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Abstract

High dimensional expanders (HDXs) are a hypergraph generalization of expander graphs.
They are extensively studied in the math and TCS communities due to their many applications.
Like expander graphs, HDXs are especially interesting for applications when they are bounded
degree, namely, if the number of edges adjacent to every vertex is bounded. However, only
a handful of constructions are known to have this property, all of which rely on non-trivial
algebraic techniques. In particular, no random or combinatorial construction of bounded degree
high dimensional expanders is known. As a result, our understanding of these objects is limited.

The degree of an i-face in an HDX is the number of (i+ 1)-faces that contain it. In this work
we construct complexes whose higher dimensional faces have bounded degree. This is done by
giving an elementary and deterministic algorithm that takes as input a regular k-dimensional
HDX X and outputs another regular k-dimensional HDX X̂ with twice as many vertices. While
the degree of vertices in X̂ grows, the degree of the (k − 1)-faces in X̂ stays the same. As a result,
we obtain a new ‘algebra-free’ construction of HDXs whose (k − 1)-face degree is bounded.

Our construction algorithm is based on a simple and natural generalization of the expander
graph construction by Bilu and Linial [BL06], which build expander graphs using lifts coming
from edge signings. Our construction is based on local lifts of high dimensional expanders, where
a local lift is a new complex whose top-level links are lifts of the links of the original complex.
We demonstrate that a local lift of an HDX is also an HDX in many cases.

In addition, combining local lifts with existing bounded degree constructions creates new
families of bounded degree HDXs with significantly different links than before. We use this
technique to construct bounded degree high dimensional expanders with links that have arbitrarily
large diameters.

1 Introduction
Expander graphs are graphs that are well connected. These objects are studied extensively in
computer science and mathematics [HLW06], and since their discovery they have found numerous
applications in complexity [Din07; Rei08], coding theory [SS96; Ta-17; Din+22], derandomization
[HLW06; Gol11] and more. Most of these applications rely on families of expander graphs that have
a bounded degree. It is well known that random regular graphs are expanders, and many explicit
bounded degree constructions are also in hand [MAR73; LPS88; RVW02; BL06; MSS15].
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Recently, the study of high dimensional expanders (HDXs) emerged (see surveys [Lub18; GK23]).
These are hypergraph analogues of expander graphs. While the full potential of high dimensional
expanders is yet to be discovered, they are already important objects of study. High dimensional
expanders, and especially bounded degree high dimensional expanders 1 have already yielded exciting
applications in various areas such as locally testable codes [Din+22; PK22; DLZ23], quantum
complexity [ABN23], sampling and Markov chains [Ana+19], agreement testing [DK17; DDL24;
BLM24], high dimensional geometry and topology [Gro10; Fox+12] and random (hyper)graph theory
[LM06; MW09].

The specific family of high dimensional expanders used in many of the aforementioned applications
is tailor-made to satisfy other desired properties, in addition to high dimensional expansion. For
example, the local neighborhoods in the high dimensional expanders used in [Din+22; PK22; DLZ23]
are tailored so that one can define a small locally testable code on them; the high dimensional
expanders in [Gro10; DDL24; BLM24] also have a vanishing 1-cohomology over certain group
coefficients.

However, constructing bounded degree high dimensional expanders (for arbitrarily small spectral
expansion of the links) is still a serious challenge. No random model for bounded degree high
dimensional expanders is known, and all deterministic constructions known use non-trivial algebraic
techniques. The fact that we have only a handful of bounded degree constructions to choose
from, makes these objects difficult to understand and to work with. We believe that many further
applications await us once we learn how to diversify these constructions, in the same way that
many of the above-mentioned applications of expander graphs grew out of more varied expander
constructions that were discovered.

Nowadays, all known constructions of HDXs rely on non-trivial algebraic techniques, including
quotients of the Bruhat Tits buildings [Bal00; CSŻ03; Li04; LSV05a; Dik22; DDL24; BLM24] and
coset complexes [KO18; FI20; OP22]. There have been attempts at constructing bounded degree
HDXs with combinatorial tools, but all these constructions fall short either in bounded degreeness
[Gol23; Liu+23] or in their local spectral expansion [Con19; CTZ20; CLY20; LMY20; Gol21].

In particular, it is an important open question whether an algorithm à la Zig-Zag product
[RVW02] exists for bounded degree high dimensional expanders. That is, an algorithm that given a
bounded degree high dimensional expander as input, outputs another high dimensional expander
with more vertices and the same bound on the degree and spectral expansion.

As an intermediate result, in this work we develop an algorithm that takes a high dimensional
expander as input, and outputs another high dimensional expander with more vertices, the same
bound on spectral expansion and the same bound on the degree of high dimensional faces (but not
on the degree vertices). This algorithm is entirely combinatorial, relying only on the theory of graph
covers initiated by [AL02; BL06]. While families of complexes constructed via such an algorithm
are not sufficient for applications that require the vertex degree to be bounded, we view this as a
stepping stone towards an ‘algebra free’ construction of bounded degree HDXs.

1.1 Preliminaries on High Dimensional Expanders

To better understand our results, let us introduce some standard definitions and notation on
simplicial complexes (see Subsection 2.3 for a more elaborated definitions). A simplicial complex is
a hypergraph that is downwards closed to containment. A simplicial complex is k-dimensional if the
largest hyperedge in the complex is of size (k + 1). We denote by X(ℓ) the sets (aka faces) of size
ℓ + 1. Let X be a k-dimensional simplicial complex.

1A family of HDXs is called bounded degree if there is some M > 0 so that all vertices in every HDX in the family
have degree at most M .
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The degree of a face σ ∈ X(ℓ), is d(σ) := |{τ ∈ X(ℓ + 1) | τ ⊇ σ}|. A family of complexes
{Xi}∞

i=0 is ℓ-bounded degree if there exists an M > 0 that bounds the degrees of all ℓ-faces across
all the complexes simultaneously. That is, for every i and any σ ∈ Xi(ℓ), d(σ) ⩽M . We say that a
family of complexes are bounded degree if they are 0-bounded degree. We say that a complex is
(d0, d1, . . . , dk−1)-regular if for every σ ∈ X(ℓ), d(σ) = dℓ.

In this paper we are mainly interested in the local spectral expansion definition of high dimensional
expanders (see [Lub18] for a survey on other definitions). For this we need to define ‘links’, the
generalization of vertex neighborhoods in graphs. For a face σ ∈ X, the link of σ is the simplicial
complex Xσ = {τ \ σ | σ ⊆ τ ∈ X}. We will be interested in the graph structure underlying the
complex and its links. The 1-skeleton of X is the graph whose vertices are X(0) and whose edges
are X(1).

Definition 1.1 (High dimensional expander). For λ > 0 we say that X is a λ-two sided (one sided)
high dimensional expander if for every ℓ ⩽ k − 2 and σ ∈ X(ℓ), the 1-skeleton of Xσ is a λ-two sided
(one sided) spectral expander.

1.2 Our Results

Our results are based on the notion of a graph lifts. We say a graph Ĝ = (V̂ , Ê) is a lift of a
graph G = (V , E) if there exists a graph homomorphism ϕ : V̂ → V such that for every v̂ ∈ V̂ , the
mapping ϕ is a bijection on the neighborhood of v̂. Intuitively, a lift of a graph G is a large graph
Ĝ that locally looks the same as G. Graph lifts are essential in many constructions of expander
graphs [AL02; BL06; MSS15], and our construction builds on the beautiful work of [BL06]. We
elaborate more on this below.

Our main result is a construction algorithm that maintains both expansion and the degree of
the (k − 1)-faces of a regular complex. This algorithm takes as input a (d0, d1, . . . , dk−1)-regular
λ-high dimensional expander X, and outputs a (2d0, 2d1, . . . , 2dk−2, dk−1)-regular X̂ with twice as
many vertices that is also a λ-HDX. This algorithm uses the notion of random lifts [BL06], and in
particular, it requires no algebraic machinery for the construction nor the analysis. More formally,
this is the theorem we prove.

Theorem 1.2 (See Theorem 5.2 for a more precise statement). There exists a randomized algorithm
A that takes as input a k-dimensional complex X0 and an integer i ⩾ 1, runs in expected time
poly((2i|X0(0)|)k) at most, and outputs a k-dimensional complex Xi with 2i|X0(0)| vertices. The
algorithm has the following guarantees.

1. If X0 is a (d0, d1, . . . , dk−1)-regular λ-two sided high dimensional expander, then Xi is a
(2id0, . . . , 2idk−2, dk−1)-regular λ′-two sided high dimensional expander where

λ′ = O

max

λ

(
1 + log 1

λ

)
,

√
log3 dk−1

dk−1


 .

2. For every σ̂ ∈ Xi(k − 2), the link (Xi)σ̂ is a lift of (Xi−1)σ for some σ ∈ Xi−1(k − 2).

There are various complexes in hand that one can use as the input to this algorithm. These
include the complete complex, the complexes from [LLR19], and even complexes from bounded
degree families that are regular, such as those constructed by [FI20].

We give two proofs to Theorem 1.2, building on the techniques developed by [BL06] to analyze
lifts in expander graphs, and extend them to high dimensional expanders.
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While most of the work in [BL06] regards random lifts of graphs, they also show how to deter-
ministically find expander graphs using lifts. Building on their method, we also give a deterministic
algorithm for finding the complexes in Theorem 1.2, albeit under some more assumptions on the
input X0. This provides a deterministic, polynomial time and elementary construction of a family
of (k − 1)-bounded k-dimensional high dimensional expanders.

Theorem 1.3 (See Theorem 6.1). There exists a deterministic algorithm B that takes as input a k-
dimensional complex X0 and an integer i ⩾ 1, runs in time poly((2i|X0(0)|)k) at most, and outputs
a k-dimensional complex Xi with 2i|X0(0)| vertices. The algorithm has the following guarantees.

1. If X0 is a (d0, d1 . . . , dk−1)-regular λ-two sided high dimensional expander, such that dk−1 >

210k and |X0(k − 2)| ⩽ (dk−2)
10k, then Xi is a (2id0, . . . , 2idk−2, dk−1)-regular λ′-two sided

high dimensional expander where

λ′ = O

25k max

λ

(
1 + log 1

λ

)
,

√
log3 dk−1

dk−1


 .

