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Abstract

In the catalytic logspace (CL) model of (Buhrman et. al. STOC 2013), we are given a small
work tape, and a larger catalytic tape that has an arbitrary initial configuration. We may
edit this tape, but it must be exactly restored to its initial configuration at the completion
of the computation. This model is of interest from a complexity-theoretic perspective as it
gains surprising power over traditional space. However, many fundamental structural questions
remain open.

We substantially advance the understanding of the structure of CL, addressing several ques-
tions raised in prior work. Our main results are as follows.

1. We unconditionally derandomize catalytic logspace: CBPL = CL.

2. We show time and catalytic space bounds can be achieved separately if and only if they
can be achieved simultaneously: any problem in CL ∩ P can be solved in polynomial
time-bounded CL.

3. We characterize deterministic catalytic space by the intersection of randomness and time:
CL is equivalent to polytime-bounded, zero-error randomized CL.

Our results center around the compress–or–random framework. For the second result, we
introduce a simple yet novel compress–or–compute algorithm which, for any catalytic tape, ei-
ther compresses the tape or quickly and successfully computes the function at hand. For our
first result, we further introduce a compress–or–compress–or–random algorithm that combines
runtime compression with a second compress–or–random algorithm, building on recent work
on distinguish-to-predict transformations and pseudorandom generators with small-space deter-
ministic reconstruction.
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1 Introduction

How useful is access to a full hard drive? The catalytic logspace (CL) model, introduced by
Buhrman, Cleve, Koucký, Loff, and Speelman [BCK+14], models this question by augmenting
a logspace machine M with a polynomially large extra work tape, called the catalytic tape; the
catch is that this tape begins in some arbitrary initial configuration w, and while it can be edited
during the computation, at the end it must be reset to its initial w.

Such a model naturally sits between L and PSPACE, but in many preexisting contexts [CMW+12,
Liu13, EMP18, IN19] it was strongly assumed that full memory cannot be in any way useful for
unrelated computation, and so it seemed likely that CL would be equal to L. Remarkably, how-
ever, [BCK+14] showed that CL is likely to be strictly more powerful than L: they showed that
CL contains logspace-uniform TC1, a class known to contain non-deterministic logpsace (NL), ran-
domized logspace (BPL), and more. Subsequently, there have been several further works exploring
the power of catalytic computation [BKLS18,GJST19,DGJ+20,CM20,CM21,BDS22,CM22,CM23,
Pyn23,LPT24] (see surveys of Koucký [Kou16] and Mertz [Mer23] for an overview).

In this work we study the structural complexity of catalytic computation. We show multiple
unconditional relations between some of the most well-studied catalytic classes, and obtain new
conditional results under substantially weaker assumptions than previously known.

1.1 Derandomizing Catalytic Space

Our first result relates to randomized catalytic computation. Introduced by [DGJ+20], the class
CBPL is the natural extension of randomized logspace (BPL) to the catalytic setting. We note two
important features of this model: the random coins are accessed in a read-once fashion (analogously
to BPL), and the machine must always reset the catalytic tape, no matter the sequence of random
bits.

The line of work on derandomizing randomized logspace (i.e. proving BPL = L) has been highly
fruitful, resulting in the state of the art result of [SZ99, Hoz21] that randomized space s can be
simulated deterministically in space s3/2−o(1). In the catalytic setting, however, derandomization—
i.e. CBPL = CL, posed as an open question in Mertz [Mer23]—was only known assuming strong
circuit lower bounds [DGJ+20].

We unconditionally derandomize catalytic computation.

Theorem 1.1.
CBPL = CL.

This is among the first unconditional derandomization results known for uniform computation.
Note that L ⊆ CL ⊆ PSPACE, and PSPACE = BPPSPACE is known whereas BPL = L is an open
question, and so our results can be thought of as progress in this direction. However, we also know
that L ⊆ CL ⊆ ZPP, and both BPL = L and BPP = P are open, giving a curious case where a
natural intermediate class can be derandomized.

