
Doubly-Efficient Batch Verification in Statistical Zero-Knowledge

Or Keret∗ Ron D. Rothblum† Prashant Nalini Vasudevan‡

May 21, 2024

Abstract

A sequence of recent works, concluding with Mu et al. (Eurocrypt, 2024) has shown that
every problem Π admitting a non-interactive statistical zero-knowledge proof (NISZK) has an
efficient zero-knowledge batch verification protocol. Namely, an NISZK protocol for proving
that x1, . . . , xk ∈ Π with communication that only scales poly-logarithmically with k. A caveat
of this line of work is that the prover runs in exponential-time, whereas for NP problems it is
natural to hope to obtain a doubly-efficient proof – that is, a prover that runs in polynomial-time
given the k NP witnesses.

In this work we show that every problem in NISZK ∩ UP has a doubly-efficient interactive
statistical zero-knowledge proof with communication poly(n, log(k)) and poly(log(k), log(n))
rounds. The prover runs in time poly(n, k) given access to the k UP witnesses. Here n denotes
the length of each individual input, and UP is the subclass of NP relations in which YES
instances have unique witnesses.

This result yields doubly-efficient statistical zero-knowledge batch verification protocols for
a variety of concrete and central cryptographic problems from the literature.

1 Introduction

Suppose that a server, holding a long list of RSA public-keys N1, . . . , Nk together with their fac-
torizations, wants to convince an auditor that the public-keys are well formed. That is, that each
Ni is a product of exactly two distinct primes. One option is to reveal all of the factorizations but
this option is simultaneously extremely bad from a security perspective (as it reveals the clients’
secret keys) and is highly inefficient if k is very large.

Efficient zero-knowledge proofs are protocols that allow short and easy-to-verify proofs of com-
plex statements, in such a way that reveals nothing beyond the fact that the statement being
proved is true. To solve the above problem one might employ a general purpose zero-knowledge
proof from the literature. However, such proofs rely on unproven assumptions and provide only a
computational soundness guarantee.

In this work, we are interested in statistical zero-knowledge proofs for batch verification. These
are zero-knowledge proofs, in which both soundness and zero-knowledge hold information theo-
retically (and against unbounded adversaries) such that the communication required to prove the
correctness of k statements scales sub-linearly (ideally, merely poly-logarithmically) with k. The

∗Technion. Email: or.keret@campus.technion.ac.il.
†Technion. Email: rothblum@cs.technion.ac.il.
‡National University of Singapore. Email: prashant@comp.nus.edu.sg.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 101 (2024)

or.keret@campus.technion.ac.il
mailto:rothblum@cs.technion.ac.il
mailto:prashant@comp.nus.edu.sg

information theoretic nature of such proofs also means that typically they do not involve expensive
cryptographic operations, and can be highly efficient.

Returning to the above question on batch verification of prime products, a protocol due to
Gennaro et al. [GMR98] gives a (non-interactive) statistical zero-knowledge proof that N is a
product of two distinct primes. Running this protocol separately on all of the alleged RSA moduli
N1, . . . , Nk, we could indeed prove in statistical zero-knowledge that all of them are prime products,
alas with communication that scales linearly with k.

An alternative approach, raised in a recent sequence of works [KRV21, KRR+20, MNRV24]
has shown that every problem that has a non-interactive statistical zero-knowledge proof also has
such a zero-knowledge proof for batch verification, in which the communication only scales poly-
logarithmically with k. Unfortunately, these protocols have a prover that runs in exponential-time,
whereas, for our example above, we would like for our server, who knows all of the factorizations,
to run in polynomial-time. We refer to such proof-systems, in which the prover runs in polynomial-
time given the NP witness, as doubly-efficient proofs.1

The question of doubly-efficient statistical zero-knowledge batch verification for prime products
is interesting in its own right, but the same question is fascinating for a variety of cryptographic
problems such as checking that a long list of public-keys/signatures/ciphertexts are all well-formed.
This raises the natural question, posed already by Kaslasi et al. [KRR+20]:

Does every problem in SZK ∩NP have a doubly-efficient statistical zero-knowledge batch
verification proof: namely, a statistical zero-knowledge proof that x1, . . . , xk ∈ Π with
communication that scales poly-logarithmically in k and an honest-prover that runs in

polynomial-time given the k NP witnesses?

A source of hope, especially for our prime product example, are results by Reingold, Rothblum
and Rothblum [RRR21, RRR18, RR20], which give doubly-efficient batch verification protocols for
any problem in UP – the class of NP problems in which YES instances have unique witnesses.
This shows that a rich class of problems in NP have batch verification protocols (indeed, the prime
product problem is in UP, the witness is just the prime factorization). Unfortunately, the UP batch
verification protocols in the foregoing works are not zero-knowledge (assuming UP ⊈ BPP) and,
as a matter of fact, even explicitly reveal some of the witnesses to the verifier.

1.1 Our Results

Our main result is a doubly-efficient statistical zero-knowledge batch proof for any problem in
NISZK ∩ UP. Recall that by [MNRV24] such problems have a statistical zero-knowledge batch
verification proof in which the honest prover is inefficient, and on the other hand, by [RR20], the
same set of problems have a different doubly-efficient interactive proof, which is not zero-knowledge.
Our main result shows how to combine these two protocols to obtain the best-of-both-worlds:

Theorem 1.1. Let k = k(n) such that k(n) ≤ 2n
0.01

. Every problem Π ∈ NISZK ∩ UP has a
public-coin SZK protocol for verifying k instances x1, . . . , xk, each of length n, with the following
parameters:

1Doubly-efficient proofs are also studied in the context of problems in P (rather than NP) in which case we require
the prover to run in polynomial-time, without any additional auxiliary information. See the recent survey by
Goldreich [Gol18].

2

• Communication complexity: poly(n, log(k)).

• Number of rounds: polylog(n, k).

• Verifier runtime: Õ(k) · poly(n).

• The honest prover, given also the k unique witnesses, runs in time poly(n, k).

We emphasize that in contrast to general purpose results for succinct arguments (a la [Kil92]),
the batching protocol of Theorem 1.1 does not rely on any unproven assumptions and yields the
strong guarantees of statistical soundness and zero-knowledge.

Combining Theorem 1.1 with existing NISZK protocols from the literature, we immediately
derive doubly-efficient statistical zero-knowledge batch verification protocols for several important
problems. In particular, using the NISZK for prime products of [GMR98] we obtain a batch
verification protocol for prime products (as well as variants such as quasi-safe prime products),
which in particular yields an efficient method for batch verification of signature verification keys
in the [GMR98] undeniable signature scheme. Using the fact that quadratic residuosity (of Blum
Integers) as well as quadratic non-residuosity is in NISZK [BDSMP91], we similarly obtain such
batch verification protocols for these problems.2

We remark that in contrast to the result of [MNRV24], our batching protocol is interactive.
Obtaining a doubly-efficient NISZK batching protocol for NISZK∩UP remains open. We elaborate
on this in Section 1.3.

1.2 Technical Overview

Our starting point is the batch verification protocol for UP of Rothblum and Rothblum [RR20]. As
noted above, this protocol meets all the requirements of Theorem 1.1, except that it is blatantly
not statistical zero-knowledge (assuming UP ∩ NISZK ⊈ BPP) as it explicitly reveals some of the
witnesses. Our goal is to transform the protocol to be statistical zero-knowledge, while preserving
its complexity.

As the UP batching protocol of [RR20] is public-coin, a natural approach to convert it to be
zero-knowledge is to utilize the “commit-and-prove” framework of Ben-Or et al. [BOGG+90]. This
framework transforms public-coin protocols into zero-knowledge ones by letting the prover commit
to her messages rather than sending them in the clear. Subsequently, the prover proves, using an
additional zero-knowledge proof, that if she were to open the commitments, the original verifier
would have accepted.

Trying to utilize this framework to our purposes we first run into the following problem: to
attain a protocol that is simultaneously statistical zero-knowledge and statistically sound, we need
commitments that are both statistically hiding and statistically binding. While such commitments
do not exist per se, following [BMO90, IOS97, NV06, OV08] we can use an elegant relaxation of
such commitments, called instance-dependent commitments.

An instance-dependent commitment scheme is a commitment scheme associated with an in-
stance x of a promise problem Π. If x is a YES instance, the commitment is required to be hiding,

2For batch verification of QR, there is a simple reduction from k instances to 1 by taking a random modular subset
product of the given integers. However, this only works in case we use the same modulus for each instance whereas
our protocol works even when using different moduli. Also, we note that [BDSMP91] only give an NISZK for QNR.
However, in case N is a Blum integer, QR reduces to QNR by multiplying the input by −1 (mod N) (since −1 is a
QNR modulo a Blum integer).

3

and if x is a NO instance, then it should be binding. The above sequence of works utilized the
fact that we only need binding to hold for NO instances, and hiding to hold for YES instances,
and so such commitments suffice for implementing zero-knowledge proofs and in particular for im-
plementing the commitments in the framework of [BOGG+90]. In particular, Nguyen and Vadhan
[NV06] used (a suitable variant of) instance dependent commitments to show that any problem in
SZK ∩NP has a doubly-efficient SZK proof.

