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Abstract

In this note, we study the interplay between the communication from a verifier in a general private-
coin interactive protocol and the number of random bits it uses in the protocol. Under worst-case
derandomization assumptions, we show that it is possible to transform any I-round interactive protocol
that uses ρ random bits into another one for the same problem with the additional property that the
verifier’s communication is bounded by O(I · ρ). Importantly, this is done with a minor, logarithmic,
increase in the communication from the prover to the verifier and while preserving the randomness
complexity. Along the way, we introduce a new compression game between computationally-bounded
compressor and computationally-unbounded decompressor and a new notion of conditioned efficient
distributions that may be of independent interest. Our solutions are based on a combination of perfect
hashing and pseudorandom generators.

1 Introduction
Interactive probabilistic proof systems [GMR85; BM88] are central objects in cryptography and complexity
theory. Roughly speaking, they allow a computationally unbounded prover to convince a computationally-
bounded randomized verifier that a certain statement holds. The use of interaction and randomness extends
the classical notion of NP problems (that can be deterministically verified given a single message from a
prover) all the way up to polynomial-space computable languages [Lun+92; Sha92]. If the verifier does not
use randomness, clearly interaction is useless: the prover can compute all the verifier’s queries on her own
and just send the answers. That is, when the verifier uses 0 bits of randomness, it needs to communicate 0
bits. In this paper, we try to extend this observation: if the verifier uses only ρ random bits, how many bits
does it need to communicate?

Intuitively, since the entropy of the verifier’s messages is at most ρ, there is no point in communicating
more than ρ bits. Indeed, if the proof system is a public-coin system (in which the verifier simply sends
random coins in each round) this intuition holds, and the randomness complexity equals the communication
complexity. However, in the general case of private-coin proof system, the verifier’s messages may be much
longer than their entropy. We note that although it is possible to transform a given private-coin proof system
into a public-coin system [GS86; GL20; Les22], existing transformations increase the overall communication.
In particular, a transcript of the modified public-coin proof system contains at least one copy of a transcript
of the original private-coin proof system plus some additional overhead which is polynomial in the original
communication (to certify that the transcript is “typical” or “heavy”). Furthermore, these transformations
also increase the randomness complexity of the verifier either polynomially [GS86; GL20] or by a constant
factor [Les22]. Overall, the following question remains open:

Is it possible to transform a proof system with randomness ρ in which the prover sends out ComP

bits, into a new proof system for the same problem in which the total communication depends
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on the verifier’s randomness complexity in the original proof system rather than the verifier’s
outgoing communication, i.e., the total communication is poly(ρ,ComP) or even O(ρ + ComP)?
Further, can we do this while preserving the randomness complexity?

Closely related questions were studied in [AG21] and [Les22]. Specifically, [AG21] studied the “converse
question” of upper-bounding the randomness complexity in terms of the communication complexity (aka
“randomness sparsification”), and [Les22] studied the question of bounding the round complexity in terms of
the randomness complexity. The latter work shows [Les22, Thm A.1] that a proof system that uses ρ(n)
random bits for n-long instances can be converted into a proof system with O(ρ(n)/ log n) rounds, while
preserving the randomness complexity.1 Unfortunately, this transformation increases the total communica-
tion complexity (as the prover guesses in every round many possible extensions to the current transcript).
In particular, even for constant-round protocol this transformation may increase the communication by a
poly(n) factor.

1.1 Our Results
We partially resolve the above question by relying on a complexity theoretic assumption. In particular, we
prove the following main result. (See Section 2 for a formal presentation of the hardness assumption).

Theorem 1. Suppose that a promise problem Π has an interactive proof system ⟨P,V⟩ with round complexity
I(n), randomness complexity ρ(n), verifier communication ComV(n), prover communication ComP(n), where
n denotes the length of the instance. Then, assuming that E = DTime(2O(n)) is hard for exponential-size
non-deterministic NP-circuits, there exists an interactive proof system ⟨P′,V′⟩ for Π in which the verifier
and prover communication are

ComV′(n) = O(I(n)ρ(n)), and
ComP′(n) = ComP(n) +O(I(n) log n).

The randomness complexity of the proof system remains unchanged, the round complexity grows by (at most)
1, and the completeness error grows additively by 0.1.

For the special case of constant-round protocols, the verifier communicates O(ρ(n)) bits and the prover’s
additive overhead is at most O(log n); if the original prover communicates in each round a logarithmic
number of bits (resp., super-logarithmic number of bits), the additive overhead is linear (resp., sub-linear)
in ComP(n). In the general case, when the prover may communicate as little as one bit per round, we
still have I(n) ≤ ComP(n); then the overhead for the prover communication is a multiplicative factor of
O(log n), and the total communication is O(ComP(n) · (ρ(n) + log n)). Note that in all cases, the total
communication is independent of ComV(n), the verifier’s original communication. The question of achieving
a total communication of O(ρ(n) + ComP(n)) for protocols with polynomially-many rounds remains an
interesting open question.

Theorem 1 is based on a worst-case assumption. This assumption asserts that one cannot significantly
speed-up (uniform) Exponential-Time problems by adding non-uniformity and two levels of non-determinism
(non-deterministic NP-circuits are the non-uniform analogue of NPNP; see Section 2 for details). This assump-
tion is somewhat strong but widely believed as it reflects our current understanding of the relations between
time, nonuniformity and nondeterminism. Similar assumptions have been extensively used in cryptography
and complexity theory (see, e.g.,[FL97; KM02a; MV05; TV00; SU05; GW02; GST03; SU06; BOV07; SU09;
Dru13; App+16; AG21; BSS23; SS23]).

