
Relations between monotone complexity measures
based on decision tree complexity

Farzan Byramji1, ⋆, Vatsal Jha2, ⋆, Chandrima Kayal3, and Rajat Mittal4

1 University of California San Diego
fbyramji@ucsd.edu
2 Purdue University
jha36@purdue.edu

3 Indian Statistical Institute, Kolkata
chandrimakayal2012@gmail.com

4 Indian Institute of Technology, Kanpur
rmittal@cse.iitk.ac.in

Abstract. In a recent result, Knop, Lovett, McGuire and Yuan (STOC
2021) proved the log-rank conjecture for communication complexity, up
to logn factor, for any Boolean function composed with AND function as
the inner gadget. One of the main tools in this result was the relationship
between monotone analogues of well-studied Boolean complexity measures
like block sensitivity and certificate complexity. The relationship between
the standard measures has been a long line of research, with a landmark
result by Huang (Annals of Mathematics 2019), finally showing that
sensitivity is polynomially related to all other standard measures.
In this article, we study the monotone analogues of standard measures like
block sensitivity (mbs(f)), certificate complexity (MCC(f)) and fractional
block sensitivity (fmbs(f)); and study the relationship between these
measures given their connection with AND-decision tree and sparsity of
a Boolean function. We show the following results:
– Given a Boolean function f : {0, 1}n → {0, 1}, the ratio fmbs(fl)

mbs(fl)
is

bounded by a function of n (and not l). A similar result was known for
the corresponding standard measures (Tal, ITCS 2013). This result
allows us to extend any upper bound by a well behaved measure on
monotone block sensitivity to monotone fractional block sensitivity.

– The question of the best possible upper bound on monotone block
sensitivity by the logarithm of sparsity is equivalent to the natural
question of best upper bound by degree on sensitivity. One side of
this relationship was used in the proof by Knop, Lovett, McGuire
and Yuan (STOC 2021).

– For two natural classes of functions, symmetric and monotone, hitting
set complexity (MCC) is equal to monotone sensitivity.

1 Introduction

Decision tree complexity is one of the simplest complexity measure for a Boolean
function where the complexity of an algorithm only takes into account the
⋆ Work done while FB and VJ were at Indian Institute of Technology, Kanpur

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 103 (2024)

2 F. Byramji, V. Jha, C. Kayal and R. Mittal

number of queries to the input. Various complexity measures based on decision
tree complexity (like quantum query complexity, randomized query complexity,
certificate complexity, sensitivity, block sensitivity and many more) have been
introduced to study Boolean functions (functions from a subset of {0, 1}n to
{0, 1}) [6,2,16]. Understanding the relations between these complexity measures of
Boolean function has been a central area of research in computational complexity
theory for at least 30 years. Refer to [6] for an introduction to this area.

Two such complexity measures M1 and M2 are said to be polynomially related
if there exists constants c1 and c2 such that M1 = O(M c1

2) and M2 = O(M c2
1).

Recently, Huang [9] resolved a major open problem in this area known as the
“sensitivity conjecture”, showing the polynomial relationship between the two
complexity measures sensitivity (s(f)) and block sensitivity (bs(f)) for a Boolean
function f (implying sensitivity is polynomially related to almost all other
complexity measures too).

Once two complexity measures have been shown to be polynomially related, it
is natural to ask if the relationships are tight or not. This means, if we can show
∀ f, M1(f) = O(M2(f))

α, then is there an example that witnesses the same gap?
In other words, does there exists a function f for which M1(f) = Ω(M2(f))

α?
Figuring out tight relations between complexity measures based on decision trees
has become the central goal of this research area. ([3] compiled an excellent table
with the best-known relationships between these different measures.)

Additionally, many new related complexity measures have been introduced in
diverse areas, sometimes to understand these relations better [10,4,7]. Recently,
monotone analogues of such combinatorial measures have been explored in [11]
for studying the celebrated log-rank conjecture in communication complexity (for
definitions of these monotone measures, see section 2).

In particular, Knop et. al. [11] resolved the log rank conjecture (up to log(n)
factor) for any Boolean function f composed with AND function as the inner
gadget. For such functions, the rank is equal to the sparsity of the function
(denoted by spar(f)) in its polynomial representation (with range {0, 1}). So the
log-rank conjecture amounts to proving a polynomial upper bound of log(spar(f))
on the deterministic communication complexity of (f ◦ ∧2) i.e. Dcc(f ◦ ∧2). As
mentioned before, the proof provided in [11] utilized monotone analogues of the
standard combinatorial measures (block sensitivity, fractional block sensitivity
etc.). The reason for considering monotone measures was due to the observation
that the deterministic communication complexity of such functions is related to
their fractional monotone block sensitivity (fmbs)

Dcc(f ◦ ∧2) ≤ fmbs(f) log(spar(f)) log(n).

Fractional block sensitivity (and its relation with block sensitivity) has been
studied before [1,12,19,8]. It seems natural to look at the monotone analogues
of fractional block sensitivity (fmbs) and block sensitivity (mbs), and see if they
can used to upper bound fmbs with logarithm of sparsity. They precisely do this,
and show that for every Boolean function f : {0, 1}n → {0, 1}:

– mbs(f) = O(log2(spar(f))),

Title Suppressed Due to Excessive Length 3

– fmbs(f) = O(mbs2(f)).

This implies that a sparse Boolean function has small fractional monotone
block sensitivity and in turn small deterministic communication complexity,

fmbs(f) = O(log4(spar(f))) ⇒ Dcc(f ◦ ∧2) = O(log5(spar(f)) log n).

Here spar(f) denotes the sparsity of f as a polynomial with range {0, 1}.
The above proof technique gives rise to a natural question, can these relation-

ships between monotone and related measures be improved? The main objective
of this article is to explore this question. Specifically, we look at the following
variants.

– Is it possible to improve the exponent in the relationship mbs(f) = O(log2(spar(f)))?
– Can we translate the bound on fmbs(f) by well behaved quantities using their

bound on mbs(f). (Similar to the result of Tal [19] which allows us to lift
upper bounds on block sensitivity to fractional block sensitivity for many
well behaved measures.)

– Are there specific class of functions for which monotone analogues have a
better dependence on sparsity?

Ideally, we would like to compile a table similar to [3] for monotone measures.
We start by giving a preliminary table in Appendix E.

1.1 Our Results

We study the monotone analogues of standard complexity measures like block
sensitivity, certificate complexity and their relations with standard complexity
measures.

It is natural to ask if it is possible to improve upper bounds on these mono-
tone measures? One very interesting approach for improving bounds on fbs(f)
(standard measure) is by Tal [19]. He showed that the ratio of bs(f l) and fbs(f l)
is bounded by a quantity independent of l; this allowed him to lift any upper
bound on bs(f) by a measure which is well behaved with respect to composition
to fbs(f). We prove a similar result for mbs(f) and fmbs(f).

Theorem 1. Consider a Boolean function f : {0, 1}n → {0, 1}. For a sufficiently
large n, the ratio

fmbs(f l)

mbs(f l)
≤ p(n)

for all l ≥ 1, where p(n) is a function in n independent of l.

As mentioned earlier, there is a nice implication of this behaviour (as shown
in [13] for standard measures): given a measure M which behaves well under
composition and an upper bound on monotone block sensitivity in terms of
measure M , we can lift the same upper bound to fractional monotone block
sensitivity.

4 F. Byramji, V. Jha, C. Kayal and R. Mittal

Corollary 1. Let f : {0, 1}n → {0, 1} be a Boolean function. Let M(.) be a
complexity measure such that for all l ≥ 2, M(f l) ≤ M(f)M(f l−1). If mbs(f) ≤
M(f)α then fmbs(f) = O(M(f)2α). Furthermore, if M(1− f) = O(M(f)) then
fmbs(f) = O(M(f)α).

We need another extra condition on M , M(1−f) = O(M(f)), as compared to
Kulkarni and Tal [13]. However, most of the complexity measures should satisfy
this condition trivially.

It is tempting to apply this corollary on log(spar(f)) and try to improve the
upper bound on fmbs(f) in terms of log(spar(f)). We show a negative result here:
log(spar(f)) does not behave well under composition, indeed the sparsity of a
composed function f ◦ g can depend on the degree of f which can be much larger
than the logarithm of the sparsity. Hence, Corollary 1 can not be used to improve
the upper bound on fmbs(f). For the counterexample, please see Section 3.1.

Although our attempt to improve the bound on fmbs(f) did not bear success;
we asked, is it possible to improve the log-sparsity upper bound on mbs(f)?
For the question of improving the relation mbs(f) = O(log(spar(f))2), we show
that it will improve the upper bound on sensitivity in terms of degree (a central
question in this field).

Theorem 2. If there exists an α s.t. for every Boolean function f : {0, 1}n →
{0, 1}, mbs(f) = O(logα spar(f)), then for every Boolean function f : {0, 1}n →
{0, 1} s(f) = O(degα(f)).

