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Abstract

In an Instance-Hiding Interactive Proof (IHIP) [BFS90], an efficient verifier with a private input x
interacts with an unbounded prover to determine whether x is contained in a language L. In addition
to completeness and soundness, the instance-hiding property requires that the prover should not learn
anything about x in the course of the interaction. Such proof systems capture natural privacy properties,
and may be seen as a generalization of the influential concept of Randomized Encodings [IK00, AIK04,
AIKPC15], and as a counterpart to Zero-Knowledge proofs [GMR89].

We investigate the properties and power of such instance-hiding proofs, and show the following:

1. Any language with an IHIP is contained in AM/poly ∩ coAM/poly.

2. If an average-case hard language has an IHIP, then One-Way Functions exist.

3. There is an oracle with respect to which there is a language that has an IHIP but not an SZK proof.

4. IHIP’s are closed under composition with any efficiently computable function.

We further study a stronger version of IHIP (that we call Strong IHIP) where the view of the honest
prover can be efficiently simulated. For these, we obtain stronger versions of some of the above:

5. Any language with a Strong IHIP is contained in AM ∩ coAM.

6. If a worst-case hard language has a Strong IHIP, then One-Way Functions exist.
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1 Introduction

An Interactive Proof system (IP) [BM88, GMR89] for a language L is an interactive protocol between a
polynomial-time verifier V and a computationally unbounded prover P where both are given as input a
string x, and the prover tries to prove to the verifier that x ∈ L. Such proofs are required to be complete –
if x ∈ L, the verifier will accept at the end of the interaction – and sound – if x /∈ L, no prover strategy P∗

can make the verifier accept with large probability. Such proofs are very powerful and have been shown to
exist for all languages computable with polynomial space (PSPACE) [LFKN92, Sha92].

Often in applications of interactive proof systems, one or both of the parties may hold some secret that
they do not want the other to learn in the course of the interaction. For instance, the prover P may hold a
secret key and wish to prove to the verifier something about a ciphertext encrypted using that key, without
revealing the key itself. A powerful general formalization of a property that enables this is Zero-Knowledge
(ZK) [GMR89]. This requires that there be a computationally efficient simulator that, for any x ∈ L, can
simulate the entire view of the verifier V interacting with P on input x. This ensures that the verifier learns
nothing from the interaction other than the membership of x in L.

This simulation may be perfect (PZK), statistically close to (SZK), or computationally indistinguishable
from (CZK) the actual view. In contrast to general interactive proofs, it is known that languages that have
PZK or SZK proofs are contained in AM∩coAM [For87, AH91]. Using computational assumptions, however,
one can again construct CZK proofs for all languages in PSPACE [GMW91, BGG+88]. ZK proofs have been
and continue to be the subject of extensive research, have found numerous applications in practice, and we
understand them quite well (see, e.g., references in [Vad99, Tha22]).

Instance-Hiding Interactive Proofs. Whereas Zero-Knowledge provides security for the prover, Instance-
Hiding Interactive Proofs (IHIP) [BFS90] provide a similar security guarantee for the verifier. In an IHIP,
the input x is given only to the verifier V. Apart from completeness and soundness as in an IP, it is required
that the protocol be instance-hiding – for any prover strategy P∗, there should exist a simulator (computa-
tionally unbounded) that, given just the length of the input, can simulate the view of P∗ when interacting
with V on any input x. This ensures that the prover cannot learn anything about the input except at most
its length.

In other words, the prover proves to the verifier that x ∈ L without knowing anything at all about x.
Seemingly paradoxical, such proof systems can, in fact, be constructed for several strutured languages, such
as those that have certain random self-reduction properties [AFK89, FO91]. Nevertheless, a theorem of
Abadi et al. [AFK89] implies that any language that has an IHIP in which the simulation of the prover’s
view is perfect is contained in NP/poly ∩ coNP/poly. In particular, this implies that NP-hard languages do
not have perfect IHIP protocols unless the polynomial hierarchy collapses [BHZ87].

Despite the fact that they capture this fundamental cryptographic property of protocols, not much else
is known about the complexity of IHIP’s today, decades after they were first defined. Further, even the
aforementioned results do not hold if even a negligible amount of statistical error is allowed in the hiding
property – that is, when the prover’s view corresponding to any instance can have non-zero but negligibly
small statistical distance from the simulator’s output. In this paper, we undertake a systematic study of the
complexity of such general imperfect IHIP’s, with the objective of understanding what properties they have,
how powerful they are, what kinds of structure they create, and how they compare to other cryptographic
protocols like ZK proofs.

1.1 Our Results

In the rest of the paper, we simply use IHIP to denote instance-hiding IP’s that have a negligible statistical
hiding error as described above. We also study a strengthening of these proofs where the simulator that
simulates the honest prover’s view is required to be efficient; we refer to these as Strong IHIP’s. A number
of natural constructions of IHIP’s do, in fact, have this stronger property (see, e.g., Appendix A). We show
a collection of results about various aspects of these proof systems, some of which follow from techniques
common in the study of Secure Multi-Party Computation (MPC) and SZK proofs, while others require the
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development of new methods. We define these proof systems in Section 2, and in Appendix A we present
examples of non-trivial languages that have such proof systems, including one that seems to require multiple
rounds of interaction.

Power of Instance-Hiding Proofs. We start by asking which languages can possibly have IHIP’s. The
results of Abadi et al. [AFK89] imply that languages that have perfect IHIP’s are contained in NP/poly ∩
coNP/poly. However, their techniques stop working if there is even a small amount of error in the hiding
property. Using some carefully designed interactive proofs, we show that any language that has an IHIP
with small enough hiding error is still contained in AM/poly ∩ coAM/poly. Further, we can get rid of the
non-uniformity in this conclusion if the IHIP has an efficient simulator for the honest prover.

Informal Theorem 1.1 (Theorems 4.1 and 4.3). If a language L has an IHIP, then both L and its com-
plement L̄ have constant-round public-coin interactive proofs with non-uniform verifiers. Further, if L has
a strong IHIP, this conclusion holds with uniform verifiers.

This too implies that NP-hard problems do not have such proofs unless the polynomial hierarchy col-
lapses [BHZ87]. This upper bound on the power of such proofs is complemented by the existence a number of
interesting non-trivial languages do have instance-hiding interactive proofs – see the examples in Appendix A
and the connections to Randomized Encodings described below.

Implications for One-Way Functions. Investigating further the implications of non-trivial languages
having instance-hiding proofs, we show that the existence of hard languages with such proofs implies the
existence of One-Way Functions (OWF’s).

Informal Theorem 1.2 (Theorems 5.3 and 5.9). One-Way Functions are implied by the existence of either
of the following:

• An average-case hard language that has an IHIP

• A worst-case hard language that has a strong IHIP

The proof of the first statement in the theorem above is non-constructive – we prove that an OWF exists,
but given an explicit average-case hard language with an IHIP, our proof does not construct an explicit
function that is one-way. The proof of the second statement is constructive, and the constructed OWF is
related to the simulator for the honest prover.

Relationship with SZK. Both the above properties – membership in AM∩ coAM [For87, AH91] and the
implication of OWFs from average-case hardness [Ost91] – are shared by the class SZK of languages that have
Statistical Zero Knowledge proofs. Intuitively, SZK proofs and IHIP’s seem to rely on different properties of
the underlying language, and it seems unlikely that one is contained in the other. We provide some evidence
for this in the form of an oracle separation between SZK and Strong-IHIP, the class of languages that have
strong IHIP’s.

Informal Theorem 1.3 (Theorem 6.4). There exists an oracle O such that Strong-IHIPO ̸⊆ SZKO.

We essentially prove this statement in the Generic Group Model [Sho97] – we show a group problem that
cannot be decided by SZK protocols that treat the group in a certain “generic” manner, but can be decided
by a similarly generic IHIP protocol. Showing an oracle separation in the other direction is an interesting
open problem here.

Closure Properties. Finally, we show that IHIP’s have rather strong closure properties – that they are
closed under composition with any efficiently computable function. For any language L, and functions
f : {0, 1}∗ → {0, 1} and k : N→ N, consider the “composed” language f ◦L⊗k, in which an instance consists
of k = k(n) strings xi of length n, which is in the language if and only if f(L(x1), . . . ,L(xk)) = 1. That is,
given these k strings xi, first check whether each of these is in L, and then compute the function f on the
result of these checks.
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Informal Theorem 1.4 (Theorem 2.7). Consider any language L that has an IHIP protocol, and any
efficiently computable function f : {0, 1}∗ → {0, 1}. For any polynomial k : N → N, the composed language
f ◦ L⊗k also has an IHIP protocol.

Similar properties for SZK are only known to hold for composition with polynomial-sized formulas (or
NC1) [SV97], whereas the above corresponds to polynomial-sized circuits (or P). This is another indication
that this class is likely to be different from SZK.

The above theorem implies, in particular, that IHIP is closed under complement. While not directly
implied by the theorem, our proof also shows that the OR or AND of two languages that have IHIP’s also
has an IHIP. This extends to the statement that for any constant k and languages L1, . . . ,Lk that all have
IHIP’s, any language expressible as a function of membership in these languages also has an IHIP.

Our proof of this theorem goes through Instance-Hiding Delegation Schemes [FO91], which are an al-
ternative formulation of instance-hiding protocols that are interesting in their own right. See Section 7 for
details.

Useful Tools. In the course of our constructions and proofs, we also show two lemmas that are meaningful
outside this context – a protocol for proving lower bounds on a weighted sum of the sizes of sets (Lemma 3.6),
and an equivalence between randomized and deterministic advice for AM proofs (Lemma 3.4).

1.2 Technical Overview

We now present an overview of the proofs of Theorems 1.1 to 1.3. The proof of Theorem 1.4 follows from
a straightforward extension of existing work together with some standard transformations, so we leave its
details to the relevant section.

1.2.1 Instance-Hiding to AM Proofs

Suppose a language L has an instance-hiding IP with prover P and verifier V – denoted ⟨P,V⟩. We will use
this to construct a constant-round interactive proof ⟨M,A⟩ with non-uniform verifier A for L. We will then
show how to remove the non-uniformity if there is an efficient simulator for the honest prover.

Denote by r ∈ RV the random string used by the verifier. For any input x, denote by Sx the distribution
over the transcript s generated by the execution of the protocol ⟨P,V(x; r)⟩. For simplicity, assume that P
is deterministic1. Given input x, our approach is have M prove to A that the probability that ⟨P,V(x; r)⟩
accepts is large. Towards discussing this, we define the following two sets for any x and transcript s:

βx
s = {r | s is the transcript of ⟨P,V(x; r)⟩}

αx
s = {r | r ∈ βx

s and ⟨P,V(x; r)⟩ accepts}

We start with the observation that the probability of acceptance may be expressed as follows:

Pr
r
[⟨P,V(x; r)⟩ accepts] =

∑
s |αx

s |
|RV|

=
∑
s

|βx
s |
|RV|

· |α
x
s |
|βx

s |
= E

s←Sx

[
|αx

s |
|βx

s |

]
(1)

So it is sufficient to construct a sound protocol where, for the given input x, M proves to A that the above
expectation is large. Notice that for any s, the membership of a string r in the set αx

s can be efficiently
verified. This means that we can use the Goldwasser-Sipser set lower bound protocol [GS86] to prove lower
bounds on the size of αx

s . Now suppose the following three conditions were satisfied:

1. A has the ability to sample transcripts s from the distribution Sx

1In general interactive proofs, this assumption is without loss of generality. It is not clear that this is the case with instance-
hiding interactive proofs without some worsening of parameters. In our actual proof, we do not need this assumption and the
randomness of the prover is easy to deal with.
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2. For s sampled as above, A can find out the value of |βx
s |, and,

3. With high probability over s sampled from Sx, the value of
|αx

s |
|βx

s |
is close to its expectation

Then, we can construct the required protocol as follows:

• A samples an s← Sx, and computes |βx
s |

• M and A run the GS protocol where M proves that |αx
s | ≫ |βx

s | /2

If x ∈ L, then with high probability over s, the condition involved in the GS protocol above is true, and
A will accept with high probability. Similarly, if x /∈ L, this condition is false and A will reject with high
probability.

If the protocol ⟨P,V⟩ were perfectly instance-hiding, then the distribution Sx is the same for any x of a
given length, as is the size of the set βx

s for any s – call this common distribution S and the common set
size bs. Then, we can handle the first two conditions above by providing to A a sample s from S and the
corresponding value bs as non-uniform advice (these are now independent of x). One catch here is that the
completeness and soundness would then only hold for such randomly sampled advice. We show that an AM
protocol with this property can be derandomized to a standard AM protocol with deterministic non-uniform
advice (Lemma 3.4).

However, our protocol is only statistically instance-hiding, and so there may be no such common distri-
bution. So we instead pick some canonical instance x0, and use a sample s from the distribution Sx0 and the
quantity |βx0

s | as advice instead. Then we show that the instance-hiding property implies that the quantities

Es←Sx

[
|αx

s |
|βx

s |

]
and Es←Sx0

[
|αx

s |
|βx0

s |

]
are close for any x. We use this to then show that using x0 instead of x in

the sampling of the advice will not affect the protocol by much.
All that is left is to ensure that the third condition above holds – that with high probablity |αx

s | / |βx
s | is

close to its expectation. But it very well might not be. We deal with this by using instead the sum of many
independent copies of this random variable:

∑
i∈[g](

∣∣αx
si

∣∣ / ∣∣βx
si

∣∣), where each si is sampled independently.
By the Hoeffding bound, this sum is indeed close to its expectation with high probability. Now, instead of
proving a lower bound on the size of a single set, M needs to prove that the weighted sum of the sizes of
a number of sets is large. We design an AM protocol for this by extending the Goldwasser-Sipser protocol
(Lemma 3.6).

Overall, the final constant-round protocol with randomized advice is as follows on input x:

• A receives as advice several samples s1, . . . , sg ← Sx0 , and the quantities
∣∣βx0

s1

∣∣ , . . . , ∣∣∣βx0
sg

∣∣∣
• M and A run our weighted set-lower-bound protocol where M proves that:

∑
i

|αx
si
|

|βx0
si |
≫ g

2

An AM protocol can be obtained from this constant-round IP following standard transformations [GS86].

Uniform Verifier from strong-IHIP. Midway through the argument above, we observed that it is
sufficient for the verifier to be able to obtain a number of samples s from Sx, together with the values |βx

s |.
Above, we resolved this by providing approximations of these as non-uniform advice. If we have an efficient
simulator Sim (that only takes the size of the instance as input) for the view of the honest prover, however,
we can compute these in the protocol itself, without needing such advice. The first part is clear – if we
sample s from Sim(n), its distribution is guaranteed to be close to Sx for any x, by the instance-hiding
property.

What remains is to arrange for the verifier to learn the (approximate) value of |βx
s | for such s. We do

this by taking advantage of the fact that for any x and s, by the instance-hiding property, the probability
that Sim(n) outputs s is a reasonably good approximation of the probability that the protocol with verifier
input x results in the transcript s. To be more specific, define the following quantity for any s:

ζs = {rSim | s is the transcript of Sim(n; rSim)}
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Let the randomness space of the simulator be RSim. Then, we show that the simulator’s output being
negligibly close to the actual transcript implies the following for any x, with high probability over s sampled
from either Sx or Sim(n):

1

2
· |ζs|
|RSim|

≤ |β
x
s |
|RV|

≤ 2 · |ζs|
|RSim|

Thus, if M can prove good bounds on the size of ζs to A, these would also imply good bounds on the size
of βx

s , and we can the proceed with the protocol as before. Notice that membership in ζs is again efficiently
testable. So a lower-bound on |ζs| can again be proven using the GS protocol.

To prove an upper bound, we use the set upper-bound protocol of Fortnow [For87]. This protocol requires,
in addition to membership in the set being testable, that the verifier privately obtain a uniformly random
element from the set. This is easy for us to arrange – the verifier A simply samples a random r ∈ RSim,
runs Sim(n; r) to obtain s, sends s to the prover M and keeps r private. Here, according to M, r is indeed a
uniformly random element in ζs.

The entire protocol is now roughly as follows on input x:

• A samples {si ← SimP(n; ri)}i∈[g], and sends the si’s to M

• M and A run upper and lower bound protocols for A to obtain an approximation of each |ζsi |

• A assumes that
∣∣βx

si

∣∣ = |ζsi | · (|RV| / |RSim|), using the values obtained above for the right-hand side

• M and A run our weighted set-lower-bound protocol where M proves that:
∑

i

|αx
si
|

|βx
si
| ≫

g
2

The actual protocol is slightly different because the set upper-bound protocol’s guarantees are a bit weaker
than ideal, but in essence it is as above. We refer the reader to Section 4.1 for details.

1.2.2 One-Way Functions from IHIP for Hard Problems

Recall that Theorem 1.2 shows that if a worst-case hard (resp. average-case hard) problem has a strong-IHIP
(resp. IHIP), then there is explicit constructions of one-way functions (resp. non-explicit construction). The
proofs assume, for the sake of contradiction, the non-existence of one-way function, and then use the efficient
inverter algorithm for efficient functions guaranteed by the assumption to decide the problem.

Specifically, we assume the non-existence of distributional one-way function, which is implied by the non-
existence of one-way functions [IL89]. If an efficient function f is not distributionally one-way, then there
exists an efficient inverter A, which takes a random image of f as input, and samples preimages almost-
uniformly. For the overview, we assume that the inverters work perfectly and sample uniformly random
preimages2, and also will focus on perfect-hiding protocols, and later describe how to make everything work
with errors.

Non-Explicit OWFs from Average-Case Hard IHIP. Consider any language L that has a q-round
strong-IHIP with prover P and verifier V, with a computationally unbounded simulator Sim for the honest
prover’s view. Further, there is an efficiently sampleable distribution X over which it is hard. We will work
with q = 2 for this overview, which is sufficient to demonstrate the ideas behind the proof. Denote the
algorithm of the verifier that computes the next message at any point in the protocol using random string
r by V(x, u1, . . . , yi; r). As before, for any (possibly partial) transcript s, denote by βx

s the set of random
strings r consisted with s, and by αx

s the set of r that lead to V accepting with transcript s.
We observe that if ⟨P,V⟩ is a one-round (two-message) protocol, then it is easy to show that F1(x, r1) =

(x,V(x; r1)) must be an distributional one-way function. Suppose not, there must exist an efficient inverter

2This assumption clearly loses generality. If it were true, then one would obtain OWF’s from worst-case hard problems in
SZK and IHIP rather than needing average-case hardness.
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A1, that on a random image (x, u1) as input, samples r∗1 uniformly over βx
u1
. Now consider a non-uniform

adversary Bs that has as advice a random transcript s = (u1, y1) sampled according to the simulation Sim(n),
and works as follows on in put x:

• Bs(x) runs A1(x, u1) to obtain a random r∗1 ∈ βx
u1

and accepts iff V(x, u1, y1; r
∗
1) accepts.

This last event above happens with probability |αx
s | / |βx

s |. So in expectation over s, by (1), the probability
that Bs accepts will be large if x is in L and small otherwise. The fact that the advice s is random in this
algorithm is not a concern – by taking multiple s and repeating Bs several times, one can then show that
there is a single set of transcripts s that works well as advice for all possible instances of size n. This gives
us a non-uniform algorithm for L, which is a contradiction, so F1 must be a distributional OWF.

In general, if we can set up an efficiently computable function such that inverting it lets us sample a
random element of βx

s given x and s, we can repeat the above argument. When the protocol ⟨P,V⟩ is more
than one round (even just two rounds), however, this approach is not straightforward. This is because the
messages of the verifier starting from the second round are dependent on prover’s messages and are in general
not guaranteed to be efficiently sampleable in the way the first message is. For instance, a natural candidate

for such a function might be defined as F
(u1,y1)
2 (x, r) = V(x, u1, y1; r). However, we are only interested in

inverses of this function where the r is consistent with the first message u1, and this might not be efficiently
sampleable.

Instead, we define a different function inductively as follows. First, if F1 is already a distributional OWF,
we are done with our proof. If not, consider a (perfect) inverter A1 for F1. Let C1(x, u1) be the algorithm

that computes (x, r1) ← A(x, u1), and just outputs r1. We define the function F
(u1,y1)
2 for any (u1, y1) as

follows:

F
(u1,y1)
2 (x, r2) = (x,V(x, u1, y1;C1(x, u1; r2)))

That is, F
(u1,y1)
2 (x, r2) first runs C1 with randomness r2 to sample an r1 that is contained in βx

u1
, and then

runs V on the partial transcript (u1, y1) with that r1 to produce the next verifier message u2 in the protocol.
If C1 is perfect, this achieves what the earlier attempt at defining F2 did not – any output of C1(x, u1) is a
random element of βx

u1
, so we are never in a situation where we have in hand a verifier random string r that

is not consistent with the partial transcript so far.
Let us look at the property of random inverses of F2 more closely. First, given a random r2, C1(x, u1; r2)

is a random element of βx
u1
, and so also of βx

(u1,y1)
. So a random inverse of F

(u1,y1)
2 on output (x, u2) is

a random (x, r2) such that C1(x, u1; r2) is also further contained in βx
(u1,y1,u2)

. So given a random inverse

(x, r2) of F
(u1,y1)
2 on output (x, u2), the output of C1(x, u1; r2) is distributed uniformly over βx

(u1,y1,u2)
, and

thus also βx
s for s = (u1, y1, u2, y2) for any y2. So given a random such s = (u1, y1, u2, y2) from the simulator

Sim(n) along with a perfect distributional inverter for F
(u1,y1)
2 , we can efficiently sample from βx

s , which is

exactly what we needed! So unless F
(u1,y1)
2 is distributionally one-way for such an s, we can decide L.

There are two remaining issues here – one is that we do not actually have a perfect distributional inverter,
only a very good one; the other is the question of where the distributional inverters come from for the eventual
algorithm we construct for L. The solution to the latter is non-uniform advice. As before, we can argue that
there is a set of transcripts s that work for all instances, and then if the F2’s defined with those transcripts
are not distributionally one-way, their inverters can be provided as non-uniform advice. The former issue
can again be dealt with using standard techniques to carefully account for the inversion (and also hiding)
errors and show that it remains small enough to not matter.

This process can then be inductively carried out for every round of the protocol if there are more rounds.
Finally note that the reason this does not extend to being able to use the worst-case hardness of L is that
the functions F1, etc., that we construct take x as an input. So inverting them on random outputs cannot
give guarantees for every possible x.

Explicit OWFs from Worst-Case Hard strong-IHIP. Consider any language L that has a q-round
strong-IHIP with prover P, verifier V and efficient honest-prover simulator Sim. Our approach is to use the
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possibility of inverting any efficiently computable function to efficiently implement the “simulation-based
prover” [AH91] for this interactive proof for any instance. This proof is almost the same as the proof that
average-case hardness of SZK implies OWF’s [Ost91], though see below for further discussion.

The simulation-based prover PSim is defined to behave as follows on interaction with verifier V: at any
point in the protocol, if the current transcript is (u∗1, . . . , y

∗
i−1, u

∗
i ), it samples an s = (u1, . . . , ui, yi) from

Sim(n) conditioned on uj = u∗j for j ≤ i and yj = y∗j for j < i, and then responds to V with the message yi.
By the instance-hiding property, the view of the verifier generated by V interacting with PSim is statistically
close to that when interacting with the honest verifier P. Thus, due to the completeness and soundness of
the protocol, if PSim can be implemented efficiently, the language can also be decided efficiently.

For each i ∈ [q], define the efficiently computable function Simi(n, r) that runs Sim(n; r) (with randomness
r), and outputs the first (2i− 1) messages (u1, y1, . . . , ui). If each Simi had a perfect distributional inverter,
then given (u∗1, . . . , u

∗
i ), the inverter can be used to sample a uniformly random r that when used by Sim(n; r)

as randomness produces this partial transcript. Then computing Sim(n; r) can be used to sample the yi that
is exactly as required by the simulation-based prover. So if every efficiently computable function can be
perfectly distributionally inverted, then the simulation-based prover can be implemented efficiently, giving
us the contradiction we want. If the distributional inverter available is not perfect, there are some errors
that come up throughout this process, but they can be handled using standard techniques.

This proof is very similar to the proof that average-case hardness of SZK implies OWF’s [Ost91]. In the
SZK case, the simulator also takes as input the instance x, and therefore being able to invert the simulator
does not necessarily imply that the language can be decided for all instances x, which is why average-case
hardness is needed. In this case, however, the simulator works for all instances x, and so inverting it gives
an algorithm for all instances x, and worst-case hardness is sufficient.

1.2.3 Oracle Separation from SZK

To demonstrate an oracle separation between IHIP and SZK, we construct an oracle language for which these
two protocols have different query complexities. This separation in query complexity can then be translated
into an oracle separation using standard diagonalization techniques.

Our language is defined using the Discrete Log problem with a generic group oracle [Sho97]. For any
n ∈ N, and a prime number N ≈ 2n, given any bijection σ : ZN → [N ], the generic group oracle Gσ encodes
the group ZN using otherwise meaningless labels from [N ]. Given inputs g, h ∈ [N ], Gσ(g, h) is equal to
σ(σ−1(g) + σ−1(h)). Consider in addition to this another oracle I : ZN → {0, 1}. We define our language
(technically, promise problem) as:

LI,σ = {(σ(1), σ(x)) | I(x) = 1}

This language has an IHIP for any σ and I when the parties are given access to I and Gσ as oracles. This
is as follows: given input (σ(1), σ(x)), compute y = σ(x+ r) for a random r ∈ ZN , send y to the prover, who
is supposed to return r′ ← σ−1(y). Check that σ(r′) = y, and if so output I(r′ − r). The efficiency of the
verifier here relies on the fact that σ(r) for any r can be computed using poly(n) calls to Gσ using repeated
doubling. Completeness and soundness follow from the fact that (r, r′) is an NP witness for the instance,
and strong instance-hiding follows from the fact that the prover only sees a uniformly random element of
[N ].

On the other hand, it is known from generic lower-bounds for the Discrete Log problem [Sho97, CGK18]
that no algorithm can compute x given (σ(1), σ(x)) and oracle access to Gσ for a random σ with substantially
fewer than

√
N queries. This implies that any candidate efficient SZK simulator would, with very high

probability, not query oracle I on x given input (σ(1), σ(x)) and oracle access to Gσ. The simulation property
then implies that if I(x) = 1, then the verifier for the corresponding protocol, with high probability, would
not query I on x either. If this happens, then the outcome of the protocol would have been the same
irrespective of whether I(x) was 0 or 1. This shows that at least one of zero-knowledge, completeness, or
soundness breaks at such an input x. This shows the required query complexity lower bound.
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1.3 Related Work

The concept of instance-hiding proof systems was first introduced, albeit in the multi-prover setting, by
Beaver et al. [BFS90]. Their definition was based on that of instance-hiding schemes as defined by Abadi et
al. [AFK89], which may be seen as honest-prover instance-hiding proofs without the soundness property. The
latter also showed that any language that has a perfect instance-hiding scheme (which is implied by a proof)
is contained in NP/poly∩coNP/poly. The former showed that a language has a multi-prover instance-hiding
proof iff it is contained in NEXP ∩ coNEXP, and further that such a proof could be made zero-knowledge.

Feigenbaum and Ostrovsky [FO91] and Beaver et al. [BFOS93] showed further connections between
(single-prover) instance-hiding schemes and proofs assuming the existence of one-way permutations. To be
more accurate, most of these papers consider instance-hiding proofs for certifying the evaluations of functions
and discuss the feasibility of such proofs based on the complexity of these functions. Multi-prover instance-
hiding schemes were also studied by Beaver and Feigenbaum [BF90], who showed that they exist for all
functions.

Randomized Encodings. Randomized Encodings are closely related to instance-hiding proofs. The
properties we show for IHIP – membership in AM ∩ coAM and the implication of OWFs from worst-case
hardness [AR16] – are also shared by the class of languages that have Statistical Randomized Encodings
(SRE) [IK00, AIK04, AIKPC15]. An SRE for a language L is a randomized function whose output on an input
x reveals whether x ∈ L and nothing else about x, in a statistical sense. Randomized encodings with very low
complexity have been used extensively in construcing MPC protocols [Yao86, Kil88, IK00, FKN03, AIK04,
. . . ]. Agrawal et al. [AIKPC15] showed examples of languages that have SREs that, under reasonable
computational assumptions, are not efficiently computable.