1.2 Technical Overview
Consider the simple case of a single-round protocol where the verifier’s message is of length m bits that is much
larger than the randomness complexity ρ. In this case the verifier is sending a long message that is sampled

1In fact, if one is willing to increase the randomness complexity by a constant factor, then it is possible to derive an
O(ρ(n)/ logn)-round public-coin system [Les22, Thm 1.1].
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from a low-entropy distribution D, and our goal is to reduce the communication. The crucial observation
is that the prover has full knowledge of the distribution D, and, being computationally unbounded, he can
help the verifier to compress the message. Indeed, we can abstract this scenario as a special variant of the
well-known data compression problem.

1.2.1 Single-Round Compression Game.

In this data compression game there are two parties: a computationally bounded compressor CMP and a
computationally-unbounded decompressor DCMP. At the beginning of the game, the compressor is given
a string x ∈ {0, 1}m that is efficiently sampled from a probability distribution D whose full description is
given to the decompressor DCMP. The goal of the compressor is to deliver the string x to the decompressor
with probability at least 1 − ϵ taken over the choice of x. The parties are allowed to communicate in both
directions, and the goal is to minimize the communication ideally up to the entropy of the distribution.

It is instructive to compare our game to a few other compression games. Shannon’s original game [Sha48]
refers to compression of multiple independent samples from D, and his celebrated source-coding theorem
shows that the expected amortized communication approaches the entropy. In contrast, our game involves
a single-shot challenge and worst-case communication and, accordingly, allows some error (i.e., the scheme
may be lossy). In computer science literature, Ta-Shama et al. [TVZ05] studied the problem of compressing
“computationally-weak” sources by a computationally efficient compressor and decompressor and provided
compression schemes whose communication complexity is close to the entropy for several classes of such
distributions. In contrast, in our setting the decompressor is allowed to be computationally-unbounded, and
as a result we can bypass some of the lower-bounds of [TVZ05] (e.g., we can hope to compress pseudorandom
distributions). Finally, Orlitsky [Orl90] considered a one-shot compression game in which the parties are
computationally-unbounded but have some information gap captured by some auxiliary information y about
x that is given to the decompressor and is unknown to the compressor. Notably, Orlitsky’s schemes use
interaction (like in our setting) whereas the schemes of [Sha48; TVZ05] are non-interactive (the compressor
sends a single message to the decompressor).

Getting back to our compression game, let us further simplify the problem and assume that we care only
about the communication from the compressor to the decompressor. In this case, there is a simple solution
that is described in Lemma 4. Take k = H(D)/ϵ where H(·) denotes Shannon’s entropy, and let DCMP
send a description of hash function f : {0, 1}m → {0, 1}k that is 1-1 over the set of 2k heaviest strings in
D. The compressor CMP responds with the “digest” y = f(x), and DCMP outputs the “heaviest” string x′

in D that is consistent with y. It is not hard to show that the error is at most ϵ (see Lemma 3) which
is essentially the best that one can hope for.2 Indeed, this approach can be viewed as one-shot analog of
Shannon’s celebrated Source coding theorem [Sha48]. Unfortunately, the decompressor has to communicate
the description of a hash function f which is taken from a family F of 2k-perfect hash function. That is, the
family F contains, for each 2k-subset of strings X ⊂ {0, 1}m, a function f that is injective on X and so it
cannot be too small. In fact, it is known that the description size must be at least Ω(2k) bits [NSS95]. The
cost can be significantly reduced by allowing some slackness, i.e., by expanding the output length of f to
k′ > k (e.g., k′ = 3k). In this case, the description length can be reduced to Ω(m+ k′) bits by using existing
families of perfect hash functions (e.g., [FKS84]). However, this is still too expensive for our purposes.3

1.2.2 Focusing on efficiently samplable distribution.

We note that when the distribution D is taken from a family of efficiently samplable distributions (i.e., there
is an efficient algorithm that given a random tape outputs a sample from D) it is possible to compress the

2Indeed, for every ϵ > 0, there exists a distribution D such that any event of probability 1 − ϵ must be supported over at
least 2k strings for k = Ω(H(D)/ϵ). For example, consider the distribution D obtained by sampling, with probability 2ϵ, a
uniform x from a set A of size 2ℓ/2ϵ, and, with probability 1− 2ϵ, a uniform x from a disjoint set B of size 2ℓ. The entropy of
D is Θ(ℓ) and in order to capture 1 − ϵ of the mass, one must collect at least ϵ fraction of the strings in A, i.e., 2k strings for
k ≥ ℓ/2ϵ− log(1/ϵ) = Ω(H(D)/ϵ).

3To the best of our knowledge, the description length of all existing constructions of 2k-perfect hash functions is either linear
in 2k or in the input-length m, see e.g., [Pag99].
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description length of the hash function. Indeed, in this case our family should be injective only over “nice”
sets that correspond to heavy strings in distributions that can be described by a polynomial-size circuit.
Specifically, we begin with a standard, off-the-shelf, family F = {fz}z∈{0,1}m+k′ (e.g., based on pair-wise
independent hash functions [CW79]) in which each function is identified by a long string z ∈ {0, 1}m+k′

.
Next, we reduce the description length of the functions via the use of an appropriate pseudorandom generator
(PRG) G : {0, 1}ℓ → {0, 1}m+k′

. That is, each function f ′s in the new family F ′ is indexed by a seed s of the
PRG and is defined to be f ′s = fG(s). We show that if the PRG fools AM/poly adversaries the family F ′ can
be used to compress D. By using standard derandomization assumptions (slightly weaker than the one stated
in Theorem 1), we get such a PRG with exponential stretch which allows us to reduce the communication
from the decompressor to logarithmic. It should be mentioned that the idea of using a PRG to (partially)
derandomize a probabilistic construction is not new. This paradigm was abstracted by [KM02a], and was
also used in many relevant works. Interestingly, the same paradigm was used in [App+16] for the contrary
purpose of constructing so-called incompressible functions.