The converse of this result follows from the proof of mbs(f) = O(log(spar(f))2)
in [11]. Nisan and Szegedy [16] showed that s(f) = O(deg(f)2). However, the
best possible separation known is due to Kushilevitz (described in [17]) giving a
function f such that s(f) = Ω(deg(f)1.63). So, our result implies that the best
possible bound on monotone block sensitivity in terms of logarithm of sparsity
cannot be better than mbs(f) = O(log(spar(f))1.63).

Going further, we ask if these bounds can be improved for a class of functions
instead of a generic Boolean function? Buhrman and de Wolf [5] proved that the
log-rank conjecture holds when the outer function is monotone or symmetric. It
turns out that all these monotone measures are equal for these classes of functions.

Theorem 3. If f : {0, 1}n → {0, 1} is either symmetric or monotone, then

ms(f) = mbs(f) = fmbs(f) = MCC(f).

This implies an upper bound of O(log2(spar(f))) on MCC for these functions. For
symmetric functions, this bound can be improved to O(log spar(f)) by combining
the above relation with the upper bound on communication complexity for the
corresponding AND-functions [5]. Moreover, Buhrman and de Wolf [5] showed
that mbs(f) = Ω(log(spar(f))/ log n), which implies that the upper bound is
essentially tight.

Title Suppressed Due to Excessive Length 5

Organization: In Section 2 we recall the definitions of standard Boolean
complexity measures as well as state their monotone analogues. In Section 3 we will
give the proof ideas of our results. This section also contains the counterexample
which shows that the relationship between fmbsf and log(spar(f)) can’t be
improved using this method (Section 3.1). Section 4 contains the conclusion and
some related open problems to pursue.

Appendix A and Appendix B contain the complete proof of Theorem 1.
Appendix C contains the equivalence between the problem of upper bounding
mbs(f) in terms of log(spar(f)) and the well-studied problem of upper bounding
s(f) in terms of deg(f) (Theorem 2). Finally, Appendix D shows that for the
common classes of symmetric and monotone Boolean functions MCC and mbs
are the same (Theorem 3). In Appendix E, we give an overview of the present
scenario of the relationships between monotone measures.

2 Preliminaries

For the rest of the paper, f denotes a Boolean function f : {0, 1}n → {0, 1} if
not stated otherwise. We start by introducing the following notations that will
be used in the paper:

– [n] denotes the {1, 2, ..., n}. For a set C ⊆ [n], |C| denotes its cardinality.
– For a string x ∈ {0, 1}n, its support is defined as supp(x) := {i : xi = 1} and

|x| := |supp(x)| denotes its Hamming weight .
– For a string x ∈ {0, 1}n, x⊕i denotes the string obtained by flipping the ith

bit of the string x.
– For a string x ∈ {0, 1}n and a B ⊆ [n], xB denotes the string obtained by

flipping the input bits of x that correspond to B.
– Every Boolean function f : {0, 1}n → {0, 1} can be expressed as a polynomial

over R, f(x) =
∑

S⊆[n] αS

∏
i∈S xi. The sparsity of f is defined as spar(f) :=

|{S ̸= ∅ : αS ̸= 0}| and the degree of f is defined as deg(f) := max
S⊆[n]:αS ̸=0

|S|.

Having introduced the notations, we now recall the definitions of standard
Boolean complexity measures.

Definition 1 (Sensitivity). For an input x ∈ {0, 1}n the ith bit is said to be
sensitive for x if f(x⊕i) ̸= f(x). The sensitivity of x w.r.t f is defined as

s(f, x) := |{i ∈ [n] : f(x⊕i) ̸= f(x)}|,

while the sensitivity of f is defined as

s(f) := max
x∈{0,1}n

s(f, x).

Definition 2 (Block Sensitivity). For an input x ∈ {0, 1}n, a subset B ⊆ [n]
is said to be a sensitive block for x w.r.t f if f(xB) ̸= f(x). The block sensitivity
of f at x, denoted by bs(f, x), is defined as

bs(f, x) = max{k|∃B1, . . . , Bk with Bi ∩Bj = ∅ for i ̸= j and f(xBi) ̸= f(x)}.

6 F. Byramji, V. Jha, C. Kayal and R. Mittal

Block sensitivity of f is defined as:

bs(f) := max
x∈{0,1}n

bs(f, x).

Fractional block sensitivity (fbs) is obtained by allowing fractional weights on
sensitive blocks.

Definition 3 (Fractional Block Sensitivity). Let W (f, x) := {B ⊆ [n] :
f(xB) ̸= f(x)} denote the set of all sensitive blocks for the input x ∈ {0, 1}n.
The fractional block sensitivity of f at x, denoted by fbs(f, x) is the value of the
linear program:

fbs(f, x) := max
∑

w∈W (f,x)

bw

s.t.
∀i ∈ [n],

∑
w∈W (f,x):i∈w

bw ≤ 1

and
∀w ∈ W (f, x), bw ∈ [0, 1].

The fractional block sensitivity of f is defined as:

fbs(f) := max
x∈{0,1}n

fbs(f, x).

Note that restricting the linear program for fbs(f, x) to only integral values gives
bs(f, x).

Definition 4 (Certificate Complexity). For a function f and an input x ∈
{0, 1}n, a subset C ⊂ [n] is said to be a certificate for x if for all y ∈ {y ∈
{0, 1}n : ∀i ∈ C, xi = yi} we have f(x) = f(y). For a function f and an input
x ∈ {0, 1}n the certificate complexity of f at x, denoted by C(f, x), is defined as:

C(f, x) := min
C:C is a certificate for x

|C|.

The certificate complexity of f is defined as:

C(f) := max
x∈{0,1}n

C(f, x).

The fractional measures fbs and FC were introduced in [19]. There it was
observed that for all x ∈ {0, 1}n we have : fbs(f, x) = FC(f, x) since the linear
program for Fractional Certificate Complexity and Fractional Block Sensitivity
are the primal-dual of each other and are also feasible.

For each of these standard measures, the analogous monotone versions can
be defined by restricting functions f to the positions in the support of a given
input x ∈ {0, 1}n. Formally, for a function f : {0, 1}n → {0, 1} and an input
x ∈ {0, 1}n let fx denote the function f obtained by restricting f to the set
{y ∈ {0, 1}n : ∀i ∈ supp(x), yi = 1}.

Title Suppressed Due to Excessive Length 7

Definition 5 (Monotone Sensitivity). The monotone sensitivity for x is
defined as ms(f, x) := s(fx, 0

n−|x|) while the monotone sensitivity for f is defined
as

ms(f) := max
x∈{0,1}n

ms(f, x).

Definition 6 (Monotone Block Sensitivity). The monotone block sensitivity
of a function f at an input x ∈ {0, 1}n is defined as mbs(f, x) := bs(fx, 0

n−|x|)
while the monotone block sensitivity of f is defined as:

mbs(f) = max
x∈{0,1}n

mbs(f, x).

Similar to block sensitivity, fractional block sensitivity of f can be extended to
the monotone setting by defining the linear program over the sensitive monotone
blocks i.e. sensitive blocks containing only 0’s.

Definition 7 (Fractional Monotone Block Sensitivity). For a function f
the fractional monotone block sensitivity at an input x ∈ {0, 1, }n is defined as:
fmbs(f, x) := fbs(fx, 0

n−|x|) and the fractional monotone block sensitivity of f is
defined as:

fmbs(f) := max
x∈{0,1}n

fmbs(f, x).

Certificate complexity can also be extended to the monotone setting by
counting only the zero entries in the certificate. The monotone analogue of
certificate complexity was introduced in [11] as hitting set complexity (it can be
viewed as a hitting set for system of monomials). Formally,

Definition 8 (Monotone Certificate Complexity/Hitting Set Complex-
ity). For a function f and an input x ∈ {0, 1}n the hitting set complexity for x
is defined as:

MCC(f, x) := C(fx, 0
n−|x|),

while the hitting set complexity of the function f is defined as:

MCC(f) := max
x∈{0,1}n

MCC(f, x).

Since bs allows only integer solutions to fbs linear program, and C only allows
integer solutions to the dual linear program [19],

bs(fx, 0
n−|x|) ≤ fbs(fx, 0

n−|x|) ≤ C(fx, 0
n−|x|),

By similar arguments,

mbs(f, x) ≤ fmbs(f, x) ≤ MCC(f, x).

Instead of taking maximum over all inputs, these measures can be de-
fined for a certain output too. In other words, for a complexity measure M ∈
{s, bs, fbs,C,ms,mbs, fmbs,MCC} and b ∈ {0, 1},

M b(f) := max
x∈f−1(b)

M(f, x).

