, ∇θ log Prσ′∼pθ(z)[σ = σ′].

• Sample access to a the input distribution µ. That is, Λ can sample x ∼ µ.

• The full specification of the verifier V , i.e., the ability to emulate the verification algorithm V .
More specifically, Λ is able to compute V ’s decision after any given interaction; that is, given
input x, output y, and a sequence of queries and answers (qi, ai)

R
i=1, the learner Λ can compute

the decision of V after this interaction.

We remark that analysis of Transcript Learning will require a slight strengthening of the final
item above. This is discussed in Appendix A.1.

Throughout this section, we will refer to the transcript of an interaction between a verifier and a
prover (see Figure 1). We will this transcript by π = (y, q1, a1, . . . , qR, aR), and for any index s ∈ |π|
we will write π<s ∈ Σs−1 to denote the s-long prefix of π.

A.1 Transcript Learning

Recall that Transcript Learning requires access to an honest transcript generator. Before we can
formally define this object, it will be useful to define a query generator for a verifier V .

Definition A.2 (Query generator). Fix a verifier V in a proof system with R ∈ N rounds, where
the verifier issues queries of length Lq = |qi| and the prover (model) responses with answers of length
La = |ai|.8 The query generator Vq corresponding to V takes as input a partial interaction and
samples from the distribution over next queries by V . Formally, for any r ≤ R, given input x, output
y, and partial interaction (qi, ai)

r
i=1, Vq(x, y, q1, a1, . . . , qr, ar) is a random variable over ΣLq .9

We assume that access to the verifier specification (Definition A.1) includes access to the query
generator. After all, the verifier—who is assumed to be efficient—samples from Vq during the
interaction. Moreover, we will assume that for any partial interaction and any sequence q′, the
learner is able to compute the probability that q′ was the next query. In other words, we assume the
learner can compute the probability density function of Vq.

8We can assume that queries (resp. answers) all have the same length by padding shorter ones.
9For completeness’ sake, we can say that when prompted with any sequence z that does not encode an interaction,

Vq(z) is fully supported on a dummy sequence ⊥ · · ·⊥ ∈ ΣLq .

19

A transcript generator is a random variable over transcripts that faithfully represents the
interaction of the verifier with some prover for a given input. An honest transcript generator is one
who is fully supported on transcripts accepted by the verifier.

Definition A.3 (Honest transcript generator). Fix a verifier V in a proof system of R ∈ N
rounds. A transcript generator TV for V is a randomized mapping from inputs x ∈ Σ∗ to transcripts
π = (y, q1, a1, . . . , qR, aR) ∈ Σ∗. For any input x, TV (x) satisfies that for each r ≤ R, the marginal
of TV (x) on the rth query qr agrees with the corresponding marginal of the query generator (Vq)r.

A transcript generator T ∗
V := TV is honest if it is fully supported on transcripts π∗ for which the

verifier accepts.

Notice that for any verifier V , there is a one-to-one correspondence between transcript generators
and (possibly randomized) provers. We intentionally chose not to specify a prover in Definition A.3
to emphasize that transcripts can be “collected” independently of the honest prover (see completeness
in Definition 3.2). As long as the generator is fully supported on honest transcripts, it can be used
for Transcript Learning (Algorithm 1 described below).

20

Algorithm 1: Transcript Learning (TL)
Hyperparameters: Learning rate λ ∈ (0, 1) and number of samples N ∈ N.
Input: An autoregressive model family {Pθ}θ∈Rd , verifier specification (code) V , and sample

access to an input distribution µ and an accepting transcript generator T ∗
V (·).

Output: A vector of parameters θ̄ ∈ Rd.
1: Initialize θ0 := 0⃗.
2: for i = 0, . . . , N − 1 do
3: Sample x ∼ µ and π∗ = (y, q1, a1, . . . , qR, aR) ∼ T ∗

V (x). Denote a0 := y.
4: foreach Round of interaction r = 0, . . . , R do

5: Let S(r) denote the indices of the rth answer ar in π∗. for s ∈ S(r) do
6: Compute # Forwards and backwards pass

αs(θi) := Pr
σ∼pθi (xπ<s)

[σ = πs]

d⃗s(θi) := ∇θαs(θi) = ∇θ log Pr
σ∼pθi (xπ<s)

[σ = πs].