1.2 The Power of Time-Bounded Catalytic Space

Our second setting is motivated by a central open question in catalytic computing: is CL contained
in P? In their first paper introducing CL, [BCK+14] showed that CL ⊆ ZPP; thus CL ⊆ P under
the widely-believed (uniform) assumption that ZPP = P. However, putting aside the long-standing
intractability of derandomizing ZPP, even finding such a derandomization does necessarily not give
a catalytic polynomial time algorithm. In particular, let CLP be the set of problems solvable by
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catalytic logspace algorithms that run in worst-case polynomial time; while CLP ⊆ CL ∩ P is
immediate, the converse was not known. The work of [DGJ+20] showed that CL = CLP follows
from strong circuit lower bounds, but no such conclusion was known from any uniform assumption.

We resolve this question and show that functions which are efficiently solvable with respect to
both catalytic space and time individually admit algorithms which are efficient with respect to both
simultaneously.

Theorem 1.2.
CL ∩ P = CLP.

We note two corollaries of this result. First, showing CL ⊆ P is equivalent to making catalytic
algorithms run in worst-case polynomial time.

Corollary 1.3.
CL ⊆ P ⇐⇒ CL = CLP.

One can view this result in a positive sense, and as a barrier. On the positive side, a proof of
CL ⊆ P gives a further, potentially stronger result for free. On the barrier side, it is provably impos-
sible to take advantage of the plentiful space afforded by P to simulate CL, without simultaneously
improving the (catalytic) space-bounded inclusion.

Second, derandomization of ZPP scales down and implies a collapse of two subclasses CL and
CLP of ZPP:

Corollary 1.4.
ZPP = P =⇒ CL = CLP.

Towards proving CL = CLP. Corollary 1.4 can be further strengthened to show that CL = CLP
follows from the derandomization of a syntactic subclass LOSSY of ZPP that has been studied by
several recent works [Kor21, ILW23,Kor22,CTW23,LPT24].

Definition 1.5. The complexity class LOSSY is defined as the languages that are polynomial-time
reducible to the following total search problem called LossyCode: Given a pair of Boolean circuits
C : {0, 1}n → {0, 1}n−1 and D : {0, 1}n−1 → {0, 1}n, find some x ∈ {0, 1}n such that D(C(x)) ̸= x.

Indeed, we unconditionally prove that CL ⊆ LOSSY.

Theorem 1.6.
CL ⊆ LOSSY(⊆ ZPP).

Together with Corollary 1.3, we show that LOSSY = P is sufficient to prove CL = CLP.

Corollary 1.7.
LOSSY = P =⇒ CL = CLP.

This strengthens Corollary 1.4 as LOSSY ⊆ ZPP, and it is not known whether LOSSY = ZPP,
and constitutes the first improvement on the assumptions required to prove CL ⊆ P. Moreover,
since LOSSY = P follows from uniform space-time trade-off lower bounds (see [Kor22]), CL ⊆ P
and CL = CLP also follow from the same assumptions.
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1.3 Synthesis: Characterizing Catalytic Space Via Randomness and Time

Combining our two lines of work gives a surprising characterization of CL: in exchange for granting
our catalytic machine zero-error randomness,1 we may guarantee that it runs in worst-case poly-
nomial time, and this characterization is exact. We follow our previous convention for CLP and
dub the latter class CZPLP:

Theorem 1.8.
CL = CZPLP.

While Theorem 1.1 can be thought of as bounding the power of randomness in catalytic com-
puting, the forward direction of Theorem 1.8 gives a highly nontrivial use for randomness in the
catalytic model.

Theorem 1.8 makes progress towards resolving CL ⊆ P; not only do we weaken the derandom-
ization hypothesis sufficient to resolve the question—CZPLP ⊆ ZPP follows trivially from their
respective definitions—but in fact our equivalence shows that such derandomization is necessary
as well. Furthermore, in the randomzied setting we unconditionally resolve the question:

Corollary 1.9.
CZPL = CZPLP.