Ong and Vadhan [OV08] (building on [NV06]) constructed instance-dependent commitment
schemes for any problem in SZK. Thus, we would like to start with the UP batching protocol
of [RR20] and compile it to be zero-knowledge by utilizing the commit-and-prove approach, while
using an instance dependent commitment. For a given input x1, . . . , xk, since each of the individual
parts xi is an instance of our problem Π, which is in SZK (in fact NISZK), it has a corresponding
instance dependent commitment. Using a standard combiner3 for commitments we could then
obtain a single instance dependent commitment for the batch verification problem. Alas, the
length of commitments (and decommitments) obtained in this way scales linearly with k, which we
cannot afford.

A better approach is to utilize the main result of Mu et al. [MNRV24], which gives a statistical
zero-knowledge batch verification protocol for Π. Using their protocol, in combination with the
instance dependent commitment characterization of [NV06, OV08] we obtain a direct instance-
dependent commitment scheme for the batch problem Π⊗k = {(x1, . . . , xk) : ∀i, xi ∈ Π}. But what
are the lengths of commitments and decommitments in the resulting scheme? We observe that the
main technical result of [MNRV24] can be interpreted as a reduction of k instances of an NISZK
problem to a single instance of the Image Density problem [DSDCPY98]. In Image Density, the
instances are circuits such that YES instances correspond to circuits that generate a distribution
that is statistically close to uniform, whereas NO instances are circuits that generate a distribution
with a relatively small support. While the size of the circuit generated by the [MNRV24] reduction
scales linearly with k, the size of its input and output only grows poly-logarithmically in k. Our
next observation is that the instance dependent commitment of [NV06] for Image Density has the
feature that the lengths of the commitment and decommitment correspond only to the input and
output length of the circuit rather than its size. Equipped with the above observation we obtain
an instance-dependent commitment scheme for our batch verification problem with communication
complexity poly(n, log(k)).

The above suffices for the “commit phase” of the transformation of Ben-Or et al. [BOGG+90]
but for the “prove phase” we still need to run a zero-knowledge proof demonstrating that “had the
prover opened the commitments, the verifier would have accepted”. The näıve approach might be to
use one of the classical zero-knowledge proofs for NP, such as the original proof due to Goldreich et
al. [GMW91], while relying on the instance dependent commitment described above. Here however,
we run into a major problem: the [GMW91] protocol, as well as all other zero-knowledge protocols
in the literature, make non-blackbox use of the underlying circuit on which we prove correctness. In
our case, this circuit incorporates the commitment’s verification circuit, which includes the circuit
C produced by the [MNRV24] reduction. As mentioned above, the circuit C has size poly(n, k).
Therefore, this approach would result in an unacceptable communication complexity of poly(n, k).

To overcome this issue, we build on the recent work of Hazay et al. [HVW23], which used the

3Here we need a combiner between k commitments, which needs to be hiding if all of them are hiding, and binding
if at least one of them is binding. A suitable combiner in this setting is to simply commit separately using each
commitment scheme.

4

“MPC-in-the-head” framework of Ishai et al. [IKOS09] in order to compile public-coin interactive
protocols to be zero-knowledge while using the commitment scheme as a blackbox. We emphasize
that while all zero-knowledge proofs in the literature need an explicit description of the circuit,
there is no a priori need to make a non blackbox use of the underlying commitment. Indeed,
Hazay et al. show how to compile several public-coin interactive proofs from the literature to be
zero-knowledge in such a blackbox way.

We proceed to describe the transformation in more detail. Recall that the MPC-in-the-head
paradigm offers a general transformation from Secure Multiparty Computation (MPC) protocols
to zero-knowledge protocols. The high-level structure is as follows:

• Let Π ∈ NP be a promise problem with a corresponding witness relation RΠ(x,w). We start
with an MPC protocol for a functionality f that corresponds to verifying that the players’
inputs form an additive secret sharing of a valid witness of RΠ (for some fixed x).

• The prover, “in-her-head” secret shares the witness amongst virtual parties and emulates
the execution of the MPC protocol. Subsequently, she commits to the resulting views of the
parties.

• The verifier selects a small subset of the views she wishes the prover to reveal.

• The prover decommits to these views.

• The verifier accepts only if the views are consistent (with one another and the protocol
description) and are accepting.

We utilize the MPC-in-the-head paradigm to compile the [RR20] protocol to be zero-knowledge
using the instance dependent commitment as a blackbox. The idea is to adjust our protocol so
that the prover does not commit directly to her messages (as in [BOGG+90]). Rather, she commits
to ℓ additive secret shares of each of her messages, for some small parameter ℓ. Then, the prover
proceeds with an “MPC-in-the-head” proof, where she gives each simulated party a secret share
of her messages. The computed functionality corresponds to the verification predicate used by the
verifier in the UP batching protocol of [RR20].

This approach was inspired by the work of Hazay et al. [HVW23], and it only relies on black-
box access to the circuit that verifies decommitments. Hence, since the circuit that verifies de-
commitments has input and output sizes poly(n, log(k)), our objective of achieving communication
complexity poly(n, log(k)) remains feasible.

A final remaining problem is that the communication complexity of the MPC-in-the-head proof
depends on the running time of the verifier for the UP batching protocol [RR20] (since the parties
run an MPC protocol that emulates this computation). Unfortunately, this verifier has running
time k · poly(n, log(k)), which is prohibitively large (and is inherent since the verifier has to, at the
very least, read its input). We solve this last issue by analyzing more closely the verifier of the
[RR20] UP batching protocol. We observe that the verifier in their protocol consists of two main
phases:

• A “preprocessing step” which depends only on the input and verifier’s coin tosses. We em-
phasize that this step does not depend on the prover’s messages and in particular can hap-
pen before the interaction begins. The verifier needs to only keep an internal state of size
poly(n, log(k)) at the end of this step.

5

• An interactive step, in which the prover and verifier interact. The key point is that this step
can be implemented in poly(n, log(k)) time.

To capitalize on this observation, we let both the verifier and the prover independently execute the
preprocessing step. We then utilize the “MPC-in-the-head” proof only for the second step, which
is computable in time poly(n, log k), thereby obtaining communication complexity poly(n, log k).

1.3 Open Questions

We highlight several natural follow-up questions that we leave open:

1. Generalizing to SZK: The key question left open by the line of work on batch verification
of statistical zero-knowledge proofs is a general batch verification protocol that works for all
of SZK, rather than just NISZK. Given such a result, it seems possible that our techniques,
in combination with the UP batching protocol of [RR20], could yield a doubly-efficient SZK
batch protocol for SZK ∩UP.

2. Generalizing to NP: Our result is limited to UP languages, where we inherit this limitation
from [RR20]. The work of Bitansky et al. [BKP+23] indicates that a general doubly-efficient
batch verification protocol for NP is somewhat unlikely, as it would lead to (unconditional)
statistical witness indistinguishable proofs for NP. However, this barrier becomes meaningless
(i.e., a non-issue) when considering languages in SZK ∩ NP. Thus, there is no fundamental
barrier that we are aware of in generalizing our results from NISZK∩UP to NISZK∩NP (or
even SZK ∩NP for that matter).

3. Non-interactive: Our protocol is designed to handle problems that have non-interactive
proof-systems (namely, NISZK and UP). Unfortunately however, in contrast to the protocols
that we start off with, our batch verification protocol is highly interactive. This is due to
two reasons: first, the UP batching protocol of [RR20] which we use is highly interactive and
second, the instance dependent commitment of [NV06] that we use is interactive. Thus, mak-
ing our batch-verification protocol be non-interactive seems to require using fundamentally
different techniques.

1.4 Organization

Preliminaries are in Section 2. The proof of the main result (namely, Theorem 1.1) is in Section 3.
Some proofs are deferred to Appendices A to C.

2 Preliminaries

A promise problem Π consists of two disjoint sets of strings Π = (ΠY ,ΠN). The set ΠY is called
the set of YES instances and the set ΠN is called the set of NO instances.

Definition 2.1. The statistical distance between two random variables X,Y on a finite universe
U , denoted by ∆(X,Y), is defined as:

∆(X,Y) = maxS⊆U (X (S)− Y (S)) =
1

2

∑
u∈U

|X(u)− Y (u)| .

6

2.1 Interactive Proofs and Zero-Knowledge

We use viewV (P (x) , V (x)) to refer to the view of the verifier in an execution of an interactive
protocol with prover P and verifier V on common input x. The view includes the input x, all
messages sent by P to V in the protocol, and the verifier’s random coin tosses. We say that the
view is accepting if, at the end of the corresponding interaction, the verifier accepts.

Definition 2.2 (Interactive proof). Let c = c(n) ∈ [0, 1] and s = s(n) ∈ [0, 1] . An interactive proof
with completeness error c and soundness error s for a promise problem Π, consists of a probabilistic
polynomial-time verifier V and a computationally unbounded prover P such that following properties
hold:

• Completeness: For any x ∈ ΠY :

Pr
[
viewV (P (x) , V (x)) is accepting

]
≥ 1− c(|x|).