2. For every σ̂ ∈ Xi(k − 2), the link (Xi)σ̂ is a lift of (Xi−1)σ for some σ ∈ Xi−1(k − 2).

As far as we know, previous constructions rely on deep algebraic tools but are 0-bounded
degree, with the exception of [LLR19], which is a randomized construction utilizing Steiner systems
constructed in [Kee14].

Not only is our construction deterministic, but it is also simple and versatile; one can apply it
to various kinds of high dimensional expanders, and the family of HDXs obtained by doing so is
changes according to the initiating HDX given at the beginning of the process.

1.3 The Construction

We now dive into the heart of Theorem 1.2. Our construction builds upon the work of random lifts
of graphs studied in [BL06]. Random lifts of expanders have been subject to extensive research (e.g.,
[Ami+01; BL06; AKM13; MSS15; Bor20]). However, in this work, we do not try to lift the complex
itself. Instead, we construct another complex where the (k − 2)-links are lifts of links in the original
complex. We call such a complex a local lift.

Let us first explain the idea behind the work of [BL06]. Their work suggests a construction of
bounded degree family of expander graphs {Gi}∞

i=0, where for every i, Gi+1 is a lift of Gi. The fact
that the maximal degree of Gi+1 is equal to the maximal degree of Gi promises that the sequence is
bounded degree. Therefore, one only needs to worry about expansion.

The work [BL06] studies random lifts sampled using signings on the edges of a graph G = (V , E),
that is, functions f : E → {±1}. Given such a signing f , one can construct the following lift
Ĝ = (V̂ , Ê) by setting V̂ = V × {±1} and {(v, i), (u, j)} ∈ Ê if {v, u} ∈ E and i · j = f({u, v}).

The work of [BL06] analyzes when a lift Ĝ obtained by random signing f is an expander graph.
They give a proof (based on the Lovász Local Lemma) that every expander G has such a “good”
signing. They also provide a deterministic algorithm to construct such a lift using the conditional
probabilities method [AS16].

Our construction generalizes this idea, only instead of lifts coming from edge signings, we define
local lifts coming from face-signings.

Let X be a k-dimensional simplicial complex and let f : X(k) → {±1}. Define the k-dimensional
complex X̂ (where f is implicit in the notation) as a complex whose vertices are X̂(0) = X(0)× {±1},
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and whose k-faces are

X̂(k) =

{{
vj0

0 , vj1
1 , . . . , vjk

k

} ∣∣∣∣∣ {v0, v1, . . . , vk} ∈ X(k) and
k∏

i=0
ji = f({v0, v1, . . . , vk})

}
.

For 1 ⩽ ℓ ⩽ k − 1 the ℓ-faces are independent of the second coordinate, that is,

X̂(ℓ) =
{{

vj0
0 , vj1

1 , . . . , vjℓ
ℓ

} ∣∣∣ {v0, v1, . . . , vℓ} ∈ X(ℓ)
}

.

Obviously, the underlying graph of X̂ is not a lift of the underlying graph of X. Indeed, the
degree of each vertex is doubled. However, for every σ̂ ∈ X̂(k − 2), we show that X̂σ̂ is isomorphic
to a lift of Xσ (where σ =

{
v
∣∣ vj ∈ σ̂

}
).

Indeed, let us assume for simplicity that k = 2. Consider the link of a vertex vj ∈ X̂(0) and
define the function g : Xv(1) → {±1} by g(uw) = j · f(uw). We claim that X̂vj is the cover g
induces on Xv. It is easy to see that its vertices are X̂vj (0) = Xv(0) × {±1}, since the vertices in
X̂vj correspond to edges in X̂(1). These are precisely all u1, u−1 where u ∈ Xv(0).

The edges are more delicate. Edges
{

uj′ , wj′′
}

∈ X̂vj (1) correspond to triangles
{

vj , uj′ , wj′′
}

∈
X̂. Indeed, such a triangle is in X̂ if and only if:

1. {u, w} ∈ Xv(1) and,

2. j · j′ · j′′ = f({v, u, w}).

The second item occurs if and only if j · j′ · j′′ = g(uw). Hence, X̂vj is the cover g induces on Xv.
As mentioned above, we give two proofs that signings f so that X̂ is a high dimensional expander

exist. The first proof is based on the Lovász Local Lemma and follows the argument in [BL06,
Lemma 3.3], and generalizes it so that multiple links may be taken into account simultaneously.
The second proof is based on a different way to use the Lovász Local Lemma (together with other
results from [BL06]) which we find simpler, to deduce high dimensional expansion. This proof, while
more restrictive on the link sizes, can be combined with the algorithmic version of the Lovász Local
Lemma [MT10], to prove Theorem 1.2. Afterwards, we show that if the links of the complex X are
already dense, then the derandomization technique in [BL06] works for high dimensional expanders,
and we can obtain a deterministic construction for (k − 1)-bounded k-dimensional high dimensional
expanders, proving Theorem 1.3.

1.4 Understanding Vertex vs. Edge Degree in Bounded-Degree Constructions

We can use Theorem 1.2 to diversifying links in other existing bounded degree constructions, and
thus gain more understanding on how possible high dimesional expanders may look like. For
simplicity, let us stick to the 2-dimensional case, and consider the question how small could d1 be
given d0 in a (d0, d1)-regular high dimensional expander?

Let us consider the behavior of d0 and d1 in the known bounded degree constructions [Bal00;
CSŻ03; Li04; LSV05a; KO18; FI20; Dik22; DDL24; BLM24]. In all the above, d0 grows to infinity
as λ goes to 0, and d1 = poly(d0)2. In other words, the links themselves are “locally” dense. A
natural question to ask is whether the lower bound of d1 ⩾ d

Ω(1)
0 is necessary for bounded degree

constructions. In expander graphs it is well known that one can increase the size of the graph without
2Technically most of the constructions above are not regular, only bounded degree, so d0 and d1 should be average

values, but we ignore this point for the sake of presentation.
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increasing the bound on the degree, but this is not the behavior in the known bounded-degree HDX
constructions.

Theorem 1.3 gives a negative answer to this question in the 2-dimensional case, by proving the
following.

Theorem 1.4. For every λ > 0 and any sufficiently large M > 0, there exists an infinite family
of 2-dimensional λ-two sided high dimensional expanders that are (d0, exp(poly( 1

λ )))-regular, for
M ⩽ d0 ⩽ 2M .

We stress that d1 = exp(poly( 1
λ̃
)) depends only on the spectral expansion and not on the number

of vertices or d0.

1.5 Related Work

Bounded degree HDX. As discussed above, all known constructions of bounded degree high
dimensional expanders use algebraic techniques. The first bounded degree high dimensional expanders
for arbitrarily small λ > 0 was by [Bal00]. This was followed by many other works that aimed to
construct the high dimensional equivalent to Ramanujan graphs [CSŻ03; Li04; LSV05b; LSV05a].
All these constructions are quotients of Ã-type Bruhat Tits buildings. The work by [Dik22] used this
building together with complex lifts to construct other high dimensional expanders. Recently, high
dimensional expanders that come from C̃ Bruhat Tits buildings were also constructed and studied
[CL23; DDL24; BLM24]. A second type of constructions come from coset complexes, first studied
by [KO18]. More complexes of this type were constructed by [FI20; OP22]. Interestingly, [LLR19]
give a randomized construction of a (k − 1)-bounded degree family of λ-HDXs for arbitrarily small
λ > 0. This construction is based on random Steiner systems and given in the breakthrough result
of [Kee14]. The underlying (k − 1)-skeletons of the complexes in that family are complete.

There are other bounded degree constructions [Con19; CTZ20; CLY20; LMY20; Gol21]. These
constructions have various mixing properties, but none of them are λ-HDXs for λ ⩽ 1

2 (where λ
is normalized between 0 and 1). There are other constructions of λ-HDXs for arbitrarily small λ,
which are not bounded degree, but are still non-trivially sparse. These include [Gol23] - based on
Grassmann posets, and [Liu+23] - based on random geometric graphs of the sphere.

Finally, we comment that previous works also considered the possible degrees (d0, d1) possible in
a high dimensional expanders. The work by [FI20] used irregular algebraic constructions of bounded
degree λ-HDXs and ‘regularized’ them, thus showing that there exists bounded degree HDXs that
are regular for arbitrarily small λ. The work by [CLY20] gives a lower bound on the expansion of
the underlying graph of the complex in terms of (d0, d1), but this lower bound does not rule out (or
construct) such HDXs with d1 ≪ d0.

Graph and HDX lifts. The study of random graph lifting was initiated in [AL02]. Random lifts
from signings of expanders were studied in [BL06] where it was proven that with high probability
they are also expanders. This was extended to larger lifts as well [Oli09; AG10]. Friedman showed
that random lifts of Ramanujan graphs are nearly Ramanujan [Fri08] (see also [Bor20]). In the
seminal paper by [MSS15], Ramanujan bipartite graphs were constructed by using graph lifts. One
can also define lifts of simplicial complexes. Most known bounded degree high dimensional expanders
in a dual notion of lifts - that is, taking quotients of an infinite object [Bal00; CSŻ03; Li04; LSV05b;
LSV05a; KO18], in a way such that the infinite object is a lift of the complex that is constructed.
[Dik22] studied taking random lifts of simplicial complexes as in [BL06], but the construction there
needed the use of algebraic techniques as well.
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1.6 Open Questions

Combinatorial constructions. As we mention earlier, there is no construction of bounded
degree high dimensional expanders that does not rely on non-trivial algebraic techniques. As
an intermediate step towards such a construction, can one give a construction of k-dimensional
simplicial complexes that are (k − 2)-bounded degree (or i-bounded degree for any i < k − 1)?

Links with other properties. Fix a vertex set [n] and graphs {Gi}n
i=1 (one graph for every

vertex i ∈ [n]). It is interesting to understand whether there exists a graph whose vertex set
is V = [n], and such that the neighborhood of every vertex i ∈ V is (isomorphic to) Gi. The
structure of such graphs is an extensive topic of study, especially in the case where all Gi’s are equal
(see, e.g., [BC75; BB89; Már+03]). One of the major components in the works [Din+22; PK22]
that constructed asymptotically good locally testable codes and quantum codes, is a construction
of graphs that locally look like a neighborhood of a graph product, but globally have improved
expansion properties.

