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Abstract

An s-sparse polynomial has at most s monomials with nonzero coefficients. The Equiv-
alence Testing problem for sparse polynomials (ETsparse) asks to decide if a given polyno-
mial f is equivalent to (i.e., in the orbit of) some s-sparse polynomial. In other words, given
f ∈ F[x] and s ∈ N, ETsparse asks to check if there exist A ∈ GL(|x|, F) and b ∈ F|x| such
that f (Ax + b) is s-sparse. We show that ETsparse is NP-hard over any field F, if f is given
in the sparse representation, i.e., as a list of nonzero coefficients and exponent vectors. This
answers a question posed by Gupta, Saha and Thankey (SODA 2023) and also, more ex-
plicitly, by Baraskar, Dewan and Saha (STACS 2024). The result implies that the Minimum
Circuit Size Problem (MCSP) is NP-hard for a dense subclass of depth-3 arithmetic circuits
if the input is given in sparse representation. We also show that approximating the smallest
s0 such that a given s-sparse polynomial f is in the orbit of some s0-sparse polynomial to
within a factor of s

1
3−ε is NP-hard for any ε > 0; observe that s-factor approximation is

trivial as the input is s-sparse. Finally, we show that for any constant σ ≥ 6, checking if a
polynomial (given in sparse representation) is in the orbit of some support-σ polynomial is
NP-hard. Support of a polynomial f is the maximum number of variables present in any
monomial of f . These results are obtained via direct reductions from the 3-SAT problem.
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1 Introduction

The Polynomial Equivalence (PE) problem asks to decide if two polynomials, given as lists
of coefficients, are equivalent. Polynomials f , g ∈ F[x] are equivalent, denoted as f ∼ g, if
there is an A ∈ GL(|x|, F) and a b ∈ F|x| such that f = g(Ax + b). Equivalent polynomials
represent the same function up to a change of the coordinate system.1 The PE problem is thus
regarded as the algebraic analog of the graph isomorphism (GI) problem. PE is at least as
hard as GI [AS05, Kay11], but we do not know if it is much harder than GI. There is, in fact,
a cryptographic authentication scheme based on the presumed average-case hardness of PE
[Pat96]. Is PE NP-hard? Over finite fields, PE is not NP-hard unless the polynomial hierarchy
collapses [Sax06, Thi98]. In contrast, PE is not even known to be decidable over Q. With the
aim of gaining more insight into the complexity of testing polynomial equivalence, a natural
variant of PE has been studied in the literature. This variant is known as equivalence testing.

In the following discussion, whenever we write "circuit(s)" and "formula(s)", we mean
arithmetic circuit(s) and arithmetic formula(s), respectively, unless mentioned otherwise. 2

Equivalence testing. Equivalence testing (ET) comes in two flavors – ET for polynomial fam-
ilies and ET for circuit classes. ET for a polynomial family F is defined as follows: given a
single polynomial f , check if it is equivalent to some g ∈ F. This variant of PE was introduced
in [Kay12a, Kay11], wherein randomized polynomial-time ET algorithms were provided for
the permanent, determinant, and elementary and power symmetric polynomial families. Sub-
sequently, efficient ET algorithms were given for various other important polynomial families,
such as the iterated matrix multiplication (IMM) family [KNST19] (see Section 1.4). These al-
gorithms are efficient even if f is provided as a circuit or a black-box.3 ET for a circuit class C

(a.k.a testing equivalence to C) is defined similarly: given a polynomial f , decide if it is equiva-
lent to some polynomial g that is computable by a circuit in C. Recently, efficient ET algorithms
have been given for read-once formulas [GST23] and a special subclass of sparse polynomials,
namely t-design polynomials for constant t [BDS24]. Sparse polynomials are depth-2 circuits.4

It is natural to ask whether or not ET can be solved efficiently for general sparse polynomials.
This question was posed in [GST23] and also, more explicitly, in [BDS24].

Before proceeding to discuss ET for sparse polynomials, we point out a subtle difference
between ET for polynomial families and that for circuit classes. The polynomial families for
which ET has been studied so far are such that if f is equivalent to some g in the family, then
g is unique and it can be readily identified from f . For example, if f is equivalent to some
determinant polynomial5, then we know which one simply from the number of variables of f .
Moreover, polynomials in most of these families admit well-known polynomial-size circuits.
So, a circuit for g can be derived once it is identified. Thus, if f is also given as a circuit, then ET
for such a family reduces to PE with the input polynomials given as circuits. Over finite fields,
this version of PE is in AM∩ coAM and hence unlikely to be NP-hard. On the other hand, in the
case of ET for a circuit class, if f is equivalent to some circuit C in the class, then C need not be
unique, and further, C may not be easily deducible from f . This leaves us with the prospect of
proving that ET is hard for some natural circuit class. Do sparse polynomials form such a class?

1Over R, an invertible map x 7→ Ax + b is simply a combination of rotation, reflection, scaling, and translation.
2An arithmetic circuit is like a Boolean circuit but with AND and OR replaced by × and + gates, and with edges

labelled by F-elements. It computes a polynomial over F. A formula is a circuit whose underlying graph is a tree.
3Black-box access to f means oracle access to f , we get f (a) from a query point a in one unit time. It is as if f is

given as a “hidden” circuit and the only operation we are allowed to do is evaluate the circuit at chosen points.
4We assume that a depth-2 circuit has a + gate on top and a bottom layer of × gates. If the top gate is a × gate,

then ET can be solved efficiently using polynomial factorization algorithms [KT90].
5The n2-variate determinant polynomial is the determinant of the matrix (xi,j)i,j∈[n] of formal variables.

1



ET for sparse polynomials. An n-variate, degree-d polynomial is s-sparse if it has at most s
monomials with nonzero coefficients. An s-sparse polynomial is computable by a depth-2 cir-
cuit having top fan-in s. Sparse polynomials have been extensively studied in algebraic com-
plexity, particularly with regard to identity testing [KS01, LV03], interpolation [BT88, GKS90,
KS01, BJ14], and factorization [vzGK85, BSV20] (see the tutorial [Roc18] and the references
therein for more algorithms involving sparse polynomials). ET provides yet another avenue
to understand these “basic" polynomials better. ET for sparse polynomials asks to check if a
given polynomial is sparse in some coordinate system. More formally, given a polynomial f as
an arithmetic circuit and an s ∈N, decide if there is an s-sparse polynomial g such that f ∼ g.
This problem was studied in [GK93] over Q, wherein an exponential in n4 time algorithm was
provided. There has not been any significant progress on this problem since that work. The
lack of improvements in the complexity for over three decades makes one wonder:

Is ET for sparse polynomials NP-hard?

In this work, we answer this question in the affirmative over any field (see the first part of
Theorem 1) even if the input f is provided as a depth-2 circuit. The result answers the question
posed in [GST23, BDS24]. To our knowledge, the theorem gives the first example of a natural
circuit class for which ET is provably hard.

Although ET for sparse polynomials (ETsparse) is a fairly natural problem, there is a
deeper reason to study ETsparse that originates from the expressive power of affine projections
of sparse polynomials and the Minimum Circuit Size Problem (MCSP) for depth-3 circuits. We
discuss this reason below to motivate ETsparse when the input is a homogeneous polynomial.

1.1 ETsparse and MCSP for depth-3 circuits

First, we need a few definitions: A polynomial g is an affine projection of f if g = f (Ax + b)
for some A ∈ F|x|×|x| and b ∈ F|x|. If b = 0, we say g is a linear projection of f ; additionally,
if A ∈ GL(|x|), we say g is in the orbit of f , denoted as orb( f ). Depth-3 circuits form a highly
expressive class [GKKS16, Tav15]. A depth-3 (ΣΠΣ) circuit is a circuit with a + gate on top, a
middle layer of × gates, and a bottom layer of + gates. A depth-3 circuit with a top fan-in of s
is an affine projection of an s-sparse polynomial. Thus, the problem of deciding if a given f is
an affine projection of an s-sparse polynomial is closely related to MCSP for depth-3 circuits.
We say “closely related to" instead of “the same as" because the size of a depth-3 circuit is de-
termined by not only its top fan-in but also its formal degree.

MCSP. The complexity of MCSP for Boolean circuits has baffled researchers for over six decades.
MCSP for a Boolean circuit class C (C-MCSP) takes input the truth table of an n-variate
Boolean function f and a parameter s ∈N and asks to check if f is computable by a circuit in C

of size at most s. There are intriguing connections between MCSP and several other areas such
as cryptography [KC00, AD17], learning theory [CIKK16], average-case complexity [Hir18],
and proof complexity [PS19]. Whether or not MCSP for general Boolean circuits is NP-hard is
a long-standing open question. It is known that MCSP is NP-hard for DNF [Mas79, AHM+06]
and DNF ◦ XOR formulas [HOS18]. But no NP-hardness result is known (under determinis-
tic polynomial-time reductions) for more general circuit models such as AC0 circuits.6 This is

6However, strong hardness results are known for several powerful circuit models under randomized or quasi-
polynomial time or subexponential time reductions [Ila20, ILO20, Ila21, Hir22].
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not too surprising as [KC00] showed that NP-hardness of C-MCSP under natural7 determin-
istic polynomial-time reductions implies a 2Ω(n) lower bound for C, unless NP ⊆ SUBEXP.
Unfortunately, such strong lower bounds are not known even for depth-3 Boolean circuits.
However, a 2Ω(n) lower bound is known for XOR ◦ AND ◦ XOR formulas [Raz87], which are
depth-3 arithmetic circuits over F2 and are like DNF ◦ XOR formulas but with the top OR gate
replaced by an XOR gate. In fact, a 2Ω(n) lower bound is known for depth-3 arithmetic circuits
over any fixed finite field [GR98]. This raises hope that we will be able to prove the hardness of
MCSP for depth-3 arithmetic circuits over finite fields. But how is the input given in the case
of MCSP for arithmetic circuits? And what about depth-3 circuits over fields of characteristic 0?

MCSP for arithmetic circuits: Input representation and model of computation. In the Boolean
setting of MCSP, one of the main reasons for assuming that the input is a truth table is that the
assumption puts MCSP in NP. Analogously, in the algebraic setting, we could assume that
the polynomial is given in the dense representation as a list of (n+d

n ) coefficients. But observe
that even if the input is given as an arithmetic circuit, MCSP is in the complexity class MA
over finite fields. This is because verifying if two circuits compute the same polynomial is the
polynomial identity testing problem, which admits a randomized polynomial-time algorithm
[DL78, Zip79, Sch80]. Furthermore, class MA equals NP, assuming a widely believed circuit
lower bound [IW97]. A succinct input representation also opens up the possibility of proving
NP-hardness of MCSP for models, such as depth-3 circuits over fields of characteristic 0, for
which strong exponential lower bounds are unknown (the MCSP hardness to lower bound
implication in [KC00] needs the input in the dense format). The current best lower bound for
depth-3 circuits over fields of characteristic 0 is quasi-polynomial in n [LST21, AGK+23].

It is, therefore, reasonable to assume that the input polynomial is given succinctly as a
circuit which should only facilitate our efforts in proving NP-hardness of MCSP for arithmetic
circuit classes. For example, there is an instance in the Boolean setting wherein succinct repre-
sentation of the input helped prove NP-hardness of MCSP long before such a hardness result
was shown with respect to the dense representation – it is the case of the partial MCSP problem
[HJLT96, Hir22]. In this work, we assume that the input is given as a depth-2 circuit, i.e., as a
list of nonzero coefficients, and exponent vectors in unary – this is the sparse representation.8

A few remarks are in order concerning the model of computation. Over finite fields, we
assume the Turing machine model. However, over arbitrary fields of characteristic 0, it is natu-
ral to consider an arithmetic model of computation (similar to the Blum-Shub-Smale machine
model [BSS89]) that allows us to store a field element in unit space and perform an arithmetic
operation in unit time. Over Q, it is not clear if MCSP for arithmetic circuits is even decidable
in the Turing machine model. But, if we confine our search to size-s circuits whose field con-
stants are sO(1) bit rational numbers, then we can work with the Turing machine model.

MCSP for homogeneous depth-3 circuits. The size of a ΣΠΣ circuit is primarily determined
by its formal degree and its top fan-in, whereas the size of a homogeneous depth-3 (hom-ΣΠΣ)
circuit is mainly decided by its top fan-in (the formal degree of a ΣΠΣ circuit is the maximum
fan-in of the middle layer of × gates). MCSP for ΣΠΣ circuits can be defined as follows: given
f and D, s ∈ N, decide if there is a ΣΠΣ circuit with formal degree bounded by D and top
fan-in bounded by s that computes f . Similarly, MCSP for hom-ΣΠΣ circuits is defined as:

7i.e., the size of the output of the reduction and the output parameter s depend only on the size of the input
instance. Almost all reductions that show NP-hardness of problems are natural.

8Sparse representations of polynomials are also used in computer algebra systems wherein the exponent vector
is given in binary. As the degree is nO(1) in this work (except on one occasion; see the remark following Theorem
3), whether or not the exponent vector is given in unary or binary makes little difference.
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given a homogeneous f and s ∈N, check if there is a hom-ΣΠΣ circuit with top fan-in at most
s that computes f . In order to prove NP-hardness of ΣΠΣ-MCSP, it is necessary to prove NP-
hardness of hom-ΣΠΣ-MCSP. The reason is: a polynomial f (x1, x2, . . . , xn) has a ΣΠΣ circuit
with formal degree bounded by D and top fan-in bounded by s if and only if the homogeneous
polynomial zD f (x1z−1, x2z−1, . . . , xnz−1) has a hom-ΣΠΣ circuit with top fan-in bounded by s.
Also, if the reduction in a hypothetical proof of NP-hardness of hom-ΣΠΣ-MCSP has a certain
simple feature, then it would imply NP-hardness of ΣΠΣ-MCSP (see the last remark following
Proposition 3.4). Hence, it is natural to study the hardness of hom-ΣΠΣ-MCSP first.

NP-hardness of MCSP is known for two interesting subclasses of hom-ΣΠΣ circuits,
namely depth-3 powering circuits [Shi16] and set-multilinear ΣΠΣ circuits [Hås90]; the top
fan-in’s of circuits in these two classes correspond to Waring rank and tensor rank, respec-
tively. Perhaps an appealing evidence in favor of NP-hardness of hom-ΣΠΣ-MCSP is a proof
of NP-hardness of MCSP for a “dense" subclass of hom-ΣΠΣ circuits. Intuitively, C is a dense
subclass of hom-ΣΠΣ circuits if every hom-ΣΠΣ circuit can be approximated “infinitesimally
closely" by circuits in C.9 Unfortunately, depth-3 powering circuits and set-multilinear ΣΠΣ
circuits are not dense inside hom-ΣΠΣ circuits.10 On the other hand, orbits of homogeneous sparse
polynomials form a dense subclass of hom-ΣΠΣ circuits.11 It is natural to ask:

Is MCSP for orbits of homogeneous sparse polynomials NP-hard?

MCSP for orbits of homogeneous sparse polynomials is exactly the ETsparse problem on in-
puts that are homogeneous polynomials. The second part of Theorem 1 answers the question
positively over any field.

Approximating the sparse-orbit complexity. Call the smallest s0 such that f is in the orbit of
an s0-sparse polynomial, the sparse-orbit complexity of f . Theorem 1 shows that sparse-orbit
complexity is hard to compute in the worst case.

Is sparse-orbit complexity easy to approximate?

In Theorem 2, we show that approximating the sparse-orbit complexity of a given s-sparse
polynomial (homogeneous or not) to within a s1/3−ε factor is NP-hard for any ε ∈ (0, 1/3). As
the input is s-sparse, approximating the sparse-orbit complexity to within a factor s is trivial.

1.2 ET for constant-support polynomials

ET is efficiently solvable for two special sparse polynomial families, namely the power sym-
metric polynomial PSym := xd

1 + . . . + xd
n [Kay11] and the sum-product polynomial SP :=

∑i∈[s] ∏j∈[d] xi,j [MS21, Kay11]. What makes ET easy for these sparse polynomials? Expla-
nations were provided in [GST23, BDS24]: SP is a read-once formula; it is also a 1-design
polynomial. PSym is a 1-design polynomial, but it is also a support-1 polynomial.

9Formally, a subclass C of hom-ΣΠΣ circuits is dense if there are polynomial functions p, q : N → N such
that the following holds: For n, d, s ∈ N, the coefficient vector of every n-variate degree-d polynomial computable
by a size-s hom-ΣΠΣ circuit is in the Zariski closure of the set of coefficient vectors of p(nds)-variate degree-d
polynomials computable by size-q(nds) circuits in C. Here, “size" means “top fan-in".

10Circuits of these two classes have small read-once algebraic branching programs (ROABPs), and the class
ROABP is closed under Zariski closure [For16]. So, the closures of these two classes are also contained inside
ROABPs. But, there are explicit O(n) size hom-ΣΠΣ circuits that require 2Ω(n) size ROABPs [ST21, KNS20].

11Every n-variate degree-d hom-ΣΠΣ circuit of size-s is a linear projection of an s-sparse degree-d homogeneous
polynomial in at most sd variables. It is well known that linear projections of f are contained in the Zariski closure
of the orbit of f over fields of characteristic 0 (see [ST21] for a proof of this fact).
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Is ET easy for constant-support polynomials?

In Theorem 3, we show that checking if a given f is in the orbit of a support-6 polynomial is
NP-hard; this answers the question in the negative.

1.3 Our results

We now state our results formally. The ETsparse problem is defined as follows.

Problem 1.1 (ETsparse). Given a polynomial f ∈ F[x] in its sparse representation and an inte-
ger s, check if there exist an A ∈ GL(|x|, F) and a b ∈ F|x| such that f (Ax + b) is s-sparse.

Our first result, Theorem 1, shows the NP-hardness of ETsparse over any field.

Theorem 1 (ETsparse is NP-hard). 1. Let F be any field. There is a deterministic polynomial-time
many-one reduction from 3-SAT to ETsparse over F.

2. Let F be any field. There is a deterministic polynomial-time many-one reduction from 3-SAT to
ETsparse over F where the input polynomial to the ETsparse problem is homogeneous.

Remarks. 1. Part 2 of the theorem subsumes part 1. We state parts 1 and 2 separately because
of two reasons: One, part 1 has a simpler proof. Two, the degree parameters in the
proof of part 1 have a better upper bound in comparison to that in the proof of part 2.

2. The reduction is natural12 and has the feature that a satisfying assignment can be
mapped to a sparsifying invertible A ∈ {−1, 0, 1}|x|×|x| and vice versa. So, ETsparse is
NP-hard even when A is restricted to having only {−1, 0, 1} entries.

3. The authors of [CGS23] showed the undecidability over Z of testing if a given f is
shift equivalent to some sparse polynomial ( f is shift equivalent to a polynomial g,
if there exists a b ∈ F|x| s.t f = g(x + b)). However, their result does not imply
the intractability of ETsparse as testing shift equivalence to a sparse polynomial is a
special case of ETsparse when A is the identity map.

4. The authors of [BDS24] gave a randomized polynomial-time ET algorithm for ran-
dom13 sparse polynomials, assuming black-box access to the input. Such average-case
results for hard problems are not unusual in both algebraic and Boolean settings. In
the algebraic setting, MCSP is NP-hard for depth-3 powering circuits [Shi16] and for
set-multilinear depth-3 circuits [Hås90].14 Yet, [KS19] gave average-case learning algo-
rithms for both these circuit models. In the Boolean setting, [DF89] gave polynomial-
time algorithms for average cases of NP-hard problems like Graph 3-colorability.

5. Depth-3 power circuits, set-multilinear depth-3 circuits, and shifted sparse polyno-
mials are all contained inside ROABPs. So, these models admit polynomial-time
(improper) learning algorithms [BBB+00, KS06] and quasi-polynomial-time hitting
sets [AGKS15, FS13]. Orbits of sparse polynomials require exponential size ROABPs
[ST21]; we cannot expect to improperly learn them via ROABPs. Theorem 1 suggests
that proper learning orbits of sparse polynomials is likely hard. Nonetheless, there is
a quasi-polynomial time hitting set for orbits of sparse polynomials [MS21, ST21].

12unless char(F) = 2. See the remark following Observation 3.6 in Section 3.5.1.
13A random s-sparse degree-d polynomial in their work was defined to be a polynomial where each monomial

is formed independently of the others by selecting d variables uniformly at random from the variable set; the
coefficients are allowed to be arbitrary.

14In a depth-3 powering circuit, each term is a power of a linear form. In a set-multilinear depth-3 circuit, the
variable set is partitioned into d sets such that each term is a product of d linear forms, the ith linear form being a
linear form in the ith set.
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We prove Theorem 1 in Section 3. Next, we define the gap version of ETsparse.

Problem 1.2 (α-gap-ETsparse). Let α > 1 be a parameter. Given a polynomial f ∈ F[x] in its
sparse representation and an integer s0, output:

• YES, if there exist an A ∈ GL(|x|, F) and b ∈ F such that f (Ax + b) is s0-sparse.

• NO, if for all A ∈ GL(|x|, F) and b ∈ F, f (Ax + b) has sparsity at least αs0.

Our second result, Theorem 2, shows that α-gap-ETsparse is NP-hard for α = s
1
3−ε, where

s is the sparsity of the input polynomial f and ε ∈ (0, 1
3 ) is an arbitrary constant. Theorem

2 is proven in Section 4. From Theorem 2, we get Corollary 1.1 which states that s
1
3−ε factor

approximation of the sparse-orbit complexity of an s-sparse polynomial is NP-hard.

Theorem 2 (s
1
3 -gap-ETsparse is NP-hard). Let ε ∈ (0, 1

3 ) be an arbitrary constant.

1. Let F be any field. There exists a deterministic polynomial-time many-one reduction from 3-SAT
to s

1
3−ε-gap-ETsparse over F where the input polynomial in s

1
3−ε-gap-ETsparse is s-sparse.

2. Let F be any field. There exists a deterministic polynomial-time many-one reduction from 3-SAT
to s

1
3−ε-gap-ETsparse over F where the input polynomial in s

1
3−ε-gap-ETsparse is homoge-

neous and s-sparse.

Remarks. 1. Like Theorem 1, part 2 of Theorem 2 subsumes part 1. We state parts 1 and 2
separately because of two reasons. One, part 1 has a simpler proof. Two, the degree
parameters in the proof of part 1 have a better bound in comparison to that in the
proof of part 2.

2. It may be possible to improve the constant 1
3 in s

1
3−ε using a more careful analysis.

3. Interestingly, the above results are obtained without invoking the celebrated PCP the-
orem [AS98, ALM+98, Din07].

Corollary 1.1. Let 0 < ε < 1
3 be an arbitrary constant.

1. Let F be any field. It is NP-hard to compute s
1
3−ε factor approximation of the sparse-orbit

complexity when the input is an s-sparse polynomial over F.

2. Let F be any field. It is NP-hard to compute s
1
3−ε factor approximation of the sparse-orbit

complexity when the input is an s-sparse homogeneous polynomial over F.

Remarks. Thus, approximating the sparse-orbit complexity within a certain super-constant
factor is NP-hard over any field. In contrast, [SWZ17, BIJL18, Swe18] showed that
approximating the tensor rank (which corresponds to the smallest top fan-in of a set-
multilinear depth-3 circuit) within a 1 + δ factor, where δ ≈ 0.0005, is NP-hard over
any field. We do not know of any hardness of approximation result for the Waring
rank (which corresponds to the smallest top fan-in of a depth-3 powering circuit).