• Soundness: For any (computationally unbounded) cheating prover P ∗ and any x ∈ ΠN :

Pr
[
viewV (P ∗ (x) , V (x)) is accepting

]
≤ s(|x|).

We denote this proof system by (P, V).

An interactive proof (P, V) is public-coin if all the messages sent by the verifier are independent
random strings (with a fixed length that is independent of the interaction). Let Π = (ΠY ,ΠN) ∈
NP, with a corresponding witness relation RΠ(x,w).

Definition 2.3 (Doubly-Efficient Interactive Proof). Let Π be a promise problem. A doubly-
efficient interactive proof for the relation RΠ is an interactive-proof (P, V) for Π in which the
prover strategy P can be implemented in probabilistic polynomial-time given any NP witness w ∈
{w′ : (x,w′) ∈ RΠ}, as an auxiliary input.

Zero-Knowledge. For the SZK definition, we allow the malicious verifier to have access to an
auxiliary input a ∈ {0, 1}∗. Accordingly, we also provide the simulator with the same auxiliary
input a.

Definition 2.4 (SZK). Let z = z(n) ∈ [0, 1]. An interactive-proof (P, V) for Π is a statistical
zero-knowledge proof (SZK), with zero-knowledge error z, if for every probabilistic polynomial-time
verifier V ∗ there exists a probabilistic polynomial-time algorithm Sim (called the simulator) such
that for any x ∈ ΠY and a ∈ {0, 1}∗:

∆(viewV ∗ (P (x) , V ∗(x, a)) , Sim(x, a)) ≤ z(|x|).

If the completeness, soundness, and zero-knowledge errors are all negligible in |x|, we say that
the interactive proof is an SZK proof. We also use SZK to denote the class of promise problems
having SZK proofs.

7

Non-Interactive Statistical Zero-Knowledge. Next, we define the non-interactive variant of
statistical zero-knowledge, denoted NISZK. As usual in this setting, we give the prover and verifier
access to a uniformly generated common random string (CRS).

Definition 2.5 (NISZK). Let c = c(n) ∈ [0, 1], s = s(n) ∈ [0, 1] and z = z(n) ∈ [0, 1]. A non-
interactive statistical zero-knowledge proof (NISZK) with completeness error c, soundness error s
and zero-knowledge error z for a promise problem Π, consists of a probabilistic polynomial-time
verifier V , a computationally unbounded prover P and a polynomial ℓ = ℓ(n) (the length of the
CRS) such that the following properties hold:

• Completeness: For any x ∈ ΠY :

Pr
r←{0,1}ℓ(|x|)

[
V (x, r, P (x, r)) accepts

]
≥ 1− c(|x|).

• Soundness: For any x ∈ ΠN :

Pr
r←{0,1}ℓ(|x|)

[
∃π∗ s.t. V (x, r, π∗) accepts

]
≤ s(|x|).

• Zero-Knowledge: There exists a probabilistic polynomial-time algorithm Sim (called the
simulator) such that for any x ∈ ΠY :

∆
((

Uℓ, P (x, Uℓ)
)
, Sim(x)

)
≤ z(|x|),

where Uℓ denotes a random variable distributed uniformly over {0, 1}ℓ(|x|).

Unless stated otherwise, we assume that c(·), s(·) and z(·) are negligible in |x|. We use NISZK
to denote the class of promise problems having such an NISZK protocol.

2.2 Instance-Dependent Commitments for NISZK

Next, we recall the notion of instance-dependent commitments and revisit their construction for
NISZK [NV06].4 An instance-dependent commitment [BMO90, IOS97, NV06, OV08], for a promise
problem Π, is a commitment scheme associated with an instance x ∈ {0, 1}∗. Unlike standard
commitment schemes, an instance-dependent commitment scheme requires the hiding property to
hold only when x is a YES instance, and the binding property to hold only when x is a NO instance.
We now provide a formal definition (the following definitions of instance-dependent commitments
and their security are based on [OV08])

Definition 2.6 (Instance-dependent commitments). An instance-dependent commitment scheme
is a family of protocols {Comx}x∈{0,1}∗ with the following properties:

• Scheme Comx proceeds in two stages: a commit stage and a reveal stage. In both stages, the
sender and receiver receive instance x as common input, and hence we denote the sender and
receiver as Sx and Rx, respectively, and write Comx = (Sx, Rx).

4The later work of Ong and Vadhan [OV08] constructs instance-dependent commitments for all of SZK. However,
their construction is more complex and the simpler construction of instance-dependent commitments for NISZK,
due to [NV06], suffices for our results.

8

• At the beginning of the commit stage, sender Sx receives a private input b ∈ {0, 1}, which
denotes the bit that Sx is supposed to commit to. At the end of the commit stage, both sender
Sx and receiver Rx output a commitment c.

• In the reveal stage, sender Sx sends a pair (b, d), where d is the decommitment string for bit
b. Receiver Rx accepts or rejects based on x, b, d, and c.

• The sender Sx and receiver Rx algorithms are computable in polynomial time (in |x|), given
x as auxiliary input.

• For every x ∈ {0, 1}∗, Rx will always accept (with probability 1) if both sender Sx and receiver
Rx follow their prescribed strategy.

The instance-dependent commitment scheme {Comx = (Sx, Rx)}x∈{0,1}∗ is public coin if for every
x ∈ {0, 1}∗, all messages sent by Rx are independent random coins.

To simplify notation, we write Comx or (Sx, Rx) to denote the instance-dependent commitment
scheme {Comx = (Sx, Rx)}x∈{0,1}∗ . The hiding and binding properties of standard commitments
extend in a natural way to their instance-dependent analogs.

Definition 2.7 (Hiding of instance-dependent Commitments). Let ε = ε(n) ∈ [0, 1]. The instance-
dependent commitment scheme Comx = (Sx, Rx) is ε-statistically hiding on I ⊆ {0, 1}∗ if for every
R∗, and every x ∈ I,

∆(viewR∗ (Sx(0), R
∗) , viewR∗ (Sx(1), R

∗)) ≤ ε(|x|),

where random variable viewR∗(Sx(b), R
∗) denotes the view of R∗ in the commit stage after inter-

acting with Sx(b). For a problem Π = (ΠY ,ΠN), an instance-dependent commitment scheme Comx

for Π is ε-statistically hiding on the YES instances if Comx is ε-statistically hiding on ΠY .

Definition 2.8 (Binding of instance-dependent Commitments). Let ε = ε(n) ∈ [0, 1]. The
instance-dependent commitment scheme Comx = (Sx, Rx) is ε-statistically binding on I ⊆ {0, 1}∗
if for every S∗, and for all x ∈ I, the malicious sender S∗ succeeds in the following game with
probability at most ε(|x|):

1. The sender S∗ interacts with Rx in the commit stage obtaining commitment c.

2. Then S∗ outputs pairs (0, d0) and (1, d1), and succeeds if in the reveal stage, Rx(0, d0, c) =
Rx(1, d1, c) = accept.

For a problem Π = (ΠY ,ΠN), an instance-dependent commitment scheme Comx for Π is ε-
statistically binding on the NO instances if Comx is ε-statistically binding on ΠN .

Remark 2.9. We defined instance-dependent commitment schemes as bit commitments. However,
they can be extended to string commitments with the same round complexity by executing multiple
bit commitments in parallel.

We revisit the instance-dependent commitment scheme for all of NISZK, given in [NV06]. This
scheme is for the NISZK-complete promise problem Image Density5 [DSDCPY98, GSV99]. Since

5The commitment scheme, as presented in [NV06], was for a different promise problem known as EA. However, it
involved a preprocessing step intended to transform an EA instance into an Image Density instance. Since we will
work directly with Image Density instances, we skip this preprocessing step.

9

Image Density is NISZK-complete, this commitment scheme can be adapted to suit any NISZK
promise problem. We first define the Image Density problem.

Definition 2.10. Let ε = ε(n) ∈ [0, 1]. The ε-Image Density problem (IDε), is defined as follows:

IDε,Y = {C : ∆ (Uµ, C) ≤ ε} ,
IDε,N = {C : |Supp(C)| ≤ ε · 2µ} ,

where C is a circuit of size n with η input bits and µ output bits. We highlight that we use the
unconventional symbols η and µ, as n and m will be used later for alternative purposes.

That is, YES instances of Image Density have an output distribution that is statistically close
to uniform, and NO instances of Image Density have an output distribution with a small support.
The next lemma, due to [NV06], shows that Image Density has an instance-dependent commitment.

Lemma 2.11 ([NV06]). Let ε = ε(n) ∈ [0, 1] and let n, η, µ denote the size, the input length, and
the output length of an IDε circuit, respectively. The problem IDε has an instance-dependent com-
mitment scheme that is 2ε-statistically hiding on the YES instances and (poly(µ) · ε)-statistically
binding on the NO instances. Furthermore, the number of bits sent between the sender and the re-
ceiver during the commit and reveal phases is poly(η, µ), the receiver runs in time n·poly(η, µ, log n),
and the commitment scheme is public coin and constant-round.