It is known that languages that have an SRE also have SZK proofs [App14a] (and the above oracle
separation also carries over). Techniques from the literature also show that any language that has an SRE
also has an IHIP (see e.g. [AIK10], and references in Section 1.1 therein). For completeness, we include a
self-contained proof of this statement in Appendix C.1. These techniques can further be extended to show
that an interactive version of Randomized Encodings (as defined by Applebaum et al. [AIK10]) is equivalent
to IHIP.

1.4 Discussion and Open Problems

There are number of fundamental questions about the properties and power of instance-hiding proofs that
are yet to be answered. We list a few of these below.

1. Are there natural complete problems for the class of languages that have instance-hiding proofs?

2. What is the relationship between this class and SZK? Both of them are contained in AM/poly ∩ coAM/poly,
but is one contained in the other? In this work, we provide an oracle separation IHIPO ̸⊆ SZKO; can
we show one in the other direction?

3. Is Strong-IHIP closed under complement?

4. Are there other cryptographic consequences of the existence of hard problems in this class, beyond
one-way functions?

5. Can worst-case hard IHIP imply one-way function? This question is also open for SZK.

6. Can the instance-hiding error be amplified? Note that this question is also open for SRE.

7. Is there a separation between perfect and imperfect instance-hiding proofs?

8. What is the power of computational instance-hiding proofs? What assumptions are needed for these
to be constructed for all of NP?
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9. Similarly, what is the power of instance-hiding argument systems, which have efficient provers (given,
say, an NP witness) and only computational soundness? How do we even define these, given that the
witness might already reveal information about the witness?

There is also a looming non-technical question here that it would be useful to know the answer to.
Instance-hiding proofs and zero-knowledge proofs were defined at around the same time. The initial results
regarding these – multi-prover constructions for large classes of languages, limitations of perfect single-
prover constructions, etc. – seem to have been similar. In strong contrast to zero-knowledge proofs, however,
research on instance-hiding proofs (at least explicitly) has been very sparse after a brief period following their
definition. Why is this the case? Could it be because we succeeded in constructing computational ZK proofs
for all of NP shortly thereafter, whereas similar results for instance-hiding proofs were lacking? Given the
more advanced cryptographic toolkit available to us today, can we construct computational instance-hiding
proofs for large classes of languages? Would they be as useful as ZK proofs?

2 Instance-Hiding Interactive Proofs

In this section, we define Instance-Hiding Interactive Proofs, and prove closure and amplification proper-
ties for such proof systems. We demonstrate some examples of such proofs for non-trivial problems in
Appendix A. We start by setting up notation that we will use for the rest of the paper.

Notation. Throughout this paper, for an interactive proof involving a prover P and a verifier V, we use
ViewP

(
P,V

)
to represent the prover’s view during an execution (this includes the prover’s random coins,

if any, and the set of messages in the execution). Similarly, ViewP

(
P,V

)
and Viewpub

(
P,V

)
denote the

verifier’s view and public view (that is, the transcript of messages) during execution, respectively. The
private inputs of provers and verifier, which can include elements such as private coins and instances, are
associated with the respective parties. For instance, ViewP

(
P(|x|; rP ),V(x; rV )

)
denotes the prover’s view

when the verifier, receiving private instance x, uses randomness rV , and the prover, given only length of
instance |x|, uses randomness rP . For conciseness, some private and public inputs may be omitted when
they are evident from context. Moreover, we naturally associate the verifier accepting with an output of 1,
and rejection with 0.

Our various results involve both uniform and non-uniform algorithms. Unless otherwise specified, al-
gorithms in our discussion are uniform. Further, unless otherwise specified, the transformations (between
protocols or algorithms) in statements of our results preserve uniformity. For any probabilistic algorithm A
that samples its randomness uniformly, we denote its randomness space by RA.

We consider interactive proofs for promise problems, rather than languages. A promise problem is a
pair Π = (Yes,No) of disjoint sets. We say that x satisfies the promise for Π, or is an instance of Π,
if x ∈ Yes ∪ No. We denote by Yes(Π) = Yes and refer to x ∈ Yes(Π) as “Yes” instances of Π and
x ∈ No(Π) = No as “No” instances of Π. We employ Πn (similarly Yesn, Non) as shorthand for the set of
instances of Π contained in {0, 1}n. For any instance x of Π, we overload the notation Π(x) as:

Π(x) =

{
1, if x ∈ Yes(Π).

0, if x ∈ No(Π).

For any set S, US denotes a uniformly random sample from S, and Uℓ denotes a uniformly random
sample from the set of ℓ-bit strings. We use negl(n) to denote a negligible function in n and ϕ to denote
empty string.

Definition 2.1 (Statistical Distance). The statistical distance between two distributions X and Y over a
finite set X is defined as:

∆(X,Y ) = max
S⊆X

∣∣Pr [X ∈ S]− Pr [Y ∈ S]
∣∣ = 1

2

∑
u∈X

∣∣∣Pr [X = u]− Pr [Y = u]
∣∣∣ ,
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Definition 2.2 (Instance-Hiding Interactive Proof (IHIP) [BFS90]). Consider a promise problem Π =
(Yes,No), and functions δ, ϵ : N → [0, 1]. A (δ, ϵ)-Instance-Hiding Interactive Proof (IHIP) for Π is a pro-
tocol ⟨P,V⟩ in which a probabilistic polynomial-time verifier V interacts with a computationally unbounded
prover P. For some n ∈ N, the verifier gets a private input x ∈ Yesn ∪Non, while the prover only gets the
input length n. At the end of the interaction, V outputs either 1 (Accept) or 0 (Reject). The protocol is
required to satisfy the following properties for all large enough n ∈ N:

• Completeness: For any input x ∈ Yesn:

Pr [⟨P(n),V(x)⟩ = 1] ≥ 1− δ(n).

• Soundness: For any input x ∈ Non, and any prover P∗:

Pr [⟨P∗(n),V(x)⟩ = 1] ≤ δ(n).

• Hiding: For any prover P∗, there exists a computationally unbounded randomized algorithm SimP∗ , called
a simulator, such that for any input x ∈ {0, 1}n,

∆
(
SimP∗(n),ViewP∗(P∗(n),V(x))

)
≤ ϵ(n).

If the simulator corresponding to the honest prover runs in polynomial time in n, we say the protocol is
Strong-Instance-Hiding (Strong-IHIP). The protocol is perfectly-hiding IHIP if ϵ(n) = 0 for all n. If a
simulator is only guaranteed to exist only for the honest prover P, the protocol is honest-prover IHIP.

Definition 2.3 (Class IHIP, IHIP/poly). The class IHIP consists of all promise problems that have a (δ, ϵ)-
IHIP with uniform verifier protocol for some negligible δ(n) and ϵ(n). For concrete functions (δ, ϵ), we denote
by (δ, ϵ)-IHIP the class of problems possessing (δ, ϵ)-IHIP. Similarly, IHIP/poly denotes the class of promise
problem that have a (δ, ϵ)-IHIP with non-uniform verifier protocol for some negligible δ(n) and ϵ(n)

Remark 2.4. Prior work in this area, such as Beaver et al. [BFS90], defined instance-hiding proof systems
for function delegation rather than promise problem decision. For a function f , at the end of the protocol,
completeness required that the verifier learn f(x) when interacting with the honest prover; and soundness
required that no prover could convince the verifier of an incorrect value of f(x). Definition 2.2 is weaker than
just the restriction of this to Boolean functions, in that we only require completeness guarantees to hold for
YES instances (Π(x) = 1), and soundness guarantees for NO instances (Π(x) = 0). This relaxed definition
is still meaningful, and lets us compare IHIPs directly to IPs, ZK proofs, etc., that are also similarly defined.
The relaxation also makes it harder to prove our containment results and closure properties. Some of our
results also extend to the definition involving function delegation – see Section 7 for this definition and
further details.

Remark 2.5. Earlier definitions of instance-hiding proof systems only considered perfect instance-hiding.
This made showing containment of problems with such proofs in NP and coNP considerably simpler than
our proofs showing containment of problems with imperfect instance-hiding proofs in AM and coAM.

Remark 2.6. As we show in Appendix C, instance-hiding IPs are closely related to the notion of Randomized
Encodings (RE) of promise problems [AIK04] (see also [AIK05]). In fact, using the techniques in that
section, instance-hiding IPs (for non-negligible values of the hiding error) can be shown to be equivalent to
an interactive version of RE as defined by Applebaum et al. [AIK10].

2.1 Closure Properties and Amplification

Since their inception, the composition properties of zero-knowledge proofs have been extensively studied.
It is established that Statistical Zero-Knowledge (SZK) is preserved under sequential repetition, and that
the existence of an SZK proof is preserved under composition with arbitrary polynomial-sized formulas
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[GK96, Oka00, DSDCPY08, CD96, SV97]. However, similar properties for instance-hiding have not received
as much attention yet. In this subsection, we present positive results regarding these properties of IHIP.
We show that the existence of such proofs is preserved under composition with any efficiently computable
function, and not just polynomial-sized formulas.

For any promise problem Π = (Yes,No), we also denote by Π : {0, 1}∗ → {0, 1,⊥} its characteristic
function, which outputs 1 on any input x ∈ Yes, 0 on any x ∈ No, and ⊥ on all other inputs. Similarly, given
any function f : {0, 1}∗ → {0, 1,⊥}, we define the corresponding promise problem Πf whose characteristic
function it is. Consider any function f : {0, 1,⊥}∗ → {0, 1,⊥} satisfying the property that its output is ⊥
whenever any of its inputs is ⊥. For any function k : N → N, we define the composed promise problem
f ◦Π⊗k as follows:

Yesn(f ◦Π⊗k) =
{
(x1, . . . , xk(n)) | ∀i : |xi| = n ∧ f(Π(x1), . . . ,Π(xk(n))) = 1

}
.

Non(f ◦Π⊗k) =
{
(x1, . . . , xk(n)) | ∀i : |xi| = n ∧ f(Π(x1), . . . ,Π(xk(n))) = 0

}
.

Theorem 2.7 (Closure under Composition with Efficient Functions). Consider any promise problems Π
that has an IHIP protocol, and any efficiently computable function f : {0, 1,⊥}∗ → {0, 1,⊥} whose output is
⊥ whenever any of its inputs is ⊥. For any polynomial k : N → N, the composed promise problem f ◦ Π⊗k
also has an IHIP protocol.

The full proof of this theorem needs tools that we develop in Section 7, and so we defer the proof to
Section 7.2. An important special case of this theorem, which we use in its proof, is the closure of IHIP
under complementation. This is stated in the following lemma, which is also proven in Section 7.2. The
transformation we use to prove this lemma does not preserve the efficiency of the simulator, and so it does
not carry over to strong IHIP. This happens to be the missing piece in extending Theorem 2.7 to strong
IHIP as well.

Lemma 2.8 (Closure under Complementation). Suppose, for some negligible functions δ, ϵ, that a problem
Π has a (δ, ϵ)-IHIP (possibly with a non-uniform verifier). Then the complement of Π has a (δ′, ϵ′)-IHIP
(resp. with a non-uniform verifier if starting with a non-uniform verifier), where δ′, ϵ′ are also negligible.

Corollary 2.9. IHIP/poly = coIHIP/poly and IHIP = coIHIP.

Another component of the proof of Theorem 2.7 is the following lemma regarding the behavior of instance-
hiding proofs under repetition in parallel that is significant on its own. In contrast to zero-knowledge proofs,
instance-hiding proofs show robustness under parallel repetition.

Lemma 2.10 (Preservation of Instance-Hiding Under Parallel Repetition). For any functions k : N→ N and

ϵ : N→ [0, 1], consider the protocol
〈
P⃗, V⃗

〉
where V⃗ takes as input k(n) instances/inputs x1, . . . , xk(n), each

of size n, and executes ⟨P1(n),V1(x1)⟩ , . . . , ⟨Pk(n),Vk(xk)⟩ independently in parallel, where each ⟨Pi,Vi⟩ is
ϵ-instance-hiding. Then

〈
P⃗, V⃗

〉
is (k · ϵ)-instance-hiding.

We prove this lemma later in this section. This gives us a round-efficient way to strongly amplify the
completeness and soundness in an instance-hiding proof at a small cost in the instance-hiding error.

Lemma 2.11 (Amplifying IHIP by Parallel Repetition). For functions δ, ϵ such that δ(n) < 1/2−Ω(1) for
all n, consider a (δ, ϵ)-IHIP ⟨P,V⟩ for a promise problem Π. For any polynomial k, let

〈
P⊗k,V⊗k

〉
be the

protocol where V⊗k, on input x, runs k(n) executions of ⟨P(n),V(x)⟩ independently with P⊗k, and outputs
the majority of the results. Then,

〈
P⊗k,V⊗k

〉
is a (2−Ω(k), k · ϵ)-IHIP for Π.

Proof of Lemma 2.11. The (k · ϵ)-hiding of the repeated protocol follows directly from Lemma 2.10. Ampli-
fication of completeness and soundness follows from Lemma B.1, which asserts the amplification of general
interactive proofs by parallel repetition. For completeness, we include a self-contained proof of this lemma
in Appendix B.
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Proof of Lemma 2.10. Assume for contradiction that there exists a prover P⃗∗ and infinitely many n for which
there exists x⃗, y⃗ ∈ ({0, 1}n)k(n) such that:

∆
(
ViewP⃗∗

(
P⃗∗, V⃗(x⃗)

)
,ViewP⃗∗

(
P⃗∗, V⃗(y⃗)

))
> k(n) · ϵ(n).

We derive a contradiction by constructing a sequence of provers P∗0,P
∗
1 . . . ,P

∗
k, with P∗i interact with Vi, and

proceed to argue that there exists P∗j , x, y such that:

∆
(
ViewP∗

j

(
P∗j ,Vj(x)

)
,ViewP∗

j

(
P∗j ,Vj(y)

))
> ϵ(n).

For each i ∈ [k], we define machine P∗i that simulates the P⃗∗ and V1(x1), . . . ,Vi−1(xi−1),Vi+1(yi+1), . . . ,Vk(yk)
and interacts with Vi on input x in parallel. The prover P∗i writes the simulated k − 1 interactions on the
communication tape in position so that the distribution on communication tape after the interaction is the
same to that during the interaction between P⃗∗ and V⃗ on input (x1, . . . , xi−1, x, yi+1 . . . , yk). We define D(z⃗)

as the shorthand of the distribution of prover’s view ViewP⃗∗

(
P⃗∗, V⃗(z⃗)

)
on instances z⃗ and construct k + 1

hybrid distributions:

• H0 = D(y⃗) = ViewP⃗∗

(
P⃗∗, V⃗(y⃗)

)
.

• Hi = D(x1, . . . , xi, yi+1, . . . , yk), for i ∈ [k − 1].

• Hk = D(x⃗) = ViewP⃗∗

(
P⃗∗, V⃗(x⃗)

)
.

We notice that, for i ∈ [k], the distribution of P∗i ’s view on input xi

(
denoted as ViewP∗

i

(
⟨P∗i ,V(xi)⟩

))
is

identical to Hi, and identical to ViewP∗
i+1

( 〈
P∗i+1,V(yi+1)

〉 )
. By triangle inequality, we have that:∑

i∈[k]

∆
(
ViewP∗

i

(
⟨P∗i ,V(yi)⟩

)
,ViewP∗

i

(
⟨P∗i ,V(xi)⟩

))
=
∑
i∈[k]

∆
(
Hi−1, Hi

)
= ∆

(
H0, Hk

)
,

≥ ∆
(
ViewP∗

k

(
P⃗∗, V⃗(x⃗)

)
,ViewP∗

k

(
P⃗∗, V⃗(y⃗)

))
≥ k(n) · ϵ(n).

By pigeonhole principle, there must exists some j ∈ [k] such that

∆
(
ViewP∗

j

( 〈
P∗j ,Vj(xj)

〉 )
,ViewP∗

j

( 〈
P∗j ,Vj(yj)

〉 ))
≥ ϵ(n).

This contradicts the assumption and the lemma follows.

3 Tools

In this section, we define terms and prove lemmas that will be useful in other parts of the paper. This section
may be read on its own, and the results here might find use in other contexts as well.

3.1 AM Proofs and Advice Oracles

We leave out standard definitions of interactive proofs and their properties. An AM proof is a constant-round
public-coin interactive proof. In our study, we will concern certain scenarios where the verifier in such proofs
is non-uniform. In such cases, the verifier receives polynomial-sized advice that is a function of the input
length. We define the following related complexity classes and state some relevant facts about them.
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Definition 3.1 (AM/poly). The class AM/poly consists of all promise problems that have a constant-round
public-coin interactive proof with a non-uniform polynomial-time verifier and unbounded prover. The class
coAM/poly consists of promise problems whose complements have such proofs.

Lemma 3.2 ([BHZ87]). If coNP ⊆ AM/poly, then the polynomial hierarchy collapses to the third level.

In the constructions of AM proof systems, it is advantageous to consider the verifier’s non-uniform
advice as a sample from a advice distribution outputed by an advice oracle O(n) instead of merely a string
determined by the input length. This shift allows for a nuanced analysis on the completeness and soundness
of the protocol, considering the inherent randomness of this advice oracle.

We define this type of proof system below and demonstrate that it is equivalent to those with standard
non-uniform verifiers. We denote by ⟨P,V⟩a the execution of the protocol with V given a as advice and apply

⟨P,V⟩O(n)
as shorthand of that samples a← O(n) and apply a as the non-uniform advice ⟨P,V⟩a.

Definition 3.3. An interactive proof with randomized advice oracle for a promise problem Π is described by
a pair of Turing machines (P,V) and an advice oracle O. An execution of this protocol on input x is denoted

by ⟨P,V⟩O (x), and consists of sampling a string a ← O(n), and running the protocol on input x with a as
the advice string for V. It is required to have the following properties:

• Completeness: For any input x ∈ Yes(Πn) :

Pr
O,P,V

[
⟨P,V⟩O (x) = 1

]
≥ 2

3
.

• Soundness: For any input x ∈ No(Πn), and any prover P ∗:

Pr
O,P∗,V

[
⟨P∗,V⟩O (x) = 1

]
≤ 1

3
.

Lemma 3.4. Suppose a promise problem Π has a constant-round public-coin interactive proof with a ran-
domized advice oracle. Then Π ∈ AM/poly.

Proof of Lemma 3.4. Let ⟨M,A⟩ be such a constant-round public-coin interactive proof system with advice
oracle O. We define ⟨M′,A′⟩ as the AM protocol that runs ⟨M,A⟩ for some polynomial t(n) repetitions in
parallel3 with the advice strings drawn independently from the advice oracle O, and takes the majority result
as the output. We have the following using standard arguments about the parallel composition of interactive
proofs:

• If x ∈ Yes(Πn) :
Pr

M′,A′,a←O⊗t
[⟨M′,A′⟩a(x) = 1] ≥ 1− e−t(n).

• If x ∈ No(Πn), for any M∗ :

Pr
M∗,A′ a←O⊗t

[⟨M∗,A′⟩a(x) = 1] < e−t(n).

We call advice ā = (a1, . . . , at) “bad” if there exists an instance x ∈ Yes(Πn) ∪No(Πn) such that ⟨M′,A′⟩a
incurs a soundness and completeness error greater than 2−n on x. Set t(n) such that e−t(n) ≤ 2−3n, ensuring
that for any instance x, there are at most a 2−2n fraction of possible advice ā, sampled by O⊗t, will lead to
a scenario where ⟨M′,A′⟩a has a soundness and completeness error greater than 2−n. Apply an union bound
over all n-bit strings we have

Pr
ā←O⊗s

[ā is “bad”] ≤ 2n · 2−2n ≤ 2−n.

Consequently, there must exist at least one “good” advice ā, generated by O⊗t, with which ⟨M′,A′⟩a exhibits
negligible completeness/soundness error for all instances, leading to the conclusion of the theorem.

3We remark that the lemma can be extended to AM protocol with special properties such as obliviousness, provided that these
properties are preserved under parallel repetition. It’s important to note, however, that certain properties like zero-knowledge,
might not be maintained through this process.
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3.2 Weighted Set Lower Bound Protocol

In this section, we construct a protocol that, given some sets S1, . . . , Sg, and corresponding positive numbers
c1, . . . , cg, can prove that the sum

∑
i ci · |Si| is larger than some specified threshold. This is an extension of

a similar protocol of Goldwasser and Siper [GS86] for a single set.
The input to [GS86] protocol includes a set S ⊆ {0, 1}m defined using a “membership oracle” OS :

{0, 1}m → {0, 1}. That is OS(x) = 1 if x ∈ S, and OS(x) = 0 otherwise. Both the verifier and the prover in
the protocol have access to this oracle.

Lemma 3.5 (Goldwasser-Sipser Lower Bound Lemma [GS86]). For any m, t ∈ N, there is a 2-message
public-coin interactive protocol that, given access to the membership oracle for any S ⊆ {0, 1}m and an input
K ∈ N, has the following properties:

• If |S| ≥ K, the verifier accepts with probability at least 1−2−t when interacting with the honest prover.

• If |S| ≤ K/2, the verifier accepts with probability at most 2−t when interacting with any prover.

Further, the number of verifier’s oracle calls is O(t), its running time is (t · poly(m)), and the protocol has
(t · poly(m)) bits of communication.

Lemma 3.6 (Weighted Set-Lower-Bound Lemma). For any m, g, t ∈ N, there is a 3-message public-coin
interactive protocol such that, given access to the membership oracles for any S1, . . . , Sg ⊆ {0, 1}m, and
inputs c1, . . . , cg ∈ (0, 1], and K > 0:

• If
∑
i∈[g]

ci · |Si| ≥ K, the verifier accepts with probability at least 1 − g · 2−t when interacting with the

honest prover.

• If
∑
i∈[g]

ci · |Si| ≤ K/4, the verifier accepts with probability at most 2−t when interacting with any prover.

Further, the verifier makes O(t) calls to each oracle, has running time O(g · t · poly(m)), and the protocol
has (g · t · poly(m)) bits of communication.4

Proof of Lemma 3.6. Let LBP be the set lowerbound protocol from Lemma 3.5. We construct a public-coin
interactive protocol that satisfies Lemma 3.6 as shown in Figure 1.

Completeness: The completeness of the protocol follows from the completeness of LBP. For a scenario
where

∑
i∈[g]

ci · |Si| ≥ K, the prover M sets assigns yi = |Si|. We define an event Ei to represent the occurence

of “bi = 1 in ith iteration of WSLBP”. Leveraging Lemma 3.5, we have:

Pr[A accepts] ≥ Pr[
∧
i∈[g]

Ei]

≥
∏
i∈[g]

(1− 2−t)

= (1− 2−t)g,

≥ (1− g · 2−t).

Soundness: Let y∗i represent the values received by A in the first message. For any set of y∗i ’s sent by a
prover M∗ in the first message. We observe that for each i ∈ [g]:

• If |Si| ≥ y∗i :
Pr [bi = 1] ≥ 1− 2−t.

4Here we assume that K and the coefficients c1, . . . , cg are encoded using poly(m) bits.
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Weighted Set-Lower-Bound Protocol (WSLBP): ⟨M,A⟩OS⃗ (c⃗, K)

Parameters: m (set size), g (number of sets), t (threshold parameter).

Inputs:
• Coefficients Vector: c⃗ = (c1, . . . , cg) with each ci ∈ (0, 1] .

• Threshold: A positive number K ∈ R.
• Sets: Oracle access to OS⃗ = (OS1

, . . . ,OSg
), where OS1

, . . . ,OSg
are membership oracles for

S1, . . . , Sg ⊆ {0, 1}m respectively.

Outputs: A binary decision b ∈ {0, 1}, indicating the outcome of the lower-bound assessment.

Ingredients:
• LBPOS (K) is [GS86] protocol with parameters m and t given oracle access OS for some set S, as
promised by Lemma 3.5.

Protocol:
1. The prover M:

• If
∑

i∈[g] ci · |Si| ≥ K:

– Send to the verifier A the values y1, . . . , yg, where yi = |Si|.
• Else: Abort.

2. For i← 1 to g:

• Both A and M run the protocol LBP with membership oracle OSi and input yi, obtaining the
output bi.

• if bi = 0, the verifier A outputs 0 and aborts .

3. The verifier A computes z =
∑

i∈[g] ci · yi.
4. The verifier A outputs 1 if z ≥ K; otherwise, outputs 0.

Figure 1: Weighted Sets Lower-Bound Protocol (WSLBP)

• If |Si| ≤ y∗
i

2 :
Pr [bi = 1] ≤ 2−t.

• If
y∗
i

2 < |Si| < y∗i :
Pr [bi = 1] ≤ 1.

Thus, if for any i ∈ [g], y∗i ≥ 2 · |Si|, the verifier’s probability of acceptance is bounded by 2−t. Conversely,
if y∗i ≤ 2 · |Si| for all i, and

∑
i∈[g]

ci · y∗i ≤
∑
i∈[g]

2ci · |Si| ≤ K
2 and verifier will always reject in the last step.

Hence the soundness error of the protocol in Figure 1 is bounded by 2−t.

Efficiency: Both the prover M and verifier A execute LBP for g times. Each execution entails a compu-
tational cost of O(t · poly(m)) for verifier. Furthermore, the operation to compare

∑
i∈[g]

ci · yi against z is

bounded by poly(m). Consequently, the total running time for verifier is O(g · t · poly(m)) .
The communication cost in the protocol is determined by the vector y1, . . . , yg transmitted by M, along

with the g rounds of LBP. Since yi ≤ 2m for each i ∈ [g], each yi can be encoded in m bits. Consequently
the overall communication cost is g · t · poly(m) bits.
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4 Upper Bounds

While the existence of IHIP is noteworthy, it is also important to explore the limitations of such constructions.
Abadi et al. [AFK89] established an upperbound for perfect instance-hiding proofs, showing that problems
that have such proofs are contained in NP/Poly ∩ coNP/Poly.

Our work in this section extends these results by showing that every promise problem that has a (δ, ϵ)-
IHIP, even with δ, ϵ as large as some small constant, is still contained in AM/poly ∩ coAM/poly.

Theorem 4.1. Consider functions δ, ϵ : N→ [0, 1] such that for all sufficient large n, we have δ(n), ϵ(n) < 1
32 .

If a promise problem Π possesses an honest-prover (δ, ϵ)-IHIP, where the verifier can be non-uniform, then
both Π and its complement Π̄ have constant-round public-coin interactive proofs with a non-uniform verifier
(that is, an AM/poly proof system).

Corollary 4.2. IHIP/poly ⊆ AM/poly ∩ coAM/poly.

Further, we show that if the proof is strongly instance-hiding (that is, with an efficient simulator for
the honest prover), then the problem is contained in AM ∩ coAM. Here we need the errors to be negligible,
though.

Theorem 4.3. For any negligible functions δ, ϵ, if a promise problem Π has a strong honest-prover (δ, ϵ)-
IHIP, then both Π and its complement Π̄ have constant-round public-coin interactive proofs with uniform
verifiers (that is, an AM proof system).

Corollary 4.4. Strong-IHIP ⊆ AM ∩ coAM.

Remark 4.5. Theorems 4.1 and 4.3 can in fact be extended to similar but stronger statements with the
hypothesis only requiring protocols that have ϵ-hiding, completeness, and soundness against the honest
prover, because our proofs don’t depend on the protocols’ behavior with malicious provers.

Showing an upper bound for the strong-IHIP, where the simulator is efficient, is relatively more straight-
forward. This efficiency allows the simulator to be used directly in verifying or recognizing the promising
problem. Simulators are often used in this manner in efficient reductions when studying concepts like Zero-
Knowledge Proof and Randomized Encoding, where a simulator is defined to capture the desired privacy
(see, e.g. [BMO90, Vad99, App07]). An upperbound for strong-IHIP can leverage this intuition to construct
a constant-round public-coin verifier to recognize the language. In the case of general IHIP, however, the
simulator is inefficient, necessitating new techniques (and non-uniformity) to establish the bound.