Now, we formally define the support of a polynomial.

Definition 1.1 (Support of a polynomial). For a monomial xα, where α is the exponent vector,
the support of xα, Supp(xα), is the number of variables with non-zero exponent. The support
of a polynomial f , Supp( f ), is the maximum support size over all the monomials of f .
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Thus, a polynomial has support σ if there exists a monomial with support σ and no other
monomial has support > σ. The ET problem for constant-support polynomials and a stronger
version of it are defined next (henceforth, σ is assumed to be a constant).

Problem 1.3 (ETsupport). Given a polynomial f ∈ F[x] in its sparse representation and an
integer σ, check if there exists an A ∈ GL(|x|, F) such that Supp( f (Ax)) ≤ σ.

Problem 1.4 ((σ + 1)-to-σ ETsupport). Given a polynomial f ∈ F[x] with support σ + 1 in its
sparse representation, check if there exists an A ∈ GL(|x|, F) such that Supp( f (Ax)) ≤ σ.

Remarks. 1. Unlike ETsparse, checking if f is in the orbit of a constant-support polynomial is
the same as checking if f is equivalent to a constant-support polynomial. This follows
from the observation that Supp( f (x)) = Supp( f (x + b)) for any b ∈ F|x|.

Our third and last result, Theorem 3, shows that ETsupport and (σ + 1)-to-σ ETsupport are
NP-hard. We prove Theorem 3 in Section 5.

Theorem 3 (ETsupport is NP-hard). Let σ ≥ 6 be a constant and F be a field with char(F) = 0 or
> σ + 1. There is a deterministic polynomial-time many-one reduction from 3-SAT to ETsupport over
F. In particular, 3-SAT reduces to (σ + 1)-to-σ ETsupport in deterministic polynomial time.

Remarks. 1. Over fields of finite characteristic, it is assumed that the exponent vectors corre-
sponding to the monomials of the input polynomial are given in binary.

We prove Theorems 1, 2 and 3 by direct reductions from 3-SAT, and at the beginning of
Sections 3, 4 and 5, we give proof sketches of the respective reductions.

1.4 Related work

Results on ET. As mentioned in Section 1, the study of ET was initiated in [Kay11] where ef-
ficient ET algorithms were given for the power symmetric and the elementary symmetric poly-
nomials. Following this, efficient ET algorithms were given for several other important poly-
nomial families and circuit classes such as the permanent [Kay12a], the determinant [Kay12a,
Gro12, GGKS19], the iterated matrix multiplication (IMM) polynomial [KNST19, MNS20], the
continuant polynomial [MS21], read-once formulas (ROFs) [GST23], and design polynomials
[BDS24, GS19]. ET algorithms have also been used to give efficient reconstruction algorithms;
for example, [KNS19] gave an efficient average-case reconstruction algorithm for low-width
ABPs based on ET for the determinant.

The sum-product polynomial SP := ∑i∈[s] ∏j∈[d] xi,j is a rare example for which three
different ET algorithms are known. The SP polynomial can be computed by an ROF. So, the
ET algorithm for ROFs [GST23, Kay11], which is based on analyzing the Hessian determinant,
gives ET for SP. Also, SP is a design polynomial, so the ET algorithm of [BDS24], which uses the
vector space decomposition framework of [KS19, GKS20], holds for SP. The authors of [MS21]
also observed that ET for SP follows from the reconstruction algorithm in [KS19]. A third ET
algorithm for SP can be designed by analyzing its Lie algebra. Observe that the orbit of SP is
a dense subclass of homogeneous depth-3 circuits. However, as ET for SP is easy, it does not
provide any supporting evidence for the hardness of MCSP for homogeneous depth-3 circuits.
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Results on PE. Quadratic form equivalence can be solved in polynomial time over R, C, finite
fields and Q (assuming access to integer factoring oracle) [Sax06, Wal13]. These algorithms are
based on well-known classification of quadratic forms [Lam04, Ara11]. In contrast, [AS05]
showed that cubic form equivalence (CFE) is at least as hard as graph isomorphism. The
authors of [GQ23] showed that CFE is polynomial time equivalent to several other problems
like group isomorphism for p-groups, algebra isomorphism, trilinear form equivalence, etc.

A variant of PE is the shift equivalence problem, where given two n-variate polynomials
f and g, one needs to check if there exists b ∈ Fn such that f (x) = g(x + b). The author
of [Gri97] gave a deterministic algorithm over characteristic 0 fields, a randomized algorithm
over prime residue fields and a quantum algorithm over characteristic 2 fields for shift equiv-
alence testing. All these algorithms have running time polynomial in the dense representation
of the input, that is, for n-variate, degree-d polynomials given in the verbose representation as
input, the running time is poly((n+d

d )). The authors of [DOS14] gave a randomized algorithm
for shift equivalence testing assuming black-box access to n-variate polynomials f and g with
degree bound d and circuit size bound s. Their algorithm runs in poly(n, d, s) time. Another
randomized polynomial-time shift equivalence test is given in [Kay12a].

A variant of the shift equivalence problem, call it the sparse shift equivalence problem,
is where a single n-variate polynomial f (x) and a positive integer t are given as inputs, and
the objective is to decide if there exists b ∈ Fn such that f (x + b) is t-sparse. The authors
of [LS95] studied this problem for univariate polynomials over Q and gave sufficient condi-
tions for the uniqueness and rationality of a t-sparsifying shift. The authors of [GL00] ex-
tended these conditions to multivariate polynomials and gave two algorithms for computing
t-sparsifying shifts for n-variate, degree-d polynomials, one where the input polynomial has
finitely many t-sparsifying shifts and the other for polynomials without any finiteness restric-
tion on the number of t-sparsifying shifts. The running time of the first algorithm is (dt)O(n)

without randomization and tO(n) with randomization, while that of the second one is (nt)O(n2).
The authors of [CGS23] showed that the sparse shift equivalence problem is undecidable over
Z by showing a reduction from polynomial solvability over Z to the sparse shift equivalence
problem. They also showed the NP-hardness of a gap version of the sparse shift equivalence
problem over R, Q and finite fields.

The scaling equivalence problem is yet another variant of PE, which involves checking for
given n-variate polynomials f and g whether there exists a diagonal matrix S ∈ GL(n, F) such
that f (x) = g(Sx). The authors of [BRS17] gave a randomized polynomial-time algorithm for
the scaling equivalence problem over R.

Hardness results. The author of [Kay12a] showed that the problem of checking if a poly-
nomial is an affine projection of another polynomial is NP-hard via a reduction from Graph
3-Colorability. Computing the tensor rank (which is MCSP for depth-3 set multilinear cir-
cuits) is NP-hard [Hås90], so is computing the Waring rank for a polynomial (which is MCSP
for depth-3 powering circuits) [Shi16]. In the Boolean world, [KS08] showed that there is no
polynomial-time algorithm to n1−δ-approximate, where δ > 0 is an arbitrarily small con-
stant, a DNF with minimum number of terms for any n-variate Boolean function given as a
truth table, unless NP is decidable in quasi-polynomial time. It is also known that (1 + δ)-
approximate MCSP, where δ ≈ 0.0005 is a constant, is NP-hard for set-multilinear depth three
circuits [SWZ17, Swe18, BIJL18]. In [KS09], it was shown that depth-3 arithmetic circuits can-
not be PAC-learned in polynomial time unless the length of a shortest nonzero vector of an
n-dimensional lattice can be approximated to within a factor of Õ(n1.5) in polynomial time by
a quantum algorithm. This means it is hard to PAC-learn the class of Boolean functions that
match the output of depth-3 arithmetic circuits on the Boolean hypercube.
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Hitting sets and lower bounds for orbits of sparse polynomials. The authors of [MS21]
gave a quasi-polynomial time hitting set15 construction for the orbits of sparse polynomials.
Orbits of sparse polynomials form a subclass of homogeneous depth-3 circuits. The authors
of [NW97] showed that any homogeneous depth-3 circuit computing the n-variate elementary
symmetric polynomial of degree 2d has size Ω(( n

4d )
d). The authors of [KST16] showed the

existence of an explicit polynomial family in n variables and degree d, with d ≥ n, for which
any homogeneous depth-3 circuit computing it must be of size at least 2Ω(n).

1.5 Roadmap of the paper

In Section 2, we state a few useful observations and claims, the proofs of which appear in
Section B of the appendix. The proof of part one of Theorem 1 for fields of characteristic zero
is given in Sections 3.1-3.3. Section 3.4 has the proof of part two of the same theorem for
characteristic zero fields. In Section 3.5, we prove Theorem 1 for fields of finite characteristics.
Similarly, the proofs of parts one and two of Theorem 2 for characteristic zero fields appear
in Sections 4.1 and 4.2, respectively. Section 4.3 contains the proof of Theorem 2 over fields of
finite characteristics. In Section 5, we prove Theorem 3. For simplicity, we ignore the effect of
translation vectors in the above-mentioned sections. In Section A of the appendix, we show
how to handle translation vectors. The missing proofs of the observations, claims, lemmas, and
propositions in Sections 3, 4 and 5 appear in Sections C, D and E of the appendix, respectively.

2 Preliminaries

2.1 Definitions and notations

For n, a, b ∈ N, [n] denotes the set {1, 2 . . . , n} and [a, b] denotes the integers from a to b, both
inclusive. A polynomial is homogeneous if all its monomials have the same total degree. The
set of invertible linear transforms in n variables over a field F is denoted by GL(n, F). For a
polynomial f ∈ F[x], the action of a linear transform A ∈ F|x|×|x| on its variables is denoted
by f (Ax) as well as by A( f ). The sparsity of a polynomial f , denoted as S( f ), is the number
of monomials in f with non-zero coefficients. For a polynomial f , var( f ) denotes the set of
variables that occur in at least one monomial of f . We have used the notation f ∼ g earlier to
denote f = g(Ax + b). Henceforth, we will ignore the translation vector b in the main body
of the discussion for simplicity but mention the necessary changes in the proofs or point to
appropriate sections when translations are involved. Thus, for polynomials f and g, f ∼ g
will mean f (x) = g(Ax) where A ∈ GL(|x|, F). Similarly, the orbit of a polynomial f will
denote the set { f (Ax), A ∈ GL(|x|, F)}. The degree of a monomial is its total degree, and the
degree of a polynomial f is the maximum degree amongst all monomials in f . The x-degree
of a monomial is the degree of the variable x in the monomial.

Definition 2.1 (Degree separated polynomials). Polynomials f and g are degree separated if no
monomial of f has the same degree as a monomial of g. Similarly, f and g are degree separated
with respect to a variable x if no monomial of f has the same x-degree as a monomial of g.

The set of degrees of a polynomial is the set of distinct degrees of all the monomials in the
polynomial. For example, the set of degrees of f (x1, x2) = x2

1 + x1x2 + 4x2 is {2, 1}. A linear
form is a homogeneous degree one polynomial. An affine form is a degree one polynomial.

15A hitting set for a circuit class C is a set S ⊆ F|x| such that for every non-zero polynomial f (x) computable by
a circuit C ∈ C, f (a) 6= 0 for some a ∈ S.
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2.2 Algebraic preliminaries

The proofs of the observations and claims stated in this section can be found in Appendix B.

Observation 2.1. Let f and g be polynomials such that f ∼ g. Then, f and g have the same set
of degrees for the monomials. Thus, if f and g are degree separated, then f 6∼ g.

Observation 2.2. If f and g are degree separated (or degree separated with respect to some
variable), then S( f + g) = S( f ) +S(g).

Observation 2.3. If f and g are degree separated, f1 ∼ f and g1 ∼ g, then S( f1 + g1) =
S( f1) +S(g1).

Observation 2.4 analyzes the sparsity of powers of linear forms. Observation 2.5 is a
special case of Observation 2.4 and is stated separately because it is simpler and is invoked
many times. Observation 2.6 analyzes the sparsity of powers of affine forms.

Observation 2.4. Let ` be a linear form in m variables and d ∈ N. If char(F) = 0, S(`d) =
(d+m−1

m−1 ), and if char(F) = p, S(`d) = ∏k
i=0 (

ei+m−1
m−1 ), where d = ∑k

i=0 ei pi, ei ∈ [0, p− 1].

Observation 2.5. If char(F) = 0 and ` be a linear form in exactly two variables, then S(`d) =
d + 1. The result holds for characteristic p fields if p > d or if d = pk − 1 for some k ∈ N.
Further, if ` is a linear form in more than two variables and d is as before, then S(`d) ≥ d + 1.

Observation 2.6. Let h = `+ c0, where ` is a linear form in at least one variable and c0 ∈ F\{0},
then S(hd) ≥ S(`d) + 1. More precisely, S(hd) ≥ d + 1 holds if char(F) = 0 or if char(F) = p
and p > d or d = pk − 1 for some k ∈N.

Claim 2.1 analyzes the sparsity of polynomials divisible by a power of some linear form
in at least two variables and is used to prove part two of Theorems 1 and 2. Claim 2.2 analyzes
the support of monomials under invertible linear transforms and is used to prove Theorem 3.

Claim 2.1. Let char(F) = 0. If f ∈ F[x] is a non-zero polynomial divisible by `d for some linear
form ` in at least two variables, then S( f ) ≥ d + 1. The claim also holds for characteristic p
fields, where the degree of f is less than p.

Claim 2.2. Let σ, d, n ∈N, d ≥ σ, f = (x1 · · · xn)d, and `1, . . . , `n be linearly independent linear
forms in x1, . . . , xn. If | ∪n

i=1 var(`i)| ≥ σ and g := f (`1 · · · `n), then Supp(g) ≥ σ. The claim
holds if char(F) = 0, or char(F) = p with p > d, or p > σ and d = pk − 1 for some k ∈N.

3 NP-hardness of ETsparse

In this section, we prove Theorem 1. We first show the reduction over characteristic 0 fields in
the non-homogeneous case without considering translations for ease of understanding. Sec-
tion 3.4 shows the reduction over characteristic 0 fields in the homogeneous case. In Section 3.5,
the reduction is shown to hold over finite characteristic fields for both the non-homogeneous
and the homogeneous case. In Appendix C, we prove the lemmas and the observations of this
section. Appendix A.1 shows how the reduction holds while also considering translations.16

16Note that for two homogeneous polynomials f and g, f (x) = g(Ax + b) implies f (x) = g(Ax), where A ∈
GL(|x|, F) and b ∈ F|x|. Hence, it suffices to prove part 2 of Theorem 1 without translations.
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Proof sketch. The reduction maps each variable and clause of a 3-CNF17 ψ to distinct degree
separated polynomials which, summed together, give the polynomial f . As the summands are
degree separated, the sparsity of f under invertible transforms can be analyzed by doing so
for individual polynomials. The degrees are chosen such that f is equivalent to an s-sparse
polynomial (for a suitable sparsity parameter s) if and only if ψ ∈ 3-SAT.

3.1 Constructing f and s

Let ψ be a 3-CNF in variables x := {x1, x2 . . . xn} and m clauses:

ψ = ∧m
k=1 ∨j∈Ck (xj ⊕ ak,j),

where Ck denotes the set of indices of the variables in the kth clause and ak,j ∈ {0, 1}. Let
y := {y1, y2 . . . yn}, x0 be a new variable and z := {x0} t x t y. For d1, d2, d3, d4 ∈ N, consider
the following polynomials:

• Corresponding to variable xi, where i ∈ [n], define Qi(z) as:

Qi(z) := Qi,1(z) + Qi,2(z) + Qi,3(z), where

Qi,1(z) := x(3i−2)d1
0 xd2

i , Qi,2(z) := x(3i−1)d1
0 (yi + xi)

d3 and Qi,3(z) := x3id1
0 (yi − xi)

d3 .

Intuitively, Qi,2 and Qi,3 correspond to assigning 0 and 1, respectively, to xi in ψ. Qi,1 is
used to establish a mapping between satisfying assignments and sparsifying transforms.

• For the kth clause, k ∈ [m], define Rk(z) := x(3n+k)d1
0 ∏j∈Ck

(yj + (−1)ak,j xj)
d4 .

Define s := 1 + n(3 + d3) + m(d4 + 1)2 and the polynomial f as:

f (z) := xd1
0 +

n

∑
i=1

Qi(z) +
m

∑
k=1

Rk(z). (1)

The following conditions are imposed on the di’s:

d1 ≥ max(s, d2 + 1), d2 ≥ 2d3, d3 ≥ m(d4 + 1)2 + 1, and d4 ≥ m. (2)

For characteristic 0 fields, the inequalities of (2) can be converted to equalities. Thus, we get

d4 = m, d3 = m(m + 1)2 + 1 = O(m3) =⇒ s = O(nm3)

d2 = 2m(m + 1)2 + 2 = O(m3), d1 = 1 + n(4 + m(m + 1)2) + m(m + 1)2 = O(nm3).
(3)

Note, for the above choices of d3 and d2, s ≥ d2 + 1. Hence, d1 is set to s. Under the conditions
of (2) the following observations hold.

Observation 3.1. For all i ∈ [n], k ∈ [m], the polynomials xd1
0 , Qi,1(z), Qi,2(z), Qi,3(z) and Rk(z)

are degree separated from one another. Also, Qi(z) is degree separated from other Qj(z)’s, for
i, j ∈ [n] and i 6= j. Similarly, Rk(z) is degree separated from Rl(z) for k, l ∈ [m] and k 6= l.

Observation 3.2. The degree of f is (3n + m)d1 + 3d4 = (mn)O(1).

Observation 3.3. S( f (z)) = 1 + n(2d3 + 3) + m(d4 + 1)3 and Supp( f ) = 7.
17We assume, without loss of generality, that each clause of a 3-CNF has 3 distinct variables. This can be achieved

by introducing extra variables for clauses with < 3 variables.
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3.2 The forward direction

Proposition 3.1 shows how a satisfiable ψ implies the existence of an invertible A, such that
S( f (Az)) ≤ s by constructing A from a satisfying assignment u ∈ {0, 1}n of ψ.

Proposition 3.1. Let u = (u1, . . . , un) ∈ {0, 1}n be such that ψ(u) = 1. Then S( f (Az)) ≤ s,
where A is as:

A : x0 7→ x0, xi 7→ xi, yi 7→ yi + (−1)ui xi, ∀i ∈ [n]. (4)

Proof. It follows from the definition of f in (1), Observations 3.1 and 2.3 that

S( f (Az)) = S(A(xd1
0 )) +

n

∑
i=1

S(Qi(Az)) +
m

∑
k=1

S(Rk(Az)).

Thus, it suffices to analyze the sparsity of A(xd1
0 ), Qi(Az)’s and Rk(Az)’s. Now, S(A(xd1

0 )) = 1
as A(xd1

0 ) = xd1
0 . We now analyze S(Qi(Az)) for i ∈ [n]. If ui = 0, then

Qi,1(Az) = x(3i−2)d1
0 xd2

i , Qi,2(Az) = x(3i−1)d1
0 (yi + 2xi)

d3 and Qi,3(Az) = x3id1
0 yd3

i .

If ui = 1, then

Qi,1(Az) = x(3i−2)d1
0 xd2

i , Qi,2(Az) = x(3i−1)d1
0 yd3

i and Qi,3(Az) = x3id1
0 (yi − 2xi)

d3 .

By Observation 2.5 (for linear forms in two variables over characteristic 0 fields), if ui = 0
then S(Qi,2(Az)) = d3 + 1 and S(Qi,3(Az)) = 1 and, if ui = 1 then S(Qi,2(Az)) = 1 and
S(Qi,3(Az)) = d3 + 1. In either case, by Observations 3.1 and 2.3,

S(Qi(Az)) = S(Qi,1(Az)) +S(Qi,2(Az)) +S(Qi,3(Az)) = d3 + 3.

For the kth clause, k ∈ [m], the action of A on the corresponding polynomial Rk is:

Rk(Az) = x(3n+k)d1
0 ∏

j∈Ck

(yj + ((−1)ak,j + (−1)uj)xj)
d4 .

As the multiplicands in Rk(Az) do not share any variables, S(Rk(Az)) is the product of the
sparsity of the multiplicands. Since ψ(u) = 1, therefore in the kth clause there exists j ∈ Ck

such that ak,j 6= uj. For that j, (yj + ((−1)ak,j + (−1)uj)xj)
d4 = yd4

j . As at least one literal is true
in every clause under u, S(Rk(Az)) ≤ (d4 + 1)2 using Observation 2.5. Thus,

S( f (Az)) = S(A(xd1
0 )) +

n

∑
i=1

S(Qi(Az)) +
m

∑
k=1

S(Rk(Az)) ≤ 1 + n(d3 + 3) + m(d4 + 1)2 = s.

3.3 The reverse direction

Now, we show that ( f , s) ∈ ETsparse implies ψ ∈ 3-SAT by showing that the permuted and
scaled versions of the transform of (4) form all the viable sparsifying invertible linear trans-
forms. This is where the constraints on the di’s are used. So, let A ∈ GL(|z|, F) be such that
S( f (Az)) ≤ s. Lemma 3.1 shows that A(x0) is just a variable by leveraging d1 ≥ s.

Lemma 3.1. Without loss of generality, A(x0) = x0.
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The proof of Lemma 3.2 uses d2 ≥ 2d3 while that of Lemma 3.3 uses d3 ≥ m(d4 + 1)2 + 1.

Lemma 3.2. For any invertible A and i ∈ [n]:

S(Qi(Az)) = S(Qi,1(Az)) +S(Qi,2(Az)) +S(Qi,3(Az)) ≥ d3 + 3,

where Qi, Qi,1, Qi,2 and Qi,3 are as defined in Section 3.1. Equality holds if and only if under A

xi 7→ Xi and yi 7→ Yi + (−1)ui Xi

for some scaled variables Xi, Yi ∈ z and ui ∈ {0, 1}. Further, if S(Qi(Az)) 6= d3 + 3, then
S(Qi(Az)) ≥ 2d3 + 3.

Lemma 3.3. Under the given A, S(Qi(Az)) = d3 + 3 holds for all i ∈ [n].

Lemmas 3.1, 3.2 and 3.3 together show that A is a permuted scaled version of the trans-
form of (4). We can assume A to be as described in (4) without loss of generality as permutation
and non-zero scaling of variables do not affect the sparsity of a polynomial. Proposition 3.2
shows how a satisfying assignment can be derived from A using d4 ≥ m.

Proposition 3.2. With A as described in (4), u = (u1, . . . , un) is a satisfying assignment for ψ.

Proof. Suppose not; then there exists k ∈ [m] such that the kth clause, ∨j∈Ck(xj ⊕ ak,j), in ψ
is unsatisfied. Since this clause is unsatisfied, uj = ak,j for all j ∈ Ck. Thus, Rk(Az) =

x(3n+k)d1
0 ∏j∈Ck

(yj ± 2xj)
d4 , where Rk is as defined in Section 3.1, and S(Rk(Az)) = (d4 + 1)3 ≥

(m + 1)(d4 + 1)2 by Observation 2.5, the fact that Rk(Az) is a product of linear forms not
sharing variables, and the condition d4 ≥ m. By the definition of f and s in Section 3.1, Obser-
vations 3.1 and 2.3, it holds that

S( f (Az)) ≥ S(A(x0)
d1) +

n

∑
i=1

S(Qi(Az)) +S(Rk(Az))

≥ 1 + n(3 + d3) + m(d4 + 1)2 + (d4 + 1)2 = s + (d4 + 1)2 > s,

a contradiction. Thus, u is a satisfying assignment for ψ.