We emphasize that the poly in the furthermore clause above is a fixed polynomial and in
particular does not depend on the size of the circuit. While the furthermore clause of Lemma 2.11
follows from the construction of Nguyen and Vadhan [NV06], it is not explicitly stated therein.
Hence, to give precise bounds on the communication complexity, we provide a proof of Lemma 2.11
in Appendix B.

2.3 Batch Protocols

We introduce the concept of batch problems and review known batching results for UP and for
NISZK [RR20, MNRV24].

Given a promise problem Π, we define the promise problem Π⊗k that consists of k equal-sized
instances of Π. We denote by n the size of each instance.

Definition 2.12. For a given promise problem Π and an integer k, Π⊗k = (Π⊗kY ,Π⊗kN) is defined
as follows:

Π⊗kY = {(x1, . . . , xk) : ∀i ∈ [k], xi ∈ ΠY , |x1| = . . . = |xk|} , and

Π⊗kN =
{
(x1, . . . , xk) ∈ (ΠY ∪ΠN)k : ∃j ∈ [k], xj ∈ ΠN , |x1| = . . . = |xk|

}
.

2.3.1 Batching for NISZK

We introduce a lemma from [MNRV24]. We note that this lemma is not directly mentioned in
[MNRV24], but can be deduced by examining the proofs of [MNRV24, Theorem 1.1] and [MNRV24,
Lemma 3.9]. We analyze these proofs to establish this lemma in Appendix A.

Lemma 2.13 ([MNRV24]). Let Π ∈ NISZK and k = k(n) such that k(n) ≤ 2n
0.01

. Then, Π⊗k has
a randomized Karp reduction to IDε with the following properties:

10

• The reduction is computable in time k · poly(n, log k) and uses poly(n, log k) random coins.

• The reduction never errs on NO instances and errs only with probability negligible in n and
k on YES instances.

• ε is negligible in both n and k.

• The IDε circuit produced by the reduction has size k · poly(n, log k), with input and output
sizes poly(n, log k).

2.3.2 Doubly Efficient Batching for UP

Next we present the batch verification result for UP, due to [RR20].

Theorem 2.14 ([RR20, Corollary 5]). For every promise problem Π ∈ UP, there exists a public-
coin interactive proof, with perfect completeness and soundness error 1

2 , for verifying that k in-
stances x1, . . . , xk, each of length n, are all in Π. The complexity of the protocol is as follows:

• Communication complexity: poly(n, log(k)).

• Number of rounds: polylog(n, k).

• Verifier runtime: Õ(n · k) + poly(n, log(k)).

• The honest prover, given the k unique witnesses, runs in time poly(n, k).

Furthermore, before the interaction begins, the verifier runs a pre-processing step on inputs
x1, . . . , xk and the public coins to be sent to the prover. The pre-processing time is Õ(n · k), and its
output is a string pp of length poly(n, log(k)). Following the interaction, the verifier runs in time
poly(n, log(k)) on inputs pp and the prover messages and decides whether to accept or reject.

Remark 2.15. The results in [RR20] are stated for languages, but readily extend to the setting
of promise problems. More importantly, the “furthermore” part of Theorem 2.14 is not explicitly
stated in [RR20], but can be inferred by inspecting their protocol, see Appendix C for details.

2.4 Secure Multiparty Computation

Our protocol relies on the MPC-in-the-head framework of Ishai et al. [IKOS09]. In this section we
provide the relevant background following [IKOS09]. Since it suffices for our purposes, we consider
semi-honest MPC protocols, with perfect security, for functionalities of a particular form.

Let ℓ be the number of players, which will be denoted by P1, ..., Pℓ. We will be interested in
computations in which all players share a public input x, and each player Pi holds a local private
input wi. We consider protocols that securely realize an ℓ-party functionality f , where f maps the
joint input (x,w1, . . . , wℓ) to a single output bit b.

A protocol Π is specified via its next message function. That is, Π (i, x, wi, ri, (m1, . . . ,mj))
returns the set of ℓ messages sent by Pi in round j + 1 given the public input x, its local input wi,
its random input ri, and the messages m1, . . . ,mj it received in the first j rounds. The output of
Π may also indicate that the protocol should terminate, in which case Π returns the local output
of Pi. The view of Pi, denoted by viewi, includes wi, ri, and the messages received by Pi during

11

the execution of Π. Note that the messages sent by an uncorrupted player Pi as well as its local
output can be inferred from viewi and x by invoking the next message function of Π. It will be
useful to define the following natural notion of consistency between views.

Definition 2.16 (Consistent views). We say that two views viewi and viewj are consistent (for
the protocol Π and the public input x) if the outgoing messages implicit in (viewi, x) are identical
to the incoming messages reported in viewj and vice versa.

The following lemma asserts that an ℓ-tuple of views corresponds to some honest execution of
Π if and only if every pair of views is consistent.

Lemma 2.17 ([IKOS09, Lemma 2.3]). Let Π be an ℓ-party protocol as above and x be a public
input. Let view1, . . . , viewℓ be an ℓ-tuple of (possibly incorrect) views. Then all pairs of views
(viewi, viewj) are consistent for Π and x if and only if there exists an honest execution of Π with
public input x (and some choice of private inputs wi and random inputs ri) in which viewi is the
view of Pi for every 1 ≤ i ≤ ℓ.

In the semi-honest model, one may break the security requirements into the following correctness
and privacy requirements.

Definition 2.18 (Correctness). We say that the protocol Π realizes a deterministic ℓ-party func-
tionality f (x,w1, . . . , wℓ) with perfect correctness if for all inputs x,w1, . . . , wℓ, the probability that
the output of some player is different from the output of f is 0, where the probability is over the
independent choices of the random inputs r1, . . . , rℓ.

Definition 2.19 (t-Privacy). Let 1 ≤ t < ℓ. We say that Π realizes f with perfect t-privacy if
there is a probabilistic polynomial-time simulator Sim such that for any inputs x,w1, . . . , wℓ and
every set of corrupted players T ⊆ [ℓ], where |T | ≤ t, the joint view viewT (x,w1, . . . , wℓ) of players
in T is distributed identically to Sim

(
T, x, (wi)i∈T , fT (x,w1, . . . , wℓ)

)
.

We now define a notion of efficiency for protocols that securely realize functionalities computable
by circuits.

Definition 2.20 (Efficiency). Let f be an ℓ-party functionality computed by a circuit C of size s,
and let Π realize f . We say that Π is C-efficient if every player Pi runs in time poly (|x|, |wi|, ℓ, s),
during the entire execution of Π.

In our batch proof, we utilize an MPC protocol as part of the MPC-in-the-head paradigm. As
an example, we will instantiate our batch proof with the renowned BGW MPC protocol [BGW88]
to demonstrate that our proof is realizable.

Theorem 2.21 ([BGW88, Theorem 1], see also [AL17]). For every function f computable by a
circuit C, there exists a C-efficient MPC protocol Π with 5 players, that realizes f with perfect
correctness and perfect 2-privacy.

3 Doubly Efficient Zero-Knowledge Batching for UP ∩NISZK

In this section, we prove Theorem 1.1 by showing a doubly-efficient statistical zero-knowledge
batch proof for problems in UP ∩ NISZK. We begin by combining the results of [MNRV24] and
[NV06], to show that batch instances of NISZK have an instance-dependent commitment scheme
with communication complexity that scales poly-logarithmically with k.

12

Lemma 3.1. Let Π ∈ NISZK and k = k(n) such that k(n) ≤ 2n
0.01

. Then, Π⊗k has an instance-
dependent commitment scheme that is ε-statistically hiding on the YES instances and ε-statistically
binding on the NO instances, with ε being negligible in n and in k. The number of bits sent be-
tween the sender and the receiver during the commit and reveal phases is poly(n, log k). Further-
more, the commitment scheme is public-coin and constant-round, and the receiver runs in time
k · poly(n, log k).

We recall that an instance (x1, . . . , xk) ∈ Π⊗k is considered a YES instance if each xi is a YES
instance of Π, and is considered a NO instance if at least one the xi is a NO instance of Π.

Proof. The lemma follows by composing the commitment scheme for Image Density of Lemma 2.11
with the randomized Karp reduction from Π⊗k to Image Density of Lemma 2.13.

Thus, on common input (x1, . . . , xk), the sender and the receiver reduce (x1, . . . , xk) to an IDε

circuit C. This only requires the sender to send the randomness that was used for the reduction,
which is of size poly(n, log k), to the receiver. Then, the sender and the receiver use C as the
common input for the commitment scheme of Lemma 2.11 and proceed with the commit and reveal
phases as per usual. The commitment scheme is ε-statistically hiding on the YES instances since
the reduction of Lemma 2.13 fails only with negligible probability when the sender is honest. The
commitment scheme is ε-statistically binding on the NO instances since the reduction of Lemma 2.13
never fails on NO instances.

Remark 3.2. Our main protocol involves commitments to multiple bits. We could in principle
improve the efficiency of the protocol by reducing (x1, . . . , xk) to an IDε instance just once rather
than with each commitment, but we avoid this optimization for the sake of simplicity.