7: If r ≥ 1, let qr denote the rth query qr in π∗, and let t denote its first index. That is,
π∗
<t = (y, q1, a1, . . . , qt−1, at−1). Compute # Emulate the verifier

βr(θi) := Pr
q′∼Vq(xπ∗

<t)
[q′ = q].

8: Update

θi+1 := θi + λ · α0(θi) ·

 ∏
r∈[R]
s∈S(r)

βr(θi)αs(θi)

 ·
∑

r∈[R]∪{0}
s∈S(r)

d⃗s(θi).

9: Output θ̄ := 1
N

∑
i∈[N] θi.

Convergence of TL is proven by a reduction to Stochastic Gradient Descent (SGD). Essentially,
we are tasked with proving that TL estimates a surrogate of the Verifiability-gradient of its model
Pθ. More precisely, TL estimates the gradient of a function that bounds the Verifiability from below.
Maximizing this function therefore maximizes the Verifiability.

The lower-bounding function is the agreement of the transcript generator induced by Pθ with the
provided honest transcript generator T ∗

V . More formally, we let T θ
V denote the transcript generator

induced by the model Pθ: for each x, T θ
V (x) is simply the distribution over transcripts of interactions

between V and Pθ on input x. We first prove TL correctly estimates the gradient of A(θ) in its
update step.

Lemma A.4 (TL gradient estimation). Fix an input distribution µ over Σ∗ and a verifier V with
round complexity R and answer length La. Fix an honest transcript generator T ∗

V . Let θ be the

21

parameters of a model Pθ such that

A(θ) := Pr
x∼µ

π∗∼T ∗
V (x)

π∼T θ
V (x)

[π = π∗]

is differentiable in θ. Then

∇A(θ) = E
x∼µ

π∗∼T ∗
V

α0(θ) ·

 ∏
r∈[R]
s∈S(r)

βr(θ) · αs(θ)

 ·
∑

r∈[R]∪{0}
s∈S(r)

d⃗s(θ)

where S(r), βr(θ), αs(θ) and d⃗s(θ) are as defined in Algorithm 1.

Note that Lemma A.4 is true for any model Pθ. Moreover, the random vector over which the
expectation is taken (in the right hand side) is precisely the direction of the update performed in
Algorithm 1. We now prove Lemma A.4, from which we derive Theorem 4.1.

Proof. Throughout this proof, expectations and probabilities will be over the same distributions as
in the lemma statement. First, by the law of total probability, and linearity of the gradient,

∇A(θ) := ∇θ

(
Pr

x,π∗,π
[π = π∗]

)
= ∇θ

(
E

x,π∗

[
Pr
π
[π = π∗]

])
= E

x,π∗

[
∇θ

(
Pr
π
[π = π∗]

)]
.

Next, we use the law of total probability together with the autoregressive property of Pθ (Section 4)
to switch from probabilities on transcripts, to products of next-token probabilities. Formally, consider
any fixed input x, honest transcript π∗ = (y∗, q∗1, a

∗
1, . . . , q

∗
R, a

∗
R), and denote a random transcript

sampled from T θ
V (x) by π = (y, q1, a1, . . . , qR, aR). For any r ∈ [R] denote the random variables

V <r
q := Vq(y, q1, a1, . . . , qr−1, ar−1) and T θ,<r

V := T θ
V (yq1a1 · · · ar−1qr). Then,

Pr
π
[π = π∗] := Pr

π
[(y∗, q∗1, a

∗
1, . . . , q

∗
R, a

∗
R) = (y, q1, a1, . . . , qR, aR)] (3)

= Pr
y∼Pθ(x)

[y = y∗] ·
∏
r∈[R]

Pr
q∼V <r

q

[q = q∗r] · Pr
a∼T θ,<r

V

[a = a∗r]

= Pr
y∼Pθ(x)

[y = y∗] ·
∏
r∈[R]
s∈S(r)

Pr
q∼V <r

q

[q = q∗r] · Pr
σ∼pθ(π

∗
<s)

[σ = π∗
s] (4)

= α0(θ) ·

 ∏
r∈[R]
s∈S(r)

βr(θ) · αs(θ)

 , (5)

where Equation (3) uses independence of the verifier and model’s randomness, Equation (4) uses the
autoregressive property of Pθ (Definition A.1), and Equation (5) is by definition of αs and βr.