8 F. Byramji, V. Jha, C. Kayal and R. Mittal

3 Proof Outline

First, we outline the ideas for the proofs of Theorem 2 and Theorem 3. Subse-
quently, we will give proof outline for our main result, Theorem 1.

Proof idea of Theorem 2 We would like to prove that s(f) = O(degα(f)) for
any Boolean function f (given that mbs(g) = O(logα spar(g)) for all Boolean
functions g). The idea is to convert f into f̃ by shifting the point with maximum
sensitivity to 0n; this transformation can only decrease the degree and mbs(f) is
higher than s(f̃).

The rest is accomplished by using the fact that sparsity is at most exponential
in degree. This is shown for Boolean functions with {−1, 1} domain first using
Parseval’s identity, and then it can be translated for Boolean functions with
{0, 1} domain.

For the interest of space we will present the proof of Theorem 2 in Appendix C.

Proof idea of Theorem 3 We deal with the cases of monotone and symmetric
boolean functions separately.

For monotone boolean functions, the idea for showing equality between the
monotone versions of the standard boolean complexity measures is similar to the
approach used for the standard complexity measures i.e. we consider a string
x which achieves the hitting set complexity MCC(f) = MCC(f, x) with C as
one of its witness. Now, using x and C we construct another input x

′
with

supp(x) ⊆ supp(x
′
) and supp(x

′
) ∩ C = ϕ s.t. every bit i ∈ C is sensitive for fx

at x
′
. Hence leading to MCC(f, x) ≤ ms(f, x

′
) ≤ ms(f).

Now for the case of symmetric boolean functions, we show that there exists
an input z ∈ {0, 1}n s.t. MCC(f) = MCC(f, z) and MCC(f, z) = n− |z|, where
|z| is the Hamming weight of z i.e. |z| = supp(f). But this implies ms(f, z) =
s(fz, 0

n−|z|) = n− |z| = MCC(f, z) = MCC(f).
We will give a complete proof in Appendix D.

3.1 fmbs versus mbs

Let us move to the proof idea of Theorem 1, we essentially follow the same proof
outline as [19]. Theorem 1 proves that for any f : {0, 1}n → {0, 1}, the ratio
fmbs(f l)
mbs(f l)

is bounded above by a function of just n (and independent of l). In other
words, composition make fmbs and mbs equal in the asymptotic sense.

We will be considering the case of monotone functions and non-monotone
functions separately. While the case for monotone functions is handled easily due
to Theorem 3 (we have a stronger relation fmbs(f l)

mbs(f l)
= 1), most of the work is done

for the case when f is non-monotone.

Title Suppressed Due to Excessive Length 9

Proof outline of Theorem 1

From the discussion above, assume that f : {0, 1}n → {0, 1} is a non-monotone
Boolean function. We want to show that

mbs(f l) ≥ p(n) fmbs(f l),

for some function p(n) and big enough l.
Similar to fbs(f), fmbs(f) can also be written as a fractional relaxation (linear

program) of an integer program for mbs(f). The proof converts a feasible solution
of the linear program for fmbs(f l+1) into a feasible solution of mbs(f l+1) without
much loss in the objective value, bounding mbs(f l+1)

fmbs(f l+1)
in terms of mbs(f l)

fmbs(f l)
:

mbs(f l+1) ≥ fmbs(f l+1)
mbs(f l)

fmbs(f l)
αl, (1)

where αl s.t.
∏∞

l=1 αl = Ω(1). This finishes the proof by taking large enough l.
We are left with proving Equation 1 for some αl’s.

Remember, the idea is to convert a solution of fmbs(f l+1) into a solution of
mbs(f l+1). Let x := (x1, x2, ..., xn) ∈ {0, 1}nl+1

be the input s.t. fmbs(f l+1) =

fmbs(f l+1, x) where x1, x2, ..., xn ∈ {0, 1}nl

. The input y ∈ {0, 1}n be the n-bit
string corresponding to x i.e. ∀ i ∈ [n], yi := f l(xi). We know that f l+1(x) =
f(y).

Let {B1, ..., Bk} be the set of all minimal monotone blocks for f at y. A
minimal monotone block, say B = {i1, i2, · · · , ik}, of y gives minimal monotone
blocks for f l at inputs xi1 , xi2 , · · · , xik . Observe that the total weight contributed
by any block Bi in the linear program for f l+1 will become feasible for the
following linear program:

max

k∑
i=1

wi,

s.t. ∑
j:i∈Bj

wj ≤ fmbs(f l, xi), ∀ i ∈ [n],

wj ≥ 0,∀j ∈ [k].

A small modification to these weights (multiplying by a quantity closely
related to mbs(f l)

fmbs(f l)
and taking their integer part) gives the solution of the following

integer program (notice that mbs(f l) is taken over another suitable input x̂):

max

k∑
i=1

wi,

s.t. ∑
j:i∈Bj

wj ≤ mbs(f l, x̂i), ∀ i ∈ [n],

10 F. Byramji, V. Jha, C. Kayal and R. Mittal

wj ∈ {0, 1, 2, . . . ,mbs(f l)},∀j ∈ [k].

Let {w′

i} be the solution of the program above. Using this assignment w
′

i

we can construct
∑k

i=1 w
′

i many disjoint monotone sensitive blocks of f l+1 (see
Appendix A for this construction).

It can be shown that the objective value of the obtained solution satisfies,

mbs(f l+1) ≥ fmbs(f l+1)
mbs(f l)

fmbs(f l)
− 2n.

Here, the term 2n appears because we take the integer part of a fractional solution
to construct {w′

i}. This inequality can be converted into Equation 1 by using
properties of composition of fractional monotone block sensitivity and some
minor assumptions on mbs(f). We present the complete proof of Theorem 1 in
Appendix A.

Implications of Theorem 1

One of the reason Theorem 1 is interesting because it provides a way of
lifting upper bounds on mbs(f) to upper bounds on fmbs(f). This was observed
by [13] for the standard setting (bs and fbs), using which they showed the
quadratic relation between fbs(f) and deg(f) i.e. fbs(f) = O(deg2(f)). This was
an improvement over fbs(f) ≤ C(f) = O(deg3(f)) [15].

Similarly, we can do the lifting for mbs(f) and fmbs(f) which we have stated
in Corollary 1. We present the proof of Corollary 1 in section A.

We now give an example showing that log spar(f2) may be exponentially
larger than (log spar(f))2 and so Corollary 1 cannot be applied to log spar. For
any Boolean functions f and g, spar(f ◦ g) ≥ (spar(g)− 1)deg(f) (see, for instance,
[14]5). In particular, when spar(g) ≥ 3, log spar(f ◦g) ≥ deg(f). So any function f
satisfying spar(f) ≥ 3 and deg(f) = 2Ω(log spar(f)) gives us the desired separation.
For instance, we may take,

f(x1, x2, . . . , xn) = OR(AND(x1, x2, . . . , xn/2),AND(xn/2+1, xn/2+2, . . . , xn))

which has degree n and sparsity only 3.

4 Conclusion

In the present work we studied the behaviour of different monotone complexity
measures and their relation with one another. The relations between these
measures are natural questions by themselves; on top of that, they can potentially
be used to improve the upper bound on deterministic communication complexity
in terms of logarithm of sparsity.

5 Their proof is stated for sparsity in the Fourier representation, but is readily seen to
work for block composition of arbitrary multilinear polynomials.

Title Suppressed Due to Excessive Length 11

To summarize our results, we were able to show a better upper bound on
MCC(f) in terms of log(spar(f)) for monotone and symmetric Boolean functions.
It will be interesting to find other class of functions for which the upper bound
can be improved. Our result that the mbs vs. log(spar) question is equivalent
to the s vs. deg question, might give another direction to attack this old open
question.

This work also showed that the ratio fmbs(f l)
mbs(f l)

is independent of the iteration
number l. Even though we were not able to use it to show fmbs = O(log(spar(f))2),
this results seems to be of independent interest in terms of behavior of these
monotone measures.

Some of the other open questions from this work are listed below.

Open question 4 Can we prove that for any Boolean function f : {0, 1}n →
{0, 1}, fmbs(f) = O(log(spar(f))2)?

Another possible open question in this direction is asking about best possible
separation between fmbs and log(spar). Right now it is known that for all Boolean
function fmbs(f) = O(log(spar(f))4) and the best known separation is due to
Kushilevitz (described in [17]), giving a function f such that s(f) = Ω(deg(f)1.63).
Can we give a better separation for monotone measures?

Open question 5 Does there exist a function f for which, fmbs(f) = Ω(log(spar(f))α)
for some α > 1.63?

References

1. Scott Aaronson. Quantum certificate complexity. CoRR, quant-ph/0210020, 2002.
URL: http://arxiv.org/abs/quant-ph/0210020.

2. Scott Aaronson, Shalev Ben-David, and Robin Kothari. Separations in query
complexity using cheat sheets. In STOC, pages 863–876, 2016. doi:10.1145/
2897518.2897644.