We now have everything we need to construct the doubly-efficient SZK batch proof for UP ∩
NISZK, thereby establishing Theorem 1.1.

3.1 Proof of Theorem 1.1

We first present the protocol and then prove why it meets all the requirements of Theorem 1.1.
Consider the UP batching protocol (PUP, VUP), promised by Theorem 2.14. In this protocol, the

verifier VUP runs in two phases. In the preprocessing phase, the verifier runs on inputs x1, . . . , xk
and the public coins to be sent to the prover, and produces a string pp of length poly(n, log k) (we
emphasize that in this phase there is no interaction). In the online phase, the verifier interacts with
the prover and decides whether to accept based only on pp and the prover’s messages. In this phase,
the verifier runs in time poly(n, log k). Denote the verifier messages by α = (α1, . . . , αr), where αi

is the verifier’s message in round i, and similarly denote the prover’s messages by β = (β1, . . . , βr).
Let CVUP

be a size poly(n, log k) circuit that computes the verifier’s decision predicate. That is,
CVUP

operates on inputs pp and the prover’s messages and determines whether to accept.
Let f be the following function, that takes as input a string pp, and ℓ additive shares of β (the

value of ℓ will be determined later):

f
(
pp, β1, . . . , βℓ

)
= CVUP

(
pp, β1 ⊕ . . .⊕ βℓ

)
,

13

where ⊕ denotes the bitwise exclusive-or operation:

βi ⊕ βj =
(
βi
1 ⊕ βj

1, . . . , β
i
r ⊕ βj

r

)
.

Let Π be an ℓ-player CVUP
-efficient6 MPC protocol, with a constant ℓ = 5, that realizes f with

perfect correctness and perfect (semi-honest) 2-privacy, i.e., the protocol of Theorem 2.21. The
public input is pp, and βi is the private input of player Pi. Upon completion of Π, the local output
of all players should match the output of f .

Using the MPC protocol from above, together with the protocol of Theorem 2.14, We now
describe the zero-knowledge batch verification protocol in Fig. 1, where the commitment scheme
that is used throughout the protocol is the one of Lemma 3.1.

We analyze the protocol to verify that it fulfills all the requirements of Theorem 1.1.

Completeness. Suppose x1, . . . , xk ∈ ΠY . The perfect completeness of the underlying UP batch-
ing protocol and the perfect correctness of Π ensure that the shares βi that P commits to during
Step 1 would lead player Pi, running on public input pp and private input βi, to output 1 with
probability 1. The views that P commits to are consistent with their respective players’ inputs and
with each other, so V would accept if P successfully revealed all the required commitments. Since
the commitment scheme of Lemma 3.1 has correctness as long as the sender and the receiver follow
their prescribed strategies, perfect completeness of our protocol follows.

Soundness. Suppose at least one of x1, . . . , xk is in ΠN and fix a (computationally unbounded)
cheating prover P ∗. Without loss of generality, let us assume that P ∗ is deterministic. By
Lemma 3.1, the commitment scheme used throughout the protocol is statistically binding, with
binding error negligible in both n and k. We delay addressing the binding error for now, by first
analyzing the soundness for a modified protocol (P ′, V ′), which we will now describe.

In this modified protocol, commitments are not used and the prover P ′ sends all her messages
openly. Accordingly, the verifier V ′ does not verify decommitments on Step 6a, but only ensures
that the messages sent in Step 5 are consistent with the previous messages sent by P ′.

The prover P ′ simulates the adversary P ∗ and acts as an intermediary between P ∗ and V ′. Since
P ∗ is the adversary for the unmodified protocol, she is expected to use commitments, whereas V ′

does not. Thus, the prover P ′ will manipulate the communication as follows. The prover P ′ will
act as the receiver of the commitments and decommitments made by P ∗. After each commitment is
done, P ′ uses its unbounded computational power to extract the message from the commitment. If
the commitment is invalid or if it can be opened ambiguously, a default message is selected instead.
After extracting the message, P ′ sends it in the clear to V ′. Whenever P ′ receives a message from
V ′, she feeds it to P ∗. This describes the modifications in (P ′, V ′). We move on to analyze the
soundness of the modified protocol.

Recall CVUP
, a circuit that operates on inputs pp and the prover’s messages and computes the

VUP verifier’s decision predicate. Given the soundness of the underlying UP batching protocol of
Theorem 2.14, the messages β that P ′ sends during Step 1, would make the verifier VUP reject

6We slightly abuse notation here since CVUP does not compute the functionality f (Note that f has ℓ+1 inputs while
CVUP only has two). This abuse of notation is justified since the sizes of CVUP and the closely related circuit that
computes f differ only by a multiplicative factor of poly(ℓ), and ℓ is constant.

14

Common Inputs: x1, . . . , xk ∈ {0, 1}n.
Prover’s Additional Inputs: w1, . . . , wk, which are the unique witnesses for x1, . . . , xk.

The protocol employs the commitment scheme described in Lemma 3.1 and the MPC
protocol of Theorem 2.21.

The Protocol:
1. The prover P and the verifier V execute the protocol of Theorem 2.14, with the following

modification: Each time the prover P is supposed to send a message βi in the clear, she
instead additively secret shares her message into ℓ shares βi = β1

i ⊕ . . . ⊕ βℓ
i . She then

commits to each of those shares separately. Crucially, since the protocol of Theorem 2.14
is public-coin, the verifier V can disregard the modification in the prover’s messages and
continue to send random coins as usual.

2. The prover P first collects the shares from the previous step:

∀i ∈ [ℓ] : βi ≜
(
βi
1, . . . , β

i
r

)
Subsequently, the prover and the verifier, each on their own, run the pre-processing step
of VUP promised by Theorem 2.14 on inputs x1, . . . , xk and the verifier’s messages to
obtain pp. Then, the prover simulates the MPC protocol Π (defined earlier in the text)
with public input pp and player Pi having private input βi. This yields the ℓ views of the
ℓ players.

3. The prover commits separately to the view of each of the ℓ players.

4. The verifier selects two players i ̸= j at random and asks the prover to reveal their views.

5. The prover decommits to
((

βi
1, . . . , β

i
r

)
, viewi

)
and

((
βj
1, . . . , β

j
r

)
, viewj

)
.

6. The verifier accepts if and only if all the following hold true:

(a) The prover has successfully revealed all the required commitments.

(b) The public input in viewi is pp, the private input is
(
βi
1, . . . , β

i
r

)
.

(c) The public input in viewj is pp, the private input is
(
βj
1, . . . , β

j
r

)
.

(d) The views (viewi, viewj) are consistent, and the players output 1 in both.

Figure 1: Doubly-efficient SZK batching protocol for UP ∩NISZK

15

with probability at least 1
2 . That is, Pr

[
CVUP

(
pp, β

)
= 0

]
≥ 1

2 . Assume we are in the case where

CVUP

(
pp, β

)
= 0. Therefore, since the MPC protocol Π has perfect correctness, an honest execution

of Π with public input pp and private inputs βi results in all players outputting 0, in which case
V ′ rejects on Step 6d with probability 1.

An honest execution of the MPC protocol Π with different inputs will lead V ′ to reject in Steps
6b or 6c with probability at least 1

ℓ . If the execution is not honest, by Lemma 2.17, there exists
a pair of inconsistent views, and V ′ selects it with probability at least 1

(ℓ2)
, causing V ′ to reject in

Step 6d.
Considering Pr

[
CVUP

(
pp, β

)
= 0

]
≥ 1

2 , we get soundness error 1 − 1

2(ℓ2)
for (P ′, V ′). We now

factor in the binding error. If for some verifier coins of V ′ together with some receiver coins of P ′,
V ′ rejects after interacting with P ′ and all the commitments that P ′ simulates are binding, then
the same coins, when used by the verifier V , cause V to reject after interacting with P ∗. Thus, a
union bound yields a statistical soundness error of 1− 1

2(ℓ2)
+ δ(n, k), where δ is negligible in both

n and k.
Taking ℓ to be a constant, we have obtained a constant soundness error for the protocol. Later,

we will reduce the error to be negligible by (sequential) repetition (see Remark 3.3).

Zero Knowledge. Let V ∗ be a probabilistic polynomial-time verifier. Since the MPC protocol
Π is perfectly (semi-honest) 2-private, it has a simulator SimMPC. Using V ∗ and SimMPC, we
construct a simulator SimZK for our protocol in Fig. 2. The commitment scheme that is used
throughout the simulation is the instance-dependent commitment of Lemma 3.1. We note that the
simulator SimZK only utilizes V ∗ in a black-box manner, and recall that black-box zero-knowledge
implies auxiliary input zero-knowledge [GO94].

The zero-knowledge analysis closely follows that of [GMW91, IKOS09], and we outline it here
for the sake of completeness. Suppose x1, . . . , xk ∈ ΠY . By Lemma 3.1, the commitment scheme
used throughout the simulation will be statistically hiding, with hiding error negligible in both n
and k. To demonstrate that the output distribution of the simulator is statistically close to that
of real verifier views, we examine several hybrid distributions, wherein the simulator is given the
witnesses to x1, . . . , xk:

1. Distributions A0, . . . , At: In distribution Ai, during the first i attempts, the simulator SimZK

acts like the honest prover in Step 1, committing to shares of the prover’s messages instead
of committing to random shares. In the rest of the steps, the simulator proceeds as usual. In
the remaining attempts, the simulator follows its standard strategy during all steps.