In this work, we propose a technique that addresses a related problem. Given a graph G (which is
the one skeleton of a regular 2-dimensional complex X), we find a graph Ĝ where every neighborhood
in Ĝ is a random (or deterministic) 2-lift of a corresponding neighborhood in G. Is there a technique
that allows us to do so for any set of 2-lifts of the respective vertex neighborhoods?

Other notions of expansion. In this paper we mainly deal with local spectral expansion,
but other definitions of high dimensional expansion also exist. Most notable is the notion of
coboundary expansion defined independently in [LM06] and [Gro10]. This notion is important for
many applications of high dimensional expanders such as code construction [Din+22], topological
expansion [Gro10] and property testing [KL14; GK22; DD23; BM23]. Does a local lift maintain
coboundary expansion? If not, is it maintained in interesting special cases?

1.6.1 Organization of This Paper

The necessary preliminaries are given in Section 2. We describe local lifts in Section 3 and describe
some of their basic properties. In Section 4 we show existence of good local lifts by modifying a
Lovász Local Lemma argument by [BL06]. In Section 5 we prove Theorem 1.2 using the algorithmic
Lovász Local Lemma [MT10] and derive Theorem 1.4. In Section 6 we show that the method of
derandomization in [BL06] could be generalized to our case as well and prove Theorem 1.3.

2 Preliminaries
Unless explicitly stated, all logarithms are with base 2. The ln function is a logarithm with base e.
We write A ⊔ B to denote a disjoint union of sets A, B. The For n ⩾ 0 we write [n] = {0, 1, . . . , n}.
For a square matrix (or equivalently, a linear operator on a finite vector space), we write ∥A∥ to
denote the operator norm.

2.1 Graphs

Let G = (V , E) be a graph. For u, v ∈ V we write Γ(v) for the set of v’s neighbors in G and u ∼ v
if u and v are neighbors. The indicator vector of a set S ⊆ V , denoted by 1S , is 1S : V → {0, 1}
with 1S(v) = 1 ⇐⇒ v ∈ V . For two sets S, T ⊆ V we write EG(S, T ) for the set of edges in G
between S and T . The graph induced by S and T is G′ = (S ∪ T , EG(S, T )).
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For a d-regular graph we denote ℓ2(V ) = {f : V → R} endowed with the inner product

⟨f , g⟩ =
∑
v∈V

f(v)g(v).

2.1.1 Expander Graphs

Expander graphs are graphs with good connectivity properties. There are many equivalent ways to
define expanders [HLW06]. In this manuscript we focus on spectral expansion.

Let G = (V , E) be a d-regular graph. The random walk matrix of G is a matrix A ∈ RV ×V

defined by A(u, v) = 1
d if u ∈ Γ(v) and otherwise 0. Equivalently, it corresponds to the random

walk operator A : ℓ2(V ) → ℓ2(V ) with Af(v) = 1
d

∑
u∈Γ(v) f(u). We abuse notation and use A for

both the matrix and the random walk operator it represents. We sometimes denote this operator by
AG when G is unclear from the context.

The operator A is self adjoint with respect to the inner product. Therefore, it has an orthonormal
basis of real-valued eigenvectors, where the eigenvalues are denoted by 1 = λ1 ⩾ λ2 ⩾ · · · ⩾ λn. We
elaborate and write λi(G) when the graph in question is unclear from the context. The spectrum of
G is the spectrum of its random walk matrix and is denoted by Spec(G).

Definition 2.1 (spectral expander). For λ ∈ [0, 1] we say that G is λ-two sided (resp. one sided)
spectral expander (or expander for short) if λ ⩾ max{λ2, |λn|} (resp. λ ⩾ λ2).

2.1.2 Tensor Product

Let G, H be any graphs. The tensor product of G and H, denoted by G ⊗ H, is the graph with
vertices V (G)× V (H), and edges E(G ⊗ H) = {(a, b)(a′, b′) | {a, a′} ∈ E(G) and {b, b′} ∈ E(H)}.

The following fact is well known.

Fact 2.2. Let G, H be graphs. If H, G are λ, λ′-two sided spectral expanders respectively, then G ⊗ H
is a max{λ, λ′}-two sided spectral expander. Moreover, if H is a λ-two sided spectral expander and
G is a λ′-one sided spectral expander, then G ⊗ H is a max{λ, λ′}-one sided spectral expander.

2.2 Graph Lifts

Graph lifts are an important notion, studied first by [AL02; Ami+01] (although the notion of lifts
themselves is a classical notion in algebraic topology known for about a century).

Definition 2.3 (lift). For finite, connected and simple graphs G and Ĝ, a lift (also known as a
covering map) ϕ : Ĝ → G is a graph homomorphism with the property that for all v̂ ∈ V (Ĝ), ϕ
maps the neighborhood of v̂ in Ĝ onto the neighborhood of ϕ(v̂) in G. Finally, we say that Ĝ is an
ℓ-lift of G if there exists an ℓ-to-1 covering map ϕ : Ĝ → G.

One way to construct a 2-lift is to use a signing function on the edges as follows.

Definition 2.4 (Function induced lift). Let G = (V , E) be a graph and let f : E → {±1} be a
signing. The f -induced lift Ĝ = Ĝf is the graph whose vertices are

V̂ = V × {±1} =
{

vj
∣∣∣ v ∈ V , j ∈ {±1}

}
and whose edges are

Ê =
{{

vj , ui
} ∣∣∣ {v, u} ∈ E, ij = f({u, v})

}
.

The lift map is ϕ(vj) = v.
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It is elementary to prove this construction is indeed a lift, so we omit this proof. It is also easy
to show that any 2-lift is an induced lift for some signing f : V (G) → {±1}. See [Sur84] for a more
general statement and proof.

In Section 3 we generalize the notion of graph lifts to local lifts of simplicial complexes.

2.2.1 Signing Functions and Lift Expansion

Fix a graph G and a signing f : E(G) → {±1}. In this subsection, we characterize the eigenvalues
of an f -induced lift. For this, we need to define the f -signing of an adjacency operator. For a
d-regular graph the f -signing of the adjacency operator is the matrix Af (u, v) = f(u, v) · A(u, v)
for {u, v} ∈ E and Af (u, v) = 0 if {u, v} < E.

This signing matrix is closely related to the random walk operator of the lift. In particular, the
following is by now classical.

Lemma 2.5. Let G be a d-regular graph and let Ĝ be an f -induced 2-lift. Then the eigenvalues of
A

Ĝ
are the union (with multiplicities) of the eigenvalues of A and those of Af . In particular, if

∥Af ∥ ⩽ λ and G is a λ′-two sided (resp. one sided) spectral expander, then Ĝ is a max {λ, λ′}-two
sided (resp. one sided) spectral expander.

Using this lemma, [BL06] gave a criterion for the expansion of the lift graph.

Lemma 2.6 ([BL06, Lemma 3.3]). Let G, f and Af be as above and assume that G is a λ-two
sided (resp. one sided) spectral expander with no self loops. Assume that for any pair of disjoint
S, T ⊆ V (G) ∣∣∣〈1S , Af 1T

〉∣∣∣ ⩽ α
√

|S||T |,

then Ĝf is a λ′-two sided (resp. one-sided) spectral expander where λ′ = max
{

λ, O
(
α
(
1 + log 1

α

))}
.

We note that there is a nice formula for this inner product, which is〈
1S , Af 1T

〉
=

1
d

∑
(v,u):{v,u}∈E(G)

f(u, v)1S(v)1T (u).

2.3 High Dimensional Expanders

Definition 2.7 (simplicial complex). A k-dimensional simplicial complex is a finite hypergraph X
that is downwards closed to containment. That is, if τ ∈ X and σ ⊆ τ then σ ∈ X.

We write X = X(−1) ⊔ X(0) ⊔ X(1) ⊔ · · · ⊔ X(k), where X(ℓ) = {σ ∈ X | |σ| = ℓ + 1} (here
X(−1) = {∅} is mainly a formality) and the maximal size of a set σ ∈ X is k + 1. We call elements
σ ∈ X(ℓ) ℓ-faces, and in this case we say that X is k-dimensional. In this paper we will always
assume the simplicial complex in question is pure, that is, that every σ ∈ X(ℓ) contained in some
τ ∈ X(k). In addition, we assume it has no self-loops or multifaces. Namely, every vertex appears
at most once in each face and any face appears at most once in X.

Degrees and regularity. The degree of a face σ ∈ X(i) is d(σ) = |{τ ∈ X(i + 1) | τ ⊇ σ}|. We
say that a family of simplicial complexes {Xi}∞

i=0 is j-bounded degree if there is an integer M > 0 so
that for all Xi and all σ ∈ Xi(j), d(σ) ⩽M . If the family is 0-bounded degree, we sometimes just
say bounded degree (without the zero).
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Definition 2.8 (hyper-regularity). Let d0 ⩾ d1 ⩾ · · · ⩾ dk−1 be positive integers. A k-dimensional
simplicial complex X is (d0, d1, . . . , dk−1)-regular if for any i ∈ {0, . . . , k − 1} and any i-face σ,
d(σ) = di.

We say that X is regular if there exists such a tuple so that X is (d0, d1, . . . , dk−1)-regular. In
this case we denote by di(X) = di.

Skeletons and links. The j-skeleton of a simplicial complex X is the simplicial complex obtained
by taking all the i-faces of X, for all i ⩽ j. The 1-skeleton of a complex is also called an underlying
graph.

A link is a generalization of a graph neighborhood.

Definition 2.9 (link). For a k-dimensional simplicial complex X and a face σ ∈ X, the link of σ is
the (k − 1 − |σ|)-dimensional simplicial complex

Xσ = {τ \ σ | τ ∈ X, τ ⊃ σ} .

For ℓ ⩽ k − 2 and σ ∈ X(ℓ) we denote by Aσ the random walk operator of the 1-skeleton of Xσ.
We often abuse of notation and for a face σ = {v0, . . . , vℓ} ∈ X(ℓ) write σ = v0 . . . vℓ.

Natural analogues of expander graphs to higher dimensions are simplicial complexes where the
neighborhoods of the faces are themselves expander graphs. See Section 1 for more context on this
important definition.

Definition 2.10 (λ-high dimensional expander). Let λ ∈ [0, 1]. A k-dimensional simplicial complex
X is a λ-two sided (resp. one sided) high dimensional expander if for all i ⩽ k − 2 and all σ ∈ X(i),
the 1-skeleton of Xσ is a λ-two sided (resp. one sided) spectral expander.