This gives another way to view Corollary 1.4 as a scaling down of derandomization for ZPP.

1.4 Technical Overview

Our results build on and substantially extend the compress–or–random approach to studying
CL [Dul15,Mer23,Pyn23,DPT24,LPT24]. At a high level, prior results in this framework work as
follows. Think of the catalytic tape as a candidate source of random bits. If the tape is sufficiently
random, we can simply use it without modification for our desired task; otherwise, the tape must
be (information theoretically) compressible. To use this dichotomy in the context of CL, we must
have a way of certifying if the tape is random enough, and if not, must have a compression scheme
that can be implemented in CL. The requirement for this efficient compression scheme previously
limited the approach to studying BPL [Dul15,Pyn23,DPT24].

To explain the relevance of compress-or-random to the problem of ensuring (deterministic)
catalytic algorithms have fast runtime, recall that [BCK+14] observed that over a random initial
catalytic tape, a CLmachine will halt in poly(n) steps with high probability. Thus, every initial tape
configuration that “causes” a high runtime is unusual, and in particular is information-theoretically
compressible. This fact was known for a decade, but it was unclear how to make it algorithmically
useful, required for the compress–or–random paradigm.

1.4.1 Compress–or–compute: compression from high runtime.

Our first main insight in this paper—in essence the only tool needed for our results on CLP—
is a new way of compressing the tape in the compress–or–random argument when simulating a
catalytic machine. For catalytic machine M deciding language L, our idea is as follows: if we run
M in question on starting tape w, it either quickly halts and returns the correct answer, or it runs
for a long time; for concreteness, say M runs for at least 2nc steps, where M ’s free work tape has

1Where on input x, we either compute L(x) or return a special symbol ⊥, and we return ⊥ with probability at
most 1/2 for every input and starting tape.

3



length c log n. In the former case we are done, as we have successfully and quickly computed the
language L in question. In the latter case, we now think of the starting tape as having the form

(w ◦ i)

where i ∈ [2nc] is a timestep specified with c log n+1 bits. After running the machine M on starting
tape w for i steps, the catalytic tape will be in configuration

(w′ ◦ i)

for some new configuration w′, and moreover M ’s work tape will have configuration v ∈ {0, 1}c logn
for some v. Next, we set the catalytic tape to

(w′ ◦ v ◦ 0).

Our insight is that we can describe (w ◦ i) (i.e. the original configuration of the tape) as “run M
backwards from catalytic tape w′ and work tape v, and count the number of elapsed steps until we
reach a start state.”

This describes (w, i) with (w′, v) via a catalytic algorithm, and

|w ◦ i| = |w′ ◦ v| − 1

from our choice of timestep size. Thus, we effectively compress the tape by one bit from the failure
of the machine to halt quickly, and both the compression and decompression can be implemented
in-place with O(log n) bits of auxiliary workspace2. A natural recursive extension of this algorithm
results in a catalytic machine that either computes L in polynomial time, or frees up a polynomial
amount of space on the catalytic tape; hence, we dub this strategy “compress–or–compute”. This
argument immediately yields Theorem 1.2: in CLP, either our CL machine computes the language
quickly, or we free up enough space to run our P machine.

1.4.2 Compress–or–compress–or–random: derandomization through two different com-
pressors.

The previous result compressed the tape from the runtime (with starting tape w) being too large.
To generalize this notion, we let the configuration (sub)graph from starting statew, denotedR(w), be
the set of states (w′, v) reachable from starting tape w, where w′ represents the catalytic tape and
v the workspace of the machine M . For a deterministic catalytic machine, this graph is (essentially)
a line. For randomized machines, each state now has out-degree 2, corresponding to the transitions
from reading random bit 0 and 1. However, it is still the case that over a random w, the size of
R(w) is bounded by poly(n) with high probability.3

Naively, one would hope to adopt the same argument, compressing w ◦ i by using i to index
into R(w) if it is sufficiently large. However, it is not even clear how to explore this graph, and if
R(w) is small, it is not clear how to decide the language (as we cannot simply examine the final
state of a line).