Since any number of secret shares smaller than ℓ distributes uniformly and independently,
and because the commitments hide all shares except the two shares that are revealed, the
statistical distance between each Ai, Ai + 1 is negligible in n and k.

2. Distributions B0, . . . , Bt: In all of these distributions, the simulator behaves like the honest
prover in Step 1, committing to shares of the prover’s messages instead of committing to
random shares. In distribution Bi, during the first i attempts, instead of utilizing the MPC
simulator SimMPC, the simulator SimZK executes the MPC protocol Π to obtain the views
of the two randomly selected players. Then, the simulator chooses the views of the remaining

16

The Simulator SimZK(x1, . . . , xk):

Attempt t = ℓ2 ·
(
log2(n) + log2(k)

)
times:

1. Simulate Step 1 of the protocol with V ∗, with the following modification: Whenever the
prover is supposed to commit to shares corresponding to message βi, commit to random
shares instead.

2. Compute pp according to x1, . . . , xk and the verifier messages α obtained from the previous
step.

3. Randomly select a pair of players i ̸= j, and run the MPC simulator accordingly. Namely,

compute SimMPC

(
{i, j}, pp,

(
βi, βj

)
, 1
)
to get the views of the players i, j.

4. Generate arbitrary views for the other players (of the right length) and feed V ∗ with
commitments to all of the generated views.

5. The verifier V ∗ responds with a request that the views of the players {i′, j′} be revealed. If
{i, j} = {i′, j′}, the attempt succeeded. Consequently, The simulator reveals the requested
views and outputs the view of V ∗. If {i, j} ̸= {i′, j′}, the attempt failed, and we start
over.

If all attempts fail, output ⊥.

Figure 2: Simulator for the protocol of Theorem 1.1

17

players arbitrarily and proceeds as usual. In the other attempts, the simulator follows its
standard strategy during all steps except for Step 1 (in which it mimics the honest prover).

Note that B0 = At. The statistical distance between each Bi, Bi + 1 is exactly zero due to
the perfect 2-privacy of the MPC protocol Π.

3. Distribution C: In this distribution, the simulator behaves like in distribution Bt, but instead
of generating random views for the players that are not in {i, j}, it assigns them the views
computed when executing the MPC protocol Π. The statistical distance between Bt, C is
negligible in n and k since the commitments to the views of the players not in {i, j} are never
revealed, and the commitment scheme is statistically hiding.

The only difference between distribution C and that of real verifier views is that C can output
⊥ when all attempts fail. In the sampling of the distribution C, each attempt succeeds with a
probability of at least 1

(ℓ2)
. Given that attempts are independent, the simulator succeeds on at

least one attempt with all but negligible probability in n and k. Therefore, the statistical distance
between C and that of real views is negligible in n and k.

Since A0 is the output distribution of the simulator SimZK, we deduce that the statistical
distance between the output distribution of SimZK and that of real verifier views is negligible in n
and k, as required.

Complexity. We begin with analyzing the communication complexity of the protocol. The com-
mitment scheme of Lemma 3.1 increases the communication complexity by a multiplicative factor
of only poly(n, log k) per committed bit, both for the commit and the reveal phases. Hence, for the
sake of analysis, we can conveniently overlook this overhead.

• Step 1: The verifier’s messages and prover’s messages during Step 1 of the protocol have
length poly(n, log k) by Theorem 2.14.

• The remaining steps: The circuit CVUP
has size poly(n, log k), and the MPC protocol Π is

CVUP
-efficient. Therefore, the overall size of the MPC players’ views is ℓ · poly(n, log(k), ℓ) =

poly(n, log(k), ℓ), and this term dominates the communication complexity of the remaining
steps.

Since our parameter ℓ is a constant, the total communication complexity is poly(n, log k).

We proceed to analyze the round complexity of the protocol. The commitment scheme of
Lemma 3.1 is constant-round. Therefore, in Step 1, The protocol inherits its round complexity
polylog(n, k) from the underlying UP batching protocol of Theorem 2.14. During the remaining
steps, the protocol proceeds with an additional constant number of rounds, resulting in a total
round complexity of polylog(n, k).

The verifier’s runtime is k · poly(n, log(k)) due to the efficiency of the verifier of Theorem 2.14,
the efficiency of the receiver of Lemma 3.1, and the CVUP

-efficiency of the MPC protocol Π.

The prover runs in time poly(n, k) given the k unique witnesses, since the protocol of Theo-
rem 2.14 is doubly-efficient, and because the MPC protocol Π is CVUP

-efficient.

Lastly, the protocol inherits its public-coin nature from the underlying UP batching protocol of
Theorem 2.14 and the commitment scheme of Lemma 3.1.

18

Remark 3.3. In our analysis, we only achieved a constant soundness error. Our zero-knowledge
simulator only makes black-box use of the verifier, so by sequential composition (see [GO94]), we
can repeat our proof poly(log(n), log(k)) times to get a negligible soundness error while preserving
zero-knowledge and maintaining the complexity of the proof as previously stated.

Acknowledgements

Or Keret and Ron Rothblum are funded by the European Union (ERC, FASTPROOF, 101041208).
Views and opinions expressed are however those of the author(s) only and do not necessarily reflect
those of the European Union or the European Research Council. Neither the European Union nor
the granting authority can be held responsible for them. Prashant Nalini Vasudevan is supported
by the National Research Foundation, Singapore, under its NRF Fellowship programme, award no.
NRF-NRFF14-2022-0010.

References

[AL17] Gilad Asharov and Yehuda Lindell. A full proof of the BGW protocol for perfectly
secure multiparty computation. Journal of Cryptology, 30(1):58–151, 2017. 12

[BDSMP91] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Noninterac-
tive zero-knowledge. SIAM Journal on Computing, 20(6):1084–1118, 1991. 3

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended abstract). In
Janos Simon, editor, Proceedings of the 20th Annual ACM Symposium on Theory of
Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 1–10. ACM, 1988. 12

[BKP+23] Nir Bitansky, Chethan Kamath, Omer Paneth, Ron Rothblum, and Prashant Nalini
Vasudevan. Batch proofs are statistically hiding. Electron. Colloquium Comput.
Complex., TR23-077, 2023. 6

[BMO90] Mihir Bellare, Silvio Micali, and Rafail M. Ostrovsky. Perfect zero-knowledge in
constant rounds. In Symposium on the Theory of Computing, 1990. 3, 8

[BOGG+90] Michael Ben-Or, Oded Goldreich, Shafi Goldwasser, Johan H̊astad, Joe Kilian, Silvio
Micali, and Phillip Rogaway. Everything provable is provable in zero-knowledge. In
Advances in Cryptology—CRYPTO’88: Proceedings 8, pages 37–56. Springer, 1990.
3, 4, 5

[DHRS07] Yan Zong Ding, Danny Harnik, Alon Rosen, and Ronen Shaltiel. Constant-round
oblivious transfer in the bounded storage model. Journal of Cryptology, 20:165–202,
2007. 24, 25

[DSDCPY98] Alfredo De Santis, Giovanni Di Crescenzo, Giuseppe Persiano, and Moti Yung. Image
density is complete for non-interactive-SZK. In Automata, Languages and Program-
ming: 25th International Colloquium, ICALP’98 Aalborg, Denmark, July 13–17,
1998 Proceedings 25, pages 784–795. Springer, 1998. 4, 9

19

[GKR15] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computa-
tion: Interactive proofs for muggles. J. ACM, 62(4):27:1–27:64, 2015. 26

[GMR98] Rosario Gennaro, Daniele Micciancio, and Tal Rabin. An efficient non-interactive
statistical zero-knowledge proof system for quasi-safe prime products. In 5th ACM
Conference on Computer and Communication Security (CCS’98), pages 67–72, San
Francisco, California, November 1998. ACM, ACM Press. 2, 3

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but
their validity for all languages in NP have zero-knowledge proof systems. J. ACM,
38(3):691–729, 1991. 4, 16

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof
systems. Journal of Cryptology, 7(1):1–32, 1994. 16, 19

[Gol18] Oded Goldreich. On doubly-efficient interactive proof systems. Found. Trends Theor.
Comput. Sci., 13(3):158–246, 2018. 2

[GR17] Tom Gur and Ron D. Rothblum. A hierarchy theorem for interactive proofs of prox-
imity. In Christos H. Papadimitriou, editor, 8th Innovations in Theoretical Computer
Science Conference, ITCS 2017, January 9-11, 2017, Berkeley, CA, USA, volume 67
of LIPIcs, pages 39:1–39:43. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.
26

[GSV99] Oded Goldreich, Amit Sahai, and Salil Vadhan. Can statistical zero knowledge
be made non-interactive? or on the relationship of SZK and NISZK. In Ad-
vances in Cryptology—CRYPTO’99: 19th Annual International Cryptology Confer-
ence Santa Barbara, California, USA, August 15–19, 1999 Proceedings 19, pages
467–484. Springer, 1999. 9

[HVW23] Carmit Hazay, Muthuramakrishnan Venkitasubramaniam, and Mor Weiss. Beyond
MPC-in-the-head: Black-box constructions of short zero-knowledge proofs. In Theory
of Cryptography Conference, pages 3–33. Springer, 2023. 4, 5

[IKOS09] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge
proofs from secure multiparty computation. SIAM J. Comput., 39(3):1121–1152,
2009. 5, 11, 12, 16

[IOS97] Toshiya Itoh, Yuji Ohta, and Hiroki Shizuya. A language-dependent cryptographic
primitive. J. Cryptology, 10:37–50, 1997. 3, 8

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended
abstract). In S. Rao Kosaraju, Mike Fellows, Avi Wigderson, and John A. Ellis,
editors, Proceedings of the 24th Annual ACM Symposium on Theory of Computing,
May 4-6, 1992, Victoria, British Columbia, Canada, pages 723–732. ACM, 1992. 3

[KRR+20] Inbar Kaslasi, Guy N. Rothblum, Ron D. Rothblum, Adam Sealfon, and
Prashant Nalini Vasudevan. Batch verification for statistical zero knowledge proofs.