3.4 The homogeneous case

We show a modification of the construction in Section 3.1 which, along with arguments similar
to those in Sections 3.2 and 3.3, can be used to prove Theorem 1 for homogeneous polynomials
over characteristic 0 fields. Because the polynomials are homogeneous, we cannot use degree
separation like in the non-homogeneous case. Instead, we introduce a new variable y0, a new
degree parameter d5 ∈ N, and redefine Qi(z) and Rk(z) of Section 3.1 along with modified
constraints on the di’s so that:

1. Each polynomial is homogeneous with the same degree and is divisible by xd1
0 and yd2

0 .

2. Each polynomial has a distinct x0 degree.

The divisibility condition ensures that both x0 and y0 map to scaled variables under a sparsi-
fying invertible linear transform (see Lemma 3.4 and its proof). Due to the second condition,
the polynomials are degree separated with respect to x0 (see Observation 3.4). This fact is used
to show that, under a sparsifying invertible linear transform, the polynomials are degree sepa-
rated with respect to x0 (see Lemma 3.5 and its proof). Formally, let x0, x and y be as defined in
Section 3.1 and y0 be a new variable. Define z := x t y t {x0} t {y0}. Let d1, d2, d3, d4, d5 ∈ N.
Consider the following polynomials:
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1. For each variable xi, i ∈ [n], define Qi(z) := Qi,1(z) + Qi,2(z) + Qi,3(z), where

Qi,1(z) := xd1+(3i−2)(d3+1)
0 yd2+(3n+m−3i+3)(d3+1)−d3

0 xd3
i ,

Qi,2(z) := xd1+(3i−1)(d3+1)
0 yd2+(3n+m−3i+2)(d3+1)−d4

0 (yi + xi)
d4 ,

Qi,3(z) := xd1+3i(d3+1)
0 yd2+(3n+m−3i+1)(d3+1)−d4

0 (yi − xi)
d4 .

2. For the kth clause, k ∈ [m], define

Rk(z) := xd1+(3n+k)(d3+1)
0 yd2+(m−k+1)(d3+1)−3d5

0 ∏
j∈Ck

(yj + (−1)ak,j xj)
d5 .

Define s := 1 + n(d4 + 3) + m(d5 + 1)2 and impose the following conditions on the di’s:

d1 ≥ d2 + (3n + m + 1)(d3 + 1) + 1, d2 ≥ max((3n + m + 1)(d3 + 1), s) + 1,

d3 ≥ 2d4, d4 ≥ m(d5 + 1)2 + 1, d5 ≥ m.
(5)

For characteristic 0 fields, the inequalities of (5) can be converted to equalities to get

d5 = m, d4 = m(d5 + 1)2 + 1, d3 = 2d4,
d2 = max((3n + m + 1)(d3 + 1), s) + 1,
d1 = d2 + (3n + m + 1)(d3 + 1) + 1.

(6)

For these choices, s = 1 + n(d4 + 3) + m(d5 + 1)2 = O(nm3), while (3n + m + 1)(d3 + 1) =
Θ((n + m)m3). Hence,

d5 = O(m), d4 = O(m3), d3 = O(m3),

d2 = O((n + m)m3), d1 = O((n + m)m3).

Using the conditions in (5), it is easy to verify that the individual degree of x0 and y0 in every
polynomial defined above is at least d1 and d2, respectively. Define f as:

f (z) := xd1
0 yd2+(3n+m+1)(d3+1)

0 +
n

∑
i=1

Qi(z) +
m

∑
k=1

Rk(z). (7)

Clearly, f is a homogeneous polynomial of degree d1 + d2 + (3n + m + 1)(d3 + 1) and is divis-
ible by xd1

0 and yd2
0 . Further, the following observations hold under the constraints of (5).

Observation 3.4. For all i ∈ [n], k ∈ [m], the polynomials xd1
0 yd2+(3n+m+1)(d3+1)

0 , Qi,1(z), Qi,2(z),
Qi,3(z) and Rk(z) are degree separated with respect to x0 from one another. Also, Qi(z) is
degree separated with respect to x0 from other Qj(z)’s, for i, j ∈ [n] and i 6= j. Similarly, Rk(z)
is degree separated with respect to x0 from Rl(z) for k, l ∈ [m] and k 6= l.

Observation 3.5. S( f (z)) = 1 + n(2d4 + 3) + m(d5 + 1)3 and Supp( f ) = 8.

The forward direction. Let u ∈ {0, 1}n be such that ψ(u) = 1 and f , as described in (7), be
the polynomial corresponding to ψ. Proposition 3.3 shows how u can be used to construct a
sparsifying transform. The proof of Proposition 3.3 is very similar to that of Proposition 3.1.

Proposition 3.3. S( f (Az)) ≤ s where A ∈ GL(|z|, F) is as follows:

A : y0 7→ y0, x0 7→ x0, xi 7→ xi, yi 7→ yi + (−1)ui xi i ∈ [n]. (8)
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The reverse direction. Let S( f (Az)) ≤ s for some A ∈ GL(|z|, F). Lemma 3.4, the proof of
which requires Claim 2.1, shows that A(x0) and A(y0) have only one variable each. With this
established, Lemma 3.5 shows that the summands of f (Az) must be degree separated with
respect to x0.

Lemma 3.4. Without loss of generality, A(x0) = x0 and A(y0) = y0.

Lemma 3.5. For all i ∈ [n], k ∈ [m], the polynomials xd1
0 yd2+(3n+m+1)(d3+1)

0 , Qi,1(Az), Qi,2(Az),
Qi,3(Az) and Rk(Az) are degree separated from one another with respect to x0. Also, Qi(Az)
is degree separated with respect to x0 from other Qj(Az)’s, for i, j ∈ [n] and i 6= j. Similarly,
Rk(Az) is degree separated with respect to x0 from Rl(Az) for k, l ∈ [m] and k 6= l.

∴ S( f (Az)) = S(xd1
0 yd2+(3n+m+1)(d3+1)

0 ) +
n

∑
i=1

S(Qi(Az)) +
m

∑
k=1

S(Rk(Az)), by Lemma 3.5.

Lemmas 3.6 and 3.7 are modified versions of Lemmas 3.2 and 3.3 respectively and have similar
proofs as the original lemmas. Together, Lemmas 3.4, 3.6 and 3.7 show that A is a permuted
scaled version of the transform of (8). Proposition 3.4 then shows how to obtain a satisfying
assignment from A and can be proved similarly as Proposition 3.2.

Lemma 3.6. For any invertible A and i ∈ [n]:

S(Qi(Az)) = S(Qi,1(Az)) +S(Qi,2(Az)) +S(Qi,3(Az)) ≥ d4 + 3,

where Qi, Qi,1, Qi,2 and Qi,3 are as defined earlier. Equality holds if and only if under A

xi 7→ Xi and yi 7→ Yi + (−1)ui Xi

for some scaled variables Xi, Yi ∈ z and ui ∈ {0, 1}. Further, if S(Qi(Az)) 6= d4 + 3, then
S(Qi(Az)) ≥ 2d4 + 3.

Lemma 3.7. Under the given A, S(Qi(Az)) = d4 + 3 for all i ∈ [n].

Proposition 3.4. With A as described in (8), u = (u1, . . . , un) is a satisfying assignment for ψ.

Remarks. 1. In the definition of f in Section 3.1 and this section, an extra summand is present
besides Qi’s and Rk’s. We can drop the summand by suitably modifying f , the current
parameters and arguments to make the reduction work. In particular, for an f divisi-
ble by a suitable power of x0 (and y0 for the homogeneous case), Lemmas 3.1 and 3.5
can be proved using Claim 2.1 (over characteristic 0 fields) or by an argument as in
Section C.12 (over finite characteristic fields). We preserve the extra summand here
for two reasons: One, it leads to a simpler argument and better bounds on the di’s for
the non-homogeneous case over finite characteristic fields. Two, it proves useful in
showing the reduction when also considering translations (see Appendix A.1).

2. A simpler construction of f for the homogeneous case is possible with four degree
parameters d1, d2, d3 and d4 under the constraints of (2). In this construction, the
extra summand, Qi’s and Rk’s are defined very similarly as in Section 3.1, with each
polynomial multiplied by an appropriate power of y0 such that f is homogeneous
and is divisible by xd1

0 and yd1
0 . The arguments presented in this section go through

with some changes for the simpler construction. The reason we present the current
construction is to have a single construction with which the reduction goes through
for finite characteristic fields (as shown in Section 3.5.3) and characteristic 0 fields.

3. A feature of our reduction is that we can easily alter the output polynomial to wD f (z),
where w /∈ z. This can be achieved by multiplying the output polynomial f of the
current reduction by wD, where D is greater than the sparsity parameter s in the re-
duction. If a proof of NP-hardness of hom-ΣΠΣ-MCSP has this feature, then it would
imply NP-hardness of ΣΠΣ-MCSP (via a homogenization trick).
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3.5 Extension to finite characteristic fields

In this section, we will show how the construction of Sections 3.1 and 3.4, with some changes
for appropriate cases, can be used to show the NP-hardness of ETsparse over finite character-
istic fields for the non-homogeneous case (in the following section) and the homogeneous case
(in Section 3.5.3), respectively.

3.5.1 The non-homogeneous case

We first show how the construction of Section 3.1 also proves the reduction over fields F where
the characteristic is greater than 2 and then give a modified construction to prove the reduction
over characteristic 2 fields. Note that the degrees are chosen in Section 3.5.2 to satisfy (2) in any
finite characteristic field.

So, let the characteristic be p, where p > 2. In this case, the polynomial f and the parame-
ter s of Section 3.1 remain the same with the di’s chosen as specified in Section 3.5.2. The overall
argument in both directions of the reduction is highly similar to the characteristic 0 case, with
the main differences being the choice of the di’s and that in the proofs of the observations,
lemmas and propositions in Sections 3.1, 3.2 and 3.3 wherever Observation 2.5 is used, then it
is invoked for the finite characteristic case. Thus, Observations 3.1 and 3.2 hold without any
change while Observation 3.3 holds by using Observation 2.5 for the finite characteristic case.

The forward direction. If u ∈ {0, 1}n is such that ψ(u) = 1 and f , as described in (1), is
the polynomial corresponding to ψ, then Proposition 3.1 shows that for the transform A of (4),
defined using u, S( f (Az)) ≤ s holds.

The reverse direction. If A ∈ GL(|z|, F) is such that S( f (Az)) ≤ s, then the analysis of
Section 3.3 continues to hold in this case with little changes. Thus, Lemma 3.1 shows that
A(x0) = x0 without loss of generality. Then, Lemmas 3.2 and 3.3 analyse the sparsity of
Qi(Az), where i ∈ [n] and Qi is as defined in Section 3.1. Together, Lemmas 3.1, 3.2 and
3.3 show that A is a permuted scaled version of the transform of (4). Finally, Proposition 3.2
shows that a satisfying assignment for ψ can be extracted from A.

Construction for characteristic 2 fields

Over characteristic 2 fields, the polynomial yi + xi is the same as yi − xi. Due to this, the
definition of Qi and that of Rk in Section 3.1 need to be changed. Moreover, the sparsifying
transform will also be slightly different. Formally, let ψ, x, x0, y and z be as denoted in Section
3.1. Let d1, d2, d3, d4 ∈N. The construction of Section 3.1 is modified as follows:

• For all i ∈ [n], define Qi(z) as:

Qi(z) := Qi,1(z) + Qi,2(z) + Qi,3(z), where

Qi,1(z) := x(3i−2)d1
0 xd2

i , Qi,2(z) := x(3i−1)d1
0 (yi + xi)

d3 and Qi,3(z) := x3id1
0 yd3

i .

• For the kth clause, k ∈ [m], define Rk := x(3n+k)d1
0 ∏j∈Ck

(yj + ak,jxj)
d4 .

Define s := 1 + n(d3 + 3) + m(d4 + 1)2 as before. Set the di’s as specified in Section 3.5.2 with
the conditions of (2) imposed. Define f as:

f (z) := xd1
0 +

n

∑
i=1

Qi(z) +
m

∑
k=1

Rk(z). (9)
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Observations 3.1 and 3.2 hold with little change. Observation 3.6 analyses the sparsity and
support of f .

Observation 3.6. S( f ) ≤ 1 + n(d3 + 3) + m(d4 + 1)3 and 4 ≤ Supp( f ) ≤ 7.

Remarks. Over characteristic 2 fields, the sparsity of the polynomial output by the reduc-
tion depends on the number of variables which are complemented within a clause.
Hence, for the same number of variables n and the same number of clauses m, the
output polynomial corresponding to two different ψ’s may have different sparsity.
Thus, the reduction is not natural over characteristic 2 fields.

The forward direction. Let u ∈ {0, 1}n be such that ψ(u) = 1 and f , as described in (9), be
the polynomial corresponding to ψ. Proposition 3.5 shows how u can be used to construct a
sparsifying transform. The proof of Proposition 3.5 is very similar to that of Proposition 3.1.

Proposition 3.5. S( f (Az)) ≤ s where A ∈ GL(|z|, F) is as follows:

A : x0 7→ x0, xi 7→ xi, yi 7→ yi + (1− ui)xi ∀i ∈ [n]. (10)

The reverse direction. Let A ∈ GL(|z|, F) be such that S( f (Az)) ≤ s. The analysis of Section
3.3 holds with some changes. Formally, Lemma 3.1 holds without any change in its proof.
Thus, A(x0) = x0 without loss of generality. Lemma 3.8 analyses S(Qi(Az)), i ∈ [n], and its
proof is similar to that of Lemma 3.2.

Lemma 3.8. For any invertible A and i ∈ [n]:

S(Qi(Az)) = S(Qi,1(Az)) +S(Qi,2(Az)) +S(Qi,3(Az)) ≥ d3 + 3,

where Qi, Qi,1, Qi,2 and Qi,3 are as defined in this subsection. Equality holds if and only if
under A

xi 7→ Xi and yi 7→ Yi + (1− ui)Xi

for some scaled Xi, Yi ∈ z and ui ∈ {0, 1}. Further, if S(Qi(Az)) 6= d3 + 3, then S(Qi(Az)) ≥
2d3 + 3.

Lemma 3.3 also holds with the same proof as before. Lemmas 3.1, 3.8 and 3.3 together
show that A is a permuted scaled version of the transform described in (10). Proposition 3.6
then holds and can be proven similarly to Proposition 3.2.

Proposition 3.6. With A as described in (10), u = (u1, . . . , un) is a satisfying assignment for ψ.

3.5.2 Setting of parameters in the non-homogeneous case

Let the characteristic be p > 0. If p > d1, where the value of d1 is as set in (3) for characteristic
0 fields, then the di’s are chosen to be the same as in (3). Otherwise, p must be O(nm3). When
p = O(nm3), we choose d1, d2, d3 and d4, to be of form pj − 1, j ∈ N, while satisfying the
inequalities of (2) along with d1 > d2 > d3 > d4. This is done so that Observation 2.5 can
be used for characteristic p fields with p = O(nm3). It is possible to choose di’s in this way
because, for any k ∈ N, there is exactly one number of form pj − 1, j ∈ N, in [k, pk]. The
bounds on d1, d2, d3 and d4 are as follows:

d4 ≤ pm, d3 ≤ pm(d4 + 1)2 + p = O(p3m3) =⇒ s = O(nm3 p3),

d2 = pd3 + (p− 1) = O(p4m3), d1 = max(r, pd2 + p− 1)
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where r ∈ [s, ps] is of form pj − 1, j ∈ N. Thus, r ≤ ps = O(nm3 p4), while pd2 + p − 1 =
O(p5m3). As p = O(nm3),

d1 = O(n5m18), d2 = O(n4m15), d3 = O(n3m12), d4 = O(nm4) and s = O(n4m12).

3.5.3 The homogeneous case

Like in the non-homogeneous case, we first show how the construction of Section 3.4 can be
used to prove the reduction over fields where the characteristic is greater than 2 and then give
a modification of this construction to prove the reduction over characteristic 2 fields. Note that
the degrees are chosen in Section 3.5.4 to satisfy (5) in any finite characteristic field.

So, let the characteristic be p, where p > 2. We consider the polynomial f and parameter
s as defined in Section 3.4. Note that the degree of f is d1 + d2 + (3n + m + 1)(d3 + 1). We
choose di’s in Section 3.5.4 such that d3, d4 and d5 are of form pk − 1 for some k ∈ N, while d1
and d2 are of form pl(pt− 1), for some t, l ∈N. For this choice of the di’s, Observations 3.4 and
3.5 continue to hold for f . While the forward direction is proved similarly to the characteristic
0 case, the reverse direction requires some change. More precisely, Lemma 3.4, which was
proven earlier using Claim 2.1, requires a different proof. This is because Claim 2.1 holds for
fields with characteristic 0 or p, with p being “large enough”. If p > d1 + d2 + (3n + m +
1)(d3 + 1) for di’s as chosen in (6), then Claim 2.1 holds and so does Lemma 3.4 along with the
rest of the argument in the reverse direction of Section 3.4. Thus, we consider the case when
p ≤ d1 + d2 + (3n + m + 1)(d3 + 1) = O((n + m)m3) and prove Lemma 3.4 by a different
argument. Then, the rest of the argument in the reverse direction of Section 3.4 continues to
hold in the same way as before.

The forward direction. Let u ∈ {0, 1}n be such that ψ(u) = 1 and f , as described in Section
3.4, be the polynomial corresponding to ψ. Proposition 3.3, with the same proof as before,
shows how u can be used to construct a sparsifying transform.

The reverse direction. Let A ∈ GL(|z|, F) such that S( f (Az)) ≤ s. We prove Lemma 3.4 (re-
fer Section C.12 for its proof), which shows that A(x0) and A(y0) have only one variable each,
by showing that for an appropriate choice of d1 and d2 (see Section 3.5.4), and the characteristic
being finite, the following holds

S( f (Az)) = S(A(xd1
0 ))S(A(yd2

0 ))S(g(Az)).

Here g(z) is a polynomial of degree (3n+m+ 1)(d3 + 1). Using Observation 2.4 and the choice
of di’s, A(x0) and A(y0) are shown to be single variables. With Lemma 3.4 proven, Lemma 3.5,
with the same proof as before, shows that all the summands in f (Az) are degree separated
from one another with respect to x0. From Lemmas 3.4 and 3.5, it follows that

S( f (Az)) = S(xd1
0 yd2+(3n+m+1)(d3+1)

0 ) +
n

∑
i=1

S(Qi(Az)) +
m

∑
k=1

S(Rk(Az)).

Then, Lemmas 3.6 and 3.7 hold just as in the characteristic 0 case because d3, d4 and d5 are of
form pk − 1. Together, Lemmas 3.4, 3.6 and 3.7 show that A is a permuted scaled version of the
transform of (8). Proposition 3.4 shows how to derive a satisfying assignment for ψ from A.
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Construction for characteristic 2 fields

Similar to the non-homogeneous case, we modify the construction of Section 3.4 to make the
reduction work over characteristic 2 fields. Consider the following polynomials:

• For all i ∈ [n], define Qi(z) := Qi,1(z) + Qi,2(z) + Qi,3(z) as:

Qi,1(z) := xd1+(3i−2)(d3+1)
0 yd2+(3n+m−3i+3)(d3+1)−d3

0 xd3
i ,

Qi,2(z) := xd1+(3i−1)(d3+1)
0 yd2+(3n+m−3i+2)(d3+1)−d4

0 (yi + xi)
d4 ,

Qi,3(z) := xd1+3i(d3+1)
0 yd2+(3n+m−3i+1)(d3+1)−d4

0 yd4
i .

• For the kth clause, k ∈ [m], define

Rk(z) := xd1+(3n+k)(d3+1)
0 yd2+(m−k+1)(d3+1)−3d5

0 ∏
j∈Ck

(yj + ak,jxj)
d5 .

Define s := 1 + n(d4 + 3) + m(d5 + 1)2 as before. Set the di’s as specified in Section 3.5.4
to satisfy the conditions in (5). Define f as:

f (z) := xd1
0 yd2+(3n+m+1)(d3+1)

0 +
n

∑
i=1

Qi(z) +
m

∑
k=1

Rk(z). (11)

Observation 3.4 holds with little change. Observation 3.7 analyses S( f ) and Supp( f ).

Observation 3.7. S( f ) ≤ 1 + n(d4 + 3) + m(d5 + 1)3 and 5 ≤ Supp( f ) ≤ 8.

Remarks. Like the non-homogeneous case, over characteristic 2 fields, the sparsity of the
homogeneous polynomial output by the reduction depends on the number of vari-
ables which are complemented within a clause. Hence, for the same number of vari-
ables n and same number of clauses m, the output polynomial corresponding to two
different ψ’s may have different sparsity. Hence, the reduction is not natural over
characteristic 2 fields.

The forward direction. Let u ∈ {0, 1}n be such that ψ(u) = 1 and f , as described in (11), be
the polynomial corresponding to ψ. Proposition 3.7 shows how u can be used to construct a
sparsifying transform. The proof of Proposition 3.7 is similar to that of Proposition 3.3.

Proposition 3.7. S( f (Az)) ≤ s where A ∈ GL(|z|, F) is as follows:

A : x0 7→ x0, y0 7→ y0, xi 7→ xi, yi 7→ yi + (1− ui)xi ∀i ∈ [n]. (12)

The reverse direction. Let A ∈ GL(|z|, F) be such that S( f (Az)) ≤ s. Lemmas 3.4 and
3.5 hold with little change in the arguments presented in the finite characteristic case. Thus,
A(x0) = x0 and A(y0) = y0 without loss of generality. Lemma 3.9 analyses S(Qi(Az)), i ∈ [n],
and its proof is similar to that of Lemma 3.6.

Lemma 3.9. For any invertible A and i ∈ [n]:

S(Qi(Az)) = S(Qi,1(Az)) +S(Qi,2(Az)) +S(Qi,3(Az)) ≥ d4 + 3,

where Qi, Qi,1, Qi,2 and Qi,3 are as defined in this subsection. Equality holds if and only if
under A

xi 7→ Xi and yi 7→ Yi + (1− ui)Xi

for some scaled Xi, Yi ∈ z and ui ∈ {0, 1}. Further, if S(Qi(Az)) 6= d4 + 3, then S(Qi(Az)) ≥
2d4 + 3.
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Lemma 3.7 also holds with the same proof as before. Lemmas 3.4, 3.9 and 3.7 together
show that A is a permuted scaled version of the transform described in (12). Proposition 3.8
then holds and can be proven similarly to Proposition 3.4.

Proposition 3.8. With A as described in (12), u = (u1, . . . , un) is a satisfying assignment for ψ.

3.5.4 Setting of parameters in the homogeneous case

Let the characteristic be p > 0. If p > d1 + d2 + (3n + m + 1)(d3 + 1), where d1, d2 and d3 are
as chosen in (6) for the characteristic 0 case, then the same setting of di’s holds. Otherwise,
p = O((n + m)m3). Similar to the non-homogeneous case, we choose d3, d4 and d5 so that
d3 > d4 > d5 and they are of form pk − 1, k ∈N. We have the following bounds:

d5 ≤ pm =⇒ d5 = O(pm) = O((n + m)m4),

d4 ≤ pm(d5 + 1)2 + p =⇒ d4 = O(p3m3) = O((n + m)3m12),

∴ s = O(p3nm3) = O((n + m)3nm12),

d3 = pd4 + p− 1 =⇒ d3 = O(p4m3) = O((n + m)4m15).