Setup. Before proceeding to the proof of Theorem 4.1 and Theorem 4.3, we set up some notation for
IHIP and strong-IHIP proofs and prove some useful preliminary statements. Suppose ⟨P,V⟩ is a q-round
(δ, ϵ)-IHIP (or (δ, ϵ)-strong-IHIP) for a promise problem Π, and for any prover P∗ denote by SimP∗ the
corresponding simulator of the prover’s view. The only difference between IHIP and strong-IHIP is the
efficiency of SimP on simulating the view of honest prover. The ⟨P,V⟩ can be viewed as two deterministic
algorithms on the input, random seed, and public view (transcript) of the protocol:

• V : X ×RV × Σ∗ → U ∪ {0, 1},

• P : RP × Σ∗ → Y,

where X , RV (resp., RP) are the space of possible input instances and verifier’s (resp., prover’s) random
seed respectively, and Σ∗ is the space of the public view of the protocol. U and Y are verifier’s and prover’s
message space respectively. The outputs {0, 1} represent the verifier accepting or rejecting at the end of
the interaction. Let ui ∈ U , yi ∈ Y be the messages of verifier and prover at round i respectively, and
denote by s⃗ (i) = (u1, y1, . . . , ui, yi) the public view up to the end of ith round (s⃗0 = ϕ). We denote

V
(
x, rV, (u1, y1, . . . , ui, yi)

)
= ui+1 that V on input instance x, with random seed rV, and current public
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view s⃗ (i) produces the next message ui+1 ∈ U . Let rV ∈ RV, rP ∈ RP be the randomness of V/P respectively.
For i ∈ [q], we have:

• V(x, rV, s⃗
(i)) = ui+1.

• P
(
rP, (s⃗

(i), ui+1)
)
= yi+1.

For conciseness, we denote by S⃗x(rV, rP) the public view in the protocol ⟨P,V⟩ when the instance is x

and random seeds are rV, rP respectively (i.e. ViewP

(
⟨P(n; rP),V(x; rV)⟩

)
=
(
rP, S⃗x(rV, rP)

)
). Abusing

notation, S⃗x also represents the output distribution of S⃗x(URV
, URP

). Let S be the union of supports of S⃗x

for all x, and for any x and s⃗ ∈ S, define:

• βx
s⃗ = {rV ∈ RV | ∀i ∈ [q] : V(rV, x, s⃗i−1) = ui}.

• αx
s⃗ = {rV ∈ βx

s⃗ | V(x, rV, s⃗) = 1}.

• γs⃗ = {rP ∈ RP | ∀i ∈ [q] : P (rP, (s⃗i−1, ui)) = yi}.

Intuitively, βx
s⃗ (resp. γs⃗ ) is the set of V’s (resp. P’s) randomnesses that, when instance is x, makes V

(resp. P) behave as in view s⃗. αx
s⃗ is a subset of βx

s⃗ with which V accepts in the end seeing the instance x,
randomness rV and public view s⃗. The following claims apply to any instance-hiding protocol ⟨P,V⟩.

Claim 4.5.1. For any s⃗ ∈ S and any x,

Pr
(rV,rP)←RV×RP

[
S⃗x(rV, rP) = s⃗

]
=
|βx

s⃗ |
|RV|

· |γs⃗|
|RP|

.

Proof of Claim 4.5.1. An important observation here is that the randomnesses of P and V are independent
given the public view s⃗.

Pr
(rV,rP)←RV×RP

[
S⃗x(rV, rP) = s⃗

]
= Pr

(rV,rP)←RV×RP

[rV ∈ βx
s⃗ ∧ rP ∈ γs⃗]

= Pr
rV←RV

[rV ∈ βx
s⃗ ] · Pr

rP←RP

[rP ∈ γs⃗]

=
|βx

s⃗ |
|RV|

· |γs⃗|
|RP|

.

Claim 4.5.2. For any x,

Pr
(rV,rP)←RV×RP

[⟨P,V(x)⟩ = 1] = E
s⃗←S⃗x

[
|αx

s⃗ |
|βx

s⃗ |

]
.

Proof of Claim 4.5.2. Given a public view s⃗ ∈ S, the verifier’s randomness rV and prover’s randomness rP
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are independent. By the definition of βx
s⃗ , α

x
s⃗ and γs⃗, we have:

Pr
rV,rP

[⟨P,V(x)⟩ = 1] = Pr
rV,rP

[
V
(
x, rV, S⃗x(rV, rP)

)
= 1
]

(1)

=
∑
s⃗∈S

Pr
(rV,rP)←RV×RP

[
S⃗x(rV, rP) = s⃗ ∧ V

(
x, rV, s⃗

)
= 1
]

(2)

=
∑
s⃗∈S

Pr
[
S⃗x = s⃗

]
· Pr
(rV,rP)←βx

s⃗
×γs⃗

[V(x, rV, s⃗) = 1] (3)

=
∑
s⃗∈S

Pr
[
S⃗x = s⃗

]
· Pr
(rV,rP)←βx

s⃗
×γs⃗

[rV ∈ αx
s⃗ ] (4)

=
∑
s⃗∈S

Pr
[
S⃗x = s⃗

]
· Pr
rV←βx

s⃗

[rV ∈ αx
s⃗ ] (5)

=
∑
s⃗∈S

Pr
[
S⃗x = s⃗

]
·
|αx

s⃗ |
|βx

s⃗ |
(6)

= E
s⃗←S⃗

[
|αx

s⃗ |
|βx

s⃗ |

]
. (7)

Claim 4.5.3. ∣∣∣∣ E
s⃗←S⃗

[
|αx

s⃗ |
|βx

s⃗ |

]
− E

(rP,s⃗)←SimP(n)

[
|αx

s⃗ |
|βx

s⃗ |

]∣∣∣∣ ≤ 2 · ϵ.

Proof of Claim 4.5.3.∣∣∣∣ E
s⃗←S⃗

[
|αx

s⃗ |
|βx

s⃗ |

]
− E

s⃗←SimP(n)

[
|αx

s⃗ |
|βx

s⃗ |

]∣∣∣∣ =∑
s⃗∈S

|αx
s⃗ |
|βx

s⃗ |
·
∣∣∣Pr [S⃗ = s⃗

]
− Pr [SimP = (∗, s⃗)]

∣∣∣
≤
∑
s⃗∈S

∣∣∣Pr [S⃗ = s⃗
]
− Pr [SimP = (∗, s⃗)]

∣∣∣
≤ 2ϵ.

where the first inequality follows the fact that | α
x
s⃗ |
|βx

s⃗
| ≤ 1 for all x, s⃗.

4.1 Constant-Round Proofs from Strong Instance-Hiding

Theorem 4.3. For any negligible functions δ, ϵ, if a promise problem Π has a strong honest-prover (δ, ϵ)-
IHIP, then both Π and its complement Π̄ have constant-round public-coin interactive proofs with uniform
verifiers (that is, an AM proof system).

Proof of Theorem 4.3. Given that ⟨P,V⟩ is a honest-prover (δ, ϵ)-strong-IHIP for a promise problem Π,

Claim 4.5.2 suggests that Pr
rV,rP

[⟨P,V(x)⟩ = 1] = E
s⃗←S⃗x

[
|αx

s⃗ |
|βx

s⃗
|

]
. By the correctness of the honest prover, for any

instance x ∈ Yes(Πn) ∪No(Πn):

• If x ∈ Yes(Πn) :

E
s⃗←S⃗x

[
|αx

s⃗ |
|βx

s⃗ |

]
≥ 1− δ(n).

• If x ∈ No(Πn) :

E
s⃗←S⃗x

[
|αx

s⃗ |
|βx

s⃗ |

]
≤ δ(n).
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We will prove the theorem by constructing a constant-round interactive protocol to prove that E
s⃗←S⃗x

[
|αx

s⃗ |
|βx

s⃗
|

]
is large. Such a protocol can be made if (1) The distribution S⃗x can be sampled by verifier; (2) There

is a constant-round interactive protocol protocol, for a given s⃗, to prove that
|αx

s⃗ |
|βx

s⃗
| is large. Although the

distribution S⃗x may not be efficiently sampable, the SimP in strong-IHIP is efficient, and thus verifier can
call SimP(n) to sample a distribution that is ϵ-close to S⃗x. For condition (2), we note that both αx

s⃗ and βx
s⃗

are efficiently verifiable, and thus we can use [GS86] to prove a lowerbound for |αx
s⃗ |. To complete the proof,

the protocol should also prove an upperbound for |βx
s⃗ |. [For87] proposed a set upperbound protocol, which

require the verifier being able to sample a private uniform random element from the set. Here, however, we
don’t know how to sample a random private element from βx

s⃗ efficiently. In fact suppose we can, the promise
problem will collapse to BPP because the verifier’s view can be efficiently sampled, and thus this is unlikely.

We do, however, know how to upperbound the probability Pr[SimP(n) = (rP, s⃗)] for a random (rP, s⃗)←
SimP(n). This is achieved by running [For87]’s upperbound protocol, as described in Lemma 4.6, on the set of
simulator’s random seeds that produce (rP, s⃗). Specifically, we denote by RSimP

the simulator’s random space
and let ζrP,s⃗ = {rSim | SimP(n; rSim) = (rP, s⃗)}. On a random drawn rSim ← RSim, let (rP, s⃗) ← SimP(n; rSim)
be the simulated view. The used random seed rSim for sampling (rP, s⃗) can be kept in private as the random
element of ζrP,s⃗ in the upper-bound protocol. The probability that the simulator simulates the view (rP, s⃗)

is Pr[SimP(n) = (rP, s⃗)] =
|ζrP,s⃗|
|RSim| , where the value |RSimP

| is efficiently computable because SimP is a uniform

efficient algorithm. Furthermore, for any two randomness r, r′ ∈ ζrP,s⃗ :

Pr
rSim

[rSim = r|SimP(n) = (rP, s⃗)] = Pr
rSim

[rSim = r′|SimP(n) = (rP, s⃗)] =
1

|ζrP,s⃗|
.

Thus, on a random simulated view s⃗ sampled with randomness rSim, given only s⃗, the private rSim is a random

element from set ζrP,s⃗. Similarly, define ζrP = {rSim | SimP(n; rSim) = (rP, ∗)}, that is the set of simulator’s

randomness with which the simulated prover’s randomness is rP. We estimate
|βx

s⃗ |
|RV| by establishing an upper

bound for
|ζrP,s⃗|
|ζrP |

. This involves executing a [GS86] lower-bound protocol on |ζrP | and a [For87] upper-bound

protocol on |ζrP,s⃗|.

Lemma 4.6 (Set Upper-Bound Protocol [For87]). For any m ∈ N and set S ⊆ {0, 1}m, there is a 2-message
public-coin interactive protocol where the prover and verifier are given access to the membership oracle for
S and an public input K ∈ N, and the verifier is additionally given a random element of S as private input,
which has the following properties:

• When interacting with the honest prover: Pr[verifier accepts] ≥ 1− |S|−1K .

• When interacting with any prover: Pr[verifier accepts] ≤ 6·K
|S|−1 .

Given the necessary tools, we construct our constant-round IP protocol as shown in Figure 2.
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Constant-round IP for Π: ⟨M,A⟩(x)
Parameters: Input length n, amplification parameter g.

Inputs: A promise instance x of Πn.

Outputs: Verifier’s decision d ∈ {0, 1}
Ingredients:

• ⟨P,V⟩: An (δ, ϵ)-strong instance-hiding interactive proof for Π.

• For any transcript s⃗ ∈ S, we define the efficient membership oracle for set αx
s⃗ as follows:

Algorithm Oαx
s⃗
(r) :

1. Interpret s⃗ as (u1, y1, . . . , uq, yq)

2. Denote by s⃗i the prefix (u1, y1, . . . , ui, yi), with s⃗0 being the empty string

3. For j ← 1 to q

Check V(x, r, s⃗j−1) = uj , if not output 0.

4. If V(x, r, s⃗) = 1 output 1; Else output 0.

• For any s⃗ ∈ S and rP ∈ RP, define the efficient membership oracles for sets ζrP,s⃗ and ζrP as:

Algorithm OζrP,s⃗
(r) :

1. If SimP(n; r) = (rP, s⃗) output 1; Else output 0.

Algorithm OζrP
(r) :

1. (r′P, s⃗)← SimP(n; r).

2. If r′P = rP output 1; Else output 0.

• LBPOS (K): Set Lower-Bound protocol from Lemma 3.5 for the set S, with input K, and errors
negligible in n.

• UBPOS (K, r): Set Upper-Bound protocol from Lemma 4.6 for the set S, with public input K, and
verifier’s private input r.

Protocol:

For i← 1 to g, in parallel:

1. A samples ri ← RSim, computes (r
(i)
P , s⃗ (i))← SimP(n; ri) and sends (r

(i)
P , s⃗ (i)) to prover M.

2. M sets proposed lower bound kαi
= |αx

s⃗ (i) | (for size of αx
s⃗ (i)), and k

r
(i)
P

= |ζ
r
(i)
P

|, and upper

bound k
r
(i)
P ,s⃗ (i) = 4 · g · |ζrP,s⃗| (for size of ζ

r
(i)
P ,s⃗ (i)), and sends kαi

, k
r
(i)
P

, k
r
(i)
P ,s⃗ (i) to verifier A.

3. A and M run lowerbound protocol on αx
s⃗ (i) : dαi ← LBP

Oαx

s⃗ (i) (kαi).

4. A and M run lowerbound protocol on ζrP : drP,i ← LBP
Oζ

r
(i)
P (k

r
(i)
P

).

5. A and M run upperbound protocol on ζ
r
(i)
P ,s⃗ (i) with private input ri:

dζi ← UBP
Oζ

rP(i),s⃗ (i) (k
r
(i)
P ,s⃗ (i) , ri).

6. If dαi
= 0, or dζi = 0, or drP,i = 0: A outputs 0 (Reject).

Let tV = |RV| be the size of verifier’s random space. A computes k̄ ← 1
g ·
∑
i∈[g]

k
r
(i)
P

·kαi

tV·k
r
(i)
P

,s⃗ (i)
.

If k̄ ≥ 1
10·g , A outputs 1 (Accept); Otherwise Reject.

Figure 2: Constant-Round IP from (δ, ϵ)-IHIP
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We would like to get an estimated upperbound kβx

s⃗ (i)
for |βx

s⃗ (i) | by bounding
|ζrP,s⃗|
|ζrP |

for random rP.

Ideally, we require the estimated upperbound kβx

s⃗ (i)
be ceiled by p(|βx

s⃗ (i) |) for some polynomial p(·), which is

enough for us to differentiate the super-polynomial gap of E[ |α
x
s⃗ |
|βx

s⃗
| ] between YES and NO cases. Recall that

the efficient simulator SimP outputs a distribution composed of simulated prover randomness and public
view of the protocol. We notice that, with high probability over a simulated prover’s randomness rP, the
simulated public view conditioned on the fixed randomness rP is statistically close to the protocol public
view conditioned on the fixed rP.

To formalize the intuition, for any rP ∈ RP, denote the set of possible public views produced by the

simulator and protocol conditioned on rP by SSimP,rP =
{
s⃗ ∈ S| Pr [SimP(n) = (rP, s⃗)] > 0

}
and S⟨P,V⟩,rP ={

s⃗ ∈ S| Pr
[
ViewP

(
P(n; rP),V(x)

)
= (rP, s⃗)

]
> 0
}

respectively. It’s worth noticing that SimP can possibly

output (rP, s⃗) that never appears in the real protocol due to its hiding error, in which case SSimP,rP\S⟨P,V⟩,rP

is non-empty. Define RP-BAD =

{
rP

∣∣∣ ∑
s⃗∈S⟨P,V⟩,rP

∣∣∣ |ζrP,s⃗|
|ζrP |

− |β
x
s⃗ |
|RV|

∣∣∣ > √ϵ}, where ϵ is the hiding error.

Claim 4.6.1.

Pr
(rP,∗)←SimP(n)

[
rP ∈ RP-BAD

]
≤ 4
√
ϵ,

where (rP, ∗) denotes views with prover’s randomness being rP.

Proof of Claim 4.6.1.

Fact 4.7 (See e.g., [KRV21, Fact 2.6]). For any jointly distributed X0, X1, and Y it holds that

∆
(
(X0, Y ), (X1, Y )

)
= E

y←Y

[
∆
(
X0|Y = y,X1|Y = y

)]
.

Fact 4.8 (See, e.g. [KRV21, Fact 2.3]). Let (X0, Y0) and (X1, Y1) be two pairs of jointly distributed random
variables s.t. supp(X0) = supp(X1) and for every x ∈ supp(X0), the distributions Y0|X0 = x, Y1|X1 = x are
identically distributed. Then,

∆
(
(X0, Y0), (X1, Y1)

)
= ∆(X0, X1).

Denote by R0 the uniform distribution over RP, and let R1 be the distribution that samples (rP, ∗) ←
SimP(n), outputting rP. For any choice of rP, let S⃗1(rP) denote the simulated public view conditioned on

simulated prover randomness being rP. Thus (R1, S⃗1(R1) represent the output distribution of SimP(n).
Consider the following random process on input rP:

S⃗0(rP) : (rP, s⃗)← ViewP

(
⟨P(n; rP),V(x)⟩

)
, outputs s⃗.

Because of ϵ-hiding, the distance between R0 and R1 is bounded:

∆
(
R0, R1

)
≤ ∆

((
R0, S⃗0(R0)

)
,
(
R1, S⃗1(R1)

))
= ∆

(
ViewP

(
⟨P,V(x)⟩

)
,SimP(n)

)
≤ ϵ.

Follows Fact 4.8, we have:

∆
((

R0, S⃗0(R0)
)
,
(
R1, S⃗0(R1)

))
= ∆(R0, R1) ≤ ϵ.

Therefore, from triangle inequality, the distance ∆
(
(R1, S⃗0(R1)), (R1, S⃗1(R1))

)
< 2ϵ and by Fact 4.7 we

have:
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E
(rP,∗)←SimP(n)

[ ∑
s⃗∈S⟨P,V⟩,rP

∣∣∣ |ζrP,s⃗||ζrP |
−
|βx

s⃗ |
|RV|

∣∣∣] = 2 · E
rP←R1

[
∆(S⃗0

(
rP), S⃗1(rP)

)]
− E

rP←R1

[ ∑
s⃗∈SSimP,rP

\S⟨P,V⟩,rP

|ζrP,s⃗|
|ζrP |

]

≤ 2 · E
rP←R1

[
∆(S⃗0

(
rP), S⃗1(rP)

)]
= 2 ·∆

(
(R1, S⃗0(R1)), (R1, S⃗1(R1))

)
< 4ϵ.

Apply Markov bound and the claim follows.

This observation is important because in the protocol we first sample and fix prover’s randoness rP in

order to estimate
|βx

s⃗ |
|RV| . A random string rP is RP-good if rP ̸∈ RP-BAD. For any rP, denote by ζrP -BAD

the set of s⃗ ∈ S⟨P,V⟩,rP such that

∣∣∣∣ |ζrP,s⃗|
|ζrP |

− |β
x
s⃗ |
|RV|

∣∣∣∣ > |ζrP,s⃗|
|ζrP |

.

Claim 4.8.1. For any rP that is RP-good,

Pr
(r∗P ,s⃗)←SimP(n)

[
s⃗ ∈ ζrP-BAD

∣∣∣r∗P = rP

]
≤
√
ϵ.

Proof.

Pr
(r∗P ,s⃗)←SimP(n)

[
s⃗ ∈ ζrP -BAD

∣∣∣r∗P = rP

]
≤

∑
s⃗∈ζrP -BAD

|ζrP,s⃗|
|ζrP |

≤
∑

s⃗∈ζrP -BAD

∣∣∣∣ |ζrP,s⃗||ζrP |
−
|βx

s⃗ |
|RV|

∣∣∣∣
≤
√
ϵ.

where the first inequality follows definition of conditional probability, the second inequality from the definition
of ζrP -BAD, and the last inequality follows the fact that rP is rP-good and ζrP -BAD ⊆ S⟨P,V⟩,rP .

Similarly, let βrP -BAD denote the set of s⃗ ∈ S⟨P,V⟩,rP such that

∣∣∣∣ |ζrP,s⃗|
|ζrP |

− |β
x
s⃗ |
|RV|

∣∣∣∣ > |βx
s⃗ |
|RV| .

Claim 4.8.2. For any rP that is RP-good,

Pr
(r∗P ,s⃗)←SimP(n)

[
s⃗ ∈ βrP-BAD

∣∣∣r∗P = rP

]
≤ 2 ·

√
ϵ.

Proof.

Pr
(r∗P ,s⃗)←ViewP

(
⟨P,V(x)⟩

) [s⃗ ∈ βrP-BAD
∣∣∣r∗P = rP

]
=

∑
s⃗∈βrP

-BAD

|βx
s⃗ |
|RV|

≤
∑

s⃗∈βrP
-BAD

∣∣∣∣ |ζrP,s⃗||ζrP |
−
|βx

s⃗ |
|RV|

∣∣∣∣
≤
√
ϵ.
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Define S⃗0(·), S⃗1(·) as in the proof of Claim 4.6.1, given that rP is RP-good, the distance between S⃗0(rP) and

S⃗1(rP) is bounded:

∆
(
S⃗0(rP), S⃗1(rP)

)
=

1

2
·

 ∑
s⃗∈S⟨P,V⟩,rP

∣∣∣ |ζrP,s⃗||ζrP |
−
|βx

s⃗ |
|RV|

∣∣∣
+

1

2
·

 ∑
s⃗∈SSimP,rP

\S⟨P,V⟩,rP

|ζrP,s⃗|
|ζrP |


≤ 1

2
·
√
ϵ+

1

2
ϵ

≤
√
ϵ.

Following triangle inequality and data processing inequality,

Pr
(r∗P ,s⃗)←SimP(n)

[
s⃗ ∈ βrP -BAD

∣∣∣r∗P = rP

]
≤ Pr

(r∗P ,s⃗)←ViewP

(
⟨P,V(x)⟩

) [s⃗ ∈ βrP-BAD
∣∣∣r∗P = rP

]
+∆

(
S⃗0(rP), S⃗1(rP)

)
≤ 2 ·

√
ϵ.

Thus the proof is completed.

We say (rP, s⃗) is ViewP-good if rP ̸∈ RP-BAD, conditioned on which s⃗ ̸∈ βrP -BAD ∪ ζrP -BAD.

Pr
(rP,s⃗)←SimP(n)

[(rP, s⃗) is ViewP-good] = Pr [rP ̸∈ RP-BAD] · Pr [s⃗ ̸∈ βrP -BAD ∪ ζrP -BAD|rP ̸∈ RP-BAD]

(8)

≥ (1− 4
√
ϵ)(1− 2

√
ϵ−
√
ϵ) (9)

≥ 1− 7
√
ϵ. (10)

Claim 4.8.3. For any (rP, s⃗) that is ViewP-good:

1

2

|βx
s⃗ |
|RV|

≤
|ζrP,s⃗|
|ζrP |

≤ 2
|βx

s⃗ |
|RV|

.

Claim 4.8.4. • If x ∈ Yes(Πn) :

E
(rP,s⃗)←SimP(n)

[
|αx

s⃗ | · |ζrP |
|ζrP,s⃗|

∣∣∣∣(rP, s⃗) is ViewP-good

]
· 1

|RV|
>

1

3
.

• If x ∈ No(Πn) :

E
(rP,s⃗)←SimP(n)

[
|αx

s⃗ | · |ζrP |
|ζrP,s⃗|

∣∣∣∣(rP, s⃗) is ViewP-good

]
· 1

|RV|
≤ 4 · (δ + 2 · ϵ).

Proof of Claim 4.8.4. Denote by G the event that (rP, s⃗) is ViewP-good. On YES instance x ∈ Yes(Πn),

E
(rP,s⃗)←SimP

[
|αx

s⃗ | · |ζrP |
|ζrP,s⃗|

∣∣∣∣(rP, s⃗) is ViewP-good

]
· 1

|RV|
≥ 1

2
· E
(rP,s⃗)←SimP

[
|αx

s⃗ |
|βx

s⃗ |

∣∣∣∣G]
=

1

2
·
(

E
(rP,s⃗)←SimP

[
|αx

s⃗ |
|βx

s⃗ |

]
− E

(rP,s⃗)

[
|αx

s⃗ |
|βx

s⃗ |

∣∣∣∣Ḡ] · Pr
(rP,s⃗)

[Ḡ]

)
· ( 1

Pr
(rP,s⃗)

[G]
)

≥ 1

2
·
(

E
(rP,s⃗)←SimP

[
|αx

s⃗ |
|βx

s⃗ |

]
− Pr

(rP,s⃗)←SimP

[Ḡ]

)
· ( 1

Pr
(rP,s⃗)←SimP

[G]
)

≥ 1

2
· (1− δ − 2ϵ− 7

√
ϵ) · 1

1− 7
√
ϵ

>
1

3
.
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where the line (1) follows Claim 4.8.3, line (2) follows conditional expectation, line (3) follows from Claim 4.5.3,
and the line (4) follows Eq. (10).

Similarly, for NO instance x ∈ No(Πn):

E
(rP,s⃗)←SimP

[
|αx

s⃗ | · |ζrP |
|ζrP,s⃗|

∣∣∣∣(rP, s⃗) is ViewP-good

]
· 1

|RV|
≤ 2 · E

(rP,s⃗)←SimP

[
|αx

s⃗ |
|βx

s⃗ |

∣∣∣∣G]
≤ 2 · E

(rP,s⃗)←SimP

[
|αx

s⃗ |
|βx

s⃗ |

]
· ( 1

Pr
(rP,s⃗)←SimP

[G]
)

≤ 2 · (δ + 2 · ϵ) · 1

1− 7
√
ϵ

≤ 4 · (δ + 2 · ϵ),

where line (1) follows Claim 4.8.3, line (2) follows conditional expectation and line (3) follows Claim 4.5.3
and triangle inequality.

Overall, we get a large gap on E
(rP,s⃗)←SimP

[
|αx

s⃗ |·|ζrP |
|ζrP,s⃗|

∣∣∣∣(rP, s⃗) is ViewP-good

]
· 1
|RV| , between YES and NO

cases. Looking into the execution of the protocol in Figure 2, on the sampled views (r
(1)
P , s⃗ (1)), . . . , (r

(g)
P , s⃗ (g)):

Claim 4.8.5. • If x ∈ Yes(Πn):

Pr
[1
g

1

|RV|
∑
i∈[g]

|αx
s⃗ (i) | · |ζr(i)P

|

|ζ
r
(i)
P ,s⃗ (i) |

<
1

6

]
≤ negl(n).

• If x ∈ No(Πn),

Pr
(r

(1)
P ,s⃗ (1)),...,(r

(g)
P ,s⃗ (g))←SimP

[
∃i ∈ [g] :

|αx
s⃗ (i) | · |ζr(i)P

|

|ζ
r
(i)
P ,s⃗ (i) | · |RV|

>
√
δ + ϵ

]
≤ negl(n).

Proof of Claim 4.8.5. Consider the (r
(1)
P , s⃗ (1)), . . . , (r

(g)
P , s⃗ (g)) sampled in Figure 2, define event E as the

occurrence that (r
(1)
P , s⃗ (1)), . . . , (r

(g)
P , s⃗ (g)) are all ViewP-good.

• If x ∈ Yes(Πn), conditioned on the occurrence of E, following Claim 4.8.3, each
|αx

s⃗ (i) |·|ζr(i)
P

|

|ζ
r
(i)
P

,s⃗ (i)
|·|RV| is a

independent variable in range [0 : 2] with expectation as assured by Claim 4.8.4. Therefore, following
Hoeffding bound,

Pr
[1
g

1

|RV|
∑
i∈[g]

|αx
s⃗ (i) | · |ζr(i)P

|

|ζ
r
(i)
P ,s⃗ (i) |

<
1

6

]
≤ Pr

(r
(1)
P ,s⃗ (1)),...,(r

(g)
P ,s⃗ (g))←SimP

[
1

g

1

|RV|
∑
i∈[g]

|αx
s⃗ (i) | · |ζr(i)P

|

|ζ
r
(i)
P ,s⃗ (i) |

<
1

6

∣∣∣E]+ Pr[Ē]

≤ 1

2−Ω(g)
+ 7 · g ·

√
ϵ

≤ negl(n).