3. Scott Aaronson, Shalev Ben-David, Robin Kothari, Shravas Rao, and Avishay Tal.
Degree vs. approximate degree and quantum implications of Huang’s sensitivity
theorem. In STOC, pages 1330–1342, 2021. doi:10.1145/3406325.3451047.

4. Shalev Ben-David and Eric Blais. A tight composition theorem for the randomized
query complexity of partial functions: Extended abstract. In Sandy Irani, editor,
61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020,
Durham, NC, USA, November 16-19, 2020, pages 240–246. IEEE, 2020. doi:
10.1109/FOCS46700.2020.00031.

5. Harry Buhrman and Ronald de Wolf. Communication complexity lower bounds
by polynomials. In Proceedings 16th Annual IEEE Conference on Computational
Complexity, pages 120–130. IEEE, 2001.

6. Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree
complexity: a survey. Theoretical Computer Science, 288(1):21–43, 2002. doi:
10.1016/S0304-3975(01)00144-X.

http://arxiv.org/abs/quant-ph/0210020
https://doi.org/10.1145/2897518.2897644
https://doi.org/10.1145/2897518.2897644
https://doi.org/10.1145/3406325.3451047
https://doi.org/10.1109/FOCS46700.2020.00031
https://doi.org/10.1109/FOCS46700.2020.00031
https://doi.org/10.1016/S0304-3975(01)00144-X
https://doi.org/10.1016/S0304-3975(01)00144-X

12 F. Byramji, V. Jha, C. Kayal and R. Mittal

7. Sourav Chakraborty, Anna Gál, Sophie Laplante, Rajat Mittal, and Anupa Sunny.
Certificate games. In Yael Tauman Kalai, editor, 14th Innovations in Theoretical
Computer Science Conference, ITCS 2023, January 10-13, 2023, MIT, Cambridge,
Massachusetts, USA, volume 251 of LIPIcs, pages 32:1–32:24. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.ITCS.2023.32.

8. Justin Gilmer, Michael E. Saks, and Srikanth Srinivasan. Composition limits and
separating examples for some Boolean function complexity measures. Combinatorica,
36(3):265–311, 2016. doi:10.1007/s00493-014-3189-x.

9. Hao Huang. Induced subgraphs of hypercubes and a proof of the sensitivity
conjecture. Annals of Mathematics, 190(3):949–955, 2019. doi:10.4007/annals.
2019.190.3.6.

10. Rahul Jain and Hartmut Klauck. The partition bound for classical communi-
cation complexity and query complexity. In Proceedings of the 25th Annual
IEEE Conference on Computational Complexity, CCC 2010, Cambridge, Mas-
sachusetts, USA, June 9-12, 2010, pages 247–258. IEEE Computer Society, 2010.
doi:10.1109/CCC.2010.31.

11. Alexander Knop, Shachar Lovett, Sam McGuire, and Weiqiang Yuan. Log-rank
and lifting for and-functions. In STOC, volume 53, pages 197–208, 2021.

12. Raghav Kulkarni and Avishay Tal. On fractional block sensitivity. Chicago J. Theor.
Comput. Sci, 8:1–16, 2016.

13. Raghav Kulkarni and Avishay Tal. On fractional block sensitivity. Chic. J. Theor.
Comput. Sci., 2016, 2016. URL: http://cjtcs.cs.uchicago.edu/articles/2016/
8/contents.html.

14. Bruno Loff and Sagnik Mukhopadhyay. Lifting theorems for equality. In Rolf
Niedermeier and Christophe Paul, editors, 36th International Symposium on Theo-
retical Aspects of Computer Science, STACS 2019, March 13-16, 2019, Berlin, Ger-
many, volume 126 of LIPIcs, pages 50:1–50:19. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.STACS.2019.50,
doi:10.4230/LIPICS.STACS.2019.50.

15. Gatis Midrijanis. Exact quantum query complexity for total boolean functions.
arXiv preprint quant-ph/0403168, 2004.

16. Noam Nisan and Mario Szegedy. On the degree of Boolean functions as real poly-
nomials. Computational Complexity, 4:301–313, 1994. doi:10.1007/BF01263419.

17. Noam Nisan and Avi Wigderson. On rank vs. communication complexity. Combi-
natorica, 15(4):557–565, 1995. doi:10.1007/BF01192527.

18. Ryan O’Donnell, Xiaorui Sun, Li-Yang Tan, John Wright, and Yu Zhao. A compo-
sition theorem for parity kill number. In IEEE 29th Conference on Computational
Complexity, CCC 2014, Vancouver, BC, Canada, June 11-13, 2014, pages 144–154.
IEEE Computer Society, 2014. doi:10.1109/CCC.2014.22.

19. Avishay Tal. Properties and applications of Boolean function composition. In ITCS,
pages 441–454, 2013. doi:10.1145/2422436.2422485.

A Proof of Theorem 1 and Corollary 1

Proof (Proof of Theorem 1).
If f : {0, 1}n → {0, 1} is monotone then f l is also monotone. Hence from

Theorem 3 it follows that mbs(f l) = MCC(f l) which gives mbs(f l) = fmbs(f l).
Now we consider f to be a non-monotone Boolean function. We consider

two sub cases mbs(f) = 1 and mbs(f) ≥ 2 separately. The sub case of f being

https://doi.org/10.4230/LIPIcs.ITCS.2023.32
https://doi.org/10.1007/s00493-014-3189-x
https://doi.org/10.4007/annals.2019.190.3.6
https://doi.org/10.4007/annals.2019.190.3.6
https://doi.org/10.1109/CCC.2010.31
http://cjtcs.cs.uchicago.edu/articles/2016/8/contents.html
http://cjtcs.cs.uchicago.edu/articles/2016/8/contents.html
https://doi.org/10.4230/LIPIcs.STACS.2019.50
https://doi.org/10.4230/LIPICS.STACS.2019.50
https://doi.org/10.1007/BF01263419
https://doi.org/10.1007/BF01192527
https://doi.org/10.1109/CCC.2014.22
https://doi.org/10.1145/2422436.2422485

Title Suppressed Due to Excessive Length 13

non-monotone with mbs(f) = 1 does not arise in the proof of fbs and bs ratio.
This is because bs(f) ≥ 2 for every non-monotone function f .

If mbs(f) = 1 and if mbs(f l) = 1 for all l ≥ 1 then using the fact that
fmbs(f) = O(mbs2(f)) we get fmbs(f l)/mbs(f l) = O(1). If the aforementioned
condition does not hold i.e. there exists a k ∈ N s.t. mbs(fk) ≥ 2 then what
remains to show is that fmbs(f l)/mbs(f l) ≤ p(n) for all l ≥ k. It follows that
the argument for this part is similar to the case when f is non monotone and
mbs(f) ≥ 2.

To prove the theorem for non-monotone functions and mbs(f) ≥ 2, we will
need several lemmas about the behaviour of these monotone complexity measures
under composition.

Lemma 1 ([19]). For Boolean functions f : {0, 1}n → {0, 1} and g : {0, 1}m →
{0, 1}, if f(zn) = g(zm) = z for z ∈ {0, 1} then:

fbs(f ◦ g, znm) ≥ fbs(f, zn)fbs(g, zm).

The above observation can be adapted to fmbs0.

Lemma 2. If f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1} are Boolean functions
with fmbs0(f) = fmbs(f, x) and fmbs0(g) = fmbs(g, y) then:

fmbs0(f ◦ g) ≥ fmbs0(f)fmbs0(g).

Proof. Consider the inputs x ∈ {0, 1}n and y ∈ {0, 1}m s.t. fmbs0(f) = fmbs(f, x)
and fmbs0(g) = fmbs(g, y). As fx(0

n−|x|) = gy(0
n−|y|) = 0 hence by Lemma 1 it

follows that:
fmbs(fx ◦ gy,0) ≥ fmbs0(f)fmbs0(g),

where 0 is the all zero string in {0, 1}(n−|x|)(n−|y|).
Fix any z ∈ g−1(1). (If g is the constant 0 function, then the lemma holds

since fmbs0(g) = 0.) Now, consider the input γ := (γ1, γ2, ..., γm) with γ1, ..., γn ∈
{0, 1}m defined as:

γi :=

{
z, if xi = 1

y, otherwise

Observe that fmbs(f ◦ g, γ) ≥ fmbs(fx ◦ gy,0), hence giving us the result:

fmbs0(f ◦ g) ≥ fmbs0(f)fmbs0(g).

The remaining lemmas given below are proved in the Appendix B.

Lemma 3. Let f, g be two Boolean function where f is non-monotone and
z ∈ {0, 1} then,
1. mbsz(f ◦ g) ≥ mbs(g),
2. fmbsz(f ◦ g) ≥ fmbs(g).