(13)

This choice of d3, d4 and d5 ensures they are (mn)O(1), satisfy (5) and that Observation 2.5 can
be used for characteristic p fields with p = O((n + m)m3). Now, let k1 := blogp(s)c+ 1, k2 :=
blogp((3n + m + 1)(d3 + 1))c+ 1, then set

d2 =
k1+k2−1

∑
i=k2

(p− 1)pi = pk1+k2 − pk2 . (14)

For this choice, d2 > s and d2 > (3n + m + 1)(d3 + 1). Lastly, let k3 := blogp(d2 + (3n + m +

1)(d3 + 1))c+ 1, then set

d1 =
k3+k1−1

∑
i=k3

(p− 1)pi = pk1+k3 − pk3 > d2 + (3n + m + 1)(d3 + 1). (15)

For this choice of d1 and d2 it holds that,

d2 = O(p2s(3n + m + 1)(d3 + 1)) = O(p9nm6(n + m)) = O((n + m)10nm33)

d1 = O(p2s(d2 + (3n + m + 1)(d3 + 1))) = O(p14n2m9(n + m)) = O((n + m)15n2m51).

4 NP-hardness of α-gap-ETsparse

In this section, we prove Theorem 2. We first prove parts 1 and 2 of Theorem 2 over character-
istic 0 fields without considering translations in Sections 4.1 and 4.2, respectively. Section 4.3
extends both parts to finite characteristic fields. Appendix D contains the proofs of the lemmas
in this section. Appendix A.2 proves part 1 of Theorem 2 while considering translations.18

18For part 2 of Theorem 2, translations are not considered; see footnote 16 for an explanation.
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Proof sketch. For a 3-CNF ψ, we carefully analyze the sparsity of the corresponding poly-
nomial f as defined in Section 3, for the non-homogeneous and the homogeneous case. For
unsatisfiable ψ’s, we do a slightly deeper analysis on S( f (Az)), for all A ∈ GL(|z|, F), to
show a lower bound. For satisfiable ψ’s, S( f (Az)) has already been upper bounded for an
appropriate A ∈ GL(|z|, F). The degree parameters are also chosen differently so that the gap
between the lower bound and the upper bound is significant. Comparing the sparsities for sat-
isfiable and unsatisfiable ψ’s proves Theorem 2. Note that throughout this section, we assume
ε ∈ (0, 1/3) to be an arbitrary constant.

4.1 Analyzing the gap: the non-homogeneous case

For a 3-CNF ψ, consider the polynomial f as defined in (1). Choose the di’s to satisfy the
following while also being (mn)O(1):

d4 ≥ max(4mn, (mn)O(1/ε)), d3 = m(d4 + 1)2 + 1, d2 = d2
3 + 1, d1 = d2 + 1. (16)

Note under these constraints, the conditions in (2) are also satisfied. Let s := S( f ). Then,
s = 1 + n(2d3 + 3) + m(d4 + 1)3 by Observation 3.3. For ψ ∈ 3-SAT, Lemma 4.1 shows lower
bounds on S( f (Az)) for all A ∈ GL(|z|, F). In the lemma, Item 1 is essentially Lemma 3.1,
Items 2 and 3 are a slightly deeper analysis of that in Lemmas 3.2 and 3.3, and Item 4 is the
analysis in Proposition 3.2. Thus, Lemma 4.1 encapsulates the analysis of Section 3.3. For
ψ ∈ 3-SAT, by Proposition 3.1, there exists A ∈ GL(|z|, F) such thatS( f (Az)) ≤ s0, where s0 =
1 + n(d3 + 3) + m(d4 + 1)2. Proposition 4.1 shows α-gap-ETsparse is NP-hard by comparing
the sparsity for satisfiable and unsatisfiable ψ’s, and uses Lemma 4.1 and the conditions in (16).

Lemma 4.1. Let ψ ∈ 3-SAT, f be as defined in (1) corresponding to ψ and A ∈ GL(|z|, F).

1. If A(x0) is a linear form in at least 2 variables, S( f (Az)) ≥ d1 + 1.

2. If A is not as in item 1 and A(xj) is a linear form in at least 2 variables for some j ∈ [n],
then S( f (Az)) ≥ d2 + 1.

3. If A is not as in items 1 and 2 and for some j ∈ [n], A(yj + xj) or A(yj − xj) is a linear

form in at least 3 variables, then S( f (Az)) ≥ d2
3+3d3+2

2 .

4. If A is not of the form described in the previous three items, then S( f (Az)) ≥ (d4 + 1)3.

Proposition 4.1. Let char(F) = 0. If the input in α-gap-ETsparse is an s-sparse polynomial,
then α-gap-ETsparse is NP-hard for α = s1/3−ε.

Proof. If ψ ∈ 3-SAT, then S( f (Az)) ≤ s0 where A is as described in (4). If ψ ∈ 3-SAT, then it
follows from Lemma 4.1 that for any A ∈ GL(|z|, F):

S( f (Az)) ≥ min
(

d1 + 1, d2 + 1,
d2

3 + 3d3 + 2
2

, (d4 + 1)3
)

.

The constraints imposed in (16) ensure that (d4 + 1)3 is the minimum. As d3 = m(d4 + 1)2 + 1,
therefore s0 = 1 + n(d3 + 3) + m(d4 + 1)2 ≤ 3nd3 = 3mn(d4 + 1)2 + 3n ≤ 4mn(d4 + 1)2. Thus,
the gap in the sparsities of the YES instances and the NO instances is

(d4 + 1)3

s0
≥ (d4 + 1)3

4mn(d4 + 1)2 =
d4 + 1
4mn

.
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Also, as d4 ≥ 4mn, S( f ) = s ≤ 2m(d4 + 1)3 =⇒ d4 + 1 ≥ ( s
2m )1/3. Then, the gap is

(d4 + 1)3

s0
≥ d4 + 1

4mn
≥ s1/3

21/34m4/3n
.

Finally, note that s ≥ d3
4. Thus, for d3ε

4 ≥ (mn)O(1) large enough,

sε ≥ d3ε
4 ≥ 21/34m4/3n =⇒ s1/3

21/34m4/3n
≥ s1/3−ε.

Hence, the gap is at least s1/3−ε. Therefore, 3-SAT reduces to α-gap-ETsparse for α = s1/3−ε.

4.2 Analyzing the gap: the homogeneous case

Consider the polynomial f as defined in (7) for ψ. Choose the di’s to satisfy the following
constraints while also being (mn)O(1).

d5 ≥ max((4mn, (mn)O(1/ε)), d4 = m(d5 + 1)2 + 1, d3 = d2
4 + 1,

d2 = max((3n + m + 1)(d3 + 1), s) + 1,
d1 = d2 + (3n + m + 1)(d3 + 1) + 1.

(17)

Under these constraints, the conditions in (5) are also satisfied. Let s := S( f ). Then, s =
1 + n(2d4 + 3) + m(d5 + 1)3 by Observation 3.5. For ψ ∈ 3-SAT, Lemma 4.2, proved using
Claim 2.1, shows lower bounds on S( f (Az)), for all A ∈ GL(|z|, F). In the lemma, Items 1 and
2 are essentially Lemma 3.4, Items 3 and 4 are a deeper analysis of that in Lemmas 3.6 and 3.7,
and Item 5 is the analysis in Proposition 3.4. For ψ ∈ 3-SAT, by Proposition 3.3, there exists
A ∈ GL(|z|, F) such that S( f (Az)) ≤ s0, where s0 = 1 + n(d4 + 3) + m(d5 + 1)2. Proposition
4.2 proves α-gap-ETsparse is NP-hard using Lemma 4.2 and the conditions in (17).

Lemma 4.2. Let ψ ∈ 3-SAT, f (z) be the polynomial as defined in (7) corresponding to ψ and
A ∈ GL(|z|, F).

1. If A(x0) is a linear form in at least 2 variables, S( f (Az)) ≥ d1 + 1.

2. If A is not as in item 1 and A(y0) is a linear form in at least 2 variables, S( f (Az)) ≥ d2 + 1.

3. If A is not as in items 1 and 2, and A(xj) is a linear form in at least 2 variables for some
j ∈ [n], then S( f (Az)) ≥ d3 + 1.

4. If A is not as in items 1, 2 and 3, and for some j ∈ [n], A(yj + xj) or A(yj − xj) is a linear

form in at least 3 variables, then S( f (Az)) ≥ d2
4+3d4+2

2 .

5. If A is not of the form described in the previous four items, then S( f (Az)) ≥ (d5 + 1)3.

Proposition 4.2. Let char(F) = 0. If the input in α-gap-ETsparse is an s-sparse homogeneous
polynomial, then α-gap-ETsparse is NP-hard for α = s1/3−ε.

Proof. If ψ ∈ 3-SAT, then S( f (Az)) ≤ s0 where A is as described in (8). If ψ ∈ 3-SAT, then it
follows from Lemma 4.2 that for any A ∈ GL(|z|, F):

S( f (Az)) ≥ min
(

d1 + 1, d2 + 1, d3 + 1,
d2

4 + 3d4 + 2
2

, (d5 + 1)3
)

.
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The constraints imposed in (17) ensure that (d5 + 1)3 is the minimum. As d4 = m(d5 + 1)2 + 1,
therefore s0 = 1 + n(d4 + 3) + m(d5 + 1)2 ≤ 3nd5 = 3mn(d5 + 1)2 + 3n ≤ 4mn(d5 + 1)2. Thus,
the gap in the sparsities of the YES instances and the NO instances is

(d5 + 1)3

s0
≥ (d5 + 1)3

4mn(d5 + 1)2 =
d5 + 1
4mn

.

Also, as d5 ≥ 4mn, S( f ) = s ≤ 2m(d5 + 1)3 =⇒ d5 + 1 ≥ ( s
2m )1/3. Then, the gap is

(d5 + 1)3

s0
≥ d5 + 1

4mn
≥ s1/3

21/34m4/3n
.

Finally, note that s ≥ d3
5. Thus, for d3ε

5 ≥ (mn)O(1) large enough,

sε ≥ d3ε
5 ≥ 21/34m4/3n =⇒ s1/3

21/34m4/3n
≥ s1/3−ε.

Hence, the gap is at least s1/3−ε. Therefore, 3-SAT reduces to α-gap-ETsparse for α = s1/3−ε.

Remarks. As mentioned in the second remark near the end of Section 3.4, a simpler con-
struction of a homogeneous f with four degree parameters is possible. This simpler
construction can be used to show the NP-hardness of α-gap-ETsparse. The reason we
use the construction currently defined in Section 3.4 is that it allows us to prove part 2
of Theorem 2 for homogeneous polynomials over finite characteristic fields and char-
acteristic 0 fields without using separate constructions.

4.3 Extension to finite characteristic fields

In this section, we will show how the construction of Sections 3.1 and 3.4, with some changes
for appropriate cases, can be used to show the NP-hardness of α-gap-ETsparse over finite char-
acteristic fields for the non-homogeneous case (in the following section) and homogeneous
case (in Section 4.3.2), respectively.

4.3.1 The non-homogeneous case

Let the characteristic be p, where p > 2. If p > d1, where d1 is as chosen in Section 4.1, then
the argument of that section holds. Hence, it is assumed that p ≤ d1 = (mn)O(1). Consider the
polynomial f defined in (1). Let ε ∈ (0, 1/3) be an arbitrary constant. Choose the di’s to be of
form pk − 1 for some k ∈N to satisfy the following inequalities, along with those of (2):

d4 ≥ max(3pmn, (mn)O(1/ε)), d3 > m(d4 + 1)2, d2 > (d3 + 1)2, d1 > d2. (18)

Note that we can get d3 = O(pm(d4 + 1)2), d2 = O(p(d3 + 1)2) and d1 = O(pd2). Let s :=
S( f ). Then, s = 1 + n(2d3 + 3) + m(d4 + 1)3 by Observation 3.3. For ψ ∈ 3-SAT, Lemma
4.3 shows lower bounds on S( f (Az)) for all A ∈ GL(|z|, F). Like Lemma 4.1, Lemma 4.3 is
a slightly deeper analysis of that in the reverse direction of Section 3.5.1. For ψ ∈ 3-SAT, by
Proposition 3.1 there exists A ∈ GL(|z|, F) such that S( f (Az)) ≤ s0, where s0 = 1 + n(d3 +
3) + m(d4 + 1)2. Proposition 4.3 shows the NP-hardness of α-gap-ETsparse using Lemma 4.3
and the inequalities in (18).

Lemma 4.3. Let ψ ∈ 3-SAT, f , as defined in (1), be the polynomial corresponding to ψ and
A ∈ GL(|z|, F).

23



1. If A(x0) is a linear form in at least 2 variables, S( f (Az)) ≥ d1 + 1.

2. If A is not as in item 1 and for some j ∈ [n], A(xj) is a linear form in at least 2 variables,
then S( f (Az)) ≥ d2 + 1.

3. If A is not as in item 1 and 2 and for some j ∈ [n], A(yj + xj) or A(yj− xj) is a linear form
in at least 3 variables, S( f (Az)) ≥ (d3 + 1)1.63.

4. If A is not of the form described in the previous three cases, then S( f (Az)) ≥ (d4 + 1)3.

Proposition 4.3. Let char(F) = p > 2. If the input in α-gap-ETsparse is an s-sparse polynomial,
then α-gap-ETsparse is NP-hard for α = s1/3−ε.

Proof. The proof is similar to that of Proposition 4.1. If ψ is satisfiable, then S( f (Az)) ≤ s0
where A is as described in (4) and s0 = 1 + n(d3 + 3) + m(d4 + 1)2. For unsatisfiable ψ, it
follows from Lemma 4.3 that for any A ∈ GL(|z|, F):

S( f (Az)) ≥ min(d1 + 1, d2 + 1, (d3 + 1)1.63, (d4 + 1)3).

As d3 > m(d4 + 1)2, therefore s0 = 1 + n(d3 + 3) + m(d4 + 1)2 ≤ 3nd3 ≤ 3pmn(d4 + 1)2. The
conditions imposed in (18) ensure that d1 + 1 > d2 + 1 > (d3 + 1)1+logp((p+1)/2) > (d4 + 1)3 >
s0. Thus, the gap in the sparsities of the YES instances and NO instances is

(d4 + 1)3

s0
≥ (d4 + 1)3

3pmn(d4 + 1)2 =
d4 + 1
3pmn

.

Also, note as d4 ≥ 3pmn, therefore s ≤ 2m(d4 + 1)3 =⇒ d4 + 1 ≥ ( s
2m )1/3. Then, the gap is

(d4 + 1)3

s0
≥ d4 + 1

3pmn
≥ s1/3

p21/33m4/3n
.

Finally, note that s ≥ d3
4. Thus, for d3ε

4 ≥ (mn)O(1) large enough,

sε ≥ d3ε
4 ≥ p21/33m4/3n =⇒ s1/3

p21/33m4/3n
≥ s1/3−ε.

Hence, the gap is at least s1/3−ε. Therefore, 3-SAT reduces to α-gap-ETsparse for α = s1/3−ε.

Analysis over characteristic 2 fields

In this case, we consider the construction of Section 3.5.1. For a 3-CNF ψ, let f be the corre-
sponding polynomial as defined in (9). Let s := S( f ). Over characteristic 2 fields, the value
of s depends on the number of variables complemented in a clause. To show the hardness of
α-gap-ETsparse, we require s ≥ d3

4 (see the proof of Proposition 4.4). This can be achieved
if there exists a clause with all variables complemented. Hence, we assume, without loss of
generality, that there is such a clause in ψ.19 The di’s are chosen in the same way as in Section
4.3.1 to satisfy (18) with p set to 2. In particular, they satisfy the following inequalities.

d4 ≥ max(6mn, (mn)O(1/ε)), d3 > m(d4 + 1)2, d2 > (d3 + 1)2, d1 > d2. (19)

19To have some clause, say the first one, contain only complemented variables, every uncomplemented variable
x in the clause can be replaced by ¬x followed by complementing each occurrence of x in the remaining clauses.
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By Observation 3.6 and the assumption on ψ, it holds that

1 + n(d3 + 3) + (d4 + 1)3 ≤ s ≤ 1 + n(d3 + 3) + m(d4 + 1)3.

For ψ ∈ 3-SAT, Lemma 4.4 shows lower bounds on S( f (Az)) where A ∈ GL(|z|, F). For
ψ ∈ 3-SAT, by Proposition 3.5 there exists A ∈ GL(|z|, F) such that S( f (Az)) ≤ s0, where
s0 = 1 + n(d3 + 3) + m(d4 + 1)2. Proposition 4.4 shows the NP-hardness of α-gap-ETsparse
using Lemma 4.4 and the inequalities in (19).

Lemma 4.4. Let ψ ∈ 3-SAT, f , as defined in (9), be the polynomial corresponding to ψ and
A ∈ GL(|z|, F).

1. If A(x0) is a linear form in at least 2 variables, S( f (Az)) ≥ d1 + 1.

2. If A is not as in item 1 and for some j ∈ [n], A(xj) is a linear form in at least 2 variables,
then S( f (Az)) ≥ d2 + 1.

3. If A is not as in item 1 and 2 and for some j ∈ [n], A(yj + xj) or A(yj) is a linear form in
at least 3 variables, S( f (Az)) ≥ (d3 + 1)1.58.

4. If A is not of the form described in the previous three cases, then S( f (Az)) ≥ (d4 + 1)3.

Proposition 4.4. Let char(F) = 2. If the input in α-gap-ETsparse is an s-sparse polynomial,
then α-gap-ETsparse is NP-hard for α = s1/3−ε.

Proof. The proof is similar to that of Proposition 4.3. If ψ is satisfiable, then S( f (Az)) ≤ s0
where A is as described in (4) and s0 = 1 + n(d3 + 3) + m(d4 + 1)2. For unsatisfiable ψ, it
follows from Lemma 4.3 that for any A ∈ GL(|z|, F):

S( f (Az)) ≥ min(d1 + 1, d2 + 1, (d3 + 1)1.58, (d4 + 1)3).

As d3 > m(d4 + 1)2, therefore s0 = 1 + n(d3 + 3) + m(d4 + 1)2 ≤ 3nd3 ≤ 6mn(d4 + 1)2. The
conditions imposed in (19) ensure that d1 + 1 > d2 + 1 > (d3 + 1)1.58 > (d4 + 1)3 > s0.
Consequently, the gap in the sparsities of the YES instances and NO instances is

(d4 + 1)3

s0
≥ (d4 + 1)3

6mn(d4 + 1)2 =
d4 + 1
6mn

.

Also, note as d4 ≥ 6mn, therefore s ≤ 2m(d4 + 1)3 =⇒ d4 + 1 ≥ ( s
2m )1/3. Then, the gap is

(d4 + 1)3

s0
≥ d4 + 1

6mn
≥ s1/3

24/33m4/3n
.

Finally, note that s ≥ d3
4. Thus, for d3ε

4 ≥ (mn)O(1) large enough,

sε ≥ d3ε
4 ≥ 24/33m4/3n =⇒ s1/3

24/33m4/3n
≥ s1/3−ε.

Hence, the gap is at least s1/3−ε. Therefore, 3-SAT reduces to α-gap-ETsparse for α = s1/3−ε.
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4.3.2 The homogeneous case

Let the characteristic be p, where p > 2. If p > d1, where d1 is as chosen in Section 4.2, then
the argument of that section holds. Hence, assume p ≤ d1 = O((mn)O(1)). Consider the
polynomial f defined in (7). Choose d3, d4 and d5 to be of form pk − 1 for some k ∈ N while
also satisfying:

d5 ≥ max(3pmn, (mn)O(1/ε)), d4 > m(d5 + 1)2, d3 > (d4 + 1)2. (20)

Thus, d4 = O(pm(d5 + 1)2) and d3 = O(p(d4 + 1)2). Now, let k1 := blogp(d3 + 2)c+ 1, k2 :=
blogp((3n + m + 1)(d3 + 1))c+ 1, then set

d2 :=
k1+k2−1

∑
i=k2

(p− 1)pi = pk1+k2 − pk2 . (21)

Lastly, let k3 := blogp(d2 + (3n + m + 1)(d3 + 1))c+ 1, then set

d1 :=
k3+k1−1

∑
i=k3

(p− 1)pi = pk1+k3 − pk3 . (22)

For this choice of the di’s, the conditions in (5) are satisfied. Let s := S( f ). By Observation 3.5,
s = 1+ n(2d4 + 3) + m(d5 + 1)3. For ψ ∈ 3-SAT, Lemma 4.5 shows lower bounds on S( f (Az))
for all A ∈ GL(|z|, F). Like Lemma 4.2, Lemma 4.5 is a slightly deeper analysis of that in the
reverse direction of Section 3.5.3 For ψ ∈ 3-SAT, by Proposition 3.3 there exists A ∈ GL(|z|, F)
such that S( f (Az)) ≤ s0, where s0 = 1 + n(d4 + 3) + m(d5 + 1)2. Proposition 4.5 shows the
NP-hardness of α-gap-ETsparse using Lemma 4.5 and the setting of the di’s in this section.

Lemma 4.5. Let ψ ∈ 3-SAT, f , as defined in (7), be the polynomial corresponding to ψ and
A ∈ GL(|z|, F).

1. If A(x0) or A(y0) is a linear form in at least 2 variables, S( f (Az)) ≥ d3 + 2.

2. If A is not as in item 1 and A(xj) is a linear form in at least 2 variables for some j ∈ [n],
then S( f (Az)) ≥ d3 + 1.

3. If A is not as in items 1 and 2 and for some j ∈ [n], A(yj + xj) or A(yj − xj) is a linear
form in at least 3 variables, S( f (Az)) ≥ (d4 + 1)1.63.

4. If A is not of the form described in the previous three cases, then S( f (Az)) ≥ (d5 + 1)3.

Proposition 4.5. Let char(F) = p > 2. If the input in α-gap-ETsparse is an s-sparse homoge-
neous polynomial, then α-gap-ETsparse is NP-hard for α = s1/3−ε.

Proof. The proof is similar to that of Proposition 4.2. If ψ ∈ 3-SAT, thenS( f (Az)) ≤ s0 where A
is as described in (8). If ψ ∈ 3-SAT, then it follows from Lemma 4.3 that for any A ∈ GL(|z|, F):

S( f (Az)) ≥ min
(

d3 + 2, d3 + 1, (d4 + 1)1.63, (d5 + 1)3
)

.

The constraints imposed in (16) ensure that (d5 + 1)3 is the minimum. As d4 > m(d5 + 1)2,
therefore s0 = 1 + n(d4 + 3) + m(d5 + 1)2 < 3nd4 ≤ 3pmn(d5 + 1)2. Thus, the gap in the
sparsities of the YES instances and the NO instances is

(d5 + 1)3

s0
≥ (d5 + 1)3

3pmn(d5 + 1)2 =
d5 + 1
3pmn

.
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Also, as d5 ≥ 3pmn, S( f ) = s ≤ 2m(d5 + 1)3 =⇒ d5 + 1 ≥ ( s
2m )1/3. Then, the gap is

(d5 + 1)3

s0
≥ d5 + 1

3pmn
≥ s1/3

p21/33m4/3n
.