Next, a basic calculus identity gives

∇θ

(
Pr
π
[π = π∗]

)
= Pr

π
[π = π∗] · ∇θ log

(
Pr
π
[π = π∗]

)
. (6)

22

Let us focus on the rightmost factor. By Equation (5),

∇θ log
(
Pr
π
[π = π∗]

)
= ∇θ logα0(θ) ·

 ∏
r∈[R]
s∈S(r)

βr(θ) · αs(θ)

= ∇ logθ α0(θ) +

∑
r∈[R]
s∈S(r)

∇θ log βr(θ) +∇θ logθ αs(θ)

= ∇ logθ α0(θ) +
∑
r∈[R]
s∈S(r)

∇θ logθ αs(θ) (7)

=
∑

r∈[R]∪{0}
s∈S(r)

∇θ logθ αs(θ) =
∑

r∈[R]∪{0}
s∈S(r)

d⃗s(θ) (8)

where Equation (7) is because log βr(θ) := log Prq′∼Vq(xπ∗
<t)

[q′ = q] is a constant and therefore has a
gradient of zeros, and Equation (8) is by definition of d⃗s(θ). Combining Equations (5), (6) and (8)
concludes the proof.

We are now ready to prove Theorem 4.1. We restate it below in full formality.

Theorem A.5 (Theorem 4.1, formal). Fix a verifier V , an input distribution µ, and an autoregressive
model family {Pθ}θ∈Rd , and a norm || · || on Rd. Fix an honest transcript generator T ∗

V , and assume
that the agreement function

A(θ) := Pr
x∼µ

π∗∼T ∗
V (x)

π∼T θ
V (x)

[π = π∗]

is concave and differentiable in θ. For any ε > 0, let BNorm, BLip and C be upper-bounds such that
the following conditions hold.

• There exists θ∗ ∈ Rd with ||θ∗|| < BNorm such that A(θ∗) ≥ 1− ε/2.

• For all θ, the logits of Pθ are BLip-Lipschitz in θ. That is,

sup
θ∈Rd

z∈Σ∗

||∇θ log pθ(z)|| ≤ BLip.

• In the proof system defined by V , the total number of tokens (over all rounds) is at most C.

Denote by θ̄ the output of TL running for number of iterations

N ≥ 4 · C2 ·
B2

Norm ·B2
Lip

ε2

and learning rate λ = BNorm/CBLip

√
N . Then the expected Verifiability (over the randomness of the

samples collected by TL) of θ̄ is at least 1− ε. That is,

Ē
θ
[verV,µ(θ̄)] ≥ 1− ε.

23

Proof. Our strategy is to cast TL as Stochastic Gradient Ascent and apply Fact B.2. Let ε, BNorm,
BLip and C as in the theorem statement be given. Let θ∗ be such that A(θ∗) ≥ 1 − ε/2 and
||θ∗|| ≤ BNorm.

First, notice that
Ē
θ

[
verV,µ(θ̄)

]
≥ Ē

θ
[A(θ̄)],

This is because, for any x and model Pθ, whenever the transcript generated by T θ(x) agrees with
π∗, then the verifier accepts (because π∗ is honest). Therefore, to prove the theorem it suffices to
show that

Ē
θ
[A(θ̄)] ≥ 1− ε.