2.4 The Lovász Local Lemma

The Lovász Local Lemma is a classical result in the probabilistic method.

Lemma 2.11 (Lovász Local Lemma [EL75]). Let B = {B1, . . . , Bn} be a finite set of events in
some arbitrary probability space. The dependency graph of B is a digraph GB = (B, E) so that any
event Bi ∈ B is mutually independent of all the events B \ Γ(Bi), where Γ(Bi) is the neighborhood
of Bi in GB.

If there exists a real function ρ : B→ [0, 1) so that

P[Bi] ⩽ ρ(Bi)
∏

Bj∼Bi

(1 − ρ(Bj)) (2.1)

for any Bi ∈ B, then none of the events Bi occur with strictly positive probability.

This lemma also has an algorithmic version, first given in the seminal work of [MT10]. We give
below a slightly less general version than the one in [MT10].

Lemma 2.12 ([MT10]). Let Ω be a finite set and let P = (P1, P2, . . . , Pm) be a tuple of independent
random variables supported on Ωm. Let B = {B1, B2, . . . , Bn} be a finite set of events in the sigma
algebra of P. Let the dependency graph and the assignment ρ : B → [0, 1) be as in Lemma 2.11.
Then there exists a randomized algorithm that finds an assignment p ∈ Ωm such that p <

⋃n
i=1 Bi.

If one can verify whether Bi holds in time t, then the randomized algorithm runs in tn
∑n

i=1
ρ(Bi)

1−ρ(Bi)

expected time.
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The algorithm described in this lemma is simple. The algorithm starts with randomly sampling
some p ∈ Ωm. While there exists some Bi such that p ∈ Bi, the algorithm takes an arbitrary such
Bi, and resamples all the coordinates Pj that Bi depends upon. Of course, if the algorithm halts,
then p <

⋃n
i=1 Bi. The paper [MT10] shows that the expected number of times an event Bi is

resampled is at most ρ(Bi)
1−ρ(Bi)

which explains the runtime of this algorithm.

3 Local lifts
This section presents our basic construction, the local lift of a complex. We will define this
construction formally and describe some of its properties.

Construction 3.1 (Local Lift). Let X be a k-dimensional simplicial complex and let f : X(k) →
{±1}. The f -local lift of X denoted by X̂ = X̂f , is the following k-dimensional simplicial complex:

– X̂(0) = X(0) × {±1} and we denote the vertices by X̂(0) =
{
vj
∣∣ v ∈ X(0), j ∈ {±1}

}
.

– For any 1 ⩽ ℓ ⩽ k − 1,

X̂(ℓ) =
{

{vj0
0 , vj1

1 , . . . , vjℓ
ℓ }

∣∣∣ {v0, v1 . . . , vℓ} ∈ X(ℓ), j0, . . . , jℓ ∈ {±1}
}

.

– Finally, X̂(k) is the set of all faces σ =
{

vj0
0 , vj1

1 , . . . , vjk
d

}
so that the face without the signs

is {v0, v1, . . . , vk} ∈ X(k), and the product of the ji’s are equal to f(σ). Namely,

X̂(k) =

{{
vj0

0 , vj1
1 , . . . , vjk

k

} ∣∣∣∣∣ {v0, v1, . . . , vk} ∈ X(k), f({v0, v1, . . . , vk}) =
k∏

i=0
ji

}
.

One can already see that the (k − 1)-skeleton of X̂ doesn’t depend on X and is just some
inflation of the original complex. The dependence on f is only in the top-level faces. Thus, in
particular, X̂ is not a lift of (the underlying graph) of X, except when k = 1. However, the links of
(k − 2)-faces in X̂ are lifts of links in X, which is why we named this complex a local lift. We will
see this in the next subsection.

3.1 Local Properties of Local Lifts

For the rest of this subsection, we fix X to be a k-dimensional pure simplicial complex, f : X(k) →
{±1} to be a signing function, and X̂ to be the f -local lift of X. We also need the following three
pieces of notation:

1. Let π : X̂(0) → X(0) be the projection map π(vj) = v, and we extend it to higher dimensional
faces as well by π(

{
vj0

0 , vj1
1 , . . . , vji

i

}
) = {v0, v1, . . . , vi}.

2. Let sign : X̂ → {±1} be sign(σ̂) →
∏

vj∈σ̂ j.

3. For any σ̂ ∈ X̂(k − 2) with σ = π(σ̂) we denote by fσ : Xσ(1) → {±1} the function
fσ(e) = f(σ ⊔ e) and by fσ̂ : Xσ(1) → {±1} the function fσ̂(e) = sign(σ̂) · fσ(e).

The first observation is that the degrees of X̂ are twice the degrees of X, except for dk−1, which
stays the same.
Observation 3.2. If X is (d0, . . . , dk−1)-regular then X̂ is (2d0, 2d1 . . . , 2dk−2, dk−1)-regular. □
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It is a direct calculation, so we have omitted its proof. We just comment that the reason
that dk−1 remains the same is that for every σ̂ ∈ X̂(k − 1) and v ∈ Xπ(σ̂)(0) there is exactly one
j ∈ {±1} such that σ̂ ∪

{
vj
}

∈ X̂(k). Therefore, dk−1(X) = |Xπ(σ̂)(0)| = |X̂σ̂(0)| = dk−1(X̂). The
next lemma gives a complete description of the links of X̂.

Lemma 3.3 (on the structure of the links). Let σ̂ ∈ X̂ and denote by σ = π(σ̂).

1. If dim(σ̂) < k − 2, then the 1-skeleton of X̂σ̂ (the σ̂-link of X̂), is isomorphic to the 1-skeleton
of Xσ tensored with the complete graph on two vertices with self loops3.

2. If dim(σ̂) = k − 2, then X̂σ̂ is isomorphic to a lift of Xσ induced by fσ̂.

Proof. The first item directly follows from the definition of a tensor product. For the second item,
suppose dim(σ̂) = k − 2. Both the vertices of X̂σ̂ and of the fσ̂-induced lift of Xσ are Xσ(0)× {±1}.
As for the edges,

{
ui, vj

}
∈ X̂σ̂(1) if and only if {u, v} ∈ Xσ(1) and ij · sign(σ̂) = f(σ ⊔ {u, v}) (or

equivalently ij = fσ̂({u, v})). This is precisely the relation that defines edges in the fσ̂-induced lift
of Xσ. □

The following corollary that bounds the spectrum of the links is direct.

Corollary 3.4. Let σ̂ ∈ X̂ and denote σ = π(σ̂).

1. If dim(σ̂) < k − 2 then λ(X̂σ̂) = λ(Xσ).

2. If dim(σ̂) = k − 2 then Spec(X̂σ̂) = Spec(Aσ) ∪ Spec(Afσ̂
σ ), where Aσ is the normalized

adjacency matrices of Xσ and Afσ̂
σ is its signed normalized adjacency matrix with respect to

fσ̂.

Proof. The first item follows from Fact 2.2. The second item follows from Lemma 2.5 and the fact
that the link is the fσ̂-induced lift of Xσ as we saw in Lemma 3.3. □

4 Families of HDXs via Random Local Lifts
This section is dedicated to existential proofs of high dimensional expanders based on our local lifts
from Construction 3.1. We start by stating the main theorem of this section which asserts that
given an arbitrary HDX X, there exists a family of HDXs with parameters comparable to those of
X so that any member of the family is a local lift of the former. Formally,

Theorem 4.1. Let X0 be a (d0, d1, . . . , dk−1)-regular λ-two sided (resp. one sided) HDX over

n vertices, for λ ∈ [0, 1]. Then there exists a family of max
{

λ, O

(√
k2 log3 dk−1

dk−1

)}
-two sided

(resp. one sided) high dimensional expanders {Xi}∞
i=0 so that Xi is a (2id0, . . . , 2idk−2, dk−1)-regular

complex over 2in vertices and Xi+1 is a local lift of Xi.

The proof of Theorem 4.1 is based on proving the single-step version of it, given in Theorem 4.2,
and applying it iteratively.

Theorem 4.2. Let λ ∈ [0, 1]. For any k-dimensional, (d0, . . . , dk−1)-regular, λ-two sided (resp.
one sided) high dimensional expander X over n vertices, there exists a signing f : X(k) → {±1}

so that X̂ is a max
{

λ, O

(√
k2 log3 dk−1

dk−1

)}
-two sided (resp. one sided) high dimensional expander

with regularity (2d0, . . . , 2dk−2, dk−1) and 2n vertices.
3Note that this is also true for the link of σ = ∅, i.e. X̂ itself.
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We start by proving Theorem 4.1 given Theorem 4.2. The proof of Theorem 4.2 is more involved
and is provided in the remainder of this section.

Proof of Theorem 4.1 assuming Theorem 4.2. Let X0 as specified in Theorem 4.1 and denote λ′ :=

max
{

λ, O

(√
k2 log3 dk−1

dk−1

)}
. The proof is by induction on i. Clearly X0 holds the requirements.

For the induction step, let Xi be a (2id0, . . . , 2idk−2, dk−1)-regular λ′-two sided (resp. one
sided) HDX with 2in vertices received in the i-th step of the process. By Theorem 4.2, there
exists a singing function fi : Xi(k) → {±1} so that the fi-local lift of Xi (denoted by X̂i) is a
(2i+1d0, . . . , 2i+1dk−2, dk−1)-regular λ′-two sided (resp. one sided) HDX over 2i+1n vertices. Setting
Xi+1 := X̂i concludes the proof. □

4.1 Proof Outline of Theorem 4.2

The proof of Theorem 4.2 is based on Lovász Local Lemma [EL75] and Lemma 2.6, and closely
follows the lines of the existential proof in [BL06].