Lemma 4. For Boolean functions f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1}
we have:

mbsz(f ◦ g) ≥ max{mbsz(f)mbs0(g), bsz(f)min{mbs0(g),mbs1(g)}}.

14 F. Byramji, V. Jha, C. Kayal and R. Mittal

Corollary 2. Let f be a non-monotone Boolean function with z ∈ {0, 1} then,
the sequence {mbsz(f l)}l∈N is monotone increasing and if mbs(f) ≥ 2 then for
every z ∈ {0, 1} the sequence {mbsz(f l)}l∈N tends to infinity.

We are now in a position to prove Theorem 1. To recall, Theorem 1 states
that for any function f : {0, 1}n → {0, 1} the ratio fmbs(f l)

mbs(f l)
is independent of l.

Remember that we are left with the case when f is not monotone and
mbs(f) ≥ 2. If we show that there exists a sequence {rl}l≥1 s.t. for all l ≥ 1 we
have:

mbs(f l)

fmbs(f l)
≥ rl ≥ 1/p(n),

then we will be done.
Now consider the sequence:

rl := min{r0l , r1l },

where rzl := mbsz(f l)
fmbsz(f l)

for z ∈ {0, 1}. Taking z′ ∈ {0, 1} as fmbs(f l) = fmbsz
′
(f l),

we get:

mbs(f l)

fmbs(f l)
=

mbs(f l)

fmbsz
′
(f l)

≥ mbsz
′
(f l)

fmbsz
′
(f l)

= rz
′

l ≥ rl,

i.e. mbs(f l)
fmbs(f l)

has rl as its lower bound. What remains to show is that for all l ≥ 1:

rl ≥ 1/p(n).

Now, notice it is sufficient to show that for l ≥ l0, rl ≥ 1/p(n), where l0 is a
parameter we fix later.

To this effect, we show that for l ≥ l0:

rl+1 ≥ rl(1− 2−1−⌊ l−(l0+1)
2 ⌋). (2)

Equation 2 will complete the proof because it implies that for all s ≥ l0:

rs ≥ rl0 ·
∞∏
i=1

(1− 2−i)2 ≥
Proposition 1

rl0 · 1/e4 ≥ 1/e4 · q(n),

where q(n) is any function of n s.t. rl0 ≥ q(n).
For the rest of the proof, our aim will be to show Equation 2. We do this by

rounding a solution of the linear program for fmbs(f l+1) to a feasible solution
for the integer program corresponding to mbs(f l+1). To accomplish this goal, we
look at the composed function f l+1 as f ◦ f l, which seems natural given the fact
that we have a better understanding of the function f .

Let x := (x1, x2, ..., xn) ∈ {0, 1}nl+1

be an input for which fmbsz(f l+1) =

fmbs(f l+1, x) where x1, x2, ..., xn ∈ {0, 1}nl

and let y ∈ {0, 1}n be the n-bit string
corresponding to x i.e. ∀ i ∈ [n], yi := f l(xi). As already mentioned, we will

Title Suppressed Due to Excessive Length 15

convert the optimal solution x for fmbs(f l+1) to a feasible solution x̂ (mentioned
later) for mbs(f l+1).

Let {B1, ..., Bk} be the set of all minimal sensitive blocks for y. What now
needs to be observed is that any minimal monotone sensitive block for f l+1

corresponds to a minimal sensitive block Bi for f . The consequence of this
observation is that every feasible solution of fmbs(f l+1) is a feasible solution of
the following linear program:

max

k∑
i=1

wi,

s.t. ∑
j:i∈Bj

wj ≤ fmbs(f l, xi), ∀ i ∈ [n],

wj ≥ 0,∀j ∈ [k].

We now convert an optimal solution of fmbs(f l+1) to a feasible solution of
mbs(f l+1). Let {w∗

j }j∈[k] be an optimal assignment of weights for the above linear
program and let w

′

j := ⌊w∗
j · rl⌋. Define x̂ := (x̂1, x̂2, ..., x̂n), where mbs(f l, x̂i) :=

mbsyi(f l). It can be observed that for all j ∈ [k] we have:

∑
j:i∈Bj

w
′

j ≤
∑

j:i∈Bj

w∗
j ·rl ≤ fmbs(f l, xi)rl ≤ fmbs(f l, xi)· mbsyi(f l)

fmbsyi(f l)
≤ mbs(f l, x̂i),

where the last inequality follows from the fact that f l(xi) = f l(x̂i) = yi.
Now consider the following integer program:

max

k∑
i=1

wi,

s.t. ∑
j:i∈Bj

wj ≤ mbs(f l, x̂i), ∀ i ∈ [n],

wj ∈ {0, 1, 2, . . . ,mbs(f l)},∀j ∈ [k].

Clearly, w
′
forms a feasible solution for the above mentioned integer linear

program.
We claim that using the assignment w

′

i defined above we can construct∑k
i=1 w

′

i many disjoint monotone sensitive blocks for x̂, which would imply∑k
i=1 w

′

i ≤ mbs(f l+1, x̂).
We argue this as follows, consider the minimal monotone sensitive block

B1 for y and to simplify the discussion assume that B1 := {i1, i2}. Now pick
the ith1 copy of f l. Consider w

′

1 many disjoint monotone blocks for xi1 and
denote them by B1

i1,1
, B1

i1,2
, ... , B1

i1,w
′
1

. Similarly consider w
′

1 many disjoint

monotone sensitive blocks for xi2 . Observe that each of the monotone blocks

16 F. Byramji, V. Jha, C. Kayal and R. Mittal

B1
i1,1

∪ B1
i2,1

, B1
i1,2

∪ B1
i2,2

, ..., B1
i1,w

′
1

∪ B1
i2,w

′
1

are sensitive for the input x̂ and
are pairwise disjoint.

This implies:

fmbsz(f l+1)rl ≤
k∑

i=1

w∗
i rl ≤

k∑
i=1

(w
′

i + 1) ≤ mbs(f l+1, x̂) + 2n ≤ mbsz(f l+1) + 2n,

where the last inequality follows from the fact that f l+1(x̂) = z and by the fact
that monotone blocks for y are subsets of [n].

Using the aforementioned inequality, we get:

rzl+1 =
mbsz(f l+1)

fmbsz(f l+1)
≥ rl −

2n

fmbsz(f l+1)

= rl

(
1− 2n

fmbsz(f l+1)
· fmbsz

′

(f l)

mbsz
′
(f l)

)
≥

Lemma 3
rl

(
1− 2n

mbsz
′
(f l)

)
(3)

where z
′
= argmin

z∈{0,1}
rzl .

We fix l0 to be the minimum integer s.t. mbs(f l0) ≥ 2.2n. This gives us:

mbsz
′

(f l) ≥
Lemma 4

mbsz
′

(f l−(l0+1)) · min
b∈{0,1}

mbsb(f l0+1)

≥
Corollary 2

2⌊
l−(l0+1)

2 ⌋ · (2 · 2n).

Putting the value of mbsz
′

(f l) in Equation 3 gives us Equation 2, completing
the proof.

Proof (Proof of Corollary 1).
We will derive the lifting for fmbs by using a lifting for fmbs0. Formally,

if mbs(f) = O(M(f)α), where the complexity measure M(.) composes, then
fmbs0(f) = M(f)α.

Let fmbs0(f) > M(f)α i.e. fmbs0(f) = M(f)α + ϵ for some ϵ > 0. This
implies,

fmbs0(f)l =(M(f)α)l(1 + ϵ
′
)l,

where ϵ
′
:= ϵ/M(f)α,

fmbs0(f l) ≥ fmbs0(f)l ≥ (M(f)α)l(1 + ϵ
′
)l.

Using Lemma 2 and Theorem 1, we get:

p(n)M(f l)α ≥ p(n)mbs(f l) ≥ fmbs0(f l) ≥ M(f)lα(1 + ϵ
′
)l.

Title Suppressed Due to Excessive Length 17

This implies,

p(n) ≥ (1 + ϵ
′
)l

Which is a contradiction for a fixed n and a sufficiently large l.
Now using the above lifting for fmbs0(f) we derive the lifting for fmbs(f).
Let fmbs(f) > M(f)2α i.e. fmbs(f) = M(f)2α+ϵ for some ϵ > 0. This implies,

fmbs(f)l =(M(f)2α)l(1 + ϵ
′
)l,

where ϵ
′
:= ϵ/M(f)2α. Now by Lemma 3 it follows that:

fmbs0(f2)l ≥ fmbs(f)l ≥ (M(f)2α)l(1 + ϵ
′
)l.

Using Lemma 2 and Theorem 1, we get:

p(n)M(f)2lα ≥ p(n)M(f2l)α ≥ p(n)mbs(f2l) ≥ fmbs0(f2l) ≥ fmbs(f)l ≥ M(f)2lα(1 + ϵ
′
)l.