1.2.3 Back to interactive proofs.

Let us move back to the case of multi-round interactive proofs. A natural strategy is to apply the above
approach for each round. Roughly, in each round, we let w denote the partial transcript and let Dw denote
the distribution of the next message of the verifier. Instead of letting the verifier send his message x, the
parties will run a compression protocol in which the prover selects a hash function f that is injective on
the 2k heaviest strings, where k is about H(Dw)/ϵ for some error parameter ϵ. The problem is that Dw is
not efficiently samplable, rather it is obtained by feeding the verifier with the prover messages and random
coins that are conditioned on generating the partial transcript w. We abstract this property via the notion
of conditioned efficient distributions. This notion generalizes the notion of efficiently samplable distributions
by allowing the sampler A to output a special failure symbol ⊥, and by letting D denote the outcome of
A applied to random coins conditioned on not outputting ⊥. By using slightly stronger PRGs, we extend
our compression schemes to the case of conditioned efficient distributions, and employ them to reduce the
interaction of interactive proofs as stated in Theorem 1.

Remark 1 (More on conditioned efficient distributions). An equivalent way to define a conditioned efficient
distribution is by considering a pair of algorithms, Sampler S and Conditioner E, such that sampling from
D boils down to sampling a random tape r conditioned on E(r) = 1 and outputting S(r). Thus this new
notion can be viewed as a combination of two well-studied classes of distributions: distributions over circuit’s
outputs (i.e., efficiently samplable distributions) and distributions over circuit’s inputs that lead to a given
result (aka efficiently recognizable distributions [Sha11]). This new notion is natural and may prove to be
useful elsewhere. ◁

1.2.4 Organization.

Following some preliminaries in Section 2, we construct compression schemes in Section 3 and use them to
prove our main theorem in Section 4.

1.2.5 Acknowledgement.

We thank Gil Segev for valuable discussions about perfect hashing. Part of the research was done while
the second author visited Tel Aviv University. The first and second authors are supported by ISF grant
no. 2805/21 and by the European Union (ERC, NFITSC, 101097959). Views and opinions expressed are
however those of the authors only and do not necessarily reflect those of the European Union or the European
Research Council. Neither the European Union nor the granting authority can be held responsible for them.
The second and third authors are also supported by IIT Bombay Trust Lab. The third author is also
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2 Preliminaries

2.1 Probability distributions.
For a discrete probability distribution D, let PrD(x) denote the probability of the string x being sampled
according to the distribution. Throughout the paper, we will only work with probability distributions that
are supported on a finite set. The Shannon entropy (or simply entropy) H(D) of a discrete probability
distribution D supported on a finite set D is defined as the quantity

H(D) =
∑
x∈D

Pr
D
(x) log

(
1

PrD(x)

)
.

Definition 1 (Efficient and conditioned efficient probability distributions). A family of probability distri-
butions {Dw} is efficiently samplable (or simply, efficient) if there exist parameters ρw,mw denoted as the
randomness complexity and the domain bit-length, and a PPT sampling algorithm A that given an index
w ∈ {0, 1}∗ and a random tape with r ∈ {0, 1}ρw samples a random string x ∈ {0, 1}mw according to the
distribution Dw. The complexity of {Dw} is at most T if A(w; r) runs in time T (|w|) for every w and r.

A family of distributions {Dw} is said to be conditioned efficiently samplable (or simply, conditioned
efficient) if, with parameters ρw,mw as above, there exists a PPT algorithm A which, on input w ∈ {0, 1}∗
and a uniformly random string r ∈ {0, 1}ρw on its random tape, outputs an element x ∈ {0, 1}mw ∪{⊥} such
that, conditioned on not being ⊥ the output is distributed as Dw. We will refer to such an algorithm A as
a conditional sampler for Dw.

◁

2.2 Promise problems.
A promise problem Π consists of a pair of disjoint sets of strings Πyes,Πno ⊂ {0, 1}∗. Strings in Πyes are
referred to as yes instances and strings in Πno are referred to as no instances. The standard definition
of a language corresponds to the case where every string is either a yes instance or a no instance, i.e.,
Πyes ∪ Πno = {0, 1}∗. (See [Gol06] for a discussion and references.) For two parties A and B engaging in a
protocol on common input x, let ⟨A,B⟩(x) denote the final output of the protocol.

Definition 2 (Interactive Proofs). An interactive proof system for a promise problem Π = (Πyes,Πno) is
defined by a computationally bounded probabilistic verifier V, with a polynomial TV such that the running
time of V on common input x is upper-bounded by TV(|x|), and an unbounded prover P satisfying the
following properties:

• if x ∈ Πyes, then Pr[⟨P,V⟩(x) = 0] ≤ γ, and
• if x ∈ Πno, then ∀P∗,Pr[⟨P∗,V⟩(x) = 1] ≤ δ,

where γ and δ are constants in [0, 1) denoting the errors in completeness and soundness respectively. By
default, we assume that γ = δ = 0.1. ◁

2.3 Arthur-Merlin Proofs, and NP/Non-Deterministic Circuits.
An AM protocol is a constant-round public-coin proof system and AM/poly is the non-uniform analog in
which the verifier is implemented by a family of polynomial-sized probabilistic circuits. The complexity class
AM/poly consists of all promise problems that admit AM/poly protocols. (See standard textbooks like [AB06;
Gol08] for formal definition.) A nondeterministic circuit C has additional “nondeterministic input wires”.
We say that the circuit C evaluates to 1 on x iff there exist an assignment to the nondeterministic input wires
that makes C output 1 on x. An NP-circuit C (resp., nondeterministic NP-circuit) is a standard circuit
(resp., nondeterministic circuit) which in addition to the standard gates uses SAT gates, where a SAT gate
gets a formula φ as an input and returns 1 iff the formula is satisifiable. The size of the circuit is the
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total number of wires and gates. Polynomial-size nondeterministic circuits, NP-circuits, non-deterministic
NP-circuits are the non-uniform analogues of NP, PNP and NPNP = ΣP

2 , respectively.
The literature on complexity theory and derandomization contains various hardness assumptions against

AM/poly/nondeterministic/nondeterministic NP circuits and their generalizations to higher levels of the
polynomial hierarchy. (See, e.g., [App+16] and references therein). Specifically, we will make use of the
following result.