Following the notation in Algorithm 1, in every iteration i ∈ [N] the norm of the update step is∥∥∥∥∥∥∥∥α0(θi) ·

 ∏
r∈[R]
s∈S(r)

βr(θi)αs(θi)

 ·
∑

r∈[R]∪{0}
s∈S(r)

d⃗s(θi)

∥∥∥∥∥∥∥∥
=

∣∣∣∣∣∣∣∣α0(θi) ·
∏
r∈[R]
s∈S(r)

βr(θi)αs(θi)

∣∣∣∣∣∣∣∣ ·
∥∥∥∥∥∥∥∥

∑
r∈[R]∪{0}
s∈S(r)

d⃗s(θi)

∥∥∥∥∥∥∥∥
≤ 1 ·

∑
r∈[R]∪{0}
s∈S(r)

∥∥∥d⃗s(θi)∥∥∥ ,
where the inequality is because αs(θi) and βr(θi) are probabilities, so ≤ 1. Continuing, we have∑

r∈[R]∪{0}
s∈S(r)

∥∥∥d⃗s(θi)∥∥∥ ≤
∑

r∈[R]∪{0}
s∈S(r)

BLip ≤ C ·BLip.

The first inequality is by definition of BLip as an upper-bound on the gradient of Pθ’s logits. The
second is because, by definition, C is an upper bound on the number of tokens sent by the prover in
the proof system, which is exactly the number of terms in the sum: r indexes rounds, and s indexes
tokens sent in each round.

To conclude, Lemma A.4 shows that TL samples from a gradient estimator for A(θ), while the
above equation shows that the gradient is upper-bounded by C · BLip. We can therefore apply
Fact B.2 to obtain

Ē
θ

[
A
(
θ̄
)]

≥ A(θ∗)− ε/2 ≥ (1− ε/2)− ε/2 = 1− ε,

where the inequality is by definition of θ∗.

A.2 Reinforcement Learning from Verifier Feedback

Our second learning method, Reinforcement Learning from Verifier Feedback (RLVF, Algorithm 2),
does not require access to an honest transcript generator. Instead, the learner learns Pθ generates

24

transcripts herself by emulating the interaction of the verifier with the current Self-Proving model Pθ.
When an accepting transcript is generated, the learner updates the parameters θ towards generating
such transcript.

Algorithm 2: Reinforcement Learning from Verifier Feedback (RLVF)
Hyperparameters: Learning rate λ ∈ (0, 1) and number of samples N ∈ N.
Input: An autoregressive model family {Pθ}θ∈Rd , initial parameters θ0 ∈ Rd, verifier

specification (code) V , and sample access to an input distribution µ.
Output: A vector of parameters θ̄ ∈ Rd.
1: for i = 0, . . . , N − 1 do
2: Sample x ∼ µ.
3: Initialize a0 := y and di := 0⃗.
4: foreach Round of interaction r = 1, . . . R do

5: Sample the rth query # Emulate the verifier

qr ∼ Vq(x, a0, q1, a1, . . . , qr, ar).

6: Sample the rth answer # Forwards pass

ar ∼ Pθ(x, a0, q1, a1, . . . , qr, ar, qar+1).

7: Let τr := (a0, q1, . . . , ar−1, qr). for s ∈ [La] do
8: Let ar,s denote the sth token in ar. Compute # Backwards pass

d⃗s(θi) := ∇θ log Pr
σ∼pθi (xτr)

[σ = ar,s].

9: if V (x, y, q1, a1, . . . , qR, aR) accepts then
10: Update

θi+1 := θi + λ ·
∑

r∈[R]∪{0}
s∈[La]

d⃗s(θi).

11: Output θ̄ := 1
N

∑
i∈[N] θi.

Before we continue with formal analysis of Algorithm 2, let us make a few observations.
Firstly, the parameters are updated (line 11) only when an accepting transcript was generated.

This means that the learner can first fully generate the transcript (lines 6-7), and then take backwards
passes (line 9) only if the transcript was accepted by V . This is useful in practice (e.g. when using
neural models) as backwards passes are more computationally expensive than forwards passes.

On the other hand, this means that RLVF requires the parameter initialization θ0 to have
Verifiability bounded away from 0, so that accepting transcripts are sampled with sufficient probability.
Fortunately, such a Self-Proving base model can be learned using TL. This gives a learning paradigm
in which a somewhat-Self-Proving base model is learned with TL (with Verifiability δ > 0), and
then “amplified” to a fully Self-Proving model using RLVF. This can be seen as an adaptation of the
method of Nair et al. [2018] to the setting of Self-Proving models.