Recall that one approach for proving a given k-dimensional simplicial complex is λ-HDX, is
considering all of its ℓ-links for ℓ ⩽ k − 2 and bound the spectrum of each of their 1-skeletons by λ.
By Corollary 3.4, the only links one should be concerned with are those obtained by (k − 2)-faces,
as all other faces inherent the expansion from the initial HDX. In addition, by the same corollary,
it’s enough to analyze the spectra of the signed random walk matrices of the (k − 2)-links of X,
with respect to the signing induced on them as defined in Lemma 3.3. Indeed, doing so is the most
technical part of the proof and follows by the next lemma combined with Lemma 2.6:

Lemma 4.3. For any k-dimensional pure (d0, . . . , dk−1)-regular simplicial complex X over n
vertices, there exists a signing function f : X(k) → {±1} such that for any (k − 2)-face σ̂ ∈ X̂ and
any disjoint subsets of vertices S, T ⊆ Xσ(0) for σ = π(σ̂),

|⟨1S , Afσ̂
σ 1T ⟩| ⩽ 10

√
k2 log dk−1

dk−1
|S||T | (4.1)

where fσ̂ is the signing on Xσ’s edges induced by f as defined in Section 3.1.

By the (d0, . . . , dk−1)-regularity of X, Xσ is a dk−1-regular graph over dk−2-vertices. Furthermore,
since any signing over the k-faces induces a signing function on the edges of any (k − 2)-link, our goal
is to find a single signing function f such that these lifts of all the links of the (k − 2)-dimensional
faces expand.

The proof of Lemma 4.3 is by the Lovász Local Lemma Lemma 2.11. We define the set of “bad”
events B = {BS,T

σ }. The event BS,T
σ is that (4.1) doesn’t hold for a fixed σ ∈ X(k − 2) and fixed

disjoint sets S, T ⊆ Xσ(0). In [BL06], similar bad events were considered, but only the sets S, T
needed to be specified. The main difference between our proof and theirs is that we need to take
care of the dependencies between events corresponding to different (k − 2)-faces σ, σ′.

To apply the lemma and deduce Lemma 4.3, one needs to understand and analyze the dependency
relation of the events in B.

On the dependency of bad events in B. Fix σ̂ ∈ X̂(k − 2) and disjoint S, T ⊆ Xσ(0) for
σ = π(σ̂), and define F (σ, S, T ) ⊆ X(k) to be the set of all k-faces of X so that σ ⊆ τ and
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τ \ σ is an edge in the graph induces by S ⊔ T on Xσ. Recall that sign : X̂ → {±1} is defined by
sign(σ̂) =

∏
vj∈σ̂ j, and note that

dk−1⟨1S , Afσ̂
σ 1T ⟩ =

∑
uv∈Xσ(1)

s.t. u∈S,v∈T

fσ̂(uv) = sign(σ̂)
∑

uv∈Xσ(1)
s.t. u∈S,v∈T

f(σ ⊔ uv) = sign(σ̂)
∑

τ∈F (σ,S,T )

f(τ ).

Since the signs f assigns to the k-faces are chosen independently, if the event BS,T
σ is not

mutually independent of a subset A ⊆ B, there must exists some event BS′,T ′

σ′ ∈ A for which
F (σ, S, T ) ∩ F (σ′, S′, T ′) is not empty.

Towards using the Lovász Local Lemma, we need to bound the probability of the event BS,T
σ as

well as the number of neighbors it has in the dependency graph considered in the Local Lemma. The
bound on the probability follows directly from the arguments in [BL06], but bounding the number of
neighbors each event is more involved. In contrast to the expander graph case considered in [BL06]
(where the “bad” events only depend on S and T ), in simplicial complexes events corresponding to
different faces σ, σ′ (and therefore to different links) can depend on one another as long as they
have a common k-face in F (σ, S, T ) ∩ F (σ′, S′, T ′). A naive count of the number of such k-faces
won’t suffice, and would lead the bound in (4.1) to scale with dk−2. Therefore, we need to carefully
characterize when exactly F (σ, S, T ) and F (σ′, S′, T ′) intersect.

The first case where dependency can occur is when σ = σ′. In this case, we are in the same
setting as in [BL06], which observed that there must be an edge in the subgraph induced by S ∪ T
as well as in the one induced by S′ ∪ T ′ for a dependency to happen.

In the second case, which is new to our proof, σ , σ′ meaning that each of the events considers
a different graph. In this case, we observe that this implies both that there is a k-face τ containing
both σ, σ′ and that either there exist vertices v ∈ σ ∩ (S′ ⊔ T ′) and s ∈ S ⊔ T so that τ \ σ′ = {v, s},
or that τ \ σ′ ⊆ σ. As we show below, this characterization is useful to bound the number of
possible events that are dependent on a certain BS,T

σ . The following claim gives this characterization
formally.
Claim 4.1.1. Let an event BS,T

σ ∈ B and some subset A ⊆ B. If

– for any BS′,T ′

σ′ ∈ A with σ = σ′ there is no edge lying in both EXσ (S, T ) and EXσ (S
′, T ′), and

– for any BS′,T ′

σ′ ∈ A with σ , σ′ there is no k-face τ ∈ X containing both σ and σ′, so that
τ \ σ and τ \ σ′ are edges in EXσ (S, T ) and EXσ′ (S

′, T ′) respectively,

then BS,T
σ is mutually independent of A.

All left to conclude the proof of Lemma 4.3 is carefully counting the number of events that fulfill
one of the claim conditions and provide a real function that bounds the probability of each event as
in (2.1). We leave the details for the formal proof, which is given in the next section.

4.2 Proving Lemma 4.3

This subsection is dedicated to the proof of Lemma 4.3 together with the subclaims it requires. We
start by setting notations and highlighting features that will be needed for the proof.

Notations. We say that sets S, T ⊆ Xσ(0) induce a connected subgraph if the subgraph obtained
by projecting Xσ on S ∪ T is connected. In addition, we write EXσ (S, T ) to indicate the set of
edges between S and T in Xσ. For σ̂ ∈ X̂(k − 2), we denote σ = π(σ̂). When the face σ̂ being
considered is clear from the context we abbreviate and write f for fσ̂.

In addition, we rely on the following observation:
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Observation 4.4. If a signing f : X(k) → {±1} independently assigns a uniform sign to each k-face,
then for any σ̂ ∈ X̂(k − 2), fσ̂ independently assigns a uniform sign to each edge in Xσ.

Proof. Let σ̂ ∈ X̂(k − 2) and let e , e′ ∈ Xσ(1). Then for any j, j′ ∈ {±1}

P[fσ̂(e) = j ∧ fσ̂(e
′) = j′] = P[sign(σ̂) · f(σ ⊔ e) = j ∧ sign(σ̂) · f(σ ⊔ e′) = j′]

= P[sign(σ̂) · f(s ⊔ e) = j] · P[sign(σ̂) · f(σ ⊔ e′) = j′] =
1
4.

□

In addition, as in [BL06], we can restrict the proof to consider only a pair of sets inducing
connected subgraphs and deduce the result to any pair of sets. In addition, we can assume that
d is as large as 996 as it is always the case that

〈
1S , Af

σ1T

〉
⩽
√

|S||T | and 1 ⩽ 10
√

k2 log dk−1
dk−1

for
dk−1 ∈ [1, 996].

We are now ready to prove Lemma 4.3.

Proof of Lemma 4.3. We set f to be a randomized signing of X(k) by setting a uniform and
independent sign from {±1} to any k-face. Fix some face σ̂ ∈ X̂(k − 2) with π(σ̂) = σ, and disjoint
sets S, T ⊆ Xσ(0). Denote the “bad” event in which the claim does not hold for our fixed face and
sets by BS,T

σ . That is,

P
[
BS,T

σ

]
= P

[
|⟨1S , Af

σ1T ⟩| > 10
√

k2 log dk−1
dk−1

|S||T |
]

.

Fix for a moment some edge uv ∈ Xσ(1), and consider the (u, v)-th entry of Af
σ. By Definition 2.4,

Af
σ(u, v) = 1

dk−1
fσ̂(uv), which, per Observation 4.4, distributed uniformly in {±1} and is independent

of all other edges signs. In addition, since

⟨1S , Af
σ1T ⟩ = 1

dk−1

∑
uv∈EXσ (S,T )

fσ̂(uv),

⟨1S , Af
σ1T ⟩ is a sum of independent uniform random variables over {±1}, implying that

E
f

[
⟨1S , Af

σ1T ⟩
]
=

1
dk−1

∑
uv∈EXσ (S,T )

E
f
[fσ̂(uv)] = 0.

Hence, by Hoeffding’s inequality,

P
[
BS,T

σ

]
= P

[∣∣∣⟨1S , Af
σ1T ⟩

∣∣∣ > 10
√

k2 log dk−1
dk−1

|S||T |
]
⩽ 2 exp

−
2 · 100k2 ln dk−1

dk−1
|S||T |∑

uv∈EXσ (S,T )

(
1

dk−1
− (− 1

dk−1
)
)2

 .

(4.2)

Assuming w.l.o.g. that |S| ⩾ |T | we get

200k2 ln dk−1
dk−1

|S||T |∑
uv∈EXσ (S,T )

(
1

dk−1
− (− 1

dk−1
)
)2 =

200k2dk−1(ln dk−1)|S||T |
4|EXσ (S, T )|
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⩾
50k2dk−1(ln dk−1)|S||T |

dk−1|T |
⩾ 25k2 ln dk−1|S ⊔ T |.

Hence, denoting c = |S ⊔ T |,

(4.2) ⩽ 2 exp
(
−25ck2 ln dk−1

)
⩽ d−10ck2

k−1 . (4.3)

We turn to analyze the dependency graph of the “bad” events:4 Recall that B is the set of all events
BS,T

σ for σ ∈ X(k − 2) and disjoint subsets S, T ⊆ Xσ(0). Using the characterization of correlated
events in B given in Claim 4.1.1, we get the following bound on the neighborhood size of the events
in the dependency graph:
Claim 4.2.1. Let BS,T

σ ∈ B and denote c = |S ⊔ T |. Then BS,T
σ has at most 3k2cdc′−1 neighbors

BS′,T ′

σ′ with |S′ ⊔ T ′| = c′.
Now, to apply Lovász Local Lemma, one needs to define a function ρ : B→ [0, 1) such that

P
[
BS,T

σ

]
⩽ ρ(BS,T

σ )
∏

BS′,T ′
σ′ ∼Bx,y

σ

(
1 − ρ(BS′,T ′

σ′ )
)

.