Theorem 2 (PRGs from hardness assumptions [IW97; KM02b; SU05; SU06]). Suppose that E = DTime(2O(n))
is hard for exponential-size non-deterministic circuits (resp., exponential-size non-deterministic NP-circuits),
i.e., there exists a language L in E and a constant β > 0, such that for every sufficiently large n, circuits of
size 2βn fail to compute the characteristic function of L on inputs of length n.

Then for every polynomial T (·) and inverse polynomial ϵ(·), for all sufficiently large m, there exists a
pseudorandom generator G that stretches seeds of length ρ = O(logm) into a string of length m in time
poly(m) such that G ϵ-fools every promise problem Π = (Πyes,Πno) that can be decided by an AM/poly proof
system with a T -size verifier (resp., by a non-deterministic NP-circuit of size T ) in the following sense. For
every sufficiently large m and b ∈ {yes, no}

| Pr
z

R←Um

[z ∈ Πb]− Pr
z

R←G(Uρ)

[z ∈ Πb]| ≤ ϵ(m).

As noted in [App+16], the above assumptions can be seen as the nonuniform and scaled-up versions
of assumptions of the form Exponential-Time is not equal to NP or to ΣP

2 (which are widely believed in
complexity theory). As such, these assumptions are very strong, and yet plausible - the failure of one of
these assumptions will force us to change our current view of the interplay between time, nonuniformity and
nondeterminism. As a secondary advantage (also noted in previous works), one can base the PRG on any
concrete E-complete problem, and an explicit PRG whose security reduces to the underlying assumption.
(We do not have to consider and evaluate various different candidate functions for the hardness assumption.)

2.4 Set-lower bound.
We will make use of the set lower-bound protocol of [GS86].

Theorem 3 (Set lower-bound protocol[GS86]). Let S ⊂ {0, 1}∗ be an NP set (i.e., membership in S can be
efficiently verified). Then there exists an AM protocol ⟨P,V⟩ such that given (1n, k) as common inputs the
following holds,

• if |S ∩ {0, 1}n| ≥ k, then Pr[⟨P,V⟩(1n, k) = 1] ≥ 0.9,

• if |S ∩ {0, 1}n| ≤ k/2 then for every prover P∗ it holds that Pr[⟨P∗,V⟩(1n, k) = 1] < 0.1.

2.5 Approximate counting.
We say that a number p is an ϵ-relative approximation to q if (1− ϵ) · p ≤ q ≤ (1 + ϵ) · p. It is useful to note
that if p′ is an ϵ-approximation to p and q′ is an ϵ-approximation to q, then a p′/q′ is a 2ϵ-approximation to
p/q. We use the following classical result on approximate counting of satisfying assignments.

Theorem 4 (approximate counting,[JVV86; Sto83; Sip83]). For every sufficiently large s and every ϵ > 0,
there is an NP-circuit of size poly(s/ϵ) that given a (standard) circuit C of size s outputs an ϵ-approximation
of |{x : C(x) = 1}|.

2.6 Hashing.
We say that a function family Fm,d is (δ, s)-injective if for every set S ⊂ {0, 1}m of size at most 2s, a
random member f

R← Fm,d is injective over S with probability at least 1 − δ. It is well known that
pair-wise independent hash functions [CW79] have this property. Formally, the following statement follows
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from [FKS84] where the pair-wise independent hash family is instantiated with hash functions that are based
on, say, Toeplitz matrices.

Lemma 1 (Good hashing from 2-wise independence). There exists a family of hash functions F such that
for every δ, s and d = 2s +

⌈
log

(
1
δ

)⌉
, the restriction Fm,d of F to functions from m-bits to d-bits is (δ, s)-

injective. Moreover, (1) Functions in Fm,d are indexed by strings z ∈ {0, 1}L where L = m+ 2d; (2) There
exists an efficient universal evaluation algorithm F that given (1m, 1d), an index z ∈ {0, 1}L, and an input
x ∈ {0, 1}m outputs fz(x); and (3) for z

R← {0, 1}m+2d, the function F (1m, 1d, z, ·) is uniform over Fm,d.

3 Hashing-Based Solution for the Compression Problem
In this section we construct compression schemes. We begin with a formal definition.

Definition 3 (Interactive Compression). An interactive compression scheme for a family of distributions
{Dw} with error ϵ(·) is defined by a computationally bounded compressor CMP and a computationally-
unbounded decompressor DCMP satisfying the following property: For every w ∈ {0, 1}∗ given to DCMP, and
x

R← Dw given to CMP the probability that DCMP outputs x is at least 1−ϵ(w), where the probability is taken
over the choice of x and the randomness of the parties (if the parties are randomized). The communication
complexity of the decompressor and compressor, ComDCMP(w) and ComCMP(w), are defined to be the maximal
number of bits communicated by the decompressor and compressor when the decompressor’s input is w. ◁

It is natural to solve the compression problem by letting the compressor hash the string x to a shorter
string. If the hash function is injective over a “heavy set” of strings then the decompressor will be able to
recover x from the hash of x, with a low error probability. This idea resembles Shannon’s celebrated source
coding theorem [Sha48] except that we use a single instance of the source and accordingly rely on a weaker
concentration of measure results (Markov’s inequality as opposed to Chernoff). We formalize this approach
starting with the notion of “heavy strings,” which will form our heavy set.