Secondly, in comparing Algorithms 1 and 2, we see that the latter (RLVF) does not keep track

25

of the probabilities αs and βr. This is because, in RL terms, RLVF is an on-policy algorithm;
it generates transcripts using the current learned model, unlike TL which samples them from a
distribution whose parameterization is unknown to the learner. Hence, the update step in RLVF is
simpler than TL. Furthermore, the RLVF learner does not require access to the density function of
the query generator Vq (Definition A.2) unlike its TL counterpart.

We now prove that the update step in RLVF maximizes the Verifiability of Pθ; this is analogous
to Lemma A.4 for TL. We leave it for future work to use Lemma A.6 to obtain convergence bounds
on RLVF (analogous to Theorem A.5). As mentioned in Section 4.2, the gap between the lemma
and a full convergence theorem (informally) reduces to the problem of obtaining convergence bounds
for Policy Gradient methods, a challenging and active research direction (e.g. Agarwal et al. 2021).

Lemma A.6 (RLVF gradient estimation). Fix an input distribution µ over Σ∗ and a verifier
V with round complexity R and answer length La. For any transcript (x, y, q1, . . . , aR) we let
AccV (x, y, q1, . . . , aR) denote the indicator random variable which equals 1 if and only if V accepts
the transcript. For any model Pθ, denote by ver(θ) the verifiability of Pθ with respect to V and µ
(Definition 3.4). For any θ, if ver(θ) is differentiable in θ, then

∇ver(θ) = E
x∼µ

y∼Pθ(x)

(qr,ar)Rr=1

AccV (x, y, q1, . . . , aR) · ∑
r∈[R]∪{0}
s∈[La]

d⃗s(θ)

where (qr, ar)

R
r=1 are as sampled in lines 5-6 of Algorithm 2, and d⃗s(θ) is as defined in line 8 therein.

Proof. Recall the transcript generator of P θ, denoted by T θ
V (see Lemma A.4). By the definitions of

Verifiability in Definition 3.4 and V (x, y, q1, . . . , aR) in the lemma statement,

ver(θ) := Pr
x∼µ

y∼Pθ(x)

[⟨V, Pθ⟩ (x, y) accepts]

= E
x∼µ

y∼Pθ(x)

(qr,ar)Rr=1

[AccV (x, y, q1, . . . , aR)]

= E
x∼µ

[
Pr

π∼T θ
V

[AccV (x, π)]

]
(9)

Now, for every input x, let Π∗(x) ⊂ Σ∗ denote the set of accepting transcripts:

Π∗(x) := {π∗ ∈ Σ∗ : AccV x, π
∗ accepts} .

Noting that Π∗(x) has finite or countably infinite cardinality, for any fixed input x we can write

Pr
π∼T θ

V

[AccV (x, π)] =
∑

π∗∈Π∗(x)

Pr
π∼T θ

V (x)
[π = π∗]. (10)

We will use Equations (3) through (8) in the proof of Lemma A.4. Up to a change in index notation,
these show that, for any π∗,

∇θ Pr
π∼T θ(x)

[π = π∗] = Pr
π∼T θ(x)

[π = π∗] ·
∑

r∈R∪{0}
s∈[La]

∇θd⃗s(θ).

26

Combining Equations (9) and (10), by linearity of expectation we have that

∇θver(θ) =
∑

π∗∈Π∗(x)

∇θ Pr
π∼T θ(x)

[π = π∗]

= E
x∼µ

 ∑
π∗∈Π∗(x)

Pr
π∼T θ(x)

[π = π∗] ·
∑

r∈R∪{0}
s∈[La]

∇θd⃗s(θ)

= E
x∼µ

 E
π∼T θ(x)

AccV (x, π) · ∑
r∈R∪{0}
s∈[La]

∇θd⃗s(θ)

= E
x∼µ

π∼T θ(x)

AccV (x, π) ·
∑

r∈R∪{0}
s∈[La]

∇θd⃗s(θ)

= E
x∼µ

y∼Pθ(x)

(qr,ar)Rr=1

AccV (x, y, q1, . . . , aR) · ∑
r∈R∪{0}
s∈[La]

∇θd⃗s(θ)

 ,

where in the last equality, the probability is over (qr, ar) sampled as in Algorithm 2, and it follows
from the definition of the transcript generator T θ(x).