• If x ∈ No(Πn), for any i ∈ [g], applying Markov inequality using the expectation upperbound ensured
by Claim 4.8.4, we have

Pr
(r

(i)
P ,s⃗ (i))←SimP

[ |αx
s⃗ (i) | · |ζr(i)P

|

|ζ
r
(i)
P ,s⃗ (i) | · |RV|

>
√
δ + ϵ

∣∣∣E] ≤ 8
√
δ + ϵ ≤ negl(n).
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Apply an union bound over g samples, the probability that there exists i ∈ [g] such that
|αx

s⃗ (i) |·|ζr(i)
P

|

|ζ
r
(i)
P

,s⃗ (i)
|·|RV| >

√
δ + ϵ is bounded by:

Pr
(r

(1)
P ,s⃗ (1)),...,(r

(g)
P ,s⃗ (g))←SimP

[
∃i ∈ [g] :

|αx
s⃗ (i) | · |ζr(i)P

|

|ζ
r
(i)
P ,s⃗ (i) | · |RV|

>
√
δ + ϵ

]
≤ g · negl(n) + Pr

[
Ē
]
≤ negl(n).

Consider the bounds kαi
and k

r
(i)
P ,s⃗ (i) claimed by prover M in the g iterations.

Completeness. Given x ∈ Yes(Πn), the honest prover M set kαi
= |αx

s⃗ (i) |, kr(i)P

= |ζ
r
(i)
P

|, and k
r
(i)
P ,s⃗ (i) =

4 · g · |ζrP,s⃗|. Taking an union bound over g samples, the probabiltity that verifier doesn’t reject after g
iterations is

Pr[A doesn’t reject after g iterations] ≥
(
Pr

[
LBP

Oαx

s⃗ (i) (kαi
), LBP

Oζ
r
(i)
P (k

r
(i)
P

),UBP
Oζ

rP(i),s⃗ (i) (k
r
(i)
P ,s⃗ (i) , ri) all accept

])g

≥
(
1− negl(n))(1− negl(n)(1− 1

4g
)

)g

≥ 1− g · negl(n)− 1− g · 1

4g

≥ 3

4
− negl(n).

Follows Claim 4.8.5 the probability that k̄ < 1
10·g is bounded by negl(n). To conclude, the probability that

A accepts in the end is at least:

Pr [⟨M,A⟩ (x) = 1] ≥ 1− Pr [verifier reject in g iterations]− Pr

[
k̄ <

1

10 · g

]
≥ 1− 1

4
− negl(n)− negl(n)

>
2

3
.

Soundness. Consider any NO instance x ∈ No(Πn), A will accept only if at the end of g iterations,∑
i∈[g]

kαi
·k

r
(i)
P

k
r
(i)
P

,s⃗ (i)
·|RV| ≥

1
10·g .

By the pigeonhole principle, it follows that

Claim 4.8.6. If
∑
i∈[g]

kαi
·k

r
(i)
P

k
r
(i)
P

,s⃗ (i)
·|RV| ≥

1
10·g , there exists a j ∈ [g] such that

kαj
·k

r
(j)
P

k
r
(j)
P

,s⃗ (j)
·|RV| ≥

1
10·g2 .

Let T be the event that “∀i ∈ [g] :
|αx

s⃗ (i) |·|ζr(i)
P

|

|ζ
r
(i)
P

,s⃗ (i)
|·|RV| ≤

√
δ + ϵ”. Define the event Wi being that A does not

reject after ith iterations of bound protocol, and let W be that A doesn’t not reject after all g repetitions.

Define H to be the event that
∑
i∈[g]

kαi
·k

r
(i)
P

k
r
(i)
P

,s⃗ (i)
·|RV| ≥

1
10·g . Denote by Lj the event that kαj

≤ 2 · |αx
s⃗ (i) | and
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k
r
(j)
P

≤ 2 · |ζ
r
(j)
P

|. We have:

Pr[A accept] = Pr[H ∧W ] (1)

≤ Pr[H ∧W |T ] + Pr
[
T̄
]

(2)

≤ Pr[W |H,T ] + Pr
[
T̄
]
. (3)

On the event H:
∑
i∈[g]

kαi
·k

r
(i)
P

k
r
(i)
P

,s⃗ (i)
·|RV| ≥

1
10·g , let index j be such that Hj :

kαj
·k

r
(j)
P

k
r
(j)
P

,s⃗j
·|RV| ≥

1
10·g2 by Claim 4.8.6.

Pr[W |H,T ] ≤ Pr[Wj |H,Hj , T ] (1)

= Pr
[
Wj ∧ Lj

∣∣∣H,Hj , T
]
+ Pr

[
Wj ∧ L̄j

∣∣∣H,Hj , T
]

(2)

≤ Pr
[
Wj ∧ Lj

∣∣∣H,Hj , T
]
+ Pr

[
Wj

∣∣∣H,Hj , T, L̄j

]
(3)

≤ Pr
[
Wj

∣∣∣H,Hj , T, Lj

]
+ negl(n). (4)

Line 1 follows Claim 4.8.6, Line 4 follows from conditional probability and Lemma 3.5.

Conditioned on Hj

(
kαj
·k

r
(j)
P

k
r
(j)
P

,s⃗j
·|RV| ≥

1
10·g2

)
, T

(
In particular,

|αx
s⃗j
|·|ζ

r
(j)
P

|

|ζ
r
(j)
P

,s⃗j
|·|RV| ≤

√
δ + ϵ

)
, and Lj , following

Lemma 4.6:

Pr
[
Wj

∣∣∣H,Hj , T, Lj

]
≤

6 · k
r
(j)
P ,s⃗j∣∣∣ζr(i)P ,s⃗ (i)

∣∣∣− 1

≤ 80 · g2 ·
√
δ + ϵ

≤ negl(n).

To conclude, Pr [⟨M,V⟩ (x) = 1] ≤ negl(n), and thus Figure 2 is a constant-round interactive proof for Π.

Lemma 4.9 ([GS86]). Given that ⟨P,V⟩ is a q(n)-rounds uniform-verifier (resp. non-uniform V) interactive
proof for a problem Π, then there exists a (q(n) + 2)-rounds public-coin uniform-verifier (resp. non-uniform
V′) interactive proof ⟨P′,V′⟩ for Π.

Following the transformation assured by Lemma 4.9, we can get an AM protocol for Π.
Remark that the transformation in Lemma 2.8 does not maintain the efficiency of the simulator, and thus

we cannot use that directly to build AM protocol for the complemented problem Π̄. Consider any instance x of
Π̄ and let ⟨P,V⟩ be the (δ, ϵ)-instance-hiding interactive proof for Π. We define ᾱx

s⃗ = {r ∈ βx
s⃗ | V(x, r, s⃗) = 0},

which is the subset of βx
s⃗ with which V rejects in the end on instance x. It’s clear that ᾱx

s⃗ , α
x
s⃗ are partitions

of βx
s⃗ , and hence (

|αx
s⃗ |
|βx

s⃗
| +

|ᾱx
s⃗ |
|βx

s⃗
| ) = 1 for any possible view s⃗. By linearity of expectation we have:

• If x ∈ Yes(Π̄n) = No(Πn) : E
s⃗←S⃗

[
|ᾱx

s⃗ |
|βx

s⃗
|

]
= 1− E

s⃗←S⃗

[
|αx

s⃗ |
|βx

s⃗
|

]
≥ 1− δ(n).

• If x ∈ No(Π̄n) = Yes(Πn) : E
s⃗←S⃗

[
|ᾱx

s⃗ |
|βx

s⃗
|

]
= 1− E

s⃗←S⃗

[
|αx

s⃗ |
|βx

s⃗
|

]
≤ δ(n).

Furthermore there exists an efficient membership oracle Oᾱx
s⃗
for ᾱx

s⃗ , which essentially checks the consis-
tency of (r, s⃗, x) like Oαx

s⃗
but outputs 1 only if V(r, x, s⃗) = 0 in the end. A constant-round interactive proof

can be constructed as in Figure 2, but using membership oracle for set ᾱx
s⃗ , the rest of the argument mirrors

that of problem Π, thus completing the proof of the theorem.
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4.2 Constant-Round Non-Uniform Proofs from Instance-Hiding

Proof of Theorem 4.1. As observed earlier, the expectation E
s⃗←S⃗x

[
|αx

s⃗ |
|βx

s⃗
|

]
distinguishes the promise problem.

A natural approach is thus to reduce the task to proving the size of sets such as αx
s⃗ . A major challenge,

however, is the inefficiency of simulator coupled with the lack of an efficient method to sample s⃗. Fortunately,
we observe that the simulator only requires the instance length as input, which allows us to relegate the
inefficient simulation to the sampling of non-uniform advice. This methodology will be useful in subsequent
sections.

Another challenge we will encounter is absence of protocol to prove the upperbound of |βx
s⃗ |. In response,

we will provide the necessary information via non-uniform advice. We observe that for any two distinct
instances, x and w in Πn, the value of |βw

s⃗ | will approximate |βx
s⃗ | on average. This observation is formalized

in the following claims:

Claim 4.9.1. for any x,w ∈ Yes(Πn) ∪No(Πn):

∆(S⃗x, S⃗w) ≤ ∆
(
S⃗x,SimP(n)

)
+∆

(
S⃗w,SimP(n)

)
< 2 · ϵ(n),

where SimP(n) is the distribution simulated by simulator SimP.

Proof of Claim 4.9.1. From the hiding property, we have a simulator SimP that such that for any instance
x ∈ Yes(Πn) ∪No(Πn) : ∆

(
S⃗x,SimP(n)

)
≤ ϵ(n). Therefore we have:

∆(S⃗x, S⃗w) ≤ ∆
(
S⃗x,SimP(n)

)
+∆

(
S⃗w,SimP(n)

)
≤ 2 · ϵ(n).

Claim 4.9.2. For any two instances x,w ∈ Yes(Πn) ∪No(Πn) :∣∣∣∣ E
s⃗←S⃗x

[
|αx

s⃗ |
|βx

s⃗ |

]
− E

s⃗←S⃗w

[
|αx

s⃗ |
|βw

s⃗ |

]∣∣∣∣ ≤ 2 · ϵ(n).

Claim 4.9.3. For any two instances x,w ∈ Yes(Πn) ∪No(Πn):

• If x ∈ Yes(Πn) :

E
s⃗←S⃗w

[
|αx

s⃗ |
|βw

s⃗ |

]
≥ 1− δ(n)− 2 · ϵ(n).

• If x ∈ No(Πn) :

E
s⃗←S⃗w

[
|αx

s⃗ |
|βw

s⃗ |

]
≤ δ(n) + 2 · ϵ(n).

We remark that here s⃗ is sampled from S⃗w. The denominator is the size of verifier’s randomness consistent
with w and s⃗, while the numerator is the size of αx

s⃗ . Looking ahead, this would allow us to decide an instance
x using view s⃗ sampled from another instance w⃗.

Proof of Claim 4.9.3. From the completeness and soundness of ⟨P,V⟩ and Claim 4.9.1 we have:

• Completeness: If x ∈ Yes(Πn) :

E
s⃗←S⃗x

[
|αx

s⃗ |
|βx

s⃗ |

]
= Pr [⟨P(n),V(x)⟩ = 1] (1)

≥ 1− δ(n). (2)

27



• Soundness: x ∈ No(Πn) :

E
s⃗←S⃗x

[
|αx

s⃗ |
|βx

s⃗ |

]
= Pr [⟨P(n),V(x)⟩ = 1] (1)

≤ δ(n). (2)

Combine with Claim 4.9.2, the claim follows.

AM protocol for Π: ⟨M,A⟩Q(x)
Parameters: input length n, g

Inputs:
• An instance x ∈ Yes(Πn) ∪No(Πn)

Outputs: d ∈ {0, 1}
Ingredients:

• ⟨P,V⟩ is an (δ, ϵ)-Instance-Hiding Interactive Proof

• Advice: Takes advice s⃗ (1), . . . , s⃗ (g), b1, . . . , bg from advide oracle Q

• WSLBPOS⃗ (c⃗, K): Weighted Sets Lowerbound Protocol from Lemma 3.6 for the sets S1, . . . , Sg,
with input c⃗, and errors negligible in n.

• For i ∈ [g] and transcript s⃗ (i), we define the efficient membership oracle for set αx
s⃗ (i) as follows:

Algorithm Oαx

s⃗ (i)
(r) :

1. s⃗ (i) = (u1, y1, . . . , uq, yq)

2. s0 ← ϕ (the empty string)

3. For j ← 1 to q

Check V
(
x, r, (u1, y1, . . . , uq, yq)

)
= ui, if not output 0.

4. If V(x, r, s⃗) = 1 output 1; Else output 0.

Protocol:

1. M and A run the protocol WSLBP
Oαx

s⃗ (1)
,...,Oαx

s⃗ (g) with membership oracles access to
Oαx

s⃗ (1)
, . . . ,Oαx

s⃗ (g)
and inputs ( 1

b1
, . . . , 1

bg
), ( 12 · g):

d←WSLBP
Oαx

s⃗ (1)
,...,Oαx

s⃗ (g)

((
1

b1
, . . . ,

1

bg

)
,
1

2
· g
)
.

2. A outputs d.

Figure 3: AM Protocol from (δ, ϵ)-IHIP

Π ∈ AM/poly. Given the necessary tools above, we construct our AM protocol with non-uniform verifier as
shown in Figure 3 where the advice oracle Q is defined in Figure 4.
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Claim 4.9.4. Consider the protocol in Figure 3 with the advice oracle in Figure 4. On input any instance
x, it satisfies the following properties:

• If x ∈ Yes(Πn), with probability at least 1− 2Ω(g),∑
i∈[g]

|αx
s⃗ (i) |
bi

≥ g

2
.

• If x ∈ No(Πn), with probability at least 1− 2Ω(g),∑
i∈[g]

|αx
s⃗ (i) |
bi

≤ g

8
.

Proof of Claim 4.9.4. Note that bi = |βw
s⃗ (i) | and w may not be equal to x. Define µ = E

[ ∑
i∈[g]

|αx

s⃗ (i) |
|βw

s⃗ (i)
|

]
=

g · E
s⃗←S⃗w

[
|αx

s⃗ |
|βw

s⃗
|

]
, and following Claim 4.9.3 we have:

• If x ∈ Yes(Πn) :
µ ≥ g ·

(
1− δ(n)− 2 · ϵ(n)

)
.

• If x ∈ No(Πn) :
µ ≤ g ·

(
δ(n) + 2 · ϵ(n)

)
.

Given that δ + 2 · ϵ ≤ 1
16 , and follows the Hoeffding bound :

• If x ∈ Yes(Πn) : the probability that
∑
i∈[g]

|αx

s⃗ (i) |
bi

< g
2 is:

Pr

∑
i∈[g]

|αx
s⃗ (i) |
|βw

s⃗ (i) |
<

g

2

 ≤ Pr

∑
i∈[g]

|αx
s⃗ (i) |
|βw

s⃗ (i) |
<
(
1− δ − 2ϵ

)
· g − g

4


≤ Pr

∑
i∈[g]

|αx
s⃗ (i) |
|βw

s⃗ (i) |
< µ− g

4


≤ 2 · e

−2·(g/4)2

g·(1−0)2

≤ 2 · e
−g
8

≤ 2−Ω(g).

• If x ∈ No(Πn) : the probability that
∑
i∈[g]

|αx

s⃗ (i) |
bi

> g
8 is:

Pr

∑
i∈[g]

|αx
s⃗ (i) |
|βw

s⃗ (i) |
>

g

8

 ≤ Pr

∑
i∈[g]

|αx
s⃗ (i) |
|βw

s⃗ (i) |
> (δ + 2ϵ) · g + g

16


≤ Pr

∑
i∈[g]

|αx
s⃗ (i) |
|βw

s⃗ (i) |
> µ+

g

16


≤ 2 · e

−2·(g/16)2

g·(1−0)2

≤ 2−Ω(g).
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We define the following events:

• EY es :
∑
i∈[g]

|αx

s⃗ (i) |
bi
≥ g

2 .

• ENo :
∑
i∈[g]

|αx

s⃗ (i) |
bi
≤ g

8 .

• W1 : The execution of WSLBP accepts.

• W0 : The execution of WSLBP rejects.

Following Claim 4.9.4 and Lemma 3.6, we have the completeness and soundness:

• Completeness: If x ∈ Yes(Πn):

Pr [⟨A,M⟩(x) = 1] ≥ Pr [EY es ∧W1]

= Pr [EY es] · Pr [W1|EY es]

≥ (1− 2−Ω(g)) · (1− g · negl(n)).

• Soundness: If x ∈ No(Πn), for any prover M∗:

Pr [⟨A,M∗⟩(x) = 1] ≤ Pr [ENo ∧W1] + Pr [EY es]

≤ Pr [ENo] · Pr [W1|ENo] + Pr [EY es]

≤ (1− 2−Ω(g)) · negl(n) + 2−Ω(g).

By setting g to some polynomial of n and following Lemma 3.4, we conclude that the protocol shown in
Figure 3 is a AM protocol for Π.

For any Π that has (δ, ϵ)-IHIP with negligibly small δ, ϵ, it directly follows Lemma 2.8 that Π ∈
coAM/poly. The transformation described in Lemma 2.8, however, introduces a polynomial loss in hid-
ing due to the execution of protocol outlined in Figure 7. Here, we are proving a stronger assertion where
δ, ϵ < 1

32 . We apply linearity of expectation to prove that the same AM/poly protocol is complete and sound
for the complement problem Π̄.

Π ∈ coAM/poly. Consider any instance x ∈ Yes(Π̄) ∪ No(Π̄) and let ⟨P,V⟩ be the (δ, ϵ)-instance-hiding
interactive proof for Π. We define ᾱx

s⃗ = {r ∈ βx
s⃗ | V(x, r, s⃗) = 0} as in the proof of Theorem 4.3. Because

both αx
s⃗ and ᾱx

s⃗ are subset of βx
s⃗ , by switching the names of the two sets and following Claim 4.9.2 we have

that for any two instances x,w ∈ Yes(Πn) ∪No(Πn) :∣∣∣∣ E
s⃗←S⃗x

[
|ᾱx

s⃗ |
|βx

s⃗ |

]
− E

s⃗←S⃗w

[
|ᾱx

s⃗ |
|βw

s⃗ |

]∣∣∣∣ ≤ 2ϵ(n).

By triangle inequality, we get that:

• If x ∈ Yes(Π̄n) : E
s⃗←S⃗

[
|ᾱx

s⃗ |
|βw

s⃗
|

]
≥ 1− δ(n)− 2ϵ(n).

• If x ∈ No(Π̄n) : E
s⃗←S⃗

[
|ᾱx

s⃗ |
|βw

s⃗
|

]
≤ δ(n) + 2ϵ(n).

30



Advice oracle Qw(P,V, n)

Inputs:
• Input length n (Omitted when clear from context).

• ⟨P,V⟩ is an (δ, ϵ)-IHIP protocol for Π.

Ingredients:
• w is some arbitrary instance of Π.

Procedure:
1. For i← 1 to g

Samples random seed for verifier: riv ← RV

Samples random seed for prover: rip ← RP

Simulate the view with the prover’s and verifier’s algorithm and randomness:

s⃗ (i) ← ⟨P(rip),V(w, riv)⟩.

Computes number of verifier’s randomness consistent to the view s⃗ (i):

bi ← |βw
s⃗ (i) |.

2. Output s⃗ (1), . . . , s⃗ (g), b1, . . . , bg.

Figure 4: Advice Oracle Qw(P,V, n) for AM Protocol From IHIP

Consequently, a constant-round public-coin interactive proof for Π̄ can be constructed using the same tech-
nique of applying weighted lower bound protocol with identical advice oracle.

Proof of Claim 4.9.2. For any two instances x,w ∈ Yes(Πn) ∪ No(Πn), denote by Sx and Sw the support

of S⃗x and S⃗w respectively and following Claim 4.9.1 we have:

E
s⃗←S⃗w

[
|αx

s⃗ |
|βw

s⃗ |

]
=
∑
s⃗∈Sw

Pr
[
S⃗w = s⃗

]
·
|αx

s⃗ |
|βw

s⃗ |
(1)

=
∑

s⃗∈Sw∩Sx

Pr
[
S⃗w = s⃗

]
·
|αx

s⃗ |
|βw

s⃗ |
+

∑
s⃗∈Sw\Sx

Pr
[
S⃗w = s⃗

]
·
|αx

s⃗ |
|βw

s⃗ |
(2)

=
∑

s⃗∈Sw∩Sx

|βw
s⃗ |
|RV|

· |γs⃗|
|RP|

·
|αx

s⃗ |
|βw

s⃗ |
+

∑
s⃗∈Sw\Sx

Pr
[
S⃗w = s⃗

]
· 0

|βw
s⃗ |

(3)

=
∑

s⃗∈Sw∩Sx

|γs⃗| · |αx
s⃗ |

|RP| · |RV|
, (4)
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where Line 3 is because |αx
s⃗ | ≤ |βx

s⃗ | = 0 for s⃗ ∈ Sw\Sx.

E
s⃗←S⃗x

[
|αx

s⃗ |
|βx

s⃗ |

]
=

∑
s⃗∈Sx∩Sw

Pr
[
S⃗x = s⃗

]
·
|αx

s⃗ |
|βx

s⃗ |
+

∑
s⃗∈Sx\Sw

Pr
[
S⃗x = s⃗

]
·
|αx

s⃗ |
|βx

s⃗ |
(1)

=
∑

s⃗∈Sw∩Sx

|βw
s⃗ |
|RV|

· |γs⃗|
|RP|

·
|αx

s⃗ |
|βw

s⃗ |
+

∑
s⃗∈Sx\Sw

Pr
[
S⃗x = s⃗

]
·
|αx

s⃗ |
|βx

s⃗ |
(2)

=
∑

s⃗∈Sw∩Sx

|γs⃗| · |αx
s⃗ |

|RP| · |RV|
+

∑
s⃗∈Sx\Sw

Pr
[
S⃗x = s⃗

]
·
|αx

s⃗ |
|βx

s⃗ |
. (3)

(4)

Therefore we have: ∣∣∣ E
s⃗←S⃗x

[
|αx

s⃗ |
|βx

s⃗ |

]
− E

s⃗←S⃗w

[
|αx

s⃗ |
|βw

s⃗ |

] ∣∣∣ = ∑
s⃗∈Sx\Sw

Pr
[
S⃗x = s⃗

]
·
|αx

s⃗ |
|βx

s⃗ |
(1)

≤
∑

s⃗∈Sx\Sw

Pr
[
S⃗x = s⃗

]
(2)

≤ ∆(S⃗x, S⃗w) (3)

≤ 2 · ϵ(n). (4)

Combining with Lemma 3.2, the corollary follows:

Corollary 4.10. If NP ⊆ IHIP/poly, the polynomial hierarchy collapses to the third level.

5 Implications for One-Way Functions

As suggested in [Imp95], it is unclear whether hardness of problems in NP implies the existence of one-way
function. This is important in the sense that if our world is in “Pessiland” or “Heuristica”, where NP
problems are hard either on average or on worst case but one-way functions do not exist, a huge set of
cryptography primitives including pseudorandom generator [Yao82, BM82] and digital signatures [GMR88]
would be impossible in a strong sense.

In this section, we provide positive implications by assuming the hard problem also possessing an instance-
hiding interactive proof. We show two separate proofs – one for problems that only have an IHIP with
average-case hardness, and another for those that have a strong IHIP with only worst-case hardness. The
former proof is non-constructive – we can only prove that a one-way function exists given an average-
hard problem has IHIP. Moreover, this construction of one-way functions uses potential adversaries in a
non-blackbox manner. Similar techniques have found use in the context of collision-resistant hash func-
tions [KY18, RV22].

The latter proof is constructive – we show a construction of one-way function from any worst-case hard
problem that has a Strong-IHIP, where the simulator is efficient. Implications similar to this are known
for other classes such as SRE [AR16] (and SZK [Ost91], though that needs average-case hardness), which
similarly rely on the efficiency of the simulator (or the encoding function in case of SRE).

5.1 OWFs from Average-Case Hard IHIP

Definition 5.1 (Average-Case Hard Problems). Consider a promise problem Π = (Yes,No), and an en-
semble of efficiently sampleable distributions X = {Xn}n∈N, where Xn is supported on (Yesn ∪Non). Π is
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said to be hard on average over X if for any polynomial-time algorithm A, there is a negligible function ν
such that for all n,

Pr
x←Xn

[A(x) = Π(x)] ≤ negl(n).

Remark 5.2. In the above definition, we require that Xn be supported fully on (Yesn ∪Non), and also be
efficiently sampleable. Often in natural hard problems, these may not be simultaneously perfectly satisfied –
a natural efficiently sampleable hard distribution might have a small probability of not satisfying the promise.
While we do not explicitly state this in our theorems, our proofs are robust to this and continue to hold as
long as the probability of not satisfying the promise is small enough, e.g. negligible.

Theorem 5.3. If any hard on the average problem possesses a (δ, ϵ)-instance-hiding interactive proof for
some negligible functions δ and ϵ, then one-way functions exist.

For simplicity, let us first consider the case of 1-round IHIP.

Lemma 5.4. If any hard on the average problem possesses a one-round (δ, ϵ)-instance-hiding interactive
proof for some negligible δ, ϵ, then there exists an explicit construction of one-way functions.

One of the building blocks for our proof is the notion of distributional one-way function defined in [IL89],
which also proved that the existence of distribitionally one-way functions imply existence of one-way func-
tions.

Definition 5.5 ([IL89]). Consider a family of functions F =
{
fn : {0, 1}n → {0, 1}m(n)

}
n∈N. For any

n ∈ N and algorithm A, define the following two distributions: D0,n

(
x← {0, 1}n, outputs

(
x, f(x)

))
and

DA
1,n

(
x← {0, 1}n, outputs

(
A
(
f(x)

)
, f(x)

))
. F = {fn} is said to be distributionally one-way if, for any

efficient algorithm A, there is a constant c > 0 such that for all large enough n,

∆(D0,n, D
A
1,n) > n−c.

Remark 5.6. While the above definition refers to the distribution of the input x being uniform over some
{0, 1}n, we will treat it as coming from some sampleable distribution. That is, we will construct functions fn
where the above lower bound on statistical distance holds when x is sampled from some efficiently sampleable
distribution Xn rather than {0, 1}n. This is sufficient because this function fn composed with the efficient
sampling algorithm for Xn then satisfies Definition 5.5.

Lemma 5.7 ([IL89]). If there is a distributional one-way function then there is a one-way function. Further,
there is an explicit transformation from any distributional one-way function to a one-way function.

Note that the above implication is explicit – given a distributional one-way function family, one can
explicitly construct a one-way function family. In what follows, we will borrow the notations of elements in
Section 4.

Proof of Lemma 5.4. Consider any efficiently sampleable ensembleX = {Xn}n∈N over Π. Let Π = (Yes,No)
be a hard on-average problem with respect to efficiently sampleable distributions Xn over Yesn∪Non. Sup-
pose Π has a single-round (two-message) (δ, ϵ)-IHIP for some negligible δ, ϵ. Define function F1(x, r) =(
x,V(x, r, ϕ)

)
and note that F1 is efficiently computable. Suppose, for contradiction, that F1 is not distri-

butionally one-way function when x is sampled from Xn and r is uniform over RV. There exists a negligible
function negl and an efficient algorithm A1 that, given a randomly sampled image F1(x, r), outputs a distri-
bution A1

(
F1(x, r)

)
, which is negl(n)-close to uniform distribution over F−11

(
F1(x, r)

)
; that is,

∆ (((x, r), F1(x, r)) , (A1(F1(x, r)), F1(x, r))) ≤ negl(n).