Definition 4 (set of heavy strings). For a distribution D over m-bit strings and an error parameter ϵ, we
define the set of ϵ-heavy strings, X (D, ϵ), to be the set of all strings whose weight under D is at least 2−h/ϵ
where h = H(D) is the Shannon’s entropy of D, i.e.,

X (D, ϵ) := {x ∈ {0, 1}m | Pr
D
(x) ≥ 2−H(D)/ϵ}.

We also define ℓ(D, ϵ) := ⌈log |X (D, ϵ)|⌉. ◁

It is not hard to see that the set of heavy strings cannot be too large and also that it is a heavy set –
i.e., it contains at least 1− ϵ mass of the distribution. Specifically, we record the following observations.

Lemma 2 (Set of heavy strings is small). For every D and ϵ > 0, it holds that ℓ(D, ϵ) ≤ ⌈H(D)/ϵ⌉.

Proof: Let h = H(D). For every string x ∈X (D, ϵ) it holds that PrD(x) ≥ 2−h/ϵ, and therefore

2−h/ϵ|X (D, ϵ)| ≤
∑

x∈X (D,ϵ)

Pr
D
(x) ≤ 1.

It follows that |X (D, ϵ)| ≤ 2h/ϵ which further implies that ℓ(D, ϵ) = ⌈log |X (D, ϵ)|⌉ ≤ ⌈h/ϵ⌉. □

Lemma 3 (Set of heavy strings is heavy). For every D and ϵ > 0, it holds that
∑

x∈X (D,ϵ) PrD(x) ≥ 1− ϵ.

Proof: For a string x, let px := PrD(x) denote the weight of x under D. Sample x
R← D and consider the

random variable kx = log(1/px). By definition, the expected value of kx is simply the entropy of D, i.e.,
Ex[kx] = h, and so, by Markov’s inequality, Pr

x
R←D

[kx ≥ h/ϵ] ≤ Ex[kx]
h/ϵ = ϵ. That is, at least 1 − ϵ of the

mass belongs to elements x for which log(1/px) ≤ h/ϵ, or equivalently, to elements whose weight is at least
2−h/ϵ, which is nothing but our desired set X (D, ϵ). □
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Definition 5 (good hash functions). Let D = {Dw} be a family of distributions where Dw is supported over
mw-long strings and has entropy of hw. We say that a function family F is (δ, ϵ)-good for D if there exists
a length function d(hw, ϵ, δ) such that for every distribution Dw in the family:

Pr
f

R←Fm,d

[f is injective over X (Dw, ϵ)] ≥ 1− δ,

where Fm,d denotes the restriction of F to functions from {0, 1}m to {0, 1}d, m = mw and d = d(hw, ϵ, δ).
We refer to d as the compression of h. We say that F has a representation size of L(m, d) if each function
from m bits to d bits can be represented by L(m, d) bits. We also assume that the family is efficiently
computable, i.e., given an index z and an input x one can evaluate fz(x) in polynomial time. ◁

Recalling that X (Dw, ϵ) is of size at most 2s for s = hw/ϵ+1, we can use Lemma 1 to derive a (δ, ϵ)-good
family with compression d = 2s+

⌈
log

(
1
δ

)⌉
= 2hw/ϵ+ log(1/δ) +O(1) and description L = m+ 2d.

3.1 Hashing-based compression.
Let D = {Dw} be a collection of distributions and assume that F is (δ, ϵ)-good for D with compression
d. Define the single-round compression protocol PF as follows: Given the index w of the distribution, the
de-compressor specifies a hash function fz ∈ Fm,d where m = mw and d = d(hw, ϵ, δ) that is injective over
the set X (Dw, ϵ

′) and sends the description z of fz to the compressor, who sends back the value of y = fz(x).
The computationally unbounded de-compressor then checks if y has a pre-image x′ in X (D, ϵ′), and if so it
outputs the (unique) preimage x′. Otherwise, the de-compressor outputs a failure symbol ⊥.

Assuming that δ < 1, the de-compressor always finds a function fz which is injective over the set X (D, ϵ′),
and so the protocol errs only if x falls out of X (D, ϵ′). By Lemma 3, this happens with a probability of at
most ϵ. Summarizing the above discussion, we get the following lemma.

Lemma 4 (compression from hashing). Assuming that F is a (δ, ϵ)-good hash family for D = {Dw} for
some δ < 1, the protocol PF is a compression protocol for D with an error ϵ. For a distribution specified
by w, the compressor communicates d = d(hw, ϵ, δ) bits and the de-compressor communicates L = L(mw, d)
bits, and the compressor’s computational complexity is poly(mw, d), where d is the compression parameter of
F and L is the description length. For the special case of pair-wise independent hashing and δ = 0.1, we get
d = 2hw/ϵ+O(1) and L = O(mw + 2hw/ϵ).

The factor of 2 overhead in the compressor’s communication can be improved to 1+ o(1) by using better
hash functions (e.g., two-level hashing [FKS84]). We omit the details since it hardly changes the final results
of the paper.

The above lemma yields a protocol that obtains the desired compression for the communication from the
compressor, but suffers from a high overhead on the communication from the decompressor’s end. We will
improve this in the next section.