B Preliminaries on Stochastic Gradient Ascent

For convenience of the reader, we provide a description of Stochastic Gradient Ascent and quote a
theorem on its convergence. We adapt the presentation in Shalev-Shwartz and Ben-David [2014],
noting that they present Stochastic Gradient Descent in its more general form for non-differentiable
unbounded functions.

Stochastic Gradient Ascent (SGA) is a fundamental technique in concave optimization. Given a
concave function f : Rd → [0, 1], SGA starts at w0 = 0⃗ ∈ Rd and tries to maximize f(w) by taking a
series of “steps.” Than directly differentiating f , SGA instead relies on an estimation ∇f(w): in
each iteration, SGA takes a step in a direction that estimates ∇f(w).

Definition B.1 (Gradient estimator). Fix a differentiable function f : Rd → R for some d. A
gradient estimator for f is a randomized mapping Df : Rd → Rd whose expectation is the gradient
of f . That is, for all w ∈ Rd,

E
v∼Df (w)

[v] = ∇f(w).

Note that this is an equality between d-dimensional vectors.

Theorem 14.8 in Shalev-Shwartz and Ben-David [2014] implies the following fact.

27

Algorithm 3: Stochastic Gradient Ascent
Hyperparameters: Learning rate λ > 0 and number of iterations N ∈ N.
Input: A function f : Rd → R to maximize and a gradient estimator Df for f .
Output: A vector w̄ ∈ Rd.
1: Initialize w0 := 0⃗ ∈ Rd.
2: for i = 0, . . . , N − 1 do
3: Sample vi ∼ Df (wi−1).
4: Update wi := wi−1 + λ · vi.
5: Output w̄ := 1

N

∑
i∈[N]wi.

Fact B.2. Fix a concave f : Rd → [0, 1], a norm || · || on Rd, and upper-bounds BNorm, BLip > 0. Let

w∗ ∈ argmax
w:||w||<BNorm

f(w),

and let w̄ denote the output of Algorithm 3 run for N iterations with learning rate

λ =
BNorm

BLip

√
N

.

If at every iteration it holds that ||di|| < BLip, then

Ē
w
[f(w̄)] ≥ f(w∗)−

BNorm ·BLip√
N

.

C Annotations

We formally capture the modification described in Section 4.3 by introducing a transcript annotator
and an answer extractor incorporated into the training and inference stages, respectively.

Fix a verifier V in an R-round proof system with question length Lq and answer length La. An
annotation system with annotation length L̃a consists of a transcript annotator A, and an answer
extractor E.

In terms of efficiency, think of the annotator as an algorithm of the same computational resources
as an honest prover in the system (see Definition 3.2, and the answer extractor as an extremely
simple algorithm (e.g., trim a fixed amount of tokens from the annotation).

To use an annotation system the following changes need to be made:

• At training time, an input x and transcript π is annotated to obtain π̃ := A(x, π), e.g. before
the forwards backwards pass in TL (line 3 in Algorithm 1).

• At inference time (i.e., during interaction between V and Pθ), the prover keeps track of the
annotated transcript, but in each round passes the model-generated (annotated) answer through
the extractor E before it is sent to the verifier. That is, in each round r ∈ [R], the prover
samples

ãr ∼ Pθ(x, y, q1, ã1, . . . , ãr−1, qr).

The prover then extracts an answer ar := E(ãr) which is sent to the verifier.

28

D A simple proof system for the GCD

The Euclidean algorithm for computing the Greatest Common Divisor (GCD) of two integers is
possibly the oldest algorithm still in use today [Knuth, 1969]. Its extended variant gives a simple
proof system.

Before we dive in, let us clarify what we mean by a proof system for the GCD. Paul has two
integers 212 and 159; he claims that GCD(212, 159) = 53. An inefficient way for Veronica to check
Paul’s answer is by executing the Euclidean algorithm on (212, 159) and confirm that the output is
53. In an efficient proof system, Veronica asks Paul for a short string π∗ (describing two integers)
with which she can easily compute the answer—without having to repeat Paul’s work all over. On
the other hand, if Paul were to claim that “GCD(212, 159) = 51” (it does not), then for any alleged
proof π, Veronica would detect an error and reject Paul’s claim.