Finally, note that s ≥ d3
5. Thus, for d3ε

5 ≥ (mn)O(1) large enough,

sε ≥ d3ε
5 ≥ p21/33m4/3n =⇒ s1/3

p21/33m4/3n
≥ s1/3−ε.

Hence, the gap is at least s1/3−ε. Therefore, 3-SAT reduces to α-gap-ETsparse for α = s1/3−ε.

Analysis over characteristic 2 fields

For characteristic 2 fields, consider the polynomial f as defined in (11). Let s := S( f ). Like
in the characteristic 2 construction for the non-homogeneous case, the value of s depends
on the number of variables complemented within a clause. To show the NP-hardness of
α-gap-ETsparse, s ≥ d3

5 is required (see the proof of Proposition 4.6), which can be achieved if
there is at least one clause where all variables are complemented. Therefore, we assume that
such a clause exists (see footnote 19). Set the di’s as specified in the beginning of Section 4.3.2
with p = 2. For this setting of the di’s, the constraints in (5) are satisfied. By Observation 3.7
and the assumption on ψ, it holds that

1 + n(d4 + 3) + (d5 + 1)3 ≤ s ≤ 1 + n(d4 + 3) + m(d5 + 1)3.

For ψ ∈ 3-SAT, Lemma 4.6 shows lower bounds on S( f (Az)) for all A ∈ GL(|z|, F). For
ψ ∈ 3-SAT, by Proposition 3.7 there exists A ∈ GL(|z|, F) such that S( f (Az)) ≤ s0, where
s0 = 1 + n(d4 + 3) + m(d5 + 1)2. Proposition 4.6 shows the NP-hardness of α-gap-ETsparse
using Lemma 4.6 and the setting of the di’s in this section.

Lemma 4.6. Let ψ ∈ 3-SAT, f , as defined in (11), be the polynomial corresponding to ψ and
A ∈ GL(|z|, F).

1. If A(x0) or A(y0) is a linear form in at least 2 variables, S( f (Az)) ≥ d3 + 2.

2. If A is not as in item 1 and A(xj) is a linear form in at least 2 variables for some j ∈ [n],
then S( f (Az)) ≥ d3 + 1.

3. If A is not as in items 1 and 2 and for some j ∈ [n], A(yj + xj) or A(yj − xj) is a linear
form in at least 3 variables, S( f (Az)) ≥ (d4 + 1)1.58.

4. If A is not of the form described in the previous three cases, then S( f (Az)) ≥ (d5 + 1)3.

Proposition 4.6. Let char(F) = 2. If the input in α-gap-ETsparse is an s-sparse homogeneous
polynomial, then α-gap-ETsparse is NP-hard for α = s1/3−ε.

Proof. The proof is similar to that of Proposition 4.5. If ψ ∈ 3-SAT, then S( f (Az)) ≤ s0 where
A is as described in (12). If ψ ∈ 3-SAT, then it follows from Lemma 4.3 that for any A ∈
GL(|z|, F):

S( f (Az)) ≥ min
(

d3 + 2, d3 + 1, (d4 + 1)1.58, (d5 + 1)3
)

.
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The constraints imposed in (16) ensure that (d5 + 1)3 is the minimum. As d4 > m(d5 + 1)2,
therefore s0 = 1 + n(d4 + 3) + m(d5 + 1)2 < 3nd4 ≤ 6mn(d5 + 1)2. Thus, the gap in the
sparsities of the YES instances and the NO instances is

(d5 + 1)3

s0
≥ (d5 + 1)3

6mn(d5 + 1)2 =
d5 + 1
6mn

.

Also, as d5 ≥ 6mn, s ≤ 2m(d5 + 1)3 =⇒ d5 + 1 ≥ ( s
2m )1/3. Then, the gap is

(d5 + 1)3

s0
≥ d5 + 1

6mn
≥ s1/3

24/33m4/3n
.

Finally, note that s ≥ d3
5. Thus, for d3ε

5 ≥ (mn)O(1) large enough,

sε ≥ d3ε
5 ≥ 24/33m4/3n =⇒ s1/3

24/33m4/3n
≥ s1/3−ε.

Hence, the gap is at least s1/3−ε. Therefore, 3-SAT reduces to α-gap-ETsparse for α = s1/3−ε.

5 NP-hardness of ETsupport

In this section, we prove Theorem 3. All lemmas and observations are proved in Appendix E.

Proof sketch. We map ψ, a 3-CNF, to a polynomial f , which is the sum of degree separated
polynomials with at least one polynomial of support σ + 1 and the rest of support σ (where σ
is a constant). As the summands are degree separated, Supp( f ) = σ + 1 and for any invertible
linear transform A, Supp(A( f )) is equal to the maximum support size among the transformed
summands. Claim 2.2 is used to show that ψ ∈ 3-SAT iff there exists an invertible linear trans-
form A, such that Supp(A( f )) ≤ σ. Thus, the reduction also holds for (σ + 1)-to-σ ETsupport.
For characteristic p fields, we assume p > σ + 1 so that Claim 2.2 holds.

5.1 Construction of f

Let σ ≥ 6 be an even integer constant and ψ be as denoted in Section 3.1. For odd σ, we describe
the changes in the construction/argument at the appropriate points. As σ is a constant, let
n ≥ σ + 4. The proofs of Lemmas 5.1 and 5.2 use n ≥ σ + 4. To ensure Supp( f ) = σ + 1,
we assume that all the variables in the first clause are complemented (see footnote 19). Let
x := {x1, . . . , xn}, y := {y1, . . . , yn} and z := {z1, . . . , zσ−5} and w := xt yt z. By (w1 · · ·wl)

?,
where wi ∈ w and l, ? ∈N, we denote a power of w1 · · ·wl . Consider the polynomials:

• First, introduce (n+σ−5
σ ) many monomials defined by the set

P := {(w1 · · ·wσ)
? | w1, . . . , wσ ∈ zt x and are pairwise distinct}.

• Then, introduce (n
σ
2
) many monomials defined by the set

Q := {((xi1 yi1) · · · (xi σ
2

yi σ
2
))? | i1, . . . , i σ

2
∈ [n] and are pairwise distinct}.

Note: For odd σ, the monomials are of form ((xi1 yi1) · · · (xi σ−1
2

yi σ−1
2
)xi σ+1

2
)?. Thus |Q| =

( n
σ+1

2
) σ+1

2 .
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• Let R := {Rk(w) | k ∈ [m]}, where Rk(w) is defined corresponding to the kth clause as:

Rk(w) := (∏
j∈Ck

(yj − ak,jxj))
2(z1 · · · zσ−5)

?.

Define f (w) := ∑g∈P g(w) + ∑h∈Q h(w) + ∑m
k=1 Rk(w). The powers, denoted by ?, must be

such that the following hold:

1. All the polynomials in P t Q t R are degree separated, with the powers being at least
σ + 1. The assumption σ ≥ 6 ensures that each Rk has a monomial in z, due to which the
Rk’s are degree separated.

2. Over characteristic p fields, where p > 0, all the powers are less than p or are of the form
pk − 1 for some k ∈N.

In Section E.4, we choose the powers to satisfy the above conditions over any field. Based on
these conditions, Observation 5.1 holds.

Observation 5.1. S( f (w)) = O(nσ + m) and Supp( f (w)) = σ + 1.

5.2 The forward direction

Proposition 5.1 shows how a satisfying assignment for ψ implies the existence of an invertible
A, such that Supp( f (Aw)) = σ by constructing A from the satisfying assignment.

Proposition 5.1. Let ψ ∈ 3-SAT with (u1, . . . , un) ∈ {0, 1}n a satisfying assignment. Then,
Supp( f (Aw)) = σ, where the transform A is defined as

A : zj 7→ zj, xi 7→ xi, yi 7→ yi + (1− ui)xi i ∈ [n], j ∈ [σ− 5]. (23)

Proof. As Condition 1 is satisfied, it suffices to analyse the action of A on individual poly-
nomials. Clearly, for g(w) ∈ P, g(Aw) = g(w). Let h(w) ∈ Q. Then h(w) is of form
((xt1 yt1) · · · (xt σ

2
yt σ

2
))?, tj ∈ [n], and A acts on h as:

A : ((xt1 yt1) · · · (xt σ
2

yt σ
2
))? 7→ ((xt1)(yt1 + (1− ut1)xt1) · · · (xt σ

2
)(yt σ

2
+ (1− ut σ

2
)xt σ

2
))?.

Note | ∪σ
t=1 var(`t)| = σ, where `t = A(w) and w ∈ var(h(w)). Thus, Supp(h(Aw)) ≤ σ.

When σ is odd, a similar argument holds for the modified construction of Q. For k ∈ [m], A
acts on Rk(w) as:

A : (∏
j∈Ck

(yj − ak,jxj))
2 · (z1 · · · zσ−5)

? 7→ (∏
j∈Ck

(yj + (1− ak,j − uj)xj)
2 · (z1 · · · zσ−5)

?.

If ak,j 6= uj, then ak,j = 1− uj. Since ψ is satisfiable, therefore for all k ∈ [m], ak,j 6= uj for some
j ∈ Ck. Hence, Supp(Rk(Aw)) ≤ (σ− 5) + 5 = σ for all k ∈ [m]. Thus, Supp( f (Aw)) = σ.

5.3 The reverse direction

Now, we show that if Supp( f (Aw)) ≤ σ for A ∈ GL(|w|, F), then a satisfying assignment can
be recovered for ψ. Lemmas 5.1 and 5.2, proved using Claim 2.2, together show that A is as:

A : zj 7→ zj, xi 7→ xi, yi 7→ yi + cixi ci ∈ F, j ∈ [σ− 5], i ∈ [n]

without loss of generality.20 Proposition 5.2 derives a satisfying assignment for ψ from A.

20as permutation and non-zero scaling of variables do not affect the support.
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Lemma 5.1. If Supp( f (Aw)) ≤ σ, then ∀w ∈ zt x, A(w) = W, for scaled variable W ∈ w.

Lemma 5.2. If Supp( f (Aw)) ≤ σ, then A(xi) = Xi and A(yi) = Yi + ciXi, for scaled variables
Yi, Xi ∈ w and ci ∈ F.

Proposition 5.2. A satisfying assignment u for ψ can be extracted from A.

Proof. The action of A on Rk, where k ∈ [m], is:

(∏
j∈Ck

(yj − ak,jxj))
2 · (z1 · · · zσ−5)

? 7→ (∏
j∈Ck

(yj + (cj − ak,j)xj))
2 · (z1 · · · zσ−5)

?.

Thus, Supp(Rk(Aw)) ≤ σ iff for some j ∈ Ck, cj = ak,j. By assumption Supp(Rk(Aw)) ≤ σ
for all k ∈ [m]. Hence, for each Rk(w), there exists j ∈ Ck such that cj ∈ {0, 1}. Construct
u ∈ {0, 1}n by setting uj := 1− cj, for appropriate j ∈ Ck and the remaining ui’s to arbitrary
values in {0, 1}. From the definition of u, it follows that for the kth clause, there exists j ∈ Ck
such that uj 6= ak,j. As k is arbitrary, all clauses are satisfied.

6 Conclusion

In this work, we show that ET for sparse polynomials is NP-hard. Particularly, we show
the NP-hardness of MCSP for orbits of homogeneous sparse polynomials (a dense subclass
of hom-ΣΠΣ circuits) over characteristic 0 fields. We also define a gap version of ET for sparse
polynomials and show it is NP-hard, which implies the NP-hardness of s

1
3−ε-factor approxima-

tion of the sparse-orbit complexity of s-sparse polynomials. Lastly, we also show that ET for
constant-support polynomials is NP-hard. In all three cases, we reduce 3-SAT to the respective
problems. We end by listing some problems whose solutions we do not know:

1. Hardness of ETsparse for constant degree polynomials: In the reduction of Theorem
1, can the degree of the output polynomial be made constant? Currently, the degree is
polynomial in the number of clauses and variables.

2. Improving the gap in Theorem 2: Can α-gap-ETsparse be shown NP-hard for α = s1−ε,
where s is the sparsity of the input polynomial and ε > 0 is an arbitrary constant?

3. Hardness of ETsupport for σ = 2: Is checking if a given polynomial is in the orbit of a
support-2 polynomial NP-hard? Theorem 3 shows that ETsupport for σ ≥ 6 is NP-hard.

4. Hardness of MCSP for hom-ΣΠΣ circuits: Is MCSP for hom-ΣΠΣ circuits NP-hard?
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A Handling translations

A.1 Extending Theorem 1 for translations

In this section, we modify the construction of Section 3.1 to prove part 1 of Theorem 1 while
considering translations. The idea is to choose the degree parameters for the polynomial f
such that if f (Az + b) is s-sparse, where A ∈ GL(|z|, F) and b ∈ F|z|, then b must be 0 (the all
0s vector in F|z|) and A must be as described in (4). We first show the reduction over any field
of characteristic not equal to 2 and give a separate construction for characteristic 2 fields.

Formally, let ψ, x, x0, y and z be as denoted in Section 3.1. For b ∈ F|z|, b|w denotes the
component of b corresponding to the variable w ∈ z. Let d1, d2, d3, d4 ∈ N. Consider the
following polynomials:

• Corresponding to xi, where i ∈ [n], define Qi(z) as:

Qi(z) := Qi,1(z) + Qi,2(z) + Qi,3(z), Qi,1(z) := x(3i−2)(d2+1)
0 xd2

i ,

Qi,2(z) := x(3i−1)(d2+1)
0 (yi + xi)

d3 and Qi,3(z) := x3i(d2+1)
0 (yi − xi)

d3 .

• For the kth clause, k ∈ [m], define Rk(z) := xk(3d4+1)
0 ∏j∈Ck

(yj + (−1)ak,j xj)
d4 .

Define s := 1 + n(d3 + 3) + m(d4 + 1)2. Impose the following conditions on the di’s:

d1 ≥ 6n(d2 + 1) + 2d3 + 2, d2 ≥ 2d3, d3 ≥ m(d4 + 1)2 + 1, d4 ≥ m. (24)

Finally, define f (z) as:

f (z) := xd1
0 +

n

∑
i=1

Qi(z) +
m

∑
k=1

Rk(z). (25)

The di’s are chosen in Section A.1.1 such that they are (mn)O(1) and also satisfy the inequalities
of (24) over any field. Observations A.1, A.2 and A.3 hold under the conditions of (24).

Observation A.1. For all i ∈ [n], k ∈ [m], the polynomials xd1
0 , Qi,1(z), Qi,2(z), Qi,3(z) and Rk(z)

are degree separated from one another. Also, Qi(z) is degree separated from other Qj(z)’s, for
i, j ∈ [n] and i 6= j. Similarly, Rk(z) is degree separated from Rl(z) for k, l ∈ [m] and k 6= l.

Proof. Let i ∈ [n]. Note that Qi,1(z) has degree (3i− 2)(d2 + 1) + d2, Qi,2(z) has degree (3i−
1)(d2 + 1) + d3 and Qi,3(z) has degree 3i(d2 + 1) + d3. Clearly,

3i(d2 + 1) + d3 > (3i− 1)(d2 + 1) + d3 > (3i− 2)(d2 + 1) + d2.

Thus, Qi,1(z), Qi,2(z) and Qi,3(z) are degree separated and Qi is a sum of three degree sepa-
rated polynomials and has degree 3i(d2 + 1) + d3.

Now, let i ∈ [n] and k ∈ [m]. The lowest degree of any monomial of Qi is (3i − 2)(d2 +
1) + d2 > 2d2, while the degree of any monomial of Rk is k(3d4 + 1) + 3d4 ≤ m(3d4 + 1) + 3d4.
As d2 ≥ 2d3 and d3 > m(d4 + 1)2 from (24), therefore

2d2 ≥ 4d3 > 4m(d4 + 1)2 > m(3d4 + 1) + 3d4
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Thus Qi is degree separated from Rk.
Lastly, let i, j ∈ [n] where i < j without loss of generality. The highest degree of any

monomial of Qi is 3i(d2 + 1) + d3 while the lowest degree of any monomial of Qj is (3j −
2)(d2 + 1) + d2. Note that

(3j− 2)(d2 + 1) + d2 ≥ (3i + 1)(d2 + 1) + d2 > 3i(d2 + 1) + d3

because j ≥ i + 1 and d2 > d3 from (24). Therefore Qi and Qj are degree separated. That
Rk(z) is degree separated from Rl(z) for k, l ∈ [m] and k 6= l can be observed from the fact
that the degree of Rk(z) is k(3d4 + 1) + 3d4. Clearly, xd1

0 is degree separated from the rest of the
polynomials because d1 ≥ 6n(d2 + 1) + 2d3 + 2 while the highest degree polynomial among
Qi’s and Rk’s is Qn of degree 3n(d2 + 1) + d3.

Observation A.2. The degree of f is d1 with d1
2 > s.

Proof. By Observations A.1 and 2.2 the degree of f is the maximum degree among xd1
0 , Qi’s and

Rk’s, where i ∈ [n] and k ∈ [m]. As observed in the proof of Observation A.3, the degree of Qi
is 3i(d2 + 1) + d3, that of Rk is k(3d4 + 1) + 3d4 and 3i(d2 + 1) + d3 > k(3d4 + 1) + 3d4. Further,
d1 ≥ 6nd2 + 6n + 2d3 + 2. Hence the degree of f is d1. Finally, note that under the conditions
of (24), d1

2 > 3nd2 > 3nd3 > s.

Observation A.3. S( f (z)) = 1 + n(2d3 + 3) + m(d4 + 1)3 and Supp( f ) = 7.

The proof of Observation A.3 is similar to that of Observation 3.3 and uses Observations
A.1, 2.2 and 2.5.

The forward direction. If u ∈ {0, 1}n is such that ψ(u) = 1 and f , as described in (25), is the
polynomial corresponding to ψ, then Proposition 3.1, with some changes to its statement and
proof, shows that for b = 0 and the transform A as described in (4), S( f (Az)) ≤ s holds.

The reverse direction. We leverage the constraints in (24) to show that if S( f (Az + b)) ≤ s
for some A ∈ GL(|z|, F) and b ∈ F|z|, then A is as described in (4) and b = 0. Lemma A.1
shows that A(x0) = x0, without loss of generality, and b|x0

= 0. Then, Lemma A.2 shows that
the summands of f (Az + b) are degree separated with respect to x0.

Lemma A.1. Without loss of generality, A(x0) + b|x0
= x0.

Proof. Let A(x0) + b|x0
= `0 + b0, where `0 = A(x0). If b0 = 0 and `0 is a linear form in at least

two variables, then by the choice of d1 and Observation 2.5, S((`0 + b0)d1) ≥ d1 + 1 > s. If
b0 6= 0, then by the binomial theorem

(`0 + b0)
d1 =

d1

∑
i=0

(
d1

i

)
bi

0`
d1−i
0 .

The summands in the above expansion are degree separated and (d1
i ) 6= 0 for all i ∈ [0, d1]

because of the choice of d1 (and Lucas’s Theorem if the characteristic is finite). Thus, (`0 + b0)d1

contains at least one monomial of degree i, for all i ∈ [0, d1]. Since d1
2 > 3n(d2 + 1) + d3 >

s therefore at least s monomials in (`0 + b0)d1 are degree separated from Qi(Az + b)’s and
Rk(Az+b)’s. HenceS( f (Az+b)) > s, a contradiction. Thus, b|x0

= b0 must be 0 and A(x0) =
`0 must have only one variable, which we can assume to be x0 without loss of generality.
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Lemma A.2. For all i ∈ [n], k ∈ [m], xd1
0 , Qi,1(Az + b), Qi,2(Az + b), Qi,3(Az + b) and

Rj(Az + b) are degree separated from one another with respect to x0. Also, Qi(Az + b) is
degree separated with respect to x0 from other Qj(Az + b)’s, for i, j ∈ [n] and i 6= j. Similarly,
Rk(Az + b) is degree separated with respect to x0 from Rl(Az + b) for k, l ∈ [m] and k 6= l.

Proof. Let i ∈ [n]. For Qi,1(Az + b), Qi,2(Az + b) and Qi,3(Az + b), the respective range of
x0-degree of a monomial of respective polynomials is [(3i− 2)(d2 + 1), (3i− 2)(d2 + 1) + d2],
[(3i − 1)(d2 + 1), (3i − 1)(d2 + 1) + d3] and [3i(d2 + 1), 3i(d2 + 1) + d3]. As d2 > d3, it can be
observed that these ranges are disjoint, implying Qi,1(Az + b), Qi,2(Az + b) and Qi,3(Az + b)
are degree separated from one another with respect to x0.

Let i, j ∈ [n] and i < j without loss of generality. For Qi(Az + b) and Qj(Az + b),
the respective range of x0-degree of a monomial of respective polynomials is [(3i − 2)(d2 +
1), 3i(d2 + 1) + d3] and [(3j− 2)(d2 + 1), 3j(d2 + 1) + d3]. As d2 > d3 and j ≥ i + 1, therefore
(3j − 2)(d2 + 1) > 3i(d2 + 1) + d3. Hence, Qi(Az + b) is degree separated from Qj(Az + b)
with respect to x0.

Now, let k, l ∈ [m] and k < l without loss of generality. For Rk(Az + b) and Rl(Az +
b), the respective range of x0-degree of a monomial of respective polynomials is [k(3d4 +
1), k(3d4 + 1) + 3d4] and [l(3d4 + 1), l(3d4 + 1) + 3d4]. As l ≥ k + 1, therefore l(3d4 + 1) >
k(3d4 + 1) + 3d4. Hence, Qi(Az + b) is degree separated from Qj(Az + b) with respect to x0.

Lastly, let i ∈ [n] and k ∈ [m]. The highest x0-degree of a monomial in Rk(Az + b) is
k(3d4 + 1) + 3d4 ≤ m(3d4 + 1) + 3d4, while the lowest x0-degree of any monomial in Qi(Az +
b) is (3i− 2)(d2 + 1) > d2. Now,

d2 ≥ 2d3 > 2m(d4 + 1)2 > m(3d4 + 1) + 3d4

where the inequalities follow from the conditions in (24). Therefore Qi(Az + b) is degree sep-
arated from Rk(Az + b)’s with respect to x0. Clearly, xd1

0 is degree separated with respect to x0
from Qi(Az + b) and Rk(Az + b) because d1 > 3n(d2 + 1) + d3, the highest x0-degree of any
monomial among the Qi(Az + b)′s and Rk(Az + b)’s.

∴ S( f (Az + b)) = S(xd1
0 ) +

n

∑
i=1

S(Qi(Az + b)) +
m

∑
k=1

S(Rk(Az + b)) by Lemma A.2.

Lemma A.3 analyses the sparsity of Qi(Az + b). The proof of Lemma A.3 is similar to that of
Lemma 3.2 and uses Observations 2.5 and 2.6.

Lemma A.3. For any invertible A, b ∈ F|z| and i ∈ [n]:

S(Qi(Az + b)) = S(Qi,1(Az + b)) +S(Qi,2(Az + b)) +S(Qi,3(Az + b)) ≥ d3 + 3,

where Qi, Qi,1, Qi,2 and Qi,3 are as defined in this section. Equality holds if and only if b|xi
=

0, b|yi
= 0 and under A

xi 7→ Xi and yi 7→ Yi + (−1)ui Xi

for some scaled Xi, Yi ∈ z and ui ∈ {0, 1}. Further, if S(Qi(Az+ b)) 6= d3 + 3, then S(Qi(Az+
b)) ≥ 2d3 + 3.