3.2 Improving De-Compressor Communication
In order to improve the communication of the prover, we construct a succinct hash family that is good for
efficiently samplable distributions. To sample a hash function we choose a random seed for a PRG, expand
it to a long string and use this string to specify a hash function from a family of pair-wise independent hash
functions. We show that a PRG against AM/poly allows us to exponentially compress the description length
of a hash function f : {0, 1}m → {0, 1}d from Ω(m+ d) to O(log(m+ d)). We also extend this result to the
case of conditioned efficient distributions at the expense of using a slightly stronger hardness assumption.
This extension will be useful for the proof of Theorem 1.

Theorem 5 (succinct hashing for efficient and conditioned efficient distributions). Suppose that E =
DTime(2O(n)) is hard for exponential-size non-deterministic circuits. Let D = {Dw} be an efficient fam-
ily of distributions over mw-bit long strings having entropy hw, and let ϵ(w) be inverse polynomial error
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parameter. Then, for any constant δ < 1, there exists an efficient family of hash functions that is (δ, ϵ)-good
for D with compression parameter d = 2hw/ϵ+O(1) and description size of L(m, d) = O(log(m+ d)) bits.

Moreover, the theorem extends to the case where D = {Dw} is a family of conditioned efficient distribu-
tions, assuming that E is hard for exponential-size non-deterministic NP-circuits.

The high-level idea is to show that when D is efficiently samplable, there is an AM/poly protocol for
checking whether a given hash function is injective over the set X (D, ϵ). Therefore, if we use a PRG that
fools AM/poly to sample a hash function f from a collection F , the probability that f will be injective over
X (D, ϵ) is almost the same as the probability that a random member of F will be injective. The theorem
then follows by taking F to be a family of pair-wise independent hash functions (for which we know that a
random member is injective whp). Unfortunately, we do not know how to construct an AM/poly protocol
that certifies injectivity, however, we can use an approximate version of this property that suffices for our
purposes. We continue with formal proof.
Proof: [Proof of Theorem 5] Let T1(|w|) be the complexity of D and let T2(|w|) denote the complexity
of evaluating the pair-wise independent hash functions Fm,d = {fz}z∈{0,1}L promised in Lemma 1 where
m = mw and d = 2hw/ϵ+

⌈
log

(
2
δ

)⌉
+2 and L = m+2d. Note that for these parameters Fm,d is (δ/2, 1+h/ϵ)-

injective (Lemma 1). Let T be some fixed polynomial in T1(|w|) + T2(|w|) whose value will be determined
later, and let G : {0, 1}k → {0, 1}L be a PRG that δ

2 -fools T -size AM/poly with seed length k = O(logL)
whose existence is promised by Theorem 2. Consider the family of functions F ′m,d whose members f ′s are
identified by an index s ∈ {0, 1}k, and are defined by f ′s = fG(s) where fz is the function from Fm,d whose
index is z. Note that F ′m,d is computable in time poly(|w|). We claim that F ′m,d is (δ, ϵ)-good for Dw for
every w.

Fix some w. We begin by introducing a promise problem Πw over L-bit strings. (Recall that L =
mw + 2d(w).)

• Yes instance: A string z ∈ {0, 1}L is a yes instance if the function fz : {0, 1}m → {0, 1}d is not injective
over the set X (Dw, ϵ).

• No instance: A string z ∈ {0, 1}L is a No instance if the function fz : {0, 1}m → {0, 1}d is injective over
the set X ′(Dw, ϵ) = {x ∈ {0, 1}m | PrDw

(x) ≥ 0.5 · 2−(hw/ϵ)}.

We show that the above promise problem admits an AM/poly proof system. Let ρw denote the randomness
complexity of the distribution Dw. Let A(w; ·) be the PPT algorithm for sampling from Dw. Consider the
following protocol with prover P and verifier V and common input z:

1. P sends two strings (x0, x1) ∈ {0, 1}m × {0, 1}m to V.
2. V checks if x0 ̸= x1 and fz(x0) = fz(x1). If the checks fail, then it aborts with output 0. Otherwise, the

parties proceed further.
3. For b ∈ {0, 1}, the parties run the following set membership protocol for the string xb:

(a) Consider the set Rxb
= {r ∈ {0, 1}ρw | A(w; r) = xb}.

(b) Run a set lower-bound protocol for set Rxb
with size parameter α = 2ρw · 2−h/ϵ. For membership

queries to the set Rxb
for a string r, just check whether A(w; r) = xb.

4. V outputs 1 if both the checks succeed. Otherwise, it outputs 0.

Claim 1. The above protocol is an AM/poly protocol for Πw.

Proof: Suppose that z is a Yes instance. That is, fz is not injective over the set X (Dw, ϵ). Then, an honest
P will be able to find two strings (x0, x1) ∈ X (Dw, ϵ) ×X (Dw, ϵ) such that x0 ̸= x1 and fz(x0) = fz(x1).
In our protocol, the checks x0 ̸= x1 and fz(x0) = fz(x1) will always succeed in this case. Since both x0 and
x1 belong to the set X (Dw, ϵ), this implies that both the sets Rx0

and Rx1
have size at least α according

to the definition of X (Dw, ϵ). Hence, both the set lower-bound protocols correspond to YES instances and
either of these will fail with probability at most 0.1. It follows that the total failure probability is at most
0.2.
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We move on to the case where z is a No instance, i.e., the function fz is injective over the set X ′(Dw, ϵ)
for all w ∈ {0, 1}∗. Fix the pair (x0, x1) ∈ {0, 1}m×{0, 1}m that the prover sends in the first step and assume
that the verifier did not reject in the second step, i.e., x0 ̸= x1 and fz(x0) = fz(x1). Then, at least one of
x0 or x1 must lie outside the set X ′(Dw, ϵ) since fz is injective over this set. Therefore, either the size of
Rx0

or that of Rx1
must be smaller than α/2 = 2ρw · 0.5 · 2−(h/ϵ). It follows that, except with probability

0.1, the verifier rejects in at least one of the set lower-bound protocols. □

By hard-wiring w and hw, we implement the verifier by a non-uniform circuit of size polynomial in
T1(|w|) + T2(|w|). We can therefore take T (|w|) to be complexity of the verifier, and conclude that

Pr
s
[fG(s) is injective over X (Dw, ϵ)] > Pr

s
[fG(s) is injective over X ′(Dw, ϵ)]

> Pr
z
[fz is injective over X ′(Dw, ϵ)]−

δ

2
> 1− δ

2
− δ

2
= 1− δ.