Without loss of generality, assume that A1, on input (x, u1), will never output an (x′, r) such that x′ ̸= x.
We will proceed to argue that a non-uniform efficient algorithm Bs⃗

1 can be made using A1 to decide Π with
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all but negligible probability. Specifically, Bs⃗
1 is hard-coded with s⃗ = (u1, y1), and upon receiving input x, it

runs A1(x, u1). If A1(x, u1) outputs r ∈ RV, it returns the output of V(x, r, s⃗); otherwise it outputs ⊥.
Define advice oracle O based on inefficient simulator on honest prover SimP as in Section 3.1. This oracle

O(n) runs SimP(n) and provides the public view s⃗ that it outputs as non-uniform advice for B1. The ϵ-hiding
ensures that for any x ∈ Yesn ∪Non:

∆
(
O(n),Viewpub

(
P,V(x)

))
≤ ∆

(
SimP(n),ViewP

(
P,V(x)

))
≤ ϵ(n) ≤ negl(n).

Let O′ be an ideal advice oracle such that for any x ∈ Yesn ∪ Non, it samples the exact public view

distribution of the IHIP protocol for instance x: ∆
(
O′(x),Viewpub

(
P,V(x)

))
= 0. We define the following

four hybrid distributions, where s⃗ = (u1, y1):

• D0 : Samples x← Xn, r ← RV, runs s⃗← Viewpub

(
P,V(x, r)

)
, and outputs (x, r, s⃗).

• D1 : Samples x← Xn, s⃗← O′(x) and samples (x, r)← F−11 (x, u1), and outputs (x, r, s⃗).

• D2 : Samples x← Xn, s⃗← O′(x) and runs (x, r)← A1(x, u1), and outputs (x, r, s⃗).

• D3 : Samples x← Xn, s⃗← O(n) and runs (x, r)← A1(x, u1), and outputs (x, r, s⃗).

Claim 5.7.1. ∆(D0, D3) ≤ negl(n)

Proof of Claim 5.7.1. It’s clear that ∆(D0, D1) = 0, and ∆(D1, D2) ≤ negl(n) follows from the property of
A1. Furthermore, we have:

∆(D2, D3) ≤ max
x

(
∆
(
O′(x),O(n)

))
= max

x

(
∆
(
ViewP

(
P,V(x)

)
,SimP(n)

))
≤ negl(n),

where the first inequality follows data processing inequality and triangle inequality, and the second inequality
follows from the instance-hiding property.

Thus by the Markov inequality, there exists negligible function negl such that:

Pr
x←Xn

[∆(D0|x,D3|x) ≤ negl(n)] ≥ 1− negl(n),

where D0|x denotes the distribution of D0 given instance x is fixed (Similarly for D3|x). Fix the inverter
A1, define the set A1-Good = {x ∈ Yesn ∪Non| ∆(D0|x,D3|x) ≤ negl(n)}. For any x ∈ A1-Good, following
the correctness of honest prover of the protocol, we have that:

Pr
s⃗←O,Bs⃗

1

[Bs⃗
1(x) = Π(x)] ≥ Pr[⟨P,V(x)⟩ = Π(x)]−∆(D0|x,D3|x) ≥ 1− δ(n)− negl(n) = 1− negl(n),

where the first inequality is from triangle inequality. Thus for a random instance x, conditioned on that
x ∈ A1-Good:

Pr
s⃗←O,Bs⃗

1,x
[Bs⃗

1(x) = Π(x)|x ∈ A1-Good] = Pr [Xn = x|x ∈ A1-Good] · Pr
s⃗←O,Bs⃗

1

[Bs⃗
1(x) = Π(x)] ≥ 1− negl(n).

In conclusion:

Pr
s⃗←O,Bs⃗

1,x←Xn

[Bs⃗
1(x) = Π(x)] ≥ Pr

s⃗←O,Bs⃗
1,x

[Bs⃗
1(x) = Π(x)|x ∈ A1-Good] · Pr

x←Xn

[x ∈ A1-Good]

≥
(
1− negl(n)

)
·
(
1− negl(n)

)
= 1− negl(n).

Therefore, there must exists some view s⃗ such that Pr
Bs⃗
1,x←Xn

[Bs⃗
1(x) = Π(x)] ≥ 1 − negl(n), which is a

contradiction and so F1 has to be a distributional one-way function, and the lemma follows.
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Proof of Theorem 5.3. While the underlying ideas bear resemblance to those in the proof of Lemma 5.4, the
multi-round scenario, even with just two rounds, turns out to need other non-trivial ideas. We firstly prove
the case of two rounds before applying underlying idea to prove any polynomial rounds recursively. Consider
the existence of a hard on-average promise problem that allows for a two-round (four-message) (δ, ϵ)-instance-
hiding interactive proof. Now, suppose (for the sake of contradiction) that distributional one-way functions
do not exist. In attempting to apply the same strategy utilized in Lemma 5.4, our goal would be to devise an
efficient algorithm C2, that takes a random instance x and a random protocol view s⃗ ← SimP(n), and with
high probability over its input domain, outputs r′V such that (x, r′V, s⃗) is statistically close to the real view
of verifier V (when interacting with honest prover): ViewV

(
P,V(x)

)
. If we can construct such C2, we can

take a “good” public view as non-uniform advice, run C2 to obtain consistent randomness of V, and decide
the problem on most instances.

The proof differs from the that of Lemma 5.4 because the verifier’s messages (u1, u2) may not be efficiently
computable given x and rV, even if verifier’s algorithm is efficient. This is because the second message of
the verifier, u2, depends on y1, which, despite solely dependent on u1 and some randomness of prover, may
not be efficiently computable. So we do not have a direct analogue of the function F1 we used in the earlier
proof.

To address the challenge, we note that the first message of verifier u1 is in fact efficiently samplable.
Below, note that s⃗ = (u1, y1, u2, y2). Define:

• Rx,u1
= {r ∈ RV| V(x, r, ϕ) = u1}.

• Rx,s⃗ = {r ∈ RV| V(x, r, ϕ) = u1 ∧ V
(
x, r, (u1, y1)

)
= u2}.

Note that Rx,s⃗ ⊆ Rx,u1 ⊆ RV. Consider the function F1(x, r) =
(
x,V(x, r, ϕ)

)
. We will show that if F1 is

not a distributional one-way function, then we can either use this to construct another distributional one-way
function F2 or construct an efficient algorithm B2 that decides Π on-average.

Specifically, suppose F1 is not a distributional one-way function, then there exists an efficient inverter
A1 of F1. Let C1 be the algorithm that takes x, u1 as input, runs A1(x, u1) to get (x, r), and outputs r.
Given (x, u1), C1 serves to sample r from a distribution that is statistically close to uniform distribution over
Rx,u1

. A key observation is that the distribution of u2 conditioned on (u1, y1) is efficiently (approximately)
samplable given such an inverter because one can simply run the verifier on (x, r, u1, y1). Thus, we will apply
C1 to construct an efficient function F2 that samples u2 efficiently given (u1, y1).

5

Particularly, let r2 denote the randomness of C1, and for each (u1, y1), define the following function

Fu1,y1

2 (x, r2) =
(
x,V

(
x,C1(x, u1; r2), (u1, y1)

))
,

where C1 takes r2 as randomness and u1, y1 are hard-coded in the function Fu1,y1

2 .6 For any (u1, y1), it is
clear that Fu1,y1

2 is efficient. If any of these functions are distributionally one-way, we are done. If not, then
for every (u1, y1), there exists an efficient algorithm Au1,y1

2 that samples close-uniform pre-image of Fu1,y1

2 .
This means following two distributions are statistically negligibly close for any (u1, y1):

• H0(u1, y1): Samples x ← Xn, r2 ← RC1
, r1 ← C1(x, u1; r2), u2 ← V

(
x, r1, (u1, y1)

)
, and outputs

(r2, x, u1, y1, u2).

• H1(u1, y1): Samples x← Xn, r2 ← RC1
, r1 ← C1(x, u1; r2), u2 ← V

(
x, r1, (u1, y1)

)
, computes (x, r∗2)←

Au1,y1

2

(
x, u2

)
, and outputs (r∗2 , x, u1, y1, u2).

By the data processing inequality, the following two distributions are also statistically close:

• H ′0(u1, y1): Samples (r2, x, u1, y1, u2)← H0(u1, y1), r1 ← C1(x, u1; r2), and outputs (r1, x, u1, y1, u2).

5In this proof, we usually denote by Ai the efficient inverter for efficient function Fi; and denote by Ci an efficient algorithm
that samples a distribution statistically close to uniform distribution over Rx,(u1,y1,...,ui)

.
6This is where we apply the adversary in a non-blackbox way.
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• H ′1(u1, y1): Samples (r∗2 , x, u1, y1, u2)← H1(u1, y1), r
∗
1 ← C1(x, u1; r

∗
2), and outputs (r∗1 , x, u1, y1, u2).

Let O′ be an ideal advice oracle such that for any x ∈ Yesn ∪ Non, it samples the exact public view

distribution of the IHIP protocol for instance x: ∆
(
O′(x),Viewpub

(
P,V(x)

))
= 0. Define the following

distributions:

• D0: Samples x ← Xn, r1 ← RV, u1 ← V(x, r1, ϕ), y1 ← P(u1), u2 ← V
(
x, r1, (u1, y1)

)
, y2 ←

P(u1, y1, u2), and outputs (x, r1, u1, y1, u2, y2).

• D1: Samples x ← Xn, s⃗ ← O′(x), (u1, y1) ← s⃗, (x, r1) ← F−11 (x, u1), u∗2 ← V
(
x, r1, (u1, y1)

)
,

y2 ← P(u1, y1, u
∗
2), and outputs (x, r1, u1, y1, u

∗
2, y2).

• D2: Samples x← Xn, s⃗← O′(x), (u1, y1)← s⃗, r2 ← RC1
, r1 ← C1(x, u1, r2), u

∗
2 ← V

(
x, r1, (u1, y1)

)
,

y2 ← P(u1, y1, u
∗
2), and outputs (x, r1, u1, y1, u

∗
2, y2).

• D3: Samples x ← Xn, s⃗ ← O′(x), (u1, y1) ← s⃗, r2 ← RC1 , r1 ← C1(x, u1, r2), (x, u∗2) ←
Fu1,y1

2 (x, r2), y2 ← P(u1, y1, u
∗
2), and outputs (x, r1, u1, y1, u

∗
2, y2).

• D4: Samples x ← Xn, s⃗ ← O′(x), r2 ← RC1
, (x, u∗2) ← Fu1,y1

2 (x, r2), y2 ← P(u1, y1, u
∗
2), (x, r

∗
2) ←

(Fu1,y1

2 )
−1

(x, u∗2), r
∗
1 ← C1(x, u1, r

∗
2), outputs (x, r

∗
1 , u1, y1, u

∗
2, y2)

Main differences between the hybrid distributions are highlighted using different colors. D1 alters D0 by
replacing u2 in the original s⃗ with u∗2, achieved by sampling a uniform preimage (x, r1) from F−11 (x, u1) and
then running V with r1. D2 modifies the sampling of (x, r1) by employing the efficient algorithm C1 instead
of using uniform sampling. D3 is a reconfiguration of D2, driven by the function Fu1,y1

2 . D4 generates r∗1 by

sampling a random preimage over (Fu1,y1

2 )
−1

(x, u2) to get r∗2 , and feeding C1 with (x, r∗2), instead of outputs
r1 directly.

Claim 5.7.2. ∆(D0, D4) < negl(n).

Proof of Claim 5.7.2. It is clear that ∆(D0, D1) = 0 by definition of F1 and ∆(D1, D2) < negl(n) according

to the definition of C1. Furthermore, ∆(D2, D3) = 0 holds because Fu1,y1

2 =
(
x,V

(
x,C1(x, u1, r2), (u1, y1)

))
,

and D3 is essentially the same distribution as D2, albeit with a modified description. By definition of
(Fu1,y1

2 )
−1

, the r∗2 in D4 follows the same distribution as r2 in D3 conditioned on (x, u1, y1, u
∗
2). Following

data processing inequality, ∆(D3, D4) = 0.

Suppose Fu1,y1

2 is not a distributional one-way, there exists an efficient inverter Au1,y1

2 for Fu1,y1

2 that,
given a random image (x, u2) of Fu1,y1

2 , outputs a distribution statistically close to uniform distribution
over preimage set (Fu1,y1

2 )−1(x, u2). We will use Au1,y1

2 to construct an efficient algorithm that decides Π
on-average with respect to Xn, which contradicts our assumptions. Specifically, let r3 denote the randomness
used by A2, we define algorithm Cu1,y1

2 (x, u2, r3) as follows:

Cu1,y1

2 (x, u2, r3) :

1. (x, r2)← Au1,y1

2 (x, u2, r3)

2. r1 ← C1(x, u1, r2)

3. outputs r1.

We write Cu1,y1

2 (x, u2) as shorthand when the randomness is sampled uniformly. Define hybrid distribu-
tions:
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• D5: Samples x ← Xn, s⃗ ← O′(x), r2 ← RC1 , r1 ← C1(x, u1, r2), (x, u∗2) ← Fu1,y1

2 (x, r2),
y2 ← P(u1, y1, u

∗
2), (x, r

∗
2)← Au1,y1

2 (x, u∗2), r
∗
1 ← C1(x, u1, r

∗
2), outputs (x, r

∗
1 , u1, y1, u

∗
2, y2).

• D6: Samples x← Xn, s⃗← O′(x), (x, r2)← Au1,y1

2 (x, u2), r
∗
1 ← C1(x, u1, r2), outputs (x, r1, s⃗).

• D7: Samples x← Xn, s⃗← O′(x), r∗1 ← Cu1,y1

2 (x, u2), outputs (x, r
∗
1 , s⃗).

• D8: Samples x← Xn, s⃗← O(n), r∗1 ← Cu1,y1

2 (x, u2), outputs (x, r
∗
1 , s⃗).

Similarly, D5 samples r∗2 using algorithm Au1,y1

2 (x, u∗2) instead of sampling uniformly from (Fu1,y1

2 )−1(x, u∗2).
D6 feeds Au1,y1

2 (x, u2) with u2 in s⃗ instead of the output of Fu1,y1

2 u∗2. D7 is a rearrangement of D6, defined

by the function Cu1,y1

2 . D8 samples s⃗ from the advice oracle O(n), unlike O′(x) = S⃗(x), does not take the
instance x as input.

Claim 5.7.3. ∆(D0, D8) < negl(n)

Proof of Claim 5.7.3. ∆(D4, D5) ≤ negl(n) follows the property of Au1,y1

2 . Follows triangle inequality, we
have that ∆(D0, D5) ≤ negl, which also indicates that the distribution of (u1, y1, u

∗
2, y2) in D5 is negl-close

to the distribution s⃗ in D6. Thus ∆(D5, D6) ≤ negl(n) follows data processing inequality. ∆(D6, D7) = 0
according to definition of Au1,y1

2 and Cu1,y1

2 respectively. Following data processing inequality, ∆(D7, D8) ≤
maxx

(
O′(x),O(n)

)
≤ negl(n). By triangle inequality, we have that ∆(D0, D8) ≤ negl(n) in general.

Similarly to Lemma 5.4, applying Cu1,y1

2 as a sub-routine, construct Bs⃗
2:

Bs⃗
2(x) :

1. (u1, y1, u2)← s⃗ .

2. r ← Cu1,y1

2 (x, u2).

3. outputs V(x, r, s⃗).

The probability of B2 decides Π is:

Pr
s⃗←O(n),x←Xn,Bs⃗

2

[
Bs⃗
2(x) = Π(x)

]
= Pr

(x,r,s⃗)←D7

[V(x, r, s⃗) = Π(x)],

≥ Pr
(x,r,s⃗)←D0

[V(x, r, s⃗) = Π(x)]−∆(D0, D7),

= Pr[⟨P,V(x)⟩ = Π(x)]−∆(D0, D7),

≥ 1− negl(n),

where the first inequality follows triangle inequality and data processing inequality. Thus there exists a
“good” advice s⃗ such that Pr

x←Xn,Bs⃗
2

[
Bs⃗
2(x) = Π(x)

]
≥ 1 − negl(n). Fix s⃗ and non-uniform Cu1,y1 , Bs⃗

2 is a

non-uniform efficient machine, which contradicts the assumption that Π is hard on-average with respect to
X.

Now we extend the proof of implication to any polynomial number of rounds of IHIP. Consider a problem
Π that is hard on average with respect to ensemble X = {Xn}n∈N and it has a q rounds (δ, ϵ)-IHIP ⟨P,V⟩.
For any possible public view of the protocol s⃗ = (u1, y1, . . . , uq, yq) and instance x, for i ∈ [q], define:

Rx,(u1,y1,...,ui) = {r ∈ RV| ∀j ∈ [i] : V
(
x, r, (u1, y1, . . . , uj−1, yj−1)

)
= uj}.

The conditional probability mass ensures that:

Rx,s⃗ ⊆ Rx,(u1,y1,...,uq−1) ⊆ · · · ⊆ Rx,(u1,y1,u2) ⊆ Rx,u1
⊆ RV.
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The theorem follows a recursive argument. Let F1, C1 and A1 be as defined before. From i = 2 to q, given
that C

u1,y1,...,ui−2,yi−2

i−1 (x, ui−1) efficiently samples a distribution statistically close to uniform distribution
over Rx,u1,y1,...,ui−1

. We define

F
u1,y1,...,ui−1,yi−1

i (x, ri) =
(
x, V

(
x,C

u1,y1,...,ui−2,yi−2

i−1 (x, ui−1, ri), (u1, y1, . . . , ui−1, yi−1)
))

.

We note that F
u1,y1,...,ui−1,yi−1

i is efficient. Assume F
u1,y1,...,ui−1,yi−1

i is not a distributional one-way function,
there exists an efficient inverter A

u1,y1,...,ui−1,yi−1

i that, on input (x, ui−1), samples (x, ri) statistically close to

uniform distribution over
(
F

u1,y1,...,ui−1,yi−1

i

)−1
(x, ui). With A

u1,y1,...,ui−1,yi−1

i , we define C
u1,y1,...,ui−1,yi−1

i

for the next round of the argument:

C
u1,y1,...,ui−1,yi−1

i (x, ui, ri+1) :

1. (x, ri)← A
u1,y1,...,ui−1,yi−1

i (x, ui, ri+1).

2. r1 ← C
u1,y1,...,ui−2,yi−2

i−1 (x, ui−1, ri).

3. outputs r1.

Suppose none of Fi is distributional one-way function and the arguments continue until qth round, where
we have Cs⃗

q that given s⃗ and on input x, samples a distribution statistically close to the uniform distribution
over Rx,s⃗. Then we construct the decision algorithm Bq:

Bs⃗
q(x) :

1. (u1, y1, uq−1, yq−1)← s⃗ .

2. r ← C
u1,y1,...,yq−1
q (x, uq).

3. outputs V(x, r, s⃗).

The rest of the arguments mirror those in the two-round case and the theorem follows.

5.2 Explicit OWFs from Worst-Case Hard Strong IHIP

In addition to the positive result regarding OWF, this section also providing insights for comparing IHIP/Strong-IHIP
with classes SZK and SRE by examining the consequences of the existence of hard problems within these
classes. For instance, Ostrovsky [Ost91] proves an implication of average-case hard SZK of OWFs, while Ap-
plebaum and Raykov [AR16] demonstrate a similar implication of worst-case hard SRE. In this subsection,
we present an implication of worst-case hard Strong-IHIP on OWF.

Definition 5.8 (Worst-Case Hard Problems). A promise problem Π = (Yes,No) is said to be worst-case
hard if for any polynomial-time algorithm A, there is a negligible function negl, such that for all large enough
n, there exists an instance x ∈ Yesn ∪Non,

Pr
A
[A(x) = Π(x)] ≤ negl(n).

Theorem 5.9. If any worst-case hard problem has a honest-prover strong (δ, ϵ)-instance-hiding interactive
proof for some negligible functions δ and ϵ, then there is an explicit construction of one-way functions.
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Proof of Theorem 5.9. Consider any promise problem Π that has honest-prover strong (δ, ϵ)-instance-hiding
interactive proof ⟨P,V⟩ for some negligible δ, ϵ with efficient simulator SimP. Different from Theorem 5.3,
here the transcript distribution can be efficiently sampled. Specifically, there exists an efficient simulator
SimP that on the input n and randomness rS ∈ RS outputs a possible public view of the protocol: s⃗ =
(u1, y1, . . . , uq, yq). It also simulates the randomness of the prover, but we do not need this here, and
throughout simply ignore that part of the simulator’s output. We define Simi as the algorithm that outputs
the public transcripts of SimP up to virtual verifier’s ith message, that is (u1, y1, . . . , ui). We will proceed to
prove that if Π is hard in worst case, then there exists a j ∈ [0, q] such that Simi is a distributional one-way
function.

Suppose, for the sake of contradiction, none of {Simi}i∈[q] are distributional one-way. Then, for each
Simi, there exists a probabilitic polynomial-time algorithm Ai which takes output of Simi, represented as
(u1, y1, . . . , ui), samples a randomness rSim,i negl-close to uniform distribution over Sim−1i (u1, y2, . . . , ui).
We construct a efficient algorithm B that utilizes A1, . . . ,Aq,SimP as sub-rountines to get y1, . . . , yq and
computes Π most of the time. Formally, we define B as follows:

B(x) :

1. rV ← RV.

2. rP ← RP.

3. u1 ← V(x, rV, ϕ).

For i← 1 to q

(a) (n, rSim,i)← Ai(u1, y1, . . . , ui).

(b) (. . . , ui, yi, . . . )← SimP(n; rSim,i).

(c) ui+1 ← V (x, rV, (u1, . . . , yi)).

Outputs V
(
x, rV, (u1, y1, . . . , uq, yq)

)
.

Figure 5: Algorithm from strong-IHIP to Decide Π

Intuitively, in the proof of Theorem 5.3, we use simulator to generates the entire public view, or
Viewpub

(
PS ,VS

)
, and utilize the inverting adversaries to obtain the “simulated verifier randomness”, which

is proven to have correctness. Since the simulator SimP is efficient here, we have better control over the
simulated protocol, which can be executed during the actual execution of algorithm.

Specifically, the algorithm B above uses SimP to simulate prover and runs the real verifier to interacts
with the simulated prover, ultimately outputting the result. Under the assumption that {Simi}i∈[q] are not
distributional one-way funtion, B employs the inverters to “simulate“ the “simulated prover“ efficiently. We
will proceed to prove that this prover ensures correctness. Formally, we define the provers as follows:

• Real prover P (s⃗i−1, ui) : On input (s⃗i−1, ui), it generates response, yi ← P ((s⃗i−1, ui)), and outputs yi.

• Simulated prover PS (s⃗i−1, ui) : On input (s⃗i−1, ui), sample the next message over the simulator’s con-
ditional probability mass (n, rSim,i) ← Sim−1i (s⃗i−1, ui); (. . . , ui, yi, . . . ) ← SimP(n; rSim,i), and outputs
yi.

• Efficiently simulated prover PSS (s⃗i−1, ui) : On input (s⃗i−1, ui), use inverter Ai to sample the next mes-
sage over simulator’s conditional probability mass efficiently (n, rSim,i)← Ai(s⃗i−1, ui); (. . . , ui, yi, . . . )←
SimP(n; rSim,i), and outputs yi.
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The B in Figure 5 is essentially an execution of ⟨PSS ,V⟩. We will proceed to prove that

ViewV

(
PSS ,V(x)

)
≈ ViewV

(
PS ,V(x)

)
≈ ViewV

(
P,V(x)

)
,

and the correctness of B will follow.
To begin, we will firstly prove that ViewV

(
PS ,V(x)

)
≈ ViewV

(
P,V(x)

)
. Define a sequence of hybrid

algorithm Wj for j ∈ [0, q] as follows:

Wj(x) :

1. rV ← RV.

2. rP ← RP.

3. u1 ← V(x, rV, ϕ).

For i← 1 to j

(a) (. . . , ui, yi, . . . )← P(u1, y1, . . . , ui).

(b) ui+1 ← V (x, rV, (u1, . . . , yi)).

For i← j + 1 to q

(a) (n, rSim,i)← Sim−1i (u1, y2, . . . , ui).

(b) (. . . , ui, yi, . . . )← SimP(n; rSim,i).

(c) ui+1 ← V (x, rV, (u1, . . . , yi)).

Outputs (x, rV, u1, y1, . . . , uq, yq).

Claim 5.9.1. For any x ∈ Yesn ∪Non, j ∈ [q] :

∆ (Wj(x),Wj−1(x)) ≤ ϵ.

Proof of Claim 5.9.1. In the rest, let Wj(x)[2i] denote the state of Wj ’s first public 2i messages, that is
(u1, y1, . . . , ui, yi) (Similarly for Viewpub

(
P,V(x)

)
[2i]). We noted that because we are using real verifier V

in all cases, we would like to ignore the verifier’s private randomness when analyzing the distances between
hybrid algorithms, this is because the distribution of (x, rV, u1, y1, . . . , uq, yq) identical to one obtained by
firstly sampling (x, u1, y1, . . . , uq, yq) and then sampling rV uniformly among the randomness consistent with
(x, u1, y1, . . . , uq, yq), or βx

u1,...,y1
as in Section 4. Thus it’s sufficed to focus on (x, u1, y1, . . . , yq) by data

processing inequality. According to ϵ-hiding of ⟨P,V⟩, we have that for any j ∈ [q]

∆
(
Wj(x)[2j],Simj(n)

)
≤ ∆

(
Viewpub

(
P,V(x)

)
,Viewpub

(
PS ,V(x)

))
≤ ϵ.

For j ∈ [q], and any possible (s⃗j−1, uj),

∆ (P (s⃗j−1, uj) ,PS (s⃗j−1, uj)) = ∆
(
Wj(x)[2j]

∣∣∣Wj(x)[2j − 1] = (s⃗j−1, uj),Simj(n)
∣∣∣Simj(n) = (s⃗j−1, ∗)

)
(5)

≤ ∆(Wj(x)[2j],Simj(n)) (6)

≤ ϵ, (7)

where the first line of equation is by definition of P and PS , the second line follows the definitino of total
variance distance.
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Fact 5.10. Let (X1, Y1) and (X2, Y2) be two joint distributions over space X × Y. Suppose it holds that
∆(X1, X2) ≤ ϵ1 and for any x ∈ X , ∆(Y1|X1 = x, Y2|X2 = x) ≤ ϵ2, then ∆

(
(X1, Y1), (X2, Y2)

)
≤ ϵ1 + ϵ2.

Proof.

∆((X1, Y1), (X2, Y2)) =
1

2

∑
(x,y)∈X×Y

∣∣∣Pr [X1 = x, Y1 = y]− Pr [X2 = x, Y2 = y]
∣∣∣

=
1

2

∑
(x,y)∈X×Y

∣∣∣Pr [X1 = x] · Pr [Y1 = y|X1 = x]− Pr [X2 = x] · Pr [Y2 = y|X2 = x]
∣∣∣

≤ 1

2

∑
(x,y)∈X×Y

∣∣∣Pr [X1 = x] · Pr [Y1 = y|X1 = x]− Pr [X2 = x] · Pr [Y1 = y|X1 = x]
∣∣∣

+
∣∣∣Pr [X2 = x] · Pr [Y1 = y|X1 = x]− Pr [X2 = x] · Pr [Y2 = y|X2 = x]

∣∣∣
=

1

2

∑
x∈X

∑
y∈Y

Pr [Y1 = y|X1 = x] ·
∣∣∣Pr [X1 = x]− Pr [X2 = x]

∣∣∣
+
∑
x∈X

Pr [X2 = x] ·

1

2
·
∑
y∈Y

∣∣∣Pr [Y1 = y|X1 = x]− Pr [Y2 = y|X2 = x]
∣∣∣


=
1

2

∑
x∈X

∣∣∣Pr [X1 = x]− Pr [X2 = x]
∣∣∣+ ∑

x∈X
Pr [X2 = x] · ϵ2

≤ ϵ1 + ϵ2.

where the first inequality follows triangle inequality.