Proof. From Lemma A.2 and Observation 2.2 it follows that S(Qi(Az + b)) = S(Qi,1(Az +
b)) +S(Qi,2(Az + b)) +S(Qi,3(Az + b)). The if direction of the lemma statement is easy to
verify. For the only if direction consider the following cases of A and b:
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1. S(A(xi) + b|xi
) ≥ 2: If b|xi

= 0 then S(A(xi)) ≥ 2 and by Observation 2.5, S(Qi,1(Az +
b)) ≥ d2 + 1. If b|xi

6= 0 then by the choice of d2 and Observation 2.6, S(Qi,1(Az + b)) ≥
d2 + 1. Also, S(Qi,2(Az + b)) ≥ 1 and S(Qi,3(Az + b)) ≥ 1. Hence, S(Qi(Az + b)) ≥
d2 + 3 ≥ 2d3 + 3 as d2 ≥ 2d3. For the remaining cases, we consider S(A(xi) + b|xi

) = 1,
meaning A(xi) = Xi for some scaled variable Xi ∈ z and b|xi

= 0.

2. S(A(xi) + b|xi
) = 1, S(A(yi + xi) + b|yi

+ b|xi
) ≥ 2 and S(A(yi − xi) + b|yi

− b|xi
) ≥ 2:

Like in the previous case, it can be shown using Observation 2.5 (if b|yi
= 0) or Obser-

vation 2.6 (if b|yi
6= 0) that S(Qi,2(Az + b)) ≥ d3 + 1 and S(Qi,3(Az + b)) ≥ d3 + 1

implying S(Qi(Az + b)) ≥ 2d3 + 3.

3. S(A(xi)+b|xi
) = 1 with S(A(yi + xi)+b|yi

+b|xi
) = 1 or S(A(yi− xi)+b|yi

−b|xi
) = 1:

Because A is invertible, S(A(yi − xi)) ≥ 1 and S(A(yi + xi)) ≥ 1. Further, since b|xi
= 0,

therefore b|yi
must be 0. This observation and the invertibility of A imply that exactly

one of S(A(yi + xi)) = 1 or S(A(yi − xi)) = 1 holds. Without loss of generality, let
S(A(yi + xi)) = 1, which implies A(yi) = Yi − Xi for some scaled variable Yi ∈ z.
Then A(yi − xi) = Yi − 2Xi. Hence, S(Qi,1(Az + b)) = 1, S(Qi,2(Az + b)) = 1 and
S(Qi,3(Az + b)) = d3 + 1 (by Observation 2.5) implying S(Qi(Az + b)) = d3 + 3.

The first two cases show that if A and b are not as per the lemma statement, then S(Qi(Az +
b)) ≥ 2d3 + 3; otherwise, S(Qi(Az + b)) = d3 + 3.

Lemma 3.3 then holds as before. Lemmas A.1, A.3 and 3.3 together show that A is a
permuted scaled version of the transform of (4) and that b = 0. Then, Proposition 3.2 shows
how a satisfying assignment for ψ can be recovered from A.

Construction for characteristic 2 fields

Since over characteristic 2 fields yi + xi and yi − xi are the same polynomials, we need to
modify the previous construction. Moreover, the sparsifying transform will also be slightly
different. Formally, let ψ, x, x0, y and z be as denoted in Section 3.1. Let d1, d2, d3, d4 ∈ N.
Consider the following polynomials:

• Corresponding to xi, where i ∈ [n], define Qi(z) as:

Qi(z) := Qi,1(z) + Qi,2(z) + Qi,3(z), Qi,1(z) := x(3i−2)(d2+1)
0 xd2

i ,

Qi,2(z) := x(3i−1)(d2+1)
0 (yi + xi)

d3 and Qi,3(z) := x3i(d2+1)
0 (yi)

d3 .

• For the kth clause, k ∈ [m], define Rk(z) := xk(3d4+1)
0 ∏j∈Ck

(yj + ak,jxj)
d4 .

Define s := 1 + n(d3 + 3) + m(d4 + 1)2. Choose di’s as specified in Section A.1.1 so that they
are (mn)O(1) and satisfy the conditions of (24). Finally, define f (z) as:

f (z) := xd1
0 +

n

∑
i=1

Qi(z) +
m

∑
k=1

Rk(z). (26)

Observations A.1, A.2 hold with little change. Observation A.4 analyses the sparsity and sup-
port of f and has a proof similar to that of Observations A.3 and Observation 3.6.

Observation A.4. S( f (z)) ≤ 1 + n(d3 + 3) + m(d4 + 1)3 and 4 ≤ Supp( f ) ≤ 7.
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Remarks. Like in Section 3.5.3, the sparsity of the polynomial output by the reduction over
characteristic 2 fields depends on the number of variables which are complemented
within a clause. Hence, for the same number of variables n and the same number
of clauses m, the output polynomial corresponding to two different ψ’s may have
different sparsity. Thus, the reduction is not natural over characteristic 2 fields.

The forward direction. Let u ∈ {0, 1}n be such that ψ(u) = 1 and f , as described in (26), be
the polynomial corresponding to ψ. Proposition 3.5 shows how u can be used to construct a
sparsifying transform A with b = 0.

The reverse direction. Let A ∈ GL(|z|, F) and b ∈ F|z| be such that S( f (Az + b)) ≤ s. The
analysis of the reverse direction in the previous section holds with some changes. Formally,
Lemma A.1 holds without any change in its proof while Lemma A.2 holds with some change
in its statement and proof. Thus, A(x0) = x0 without loss of generality. Lemma A.4 analyses
S(Qi(Az + b)), where i ∈ [n], and its proof is similar to that of Lemma A.3.

Lemma A.4. For any A ∈ GL(|z|, F|z|), b ∈ F|z| and i ∈ [n]:

S(Qi(Az + b)) = S(Qi,1(Az + b)) +S(Qi,2(Az + b)) +S(Qi,3(Az + b)) ≥ d3 + 3,

where Qi, Qi,1, Qi,2 and Qi,3 are as defined in this section. Equality holds if and only if b|xi
=

0, b|yi
= 0 and under A

xi 7→ Xi and yi 7→ Yi + (1− ui)Xi

for some scaled Xi, Yi ∈ z and ui ∈ {0, 1}. Further, if S(Qi(Az+ b)) 6= d3 + 3, then S(Qi(Az+
b)) ≥ 2d3 + 3.

Lemma 3.3 holds with the same proof as before. Lemmas A.1, A.4 and 3.3 together show
that A is a permuted scaled version of the transform of (10) and that b = 0. Then, Proposition
3.6 shows how a satisfying assignment for ψ can be recovered from A.

A.1.1 Setting of parameters

For characteristic 0 fields. In this case, the inequalities in (24) can be converted to equalities.
Thus

d4 = m, d3 = m(m + 1)2 + 1 = O(m3) =⇒ s = O(nm3),

d2 = 2m(m + 1)2 + 2 = O(m3), d1 = 6nd2 + 6n + 2d3 + 2 = O(nm3).

For finite characteristic fields. Let the characteristic be p > 0. If p > d1, where the value of d1
is as in the characteristic 0 fields case, then the di’s are set as per the characteristic 0 fields case.
Otherwise p = O(nm3). In such a case, we choose the di’s to be of form pk− 1, for some k ∈N,
so that the conditions in (24) are satisfied and Observation 2.5 can be used over characteristic
p fields. The lemmas and the observations in the previous section hold for this choice of the
di’s. Now, the following bounds hold on the di’s:

d4 ≤ pm, d3 ≤ pm(d4 + 1)2 + p) = O(p3m3) =⇒ s = O(nm3 p3),

d2 = pd3 + (p− 1) = O(p4m3), d1 ≤ p(6nd2 + 6n + 2d3 + 2) = O(np5m3).

As p = O(nm3), therefore

d1 = O(n6m18), d2 = O(n4m15), d3 = O(n3m12), d4 = O(nm4) and s = O(n4m12).
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A.2 Extending Theorem 2 for translations

In this section, we prove part 1 of Theorem 2 over all fields while considering translations. The
proof involves a careful analysis of the sparsity of f as defined corresponding to a 3-CNF ψ.
We split the proof into two cases: over characteristic 0 fields and finite characteristic fields. The
reason for the split is that in the analysis, we consider the sparsity of powers of affine forms
h = `+ c, where S(h) ≥ 3. The sparsity of such affine forms depends on the underlying field,
as shown in the following analysis using Observation 2.4 and the binomial theorem.

A.2.1 For characteristic 0 fields

Consider the polynomial f as defined in (25) for a 3-CNF ψ and choose the di’s to be (mn)O(1)

and also satisfy the following conditions:

d4 ≥ max(4mn, (mn)O(1/ε)), d3 = m(d4 + 1)2 + 1, d2 = d2
3 + 1, d1 = 6nd2 + 6n + 2d3 + 2. (27)

Note that the constraints in (24) are also satisfied under (27). Let s := S( f ). By Observation
A.3, s = 1 + n(2d3 + 3) + m(d4 + 1)3. From Section A.1, it follows that for satisfiable ψ’s, there
exists A ∈ GL(|z|, F), b = 0 such that S( f (Az)) ≤ s0, where s0 = 1 + n(d3 + 3) + m(d4 + 1)2.
For unsatisfiable ψ’s, Lemma A.5 gives lower bounds on S( f (Az + b)), where A ∈ GL(|z|, F)

and b ∈ F|z|, and encapsulates the argument of the reverse direction of the reduction in Section
A.1 with a slightly deeper analysis. Comparing the sparsities for satisfiable and unsatisfiable
ψ’s proves part 1 of Theorem 2 for translations. Proposition A.1 shows α-gap-ETsparse is NP-
hard using Lemma A.5 and the conditions in (27).

Lemma A.5. Let ψ ∈ 3-SAT, f , as defined in (25), be the polynomial corresponding to ψ,
A ∈ GL(|z|, F) and b ∈ F|z|.

1. If A(x0) + b|x0
is a non-trivial affine form, then S( f (Az + b)) ≥ d1

2 .21

2. If A and b are not as in item 1 and for some j ∈ [n], A(xj) + b|xj
is a non-trivial affine

form, then S( f (Az + b)) ≥ d2 + 1.

3. If A and b are not as in items 1 and 2 and for some j ∈ [n], S(A(yj + xj) + b|yj
) ≥ 3 or

S(A(yj − xj) + b|yj
) ≥ 3, then S( f (Az + b)) ≥ (d3+1)(d3+2)

2 .

4. If A and b are not of the form described in the previous three cases, then b = 0 and
S( f (Az)) ≥ (d4 + 1)3.

Proof. 1. The proof of this case follows from the argument in the proof of Lemma A.1.
Henceforth, we assume A(x0) = x0 and b|x0

= 0. Then, by Lemma A.2, it follows that

S( f (Az + b)) = S(xd1
0 ) +

n

∑
i=1

S(Qi(Az + b)) +
m

∑
k=1

S(Rk(Az + b)).

2. By Lemma A.2 and Observation 2.6 (applied to Qi,1(Az + b)) it follows that

S( f (Az + b)) ≥ S(Qi,1(Az + b)) ≥ d2 + 1.
21an affine form ` + c, where ` is a linear form, is non-trivial if ` is a linear form in at least two variables or

c ∈ F\{0}.
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3. In this case, for i ∈ [0, n], A(xi) is some scaled variable in z and b|xi
= 0. If b|yj

= 0, then
this case is the same as the third case of Lemma 4.1. Otherwise, let A(yj + xj) + b|yj

=

`j + bj, where `j is a linear form in at least two variables. Then, using the binomial
theorem and Observations 2.2 and 2.4, it follows that

S((`j + bj)
d3) = S

( d3

∑
i=0

(
d3

i

)
bd3−i

j `i
j

)
=

d3

∑
i=0

S
((d3

i

)
bd3−i

j `i
j

)
≥

d3

∑
i=0

(i+ 1) =
(d3 + 1)(d3 + 2)

2
.

Thus,

S( f (Az + b)) ≥ S(Qi,2(Az + b)) ≥ (d3 + 1)(d3 + 2)
2

.

Similarly, if S(A(yj − xj) + b|yj
) ≥ 3, then S( f (Az + b)) ≥ (d3+1)(d3+2)

2 .

4. In this case, for i ∈ [0, n], A(xi) = Xi and b|xi
= 0. For i ∈ [n] , S(A(yi + xi) + b|yi

) ≤ 2
and S(A(yi − xi) + b|yi

) ≤ 2. As A is invertible, S(A(yi + xi)) ≥ 1 and S(A(yi − xi)) ≥
1. If S(A(yi + xi)) = 2 or S(A(yi − xi)) = 2, then b|yi

= 0. By the invertibility of A, if
S(A(yi + xi)) = 1, then S(A(yi − xi)) ≥ 2 and vice versa. This observation also implies
b|yi

= 0. Thus, b|yi
= 0 for all i ∈ [n] implying b = 0. This case can then be proved in the

same way as the last case of Lemma 4.1.

Proposition A.1. Let the input to α-gap-ETsparse be an s-sparse polynomial. Then, for α =
s1/3−ε, where ε ∈ (0, 1/3) is an arbitrary constant, α-gap-ETsparse is NP-hard.

Proof. The proof is similar to that of Proposition 4.1. If ψ ∈ 3-SAT, then S( f (Az)) ≤ s0 where
A is as described in (4) and s0 = 1 + n(d3 + 3) + m(d4 + 1)2. If ψ ∈ 3-SAT, it follows from
Lemma A.5 that for any A ∈ GL(|z|, F) and b ∈ F|z|:

S( f (Az + b)) ≥ min
(d1

2
, d2 + 1,

d2
3 + 3d3 + 2

2
, (d4 + 1)3

)
.

The conditions imposed in (16) ensure that (d4 + 1)3 > s0 and (d4 + 1)3 is the minimum. As
d3 = m(d4 + 1)2 + 1, therefore s0 = 1 + n(d3 + 3) + m(d4 + 1)2 ≤ 3nd3 ≤ 4mn(d4 + 1)2.
Consequently, the gap in the sparsities of the YES instances and NO instances is

(d4 + 1)3

s0
≥ (d4 + 1)3

4mn(d4 + 1)2 =
d4 + 1
4mn

.

Also, note that as d4 ≥ 4mn, therefore s ≤ 2m(d4 + 1)3 =⇒ d4 + 1 ≥ ( s
2m )1/3. Then, the gap is

(d4 + 1)3

s0
≥ d4 + 1

4mn
≥ s1/3

21/34m4/3n
.

Finally, note that s ≥ d3
4. Thus, for d3ε

4 ≥ (mn)O(1) large enough,

sε ≥ d3ε
4 ≥ 21/34m4/3n =⇒ s1/3

21/34m4/3n
≥ s1/3−ε.

Hence, the gap is at least s1/3−ε. Therefore, 3-SAT reduces to α-gap-ETsparse for α = s1/3−ε.
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A.2.2 For finite characteristic fields

Let the characteristic be p, where p > 2. If p > d1, where d1 is as chosen in Section A.2.1, then
the argument of that section holds. Hence, it is assumed that p ≤ d1 = (mn)O(1). We again
consider the polynomial f as defined in (25) and impose the following constraints on the di’s.

d4 ≥ max(3pmn, (mn)O(1/ε)), d3 > m(d4 + 1)2, d2 > (d3 + 1)2, d1 > 6nd2 + 6n+ 2d3 + 2. (28)

Note, we can get d3 = O(pm(d4 + 1)2 + p), d2 = O(p(d3 + 1)2) and d1 = O(p(6nd2 + 6n +
2d3 + 2)). The conditions of (24) are also satisfied under (28). From Section A.1, it follows
that for satisfiable ψ’s, there exists A ∈ GL(|z|, F), b = 0 such that S( f (Az)) ≤ s0, where
s0 = 1 + n(d3 + 3) + m(d4 + 1)2. For unsatisfiable ψ’s, Lemma A.6 gives lower bounds on
S( f (Az + b)), where A ∈ GL(|z|, F) and b ∈ F|z|. Proposition A.2 shows α-gap-ETsparse is
NP-hard using Lemma A.6 and the constraints in (28).

Lemma A.6. Let ψ ∈ 3-SAT, f (z) be as defined in (25) corresponding to ψ, A ∈ GL(|z|, F) and
b ∈ F|z|.

1. If A(x0) + b|x0
is a non-trivial affine form, then S( f (Az + b)) ≥ d1

2 .

2. If A and b are not as in item 1 and for some j ∈ [n], A(xj) + b|xj
is a non-trivial affine

form, then S( f (Az + b)) ≥ d2 + 1.

3. If A and b are not as in items 1 and 2 and for some j ∈ [n], S(A(yj + xj) + b|yj
) ≥ 3 or

S(A(yj − xj) + b|yj
) ≥ 3, then S( f (Az + b)) ≥ (d3 + 1)1.63.

4. If A and b are not of the form described in the previous three cases, then b = 0 and
S( f (Az)) ≥ (d4 + 1)3.

Proof. The first, second and fourth cases can be proved similarly to those of Lemma A.5. Hence,
we consider the third case. Then, for i ∈ [0, n], A(xi) is some scaled variable in z and b|xi

= 0.
If b|yj

= 0, then this case is the same as the third case of Lemma 4.3. If b|yj
6= 0, then, without

loss of generality, A(yj + xj) + b|yj
= `j + bj, with `j a linear form in at least two variables.

Using the binomial theorem, the fact that d3 = pk − 1 = ∑k−1
i=0 (p− 1)pi, Lucas’s theorem and

Observations 2.2 and 2.4 gives

S((`j + bj)
d3) = S

( d3

∑
i=0

(
d3

i

)
bd3−i

j `i
j

)
=

d3

∑
i=0

S
((d3

i

)
bd3−i

j `i
j

)

≥
d3

∑
i=0

k−1

∏
l=0

(
ei,l + 2− 1

2− 1

)
=

d3

∑
i=0

k−1

∏
l=0

(ei,l + 1)

where i = ∑k−1
l=0 ei,l pl with ei,l ∈ [0, p − 1]. Note that for i = rp, where r ∈ [0, pk−1 − 1], the

value of et,l , where l ≥ 1 and t ∈ [i, i + p− 1], is the same for all t while et,0 = t− i. Therefore,
for such i’s, the following holds

i+p−1

∑
t=i

k−1

∏
l=0

(et,l + 1) =
( k−1

∏
l=1

(erp,l + 1)
)
·

rp+p−1

∑
t=rp

(t− rp + 1) =
p(p + 1)

2

k−1

∏
l=1

(erp,l + 1).

Using the above observation and the fact that d3 = pk − 1,

d3

∑
i=0

k−1

∏
l=0

(ei,l + 1) =
pk−1−1

∑
r=0

p−1

∑
t=0

k−1

∏
l=0

(erp+t,l + 1) =
p(p + 1)

2

pk−1−1

∑
r=0

k−1

∏
l=1

(erp,l + 1).
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By repeating the same argument, we get

d3

∑
i=0

k−1

∏
l=0

(ei,l + 1) =
( p(p + 1)

2

)k
= (d3 + 1)1+logp((p+1)/2).

Now, logp((p + 1)/2) is an increasing function for p ≥ 3. Thus, logp((p + 1)/2) ≥ log3((3 +

1)/2) ≥ 0.63. We can then conclude that

S( f (Az)) ≥ S(Qj,2(Az + b)) ≥ (d3 + 1)1.63.

Similarly, if S(A(yj− xj) +b|yj
) ≥ 3, then S( f (Az+b)) ≥ S(Qj,3(Az+b)) ≥ (d3 + 1)1.63.

Proposition A.2. Let the input to α-gap-ETsparse be an s-sparse polynomial. Then, for α =
s1/3−ε, where ε ∈ (0, 1/3) is an arbitrary constant, α-gap-ETsparse is NP-hard.

Proof. The proof is similar to that of Proposition A.1. For the polynomial f defined in (25),
s := S( f ) = 1 + n(2d3 + 3) + m(d4 + 1)3. If ψ ∈ 3-SAT, then S( f (Az)) ≤ s0 where A is as
described in (4) and s0 = 1 + n(d3 + 3) + m(d4 + 1)2. If ψ ∈ 3-SAT, it follows from Lemma A.5
that for any A ∈ GL(|z|, F) and b ∈ F|z|:

S( f (Az + b)) ≥ min
(d1

2
, d2 + 1, (d3 + 1)1.63, (d4 + 1)3

)
.

The conditions imposed in (28) ensure that (d4 + 1)3 > s0 and (d4 + 1)3 is the minimum. As
d3 = m(d4 + 1)2 + 1, therefore s0 = 1 + n(d3 + 3) + m(d4 + 1)2 ≤ 3nd3 ≤ 3pmn(d4 + 1)2.
Consequently, the gap in the sparsities of the YES instances and NO instances is

(d4 + 1)3

s0
≥ (d4 + 1)3

3pmn(d4 + 1)2 =
d4 + 1
3pmn

.

Also, note that as d4 ≥ 3pmn, therefore s ≤ 2m(d4 + 1)3 =⇒ d4 + 1 ≥ ( s
2m )1/3. Then, the gap

is
(d4 + 1)3

s0
≥ d4 + 1

3pmn
≥ s1/3

p21/33m4/3n
.

Finally, note that s ≥ d3
4. Thus, for d3ε

4 ≥ (mn)O(1) large enough,

sε ≥ d3ε
4 ≥ p21/33m4/3n =⇒ s1/3

p21/33m4/3n
≥ s1/3−ε.

Hence, the gap is at least s1/3−ε. Therefore, 3-SAT reduces to α-gap-ETsparse for α = s1/3−ε.

For characteristic 2 fields

Let the characteristic be 2. Consider the polynomial as defined in (26). Let s := S( f ). Now,
s depends on the number of variables complemented in a clause. To prove the hardness of
α-gap-ETsparse, s ≥ d3

4 is required (see the proof of Proposition A.3), and this can be achieved
if there is at least one clause where all the variables are complemented. Thus, assume, without
loss of generality, that such a clause exists (see footnote 19). Choose the di’s to satisfy (28) with
p set to 2. By Observation A.4 and the assumption on ψ, it holds that

1 + n(d3 + 3) + (d4 + 1)3 ≤ s ≤ 1 + n(d3 + 3) + m(d4 + 1)3.
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For ψ ∈ 3-SAT, Lemma A.7, which can be proved in the same way as Lemma A.6, shows lower
bounds on S( f (Az + b)) where A ∈ GL(|z|, F) and b ∈ F|z|. For ψ ∈ 3-SAT, by Proposition
3.5 there exists A ∈ GL(|z|, F) such that S( f (Az)) ≤ s0, where s0 = 1 + n(d3 + 3) + m(d4 +
1)2. Proposition A.3 shows the NP-hardness of α-gap-ETsparse using Lemma A.7 and the
inequalities in (28).

Lemma A.7. Let ψ ∈ 3-SAT, f (z) be as defined in (26) corresponding to ψ, A ∈ GL(|z|, F) and
b ∈ F|z|.

1. If A(x0) + b|x0
is a non-trivial affine form, then S( f (Az + b)) ≥ d1

2 .