The last inequality follows by recalling that Fm,d is (δ/2, 1 + hw/ϵ)-injective and since that set X ′(Dw, ϵ)
is of size at most 21+hw/ϵ. We conclude that F ′m,d is (δ, ϵ)-good for Dw, as required. The first part of the
theorem follows.

The “Moreover” part. The proof of the second part is similar with the following modification. We
take G to be a PRG that 0.1-fools T -size non-deterministic NP-circuits (whose existence follows from the
underlying assumption via Theorem 2), and show that Πw can be decided by such circuits. Given a string
z, the circuit Cw non-deterministically guesses a pair of m-bit strings (x0, x1) and verifies that x0 ̸= x1 and
fz(x0) = fz(x1). (If any of these conditions fail, the circuit rejects.) Next, Cw derives for b ∈ {0, 1}, an
α-approximation qb for the quantity pb = Pr[Dw = xb] for α = 0.2, and accepts if and only if q0 and q1 are
both larger than 0.7 · 2−(hw/ϵ). (Here hw is hard-wired to Cw.) The approximation qb is obtained by using
the Approximate Counting algorithm (Theorem 4) as follows. Recall that D is defined by a PPT conditional
sampler A(w; ·) with randomness complexity ρw such that

pb = Pr[Dw = xb] =
|{r ∈ {0, 1}ρw : A(w; r) = xb}|
|{r ∈ {0, 1}ρw : A(w; r) ̸= ⊥}|

.

Hence, to derive an α-approximation of pb it suffices to get a α/2-approximation of both the denominator
and numerator. This can be done by a polynomial-size NP-circuit since these sets are recognizable by
polynomial-size circuits (whose size is the sum of the complexity of A). It remains to prove the following
claim.

Claim 2. The circuit Cw accepts Yes instances and rejects No instances of Πw.

Proof: Suppose that z is a Yes instance. That is, fz is not injective over the set X (Dw, ϵ). Then there
exists an fz-collision x0 ̸= x1 ∈ X (Dw, ϵ) ×X (Dw, ϵ). Since both x0 and x1 belong to the set X (Dw, ϵ),
this implies that p0 and p1 are at least 2−hw/ϵ and so q0 and q1 are larger than 0.8 · 2−hw/ϵ and Cw accepts.

We move on to the case where z is a No instance, i.e., the function fz is injective over the set X ′(Dw, ϵ)
for all w ∈ {0, 1}∗. Then, for any fz-collision x0 ̸= x1 either p0 < 0.5 · 2−hw/ϵ or p1 < 0.5 · 2−hw/ϵ. This
means that either q0 or q1 must be smaller than 1.2 · 0.5 · 2−hw/ϵ ≤ 0.6 · 2−hw/ϵ, and Cw rejects. □

The rest of the argument is identical to the proof of the first part of the theorem. □

Together with Lemma 4, we derive the following theorem.

Theorem 6. Suppose that E = DTime(2O(n)) is hard for exponential-size non-deterministic circuits. Let
D = {Dw} be an efficient family of distributions over mw-bit long strings having entropy hw, and let ϵ(w)
be inverse polynomial error parameter. Then, there exists a single-round compression protocol for D with
an error ϵ and communication of d = 2hw/ϵ+O(1) for the compressor and L = O(log(mw + hw/ϵ)) for the
de-compressor. Furthermore, the compressor is efficient.

Moreover, the theorem extends to the case where D = {Dw} is a family of conditioned efficient distribu-
tions, assuming that E is hard for exponential-size non-deterministic NP-circuits.
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4 Reducing the Communication in Interactive Proofs
In this section, we prove the main theorem (Theorem 1). Roughly speaking, we compress each message that
the verifier sends by using a properly chosen hash function. We begin with some notations and definitions.

Let ⟨P,V⟩ be an interactive proof for a promise problem Π. For an input x, let T (|x|) and ρ(|x|) denote the
running-time and randomness complexity of the verifier.We assume that the parties speak in alternating turns
and that the prover sends the first and last message. (The latter assumption always holds and the former
can be guaranteed at the expense of adding an additional empty round). Letting I ′(|x|) denote the number
of rounds in which the verifier speaks, we get that the the total number of rounds is I(|x|) = 2I ′(|x|) + 1.
We let ai and bi denote the ith message of the prover and verifier, respectively, and let bI(|x|)+1 denote the
final verdict of the verifier (accept/reject).