This implies,

p(n) ≥ (1 + ϵ
′
)l

Which is a contradiction for a fixed n and a sufficiently large l.
Now, if the complexity measure M satisfies the condition M(1−f) = O(M(f))

then using the fact that fmbs1(f) = fmbs0(1− f), we have:

fmbs(f) = max{fmbs0(f), fmbs1(f)} = O(M(f)α).

B Results needed for the proof of Theorem 1

We basically give an analog of the identities that hold for standard complexity
measures for monotone complexity measures presented in [19]. We start by
showing how MCC(f) and mbs(f) are related.

Theorem 6. For a Boolean function f : {0, 1}n → {0, 1} we have:

MCCz(f) ≤ mbsz(f)ms1−z(f̃),

where f̃(x) := f(1− x1, 1− x2, ..., 1− xn).

Proof. Let MCC(f) = MCC(f, x). We now consider the function fx at the input
0n−|x| along with a set of disjoint minimal sensitive blocks {B1, B2, ..., Bk} with
k = mbs(f, x). We claim that for every i ∈ [k], fx is sensitive on 0⊕Bi at each
index j ∈ Bi. If this was not the case then there would exist B ⊊ Bi s.t. B is a
sensitive block for fx at 0n−|x|, contradicting the claim that Bi is minimal.

18 F. Byramji, V. Jha, C. Kayal and R. Mittal

Now, we claim that the set ∪i∈[k]Bi is a certificate for fx at 0n−|x|. If this
was not the case then we would have obtained a sensitive block B at 0n−|x| s.t.
B ∩ Bi = ∅ for all i ∈ [k]. This would have contradicted the assumption that
{Bi : i ∈ [k]} is a witness for mbs(f, x). Hence from the above discussion we
obtain:

MCC(f) = MCC(f, x) ≤
∑
i∈[k]

|Bi| ≤ mbs(f, x)ms(f̃) ≤ mbs(f)ms(f̃).

In the following theorem we show that the composition result for Boolean
functions f, g (see [19]), can also be extended to mbs.

Theorem 7. Let f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1} be Boolean
functions then mbs(f ◦ g) ≤ fbs(f).mbs(g).

Proof. Let f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1} be two Boolean functions.
Now consider an input (x1, x2, ..., xn) ∈ ({0, 1}m)n where xi := (xi

1, ..., x
i
m) for

i ∈ [n].
Now we wish to calculate mbs(f ◦ g, x). Any minimal monotone block for f ◦ g

at x is a union of minimal monotone blocks for different gi where i ∈ I ⊆ [n]
where I is a minimal sensitive block for f at y := (g(x1), .., g(xn)).

If we assume that B1, ..,Bk is the set of all minimal sensitive blocks for f at
y and by mj let us denote the number of minimal monotone sensitive blocks
for f ◦ g that intersects with Bj . As we want to obtain a collection of disjoint
monotone sensitive blocks for f ◦g at x hence we have that ∀i ∈ [n],

∑
j:i∈Bj

mj ≤
mbs(g, xi). Hence mbs(f ◦ g, x) is equal to the optimal value of the following
integer program:

max

k∑
i=1

mi,

s.t. ∑
j:i∈Bj

mj ≤ mbs(g, xi), ∀i ∈ [n],

mi ∈ {0, 1, ..,mbs(g)}

Now, relaxing the above integer program to linear program we get a feasible
solution for the linear program corresponding to fbs(f, y) by simply dividing it
by mbs(g).: This implies,

fbs(f, y) ≥ OPT (LP (mbs(f ◦ g, x)))
mbs(g)

≥ OPT (IP (mbs(f ◦ g, x)))
mbs(g)

=
mbs(f ◦ g, x)

mbs(g)

Taking x to be the input s.t. mbs(f ◦ g) = mbs(f ◦ g, x) then we get our
desired result.

The next lemma shows that how

Title Suppressed Due to Excessive Length 19

Proof (Proof of Lemma 3). 1. Let mbs(g) = mbs(g, x) and assume that g(x) = 0.
Now as we know that f is non-monotone hence there exists inputs x1, x2, x3, x4

s.t. x1 < x2 and x3 < x4 and f(x1) ̸= f(x2) and f(x3) ̸= f(x4). In fact we can
consider the stronger assumption |x1 − x2| = |x3 − x4| = 1 i.e. have hamming
distance 1.

For ease of discussion let us assume f(x1) = f(x4) = 0 and f(x2) = f(x3) = 1.
Now consider inputs yi ≡ (yi1, ..., y

i
n), i ∈ {1, 2, 3, 4}, for f ◦ g which are

defined as follows:

yij :=

{
x , if xi

j = 0

α , o.w.
,

where α is any string in g−1(1).
What we claim is that mbs(f ◦g, y1) ≥ mbs(g). This is because we can convert

the string x1 to x2 by flipping the corresponding bits in y1. As f ◦ g(y1) =
f(x1) = 0 hence we have mbs0(f ◦ g) ≥ mbs(f ◦ g, y1) ≥ mbs(g). Similarly, we
can convert the string x3 to x4 by flipping the corresponding bits in y3 to obtain
mbs1(f ◦ g) ≥ mbs(f ◦ g, y3) ≥ mbs(g).

If it was the case that g(x) = 1 then the definition of yi for i ∈ {1, 2, 3, 4}
would have been as follows:

yij :=

{
x , if xi

j = 1

α , o.w.
,

where α is any string in g−1(0). Using a similar argument as done for the case
when g(x) = 0 we would have obtained the same inequality.

2. Let fmbs(f) = fmbs(f, x) and let g(x) = 0. Let x1, x2, x3, x4 ∈ {0, 1}n and
y1, y2, y3, y4 ∈ ({0, 1}n)m be the strings defined in part 1.

Now consider the linear program for fmbs(f ◦ g, y1) i.e.:

fmbs(f ◦ g, y1) :=
∑

w∈W(f◦g)

bw,

s.t.
∀(i, j) ∈ [n]× [m],

∑
w∈W(f◦g,y1):(i,j)∈w

bw

and,
∀w ∈ W(f ◦ g, y1), bw ∈ [0, 1].

Now, as |x1 − x2| = 1 hence let us consider the copy of g in f ◦ g, call it
j ∈ [n], which corresponds to the bit where x1 and x2 differ. As f(x1) ̸= f(x2)
and |x2 − x1| = 1 hence all the monotone blocks for the j − th copy of g are
monotone blocks for f ◦ g. Now, let {b̂w′ : w

′ ∈ W(g, x)} be a feasible solution
corresponding to the linear program for fmbs(g, x).

Consider the following assignment to weights bw:

bw :=

{
b̂w, if w∈ W(g, x)

0, otherwise

20 F. Byramji, V. Jha, C. Kayal and R. Mittal

It is easy to verify that that the above assignment for bw forms a feasible
solution for the LP corresponding to fmbs(f ◦ g, y1). Hence

fmbs0(f ◦ g) ≥ fmbs(f ◦ g, y1) ≥ fmbs(g).

Similarly, we can say that:

fmbs1(f ◦ g) ≥ fmbs(f ◦ g, y3) ≥ fmbs(g).

Proof (Proof of Lemma 4). Let p0, p1 be the inputs for which mbsz(g) = mbs(g, pz),
for z ∈ {0, 1}. Let mbsz(f) = mbs(f, y). Now consider the input x ≡ (x1, x2, ..., xn)
defined as:

xi := pyi .

The mbsz(f ◦ g, x) is clearly ≥ mbsz(f)mbs0(g). This is because for every disjoint
monotone sensitive block corresponding to mbsz(f) we have mbs0(g) many disjoint
sensitive blocks.

Similarly, for every disjoint sensitive block corresponding to bsz(f), we have
min{mbs0(g),mbs1(g)} many monotone sensitive blocks. This gives mbsz(f ◦g) ≥
bsz(f)min{mbs0(g),mbs1(g)}.

Proof (Proof of Corollary 2). The monotone increasing part of the lemma is
obtained using part 1 of Lemma 3 as follows:

mbsz(f l) ≥ mbs(f l−1) ≥ mbsz(f l−1).

Now we show that the sequence diverges if mbs(f) ≥ 2. In particular, we show
that for all l ≥ 2 and for all z ∈ {0, 1}, we have:

mbsz(f l) ≥ 2⌊l/2⌋.

We prove it via induction on l. The base case is for l = 2. Using Lemma 4
and the assumption that mbs(f) ≥ 2 we obtain:

mbsz(f2) ≥ mbs(f) ≥ 2

Now for the inductive step consider l = k. Using part 1 of Lemma 3 and we get,

mbsz(fk) ≥ mbsz((f2)⌊k/2⌋) ≥ mbsz(f2)mbs0(f2⌊k/2⌋−2).