2. If A and b are not as in item 1 and for some j ∈ [n], A(xj) + b|xj
is a non-trivial affine

form, then S( f (Az + b)) ≥ d2 + 1.

3. If A and b are not as in items 1 and 2 and for some j ∈ [n], S(A(yj + xj) + b|yj
) ≥ 3 or

S(A(yj) + b|yj
) ≥ 3, then S( f (Az + b)) ≥ (d3 + 1)1.58.

4. If A and b are not of the form described in the previous three cases, then b = 0 and
S( f (Az)) ≥ (d4 + 1)3.

Proposition A.3. Let the input to α-gap-ETsparse be an s-sparse polynomial. Then, for α =
s1/3−ε, where ε ∈ (0, 1/3) is an arbitrary constant, α-gap-ETsparse is NP-hard.

Proof. The proof is similar to that of Proposition A.2. If ψ ∈ 3-SAT, then S( f (Az)) ≤ s0 where
A is as described in (4) and s0 = 1 + n(d3 + 3) + m(d4 + 1)2. If ψ ∈ 3-SAT, it follows from
Lemma A.7 that for any A ∈ GL(|z|, F) and b ∈ F|z|:

S( f (Az + b)) ≥ min
(d1

2
, d2 + 1, (d3 + 1)1.58, (d4 + 1)3

)
.

The conditions imposed in (28) ensure that (d4 + 1)3 > s0 and (d4 + 1)3 is the minimum. As
d3 = m(d4 + 1)2 + 1, therefore s0 = 1 + n(d3 + 3) + m(d4 + 1)2 ≤ 3nd3 ≤ 6mn(d4 + 1)2.
Consequently, the gap in the sparsities of the YES instances and NO instances is

(d4 + 1)3

s0
≥ (d4 + 1)3

6mn(d4 + 1)2 =
d4 + 1
6mn

.

Also, note that as d4 ≥ 6mn, therefore s ≤ 2m(d4 + 1)3 =⇒ d4 + 1 ≥ ( s
2m )1/3. Then, the gap is

(d4 + 1)3

s0
≥ d4 + 1

6mn
≥ s1/3

24/33m4/3n
.

Finally, note that s ≥ d3
4. Thus, for d3ε

4 ≥ (mn)O(1) large enough,

sε ≥ d3ε
4 ≥ 24/33m4/3n =⇒ s1/3

24/33m4/3n
≥ s1/3−ε.

Hence, the gap is at least s1/3−ε. Therefore, 3-SAT reduces to α-gap-ETsparse for α = s1/3−ε.

B Missing proofs from Section 2

B.1 Proof of Observation 2.1

Under any invertible linear transform applied to the variables of f , every monomial of f maps
to a linear combination of monomials of the same degree. Thus, no new degree can be added
to the set of degrees of f under any invertible linear transform. As f ∼ g, the set of degrees of
f is contained in the set of degrees of g, and vice versa, implying the two sets are the same.
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B.2 Proof of Observation 2.2

As f and g are degree separated (or degree separated with respect to some variable), each
monomial of f + g is a monomial of f or g, but not both.

B.3 Proof of Observation 2.3

As f1 ∼ f and g1 ∼ g, therefore f1 and g1 are degree separated by Observation 2.1. By Obser-
vation 2.2, the statement holds.

B.4 Proof of Observation 2.4

Without loss of generality, let ` = ∑m
i=1 cixi where ci ∈ F\{0}. If char(F) = 0, then S(`d) =

(d+m−1
m−1 ) follows from the multinomial theorem and the fact that the number of monomials of

degree d in m variables is (d+m−1
m−1 ). Suppose char(F) = p. Then, d is expressible as in the

observation statement. It will be shown by induction on k that,

S(`d) =
k

∏
i=0

(
ei + m− 1

m− 1

)
.

In the base case k = 0, d < p and, like the char(F) = 0 case, it easily follows that S(`d) =

(d+m−1
m−1 ). Assume the statement for all j < k. Suppose d = ek pk + ∑k−1

i=0 ei pi, where 0 < ek < p.
Then, using the fact that (∑m

j=1 cjxj)
p = ∑m

j=1 cp
j xp

j over F,

`d =
( m

∑
j=1

cjxj

)∑k
i=0 ei pi

=
( m

∑
j=1

cpk

j xpk

j

)ek ˙∏
k−1

i=0

( m

∑
j=1

cpi

j xpi

j

)ei
.

Let h = ∏k−1
i=0 (∑m

j=1 cpi

j xpi

j )
ei . Note,

( m

∑
j=1

cpk

j xpk

j

)ek
= ∑

α1+···+αm=ek

(
ek

α1 . . . αm

)( m

∏
i=1

(cpk

i xpk

i )αi
)

.

By the inductive hypothesis, S(h) = ∏k−1
i=0 (ei+m−1

m−1 ), while S((∑m
j=1 cpk

j xpk

j )ek) = (ek+m−1
m−1 ), as

ek < p. Now,

`d = ∑
α1+···+αm=ek

(
ek

α1 . . . αm

)( m

∏
i=1

(cpk

i xpk

i )αi
)
· h.

The degree of h < pk, while any two monomials in the above expansion are degree separated
by at least pk in at least one variable. Consequently, by Observation 2.2, S(`d) = ∏k

i=0 (
ei+m−1

m−1 ).
The above inductive argument is similar to the multinomial version of Lucas’s theorem.

B.5 Proof of Observation 2.5

Let ` be a linear form in exactly 2 variables. When char(F) = 0, then by Observation 2.4,
S(`d) = (d+2−1

2−1 ) = d + 1. When char(F) = p, then S(`d) = ∏k−1
i=0 (ei+2−1

2−1 ) = ∏k−1
i=0 (ei + 1),

where d = ∑k−1
i=0 ei pi. It is easy to see the observation holds when d < p. When d = pk − 1 =

∑k−1
i=0 (p − 1)pi, then ∏k−1

i=0 (ei + 1) = pk = d + 1. Finally, when ` is a linear form in m ≥ 2
variables, then the observation follows from the fact that (c+m−1

m−1 ) ≥ c + 1 for any c ∈N.
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B.6 Proof of Observation 2.6

Using the binomial theorem,

hd = `d + cd
0 +

d−1

∑
i=1

(
d
i

)
ci

0`
d−i.

As the degree of every monomial in `d−i is d − i, all the summands in the above expansion
are degree separated. From Observations 2.2 and 2.5, it holds that S(hd) ≥ S(`d) + 1. More
precisely, S(hd) ≥ d + 1, as S(`d−i) ≥ 1 and (d

i) 6= 0 for d as in the observation statement (by
Lucas’s theorem).

B.7 Proof of Claim 2.1

We prove this by induction on d. For the base case d = 0, it is easy to see that the sparsity of any
non-zero polynomial is at least 1. Suppose now the result holds for all k < d. Let ` = ∑n

i=1 cixi
and f = `dh. Without loss of generality, assume f is not divisible by any variable, for if it
were divisible by some variable xi, then xi must not divide ` as ` contains at least two distinct
variables and hence xi divides h, in which case we can replace f and h by f

xi
and h

xi
respectively.

Let xj be a variable in ` with a non-zero coefficient and consider ∂ f
∂xj

. Now,

S( f ) ≥ 1 +S

(
∂ f
∂xj

)
as the derivative map either sends monomials to distinct monomials or eliminates them, and
by assumption some monomial in f is not divisible by xj and will be eliminated. As f = `dh,

∂ f
∂xj

= cjd`d−1h + `d ∂h
∂xj

.

Clearly, `d−1 divides ∂ f
∂xj

. By induction, S( ∂ f
∂xj

) ≥ d. Hence, S( f ) ≥ 1 +S( ∂ f
∂xj

) ≥ d + 1.

B.8 Proof of Claim 2.2

The claim is first proven for n = 1. Thus, g = `d where ` = ∑|var(`)|
i=1 cixi, ci 6= 0, and |var(`)| ≥

σ, without loss of generality. Note that

∂σg
∂x1 · · · ∂xσ

= σ!
(

d
σ

)
c1c2 · · · cσ`

d−σ.

Clearly, σ!(d
σ) 6= 0 when char(F) = 0. When char(F) = p with p > d, or p > σ and d = pk − 1

for some k ∈ N, this follows by Lucas’s Theorem [Luc78]. So the derivative is non-zero, as
d ≥ σ, implying there exists a monomial of support at least σ in g.

Now, for arbitrary n, g = (`1 · · · `n)d, where | ∪n
i=1 var(`i)| ≥ σ. Observe that

∂σg
∂xi1 · · · ∂xiσ

= ∑
j1+···+jn=σ

ji≥0

cj1,··· ,jn ·
∂σ(`

j1
1 · · · `

jn
n )

∂xi1 · · · ∂xiσ

· (`d−j1
1 · · · `d−jn

n )

where cj1···jn = (d
j1
) · · · ( d

jn). Clearly, when char(F) = 0 or > d, cj1,··· ,jn 6= 0. When char(F) = p
and d = pk − 1 for some k ∈ N, then by Lucas’s Theorem, all the binomial coefficients are
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non-zero. Hence cj1,··· ,jn 6= 0. Observe that the elements of the set M := {`d−j1
1 · · · `d−jn

n | j1 +
· · ·+ jn = σ, ji ≥ 0} are linearly independent as the `i’s are linearly independent and d ≥ σ.

Also, ∂σ(`
j1
1 ···`

jn
n )

∂xi1 ···∂xiσ
∈ F as j1 + · · ·+ jn = σ. It suffices to show that for some choice of j1, . . . , jn and

xi1 , . . . , xiσ
,where i1, . . . , iσ are pairwise distinct, ∂σ(`

j1
1 ···`

jn
n )

∂xi1 ···∂xiσ
6= 0. As elements of M are linearly

independent and cj1···jn 6= 0, this would imply ∂σ g
∂xi1 ···∂xiσ

6= 0, indicating that Supp(g) ≥ σ.

For every i ≥ 1, define Si := var(`i) \ ∪i−1
j=1Sj if | ∪i

j=1 Sj| < σ else choose Si ⊆ var(`i) \
∪i−1

j=1Sj such that | ∪i
j=1 Sj| = σ; here, ∪i−1

j=1Sj = ∅ for i = 1. Note that such a collection of sets
always exists as | ∪n

i=1 var(`i)| ≥ σ. Say we choose m ≤ n such non-empty sets. Let ji := |Si|
and Si := {xi1, . . . , xiji}. Hence,

∂σ(`
j1
1 · · · `

jm
m )

(∂x11 · · · ∂x1j1) · · · (∂xm1 · · · ∂xmjm)
=

m

∏
i=1

∂ji`
ji
i

∂xi1 · · · ∂xiji
.

As {xi1, . . . , xiji} ⊆ var(`i) is not empty and ji ≤ σ < p ( in case of finite characteristic fields),

by the analysis of the n = 1 case, ∂ji `
ji
i

∂xi1···∂xiji
6= 0. Hence,

∂σ(`
j1
1 · · · `

jm
m )

(∂x11 · · · ∂x1j1) · · · (∂xm1 · · · ∂xmjm)
6= 0

and Supp(g) ≥ σ.

C Missing proofs from Section 3

C.1 Proof of Observation 3.1

Let i ∈ [n]. Note that Qi,1(z) has degree (3i − 2)d1 + d2, Qi,2(z) has degree (3i − 1)d1 + d3
and Qi,3(z) has degree 3id1 + d3. Clearly 3id1 + d3 > (3i− 1)d1 + d3. Also, (3i− 1)d1 + d3 >
(3i− 2)d1 + d2 because d1 > d2 > d2 − d3 by the conditions in (2). Thus, Qi,1(z), Qi,2(z) and
Qi,3(z) are degree separated and Qi is a sum of 3 degree separated polynomials and has degree
3id1 + d3.

Now, let i ∈ [n] and k ∈ [m]. Rk(z) is a polynomial of degree (3n + k)d1 + 3d4 while the
degree of Qi(z) is 3id1 + d3. Note that

(3n + k)d1 + 3d4 ≥ (3n + 1)d1 + 3d4 > 3nd1 + d3 ≥ 3id1 + d3,

where the second inequality holds because d1 > d3 by the constraints in (2). Therefore, Rk(z)
and Qi(z) (hence also Qi,1, Qi,2 and Qi,3) are degree separated from one another. Further, the
degree of Rk(z) and that of Qi(z) are greater than d1 implying xd1

0 is degree separated from
Rk(z) and Qi(z).

Lastly, let i, j ∈ [n] where i < j without loss of generality. The highest degree of a mono-
mial in Qi(z) is 3id1 + d3, while the lowest degree of a monomial in Qj(z) is (3j− 2)d1 + d2.
Now,

(3j− 2)d1 + d2 ≥ (3i + 1)d1 + d2 > 3id1 + d3

as j ≥ i + 1 and d1 > d2 > d3 by the conditions in (2). Thus, Qi and Qj are degree separated.
That Rk(z) is degree separated from Rl(z) for k, l ∈ [n] and k 6= l can be observed from the fact
that the degree of Rk(z) is (3n + k)d1 + 3d4.
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C.2 Proof of Observation 3.2

From the definition of f in (1), it follows that the degree of f is the maximum of that of xd1
0 , Qi

and Rk , where i ∈ [n] and k ∈ [m]. As observed in the proof of Observation 3.1, degree of Qi is
3id1 + d3, degree of Rk is (3n + k)d1 + 3d4 and (3n + k)d1 + 3d4 > 3id1 + d3 > d1. Since k ≤ m,
therefore the highest degree is (3n + m)d1 + 3d4. So, the degree of f is (3n + m)d1 + 3d4.

C.3 Proof of Observation 3.3

By Observation 3.1, f is a sum of the n + m + 1 degree separated polynomials xd1
0 , Qi and Rk,

where i ∈ [n] and k ∈ [m]. Applying Observation 2.5 (for linear forms in two variables over
char(F) = 0 fields) to Qi,2 and Qi,3 and Observation 2.2 to Qi, we get

S(Qi(z)) = S(Qi,1(z)) +S(Qi,2(z)) +S(Qi,3(z)) = 2d3 + 3, ∀i ∈ [n].

By Observation 2.5 (for linear forms in two variables over char(F) = 0 fields) and the assump-
tion that each clause in ψ has 3 distinct variables, we get that:

S(Rk(z)) = S(x(3n+k)d1
0 ) ∏

j∈Ck

S((yj + (−1)ak,j xj)
d4) = (d4 + 1)3 ∀k ∈ [m].

Finally, applying Observations 3.1 and 2.2 to f gives

S( f (z)) = S(xd1
0 ) +

n

∑
i=1

S(Qi(z)) +
m

∑
k=1

S(Rk(z)) = 1 + n(2d3 + 3) + m(d4 + 1)3.

Thus, S( f (z)) > s but also (mn)O(1).
For the support of f , note that Supp(Rk) = 7 for all k ∈ [m] while Supp(Qi) = 3 for all

i ∈ [n] and Supp(xd1
0 ) = 1. By Observation 3.1, Supp( f ) = Supp(Rk) = 7.

C.4 Proof of Lemma 3.1

If A(x0) is a linear form in at least two variables, then it follows from the definition of f in (1),
Observation 3.1, Observation 2.5 applied on A(xd1

0 ), Observation 2.3, and the constraint d1 ≥ s
in (2) that S( f (Az) > S(A(xd1

0 )) ≥ d1 + 1 > s, a contradiction. Hence, A(x0) has only one
variable. By multiplying A with a permutation and a scaling matrix, we can assume without
loss of generality that A(x0) = x0. This can be assumed because permutation and non-zero
scaling of variables do not affect the sparsity of a polynomial.

C.5 Proof of Lemma 3.2

It follows from Observations 3.1 and 2.3 that for any A ∈ GL(|z|, F),S(Qi(Az)) = S(Qi,1(Az))+
S(Qi,2(Az)) +S(Qi,3(Az)), where Qi is as described in Section 3.1. Now, the if direction in the
lemma statement is easy to verify. For the only if direction, consider the following cases of A:

1. S(A(xi)) ≥ 2: It follows from Observation 2.5 and d2 ≥ 2d3 that S(Qi,1(Az)) ≥ d2 + 1 ≥
2d3 + 1. Also, S(Qi,2(Az)) ≥ 1 and S(Qi,3(Az)) ≥ 1. Thus, S(Qi(Az)) ≥ d2 + 3 ≥
2d3 + 3.

2. S(A(xi)) = 1, S(A(yi + xi)) ≥ 2 and S(A(yi − xi)) ≥ 2: It follows from Observation 2.5
that S(Qi,2(Az)) ≥ d3 + 1 and S(Qi,3(Az)) ≥ d3 + 1 implying S(Qi(Az)) ≥ 2d3 + 3.
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3. S(A(xi)) = 1 with S(A(yi + xi)) = 1 or S(A(yi − xi)) = 1: Let A(xi) = Xi for some
scaled variable Xi ∈ z. Because A is invertible exactly one of S(A(yi + xi)) = 1 or
S(A(yi − xi)) = 1 holds true. Let S(A(yi + xi)) = 1, without loss of generality. Then, it
must be that A(yi) = Yi−Xi for some scaled variable Yi ∈ z. Thus, A(yi− xi) = Yi− 2Xi.
Hence, S(Qi,1(Az)) = 1, S(Qi,2(Az)) = 1 and S(Qi,3(Az)) = d3 + 1 (by Observation 2.5)
implying S(Qi(Az)) = d3 + 3.

The first two cases show that if A is not as per the lemma statement, then S(Qi(Az)) ≥ 2d3 + 3;
otherwise, S(Qi(Az)) = d3 + 3.

C.6 Proof of Lemma 3.3

Suppose S(Qj(Az)) 6= d3 + 3 for some j ∈ [n]. Then, S(Qj(Az)) ≥ 2d3 + 3 by Lemma 3.2. By
the definition of f in (1), Observations 3.1 and 2.3 and the condition d3 ≥ m(d4 + 1)2 + 1, we
get the following contradiction:

S( f (Az)) > S(A(xd1
0 )) +

n

∑
i=1,i 6=j

S(Qi(Az)) +S(Qj(Az)) ≥ 1 + (n− 1)(3 + d3) + (3 + 2d3)

= 1 + n(3 + d3) + d3 = s−m(d4 + 1)2 + d3 > s.

C.7 Proof of Observation 3.4

The observation follows from the fact that the x0-degree of the summands in f , as defined in
(7), form an arithmetic progression with common difference d3 + 1 and hence every polynomial
in the observation statement has distinct x0-degree.

C.8 Proof of Observation 3.5

By Observation 3.4, f is a sum of the n + m + 1 polynomials xd1
0 yd2+(3n+m+1)(d3+1)

0 , Qi and Rk,
where i ∈ [n] and k ∈ [m], which are degree separated with respect to x0. Using arguments
similar to the proof of Observation 3.3, it holds that

S(Qi(z)) = S(Qi,1(z)) +S(Qi,2(z)) +S(Qi,3(z)) = 2d4 + 3 ∀i ∈ [n],

S(Rk(z)) = S(xd1+(3n+k)(d3+1)
0 yd2+(m−k+1)(d3+1)−3d5

0 ) ∏
j∈Ck

S((yj +(−1)ak,j xj)
d5) = (d5 + 1)3 ∀k ∈ [m],

and

S( f (z)) = S(xd1
0 yd2+(3n+m+1)(d3+1)

0 )+
n

∑
i=1

S(Qi(z))+
m

∑
k=1

S(Rk(z)) = 1+n(2d4 + 3)+m(d5 + 1)3.

Thus, S( f (z)) > s but also (mn)O(1). For the support of f , note that Supp(Rk) = 8 for all
k ∈ [m] while Supp(Qi) = 4 for all i ∈ [n] and Supp(xd1

0 yd2+(3n+m+1)(d3+1)
0 ) = 2. Hence, by

Observation 3.4, Supp( f ) = Supp(Rk) = 8.

C.9 Proof of Lemma 3.4

Suppose one of A(x0) or A(y0) is a linear form in at least two variables. As A(x0)d1 and
A(y0)d2 divide f (Az), Claim 2.1 and the conditions of (5) imply S( f (Az)) > s, a contradiction.
So, A(x0) and A(y0) must have only one variable each. Hence, without loss of generality (i.e.,
after applying scaling and permutation to A), A(x0) = x0 and A(y0) = y0.
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C.10 Proof of Lemma 3.5

Note that each of the 3n+m+ 1 summand polynomials, as mentioned in the lemma statement,
is of form xd1+t(d3+1)

0 · yd2+v
0 · h(z), where t ∈ [0, 3n + m] and v ∈ N. By the construction of f ,

each t corresponds to a unique summand polynomial. For xd1
0 yd2+(3n+m+1)(d3+1)

0 the degree of
h is 0. Let i ∈ [n]. For Qi,1(Az), the degree of h is d3 while for Qi,2(Az) and Qi,3(Az) the
degree of h is d4. Lastly, for Rk(Az), where k ∈ [m], the degree of h is 3d5. Thus, going over
all the summand polynomials, the degree of h is at most the maximum of d3, d4 and 3d5. Since
d3 > d4 and d3 > 3d5 by the conditions in (5), therefore the degree of h is at most d3. As shown
in Lemma 3.4, A(x0) = x0 and A(y0) = y0 while there may be monomials in h(z) which have
non-zero x0-degree. Thus, the possible range of x0-degree of any monomial of a summand
polynomial lies in the range [d1 + t(d3 + 1), d1 + t(d3 + 1) + d3], which is clearly disjoint for
distinct t. Therefore, the summand polynomials are degree separated with respect to x0.

C.11 Proof of Observation 3.6

By Observation 3.1, f is a sum of the n + m + 1 degree separated polynomials xd1
0 , Qi and Rk,

where i ∈ [n] and k ∈ [m]. Applying Observation 2.5 (for linear forms in two variables over
finite characteristic fields) to Qi,2 and Observation 2.2 to Qi, we get

S(Qi(z)) = S(Qi,1(z)) +S(Qi,2(z)) +S(Qi,3(z)) = d3 + 3, ∀i ∈ [n].

By Observation 2.5 (for linear forms in two variables over finite characteristic fields) and the
assumption that each clause in ψ has 3 distinct variables, we get that:

S(Rk(z)) = S(x(3n+k)d1
0 ) ∏

j∈Ck

S((yj + ak,jxj)
d4) ≤ (d4 + 1)3 ∀k ∈ [m].

depending on ak,j = 0 or 1. Finally, applying Observations 3.1 and 2.2 to f gives

S( f (z)) = S(xd1
0 ) +

n

∑
i=1

S(Qi(z)) +
m

∑
k=1

S(Rk(z)) ≤ 1 + n(d3 + 3) + m(d4 + 1)3.

For the support of f , note that 4 ≤ Supp(Rk) ≤ 7 for k ∈ [m], Supp(Qi) = 3 for all i ∈ [n] and
Supp(xd1

0 ) = 1. By Observation 3.1, 4 ≤ Supp( f ) ≤ 7.

C.12 Proof of Lemma 3.4 over finite characteristic fields

Note that as f is divisible by xd1
0 and yd2

0 , therefore for any A ∈ GL(|z|, F) we can write:

f (Az) = A(xd1
0 )A(yd2

0 )g(Az).

where the degree of g(Az) is (3n + m + 1)(d3 + 1). Let A(x0) = ∑|z|l=1 clzl , where zl ∈ z and
cl ∈ F. The characteristic being finite and the choice of d1 as in (15) implies:

A(xd1
0 ) =

( |z|
∑
l=1

clzl

)∑
k1+k3−1
t=k3

(p−1)pt

=
k1+k3−1

∏
t=k3

( |z|
∑
l=1

cpt

l zpt

l

)(p−1)
.