Denote by Dj−1 = Viewpub

(
P,V(x)

)
[2j − 1] for brevity, we have:

∆ (Wj(x),Wj−1(x)) = ∆ ((Dj−1,P (Dj−1)) , Dj−1,PS (Dj−1))

≤ ϵ,

where the last inequality follows Fact 5.10 and Eq. 7. Thus, the claim follows.

Apply Fact 4.8 and triangle inequality, we have the following claim:

Claim 5.10.1. For any x ∈ Yesn ∪Non:

∆(ViewV

(
P,V(x)

)
,ViewV

(
PS ,V(x)

)
) = ∆ (Wq(x),W0(x))

≤ q · ϵ.

We now proceed to check the distance ∆(ViewV

(
PS ,V(x)

)
,ViewV

(
PSS ,V(x)

)
). Define a sequence of

hybrid algorithms W′j :
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W′j(x) :

1. rV ← RV.

2. rP ← RP.

3. u1 ← V(x, rV, ϕ).

For i← 1 to j

(a) (n, rSim,i)← Sim−1i (u1, y1, . . . , ui).

(b) (. . . , ui, yi, . . . )← SimP(n; rSim,i).

(c) ui+1 ← V(x, rV, u1, . . . , yi).

For i← j + 1 to q

(a) (n, rSim,i)← Ai(u1, y1, . . . , ui).

(b) (. . . , ui, yi, . . . )← SimP(n; rSim,i).

(c) ui+1 ← V (x, rV, (u1, . . . , yi)).

Outputs x, rV, u1, y1, . . . , uq, yq.

It’s clear that B(x) = V (W′0(x)) = ⟨PSS ,V(x)⟩ and W′q(x) = W0(x) = Viewpub

(
PS ,V

)
.

Claim 5.10.2. For any x ∈ Yesn ∪Non, j ∈ [q] :

∆
(
W′j(x),W

′
j−1(x)

)
≤ negl(n).

Proof of Claim 5.10.2. For j ∈ [q], i ∈ [2q], similarly define W′j(x)[i] as in the proof of Claim 5.9.1. Following
Claim 5.10.1 and ϵ-hiding,

∆
(
W′j−1(x)[2 · (j − 1)],Simj−1(n)

)
≤ ∆

(
Viewpub

(
PS ,V(n)

)
,Viewpub

(
PS ,VS(x)

))
≤ ∆

(
Viewpub

(
PS ,VS(n)

)
,Viewpub

(
P,V(x)

))
+∆

(
Viewpub

(
P,V(n)

)
,Viewpub

(
PS ,V(x)

))
≤ ϵ+ q · ϵ
≤ (q + 1) · ϵ,

where the first inequality is because the first (j − 1)-round of W′j−1 is Viewpub

(
PS ,V(n)

)
[2 · (j − 1)], the

second inquality follows triangle inequality, and the third inequality follows hiding and Claim 5.10.1.
By definition of Aj−1, we have ∆

(
Aj−1

(
Simj−1(n;RSim,j−1)),Sim

−1
j−1(Simj−1(n;RSim,j−1)

))
< negl(n),

and thus:

∆
(
W′j(x),W

′
j−1(x)

)
≤ ∆

(
Aj

(
W′j−1(x)[j − 1]),Sim−1j−1(W

′
j−1(x)[j − 1])

))
≤ ∆

(
Aj

(
Simj−1(n;RSim,j−1)),Sim

−1
j−1(Simj−1(n;RSim,j−‘)

))
+ 2 ·∆

(
W′j−1(x)[j − 1],Simj−1(n)

)
≤ negl(n).

where the first inequality follows data processing inequality, and the second inequality follows triangle in-
equality, data processing inequality and the fact that W′j−1(x)[j − 1] = W′j(x)[j − 1].

Thus by triangle ineqaulity, we have:
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Claim 5.10.3. For any x ∈ Yesn ∪Non:

∆(ViewV

(
PSS ,V(x)

)
,ViewV

(
PS ,V(x)

)
) = ∆

(
W′q(x),W

′
0(x)

)
≤ negl(n).

Given Claim 5.9.1 and Claim 5.10.3, and by triangle inequality and data processing inequality, the
following claim follows:

Claim 5.10.4. For any x ∈ Yesn ∪Non:

∆(B(x), ⟨P,V(x)⟩) ≤ ∆(ViewV

(
PSS ,V(x)

)
,ViewV

(
P,V(x)

)
)

≤ ∆(Viewpub

(
PSS ,V(x)

)
,Viewpub

(
PS ,V(x)

)
)

+ ∆(Viewpub

(
PS ,V(x)

)
,Viewpub

(
P,V(x)

)
)

≤ negl(n).

Therefore, by triangle inequality

Pr [B(x) = Π(x)] ≥ Pr [⟨P,V(x)⟩ = Π(x)]−∆(B(x), ⟨P,V(x)⟩) ≥ 1− δ − negl(n) ≥ 1− negl(n).

This shows that B solves Π in worst case with bounded error, and thus completes the proof.

Remark 5.11. Unlike the OWF in Theorem 5.3, which incorporates the verifier algorithm V as part of the
construction, the explicit construction of OWF from strong-IHIP uses solely the efficient simulator SimP,
which does not take the instance x as input. This is what allows the worst-case hardness of the problem
to be useful in proving one-wayness of the latter function. Notably, the construction of OWF in [Ost91],
based on SZK simulator, also takes the instance as part of the input, thus requiring hardness also over some
distribution of instances. It is of interest to find whether a worst-case hard with just IHIP, which is not
guaranteed an efficient similator for honest prover, implies OWF.

6 Oracle Separation from SZK

Given that SZK and IHIP are both contained in AM/poly ∩ coAM/poly, it is natural to ask whether one is
contained in the other. While we don’t know how to construct IHIP protocols for SZK problems such as
Statistical Difference and Graph Non-Isomorphism, it is also unclear whether IHIP is contained in SZK.
Towards understanding their relationship, we exhibit an oracle relative to which IHIP ̸⊂ SZK. Before
advancing, it is essential to define the associated complexity classes.

Definition 6.1 (Class SZK). A promise problem Π = (Yes,No) is in SZK if there exists a protocol ⟨P,V⟩,
where the verifier runs in polynomial time, satisfying the following:

• ⟨P,V⟩ is an interactive proof for Π (where both P and V get the input instance) with negligible
completeness and soundness errors.

• There exists an efficient algorithm Sim such that for any efficient V∗ and any x ∈ Yesn,

∆
(
SimV∗(x),ViewV∗

(
P(x),V∗(x)

)
≤ negl(n).
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Definition 6.2. An oracle protocol is a protocol ⟨P,V⟩ in which both P and V are allowed to make calls to

an oracle. For any oracle O : {0, 1}∗ → {0, 1}∗, such a protocol with oracle O is denoted by ⟨P,V⟩O. The
view of each party in such a protocol also includes the set of oracle queries it makes and the corresponding
responses. The conditions for ⟨P,V⟩O being a (Strong) instance-hiding proof (resp. SZK) system for a
promise problem are the same as those in Definition 2.2 (resp. Definition 6.1), except that the simulator is
also allowed access to the same oracle.

Definition 6.3. For any oracle O : {0, 1}∗ → {0, 1}∗, Strong-IHIPO (resp. SZKO) is the class of promise
problems that have a strong instance-hiding proof (resp. SZK proof) system with oracle O. This includes
promise problems whose definitions involve properties of the oracle.

Theorem 6.4. There exists an oracle O such that Strong-IHIPO ̸⊆ SZKO.

Looking ahead, our oracle separation will use oracles based on the generic group model [Sho97]. Rather
than Shoup’s original formulation of this model, we will use the following formulation as in Corrigan-Gibbs
and Kogan [CGK18], which will be more convenient to use.

Definition 6.5 (Generic Group Oracles). For any N ∈ N, and bijective function σ : ZN → [N ], the oracle
Gσ : [N ] × [N ] → [N ] is defined as: Gσ(g, h) = σ(σ−1(g) + σ−1(h)). We refer to elements of [N ] in this
context as the group elements, and the corresponding inverses of σ as their discrete logarithms.

Let N : N → N be the function that, on input any n ∈ N, outputs the smallest prime number larger
than 2n−1. For any family of oracles I =

{
In : ZN (n) → {0, 1}

}
n∈N, and family of bijective functions

σ =
{
σn : ZN (n) → [N (n)]

}
n∈N, we define the promise problem ΠI,σ = (Yes,No) as follows:

Yesn = {(n,N (n), σn(1), σn(x)) | In(x) = 1} .
Non = {(n,N (n), σn(1), σn(x)) | In(x) = 0} .

We extend the notation Gσ in the natural manner to denote the family of oracles Gσn for all n ∈ N.
Similarly, note that to define Yesn(Π

I,σ) and Non(Π
I,σ), only In and σn need to be specified; we denote

the corresponding promise problem restricted to instances of size n by ΠIn,σn .
We show that there is an instance-hiding oracle protocol that, given oracle access to I and Gσ, is a valid

instance-hiding proof for ΠI,σ, whereas every oracle protocol fails to be an SZK proof for this language for
most such oracles. This already gives a separation between “generic” instance-hiding and SZK protocols
that only use group elements in a generic manner. To show the oracle separation, a careful diagonalization
argument is needed. We first state and prove the following two lemmas that show the above statements, and
then set up and perform the required diagonalization, which proves Theorem 6.4.

Lemma 6.6. There is an oracle protocol ⟨P,V⟩ such that, for any I and σ as above, ⟨P,V⟩I,Gσ is a strong
instance-hiding proof system for ΠI,σ.

Proof of Lemma 6.6. The required IHIP protocol is presented in Figure 6. The completeness and soundness
of the protocol follows from the fact that y = σn(x + r), σn is a bijection, and so for V to accept we have
x∗ = x + r, and so In(x∗ − r) = I(x). It is perfectly instance-hiding because the only message sent by V,
for any instance of size n, is a uniformly random element of [N (n)]. It is strong instance-hiding because the
view of the honest prover P can be efficiently simulated (perfectly) given n by sampling a random element
x∗ ← ZN (n), and outputting (σn(x

∗), x∗).7 This completes the proof.

Lemma 6.7. For any oracle protocol ⟨P,V⟩ and polynomial-time oracle algorithm Sim, there is an n0 ∈ N
such that for all n ≥ n0, there exists some In and σn as above such there is either an input in Non(Π

In,σn)

on which ⟨P,V⟩In,Gσn has soundness error Ω(1/n), or an input in Yesn(Π
In,σn) on which it has either

completeness error Ω(1/n), or honest-verifier statistical zero-knowledge error Ω(1/n) with SimIn,Gσn as the
simulator.

7For this simulator to be uniform, N (n) has to be efficiently computable, which it may be not. We ignore this detail as this
is resolved by simply adding another oracle that, on input n, outputs N (n).
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strong-IHIP protocol for ΠI,σ: ⟨P,V⟩I,Gσ

Inputs:

• P is given the input size n.

• V has input (n,N (n), σn(1), σn(x)) for some x ∈ ZN (n).

Protocol:

1. V : randomly sample r ← ZN (n) and compute σn(r).

• This can be done with O(logN (n)) calls to Gσn
using repeated doubling of σn(1).

2. V : compute and send y ← Gσn(σn(x), σn(r)) to P.

3. P : compute x∗ ∈ ZN (n) such that y = σn(x
∗) and send x∗ to V

4. V : accept if and only if y = σn(x
∗) and In(x∗ − r) = 1.

Figure 6: strong-IHIP protocol for ΠI,σ

Our proof of Lemma 6.7 relies on the hardness of the discrete logarithm problem for generic algorithms,
which require at least N1/2 time on groups of order N , as shown by Shoup [Sho97]. Our modelling of
such algorithms is more general than Shoup’s, so we instead use the following corollary of a theorem of
Corrigan-Gibbs and Kogan [CGK18, Theorem 2].

Lemma 6.8. For any prime N ∈ N and oracle algorithm A that receives at most
√
N -bit non-uniform advice

and runs in time T ,

Pr
σ,x

[AGσ (σ(1), σ(x)) = x] ≤ T 2.01

√
N

.

where σ is a uniformly random bijective function from ZN to [N ], and x is uniformly random over ZN .

Proof of Lemma 6.7. Consider any oracle protocol ⟨P,V⟩ and polynomial-time oracle algorithm Sim, and

some n ∈ N. Suppose, towards a contradiction, that for every In and σn as above, the protocol ⟨P,V⟩In,Gσn

is complete and sound as an interactive proof for ΠIn,σn , and is also honest-verifier SZK, with SimIn,Gσn as
the simulator, all with errors o(1/n). We will simply denote In and σn as I and σ in the rest of the proof
for brevity.

By the zero-knowledge property, for any I and σ, we have the following on any YES instance z =
(n,N (n), σ(1), σ(x)):

∆
(
SimI,Gσ (z),ViewV

(
PI,Gσ (z),VI,Gσ (z)

))
≤ o

(
1

n

)
. (8)

Denote by E(I, σ, x) the event that, given oracle access to I and Gσ, on input z = (n,N (n), σ(1), σ(x))
as input, the verifier V queries the oracle I at x during the course of its interaction with P. Note that the
view of the verifier consists of its randomness, the transcript of the protocol and oracle queries/responses.
Together, given the oracle, these also fully determine the set of oracle queries made by the verifier during
its execution. Denote by ESim(I, σ, x) the event that x is among the set of oracle queries so determined by
the view output by the simulator SimI,Gσ (z). By Lemma 6.8 and the poly(n)-time efficiency of Sim, since
N (n) > 2n−1, we have:

Pr
I,σ,x←ZN(n)

[ESim(I, σ, x)] ≤ o

(
1

n

)
. (9)
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This is because if not, x can be extracted from the view output of Sim by an algorithm that simulates the
oracle I to it. As I above is a uniformly random Boolean function, the probability that more than 1/3 of
the x ∈ ZN (n) are in I−1(1) is (1− negl(n)); denote by I the set of I in which this happens. Thus, by some
elementary probability arguments, we have the following for all n:

Pr
I,σ,x←ZN(n)∩I−1(1),Sim

[ESim(I, σ, x)] ≤ Pr [I ∈ I] E
I←I

[
Pr

σ,x←ZN(n)∩I−1(1)
[ESim(I, σ, x)]

]
+ Pr [I ̸∈ I]

≤ Pr [I ∈ I] E
I←I

[
Prσ,x←ZN(n)

[ESim(I, σ, x)]
Prx←ZN(n)

[x ∈ I−1(1)]

]
+ Pr [I ̸∈ I]

≤ Pr [I ∈ I] E
I←I

[
Prσ,x←ZN(n)

[ESim(I, σ, x)]
1/3

]
+ Pr [I ̸∈ I]

≤ 3 · Pr
I,σ,x←ZN(n)

[ESim(I, σ, x)] + Pr [I ̸∈ I]

≤ o

(
1

n

)
. (10)

where the last inequality holds for all large enough n. Such x ∈ I−1(1) correspond directly to YES instances
of ΠI,Gσ , in which case the simulator is supposed to work. So by Eqs. (8) and (10), we have:

Pr
I,σ,x←ZN(n)∩I−1(1),P,V

[E(I, σ, x)] ≤ o

(
1

n

)
(11)

This implies that, for all large enough n, there exists an I, σ, and x ∈ ZN (n) ∩ I−1(1) such that, when
interacting with the honest prover and given input (n,N (n), σ(1), σ(x)), the verifier queries I at x with o(1)
probability. Consider the oracle I−x, which is the same as I, except that I−x(x) = 0. The verifier can be
made to accept the input (n,N (n), σ(1), σ(x)) with probability (1 − o(1)) given oracle access to I−x and
Gσ by a malicious prover that simply emulates the honest prover’s strategy with oracle I. This breaks the
soundness of the protocol for the problem ΠI

−x,σ. This is a contradiction to our assumption at the start of
the proof, and this proves the lemma.

Now, we show how to use Lemma 6.7 to construct functions I and σ such that with respect the oracles
(I,Gσ), the problem ΠI,σ does not have an SZK protocol. The standard approach to doing so is diag-
onalization: to enumerate all possible oracle protocols and simulators, and for each pick an input size n
and corresponding In and σn on which it fails (as promised by Lemma 6.7), and include that in I and σ.
However, we cannot do this directly, as the set of all protocols is not countable. Instead, we will do this
for a countable set of protocols and show that for any potential SZK protocol, there is a protocol in this
set that computes the same problem. This countable set will be the set of protocols with simulation-based
provers [For87].

Definition 6.9 (Simulation-based Protocols). Given (oracle) algorithms V and Sim, the simulation-based
protocol defined by these is the protocol ⟨PSim,V⟩, where PSim is the simulation-based prover that behaves
as follows: to compute the prover’s message at any point in the protocol, sample from the distribution of
this message in the output of Sim, conditioned on this output matching the protocol transcript so far (if this
conditional distribution is not defined, set the message to be ⊥).

The following lemma follows immediately from the statistical zero-knowledge property. (Roughly this
statement is also proven as part of the proof of Theorem 5.9.)

Lemma 6.10. Suppose ⟨P,V⟩ is an honest-verifier SZK proof system for a promise problem Π with simulator
Sim, all with respect to some oracle O. Then the simulation-based protocol ⟨PSim,V⟩ is also an honest-verifier
SZK proof for Π with simulator Sim, with respect to oracle O.
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Given this lemma, we only need to enumerate over pairs of polynomial-time algorithms (V,Sim) in our
diagonalization argument, and this is indeed a countable set. Together, Lemmas 6.6, 6.10 and 6.11 prove
Theorem 6.4.

Lemma 6.11. There exist I = {In} and σ = {σn} such that no simulation-based protocol is a valid SZK
proof system for ΠI,σ with respect to oracles (I,Gσ).

Proof. We prove this by enumerating over all polynomial-time oracle algorithms (V,Sim), and constructing
I and σ such that each of them fails to be an SZK proof on some input size. One subtlety here is that
Lemma 6.7 is stated only for algorithms that have access to In and σn for some specific value of n, whereas
in reality they will be able to query In′ or σn′ for values of n′ different from the input size. We will need to
make sure these queries are not useful to the algorithm.

Consider an enumeration of all pairs of polynomial-time oracle algorithms ((V1,Sim1), (V2,Sim2), . . . ).
We will process them in order to construct I and σ as follows. Below, the “default” values for any In are
the all-zero function, and for σn it is the identity function. When we say a protocol “fails to be an SZK
proof” at some input size n, we mean that one of its errors on some input of that size is at least 1/n. Note
that we only need to rule out protocols that on every input size n has errors smaller than 1/n.

First, we claim that there has to exist an n1 such that if for all n ̸= n1 we set In and σn to the default
values, there exist I∗n1

and σ∗n1
such that the simulation-based protocol defined by (V1,Sim1) fails to be an

SZK proof for ΠI,σ at input length n1. If not, then we can contradict Lemma 6.7 by running this protocol
with the oracles artifically set to the default values at n that is different from the input size. Further, as
V1 and Sim1 are polynomial-time algorithms, there is a number n′1 such that when run on inputs of size n1,
neither algorithm ever makes a query to an oracle In, etc., for n > n′1. We will start by setting In1

= I∗n1
,

σn1 = σ∗n1
, and In and σn to be the default values for all n ≤ n′1.

Next, we will essentially repeat this argument for (V2,Sim2) – there has to exist an n2 larger than n′1
such that if we set the oracles as above for n ≤ n′1, to the default values for n > n′1 except for n = n2, there
exist I∗n2

and σ∗n2
for which (V2,Sim2) fails to be an SZK proof. Otherwise we can contradict Lemma 6.7 by

running this protocol with oracles artificially set to the ones determined above for n ≤ n′1
8, and to default

values otherwise. We then set In2
and σn2

to be these I∗n2
and σ∗n2

, and set default values for n up to the
similarly defined n′2. Repeating this argument throughout the enumeration then gives us the I and σ that
prove the lemma.

7 Instance-Hiding Delegation Schemes

In this section, we extend the study to a setting in which a machine V, given an private input x, delegates
the computational task of computing a function f(x) to a computationally stronger machine P. We seek
solutions in which the prover P does this without learning x, but without asking for any guarantees in case
P does not follow the protocol. We further generalize the definition to allow the prover to learn leakage ℓ(x)
of instance x defined by some PSPACE function ℓ. We note that because some results (e.g. Theorem 4.1,
Theorem 4.3, Theorem 5.3, Theorem 5.9) about IHIP in previous sections rely solely on its correctness of
honest prover and hiding properties (and do not need the soundness property), these can be generalized to
this setting. We further show strong connections between the existence of such delegation schemes and of
IHIP’s, and then use these connections together with closure properties of these schemes to show the closure
properties of IHIP’s stated in Section 2.1. Below, as before, for any set S, Sn denotes its intersection with

{0, 1}n. For any promise problem Π = (Yes,No), we define its characteristic function to be the partial
function that maps inputs in Yes to 1, inputs in No to 0, and is undefined on other inputs.

8Given that n1 ≪ n2, these oracles can be encoded as non-uniform advice with random access and a length no longer than√
N (n2).
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Definition 7.1 (Instance-Hiding Delegation Scheme (IHD) [FO91]). Consider a function f : X → Y, and
functions δ, ϵ : N → [0, 1] and ℓ : X → {0, 1}∗. A (δ, ϵ, ℓ)-Instance-Hiding Delegation Scheme (IHD) for
f is a protocol ⟨P,V⟩ in which a probabilistic polynomial-time verifier V interacts with a computationally
unbounded prover P. For some n ∈ N, V gets a private input x ∈ Xn, while P gets the input n. At the end
of the interaction, V outputs y ∈ Y ∪{⊥}. The protocol is required to satisfy the following properties for all
large enough n ∈ N:

• Correctness: For any input x ∈ Xn:

Pr [⟨P(n),V(x)⟩ = f(x)] ≥ 1− δ(n).

• Hiding Against Honest Prover (with leakage): There exists a computationally unbounded random-
ized algorithm SimP such that for any input x ∈ Xn:

∆
(
SimP

(
n, ℓ(x)

)
,ViewP (P(n),V(x))

)
≤ ϵ(n).

If the simulator SimP is efficient, we call the protocol Strong-Instance-Hiding Delegation (Strong-IHD). The
protocol is perfectly-hiding if ϵ(n) = 0. If left unspecified, we assume ℓ is the constant function that always
outputs ⊥, corresponding to the absence of leakage.

The following proposition directly follows the completeness and soundness for the honest prover in IHIP,
and ϵ-hiding.

Proposition 7.2. Consider a promise problem Π with characteristic function f : Yes ∪No → {0, 1}, and
let ⟨P,V⟩ be a (δ, ϵ)-IHIP (resp. strong IHIP) for Π, then ⟨P,V⟩ is a (ϵ, δ)-IHD (resp. strong IHD) for f .

Next, we define a version of instance-hiding delegation schemes that has an additional verifiability prop-
erty that protects against provers that may deviate from the protocol.

Definition 7.3 (Verifiable Instance-Hiding Delegation Scheme (VIHD) [FO91]). Consider any function
f : X → Y, and functions δ, ϵ : N → [0, 1], and ℓ : X → Z. A (δ, ϵ, ℓ)-Verifiable Instance-Hiding Delegation
Scheme (VIHD) for f is a IHD protocol that additionally achieves verifiability and hiding against malicious
provers:

• Correctness: For any input x ∈ Xn:

Pr [⟨P(n),V(x)⟩ = f(x)] ≥ 1− δ(n).

• Verifiability: For any prover P∗, for any input x ∈ Xn:

Pr [⟨P∗(n),V(x)⟩ = f(x) ∪ {⊥}] ≥ 1− δ(n).

• Hiding against malicious prover (with leakage): For any prover P∗, there exists a computationally
unbounded randomized algorithm SimP∗ such that for any input x ∈ Xn,

∆
(
SimP∗

(
n, ℓ(x)

)
,ViewP∗(P∗,V(x))

)
≤ ϵ(n).

The VIHD is strong if the simulator for honest prover SimP is efficient. If left unspecified, we assume ℓ is
the constant function that always outputs ⊥, corresponding to the absence of leakage.

48



We then have the following proposition, which states that VIHD protocols are essentially stronger than
IHIP protocols.

Proposition 7.4. Let f be the characteristic function for a promise problem Π. If ⟨P,V⟩ is a (δ, ϵ)-verifiable
instance-hiding delegation (resp. strong (δ, ϵ)-verifiable instance-hiding delegation) for f , then there exists a
(δ, ϵ)-instance-hiding proof (resp. strong (δ, ϵ)-instance-hiding interactive proof) ⟨P′,V′⟩ for Π.

Proof Sketch. We define P′ = P and let V′ run V as a black box on the same input, and output 1 (Accept)
if and only if V outputs 1. The δ-completeness and ϵ-hiding follow the correctness and ϵ-hiding of ⟨P,V⟩
respectively. The soundness of ⟨P′,V′⟩ follows from the correctness and verifiability of ⟨P,V⟩.

7.1 Verifiable IHD from IHD

It is immediate that any VIHD is also a IHD. If restricting ℓ to be constant function, [FO91] demon-
strates that if any function f ∈ PSPACE has perfect-hiding (δ, 0, ℓ)-IHD, then f also has a perfect-hiding
(δ′, 0, ℓ)-VIHD. We extend their theorem to ϵ-hiding schemes with a richer class of leakage function ℓ. The
protocol and proof essentially closely follow that of [FO91, Lemma 3.1], with the only difference being in
the hiding statements that the prover proves to the verifier in each round. In our case, the prover proves
ϵ-hiding with respect to any PSPACE leakage function, whereas in [FO91] the focus is on perfect hiding and
only the constant function as leakage.

Theorem 7.5. Suppose that a function f is computable in polynomial space and has a (δ, ϵ, ℓ)-IHD ⟨P,V⟩
for some negligible δ, ϵ and ℓ ∈ PSPACE , then there exists negligible δ′, ϵ′ and ⟨P′,V′⟩ such that ⟨P′,V′⟩ is a
(δ′, ϵ′, ℓ)-VIHD for f .

Corollary 7.6. Suppose that a function f is computable in polynomial space and has a (δ, ϵ)-IHD for some
negligible δ, ϵ. If f is the characteristic function for a promise problem Π, then Π has a (δ′, ϵ′)-IHIP for
some negligible δ′, ϵ′.

The above corollary follows from Theorem 7.5 and Proposition 7.4, and carries over our results from
other sections about the implications of IHIP protocols to IHD schemes. Because the protocol format of an
IHD is related to IHIP, just with a possibly different output space at the end, we adopt the notations of
elements in Section 4.

Proof. Inspired by the proof for perfect-hiding in [FO91], we rely on the fact that both the correctness and
the hiding aspects of an execution are statements in PSPACE, and thus can be proven with an appropriate
interactive proof protocol following the celebrated IP = PSPACE theorem [LFKN92][Sha92]. Intuitively,
consider a q-round IHD ⟨P,V⟩ for a function f , we construct a new protocol ⟨P′,V′⟩ that ensures verifiability
and hiding against a malicious prover. ⟨P′,V′⟩ runs ⟨P,V⟩ in a round-by-round manner. Before V sends
a message in each round, P′ proves to V′ that for any input x, the distribution of V’s next message in
this round will not reveal much additional information about x. This ensures that hiding against malicious
prover. After the execution of ⟨P,V⟩, V′ has the view of V: (x, rV, s⃗), which is supposed to achieve correctness
if V interacts with honest prover. To enforce verifiability, P′ proves to the verifier that for any input x ∈ Xn,
the public view s⃗ achieves correctness with high probability. The protocol is presented in Figure 7
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Verifiable Instance Hiding Delegation: ⟨P′,V′⟩
Parameters:

• Function f : X → Y.
• Input length n.

• Leakage function ℓ.

Inputs: An instance x ∈ Xn.

Outputs: y ∈ Y ∪ {⊥}.
Ingredients:

• ⟨P,V⟩ is a q-round (δ, ϵ)-IHD for R as described.