Set ρ(BS,T
σ ) = d−3ck2

k−1 . Indeed

ρ(BS,T
σ )

∏
BS′,T ′

σ′ ∈∼BS,T
σ

(
1 − ρ(BS′,T ′

σ′ )
)
= d−3ck2

k−1
∏

BS′,T ′
σ′ ∼BS,T

σ

(
1 − d

−3|S′∪T ′|k2

k−1

)

= d−3ck2

k−1
∏

c′∈[n]

(
1 − d−3c′k2

k−1

)2c′ 3ck2dc′−1
k−1 (4.4)

⩾ d−3ck2

k−1 exp

−6ck2 ∑
c′∈[n]

2c′
dc′−1

k−1 d−3c′k2

k−1

 (4.5)

⩾ d−3ck2

k−1 e−7ck2

⩾ d−10ck2

k−1 ⩾ P
[
BS,T

σ

]
(4.6)

where (4.4) is since for any U ⊆ Xσ(0) of cardinality c′, there are at most 2c′ pairs of disjoint sets
S′, T ′ with S′ ⊔ T ′ = U , (4.5) is by e−x ⩽ 1 − x

2 for any x ∈ [0, 1.59] and (4.6) is by taking dk−1 ⩾ 3.
Together with (4.3), this concludes the proof. □

We are left to prove Claim 4.1.1 and Claim 4.2.1.

Proof of Claim 4.1.1. Recall that

⟨1S , Af
σ1T ⟩ = sign(σ̂)

dk−1

∑
τ∈F (σ,S,T )

f(τ ). (4.7)

If BS,T
σ is not mutually independent of A then there exists some BS′,T ′

σ′ ∈ A so that F (σ, S, T ) ∩
F (σ′, S′, T ′) , ∅. Hence it is enough to show that if the two items in Claim 4.1.1 hold, then
F (σ, S, T ) ∩ F (σ′, S′, T ′) = ∅ for all BS′,T ′

σ′ ∈ A.
4Recall that the dependency graph of a set of events B is a digraph with a vertex for each event B ∈ B and any

event B is mutually independent of B \ Γ(B).
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Case σ = σ′. Note that BS,T
σ and BS′,T ′

σ are events of the same link Xσ. Hence, if EXσ (x, y) ∩
EXσ (S

′, T ′) = ∅ then F (σ, S, T ) ∩ F (σ, S′, T ′) = ∅.

Case σ , σ′. Clearly, by (4.7), if there is no k-face containing both σ, σ′ then F (σ, S, T ) ∩
F (σ′, S′, T ′) = ∅. Otherwise, let τ̃ ∈ X(k) with σ, σ′ ⊆ τ̃ and note that f(τ̃ ) appears in both
⟨1S , Af

σ1T ⟩ and ⟨1S′ , Af
σ1T ′⟩ (or equivalently τ̃ ∈ F (σ, S, T ) ∩ F (σ′, S′, T ′)), if and only if τ̃ \ σ ⊆

EXσ (S, T ) and τ̃ \ σ′ ⊆ EXσ′ (S
′, T ′). □

We now turn to bound the number of events fulfilling each of the cases in Claim 4.1.1.

Proof of Claim 4.2.1. Fix S′, T ′ ⊆ X ′
σ(0) with |S′ ⊔ T ′| = c′. Denote the subgraphs of Xσ induced

by S, T by G and the subgraph induced by S′, T ′ on Xσ′ by G′.
We start with bounding the number of neighboring events that consider the same link as BS,T

σ

does. Since both events are over the same graph, we are in the same case as in [BL06], and therefore
use the same argument: Recall that we restricted ourselves without loss of generality to connected
subgraphs, and we consider the case that G and G′ share a common edge. Hence, one can think
of G′ as a subgraph of Xσ with c′ vertices, with one of its edges in G. Therefore, one can bound
the number of such subgraphs by the number of subtrees of Xσ with c′ vertices rooted in G. By
[Knu68; FM99], the number of such subtrees is upper bounded by cdc′−1.

We turn to bound the other case, where σ , σ′. Fix some k-face given by the second case of
Claim 4.1.1 and denote it by τ̃ . Observe that σ, S, T and σ′, S′, T ′ are strongly related: there exist
s, t ∈ S ⊔ T and s′, t′ ∈ S′ ⊔ T ′ so that τ̃ = σ ⊔ {s, t} = σ′ ⊔ {s′, t′}, and {s, t}, {s′, t′} are edges in
EXσ (S, T ), EXσ (S, T ) respectively. Since σ , σ′, one of the following must hold:

– Either there exists v ∈ σ ∩ (S′ ⊔ T ′) so that σ′ = (σ \ {v}) ⊔ {s} and therefore τ̃ \ σ′ = {v, t},

– or, both s′, t′ ∈ σ ∩ (S′ ⊔ T ′) and σ′ = (σ \ {s′, t′}) ⊔ {s, t}, implying that τ̃ \ σ′ ⊆ σ.

Hence, we can bound the number of events related to the first case by the number of subtrees of
Xσ′ rooted in σ, that have a vertex in S ⊔ T and another c′ − 2 vertices which is at most (k − 1)cdc′−2,
and the events of the second case by the number of subtrees having two vertices from σ (and rooted
in one of them), and additional c′ − 2 vertices which is at most (k − 1)2dc′−2.

And we get an overall bound of

cdc′−1 + (k − 1)cdc′−2 + (k − 1)2dc′−2 ⩽ 3k2cdc′−1.

□

4.3 Concluding Theorem 4.2

Proof of Theorem 4.2. Let X be a (d0, . . . , dk−1)-regular, λ(X)-two sided (resp. one sided) HDX
over n vertices, fix f to be the signing provided by Lemma 4.3, and set X̂ to be the f -local lift of X.

By Observation 3.2, X̂ is a (2d0, . . . , 2dk−2, dk−1)-regular graph over 2n vertices. We need to prove

that for any σ̂ ∈ X̂ of dimension ⩽ k − 2, the 1-skeleton of X̂σ̂ is a max
{

λ(X), O

(√
k2 log3 dk−1

dk−1

)}
-

two sided (resp. one sided) expander.
By Corollary 3.4, the spectra of all links X̂σ̂ with σ̂ of dimension < k − 2 are bounded by λ(X).

In addition, by Lemma 4.3, for any σ̂ ∈ X̂(k − 2) and any disjoint sets S, T ⊆ Xσ(0) for σ = π(σ̂),
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we have that |⟨1S , Af
σ1T ⟩| ⩽ O

(√
k2 log dk−1

dk−1
|S||T |

)
where Af

σ is the fσ̂-signed random walk matrix
of Xσ. Together with Lemma 2.6 this implies

λ(Xσ) = O

(√
k2 log dk−1

dk−1

(
1 + log

(√
dk−1

k2 log dk−1

)))
⩽ O

(√
k2 log dk−1

dk−1
· log

√
dk−1

)

= O

√k2 log3 dk−1
dk−1



hence, by Lemma 2.5, λ(Xσ) = max
{

λ(X), O

(√
k2 log3 dk−1

dk−1

)}
and by Corollary 3.4, this is also

the case for λ(X̂σ̂). □

5 An Algorithmic Version of Theorem 4.1
In this subsection, we prove that there is a randomized algorithm that finds a family of local lifts
as in Theorem 4.1 when X is a high dimensional expander under mild assumptions on the degree
sequence which we encapsulate in the following definition.

Definition 5.1 (Nice complex). Let X be a k-dimensional simplicial complex. We say that X is
nice if X is regular, and

d
1−4 log dk−1
k−2 <

2
e(k + 1)kdk−1 + 1. (5.1)

We prove the following.

Theorem 5.2. There exists a randomized algorithm A that takes as input a k-dimensional complex
X0 and an integer i ⩾ 1, runs in expected time poly((2i|X0(0)|)k) at most, and outputs a k-
dimensional complex Xi with 2i|X0(0)| vertices. The algorithm has the following guarantee.

If X0 is a nice (d0, . . . , dk−1)-regular λ-two sided high dimensional expander, then Xi is a
(2id0, . . . , 2idk−2, dk−1)-regular λ′-two sided high dimensional expander where

λ′ = O

max

λ

(
1 + log 1

λ

)
,

√
log3 dk−1

dk−1


 5.

Moreover, one can modify the algorithm so that it outputs a sequence X1, X2, . . . , Xi of complexes
all satisfying the same guarantees (instead of just the last one), so that for every j = 0, 1, . . . , i − 1,
Xj+1 is a local lift of Xj.

Loosely speaking, in order to prove Theorem 5.2, we need to prove that there is an algorithm
A that finds a single local lift for X in polynomial time (just as Theorem 4.1 was proved by the
‘one-step theorem’ Theorem 4.2) with good enough spectral expansion. Then we just iteratively use
A on its own output, setting Xj+1 = A(Xj), until reaching j = i − 1. For this to work, we also
need to address the issue that λ′ ⩾ λ so naively the expansion deteriorates as we reiterate, but this
technical discussion is deferred to below.

5We will not calculate the constants in the big O notation explicitly.
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Remark 5.3 (A non-uniform algorithm for any HDX). Theorem 5.2 requires that X0 be a nice
complex, i.e. that (5.1) holds. However, in any family {Xi}∞

i=0 where Xi+1 is a local lift of Xi,
the degree dk−2(Xi) tends to infinity with i while the other side of both inequalities stays fixed.
Thus, the inequalities will eventually hold for any family of consecutive local lifts. In fact, they
should hold for any i ⩾ C log(k + dk−1(X0)) for some large enough constant C > 0. Thus we can
modify the algorithm to work even if X0 is not nice (albeit with the spectral expansion bound
guaranteed in Theorem 4.1, which is slightly worse than the expansion in Theorem 5.2). This is done
by allowing the algorithm to do a brute-force search for the first few steps, to produce a nice Xi,
and then continuing as the original algorithm does. The first few steps will eventually stop because
Theorem 4.1 promises the existence of such an Xj . This process takes poly(|Xi|k) + exp(O(|X0|k))
time.

Towards the proof of Theorem 5.2, we need the following definition and lemma from [BL06].

Definition 5.4. A graph G with adjacency operator A is said to be (β, t)-sparse if for every
S, T ⊆ V (G) such that |S ∪ T | ⩽ t,

⟨1S , A1T ⟩ ⩽ β
√

|S||T |.

For a k-dimensional hyper-regular complex X, we say that it is (β, t)-sparse if for every σ ∈ X(k − 2),
the graph Xσ is (β, t)-sparse.

Remark 5.5. While the definition here regards any S, T with |S ∪ T | ⩽ t, it is in fact equivalent to
regarding only S, T with |S ∪ T | ⩽ t such that the graph induced on S ∪ T is connected. We also
remark that if X is (β, t)-sparse then it is also (β′, t)-sparse for any β′ ⩾ β.