We deal with both of these problems by using an additional application of the compress–or–
random framework. For now, assume we have access to a collection of random walks Y ⊆ {0, 1}n
of size a large polynomial in n. We then consider the configuration subgraph

Y := Y(w, Y ) ⊆ R(w)

2Due to the initial machine possibly having non-reachable states in the configuration graph, our real scheme is
more complicated, but this captures the idea.

3This follows as the machine must reset the catalytic tape no matter the sequence of random bits.
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representing states reached from initial configuration w with random coins specified by Y . Building
on the deterministic case, we are able to label the states in this subgraph in a consistent fashion
given Y . We again think of our catalytic tape as

(w ◦ i)

where i ∈ [2nc], and divide into two cases based on the size of Y:

Large Graph Case. If |Y| ≥ 2nc we follow essentially the same compression strategy as Sec-
tion 1.4.1: we interpret i as an index into Y, traverse to the state specified by that index, and
replace i with the work tape of M at this configuration, freeing up one bit of space.

We remark that decompressing in this case is not immediate. We are “at” a state

σ = (w′, v)

and wish to find the index of σ in Y. Our compression scheme cannot store which string y ∈ Y we
used to reach σ (otherwise it is not compressing); therefore, the decompression algorithm cannot
naively “walk backwards” to recover the initial tape w and the index i without this information.
One may think of running the machine forwards from σ until it halts to recover the initial tape w.
However, this will destroy our intermediate configuration (w′, v), leaving us unable to determine
the index i. Fortunately, we do have access to the set Y in our decompression algorithm. We iterate
over y ∈ Y to find a string that takes us from σ to the (unique) backwards-reachable start state.
Our algorithm, which uses ideas from reversible computation, satisfies the following: if a walk y
does not take us to the start state, we reset the tape to σ and can try again.

Once we have identified a good walk y (which may be non-unique), we can describe σ via the
index of y in Y using O(log n) bits, which allows us to temporarily “store” the configuration on the
work tape. We can then use a further routine to determine the index of σ in Y.

Small Graph Case. If |Y| ≤ 2nc, we hope to decide L. Unfortunately, there are now two
different reasons why our collection of explored states could be small: the configuration graph
R(w) is actually small, or our collection of random walks Y does a bad job exploring it! In
addition, at present we do not have a set of walks Y with which to instantiate this paradigm with.

To deal with all of these issues, we create the strings Y using an instantiation of the Nisan-
Wigderson generator [NW94] developed by Doron, Pyne, and Tell [DPT24]. We denote the gener-
ator as:

NWf : {0, 1}O(logn) → {0, 1}n

where f ∈ {0, 1}poly(n) is a truth table. For every D : {0, 1}n → {0, 1} that distinguishes the output
of the PRG from uniform, i.e.∣∣∣E [

D
(
NWf (U)

)]
− E[D(U)]

∣∣∣ ≥ 1/10

there is a small circuit C such that C computes f when given oracle access to D. Following the
approach of [DPT24], we use a new section of the catalytic tape, which we denote m, as the truth
table f . Unrolling the definition, if NWm fails to fool D, the section of tape m is compressible
given access to D. If the distinguisher D tests if NW does a good job exploring the configuration
graph, the failure to explore becomes another win condition.

To realize this approach, we must make the transformation from D to a small circuit for f
implementable in catalytic logspace. We build off recent works studying related questions [PRZ23,
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DPT24], while incorporating new ideas. There are two required steps in this transformation. The
first is transforming the distinguisher D into a previous bit predictor4 P for NWm, i.e. a function
satisfying

Pr
x←NWm(U)

[P (x>j) = xj ] ≥
1

2
+

1

n2
.