• Consider the public view of protocol ⟨P,V⟩ up to ith round (u1, y1, . . . , ui, yi), and any input
x ∈ Xn. Define βx

(u1,y1,...,ui,yi)
as the set of verifier’s randomness consistent with input x and

(u1, y1, . . . , ui, yi). Denote by U(u1,y1,...,ui,yi) the set of the possible next messages of V:

U(u1,y1,...,ui,yi) =
⋃
x∈X
{ui+1 = V (x, rV, (u1, y1, . . . , ui, yi))

∣∣rV ∈ βx
(u1,y1,...,ui,yi)

}.

Protocol:

1. V′ samples a randomness rV ← RV.

2. V′ generates its first message u∗1 ← V(x, rV, ϕ), and sends it to P′, and P′ responds with the y1
that is P’s response to this message.

3. For i ∈ [2, q]:

(a) P′ and V′ execute an interactive proof protocol where P′ proves the following hiding statement:

“For any two inputs x1, x2 ∈ Xn such that ℓ(x1) = ℓ(x2),∑
ui∈U(u∗

1 ,y∗
1 ,...,u∗

i
,y∗

i
)

∣∣∣∣∣∣
∣∣∣∣βx1

(u∗
1 ,y∗

1 ,...,u∗
i−1

,y∗
i−1

,ui)

∣∣∣∣∣∣∣∣βx1
(u∗

1 ,y∗
1 ,...,u∗

i−1
,y∗

i−1
)

∣∣∣∣ −
∣∣∣∣βx2

(u∗
1 ,y∗

1 ,...,u∗
i−1

,y∗
i−1

,ui)

∣∣∣∣∣∣∣∣βx2
(u∗

1 ,y∗
1 ,...,u∗

i−1
,y∗

i−1
)

∣∣∣∣
∣∣∣∣∣∣ ≤ 4ϵ”.

The above statement is in PSPACE if ℓ, f ∈ PSPACE and the IP follows from IP = PSPACE.

(b) If the verifier in the above IP rejects, V′ rejects immediately.

Else

i. V′ computes u∗i ← V
(
x, rV, (u

∗
1, y
∗
1 , . . . , u

∗
i−1, y

∗
i−1)

)
and sends ui to P′.

ii. P′ computes the response y∗i according to P and sends it to V′.

4. P′ and V′ execute an interactive proof protocol where P′ proves that:

“For any x ∈ Xn: Pr
rV←βx

s⃗

[
V
(
x, rV, (u

∗
1, . . . , y

∗
q )
)
̸= f(x)

]
< 1

2n/2 ”.

5. If the verifier in the above protocol rejects, then V′ rejects.

Else V′ outputs V
(
x, rV, (u

∗
1, . . . , y

∗
q )
)
.

Figure 7: Transformation from IHD to VIHD
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Round-by-Round Hiding The ϵ-hiding for the first round is ensured by ϵ-hiding of ⟨P,V⟩ as it only
involves V’s single message. From the second round, however, malicious prover P′∗ may deviate from the
behavior of the honest prover P′ leading to possible leakage of x if V′ sticks to V. When considering only
the hiding property, the protocol described in Figure 7 can be viewed as a q-fold sequential composition of
one-round ϵ-hiding protocols on the same input x, where only the first ϵ-hiding protocol is determined before
the execution. For each i ∈ [2, q], the ith protocol is defined by a prefix, (u∗1, y

∗
1 , . . . , y

∗
i−1). The prover P′∗

is required to prove to V′ that the protocol defined by (u∗1, y
∗
1 , . . . , y

∗
i−1) remains to be ϵ-hiding before the

protocol’s execution.
Assume for simplicity first that the IP for proving hiding statements is perfectly complete and sound.

That is, if V′ does not reject until end of q rounds (in this case all of the hiding statements are true), then
conditioned on any prover’s view up to i− 1 round, the next message of V u∗i will be 2ϵ-hiding. We proceed
to use Fact 5.10 to inductively prove that the overall prover’s view of the protocol will be 2 · q · ϵ-hiding.
For the analysis of hiding, we ignore the parts of views between P

′∗ and V′ on the proof of hiding statement
because they are independent of the input x conditioned on view of previous rounds. Denote by U∗i (x) V’s
message in ith round when the input is x. Similarly, (RP′∗ , U∗1 , Y

∗
1 , . . . , , U

∗
i , Y

∗
i ) (x) denotes P’s view up to

ith round. For any two inputs x, x′ ∈ Xn,

• Base step: It’s clear that ∆ ((RP′∗ , U∗1 , Y
∗
1 )(x), (RP′∗ , U∗1 , Y

∗
1 )(x

′)) ≤ 2ϵ by ϵ-hiding of ⟨P,V⟩.

• Inductive step: For each round i ∈ [q], suppose ∆ ((RP′∗ , U∗1 , . . . , Y
∗
i )(x), (RP′∗ , U∗1 , . . . , Y

∗
i )(x

′)) = ϵi.
For any for any possible (u∗1, y

∗
1 , . . . , u

∗
i , y
∗
i ), conditioned on that V′ not rejecting up to i+1 rounds, and

on the prover’s view of previous ith rounds equals to (rP′∗ , u∗1, y
∗
1 , . . . , u

∗
i , y
∗
i ) (i.e. (RP′ , U∗1 , . . . , Y

∗
i )(x) =

(RP′ , U∗1 , . . . , Y
∗
i )(x

′) = (rP′∗ , u∗1, . . . , y
∗
q )), the distance between verifier’s (i+ 1)th message on the two

inputs is bounded:

∆
(
U∗i+1(x)|(RP′ , U∗1 , . . . , Y

∗
i )(x) = (u∗1, . . . , y

∗
q ), U

∗
i+1(x)|(U∗1 , . . . , Y ∗i )(x) = (u∗1, . . . , y

∗
q )
)
≤ 4ϵ.

This follows the hiding argument. Thus by Fact 5.10 and data processing inequality,

∆
(
(RP′ , U∗1 , . . . , Y

∗
i+1)(x), (RP′ , U∗1 , . . . , Y

∗
i+1)(x

′)
)
≤ ϵi + 4ϵ.

This concludes that the protocol view is 2 · q(n) · ϵ(n) if the IP for proving hiding statements are perfect
complete and sound. In the case where the IP for hiding statement has negl-completeness/soundness error,
the base case remain unchanged, and we argue that this error won’t affect the inductive argument. Formally,
define Ai as the indicator that P

′ makes V′ accept on ith-round hiding statements. For any two inputs x, x′ ∈
Xn, and each round i ∈ [q], conditioned on any possible view in the first i rounds (RP′ , U∗1 , . . . , Y

∗
i )(x) =

(RP′ , U∗1 , . . . , Y
∗
i )(x

′) = (rP′∗ , u∗1, . . . , y
∗
i ), and let Aj = 1 for j ∈ [i], by Fact 4.7:

• In the case that ith-round hiding statement is true:

∆
((
U∗i+1(x), Ai+1

)
,
(
U∗j+1(x

′), Ai+1

))
= E

b←Ai+1

[
∆
((
U∗i+1(x)|Ai+1 = b

)
,
(
U∗i+1(x

′)|Ai+1 = b
))]

≤ ∆
((
U∗i+1(x)|Ai+1 = 1

)
,
(
U∗i+1(x

′)|Ai+1 = 1
))

+ Pr [Ai+1 = 0]

≤ 2ϵ(n) + negl(n)

≤ negl(n).

• In the case that ith-round hiding statement is false:

∆
((
U∗i+1(x), Ai+1

)
,
(
U∗j+1(x

′), Ai+1

))
= E

b←Ai+1

[
∆
((
U∗i+1(x)|Ai+1 = b

)
,
(
U∗i+1(x

′)|Ai+1 = b
))]

≤ ∆
((
U∗i+1(x)|Ai+1 = 0

)
,
(
U∗i+1(x

′)|Ai+1 = 0
))

+ Pr [Ai+1 = 1]

≤ 0 + negl(n)

≤ negl(n),

where the second last inequality is because V′ will reject and set U∗i+1 = ⊥ in both cases if Ai+1 = 0.
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Therefore, following the same induction as in the case of perfect completeness and soundness, there exists
some negligible ϵ′ such that ⟨P′,V′⟩ is ϵ′-hiding against any prover.

Correctness. We say a public view s⃗ of ⟨P(n),V(x)⟩ is S⃗-good if for any x ∈ Xn: Pr
rV←βx

s⃗

[V(x, rV, s⃗) ̸= f(x)] <

1
2n/2 , and by definition for any x ∈ Xn:

Pr
(rV,s⃗)←ViewV

(
P,V(x)

) [V(x, rV, s⃗) = f(x)|s⃗ ∈ S⃗-good
]
≥ 1− 1

2n/2
.

We will proceed to show that s⃗ is S⃗-good with high probability. Similarly to that in [FO91], we assume
that δ < 1

22n , which is made through standard amplication procedure with parallel repetition; the proof that
parallel repetition works for amplification follows from a Chernoff bound for correctness, and Lemma 2.10
for hiding. Define ᾱx

s⃗ = {rV ∈ βx
s⃗ | V(x, rV, s⃗) ̸= f(x)}. By δ-correctness and following the same argument

as in Claim 4.5.2, for any input instance x:

E
s⃗←Viewpub

(
P(n),V(x)

)[ |ᾱx
s⃗ |
|βx

s⃗ |

]
≤ δ ≤ 1

22n
.

Follows Markov bound,

Pr
s⃗←Viewpub

(
P(n),V(x)

)[ Pr
rV←βx

s⃗

[V(x, rV, s⃗) = f(x)] >
1

2n/2

]
= Pr

s⃗←Viewpub

(
P(n),V(x)

)[ |ᾱx
s⃗ |
|βx

s⃗ |
>

1

2n/2

]
<

1

23n/2
.

Apply a union bound over all possible x ∈ {0, 1}n, and we get that:

Pr
s⃗←Viewpub

(
P(n),V(x)

)[∃x ∈ Xn : Pr
rV←βx

s⃗

[V(x, rV, s⃗) ̸= f(x)] >
1

2n/2

]
≤ 1

2n/2
.

Thus we have Pr
s⃗←Viewpub

(
P(n),V(x)

) [s⃗ is S⃗-good
]
≥ 1− 1

2n/2 . Moreover, because the statement “s⃗ is S⃗-good”

is a PSPACE statement if f can be computed in PSAPACE, it can be proved by an interactive proof
protocol with completeness and soundness error 1 − negl(n)[LFKN92][Sha92]. Therefore, the probability
that ⟨P(n)′,V′(x)⟩ outputs correctly is:

Pr [⟨P(n)′,V′(x)⟩ = f(x)] ≥ Pr
rV,rP

[
⟨P(n)′,V′(x)⟩ = f(x)|s⃗ is S⃗-good

]
· Pr
s⃗←Viewpub

(
P(n),V(x)

) [s⃗ is S⃗-good
]

≥
(
1− 1

2n/2
)
·
(
1− 1

2n/2
)

≥ 1− negl(n).

Verifiability. The verifiability relies on the soundness of the interactive proof for the statement “s⃗ is S⃗-
good”. Specifically, if s⃗ is not S⃗-good, V′ will output ⊥ with 1− negl(n) probability. On the other hand, if

s⃗ is S⃗-good, V′ will output f(x) with 1− negl(n) probability.

7.2 Closure Properties

In this section, we use some obvious closure properties of instance-hiding delegation schemes, together with
the connections to IHIP proven so far, to show similar closure properties for IHIP’s. Consider any functions
f : X → Y and p : Y∗ → Z. For any function k : N→ N, we define the composed function p ◦ f⊗k : X ∗ → Z
as the following partial function for each n ∈ N:

(p ◦ f⊗k)(x1, . . . , xk(n)) = p
(
f(x1), . . . , f(xk(n))

)
.

where each xi is of size n.
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Proposition 7.7 (Closure of VIHD under Composition with Efficient Functions). Consider any function
f that has a (δ, ϵ)-VIHD for some negligible functions δ and ϵ, and any efficiently computable function p.
For any polynomial k : N → N, the composed function p ◦ f⊗k also has a (δ′, ϵ′)-VIHD for some negligible
functions δ′ and ϵ′.

Proof Sketch. Let ⟨P,V⟩ be the VIHD protocol for f . Define ⟨P′,V′⟩ as the protocol that runs ⟨P,V⟩ on each
xi, gets result yi, and finally outputs p(y1, . . . , yk) if no ⟨Pi,Vi⟩ outputs ⊥ (otherwise outputs ⊥).

Given that ⟨P,V⟩ is ϵ-hiding, and following Lemma 2.10, ⟨P′,V′⟩ is a (k · ϵ)-hiding protocol. Furthermore,
because the k protocols are independent, and each constitutes δ-correctness, the protocol ⟨P′,V′⟩ thus also
possesses k · δ-correctness through a union bound. Verifiability of ⟨P,V⟩ implies that except with probability
k · δ, all the values of yi obtained, if not ⊥, are correct. This is thus the protocol we want.

Combining Propositions 7.2, 7.4 and 7.7 and Theorem 7.5, we get the following as corollaries.

Theorem 2.7 (Closure under Composition with Efficient Functions). Consider any promise problems Π
that has an IHIP protocol, and any efficiently computable function f : {0, 1,⊥}∗ → {0, 1,⊥} whose output is
⊥ whenever any of its inputs is ⊥. For any polynomial k : N → N, the composed promise problem f ◦ Π⊗k
also has an IHIP protocol.

Lemma 2.8 (Closure under Complementation). Suppose, for some negligible functions δ, ϵ, that a problem
Π has a (δ, ϵ)-IHIP (possibly with a non-uniform verifier). Then the complement of Π has a (δ′, ϵ′)-IHIP
(resp. with a non-uniform verifier if starting with a non-uniform verifier), where δ′, ϵ′ are also negligible.

Finally, we prove the following propositions regarding closure properties of VIHD schemes in the presence
of leakage that will be useful in Appendix C.

Proposition 7.8. Consider two functions ℓ, ℓ′ ∈ PSPACE defined over domain X such that for any two
inputs x, x′ ∈ X , ℓ(x) = ℓ(x′) if and only if ℓ′(x) = ℓ′(x′). For functions δ, ϵ and any function f : X → Y, if
⟨P,V⟩ is a (δ, ϵ, ℓ)-IHD (resp. (δ, ϵ, ℓ)-VIHD) for f , then ⟨P,V⟩ is a (δ, ϵ, ℓ′)-IHD (resp. (δ, ϵ, ℓ′)-VIHD) for
f . Furthermore, if there is an efficient bijective map between ℓ and ℓ′, the transformation holds for strong
IHD (resp. strong VIHD).

Proof Sketch. ℓ and ℓ′ are renaming of each other and thus a simulator with respect to ℓ′ can be made given
a simulator with respect to ℓ.
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A Examples of Instance-Hiding Proofs

In an instance-hiding interactive proof for a promise problem Π, the prover proves to the verifier that
x ∈ Yes(Π) without knowing anything about x. One approach to constructing such proofs is to use random-
self-reducibility properties. One class of problems with such properties, based on discrete logarithm problem,
is described below.

Definition A.1 (Discrete Log Problem (DLP)). Consider any cyclic group G. Given a generator g ∈ G and
an element h ∈ G, the Discrete Log Problem is to find an a ∈ Z|G| such that ga = h.

The Discrete Log problem over Z∗p is believed to be hard on average for most primes p (see, e.g. [Elg85]).

Example 1: DL on Z∗p

Definition A.2. For a prime p, a generator g ∈ Z∗p, and an arbitrary predicate f : Zp−1 → {0, 1}∪ {⊥}, we
define the promise problem DLf

p,g as follows:

• Yes(DLf
p,g) = {y | ∃x ∈ Zp−1 : gx = y ∧ f(x) = 1}.

• No(DLf
p,g) = {y | ∃x ∈ Zp−1 : gx = y ∧ f(x) = 0}.

We demonstrate that this problem possesses a simple, strong instance-hiding interactive proof, utilizing
the random self-reducibility property of the discrete logarithm.

Proposition A.3. Consider any prime p, generator g of Z∗p, and function f : Zp−1 → {0, 1} ∪ {⊥} that

is computable in polylog(p) time. The promise problem DLf
p,g has a perfect strong-IHIP where the verifier

runs in time polylog(p).

There are no known universal constructions of Statistical Randomized Encodings (SRE), or even Statis-
tical Zero Knoweldge (SZK) protocols, for this problem for such arbitrary efficient functions f . In fact, the
oracle separation we show in Section 6 suggests that this problem is unlikely to have generic SRE/SZK when
defined with arbitrary cyclic groups and unstructured functions f , even given oracle access to f .

Proof. Because DLP possesses random self-reduction, the verifier can efficiently reduce the instance to a
random instance and ask the prover to compute the discrete log for it.9 In the end, verifier verifies the
discrete log and reduces the instance back to original, and computes f to decide the promise problem.
Specifically, the protocol is as shown in Figure 8.

9We remark that the promise problem DLf
p,g itself may not possess random self-reducibility. Indeed, [TW87] demonstrated

that random self-reducible problems have perfect zero-knowledge proof.
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IHIP for DLf
p,g: ⟨P,V(y)⟩

Parameters: Prime p, generator g of Z∗p.

Ingredient: Function f : Zp−1 → {0, 1} ∪ {⊥}.
Protocol:

1. V does:

(a) Samples a random r ← Zp−1.

(b) Randomize the instance using r: y′ ← y · gr mod p.

2. V sends y′ to P.

3. P compute x′ ∈ Zp−1 such that gx
′
= y′.

4. P sends x′ to V.

5. V verifies that gx
′
= y′, if not outputs 0.

6. V computes d← x′ − r and outputs 1 (Accept) if f(d) = 1; otherwise outputs 0 (Reject).

Figure 8: Ins-HIP for DLf
p,g

Completeness and Soundness: Given that d serves as an NP witness for DLf
p,g, the completeness

and soundness follow immediately.

Hiding:

• Simulating for the Honest Prover: We define a simulator SimP that samples r uniformly at random
from Zp−1 and outputs (gr, r). This SimP is clearly efficient and the simulated distribution is identical
to the honest prover’s view in the protocol, thus ensuring perfect hiding.

• Simulating for a Malicious Prover: In this one-round instance-hiding interactive proof, the prover’s
P∗ is a random process dependent on verifier’s message. Because the simulator is unbounded and
verifier’s message follows the uniform distribution over Z∗p, SimP∗ will sample a uniform α ← Z∗p, and
output (α,P∗(α)).

Example 2: DL2 on Schnorr group The Schnorr group is commonly used in the construction of public-
key encryption and signatures schemes (see, e.g.[SS01]). Here we provide an example of problem based on
the Schnorr group, for which we show a two-round instance-hiding interactive proof. However, it is not clear
whether it has a one-round instance-hiding IP.

Definition A.4 (Schnorr group [Sch91]). A Schnorr group is a large prime-order subgroup of Z∗p, defined
by a tuple (p, q, g) where:

• p and q are primes,

• q divides p− 1,

• g is a generator of the subgroup G of Z∗p of order q

Definition A.5. Given a Schnorr group G defined by (p, q, g1) and any generator g2 of Z∗q , we define the

promise problem DL2fp,q,g1,g2 with respect to an arbitrary predicate f : Zq−1 → {0, 1} ∪ {⊥} as:

• Yes(DL2fp,q,g1,g2) = {y ∈ G\{1} | ∃x ∈ Zq−1 : f(x) = 1 ∧ g
gx
2

1 = y}.
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• No(DL2fp,q,g1,g2) = {y ∈ G\{1} | ∃x ∈ Zq−1 : f(x) = 0 ∧ g
gx
2

1 = y}.

Proposition A.6. Consider any Schnorr group G defined by (p, q, g1), generator g2 of Z∗q , and function

f : Zq−1 → {0, 1} ∪ {⊥} that is computable in polylog(p) time. The promise problem DL2fp,q,g1,g2 has a
perfect strong-IHIP where the verifier and the simulator for the honest prover run in time polylog(p).

Proof of Proposition A.6. The IHIP protocol (as shown in Figure 9) for DL2fp,q,g1,g2 , similar to that for

DLf
p,g, leverages the random self-reducibility of discrete logarithm in Z∗p to compute the value z ∈ Z∗q in an

oblivious manner such that y = gz1 . This procedure is then repeated to get x ∈ Zq−1 such that z = gx2 .

IHIP for DL2fp,q,g1,g2 : ⟨P,V(y)⟩

Parameters: A Schnorr group G defined by (p, q, g1), and generator g2 of Z∗q .

Ingredient:

• Function f : Zq−1 → {0, 1} ∪ {⊥}.

• A bit t ∈ {0, 1} initialized to be 1 that verifier keeps for delay rejection.

Protocol:
1. V does:

(a) Samples a random r1 ← Zq.

(b) Randomize the y using r1: y
′ ← y · gr11 mod p.

2. V sends y′ to P.

3. P compute z′∗ ∈ Zq such that gz
′∗
= y′, and sends z′∗ to V.

4. V

(a) Verifies that gz
′∗
= y′, if not, set t = 0. a

(b) Computes z∗ ← z′∗ − r1. By promise, z∗ ∈ Z∗q .
(c) Samples r2 ← Zq−1, and computes z′′ ← z∗ · gr22 mod q, and sends z′′ to P.

5. P finds x′∗ ∈ Zq−1 such that gx
′∗

2 = z′′ and sends x′∗ to V.

6. V

(a) Checks gx
′∗

2 = z′′, if not outputs 0 (Reject).

(b) Computes x∗ ← x′∗ − r2 mod q − 1.

(c) If f(x′) = 1 and t = 1, outputs 1 (Accept), otherwise outputs 0 (Reject).

aVerifier will reject at the final stage even if the prover fails at an earlier stage to ensure hiding.

Figure 9: Ins-HIP for DL2fp,q,g1,g2

Completeness and Soundness: Given that x∗ is an NP witness for DL2fp,q,g1,g2 , the completeness
and soundness follow immediately.

Hiding:

• Simulating for the Honest Prover: We define the efficient simulator SimP for honest prover as
follows:
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SimP(n) :

1. a← Zq.

2. b← ga1 mod p.

3. Samples c← Zq−1.

4. Computes b′ ← gc2 mod q.

5. Outputs (b, a, b′, c).

SimP perfectly simulates the public view because:

– z′∗ = (gx2 + r1 mod q) in Figure 9 is uniformly distributed over Zq.

– x′∗ = (x∗ + r2 mod q − 1) in Figure 9 is uniformly distributed over Zq−1.

Hence the output distribution of SimP (a, b, b′, c) is identical to the public view of the protocol Figure 9
(y′, z′∗, z′′, x′∗).

• Simulating for a Malicious Prover: Similarly, the two messages from V are independently uniformly
distributed overG and Z∗q respectively. For any malivious prover P∗, SimP∗ will simulate identical public
view distribution as follows:

SimP∗(n) :

1. a← Zq.

2. b← ga1 mod p.

3. Samples P∗ randomness: rP∗ ← RP∗

4. Runs a∗ ← P∗(b; rP∗).

5. Samples c← Zq−1.

6. Computes b′ ← gc2 mod q.

7. Runs c∗ ← P∗(b, a∗, b′)

8. Outputs (rP∗ , b, a∗, b′, c∗).

B Parallel Repetition of Interactive Proofs

Lemma B.1 (See, also [Gol98, Appendix C.]). Consider an interactive proof ⟨P,V⟩ for a promise problem Π
with completeness and soundness errors at most δ ≤ (1/2−Ω(1)), where the verifier V’s input might possibly
be private. Let

〈
P⊗k,V⊗k

〉
be the interactive proof obtained by running k independent copies of ⟨P,V⟩ on the

same input in parallel and V⊗k outputting the majority of the outputs. Then
〈
P⊗k,V⊗k

〉
is an interactive

proof for Π with completeness and soundness errors at most 2−Ω(k).

Proof. Denote the original IP for promise problem Π = (Yes,No) by ⟨P,V⟩, and the IP after parallel
repetition by (P⊗k,V⊗k). Suppose ⟨P,V⟩ has t rounds of interactions (that is, 2t messages), without loss
of generality with the verifier speaking first. We will borrow the notations of elements on interative proof
from Section 4. The completeness of (P⊗k,V⊗k) follows immediately from the completeness of ⟨P,V⟩ using
a Chernoff bound. So we concentrate on proving its soundness.
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Fix any input x /∈ Non. We define the following function that keeps track of the greatest probability
of the verifier accepting starting from any point in the protocol. For any i ∈ [0, t], any u1, . . . , ui ∈ U and
y1, . . . , yi ∈ Y:

p(u1, y1, . . . , ui, yi) = max
P∗

Pr [⟨P∗,V⟩ accepts | the first 2i messages were (u1, y1, . . . , ui, yi)]

Note that it is sufficient to take the max above over deterministic prover strategies P∗, as given any ran-
domized prover strategy, we can simply fix the random string that maximises the acceptance probability for
the given input.10 Thus, the above probability is only over the remaining random choices (ui+1, . . . , ut) of
the verifier. Using the notation ūi = (u1

i , . . . , u
k
i ), we similarly define the following function for the repeated

protocol:

p′(ū1, ȳ1, . . . , ūi, ȳi) = max
P∗

Pr
[〈
P⊗k∗,V⊗k

〉
accepts | the first 2i messages were (ū1, ȳ1, . . . , ūi, ȳi)

]
The soundness guarantee of ⟨P,V⟩ may be interpreted as the statement p(ϕ) ≤ δ (where ϕ represents the
empty string). Our objective will be to similarly prove that p′(ϕ) ≤ 2−Ω(k). Define the following function
M : {0, 1}k → {0, 1} that computes the probability that the sum of k independent Bernoulli random
variables, with parameters q1, . . . , qk, is at least k/2:

M(q1, . . . , qk) =
∑

b̄∈{0,1}k:|b̄|≥k/2

∏
j∈[k]

(bj · qj + (1− bj) · (1− qj)) .

We will use the following property of M that follows from the fact that it is a multilinear polynomial in the
qj ’s. For any set of distributions U1, . . . , Uk over U and any set of functions g1, . . . , gk,

E
(u1,...,uk)←U1×···×Uk

[M(g1(u1), . . . , gt(uk))] =
∑
|b̄|≥k/2

E
(u1,...,uk)

∏
j∈[k]

(bj · g(uj) + (1− bj) · (1− g(uj)))


=

∑
|b̄|≥k/2

∏
j∈[k]

E
uj

[(bj · g(uj) + (1− bj) · (1− g(uj)))]

= M

(
E
u1

[g(u1)] , . . . , E
uk

[g(uk)]

)
. (12)

where the first and third equalities are from linearity of expectation, and the second follows from the fact that
the uj ’s are being sampled independently of each other. We have similar behavior with the max operator as
well because M(q1, . . . , qk) is non-decreasing with each of the qj ’s:

max
(y1,...,yk)∈Yk

M(g1(y1), . . . , gk(yk)) = M

(
max
y1

g(y1), . . . ,max
yk

g(yk)

)
. (13)

Recall that our objective is be to prove that p′(ϕ) ≤ 2−Ω(k). We will prove the following claim, which
implies this statement (through a Chernoff bound) when the i in it is set to 0 as long as the original protocol
has soundness error δ less than (1/2− Ω(1)).

Claim B.1.1. For each i ∈ [0, t], and any ū1, . . . , ūi ∈ Uk and ȳ1, . . . , ȳi ∈ Yk,

p′(ū1, . . . , ȳi) = M
(
p(u1

1, . . . , y
1
i ), . . . , p(u

k
1 , . . . , y

k
i )
)
.

10In the case where the prover does not take instance as input (e.g. IHIP), a universal deterministic optimal prover that is
optimal for all intances may not exist. But for one particular instance x, an deterministic optimal strategy always exists (see,
also [GS86, Section 4.2]).
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We prove this claim by induction. First, note that for i = t, p′(ū1, . . . , ȳi) is either 1 or 0 depending on
whether a majority of the complete proofs (uj

1, . . . , y
j
t ) are accepted by V. In other words, it is 1 if a majority

of p(uj
1, . . . , y

j
t ) are 1, and 0 otherwise. This proves the base case i = t.