Hence by using the induction hypothesis we get that:

mbsz(fk) ≥ mbsz(f2)mbs0(f2⌊k/2⌋−2) ≥ 2.2⌊k/2⌋−1 = 2⌊k/2⌋

A natural question to ask at this point is do we have a relation for the ratio
between MCC(f l) and mbs(f l) similar to fmbs(f l) and mbs(f l)? That might be
an interesting problem to look at but what we do have is the following simple
corollary which follows from the fact that MCC(f) = O(fmbs(f) log(spar(f))).

Title Suppressed Due to Excessive Length 21

Corollary 3. For a Boolean function f : {0, 1}n → {0, 1} we have that for all
l ≥ 1:

MCC(f l)

mbs(f l) log(spar(f l))
≤ C(n),

where C(n) is a function independent of l.

Proof. Using the fact that MCC(f) = O(fmbs(f) log(spar(f))) and by Theorem 1
we get:

MCC(f l)

fmbs(f l) log(spar(f l))
· fmbs(f l)

mbs(f l)
≤ MCC(f l)

mbs(f l) log(spar(f l))
= O(p(n)).

Another interesting observation from Theorem 1 is the following corollary.

Corollary 4. For any Boolean function f and constant c > 0, there exists a
l0 ∈ N such that for all l ≥ l0,

fmbs(f l) ≤ mbs1+c(f l).

Proof. Let us assume that no such l0 exists i.e. there exists an infinite sequence
of integers, say {mi}i≥1 s.t.:

fmbs(fmi) > mbs(fmi)mbsc(fmi),

for all i ≥ 1.
In other words, this implies that:

p(n) ≥ fmbs(fmi)

mbs(fmi)
> mbsc(fmi),

for all i ≥ 1.
This is a contradiction to the fact that the sequence {mbs(f l)} diverges.

Finally, we also mention the following inequality which has been used in the
proof of Theorem 1:

Proposition 1.
∏∞

i=1(1− 2−i) ≥ 1/e2

Proof. We prove the inequality by applying A.M-G.M. inequality on positive real
nos. {a1, ..., aN} where ai :=

1
1−2−i followed by taking the limit N → ∞.

Applying A.M.-G.M. inequality on {a1, ..., aN}, we get:

(a1a2...aN)1/N ≤
∑N

i=1 ai
N

This implies, (N∏
i=1

(1− 2−i)−1

)1/N

≤
∑N

i=1
2i

2i−1

N
.

22 F. Byramji, V. Jha, C. Kayal and R. Mittal

Now simplifying the above inequality we obtain the following set of inequalities:(N∏
i=1

(1− 2−i)−1

)1/N

≤ 1 +

∑N
i=1 2

−(i−1)

N

= 1 +
2

N
(1− 2−N) ≤ 1 + 2/N.

This implies,

N∏
i=1

(1− 2−i)−1 ≤ (1 + 2/N)N .

Taking N → ∞ we get the desired inequality.

B.1 Characterization of Boolean functions with mbs(f) = 1

In this section, we provide another noticeable difference in the behaviour of bs and
mbs. We already know from [19] that for all non-monotone functions bs(f) ≥ 2.
Interestingly, the same is not true for mbs i.e. there are non-monotone Boolean
functions for which mbs(f) = 1. For example, the function:

ODD−MAX−BIT (XS1
, XS2

, ..., XSk
) := XS1

−XS1
XS2

+XS1
XS2

XS3
−...+(−1)k

k∏
i=1

XSi
,

where the product XSXT := XS∩TXS\T∪T\S , has mbs(f) = 1.
What we now show is that the ODD − MAX − BIT is in fact the “only"

function with mbs(f) = 1. To prove the aforementioned result we need the
following claim about the structure of Boolean functions with mbs(f) ≤ 1.

Claim. If f : {0, 1}n → {0, 1} is a Boolean function with mbs(f) = 1 and
f(0n) = 0 then there exists an input x ∈ {0, 1}n s.t. for all y ∈ {0, 1}n, if y ≱ x
then f(y) = 0.

Proof. Consider a Boolean function f : {0, 1}n → {0, 1} with mbs(f) = 1 and
f(0n) = 0 and let k be the smallest integer s.t. f(x) = 1 and |x| = k. Now if we
assume that there exists a y ≱ x with f(y) = 1 then we have mbs(f, x ∧ y) ≥ 2
which contradicts the assumption of mbs(f) = 1.

Lemma 5. If f : {0, 1}n → {0, 1} is a Boolean function with mbs(f) ≤ 1 then
f can be expressed as ODD − MAX − BIT (XS1

, XS2
, ..., XSk

) or 1-(ODD −
MAX −BIT (XS1

, XS2
, ..., XSk

)) where XSi
are monomials corresponding to set

Si ⊆ [n].

Proof. We prove the lemma by applying induction on the arity of the Boolean
function f i.e. n. For the base case let n = 1.

Now if f is a constant function then f(x) = Xϕ or 1−Xϕ where Xϕ = 1. If
it is not then f(x) = x1 or 1− x1. We see that the condition is satisfied for the
base case of n = 1.

Title Suppressed Due to Excessive Length 23

Now for the inductive step assume that f(0n) = 0 with n = k and mbs(f) ≤ 1.
Using subsection B.1 we have that there exists a x ∈ {0, 1}n s.t. f(x) = 1 and
for all y ≱ x we have f(y) = 0. This implies,

f(x) = XSg(x),

where S := supp(x) and g : {0, 1}n−|x| → {0, 1} is the restriction of f on the
support of x i.e. g := fx. As g is the restriction of f on x hence mbs(g) ≤ 1.
For the case when mbs(g) = 0 i.e. g is constant, we have f(x) = 0 = 1 − Xϕ

or f(x) = XS=OMB(XS) for the case when g(x) = 0 or 1 respectively. This
implies we can assume g to be a non-constant function i.e. mbs(g) = 1. Now
using the induction hypothesis we have:

g(x) = X1 −XS1
XS2

+ ...+ (−1)kXS1
XS2

...XSk
= OMB(XS1

, XS2
, ..., XSk

),

for some S1, ..., Sk ⊆ [n]. Note that over here we could have also assumed that
g(x) = 1−OMB(XS1

, ..., XSk
)

Hence f(x) = XS∪S1
−XS∪S1

XS2
+...+(−1)kXS∪S1

XS2
...XSk

= OMB(XS∪S1
, XS2

, ..., XSk
)

.

C Relation between mbs(f) and log(spar(f))

Sensitivity s(f) and Fourier degree deg(f) are two very well studied complexity
measures on Boolean functions. Huang, in his landmark result [9], explicitly
proved deg(f) ≤ s(f)2 to show sensitivity is polynomially related to other
complexity measures. In the other direction, Nisan and Szegedy [16] showed that
s(f) ≤ deg(f)2 around thirty years ago (we still don’t know if this relation is
tight). The article [11] used this relation to show mbs(f) = O(log2(spar(f))). We
show that improving upper bound mbs(f) = O(log2(spar(f))) is indeed equivalent
to improving the upper bound on degree in terms of sensitivity (a long standing
open question).

Recall that Theorem 2 states: suppose, there exists a constant α such that
for every Boolean function f : {0, 1}n → {0, 1}, mbs(f) = O(logα spar(f)). Then
for every Boolean function f : {0, 1}n → {0, 1}, s(f) = O(degα(f)).

To prove Theorem 2, we will need the following known relation between
Fourier degree and Fourier sparsity (see e.g. the proof of Fact 5.1 in [18]). A
proof is included for completeness.

Claim. For f : {−1, 1}n → {−1, 1}, spar(f) ≤ 4deg(f).

Proof. Let f : {−1, 1}n → {−1, 1}. Define g : {0, 1}n → {−1, 1} by g(x1, x2, . . . , xn) =
f(1− 2x1, 1− 2x2, . . . , 1− 2xn) (notice that deg(g) = deg(f)).

Let g(x) =
∑

S⊆[n] αS

∏
i∈S xi be its polynomial representation. Since g is

integer-valued, all αS ’s are integers 6.
6 This can be seen by induction, using the fact that αS is an integer linear combination

of f(S) (where we interpret S as its indicator vector) and αT for T ⊊ S.

24 F. Byramji, V. Jha, C. Kayal and R. Mittal

Using the polynomial representation of g,

f(y) = g(
1− y1

2
, ...,

1− yn
2

) =
∑
S⊆[n]

αS

∏
i∈S

(
1− yi

2

)
.

From this representation of f , every Fourier coefficient of f is an integer
multiple of 1/2deg(f). Say f̂(S) = βS/2

deg(f) for some βS ∈ Z. Using Parseval,∑
S⊆[n] β

2
S = 4deg(f). Since βS ’s are integers, this implies that sparsity is at most

4deg(f).

Corollary 5. For g : {0, 1}n → {0, 1}, spar(g) ≤ 8deg(g).