In our case, we consider the following distinguisher:

D(r) = I [M leaves Y when reading random bits r] .

and note that (by definition) we have D (NWm(U)) = 0, so if E[D(U)] ≥ 1/10 we have that
D distinguishes NWm from uniform (in particular, this occurs if NWm does not do a good job
exploring the graph). By Yao’s Lemma [Yao86], we have that there exists a predictor for NWm

with the following form:
P (r>) = D(z ◦ r>)⊕ b (1)

where b ∈ {0, 1} and z ∈ {0, 1}∗, as long as the conventional hybrid argument is done backwards.
Next, we make the same observation as [DPT24]: restricting the first bits of D to z simply corre-
sponds to starting the random walk at a new location in Y. As there are only poly(n) different places
to start this walk, we can create a candidate predictor for each vertex, then determine if any such
predictor achieves good advantage on NWm. We remark that in the language of [DPT24,LPT24],
we obtain a distinguish-to-predict transformation for this distinguisher.

If such a good predictor exists, we must compress m in-place with O(log n) auxiliary workspace.
Luckily, such an algorithm was constructed recently by [DPT24].5 If no such predictor exists, we
must have that NW does a good job exploring the configuration graph, and can thus decide the
language by taking a majority vote over the outputs of the PRG, without modifying the tape.

There is one more complication that we discuss here. Once we compress the generator, the
above approach would lose the ability to evaluate the predictor (and hence we would not be able to
decompress). This is because the predictor is defined in terms of the explored subgraph Y, which
itself depends on the outputs of the generator. To resolve this circularity, we use a sequence of
generators G1, . . . , G2nc , each instantiated with its own section of catalytic tape. Let Yi be the
states explored by Gi. For every fixed starting tape w, each additional generator either explores a
new configuration (bringing us closer to the large graph case) or fails to do so, in which case

Yi ⊆
⋃
j<i

Yj .

If this holds, note that we can describe all predictors of Equation (1) using outputs of the previous
PRGs, which we do not attempt to compress, and hence we do not lose access as we compress Gi.
Finally, for technical reasons we use two distinguishers, but both can be transformed to predictors
using similar ideas.

We remark that [DPT24] did not have to deal with this complication for their proof of BPL ⊆
CL, as there the graph was always present on the read-only input tape, whereas here we have only
implicit access.

4In the general case, i.e., the distinguisher D is a general circuit, this problem is known to be as hard as deran-
domization itself [LPT24].

5For this step, we can replace the Nisan-Widgerson generator of [DPT24] with a compression algorithm utilizing
previous bit predictors implicit in Korten’s proof of the prBPP-hardness of R-Lossy Code [Kor22]. This is because
once we have obtained a predictor, we only need to compress a truth table of size nc to nc − n bits. (Note that the
generator in [DPT24] allows us to compress a truth table of size nc to n bits, which is indeed an overkill.) The details
will be given in a later version of the paper.
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Putting the Cases Together. We now present one step (with mild simplifications) of our final
algorithm. We interpret the catalytic tape as

w ◦ i ◦m1 ◦ . . . ◦m2nc

and for j ∈ [2nc] instantiate the PRGs

Gj = NWmj : {0, 1}O(logn) → {0, 1}2nc

and let Y be the set of strings output by the union of these PRGs. Then there are three cases:

1. If Y explores more than 2nc states, we are in the large graph case. We compress (w ◦ i) to
(w′ ◦v) (freeing up one bit on the tape) and proceed to the next iteration, without modifying
Y .

2. If Y explores fewer than 2nc states, there is some j such that Gj exclusively reaches states
already reached by G1 ∪ . . . ∪Gj−1. We then build candidate predictors

P1, . . . , Ppoly(n),

each of which can be concisely described using G1, . . . , Gj−1.