Denote by U(u1,...,yi) (Similarly, Ū(ū1,...,ȳi)) the distribution of verifier’s message conditioned on the first 2i
messages in the protocol being (u1, y1, . . . , ui, yi). To perform our induction, we start by noting the following
properties of p that follow by definition.

Claim B.1.2. For i ∈ [0, t− 1], and any u1, . . . , ui ∈ U and y1, . . . , yi ∈ Y,

p(u1, . . . , yi) = E
ui+1←U(u1,...,yi)

[
max

yi+1∈Y
p(u1, . . . , yi, ui+1, yi+1)

]
.

Proof of Claim B.1.2. The claim follows immediately by the manner in which an IP operates. Given that
u1, . . . , yi are the first 2i messages, the next message ui+1 is sampled from U by the verifier according to the
distribution U(u1,...,yi). Thus, p(u1, . . . , yi) is the expectation over such ui+1 of the maximum probability
that the verifier can be made to accept given ui+1 was its next message. This is precisely the expression in
the right-hand side.

By identical arguments, we also have the following analogous relation for p′ for any i ∈ [0, t− 1] and any
ū1, . . . , ūi ∈ Uk and ȳ1, . . . , ȳi ∈ Yk:

p′(ū1, . . . , ȳi) = E
ūi+1←Ū(ū1,...,ȳi)

[
max

ȳi+1∈Yk
p′(ū1, . . . , ȳi, ūi+1, ȳi+1)

]
. (14)

Now, suppose Claim B.1.1 was true for some i∗ ∈ [0, t]. Then, we show how to prove it for i∗ − 1, which
would complete the inductive argument. We do this by writing (14) as follows:

p′(ū1, . . . , ȳi∗−1) = E
ūi∗←Ū(ū1,...,ȳi∗−1)

[
max

ȳi∗∈Yk
p′(ū1, . . . , ȳi∗−1, ūi∗ , ȳi∗)

]
= E

ūi∗←Ū(ū1,...,ȳi∗−1)

[
max

ȳi∗∈Yk
M
(
. . . , p(uj

1, . . . , y
j
i∗−1, u

j
i∗ , y

j
i∗), . . .

)]

= E
u1
i∗←U

(u1
1,...,y1

i∗−1
)
,...,uk

i∗←U
(uk

1 ,...,yk
i∗−1

)

[
M

(
. . . , max

yj
i∗∈Y

p(uj
1, . . . , y

j
i∗−1, u

j
i∗ , y

j
i∗), . . .

)]

= M

. . . , E
uj
i∗←U

(u
j
1,...,y

j
i∗−1

)

[
max
yj
i∗∈Y

p(uj
1, . . . , y

j
i∗−1, u

j
i∗ , y

j
i∗)

]
, . . .


= M

(
. . . , p(uj

1, . . . , y
j
i∗−1), . . .

)
.

where the second equality follows from the induction hypothesis, the third from (13), and the fourth from
(12). The final inequality follows from Claim B.1.2. This proves Claim B.1.1 by induction, and thus the
requisite bound on the soundness error of

〈
P⊗k,V⊗k

〉
.

C Randomized Encodings and Input-Hiding IP

In this section, we study proof systems with hiding properties slightly weaker than those of instance-hiding
interactive proofs. In these input-hiding interactive proofs, the prover is allowed to learn the whether the
instance is a YES or NO instance, but nothing else about it. We study the relationship between such proofs,
IHIPs, and Statistical Randomized Encodings.
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Definition C.1 (Input-Hiding Interactive Proof (Inp-HIP)). Consider a promise problem Π = (Yes,No),
and functions δ, ϵ : N→ [0, 1]. A (δ, ϵ)-Input-Hiding Interactive Proof (Inp-HIP) for Π is a protocol ⟨P,V⟩ in
which a probabilistic polynomial-time verifier V interacts with a computationally unbounded prover P. For
some n ∈ N, the verifier gets a private input x ∈ Yesn ∪Non, while the prover only gets the input length n.
At the end of the interaction, V outputs either 1 (Accept) or 0 (Reject). The protocol is required to satisfy
the following properties for all large enough n ∈ N:

• Completeness: For any input x ∈ Yesn:

Pr [⟨P(n),V(x)⟩ = 1] ≥ 1− δ(n).

• Soundness: For any input x ∈ Non, and any prover P∗:

Pr [⟨P∗(n),V(x)⟩ = 1] ≤ δ(n).

• Input-Hiding: For any prover P∗, there exists a computationally unbounded randomized algorithm SimP∗ ,
called a simulator, such that for any input x ∈ Yesn ∪Non,

∆
(
SimP∗

(
n,Π(x)

)
,ViewP∗

(
P∗(n),V(x)

))
< ϵ(n).

If the simulator corresponding to the honest prover runs in polynomial time in n, we say the protocol is
Strong-Input-Hiding (Strong-Inp-HIP). The protocol is perfectly-hiding Inp-HIP if ϵ(n) = 0 for all n. If a
simulator is only guaranteed to exist only for the honest prover P, the protocol is honest-prover Inp-HIP.

Definition C.2 (Class Inp-HIP, Inp-HIP/Poly). The class Inp-HIP consists of all promise problems that have
a (δ, ϵ)-Inp-HIP with uniform verifier protocol for some negligible δ(n) and ϵ(n). For concrete functions (δ, ϵ),
we denote by (δ, ϵ)-Inp-HIP the class of problems possessing (δ, ϵ)-Inp-HIP. Similarly, Inp-HIP/Poly denotes
the class of promise problem that have a (δ, ϵ)-Inp-HIP with non-uniform verifier protocol for some negligible
δ(n) and ϵ(n).

Lemma C.3 (Parallel Amplification for Inp-HIP). Consider a promise problem Π ∈ Inp-HIP, and suppose
⟨P,V⟩ is a (δ, ϵ)-Inp-HIP for Π. Let k(·) be such that k < 1/ϵ, and define ⟨Pk,Vk⟩ as the protocol that,
given input x, execute ⟨P,V⟩ in parallel k(n) times on input x and outputs the majority of the results. Then
⟨Pk,Vk⟩ is a (min(δ, 2−Ω(k)), k · ϵ)-Inp-HIP for Π.

Proof Sketch. The proof closely mirrors that of Lemma 2.11 except that the canonical instances x1, . . . , xk

are of the same output of Π (i.e. Π(xi) = Π(x)).

Proposition C.4 (Inp-HIP/Poly=co-Inp-HIP/Poly). If a problem Π has a (δ, ϵ)-Inp-HIP protocol (possibly
with a non-uniform verifier), where δ and ϵ are negligible functions, then the complement of Π also possesses
a (δ′, ϵ′)-Inp-HIP protocol (resp. with a non-uniform verifier if starting with a non-uniform verifier), for
some negligible functions δ′ and ϵ′.

Proof Sketch of Proposition C.4.

Claim C.4.1. Consider a promise problem Π with characteristic function f : Yes ∪ No → {0, 1}, and let
⟨P,V⟩ be a (δ, ϵ)-Inp-HIP for Π and ℓ = f , then ⟨P,V⟩ is a (ϵ, δ, ℓ)-IHD for f .

Claim C.4.2. Let f be the characteristic function for the promise problem Π and ℓ = f . If ⟨P,V⟩ is a
(δ, ϵ, ℓ)-verifiable instance-hiding delegation (resp. strong (δ, ϵ, ℓ)-verifiable instance-hiding delegation) for f ,
then there exists a (δ, ϵ)-input-hiding proof (resp. (δ, ϵ, ℓ)-strong input-hiding interactive proof) ⟨P′,V′⟩ for
Π.

Proof Sketch. The proof of Claim C.4.1 and Claim C.4.2 mirror the proof of Proposition 7.2 and Proposi-
tion 7.4 respectively.

Combining Claim C.4.1, Claim C.4.2, Proposition 7.7, and Proposition 7.8, the proposition follows.
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C.1 IHIP/Inp-HIP from SRE

Input-hiding IPs are closely related to the notion of Randomized Encodings (RE) of promise problems [AIK04],
which has been implicitly studied in the context of secure multiparty computation [Yao86, Kil88, FKN03],
and has subsequently been explicitly explored as a cryptographic primitive [IK00, AIK04, AIKPC15]. In
fact, Inp-HIP can be shown to be equivalent to an interactive version of RE for promise problems as defined
by Applebaum et al. [AIK10]. We will show how to use a Statistical Randomized Encoding (SRE) for a
problem to construct Inp-HIP for it. An oracle seperation of IHIP from SRE follows Theorem 6.4 because
SRE ⊆ SZK[App14b].

Given a function f and an input x, the Randomized Encoding reveals the value f(x) without revealing
anything else about x. The proof methodology used to prove Theorem C.7 can be broadened to demonstrate
that input-hiding IPs are in fact equivalent to an interactive variant of Randomized Encodings, as defined
by Applebaum et al. [AIK10].

Definition C.5 (Statistical Randomized Encodings [IK00, AIK04, AIKPC15]). We say that an efficient
randomized algorithm Enc is an ϵ-private and δ-correct Statistical Randomized Encoding of a promise problem
Π = (Yes,No) (abbreviated (δ, ϵ)-SRE), if the following holds:

• ϵ-privacy : There exists an efficient simulator Sim such that:

– For any yes-instance xyes ∈ Yesn:

∆
(
Sim(n, 1),Enc(xyes)

)
≤ ϵ(n).

– For every no-instance xno ∈ Non:

∆
(
Sim(n, 0),Enc(xno)

)
≤ ϵ(n).

• δ-correctness: There exists a computationally unbounded decoder Dec, such that for every instance
x ∈ Yesn ∪Non,

Pr
[
Dec

(
Enc(x)

)
̸= Π(x)

]
≤ δ(n).

If left unspecified, ϵ(n) and δ(n) are required to be negligible functions by default.

Definition C.6 (Class SRE [AIKPC15]). The class SRE is defined as the set of all promise problems that
admit a (δ, ϵ)-SRE for negligible functions ϵ(n), δ(n).

Theorem C.7. Suppose, for some functions δ and ϵ, promise problem Π has a (δ, ϵ)-SRE. Then for any
polynomial g, Π also has a (δ′, ϵ′)-Inp-HIP and strong (δ′′, ϵ′′)-Inp-HIP, where δ′′ = δ′ = max

(
ϵ+O( 1g ), g ·

(ϵ+ δ)
)
, ϵ′ = ϵ and ϵ′′ = ϵ+ g · δ.

Corollary C.8. SRE ⊆ Inp-HIP

Proof of Theorem C.7. For a promise problem Π with SRE (Enc,Dec,SimSRE), given input instance x ∈
Yesn ∪ Non, the high level idea is to hide Enc(x) among a sequence of samples from SimSRE(n, 1) and
SimSRE(n, 0), and ask the prover for to run Dec on them and return the results. The verifier can verify that
the correctness of responses to the simulated samples, and accept the prover’s assertion regarding Enc(x)
if they are all correct.11 The Inp-HIP protocol for Π is presented in Figure 10. We now compute its
completeness, soundness, and instance-hiding errors in terms of the parameters δ = δ(n), ϵ = ϵ(n), and g.

Completeness: Given the definitions of ϵ-privacy and δ-correctness from SRE, it is implied that the
probability of the prover finding the correct value b∗j = bj for each j ̸= i is at least (1−ϵ−δ). Consequently, the
probability of P determining the correct values of bi for all i ∈ [g] is bounded below by

(
1−ϵ−δ

)g−1 ·(1−δ) ≥
1− g ·

(
ϵ+ δ

)
. Thus, the completeness error is at most g ·

(
ϵ+ δ

)
.

11This formulation of method is similar to the one from section 1.1 of [AIK04] and section 1.2 of [GGH+07]
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Inp-HIP from SRE: ⟨P(Π(x)),V(x)⟩
Parameters: Input length n, g.

Input:

• Prover’s Input: A bit b = Πn(x) =

{
1, if x ∈ Yes(Πn).

0, , if x ∈ No(Πn).
.

• Verifier’s Input: Private instance x.

Ingredients:
• (Enc,Dec,SimSRE) is a (δ, ϵ)-SRE for L .

Protocol:
1. V does:

(a) Samples a random index j ← [g] (to place the instance x).

(b) Encodes the instance as: qj ← Enc(x).

(c) For i ∈ [g]\{j}:
Sample a random bit bi ← {0, 1},
If bi = 1

Simulates a “yes” instance: qi ← SimSRE(n, 1).

Else
Simulates a “no” instance: qi ← SimSRE(n, 0).

2. V sends the (q1, . . . , qg) to the prover P.

3. P decodes each qi: b
∗
i ← Dec(qi)

4. P sends the bits (b∗1, . . . , b
∗
g) back to the verifier V.

5. V accepts if b∗i = bi for all i ̸= j and b∗j = 1; otherwise, it rejects.

Figure 10: Simulator for Inp-HIP from SRE

Soundness: We use Y0 and Y1 as the shorthand for distribution SimSRE(n, 0) and SimSRE(n, 1) respec-
tively. Let swap be a randomized function that takes as input a tuple of g elements ȳ from the domain
of Y0 (and Y1). It samples a j ← [g], swaps the first co-ordinate y1 of its input with the jth element yj ,

and outputs the resulting tuple (yj , y2, . . . , y1, yj+1, . . . , yg). We denote by b⃗ = (b1, . . . , bg−1) a set of I.I.D
uniform bits. Consider any No instance x ∈ No(Πn), we can see that the message from verifier in Figure 10
as D0 : swap

(
Enc(x), Yb1 , . . . , Ybg−1

)
. Define m1 =

∑
i∈[g−1]

bi and m0 = g− 1−m1, as the number of samples

from Y1 and Y0, respectively, in the particular execution of the sampling process. Then the probability that
P∗ can cheat and make V accept in the end is bounded by the probability of guessing correctly the j given
a sample from D0. Consider a hybrid distribution D1 = swap

(
Y0, Yb1 , . . . , Ybg−1

)
. Given a sample from D1,

the probability of guessing the j chosen during its sampling process correctly is at most 1
m0

. By the ϵ-privacy
of SRE and data processing inequality we have:

∆(D0, D1) ≤ ∆(Enc(x), Y0) ≤ ϵ.
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Thus, the probability that P∗ can make V accept is at most
(

1
m0

+ ϵ
)
. Because m0 is essentially computed

as the sum of (g − 1) random bits, follows Chernoff bound:

Pr
[
m0 <

g

3

]
≤ e−Ω(g).

Apply a union bound, we have:

Pr [⟨P∗,V(x)⟩ = 1] ≤ e−Ω(g) +O

(
1

g

)
+ ϵ = ϵ+O

(
1

g

)
,

which is the soundness error in the resulting protocol.

ϵ′-Input-hiding: For any prover P∗, the corresponding simulator SimP∗ for input-hiding is defined as in
Figure 11.

Simulator for Inp-HIP from SRE: SimP∗ (n, b = Π(x))

Parameters: input length n, g

Ingredients:
• Prover algorithm P∗

• (Enc,Dec,SimSRE) represents an (δ, ϵ)-SRE for L.
Inputs:

• Input length n

• A bit b, indicating Yes/No outcomes.

Procedure:
1. j ← [g]

2. If b = 0, qj ← SimSRE(n, 0), Else, qj ← SimSRE(n, 1)

3. For i ∈ [g]\{j}
bi ← {0, 1}
If bi = 1, then qi ← SimSRE(n, 1).

Else, qi ← SimSRE(n, 0).

4. Compute (b∗1 . . . , b
∗
g)← P∗(q1, . . . , qg)

5. Output (q1, . . . , qg, b
∗
1, . . . , b

∗
g).

Figure 11: Simulator for Inp-HIP from SRE

In this protocol, which involves only two messages, the prover’s response is determined solely by the
verifier’s initial message. Therefore, we can disregard the prover’s randomness and focus solely on verifier’s
message. According to the data processing inequality, this approach is sufficient for proving the quality of
the simulation.

Observe that the simulator’s behavior mirrors the actual protocol, with one key difference: instead of
using an encoding of the input x as the verifier does, the simulator uses a sample from SimSRE . By the
privacy of the SRE, the distance between Enc(x) and SimSRE(n,Π(x)) is at most ϵ. Consequently, by the
data processing inequality, this also sets a upperbound on the statistical distance between the simulated
transcript and the actual protocol.
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Strong (ϵ′′)-Input-hiding: An efficient honest-prover simulator SimP can be constructed similar to that
in Figure 11, except that SimP outputs (q1, . . . , qg, b1, . . . , bg) directly instead of running inefficient P. Due to
the correctness error of P, conditioned on any (q1, . . . , qg), the distance between (b1, . . . , bg) and (b∗1, . . . , b

∗
g)

is bounded by g · δ. Therefore, the hiding error of SimP is ϵ′′ = ϵ+ g · δ. The lemma thus follows.

Setting Parameters: Following the above lemma, the errors in the protocol are as follow:

• Completeness: g · (ϵ+ δ).

• Soundness: ϵ+O
(

1
g

)
.

• Input-hiding: ϵ.

• Strong Input-hiding: ϵ+ g · δ

For any inverse polynomial (δ, ϵ), by setting g = 1√
ϵ+δ

, we get IHIP with
√
ϵ+ δ completeness/soundness

error. For negligible (δ, ϵ), by setting g to be large enough polynomial, we get a input-hiding with slightly
weaker soundness, which can be amplified through parallel repetition ensured by Lemma C.3.

Theorem C.9. Suppose, for some negligible functions δ and ϵ, the promise problem Π has a (δ, ϵ)-SRE.
Then, for any polynomial p(·), there exists a negligible function δ′ such that Π has a strong (δ′, 1/p)-IHIP.

Proof of Theorem C.9. Given that a promise problem Π has SRE (Enc,Dec,SimSRE), the IHIP protocol
that we construct is the same as the protocol in Figure 10. The completeness and soundness errors are as
in the proof of Theorem C.7, and the only difference is the construction of the simulator, which is given in
Figure 12. In the setting of IHIP, different from Inp-HIP, the result Π(x), is not given to the simulator as
an input.

Simulator for Ins-HIP from SRE: Sim′P∗(n)

Parameters: input length n, g

Ingredients:
• Prover algorithm P∗

• (Enc,Dec,SimSRE) represents a (δ, ϵ)-SRE for L.
Inputs:

• Input length n

Procedure:
1. For i ∈ [g]

bi ← {0, 1}
If bi = 1, then qi ← SimSRE(n, 1).

Else, qi ← SimSRE(n, 0).

2. Compute (b∗1 . . . , b
∗
g)← P∗(q1, . . . , qg)

a

3. Output (q1, . . . , qg, b
∗
1, . . . , b

∗
g).

aSimilarly, an efficient SimP will not run P but set b∗i = bi directly.

Figure 12: Simulator for Ins-HIP from SRE
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As seen in the proof of Theorem C.7, for an inefficient simulator, we can focus solely on the verifier’s
first message due to data processing inequality. The analysis of efficient simualtor SimP for honest prover,
as described in the footnote of Figure 12, will be provided at the end of the proof. Consider any prover
P∗, simulator SimP∗ as shown in Figure 11, and Sim′P∗ in Figure 12. We remark that the output distribu-
tion of Sim′P∗(n) is an equal convex combination of SimP∗(n, 0) and SimP∗(n, 1). Consider a Yes instance
xyes ∈ Yes(Πn) (arguments for No instances are symmetric). Following the observation about the convex
combination, the distance between the simulated transcript and the actual protocol is bounded as:

∆
(
Sim′P∗(n),ViewP (⟨P∗,V(xyes)⟩)

)
≤ 1

2
·∆(SimP∗(n, 0),ViewP (⟨P∗,V(xyes)⟩)) +

1

2
·∆(SimP∗(n, 1),ViewP (⟨P∗,V(xyes)⟩)) . (15)

The second term above is bounded in the proof of Theorem C.7 by ϵ, demonstrating input-hiding. We
now bound the first term.

We define the symbols m0,m1, Y0, Y1 as in the proof of Theorem C.7, and recall that m0 and m1 follow
the binomial distribution Binomial( 12 , g − 1) as noted there. We define the following sampling process that
captures the protocol and the simulator for different choices of Y :

D(Y0, Y1, Y ) :

1. Sample m0 ← Binomial( 12 , g − 1)

2. m1 ← g − 1−m0

3. y10 , . . . , y
m0
0 ← Y0

4. y11 , . . . , y
m1
1 ← Y1

5. y ← Y

6. Output a random permutation of (y, y10 , . . . , y
m0
0︸ ︷︷ ︸

m0

, y11 , . . . , y
m1
1︸ ︷︷ ︸

m1

)

For any instance xyes ∈ Yes(Π), define the following hybrid distributions:

• D0 : D(Y0, Y1,Enc(xyes)).

• D1 : D(Y0, Y1, Y1).

• D2 : D(Y0, Y1, Y0).

The first term in Eq. (15) is the distance ∆(D0, D2), which we seek to bound. The arguments about
input-hiding in the proof of Theorem C.7 give us the following claim.

Claim C.9.1. ∆(D0, D1) ≤ ϵ.

We bound the distance between D1 and D2 as follows.

Claim C.9.2. ∆
(
D1, D2

)
≤ 2√

g .

Proof of Claim C.9.2. Define two distributions H0, H1:

H1 :

1. Sample m0 ← Binomial
(
1
2 , g − 1

)
2. Outcome m0

H0 :

1. Sample m0 ← Binomial
(
1
2 , g − 1

)
2. Outcome m0 + 1

Furthermore, consider a process W :
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W (m,Y1, Y0) :
1. m0 ← m

2. m1 ← g −m0

3. For i← 1 to m0 : y0i ← Y0

4. For i← 1 to m1 : y1i ← Y1

5. Output a random permutation of (y01 , . . . , y
0
m0︸ ︷︷ ︸

m0

, y11 , . . . , y
1
m0︸ ︷︷ ︸

m1

)

We observe that the sampling processes forD1 andD2 can be represented asW (H1, Y1, Y0) andW (H0, Y1, Y0),
respectively. Let Y denote the union the support of Y1 and Y0. Then, we have:

∆(D1, D2) = ∆
(
W (H1, Y1, Y0),W (H0, Y1, Y0)

)
(1)

≤ ∆
(
(H1,W (H1, Y1, Y0)), (H0,W (H0, Y1, Y0))

)
(2)

= ∆(H1, H0) (3)

=
1

2

∑
m∈{0,1,...,g}

|Pr [H1 = m]− Pr [H0 = m] | (4)

=
1

2
·
(
Pr [H1 = 0] + Pr [H0 = g] +

∑
m∈{1,...,g−1}

∣∣∣∣∣
(
g−1
m

)
2g−1

−
(
g−1
m−1

)
2g−1

∣∣∣∣∣ ) (5)

=
1

2
·
(
2 · 1

2g−1
+ 2 · (

∑
m∈{1,...,⌊(g−1)/2⌋}

(
g−1
m

)
−
(
g−1
m−1

)
2g−1

)
)

(6)

=
1

2g−1
·
(
1 + (

(
g − 1

⌊(g − 1)/2⌋

)
− 1)

)
(7)

=

(
g−1

⌊(g−1)/2⌋
)

2g−1
(8)

≤ O

(
1
√
g

)
. (9)

Where Line (2) follows from the data processing inequality, Line (3) is due to the Fact 4.8, and Line (9)
from the value of the central binomial coefficient [See, e.g., Section 2.11 in [Luk69]].

Following the triangle inequality, we deduce:

∆(D0, D2) ≤ ∆(D0, D1) + ∆(D1, D2) ≤ ϵ+O

(
1
√
g

)
.

This allows us to bound the first term in Eq. (15), showing that the instance-hiding error is at most ϵ(n) +
O(1/

√
g). Setting g such that ϵ(n) +O(1/

√
g) < 1/p and the theorem follows.

The efficient simulator SimP, as described in the footnote of Figure 12, is similar to that in the proof
of Theorem C.7. It will outputs (q1, . . . , qg, b1, . . . , bg) directly instead of running decoders on qi to get
b∗i . We consider an inefficient simulator Sim′P for honest prover P as defined in Figure 12. Following the
same argument in the the strong-hiding of Theorem C.7, the distance ∆

(
SimP(n),Sim

′
P(n)

)
≤ g · δ. By

triangle inequality, ∆
(
SimP(n),ViewP

(
P,V(x)

))
≤ ϵ(n) +O(1/

√
g) + g · δ, which is smaller than 1/p for an

appropriate polynomial g ≪ p2.
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C.2 IHIP from Inp-HIP

An instance-hiding IP is also clearly an input-hiding IP, and thus IHIP ⊆ Inp-HIP. We will show that an
input-hiding IP can be used to construct an instance-hiding IP for the same problem, with slightly worse
hiding. In particular, for any polynomial p(·), it can be proved that that Inp-HIP ⇒ (1/p, 1/p)-IHIP ⇒
(1/p, 1/p)-Inp-HIP. However, it’s important to note that input-hiding proofs do not strongly equate to
instance-hiding proofs. Specifically, we currently lack a method to transform an Inp-HIP with negligible
hiding error into an IHIP while only incurring an polynomial-times increase in error.

Theorem C.10. Consider two negligible functions δ, ϵ, and a promise problem Π that possesses a (δ, ϵ)-
Inp-HIP, then for any polynomial p(·), there exists a negligible δ′ such that Π also has (δ′, 1/p)-IHIP. Simi-
larly, if Π is a strong (δ, ϵ)-Inp-HIP, then it has an strong (δ′, 1/p)-IHIP, for the same p and δ′.

Together with Theorem 4.1, this implies the following.

Corollary C.11. Inp-HIP ⊆ AM/poly ∩ coAM/poly.

Combining this with Lemma 3.2, we have the following.

Corollary C.12. If NP ⊆ Inp-HIP/Poly, the polynomial hierarchy collapses to the third level.

Proof Sketch of Theorem C.10. This proof almost mirrors that of Theorem C.9, with the random variables
defined differently but analogously. So we describe the high level approach here and direct the reader to
Theorem C.9 to complete the proof.

Starting with a (δ, ϵ)-Inp-HIP denoted as ⟨P,V⟩, we design a verifier V′ which has hardcoded into it a Yes
instance x1 ∈ Yes(Π) and a No instance x0 ∈ No(Π). At the start of its execution, the verifier generates
a random sequence of bits b1, . . . bg−1 ← {0, 1}, and a corresponding sequence xb1 , . . . xbg−1 composed of the
canonical instances. Given an input x, it is inserted into a random location in this sequence.

Subsequently, P′ and V′ execute ⟨P,V⟩ on each instance in the sequence xb1 , . . . , x, . . . , xbg−1
. V′ accepts

only if the outcome of the executions are correct on all canonical instances xbi , and V accepts on x. The com-
pleteness and soundness of ⟨P′,V′⟩ follows from those of ⟨P,V⟩ and standard arguments about composition
of interactive proofs.

In order to show instance-hiding, we need to construct a simulator for any prover P∗. Our simulator
simply runs the protocol ⟨P∗,V′⟩, except instead of planting a given instance in the sampled sequence as V′

does, it again uses a random canonical instance (x0 or x1) in its place. Consider the protocol transcript for
a Yes instance xyes. The input-hiding property guarantees that if the canonical instance x1 was used by
the simulator, then the simulated transcript is close to the protocol. We then need to show that even if the
simulator uses x0, the simulated transcript is still close. We do this using the fact that the distributions of the
number of Yes instances in the sequence xb1 . . . , x, . . . , xbg in the case of x being a Yes or a No instance are
close (with distance ≈ 1/

√
g)). In essence, the instance xyes is effectively hidden by all the other randomly

chosen instances. In case that ⟨P,V⟩ is a strong (ϵ, δ)-Inp-HIP, a strong (ϵ′, δ′)-IHIP can be made similarly
except that the efficiently simulator SimP will output (b1, . . . , bg) directly as in Theorem C.7. The details are
identical to those in the proof of Theorem C.9. The proof there shows that any problem with a Statistical
Randomized Encoding also has an Ins-HIP. The only change needed in the proof is to format the output of
the simulator appropriately, and use the view of P∗ instead of the encoding Enc(x) used there.
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