The reason we need this definition of sparseness is that in a random local lift, sparseness does
not deteriorate with high probability. More formally, the following lemma was proven in [BL06].

Lemma 5.6 ([BL06, Lemma 3.4]). Let G = (V , E) be a d-regular graph with n vertices that is
(β, log n)-sparse for β ⩾ 10

√
log d

d . Then with probability ⩾ 1 − n−4 log d over f : E → {±1}:

– For every S, T ⊆ V ,
∣∣∣〈1S , Af 1T

〉∣∣∣ ⩽ β
√

|S||T | and,

– Ĝf is (β, log n + 1)-sparse,

We comment that [BL06, Lemma 3.4] does not explicitly calculate the probability 1 − n−4 log d;
rather, they only say the events happen with high probability. This is the probability that is implicit
in their proof. They also prove this theorem for β = 10

√
log d

d but the same proof extends to

β ⩾ 10
√

log d
d with no additional changes.

This next claim easily follows from the definition of expansion and says that a spectral expander
is sparse.
Claim 5.0.1. Let G be a d-regular λ-two sided spectral expander over n vertices such that λ > 1√

d

and d ⩾ 3. Then G is (2λ, log n)-sparse.

Proof. Fix S, T such that with |S ∪ T | ⩽ log n. By the λ-expansion and the expander mixing lemma
(see e.g. [HLW06]), ⟨1S , A1T ⟩ ⩽ |S||T |

n + λ
√

|S||T |. We bound this term by
(
λ + log n

n

) √
|S||T |. As

log n
n ⩽ 1√

n
⩽ 1√

d
⩽ λ the claim follows. □

We are ready to state our one-step theorem.
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Theorem 5.7. There exists a randomized algorithm A with the following guarantees. Let X be a
k-dimensional d̄-regular λ-two sided (resp. one sided) high dimensional expander over n vertices,

where d̄ = (d0, . . . , dk−1). Let β ⩾ 10
√

log dk−1
dk−1

and denote by λ′ = max
{

λ, O(β(1 + log 1
β ))
}

.

Assume that X is (β, log dk−2)-sparse, and suppose that dk−2 and dk−1 satisfy dk−2 > d2
k−1 and

(5.1). Then A(X) = X̂ is a local lift of X such that:

1. The complex X̂ is a λ′-two sided (resp. one sided) high dimensional expander.

2. The complex X̂ is (β, log 2dk−2)-sparse.

Upon input X satisfying the above, the algorithm runs in time poly(|X(0)|k).

Before proving Theorem 5.7, let us quickly prove Theorem 5.2.

Proof of Theorem 5.2, assuming Theorem 5.7. Let X0 be as in the assumptions of Theorem 5.2.
Let A be the randomized algorithm in Theorem 5.7, and let Xi+1 = A(Xi) (or Xi+1 = ⊥ if one of
A(Xj) fails to terminate for j ⩽ i). It suffices to show the following two statements:

1. If Xi , ⊥, then Xi satisfies:

(a) Xi is a λ′-two sided high dimensional expander.

(b) Xi is (β, log 2dk−2)-sparse for β = max
{

2λ, 10
√

log dk−1
dk−1

}
.

(c) Xi is nice, namely (5.1) holds for Xi.

2. For every i ⩾ 1, Xi is output in expected poly(|Xi−1(0)|k)-time. In particular, the probability
that any A(Xi) = ⊥ is 0.

The first item is proven by induction, where the base case for X0 holds by assumption (the sparseness
is also by λ-two sided spectral expansion and Lemma 5.6). Assume that Xi−1 satisfies the three
sub-items, and prove for Xi. Indeed, Xi = A(Xi−1) satisfies the first two sub-items by Theorem 5.7,
and satisfies the third item because dk−2(Xi) = 2dk−2(Xi−1) and the rest of the parameters remain
fixed. The inequality (5.1) remains true under increasing dk−2 so if they hold true for Xi−1 they
are also true for Xi.

As for the second item, note that assuming Xi−1 satisfies the assumptions Theorem 5.7, the
algorithm in Theorem 5.7 runs in expected time poly(|Xi−1(0)|k). □

Proof of Theorem 5.7. We intend to use Lemma 2.12. For this, we fix the following ‘bad’ events
C = {Cσ | σ ∈ X(k − 2)} where Cσ ⊆ {f : X(k) → {±1}} is the event where :

1. Either X̂σ
±fσ is not a λ′-two sided spectral expander, or

2. X̂σ
±fσ is not (β, log 2dk−2)-sparse.

By Lemma 5.6 (and Lemma 2.6 that relates the first item in Lemma 5.6 to spectral expansion),
Pf [Cσ] ⩽ 2d

−4 log dk−1
k−2 . Moreover, because every link of a σ̂ ∈ X̂(k − 2) is a lift of Xσ with respect

to fσ̂, then if none of the events Cσ occur, then X̂ satisfies both items in Theorem 5.7. We will use
Lemma 2.12 to find such an assignment.

We now construct a dependency graph for C. Let σ ∈ X(k − 2) and U ⊆ X(k − 2). The event
Cσ only depends on fσ, so it only depends on k-faces τ ⊇ σ. Therefore, if Cσ and {Cσ′ | σ′ ∈ U} are
not mutually independent, then in particular there is a k-face τ ∈ X and σ′ ∈ U such that τ ⊇ σ, σ′.
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Hence, in our dependency graph we connect Cσ ∼ Cσ′ if there exists such a k-face containing both
σ and σ′. Let us upper bound the neighborhood size of an event Cσ. The number of neighbors that
Cσ has is upper bounded by the number of k-faces containing σ times (k+1

k−1) (the number of ways to
choose σ′ ⊆ τ). Therefore, the number of neighbors is bounded by

D B

(
k + 1
k − 1

)
· |{τ ∈ X(k) | τ ⊇ σ}| =

(
k + 1
k − 1

)
|Xσ(1)| =

(k + 1)k
4 dk−2dk−1.

By setting ρ : C→ [0, 1) to be the constant function ρ(Cσ) =
1

D+1 we have that

P [Cσ] ⩽ ρ(Cσ)
∏

σ′∼σ

(1 − ρ(Cσ)),

because ρ(Cσ)
∏

σ′∼σ(1 − ρ(Cσ)) ⩾
1

D+1

(
1 − 1

D+1

)D
⩾ 1

e(D+1) and P [Cσ] ⩽ 2d
−4 log dk−1
k−2 ⩽ 1

e(D+1)
by (5.1).

Let us now verify that the algorithm in Lemma 2.12 runs in polynomial time. We note that
there the number of events in C is poly(|X(0)|k), and checking whether Cσ occurs could be done in
poly(|X(0)|)-time because it amounts to:

1. Find the spectrum of a signed adjacency operator of a dk−2-sized graph.

2. Going over all connected sets U ⊆ X̂±fσ
σ of size ⩽ log 2dk−2 for every σ ∈ X(k − 2), finding

S, T such that S ∪ T = U , and counting the number of edges between S and T to check if the
pair S, T violates sparseness. There is a poly(|X(0)|) such U , S, T at most.

Therefore, the randomized algorithm in Lemma 2.12 will find a signing in poly(|X(0)|k) ·∑
σ∈X(k−2)

1
D = poly(|X(0)|k)-time. □

5.1 1-Bounded HDX with Arbitrarily Large Constant Vertex Degree

Theorem (Restatement of Theorem 1.4). For every λ > 0 and any sufficiently large M > 0,
there exists an infinite family of 2-dimensional λ-two sided high dimensional expanders that are
(d0, exp(poly( 1

λ )))-regular, for M ⩽ d0 ⩽ 2M .

Proof sketch. Let λ > 0. Let λ̃ be such that λ ⩽ O
(
λ̃(1 + log 1

λ̃
)
)

where the constant in the big O

comes from Theorem 5.2. The construction in [FI20] gives an infinite family of 2-dimensional λ̃-two
sided high dimensional expanders that are (d0, d1)-regular, where d1 ⩽ exp(poly( 1

λ̃
)).6 Denote such

a family {Yℓ}∞
ℓ=0. One can verify that because d0 ⩾ d1 + 1 ⩾ 3 and k = 2, these complexes are

indeed nice.
Moreover, let us assume without loss of generality that

λ̃

(
1 + log 1

λ̃

)
⩾

log3 d1
d1

,

since the construction in [FI20] allows to increase the 1-degree of the complex by a polynomial in d1
while maintaining the λ̃-expansion.

Set i = ⌈log(M/d0(Yℓ))⌉ (this is a constant since d0(Yℓ) is independent of ℓ). By applying
the algorithm in Theorem 5.2 with input (Yℓ, i), we can obtain a 2-dimensional λ-two sided high
dimensional expander Xℓ where d1 remains the same but d0(Xℓ) = 2id0(Yℓ) ∈ [M , 2M ], thus
proving the theorem. □

6See discussion in [FI20, Section 4.3] on how to do so using 2-transitive groups.
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6 Derandomizing the Construction
In this section we provide a deterministic construction of (k − 1)-bounded families of high dimensional
expanders, as referred to in Theorem 1.3. For the rest of this section, we denote αk(d) = 10

√
k2 log d

d
(when k is clear from context, we will write α(d)).

We will prove the following theorem.

Theorem 6.1 (Restatement of Theorem 1.3). There exists a deterministic algorithm B that takes as
input a k-dimensional complex X0 and an integer i ⩾ 1, runs in time poly((2i|X0(0)|)k), and outputs
a k-dimensional complex Xi with 2i|X0(0)| vertices. The algorithm has the following guarantee: If X0
is a (d0, . . . , dk−1)-regular λ-two sided high dimensional expander, with λ > αk(dk−1), dk−1 > 210k

and |X0(k − 2)| ⩽ d10k
k−2, then Xi is a (2id0, . . . , 2idk−2, dk−1)-regular λ′-two sided high dimensional

expander where
λ′ = O

(
25kλ

(
1 + log 1

λ

))
7.

In particular, for every n ∈ N, choosing i = log n yields a complex with at least n-vertices.

This explicit construction generalizes the explicit construction for expanders given in [BL06],
which is based on the conditional probabilities method [AS16, Chapter 16].