(a) If there is some k such that Pk predicts Gj with good advantage, we compress mj by
poly(n) bits and can decide the language via a space-inefficient algorithm.

(b) If no such predictor achieves good advantage, it must be the case that Gj is a good
collection of random walks, so we can use its output to derandomize.

Thus in Item 1 and Item 2a we compress the tape by 1 and poly(n) bits respectively, and in Item 2b
we use our PRG to derandomize the algorithm in the conventional way. Due to this structure, we
call this approach compress–or–compress–or–random.

1.5 Future Questions

The most immediate question left open by our work is to show CL ⊆ P. We call attention to one
angle suggested by our work: if Theorem 1.2 can be adapted to the zero-error randomized case, i.e.
CZPL ∩ P = CZPLP, then the question is resolved by Theorem 1.8.

As for other catalytic models for which our techniques may find future traction, can we show
that nondeterministic catalytic logspace (CNL) equals catalytic logspace? The requirement to re-
store the tape no matter the sequence of guesses can be used to show CNL ⊆ ZPP, and Buhrman
et. al. [BKLS18] showed that CNL is closed under complement under strong circuit lower bounds.
While our timestamp compression approach could still apply here—a polynomial amount of free
space on the tape is sufficient to solve CNL directly—there are two barriers to approaching uncon-
ditional structural results: first, as in the randomized case the configuration graph has out-degree
2, which complicates the case of walking backward; and second, a good guess sequence may be
exponentially unlikely, which makes us unable to apply the machinery of directed random walks to
obtain win-win arguments.

1.6 Roadmap

In Section 2 we formally define catalytic classes and their configuration graphs. In Section 3 we
prove Theorem 1.2 and Theorem 1.6. In Section 4 we prove Theorem 1.1. All major catalytic
routines will have pseudocode which can be found in Appendix D.
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2 Preliminaries

2.1 Notation

Let [n] = {1, 2, . . . , n}. We use Un to denote the uniform distribution over {0, 1}n, and may omit
the subscript n if it is clear in the context.

For a string y and i ∈ N, we use yi to denote the i-th bit of y, y≤i to denote the prefix of y of
length i, and y>i to denote the suffix of y of length |y| − i. For two strings x and y, we use x ◦ y to
denote the concatenation of x and y.

Let I[ϕ] be the indicator function, i.e., I[ϕ] = 1 if ϕ is true, and I[ϕ] = 0 otherwise. For a
language L ⊆ {0, 1}∗, we define L(x) := I[x ∈ L].

2.2 Complexity Classes for Catalytic Computation

Our basic starting point is the notion of a catalytic machine, as defined by Buhrman et al. [BCK+14]:

Definition 2.1. A catalytic machine M is defined as a Turing machine in the usual sense—i.e.
a read-only input tape, a write-only output tape, and a (space-bounded) read-write work tape—
with an additional read-write tape known as the catalytic tape. Unlike the ordinary work tape,
the catalytic tape is initialized to hold an arbitrary string w, and M has the restriction that for
any initial setting of the catalytic tape, at the end of its computation the catalytic tape must be
returned to the original state w.

It will be helpful to define a notion of one catalytic machine simulating another, especially
when the operation of the “smaller” machine is only partial, i.e. we care about transitioning to
some internal state of the smaller machine inside the larger one. While the defining feature of
catalytic machines is to reset the catalytic tape, such partial situations do not necessarily preserve
this feature; in fact, we often use these operations to prepare an intermediate state of interest.

Definition 2.2. Let s < s′, c < c′, and let M and M ′ be catalytic machines using free space s (s′)
and catalytic space c (c′, respectively). We say M ′ simulates M , or that M is a catalytic subroutine
of M ′, if M ′ runs M on s free bits of its work tape and c bits of its catalytic tape; in particular,
M will be run using the c bits written on M ′ as its initial catalytic tape.