We can think of the V as a machine that takes an input x a random tape r and a sequence of prover’s
messages a = (ai)1≤i≤k, k ≤ I ′ + 1 and outputs the message bk. For a partial transcript w = (x, a =
(ai)i∈[k], b = (bi)i∈[k−1]), consider the probability distribution Dw of the verifier’s next message bk conditioned
on seeing the partial transcript w. We can describe Dw as the output of the following randomized process:
Sample a random tape r

R← {0, 1}ρ(|x|) conditioned on the event∧
1≤j≤k−1

V(x, a1, . . . , aj ; r) = bj (1)

and output the string bk = V(x, a1, . . . , ak−1; r). Note that D = {Dw} is conditioned efficient : consider
a PPT conditional sampler A, which on input w as above and random tape r ∈ {0, 1}ρ(|x|), outputs ⊥ if
(1) does not hold, and outputs bk otherwise. Let hw and mw denote the entropy and domain bit-length of
Dw, and let ϵ(w) = 0.01/I(|x|) where x is the first entry of w. Let F denote a family of hash functions
(promised by the second part of Theorem 5) which is (0.2, ϵ)-good for D and for Dw achieves compression
of 2hw/ϵ + O(1) and description size of O(log(mw + hw/ϵ)) < O(log(mw/ϵ)) < O(logmw) + O(log I(|x|))
where the first inequality follows by noting that hw ≤ mw.

The new proof system. We define the new proof system ⟨P′,V′⟩ as follows. Given x as a common input
and randomness ρ for the verifier, the parties initialize an “emulated” transcript w = x and proceed for
i = 1, . . . , I ′ − 1 rounds as follows.

1. P′: Compute ai by calling P(w) and locally update w = (w, ai). Choose hash function fi from F that is
injective over X (Dw, ϵ), and send (ai, fi). (Recall that X (Dw, ϵ) is the set of strings whose weight under
Dw is at least 2−h/ϵ where h is the Shannon’s entropy of Dw; See Definition 4.)

2. V′: Compute bi by calling V(x, a1, . . . , ai; ρ) where ai is the ith message sent by the prover, and send
b′i = fi(bi).

3. Before proceeding to the next iteration the prover locally computes bi by choosing the unique string in
X (Dw, ϵ) that maps to b′i. If this string is not unique the prover sends a special abort symbol and the
verifier terminates with rejection. Otherwise, the prover updates its view to w := (w, bi).

At the last round, the prover sends aI′ by calling P(w) and the verifier outputs its verdict bI′+1 by calling
V(x, a1, . . . , at; ρ).

Completeness and Soundness. Let γ be the completeness error of the original proof system. For a yes
instance x, it holds that

Pr[⟨P′,V′⟩(x) = 1] ≥ Pr
r
[⟨P,V⟩(x) = 1]− Pr

r
[decoding failure] ≥ 1− γ − ϵ · (I ′ − 1) ≥ 1− γ − 0.01,

where the second inequality follows from a union-bounds over all the rounds. For soundness, fix a No instance
x, and observe that any cheating strategy for the prover P′ in the new proof system translates to a cheating
strategy in the original proof system. Indeed, if for each i ∈ [I ′], P′ maliciously chooses ai and fi based on
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b′i−1 and its internal state S = (x, a = (aj)j<i, f = (fj)j<i, b
′ = (b′j)j<i−1), we can define a cheating prover

for the original system that maintains the same state S and given bi−1 executes P′ on the state S and on
b′i−1 = fi−1(bi−1). The probability that the verifier V accepts is exactly the same probability that V′ does.
Therefore the soundness error of the new system is the same as the soundness error of the original system.

Communication complexity. We begin by analyzing the expected communication complexity under the
assumption that P is honest. Fix x, and let I = I(|x|),I ′ = I ′(|x|). Let w = (x, (ai, bi)i∈[I′]) denote the
random variable that describes a random transcript and let w[k] = (x, (ai, bi)i∈[k]) denote the kth prefix of
the transcript. We can assume that the honest prover is deterministic (i.e., ai is a deterministic function of
x, (bj)j<i) and so all the randomness is due to the b part. Recall that in each round i, the verifier sends a
string b′i of length 2hw[i]/ϵ + O(1) where hw[i] is the entropy of Dw[i]. Note that hw[i] is a random variable
(since w[i] is a random variable). Thus, the communication complexity of the verifier is given by the following
random variable ∑

i∈[I′]

2hw[i]/ϵ+O(1) = O(I ′) + 2/ϵ
∑
i∈[I′]

hw[i] = O(I) +O(I)
∑
i∈[I′]

hw[i].

By the chain rule, the expected value of
∑

i∈[I′] hw[i] is the entropy of w which is at most the randomness
complexity of the verifier. Overall, the expected communication complexity of the verifier is O(I · ρ). The
communication of the prover in the ith iteration consists of the original communication (the ai part) and
the description of the hash functions which is of length O(logmw[i]) + O(log I(|x|)). Overall the prover
communication grows by at most O(I(log I+logm)) where m is the maximal length of the verifier’s message
in the original scheme. Since m and I are polynomially bounded in n, this can be written as O(I(log n)).

Deriving Theorem 1. The communication analysis is only on expectation and it assumes that the prover
is honest. To get a worst case bound, we slightly modify the proof system by letting the verifier halt the
interaction (with rejection) if she communicates more than, say 100 times the expected communication
complexity. By Markov’s inequality, this increases the completeness error by at most 0.01. Theorem 1
follows.

5 Conclusion
Compressing interactive protocols is a problem of fundamental nature in information theory. When compu-
tational constraints are also involved, it leads to a question that combines complexity theory and information
theory into a natural, yet difficult problem. In this paper, we partially answered the problem posed at the
beginning: whether the communication from a verifier in an interactive proof system can always be reduced
to the level of randomness used by the verifier, without increasing the verifier’s randomness, the round com-
plexity or the prover’s communication significantly. We leave it as an open question if such a result is possible
without relying on complexity assumptions (or using weaker ones), and if quantitative improvements can be
achieved over our result.

En-route to our main result, we encounter several interesting problems. While our focus is on proof
systems, the compression results here extend to any 2-party protocol where one party is computationally
unbounded, and the other party is randomized but has no private inputs. Further, the special case of the
single-round compression problem is of significance in its own right. The notion of efficiently conditional
distributions that we introduced, being natural, could be of independent interest.
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