We first observe that under the assumption that the base complex is sparse (as in Definition 5.4)
and that |X(k − 2)| is not too large, then a random local lift of X is also sparse and is a high dimen-
sional expander with high probability. Then, we explain how we can find such a lift deterministically
by greedily selecting the values f(τ ) one k-face at a time.

Lemma 6.2. Let X be a k-dimensional, (d0, . . . , dk−1)-regular and (β, log dk−2)-sparse simplicial
complex so that β ⩾ α(dk−1) and |X(k − 2)| ⩽ d

log dk−1
k−2 .

Then, for f : X(k) → {±1} drawn uniformly at random, with probability at least 1 − d
−3 log dk−1
k−2 :

1. For every σ ∈ X(k − 2) and every S, T ⊆ Xσ(0):
∣∣∣〈1S , Af

σ1T

〉∣∣∣ ⩽ β
√

|S||T |.

2. The local lift X̂ = X̂f is (β, log dk−2 + 1)-sparse. □

We comment that the condition |X(k − 2)| ⩽ d
log dk−1
k−2 may seem odd at first glance. However,

similar to Remark 5.3, this is eventually satisfied by every sequence {Xi}∞
i=0 where Xi+1 is a local

lift of Xi. Thus, we do not lose too much generality by assuming it.
The proof of Lemma 6.2 follows by applying Lemma 5.6 to every link and taking a union bound

over the links. We omit the proof since it is a direct calculation.
The deterministic construction mentioned at the beginning of this section is composed of iterative

applications of the local lift, where each application is according to the algorithm described in the
following lemma.

Lemma 6.3. Let X be a k-dimensional (d0, . . . , dk−1)-regular (β, log dk−2)-sparse simplicial complex
with dk−1 > 210k, β ⩾ α(dk−1) and such that |X(k − 2)| ⩽ d10k

k−2.
Then, there is a deterministic poly (|X(0)|k) time algorithm for finding a function f : X(k) →

{±1} such that:

1. For every σ ∈ X(k − 2), ∥Af
σ∥ = O

(
25kβ

(
1 + log 1

β

))
.

7We will not calculate the constants in the big O notation explicitly.
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2. X̂f is (β, log dk−2 + 1)-sparse.

The proof of Lemma 6.3 uses the method of conditional probabilities. The main idea is that,
given the conditions on the input complex, we can define random variables denoted Z(σ), which
serve as “error” indicators, where these errors occur with very small probability. By defining another
set of random variables Y (σ) which correlate with the links’ expansions, and amplifying the impact
of each error, we are able to choose f(τ ) k-face by k-face, while tracking the expected value of the
sum of those variables efficiently and making sure no error occurs.

We need the following claim, already implicit in [BL06].
Claim 6.0.1. Let X be a hyper-regular k-dimensional complex that is (β, t)-sparse. Then, for every
f : X(k) → {±1}, X̂f is (β, t)-sparse.

Proof of Lemma 6.3. Denote m = dk−2, d = dk−1 and β′ = β
(
1 + log 1

β

)
. Our assumption on X

then tells that |X(k − 2)| ⩽ m10k. Fix σ ∈ X(k − 2), and let r = 2⌈log m⌉.
For using the conditional probabilities method, we define a random variable Q = Q(f) such

that:

– E[Q(f)] can be calculated in poly (mk) time when f(τ ) is fixed on a subset of τ ∈ X(k) and
uniformly random on the rest, and

– If Q(f) ⩽ E[Q(f)] then f is good, that is, it satisfies Item 1 and Item 2 in Lemma 6.3.

Once these conditions are met, we can iteratively assign values to f on the k-faces, calculating the
expectation after each assignment such that the conditional expectation remains smaller than the
unconditioned expectation. As |X(k)| ⩽ |X(0)|k, the decision tree for the conditional probabilities
method is of polynomial depth, and we will complete constructing a good f in polynomial time.
Henceforth, the rest of the proof is dedicated to defining Q, such that the above conditions hold. En
route to this goal, we will define two sets of random variables, Y (σ) = Y (σ)(f) and Z(σ) = Z(σ)(f),
which are intended to define our control over Item 1 and Item 2, respectively. The variable Q will
be the sum over all Y (σ), Z(σ).

For any closed walk p of length r in Xσ, we define a random variable Y
(σ)

p that equals the
product of the signs along p according to f , divided by dr. Note that the expectation of Y

(σ)
p can be

calculated in polynomial time, even when some values of f have been fixed: if there is at least one
unsigned edge with an odd number of appearances in p then E

[
Y

(σ)
p

]
= 0, otherwise as E

[
Y

(σ)
p

]
is ± 1

dr according to f , even appearances cancel. We also define Y (σ) =
∑

p Y
(σ)

p , and claim that
Y (σ) = Tr

(
(Af

σ)
r
)

(where Tr(·) is the trace function) since Tr
(
(Af

σ)
r
)

is 1
dr -proportional to the

sum over walks of length r. As r is even, Tr
(
(Af

σ)
r
)
⩾ 0 so Y (σ) is a non-negative random variable.

More over, the trace upper bounds ∥Af
σ∥r hence upper bounding Y (σ) simultaneously for all σ will

enable us to satisfy Item 1.
By the first item in Lemma 6.2 combined with Lemma 2.6, with probability at least 1 − m−3 log d

the lift is a (C0β′)-two sided high dimensional expander for some constant C0. Since the trace of a
matrix equals the sum of its eigenvalues, we get, in this case, that

Y (σ) = Tr((Af
σ)

r) ⩽ m (C0β′)
r ⩽ (C1β′)

r ,

where C1 is some constant.
As for any f it holds that ∥Af

σ∥ ⩽ 1, we get that Y (σ)(f) ⩽ m, and overall

E
[
Y (σ)

]
⩽ (C1β′)

r
+ m−3 log d · m ⩽ (C2β′)

r
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for some constant C2.
We turn towards defining our second random variable Z(σ). Let γ be a constant defined later in

the proof. For every S, T ⊆ Xσ(0) with |S ∪ T | = log m + 1 and the graph induced by S and T on
in Xσ is connected, we define

Z
(σ)
S,T =

γ, if
∣∣∣〈1S , Af

σ1T

〉∣∣∣ > β
√

|S||T |,
0, otherwise.

As in the proof of Lemma 4.3 (see (4.3)), the probability P[Z
(σ)
S,T > 0] < d−10k2 log m and therefore

E
[
Z

(σ)
S,T

]
⩽ d−10k2 log m · γ.

We also define Z(σ) =
∑

S,T Z
(σ)
S,T . As in the proof of Claim 4.2.1, there are at most m(3d)log m+1 <

d3 log m pairs S, T with |S ∪ T | = log m + 1 that induce a connected subgraph, since we can bound
the number of such pairs using the number of subtrees of Xσ with log m + 1 vertices rooted in Xσ

(times the number of ways to choose sets S, T that span the tree). Overall, we get that

E
[
Z(σ)

]
⩽ d3 log m · E

[
Z

(σ)
S,T

]
⩽ d−3k2r · γ.

Note that like the variables Yp, the expectation of Z
(σ)
S,T can be calculated in polynomial time even

for partial assignments for the values of f , as the number of S, T involved in the summation is
bounded by a polynomial in mk. Notice also that when Z(σ)(f) = 0, Item 2 in Lemma 6.3 holds
true: Z

(σ)
S,T implies that the sparsity inequality holds for all pairs S, T of size log m + 1 that induce

a connected subgraph. For sets with support less or equal to log m, sparsity holds by Claim 6.0.1.
Thus by Remark 5.5 the lift is (β, 1 + log m)-sparse.

We next define Q(σ) = Y (σ) + Z(σ), and set γ =
(
C2β′d3k2

)r
. Notice that

E[Q(σ)] = E[Y (σ)] + E[Z(σ)] ⩽ 2 (C2β′)
r .

We can now define Q =
∑

σ∈X(k−2) Q(σ) and get

E[Q] ⩽ |X(k − 2)| · 2 (C2β′)
r ⩽ 2m10k (C2β′)

r ⩽ 2 · 25kr (C2β′)
r

< γ. (6.1)

We claim that if Q is less or equal to its expectation, both Item 1 and Item 2 hold. Indeed, Z(σ) = 0
for every σ ∈ X(k − 2), as the minimal non-zero value of Z(σ) is γ. We further note that in this
case, taking into account the non-negativity of the Y (σ)-s,

Y (σ) ⩽ Q ⩽ E[Q] ⩽ 2 · 25kr (C2β′)
r

for every σ ∈ X(k − 2), and hence

∥Af
σ∥ ⩽

(
Y (σ)

) 1
r ⩽ 2 · 25k (C2β′) ,

therefore Item 1 is satisfied as well. □

We are now ready to prove our main result in this section.
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Proof of Theorem 6.1. Let d̄ = (d0, d1, . . . , dk−1 = d) and let X0 be a d̄-regular λ-two sided high
dimensional expander for λ > αk(d), such that |X0(k − 2)| ⩽ d10k

k−2. By Claim 5.0.1, it is also
(2λ, log dk−2)-sparse.

Denote by B′ the algorithm suggested by Lemma 6.3, and let X1, X2, . . . , Xi be such that
Xj = B′(Xj−1) for j ∈ [i]. We set Xi to be B’s output.

Let us show that, Xi meets the guarantees of Theorem 6.1. By Observation 3.2, for every j ∈ [i],
Xj is (2jd0, 2jd1, . . . , 2jdk−2, d)-regular and |Xj(0)| = 2j |X0(0)|.

In addition, one can verify by a direct calculation that, for any j ∈ [i], |Xj(k − 2)| =
2k−1|Xj−1(k − 2)|, so if |Xj−1(k − 2)| ⩽ dk−2(Xj−1)10k then

|Xj(k − 2)| = 2k−1|Xj−1(k − 2)| ⩽ dk−2(Xj−1)
10k · 2k−1 ⩽ dk−2(Xj)

10k.

Thus, by induction and the fact that this inequality holds for X0, this holds for every j.
Finally, by Lemma 6.3 one inductively obtains that for any j:

1. Xj is an O
(
25kλ

(
1 + log 1

λ

))
-high dimensional expander.

2. Xj is (2λ, log dk−2(Xi))-sparse.

3. Xj computed in time poly(|Xj−1(0)|k) = poly(2j−1|X0(0)|k).

as required. □
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