We may further say that M ′ simulates M or M is a catalytic subroutine of M ′

• with access to σ: M ′ can access string σ during the execution of M ; this may be written on
the catalytic or work tape outside of the space used to run M , or it may be derivable from
the information written in this space via a separate catalytic subroutine

• using additional workspace k: M ′ uses an additional k bits of free work memory in its execution
of M , which, like the free work memory of the catalytic subroutine M , may be reclaimed by
M ′ afterwards

• with end catalytic state w: the end result is to change the catalytic memory set aside for M
into state w (note that this is unlike a typical run of a catalytic machine, which resets the
memory to its original configuration)

• returning a: the end result is to write a to the free work memory of M ′.

All other standard qualifiers, i.e. running in time t, can be applied as usual.

Recall the standard definitions of a randomized machine M computing a function f : on input
x, M outputs
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• zero-sided error: f(x) with probability at least 2/3 and ⊥ otherwise

• one-sided error: if f(x) = 1, f(x) with probability 1; if f(x) = 0, f(x) with probability at
least 2/3 and f(x) otherwise

• two-sided error: f(x) with probability at least 2/3 and f(x) otherwise

where the probability is only with respect to the randomness of M and is independent of x. Note
that the error probability 1/3 can be set to be an arbitrary constant in (0, 1/2), as one can apply
standard the error reduction techniques.

Definition 2.3 ([DGJ+20]). A randomized catalytic machine M is defined as a catalytic Turing
machine with access to a uniformly random string r. As in the standard model of randomized
space-bounded computation, M may only access r in a one-way fashion, and must halt in finite
time with certainty.

We define zero-sided, one-sided, and two-sided error as above; in particular, a randomized
catalytic machine computes a function f , in any of these senses, iff the probability of success depends
only on the randomness of r (in particular, it holds for every value of x and w). Furthermore, we
require that w is reset on every computation path, i.e. no matter the contents of the random tape
and what M outputs.

This gives rise to a natural structural theory of catalytic space paralleling that of ordinary
complexity theory.

Definition 2.4. We define catalytic variants of standard space-bounded classes as follows:

• CSPACE [s] is the class of functions that can be recognized by catalytic Turing machines
using workspace O(s) and catalytic space 2O(s).

• CZPSPACE [, ]CRSPACE,CBPSPACE [s]6 are the classes of functions that can be recognized
by randomized catalytic Turing machines using workspace O(s), catalytic space 2O(s), and

access to 2O(s)+2O(s)
random bits, with zero-sided, one-sided, and two-sided error, respectively.

• CTISP [t, s] is the class of functions that can be recognized by catalytic Turing machines
using time O(t), workspace O(s), and catalytic space 2O(s).

• CZPTISP [t, s] ,CRTISP,CBPTISP [t, s] are the classes of functions that can be recognized by
randomized catalytic Turing machines using time O(t), workspace O(s), catalytic space 2O(s),
and access to O(t) random bits, with zero-sided, one-sided, and two-sided error, respectively.

Furthermore we define the following specifications of the above classes to the logspace setting, which
is the instantiation of the most interest to the present work:

• CL := CSPACE [log n]

• CBPL := CBPSPACE [log n]

• CLP := CTISP [poly(n), log n] (also called CSC1 [DGJ+20])

• CZPLP := CZPTISP [poly(n), log n]

6While all published works on the subject of randomized catalytic space [DGJ+20,Mer23,Pyn23,DPT24] put C
before e.g. BP in CBPSPACE [s], they first appear in an older, yet unpublished, work by Dulek, which reverses the
order. Theorem 1.1, thankfully, all but obviates the need to solve this nomenclature issue.
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Note that while some works consider the more general case of CSPACE [s, c], where the catalytic
tape may take some variable length c different from 2s (see e.g. [BDS22,Pyn23]), Definition 2.4 is
the most standard setting and the one of interest to the current work.