The verifier in the proof system relies on the following fact.

Claim D.1 (Bézout’s identity [Bezout, 1779]). Let x0, x1 ∈ N and z0, z1 ∈ Z. If z0 · x0 + z1 · x1
divides both x0 and x1, then z0 · x0 + z1 · x1 = GCD(x0, x1).

Any coefficients z0, z1 satisfying the assumption of Claim D.1 are known as Bézout coefficients for
(x0, x1). Claim D.1 immediately gives our simple proof system: For input x = (x0, x1) and alleged
GCD y, the honest prover sends (alleged) Bézout coefficients (z0, z1). The Verifier accepts if and
only if y = z0 · x0 + z1 · x1 and y divides both x0 and x1.

In this proof system the Verifier does not need to make any query; to fit within Definition 3.2,
we can have the verifier issue a dummy query. Furthermore, by Claim D.1 it is complete and has
soundness error s = 0. Lastly, we note that the Verifier only needs to perform two multiplications,
an addition, and two modulus operations; in that sense, verification is more efficient than computing
the GCD in the Euclidean algorithm as required by Remark 3.3.

Annotations. To describe how a proof z = (z0, z1) is annotated, let us first note how it can be
computed. The Bézout coefficients can be found by an extension of the Euclidean algorithm. It is
described in Algorithm 4.10

Algorithm 4: Extended Euclidean algorithm
Input: Nonzero integers x0, x1 ∈ N.
Output: Integers (y, z0, z1), such that y = GCD(x0, x1) and (z0, z1) are Bézout coefficients

for (x0, x1).
1: Initialize r0 = x0, r1 = x1, s0 = 1, s1 = 0, and q = 0.
2: while r1 ̸= 0 do
3: Update q := ⌊r0/r1⌋.
4: Update (r0, r1) := (r1, r0 − q × r1).
5: Update (s0, s1) := (s1, s0 − q × s1).
6: Output GCD y = r0 and Bézout coefficients z0 := s0 and z1 := (r0 − s0 · x0)/x1.

Referring to Algorithm 4, the annotation of a proof z = (z0, z1) will consist of intermediate steps
in its computation. Suppose that in each iteration of the While-loop, the algorithm stores each of r0,
s0 and q in an arrays r⃗0, s⃗0 and q⃗. The annotation z̃ of z is obtained by concatenating each of these

10Our description is the same as https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm.

29

https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm

arrays. In practice, to avoid the transformer block (context) size from growing too large, we fix a
cutoff T and first trim each array to its first T elements.

We formalize this in the terminology of Appendix C by defining a Transcript Annotator and
Answer Extractor. Note that, since our proof system consists only of one “answer” z send from
the prover to the verifier, the entire transcript π is simply z = (z0, z1). Since the verification is
deterministic, this means that the proof system is of an NP type (however, note that the search
problem of finding the “NP-witness” z = (z0, z1) is in fact in P).

• Transcript Annotator A: For a fixed cutoff T and given input x = (x0, x1) and transcript z =
(z0, z1), A executes Algorithm 4 on input x = (x0, x1). During the execution, A stores the first
T intermediate values of r0, s0 and q in arrays r⃗0, s⃗0 and q⃗. It outputs A(x, z) := (r⃗0, s⃗0, q⃗, z).

• Answer Extractor E: Given an annotated transcript z̃ = (r⃗0, s⃗0, q⃗, z), outputs E(z̃) := z.

We note that the computational complexity of A is roughly that of the honest prover, i.e., Algorithm 4
(up to additional space due to storing intermediate values). As for E, it can be implemented in
logarithmic space and linear running time in |z̃|, i.e., the length of the description.11

E Experiment details

We provide details of how we implemented the experiments in Section 5 and additional figures for
each experiment.