Thus, the monomials of A(xd1
0 ) are of form ∏|z|l=1 zel

l , where el = ∑k1+k3−1
t=k3

cl,t pt with cl,t ∈
[0, p − 1], and ∑|z|l=1 el = d1. Now, for any two monomials of A(xd1

0 ), there exists a variable
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zl ∈ z such that the difference between the zl-degree of these two monomials is at least pk3 >

d2 + (3n + m + 1)(d3 + 1), while the degree of A(yd2
0 )g(Az) is d2 + (3n + m + 1)(d3 + 1). This

is because of the way d1 is set in (15). Thus, with this observation and Observation 2.2, it holds
that

S( f (Az)) = S(A(xd1
0 ))S(A(yd2

0 )g(Az)).

Similarly, because the characteristic is finite and d2 is as chosen in (14), for any two monomials
of A(yd2

0 ) there exists a variable zl ∈ z such that the difference between the zl-degree of these
two monomials is at least pk2 > (3n + m + 1)(d3 + 1), while the degree of g(Az) is (3n + m +
1)(d3 + 1). Thus, with this observation and Observation 2.2, it holds that

S( f (Az)) = S(A(xd1
0 ))S(A(yd2

0 )g(Az)) = S(A(xd1
0 ))S(A(yd2

0 ))S(g(Az)).

Now, suppose A(x0) is a linear form in at least 2 variables. By Observation 2.4 and the defini-
tion of d1 in (15), it follows that

S(A(xd1
0 )) ≥

k1+k3−1

∏
k3

(
p− 1 + 2− 1

2− 1

)
= pk1 > s.

This implies S( f (Az)) ≥ S(A(xd1
0 )) > s. Thus, A(x0) must be some scaled variable in z.

Therefore,
S( f (Az)) = S(A(yd2

0 )g(Az)).

Similarly, if S(A(y0)) is a linear form in at least 2 variables, then by Observation 2.4 and the
definition of d2 in (14)

S(A(yd2
0 )) ≥

k1+k2−1

∏
k2

(
p− 1 + 2− 1

2− 1

)
= pk1 > s.

This implies S( f (Az)) ≥ S(A(yd2
0 )) > s. Thus, A(y0) must also be some scaled variable in z.

Therefore, A(x0) = x0 and A(y0) = y0 without loss of generality by applying an appropriate
permutation and scaling transform.

C.13 Proof of Observation 3.7

By Observation 3.4, f is a sum of the n + m + 1 polynomials xd1
0 yd2+(3n+m+1)(d3+1)

0 , Qi and
Rk, where i ∈ [n] and k ∈ [m], which are degree separated with respect to x0. Applying
Observation 2.5 (for linear forms in two variables over finite characteristic fields) to Qi,2 and
Observation 2.2 to Qi, we get

S(Qi(z)) = S(Qi,1(z)) +S(Qi,2(z)) +S(Qi,3(z)) = d4 + 3, ∀i ∈ [n].

By Observation 2.5 (for linear forms in two variables over finite characteristic fields) and the
assumption that each clause in ψ has 3 distinct variables, we get that:

S(Rk(z)) = S(xd1+(3n+k)(d3+1)
0 )S(yd2+(m−k+1)(d3+1)−3d5

0 ) ∏
j∈Ck

S((yj + ak,jxj)
d5) ≤ (d5 + 1)3 ∀k ∈ [m].

depending on whether ak,j is 0 or 1. Finally, applying Observations 3.4 and 2.2 to f gives

S( f (z)) = S(xd1
0 yd2+(3n+m+1)(d3+1)

0 )+
n

∑
i=1

S(Qi(z))+
m

∑
k=1

S(Rk(z)) ≤ 1+n(d4 + 3)+m(d5 + 1)3.

For the support of f , note that 5 ≤ Supp(Rk) ≤ 8 for k ∈ [m], Supp(Qi) = 4 for all i ∈ [n] and
Supp(xd1

0 yd2+(3n+m+1)(d3+1)
0 ) = 2. By Observation 3.4, 5 ≤ Supp( f ) ≤ 8.
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D Missing proofs from Section 4

D.1 Proof of Lemma 4.1

By Observations 3.1, 2.3 and the definition of f as in (1), it follows that:

S( f (Az)) = S(A(xd1
0 )) +

n

∑
i=1

S(Qi(Az)) +
m

∑
k=1

S(Rk(Az)).

We now analyse S( f (Az)) under the transforms listed in the lemma statement. The list covers
all possible types of transforms.

1. By Observation 2.5, S( f (Az)) ≥ S(A(xd1
0 )) ≥ d1 + 1 follows.

2. In this case, A(x0) = x0 without loss of generality, as permutation and non-zero scaling of
variables do not influence the sparsity of the polynomial. By Observation 2.5, it follows
that S( f (Az)) ≥ S(Qj,1(Az)) ≥ d2 + 1.

3. In this case, A(xi), where i ∈ [0, n] is some scaled variable in z. Without loss of generality,
let A(yj + xj) be a linear form in at least 3 variables. By Observation 2.4, S(Qj,2(Az)) ≥
(d3+2

2 ) holds. Therefore,

S( f (Az)) ≥ S(Qj(Az)) ≥ S(Qj,2(Az)) ≥
(

d3 + 2
2

)
=

d2
3 + 3d3 + 2

2
.

4. In this case, A(xi) = Xi, where i ∈ [0, n] and Xi ∈ z is some scaled variable. Also,
A(yi + xi) and A(yi − xi) are linear forms in at most two variables for all i ∈ [n]. Thus,
A(yi) = Yi + ciXi, where ci ∈ F and Yi ∈ z is some scaled variable. As A is invertible, the
Yi’s and Xi’s are distinct variables. Hence,

S(Rk(Az)) = S(X(3n+k)d1
0 ) ∏

j∈Ck

S((Yj + (cj + (−1)ak,j)Xj)
d4).

Since ψ is unsatisfiable, for any such A, there exists k ∈ [m] such that S(Rk(Az)) ≥
(d4 + 1)3 (by Observation 2.5). Therefore, S( f (Az)) ≥ S(Rk(Az)) ≥ (d4 + 1)3.

D.2 Proof of Lemma 4.2

Like in the proof of Lemma 4.1, we analyse S( f (Az)) with A as listed in the lemma statement.
Suppose A(x0) is a linear form in at least 2 variables. Since xd1

0 divides f , it follows from Claim
2.1 that S( f (Az)) ≥ d1 + 1. Similarly, if A(x0) is a variable while A(y0) is a linear form in
at least 2 variables, then since yd2

0 divides f , S( f (Az)) ≥ d2 + 1 holds by Claim 2.1. For the
remaining cases, A(x0) = x0 and A(y0) = y0 without loss of generality. It then follows from
Lemma 3.5 that

S( f (Az)) = S(A(xd1
0 yd2+(3n+m+1)(d3+1)

0 )) +
n

∑
i=1

S(Qi(Az)) +
m

∑
k=1

S(Rk(Az)).

The last three cases then can be proved the same way as the last three cases of Lemma 4.1 in
the non-homogeneous case.
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D.3 Proof of Lemma 4.3

By Observations 3.1, 2.3 and the definition of f as in (1), it follows that:

S( f (Az)) = S(A(xd1
0 )) +

n

∑
i=1

S(Qi(Az)) +
m

∑
k=1

S(Rk(Az)).

We now analyse S( f (Az)) with A as listed in the lemma statement. The analysis for the first,
second and fourth cases is similar to that of the respective cases in the proof of Lemma 4.1. In
the third case, without loss of generality, let A(yj + xj), for some j ∈ [n], be a linear form in at
least 3 variables. By Observation 2.4 and the fact that d3 = pk − 1 = ∑k−1

i=0 (p− 1)pi for some
k ∈N,

S(A((yj + xj)
d3)) ≥

k−1

∏
i=0

(
p− 1 + 3− 1

3− 1

)
=

( p(p + 1)
2

)k
= (d3 + 1)

( p + 1
2

)k
= (d3 + 1)1+logp(

p+1
2 )

Note, logp(
p+1

2 ) is an increasing function for p ≥ 3. Hence, logp(
p+1

2 ) ≥ log3(4/2) ≥ 0.63.
Therefore,

S( f (Az)) ≥ S(Qj,2(Az)) ≥ (d3 + 1)1.63.

Similarly, if A(yj − xj) is a linear form in at least 3 variables, then S( f (Az)) ≥ S(Qj,3(Az)) ≥
(d3 + 1)1.63.

D.4 Proof of Lemma 4.4

The proof of this lemma is very similar to that of Lemma 4.3. In particular, the analysis for the
first, second and fourth cases is similar to that of the respective cases in the proof of Lemma
4.3. So, we consider the third case. Without loss of generality, let A(yj + xj) be a linear form in
at least 3 variables for some j ∈ [n]. Then, by Observation 2.4 and the fact that d3 = 2k − 1 =

∑k−1
i=0 2i for some k ∈N,

S(A((yj + xj)
d3)) ≥

k−1

∏
i=0

(
1 + 3− 1

3− 1

)
= 3k = (d3 + 1)log2 3 ≥ (d3 + 1)1.58.

Therefore
S( f (Az)) ≥ S(Qj,2(Az)) ≥ (d3 + 1)1.58.

Similarly, if A(yj) is a linear form in at least 3 variables, then S( f (Az)) ≥ S(Qj,3(Az)) ≥
(d3 + 1)1.58.

D.5 Proof of Lemma 4.5

Suppose A(x0) is a linear form in at least two variables. Applying the argument in the proof
of Lemma 3.5 for the finite characteristic case (refer Section C.12) shows that

S( f (Az)) ≥ S(A(x0)
d1) ≥ pk1+1 ≥ d3 + 2.

Similarly, if A(x0) is a variable and A(y0) is a linear form in at least two variables, the same
argument shows that

S( f (Az)) ≥ S(A(y0)
d2) ≥ pk1+1 ≥ d3 + 2.
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For the remaining cases, A(x0) = x0 and A(y0) = y0 without loss of generality. It then follows
from Lemma 3.5 that

S( f (Az)) = S(A(xd1
0 yd2+(3n+m+1)(d3+1)

0 )) +
n

∑
i=1

S(Qi(Az)) +
m

∑
k=1

S(Rk(Az)).

The last three cases can then be proved in the same way as the last three cases of Lemma 4.3.

D.6 Proof of Lemma 4.6

Suppose A(x0) is a linear form in at least two variables. Applying the argument in the proof
of Lemma 3.5 for the finite characteristic case (refer Section C.12) shows that

S( f (Az)) ≥ S(A(x0)
d1) ≥ 2k1+1 ≥ d3 + 2.

Similarly, if A(x0) is a variable and A(y0) is a linear form in at least two variables, the same
argument shows that

S( f (Az)) ≥ S(A(y0)
d2) ≥ 2k1+1 ≥ d3 + 2.

For the remaining cases, A(x0) = x0 and A(y0) = y0 without loss of generality. It then follows
from Lemma 3.5 that

S( f (Az)) = S(A(xd1
0 yd2+(3n+m+1)(d3+1)

0 )) +
n

∑
i=1

S(Qi(Az)) +
m

∑
k=1

S(Rk(Az)).

The last three cases can then be proved in the same way as the last three cases of Lemma 4.4.

E Missing proofs from Section 5

E.1 Proof of Observation 5.1

As the polynomials are degree separated, by Observation 2.2,

S( f (w)) = ∑
g(w)∈P

S(g(w)) + ∑
h(w)∈Q

S(h(w)) +
m

∑
k=1

S(Rk(w)).

As g(w) ∈ P and h(w) ∈ Q are monomials, thus S(g(w)) = 1 and S(h(w)) = 1. For k ∈ [m],

S(Rk(w)) = (∏
j∈Ck

S(yj − ak,jxj)
2)S((z1 · · · zσ−5)

?) ≤ 27

because all the polynomials in the product are variable disjoint and ak,j can be non-zero for all
j ∈ Ck. Lastly, as |P| = (n+σ−5

σ ) and |Q| = ( n
σ/2) (for odd σ, |Q| = ( n

σ+1
2
) σ+1

2 ), hence

S( f ) ≤
(

n + σ− 5
σ

)
+

(
n

σ/2

)
+ 27m.

Thus, S( f ) = O(nσ + m) as σ is a constant. Note, Supp(R1) = σ + 1 because the characteristic
is not 2 and a1,j = 1, for all j ∈ C1 (due to the first clause containing only complemented vari-
ables). Also, Supp(g(w)) = σ, Supp(h(w)) = σ and Supp(Rk(w)) ≤ σ + 1 where g(w) ∈ P,
h(w) ∈ Q and k ∈ [2, m]. Hence, Supp( f (w)) = Supp(R1(w)) = σ + 1 as all the polynomials
are degree separated.
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E.2 Proof of Lemma 5.1

Let g(w) = (w1 · · ·wσ)? ∈ P, where wj ∈ z t x and ? represents an integer power which
is at least σ + 1. Now, g(Aw) = (`1 · · · `σ)?, where the `j’s, with j ∈ [σ], are linearly inde-
pendent linear forms. If | ∪σ

j=1 var(`j)| ≥ σ + 1, then by Claim 2.2, Supp(g(Aw)) ≥ σ + 1
a contradiction. Thus, | ∪σ

j=1 var(`j)| ≤ σ. The linear independence of these σ many linear
forms implies | ∪σ

j=1 var(`j)| ≥ σ. Combining these inequalities gives | ∪σ
j=1 var(`j)| = σ.

Thus, there exist variables W1, . . . , Wσ ∈ w such that 〈{`1, . . . , `σ}〉 = 〈{W1, . . . , Wσ}〉, where
〈S〉 denotes the vector space spanned by the elements of a set S of polynomials. In particular,
〈{`1, . . . , `σ}〉 = 〈var(g(Aw))〉.

Consider the variable x1 ∈ x t z and let A(x1) = `1. Now, P can be seen as a collection
of σ sized subsets of z t x. Since n + σ− 6 ≥ 2(σ− 1) (as implied by n ≥ σ + 4), there exist,
without loss of generality, g1(w) and g2(w) ∈ P, such that var(g1(w)) ∩ var(g2(w)) = {x1}.
Note that 〈var(g1(w))〉 ∩ 〈var(g2(w))〉 = 〈var(g1(w)) ∩ var(g2(w))〉. Thus,

dim〈var(g1(w))〉 ∩ 〈var(g2(w))〉 = dim〈var(g1(w)) ∩ var(g2(w))〉 = 1.

The invertibility of A and the argument of the first paragraph imply there exist σ-size sets
B1, B2 ⊆ w, with B1 = var(g1(Aw)) and B2 = var(g2(Aw)), such that 〈var(g1(w))〉 and
〈B1〉 are isomorphic and so are 〈var(g2(w))〉 and 〈B2〉. Similarly, under A, 〈var(g1(w))〉 ∩
〈var(g2(w))〉 is isomorphic to 〈B1〉 ∩ 〈B2〉. Thus, dim 〈B1〉 ∩ 〈B2〉 = 1. From the first paragraph,
it is also evident that `1 ∈ 〈B1〉 ∩ 〈B2〉 = 〈B1 ∩ B2〉, where the equality follows as B1 and B2 are
sets of variables. This implies A(x1) = `1 = W1, where W1 is some scaled variable in w.

E.3 Proof of Lemma 5.2

The proof is similar to that of Lemma 5.1. As Supp( f (Aw)) ≤ σ, Lemma 5.1 holds. Thus, for
all w ∈ x t z, A(w) = W for some scaled variable W ∈ w. In particular, A(xi) = Xi where
i ∈ [n] and Xi ∈ w is some scaled variable. Let A(yi) = `i, where `i contains at least one
variable other than those in var(A(w)), for any w ∈ x t z. Without loss of generality, consider
h(w) = ((x1y1) · · · (x σ

2
y σ

2
))? ∈ Q, where ? represents an integer power which is at least σ + 1.

Now, h(Aw) = ((X1`1) · · · (X σ
2
` σ

2
))?, where X1 . . . X σ

2
, `1, . . . ` σ

2
are linearly independent linear

forms. If |var(`1) ∪ · · · ∪ var(` σ
2
) ∪ {X1, . . . , X σ

2
}| ≥ σ + 1, then by Claim 2.2, Supp(h(Aw)) ≥

σ + 1, a contradiction. Thus, |var(`1) ∪ · · · ∪ var(` σ
2
) ∪ {X1, . . . , X σ

2
}| ≤ σ. The linear indepen-

dence of these σ many linear forms implies |var(`1)∪ · · · ∪ var(` σ
2
)∪{X1, . . . , X σ

2
}| ≥ σ. These

inequalities imply |var(`1)∪ · · · ∪ var(` σ
2
)∪ {X1, . . . , X σ

2
}| = σ. Hence there exists variable set

B = {X1, . . . , X σ
2
} t {Y1, . . . , Yσ

2
} such that 〈B〉 = 〈{`1, . . . , ` σ

2
} t {X1, . . . , X σ

2
}〉. In particular,

〈{`1, . . . , ` σ
2
} t {X1, . . . , X σ

2
}〉 = 〈var(h(Aw))〉.

Consider the variable x1 ∈ x. As n− 1 ≥ σ− 2 (as implied by n ≥ σ + 4), then for x1 ∈ x
and y1 ∈ y, there exist, h1(w), h2(w) ∈ Q such that var(h1(w)) ∩ var(h2(w)) = {x1, y1}. Note
that 〈var(h1(w))〉 ∩ 〈var(h2(w))〉 = 〈var(h1(w)) ∩ var(h2(w))〉. Thus,

dim〈var(h1(w))〉 ∩ 〈var(h2(w))〉 = dim〈var(h1(w)) ∩ var(h2(w))〉 = 2.

The invertibility of A and the argument of the first paragraph imply that there exist σ-size
sets B1, B2 ⊆ w, with B1 = var(h1(Aw)) and B2 = var(h2(Aw)), such that 〈var(h1(w))〉 and
〈B1〉 are isomorphic, and so are 〈var(h2(w))〉 and 〈B2〉. Similarly under A, 〈var(h1(w))〉 ∩
〈var(h2(w))〉 is isomorphic to 〈B1〉 ∩ 〈B2〉. Therefore, dim〈B1〉 ∩ 〈B2〉 = 2. As A(x1) = X1, and
A(y1) ∈ 〈B1〉 ∩ 〈B2〉 (by the argument in the first paragraph), therefore A(y1) = Y1 + c1X1,
where Y1 ∈ w is some scaled variable and c1 ∈ F.
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Note: For odd σ, the proof holds with some modification. First, h(w) ∈ Q is now of form
((x1y1) · · · (x σ−1

2
y σ−1

2
)x σ+1

2
)?. The argument in the first paragraph then shows that for h(Aw) =

((X1`1) · · · (X σ−1
2
` σ−1

2
)X σ+1

2
)?, there exists a σ-size set B ⊆ w, such that B = {X1, . . . , X σ+1

2
} t

{Y1, . . . , Yσ−1
2
} and 〈B〉 = 〈{`1, . . . , ` σ−1

2
} t {X1, . . . , X σ+1

2
}〉. Secondly, for a variable x1 ∈ x,

the existence of h1(w), h2(w) ∈ Q such that var(h1(w)) ∩ var(h2(w)) = {x1, y1} is implied by
n− 1 ≥ σ− 1 (which itself is implied by n ≥ σ + 4). With these changes, the remainder of the
argument continues to hold.

E.4 Choosing the degrees

In this section, we set the powers ?, as denoted in Section 5.1, for all polynomials in P, Q and
R such that Conditions 1 and 2, specified in that section, are satisfied over any field. Let N :=
(n+σ−5

σ ) + ( n
σ/2) + m, i ∈ [m + 1, N] and k ∈ [m]. Note for odd σ, N := (n+σ−5

σ ) + ( n
σ+1

2
) σ+1

2 + m.

Over characteristic 0 fields. For Rk, choose the powers as σ+ k. For the polynomials in PtQ,
arbitrarily order them and choose the powers to be of form σ + i. For this choice of the powers,
every polynomial in P t Q has corresponding degree σ(σ + i) and is clearly degree separated
from the other polynomials in P t Q. The degree of Rk is 6 + (σ + k)(σ − 5). As i ≥ m + 1,
k ≤ m and σ > 1 it can be easily observed that

σ(σ + i) ≥ σ(σ + m + 1) > 6 + (σ + m)(σ− 5) ≥ 6 + (σ + k)(σ− 5).

Thus, for this choice of the powers, Condition 1 is satisfied over characteristic 0 fields. The
degree of f then is σ(σ + N) = O(nσ).

Over finite characteristic fields. Let the characteristic be p > 0. We assume p > σ + 1 to
ensure Claim 2.2 holds. If p > σ + N, the powers can be chosen just like in the characteristic 0
case. Otherwise if σ + 1 < p ≤ σ + N, then we choose the powers to be of form pt − 1, where
t ∈N, from the following N disjoint intervals:

[σ + 1, p(σ + 1)], [p(σ + 1) + 1, p2(σ + 1) + p], [p2(σ + 1) + p + 1, p3(σ + 1) + p2 + p], · · ·

For Rk, the power is chosen from the kth interval. Thus, the degree of Rk is in the range

[6 + (pk−1(σ + 1) +
k−2

∑
l=0

pl)(σ− 5), 6 + (pk(σ + 1) +
k−1

∑
l=1

pl)(σ− 5)]

which is disjoint for distinct k as σ ≥ 6. Order the N −m polynomials in P tQ arbitrarily and
assign powers in each polynomial from the remaining N −m intervals. Then, the degree of a
polynomial in P tQ lies in the range

[σ(pi−1(σ + 1) +
i−2

∑
l=0

pl), σ(pi(σ + 1) +
i−1

∑
l=1

pl)].

For distinct i this range is disjoint implying the polynomials in P t Q are degree separated.
Now, we show that Rk’s are degree separated from the polynomials of P t Q by showing that
the lower bound on the degree of any polynomial in P tQ is greater than the upper bound on
the degree of any Rk. As i ≥ m + 1, k ≤ m, σ > 1 and p > 1, it follows that

σ(pi−1(σ + 1) +
i−2

∑
l=0

pl) ≥ σ(pm(σ + 1) +
m−1

∑
l=0

pl)
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> 6 + (pm(σ + 1) +
m−1

∑
l=1

pl)(σ− 5) ≥ 6 + (pk(σ + 1) +
k−1

∑
l=1

pl)(σ− 5).

Thus, for this choice of powers, Conditions 1 and 2 are satisfied. For p > σ + N, the degree of
f is σ(σ + N) = O(nσ) and for σ + 1 < p ≤ σ + N, the degree of f is

O(σ(pN(σ + 1) +
N−1

∑
l=1

pl)) = O(pN) = O((σ + N)N) = O((σ + nσ)nσ
).

Note that the degree of f can be represented in nO(1) many bits as σ is a constant. Hence, as
remarked just after Theorem 3, we assume that over finite characteristic fields, the exponent
vectors corresponding to the monomials of the input polynomials are given in binary.
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