Proof. Let f : {−1, 1}n → {−1, 1} be defined by f(x) = 1− 2g(1−x1

2 , ..., 1−xn

2)
similar to what was done in the previous claim. This is equivalent to
g(x1, ..., xn) = (1− f(1− 2x1, ..., 1− 2xn))/2. By the above claim,

spar(g) ≤ 2deg(f)spar(f) ≤ 8deg(g).

⊓⊔

Now we can prove Theorem 2.

Proof (Proof of Theorem 2). Let w ∈ {0, 1}n be such that s(f) = s(f, w). Consider
the function f̃ defined by

f̃(x) := f(x⊕ w),

where x⊕ w denotes the bitwise XOR of x and w.
Observe that s(f̃ , 0n) = s(f, w). Also, deg(f̃) ≤ deg(f) since performing an

affine substitution cannot increase the degree.
Using the given condition, mbs(f̃) = O(logα spar(f̃)) and the fact mbs(f̃ , 0) =

bs(f̃ , 0) ≥ s(f̃ , 0) = s(f, w) it follows that s(f) = O(logα spar(f̃)). Finally, by
Corollary 5 and deg(f̃) ≤ deg(f), we get s(f) = O(degα(f̃)) = O(degα(f)) as
desired.

Hence improving the bound on mbs(f) in terms of log(spar(f)) is equivalent
to improving the upper bound on s(f) in terms of deg(f). The other possible
approach of improving the bound on D0−dt(f) is to improve the upper bound on
fmbs(f) in terms of log(spar(f)).

It turns out that for the class of symmetric and monotone Boolean functions
mbs(f) = fmbs(f) = MCC(f), giving a much better upper bound on fmbs(f) in
terms of sparsity of f .

D Boolean functions with ms(f) = MCC(f)

In this section, we look at classes of Boolean functions for which mbs(f) =
MCC(f). We get that for such class of functions MCC(f) = O(log2(spar(f))) (an
improvement over the relationship MCC(f) = O(log5 spar(f)) proved in [11]).

Theorem 3 states that if f : {0, 1}n → {0, 1} is monotone or symmetric
Boolean function, then

ms(f) = mbs(f) = fmbs(f) = MCC(f).

Title Suppressed Due to Excessive Length 25

Proof (Proof of Theorem 3).
We prove the two cases separately.
Case 1 (f is monotone): it suffices to show that for monotone Boolean functions

MCC(f) ≤ ms(f). Let x be an input for which MCC(f, x) = MCC(f).
Without loss of generality assume that f is monotonically increasing and

f(x) = 0. Let C be a minimal certificate for fx at the corresponding all 0n−|x|

string s.t. |C| = MCC(f, x). Now consider the input y defined as follows:

yi :=

{
1 i/∈ C
0 i∈ C

As y agrees with the all zero string 0n−|x| at the indices in C we have that
fx(0) = fx(y). Now we claim that each of the indices in C is sensitive for fx
at y. If it wasn’t the case then there exists an i ∈ C s.t. fx(y⊕i) = fx(y). As
fx is also monotone hence for all z ∈ {0, 1}n−|x| for which y⊕i ≥ z we have
fx(y

⊕i) ≥ fx(z).
For any string z

′ ∈ {0, 1}n−|x| that agrees with 0n−|x| at the bits in C \ i
notice that z

′ ≤ y⊕i. Hence 0 = fx(y
⊕i) ≥ fx(z

′
) = 0. But this implies that

C \ {i} is a certificate for fx at 0n−|x| which is a contradiction.
Hence,

MCC(f) = MCC(f, x) = ms(fx, y) ≤ ms(fx) ≤ ms(f).

Case 2 (f is symmetric): again, it suffices to show that if f : {0, 1}n → {0, 1}
is symmetric then

MCC(f) ≤ ms(f).

Let x ∈ {0, 1}n be one of the inputs for which MCC(f) = MCC(f, x) =
C(fx, 0

n−|x|). Now, let C be the witness for MCC(f, x). If |C| = n− |x| then this
would imply that all the bits of 0n−|x| are sensitive for fx. For the other case, i.e.
|C| < n− |x|,what we claim is that MCC(f, x) = MCC(f, z) where z is the input
s.t.supp(z) = supp(x) ∪ {i : i ∈ [n] \ (supp(x) ∪ C)} i.e. z is set to 1 at the bits
lying in supp(x) and all the bits not lying in C.

We claim that MCC(f, z) = C(fz, 0
n−|z|) = |C| = n − |z| i.e. all the bits

of 0n−z are sensitive for fz. If we assume this is not the case i.e. C
′ ⊊ C is a

certificate for 0n−|z| with |C ′ | = |C| − 1 then it would imply that C
′

is also a
certificate for 0n−|x|.

To argue this, say C
′
= C \ i. Now for any input x < y < z that agrees with

0n−|x| at the bits of C
′
we have that fx(0

n−|x|) = fx(y). This is from using the
fact that fx is symmetric, hence we can always swap the i− th bit of y with a
zero bit in y not lying in C.

Hence by the above argument we would have that C
′
is a certificate for 0n−|x|

as well. But this contradicts the condition that MCC(f, x) = |C|

Using Theorem 3, we get the following corollary.

Corollary 6. Consider a Boolean function f : {0, 1}n → {0, 1}.

26 F. Byramji, V. Jha, C. Kayal and R. Mittal

1. If f is monotone, MCC(f) = fmbs(f) = mbs(f) = O(log2(spar(f))).
2. If f is symmetric, MCC(f) = fmbs(f) = mbs(f) = (1 + o(1)) log(spar(f)).

Proof. For the statement about monotone functions, we combine Theorem 3 with
the relation mbs(f) = O(log2(spar(f))) [11,5].

For symmetric functions, we use the relations Dcc(f◦∧2) ≤ (1+o(1)) log(spar(f))
[5] and mbs(f) ≤ Dcc(f ◦ ∧2) [11].

Note that the bound above for symmetric functions is tight as can be seen by
considering the OR function which has sparsity 2n − 1 and monotone sensitivity
n.

E Examples of separations for monotone measures

ms mbs fmbs HSC log(spar)

ms 1 1 1 2

mbs ? 1 1 2

fmbs ? 2 1 4

HSC ? ? ? 5

Table 1. Known relations for monotone measures: Entry b in row A and column B
represents, for any function f , A(f) = O(B(f))b+o(1),

Here, we note some observations about monotone measures that follow from
previous work. We have listed all the known relationships between complexity
measures in Table 1. All non-trivial relationships follow from the results of Knop
et. al. [11]. A similar table for standard measures was compiled in [3]. The
relationships between standard measures do not seem to straightforwardly imply
relationships between monotone combinatorial measures. On the bright side,
almost all the existing separations between classical complexity measures can be
lifted for a monotone analogue of complexity measures, essentially in the same
way as the proof of Theorem 2 as we explain later. For the relation part, it is
natural and interesting to ask if monotone measures are polynomially related at
all. Note that a row with log(spar) doesn’t make sense since it is not polynomially
related to other monotone complexity measures.

Why we don’t need a row for log(spar)? The function (ANDn◦OR2) (example 2.18
in Knop et al [11]) has sparsity exponential in n but constant MCC. So log(spar)
can not be bounded by any polynomial power of the monotone complexity
measures.

Title Suppressed Due to Excessive Length 27

Lifting separations between classical measures for monotone measures: Let
M1,M2 ∈ {s, bs, fbs,C} and let mM1,mM2 denote their respective monotone
analogues. Suppose f achieves a separation M1(f) ≥ Ω(M2(f)

c) and suppose
y is the input where M1(f) = M1(f, y). Consider the shifted function g which
maps x to f(xXORy). Then mM1(g, 0

n) = M1(f, y) = M1(f) ≥ Ω(M2(f)
c) =

Ω(M2(g)
c) ≥ Ω(mM2(g)

c).
We will give a precise example of the fact that classical separations can be

lifted easily for monotone measures.
For example in terms of monotone measures [11] proved that fmbs(f) =

O(mbs(f)2) for all Boolean function f . It is natural to ask if the relation is tight
or not. Consequently it comes to the best known separations between fbs and bs
and to check if that example works for monotone measures as well. There exist
classes of functions given by [8] that gives separations between fbs and bs. Let us
denote the function introduced by [8] by GSS.

Theorem 8 ([8]). There exists a family of Boolean functions GSS for which
fbs(GSS) = Ω(bs(GSS)

3
2).

Now GSS function is such that fbs(GSS(0n)) = Ω(n
3
4) and bs(GSS) = O(n

1
2). Now,

from the definition of monotone measures, it follows that fmbs(GSS(0n)) = Ω(n
3
4)

and mbs(GSS) = O(bs(GSS)) = O(n
1
2). Consequently, we have the following

lemma,

Lemma 6. There exists Boolean function for which, fmbs(GSS) = Ω(mbs(GSS)
3
2)

Note that the above separation is not tight but it matches the best-known
separations for standard measures fbs and bs.

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