Model architecture. We use Karpathy’s nanoGPT.12 We use a 6.7M parameter architecture of
8 layers, 8 attention heads, and 256 embedding dimensions. We optimized hyperparameters via a
random hyperparameter search, arriving at learning rate 0.0007, AdamW β1 = 0.733 and β2 = 0.95,
10% learning rate decay factor, no dropout, gradient clipping at 2.0, no warmup iterations, and 10%
weight decay.

Data. We sample integers from the log10-uniform distribution over {1, . . . , 104}. Models in Table 2
and Fig. 2 are trained for 100K iterations on a dataset of of ≈10M samples. For Figure 3 (base
ablation) we train for 20K iterations on a dataset of ≈1M samples; this is because this setting
required 68 many runs in total, whereas the annotation-cutoff ablation required 18 longer runs.

Compute. All experiments were run on a machine with an NVIDIA A10G GPU, 64GB of RAM,
and 32 CPU cores. Longer runs (annotation-cutoff ablation) took about 75 minutes each. Shorter runs
(base ablation) took about 15 minutes. The total running time of our experiments was approximately
40 hours, excluding time dedicated to a random hyperparameter search. The overall disk space
needed for our models and data (to be made available upon publication) is 4GB.

11That is, if integers are represented by n-bits, then E has space complexity O(logn + log T) and running time
O(n · T).

12https://github.com/karpathy/nanoGPT.

30

https://github.com/karpathy/nanoGPT

Representing integers. We fully describe how integer sequences are encoded. As a running
example, we will use base 210. To encode a sequence of integers, each integer is encoded in base 210,
a sign is prepended and a delimiter is appended, with a unique delimiter identifying each component
of the sequence. For example, consider the input integers x0 = 212 (which is 12 in base 210) and
x1 = 159. Their GCD is y = 53, with Bézout coefficients z0 = 1 and z1 = −1. Therefore, the
sequence (212, 159, 53, 1,−1) is encoded as

+,1,2,x0,+,159,x1,+,53,y,+,1,z0,-,1,z1

where commas are added to distinguish between different tokens. Null tokens are appended to pad
all sequences in a dataset to the same length. Both the input and the padding components are
ignored when computing the loss and updating parameters.

Annotations Annotations are encoded as above, with each component in an intermediate step
πt delimited by a unique token. Since different integer pairs may require a different number of
intermediate steps to compute the Bézout coefficients, we chose to pad all annotaitons to the same
length T by the last step πT in the sequence (which consists of the final Bézout coefficients). This
ensures that the final component output by the model in each sequence should be the Bézout
coefficient, and allows us to batch model testing (generation and evaluation) resulting in a 1000x
speed-up over sequential testing.

As an example, consider the inputs x0 = 46 and x1 = 39. Tracing through the execution of
Algorithm 4, we have

x0 x1 y s⃗0 r⃗0 q⃗ z0 z1
46 39 1 46 1

0 39 5
1 7 1
−5 4 1
6 3 3

1 −11 13

To encode this as an annotated transcript for the transformer, we must specify a base of
representation and an annotation cutoff. Suppose that we wish to encode this instance in base
B = 10 and cutoff T = 3. Then the input with the annotated transcript is encoded as

+,4,6,x0,+,3,9,x1,+,1,y,
+,1,z0’,+,4,6,z1’,+,1,q’,
+,0,z0”,+,3,9,z1”,+,5,q”
+,1,z0”’,+,7,z1”’,+,1,q”’,

-,1,1,z0,+,1,3,z1

where commas are used to separate between tokens, and linebreaks are added only for clarity. Notice
the three types of tokens: signs, digits, and delimiters. Notice also that the output y is added
immediately after the input, followed by the annotated transcript (whose six tokens comprise the
proof itself). Since the Self-Proving model we train has causal attention masking, placing the output
y before the proof means that the model “commits” to an output and only then proves it.

31

Figure 4: Verifiability as a function of the number of samples N . Each iteration (X axis) is a
batch of 1024 samples from a dataset of ≈10M sequences. Every 10k iterations, Verifiability was
evaluated on a held-out dataset of 1k inputs (as described in Section 5). T is the number of steps in
Annotated Transcript Learning (Figure 2), and T = 0 is non-annotated Transcript Learning. Each T
was run with three seeds, with mean depicted by the curve and standard error by the shaded area.

32

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