20

In Rafael Pass and Krzysztof Pietrzak, editors, Theory of Cryptography - 18th Inter-
national Conference, TCC 2020, Durham, NC, USA, November 16-19, 2020, Pro-
ceedings, Part II, volume 12551 of Lecture Notes in Computer Science, pages 139–167.
Springer, 2020. 2

[KRV21] Inbar Kaslasi, Ron D. Rothblum, and Prashant Nalini Vasudevan. Public-coin statis-
tical zero-knowledge batch verification against malicious verifiers. In Anne Canteaut
and François-Xavier Standaert, editors, Advances in Cryptology - EUROCRYPT
2021 - 40th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Zagreb, Croatia, October 17-21, 2021, Proceedings, Part
III, volume 12698 of Lecture Notes in Computer Science, pages 219–246. Springer,
2021. 2

[MNRV24] Changrui Mu, Shafik Nassar, Ron Rothblum, and Prashant Nalini Vasudevan. Strong
batching for non-interactive statistical zero-knowledge. Electron. Colloquium Com-
put. Complex., pages TR24–024, 2024. 2, 3, 4, 10, 12, 22, 23

[NOVY98] Moni Naor, Rafail Ostrovsky, Ramarathnam Venkatesan, and Moti Yung. Perfect
zero-knowledge arguments for NP using any one-way permutation. Journal of Cryp-
tology, 11:87–108, 1998. 24

[NV06] Minh-Huyen Nguyen and Salil Vadhan. Zero knowledge with efficient provers. In
Proceedings of the thirty-eighth annual ACM symposium on Theory of computing,
pages 287–295, 2006. 3, 4, 6, 8, 9, 10, 12, 24

[OV08] Shien Jin Ong and Salil Vadhan. An equivalence between zero knowledge and com-
mitments. In Theory of Cryptography: Fifth Theory of Cryptography Conference,
TCC 2008, New York, USA, March 19-21, 2008. Proceedings 5, pages 482–500.
Springer, 2008. 3, 4, 8

[RR20] Guy N. Rothblum and Ron D. Rothblum. Batch verification and proofs of proxim-
ity with polylog overhead. In Rafael Pass and Krzysztof Pietrzak, editors, Theory
of Cryptography - 18th International Conference, TCC 2020, Durham, NC, USA,
November 16-19, 2020, Proceedings, Part II, volume 12551 of Lecture Notes in Com-
puter Science, pages 108–138. Springer, 2020. 2, 3, 4, 5, 6, 10, 11, 26

[RRR18] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Efficient batch verification
for UP. In Rocco A. Servedio, editor, 33rd Computational Complexity Conference,
CCC 2018, June 22-24, 2018, San Diego, CA, USA, volume 102 of LIPIcs, pages
22:1–22:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. 2, 26

[RRR21] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round interac-
tive proofs for delegating computation. SIAM J. Comput., 50(3), 2021. 2

[RVW13] Guy N. Rothblum, Salil P. Vadhan, and Avi Wigderson. Interactive proofs of prox-
imity: delegating computation in sublinear time. In Dan Boneh, Tim Roughgarden,
and Joan Feigenbaum, editors, Symposium on Theory of Computing Conference,
STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 793–802. ACM, 2013. 26

21

[RW04] Renato Renner and Stefan Wolf. Smooth Rényi entropy and applications. In In-
ternational Symposium onInformation Theory, 2004. ISIT 2004. Proceedings., page
233. IEEE, 2004. 22

A Proof of Lemma 2.13

Before we prove Lemma 2.13, we revisit the relevant definitions and results that appear in [MNRV24].
We start with some basic definitions of probability theory.

Definition A.1. Let X be a random variable distributed over a universe U , and for every x ∈ U ,
denote by px = Pr[X = x]. We recall the following notions of entropy of X:

• H0(X) = log (|{x : px ̸= 0}|).

• H1(X) = −
∑

x∈U px log (px).

• H2(X) = − log(cp(X)).7

We also define the following smoothed notion of entropy version utilized in [MNRV24].

Definition A.2 (Smooth Entropy [RW04]). For any ε ≥ 0, the ε-smooth H2 entropy of a random
variable X is defined as follows:

Hε
2(X) = max

Y ∈Bε(X)
H2(Y),

where Bε(X) is the set of all distributions within statistical distance ε of X.

We recall the definition of the Smooth Entropy Approximation problem considered in [MNRV24].

Definition A.3. Let ε = ε(n) ∈ [0, 1]. The ε-Smooth Entropy Approximation problem (SEAε), is
defined as follows:

SEAε,Y = {(C, k) : Hε
2(C) ≥ k + 1} ,

SEAε,N = {(C, k) : H0(C) ≤ k − 1} ,

where C is a circuit with η input bits, µ ≤ 3η output bits, and 0 < k ≤ µ.

That is, YES instances of SEAε are close to a distribution that has high H2 entropy, and NO
instances of SEAε have low H0 entropy (i.e., a small support). We now introduce a lemma based on
the work [MNRV24]. While this lemma is not stated explicitly in [MNRV24], it follows immediately
from the proof of [MNRV24, Theorem 1.1].

Lemma A.4 ([MNRV24, See Proof of Theorem 1.1]). Let Π ∈ NISZK and k = k(n) such that
k(n) ≤ 2n

0.01
. Then, Π⊗k has a randomized Karp reduction to SEAε with the following properties:

• The reduction is computable in time k · poly(n, log k) and uses poly(n, log k) random coins.

7Recall that the collision probability of a distribution X is defined as cp(X) = Pr
x,x′←X

[x = x′].

22

• The reduction never errs on NO instances and errs only with probability negligible in n and
k on YES instances.

• ε is negligible in both n and k.

• The SEAε circuit C generated by the reduction has size k ·poly(n, log k), with input and output
sizes poly(n, log k).

Remark A.5. The fact that the running time of the reduction and the size of the SEAε circuit C
are both k · poly(n, log k) does not follow from the proof of [MNRV24, Theorem 1.1], but rather it
can be inferred from the reduction that establishes [MNRV24, Theorem 5.1].

We now have all the necessary details from [MNRV24] to establish Lemma 2.13. The reduction
from Π⊗k to IDε′ operates as follows (note that we use ε′ for the ID circuits and ε for the SEA
circuits since these two parameters will be different). It first efficiently reduces the tuple (x1, . . . , xk)
to an SEAε instance using the reduction described in Lemma A.4. Subsequently, it reduces the
SEAε instance to an IDε′ circuit Ĉ.

We now present the reduction from SEAε to IDε′ . This is a deterministic Karp reduction,
and its analysis closely follows [MNRV24, Lemma 3.9]. Denote by (C, κ) the SEAε instance. The
circuit C has η input bits and µ output bits. Let Hµ,κ = {h : {0, 1}µ → {0, 1}κ} be a pairwise-
independent family of hash functions as in [MNRV24, Lemma 2.9]. Each hash function from this
family is described by O(max(µ, κ)) = O(µ) bits. Construct the circuit C ′ that corresponds to
r = 20(log2 n + log2 k) copies of C evaluated independently. Its input length is η′ = η · r, and its
output length is µ′ = µ ·r. Similarly, let κ′ = κ ·r. The reduction, on input (C, κ), outputs a circuit
Ĉ that works as follows:

• It takes as input a description h of a hash function in Hµ′,κ′ and an x ∈ {0, 1}η
′
.

• It outputs
(
h, h

(
C ′ (x)

))
.

The output length of Ĉ is µ̂ = O(µ′) + κ′ < O(max(η′, µ′)). Its input length is also O(max(η′, µ′)).
Suppose (C, κ) is a YES instance of SEAε. That is, Hε

2 (C) ≥ κ + 1, and thus Hε′
2 (C ′) ≥ κ′ + r,

where ε′ = ε · r. This implies that there is a distribution Y that is at most ε′-far from C ′ that
has cp(Y) ≤ 2−(κ

′+r). Let H denote the random variable corresponding to a uniformly random
h ∈ Hµ′,κ′ . By the leftover hash lemma (see [MNRV24, Lemma 2.10] for the exact formulation), the
statistical distance between (H,H(Y)) and (H,Uκ′) is at most 2(−r)/2. Thus, the distance between

(H,H(C ′)) and (H,Uκ′) is at most ε′ + 2(−r)/2 = ε · 20
(
log2 n+ log2 k

)
+ 2−10(log

2 n+log2 k). Since

ε is negligible in n and k, ∆
(
Ĉ, Uµ̂

)
is also negligible in both n and k.

On the other hand, suppose (C, κ) is a NO instance of SEAε, that is, H0 (C) ≤ κ−1. This means
that C has support of size at most 2κ−1, and C ′ has support of size at most 2κ

′−r. This implies that

the support size of (H,H (C ′)) is at most |Hµ′,κ′ |·2κ
′−r ≤ 2−r ·2µ̂. Therefore,

∣∣∣Supp(Ĉ)∣∣∣·2−µ̂ = 2−r

is negligible in both n and k.
Since the hash functions have a succinct description and are efficiently computable, the running

time of the reduction and the size of the circuit Ĉ are both k · poly(n, log k), and Ĉ has input
and output lengths O(max(η′, µ′)) = poly(n, log k), as required. This completes the analysis of the
reduction from SEAε to IDε′ . By combining the reduction of Lemma A.4 with the reduction from
SEAε to IDε′ , we have proved Lemma 2.13.

23

B Proof of Lemma 2.11

We prove Lemma 2.11 by first presenting the instance-dependent commitment scheme of [NV06],
and then demonstrating that it satisfies the conditions of Lemma 2.11.

The commitment scheme makes use of interactive hashing [NOVY98, DHRS07], specifically
employing an information-theoretically secure protocol from [DHRS07]. We begin by defining
interactive hashing.

Interactive Hashing. In an interactive hashing protocol, two players are participating, A and
B. Player A receives an input W , while B has no input. Upon executing the protocol, both A and
B output a pair (W0,W1), such that one of W0,W1 equals W . Informally, the protocol is secure
for A if, when W is uniformly distributed, even a computationally unbounded B cannot determine
which one of (W0,W1) equals W . The protocol is secure for B if, for any sufficiently sparse set
S, even a computationally unbounded A cannot force both W0 and W1 to reside in S. We now
provide the formal definitions, based on [NV06].

Definition B.1 (Interactive Hashing). A protocol (A,B) is called an interactive hashing protocol
if it is an efficient two-party protocol with the following properties:

• Inputs: A has an input string W ∈ {0, 1}µ and B has no input.

• Outputs: A and B output two distinct values W0,W1 ∈ {0, 1}µ (in lexicographic order) such
that one of W0,W1 equals W .

Definition B.2. Let D denote the distribution of the index d ∈ {0, 1} such that the string Wd

corresponds to the input of A in the interactive hashing protocol. An interactive hashing pro-
tocol is secure for A if for every unbounded B∗ the distributions {viewB∗ (A(W), B∗) , D} and
{viewB∗ (A(W), B∗) , U1} are identical when W ≡ Uµ.

An interactive hashing protocol is (δ, ρ)-secure for B if for every S ⊆ {0, 1}µ of density at most
δ and every computationally unbounded strategy A∗, it holds that Pr [W0,W1 ∈ S] < ρ.

We will rely on an elegant interactive hashing protocol due to Ding et al. [DHRS07]:

Lemma B.3 ([NV06, Theorem 4.3], based on [DHRS07]). For every 0 < δ < 1, there exists a
constant-round public-coin interactive hashing protocol (A,B) that is secure for A and (δ, poly(µ)·δ)-
secure for B.

Using Lemma B.3, we now present in Fig. 3 the construction of the instance-dependent com-
mitment for IDε. We proceed to analyze the construction to show that it satisfies Lemma 2.11.
(Although our focus is on the communication complexity, for completeness we provide a full anal-
ysis).

Complexity. During the commit phase, the sender samples a random output x from the circuit
C and engages in an interactive hashing protocol with the receiver on input x. Since both of
the parties in the interactive hashing protocol are efficient and C has output size µ, the number
of exchanged bits is poly (µ). Subsequently, the sender sends one additional bit to the receiver.
During the reveal phase, the sender sends the revealed bit along with the input r to C that was

24

Common Input: Circuit C : {0, 1}η → {0, 1}µ.
Sender’s Additional Input: a bit b ∈ {0, 1}.

Commit phase:

1. The sender S generates a random r ∈ {0, 1}η and computes x = C(r)

2. (S,R) run the interactive hashing protocol (A,B) of Lemma B.3 with the parameter δ = ε,
and with S playing A(x) and R playing B. Their common output is a pair (x0, x1).

3. The sender S finds d ∈ {0, 1} such that xd = x and sends c = d⊕ b.

4. The commitment z is defined as (x0, x1, c).

Reveal phase:

1. S reveals b and r.

2. The receiver R accepts if C(r) = xc⊕b and otherwise it rejects.

Figure 3: Instance-dependent commitment scheme for IDε

used to generate x. The circuit C has input size η, thus poly (η, µ) bits are exchanged in both the
commit and the reveal phases.

During the commit phase, the receiver runs in time poly(η, µ), due to the interactive hashing
protocol of [DHRS07] being efficient. During the reveal phase, the receiver runs in time |C| ·
poly(η, µ, log(|C|)) to evaluate the circuit C on input r. Hence, the receiver has runtime |C| ·
poly(η, µ, log(|C|)) in both phases.

Also note that the commitment scheme is constant-round and public-coin since the interactive
hashing protocol of [DHRS07] is constant-round and public-coin.

Correctness. Given any input circuit and bit b, if the sender and the receiver follow their pre-
scribed strategies, then the receiver always accepts. This is ensured by the underlying interactive
hashing protocol of Lemma B.3 which guarantees that one of the output strings (x0, x1) will be
equal to the input x.

Hiding error. In case C is a YES instance of IDε, then ∆ (C,Uµ) ≤ ε. For every receiver R∗, we
denote by B∗ the interactive hashing strategy induced by R∗. Additionally, we denote by d ∈ {0, 1}
the index of the interactive hashing output that equals the input (to A). For a random variable X

25

and an index b ∈ {0, 1}, we write as a shorthand v(X, b) ≜ (viewB∗ (A (X) , B∗) , b). We then have:

∆ (viewR∗ (S(0), R
∗) , viewR∗ (S(1), R

∗)) = ∆ (v(C, d⊕ 0), v(C, d⊕ 1))

≤ ∆(v(C, d), v(Uµ, d))

+ ∆ (v(Uµ, d), v(Uµ, d⊕ 1))

+ ∆ (v(Uµ, d⊕ 1), v(C, d⊕ 1)))

≤ ∆(C,Uµ) + 0 +∆(C,Uµ)

≤ 2ε.

Therefore, the hiding error ∆
(
viewR∗ (S(0), R

∗) , viewR∗ (S(1), R
∗)
)
is at most 2ε.

Binding error. In case C is a NO instance of IDε, the density of Supp (C) is at most ε. Let
S∗ be a malicious sender participating in the game defining the binding property. The sender S∗

can succeed only if both x0, x1 are in the support of C. Because we chose the parameter δ for the
interactive hashing protocol to match the density of Supp (C), by the (δ, poly(µ) · δ)-security of the
interactive hashing we have Pr [x0, x1 ∈ Supp (C)] < poly(µ) · δ. Since δ = ε, the probability of
violating the binding condition is at most poly(µ) · ε.

C More Details on Theorem 2.14

The [RR20] batching proof (similarly to many interactive proofs in the literature, such as the
sumcheck and [GKR15] protocols) is “holographic”. This means that the verifier runs in time
poly(n, log(k)) given oracle access to the low degree extension (LDE) of the input (x1, . . . , xk) (see
[GR17] for a formal treatment). Moreover, the locations of the oracle queries (to the LDE) of the
input only depend on the verifier’s internal randomness. Thus, to see that the furthermore part of
Theorem 2.14 holds, observe that the verifier can compute these values during its pre-processing
step (i.e., prior to its interaction with the prover).

To see that the [RR20] protocol is indeed holographic we briefly recall the construction. Their
protocol (building on an idea from [RRR18]) is recursive, where in each step we reduce the task
of batch proving k instances, to batch proving k/2 related instances. The reduction relies on an
interactive proof of proximity (IPP) which is developed in the same work (improving on a prior
result of [RVW13]). The reduction step proceeds by running an IPP whose input is a list of the k
witnesses concatenated with an LDE of the k instances. The IPP verifier queries some points from
this LDE (which is why we view the protocol as holographic) and needs to additionally query some
points of the witnesses. The parameters are set so that the verifier only needs to query at most
k/2 of the witnesses, so rather than actually performing these queries, we recursively check these
via an additional batch verification protocol.8

8To facilitate the recursion, we need to rely on a protocol that does batch verification and additionally checks some
(small-depth) predicate on the k witnesses.

26

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