While our main results are stated in terms of catalytic logspace, we will prove them in generality
for different values of s and t. One subtlety here is that such values themselves need to be easily
computable:

Definition 2.5. We say that a function ℓ := ℓ(n) is constructible in space s := s(n) if there exists
a machine Mℓ using space s(n) which takes in 1n and outputs the value ℓ(n).

We say ℓ is space constructible if ℓ is constructible in space O(ℓ); it is said to be logspace
constructible if ℓ is constructible in space O(log ℓ).

2.3 Configuration Graphs of Catalytic Machines

We define the configuration graph of a catalytic machine, and how one can traverse it using catalytic
subroutines. Throughout this subsection, we assume that s := s(n) ≥ log n is a space constructible
function.

2.3.1 Deterministic Configuration Graphs

We start with defining and manipulating configuration graphs of deterministic catalytic machines,
which we will use in Section 3.

Definition 2.6 (Configuration graphs of deterministic catalytic machines). Let M be a determin-
istic catalytic machine that uses s bits of workspace and 2s bits of catalytic space on inputs of
length n, and let x ∈ {0, 1}n be an input. The configuration graph Gx is a directed graph defined as
follows:

• Each node is a configuration (w, v) ofM , wherew ∈ {0, 1}2s is the catalytic tape configuration
and v ∈ {0, 1}s is the bits of auxiliary state.7

• We say a vertex σ is a starting state if σ = (w, 0s) for some w (and WLOG assume that the
machine starts in such a configuration). We let this state be denoted start(w).

• We say a vertex σ is a halting state if σ = (w, b · 1s−1) for some w and b ∈ {0, 1} (and WLOG
assume that the machine always returns b upon reaching such a configuration). We let this
state be denoted halt(w, b), and let acc(w) = halt(w, 1).

• Each non-halting configuration (w, v) has a single out-edge to (w′, v′), which is the config-
uration of M after one step execution from the configuration (w, v) on input x. We define
Γ(w, v) := (w′, v′).

We may drop the subscript x and denote Gx by G when the input x is clear in the context.

We will need a way for a catalytic machine M ′ to simulate another catalytic machine M in a
way that is reversible: after running the simulation forward for some number of steps, M ′ must
be able to just as quickly run the simulation backward the same number of steps, restoring the
catalytic tape to where it started. The simulation need not follow the same sequence of steps as
M itself, but running it to the end must produce the same output as M . The following theorem
makes this precise.

7The state description v should be of length O(s) to keep track of the FSA configuration and tape head locations
of M , but we ignore this technicality for the sake of simplicity.
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Theorem 2.7. For every catalytic machine M computing a language L using workspace s :=
s(n) ≥ log n with configuration graph G, there exist catalytic subroutines DetWalk,DetRev that run
in worst-case time poly(2s, k) and work as follows. There exists a bijection

Π : Gx × {0, 1} → Gx × {0, 1}

so that for every w, the sequence

(start(w), 0),Π[start(w), 0],Π2[start(w), 0], . . .

includes (halt(w, b), 0) = ((w, b1s−1), 0), where b = L(x), and does not include (start(w′), 0) for
any w′ ̸= w or (halt(w′, b′), 0) for any w′ ̸= w or b′ ̸= L(x).

For every k ∈ N and w, either:

1. DetWalkw(x, k) returns L(x) (and does not modify the catalytic tape).

2. DetWalkw(x, k) sets the catalytic tape to w′ and returns v′, a′, where ((w′, v′), a′) = Πk[start(w), 0].
Moreover, DetRevw

′
(x, v′, a′) sets the catalytic tape to w and returns k.

As this result involves technical manipulations of the configuration graph of catalytic machines,
we defer the proof to Appendix B; the code can be found in Algorithms 1 and 2. The essential
approach is to take an Eulerian tour through the configuration graph, verifying that all operations
can be done in-place on the catalytic tape, and in polynomial time. As the theorem crucially uses
that the configuration graph has out-degree 1, we must take a separate approach for the randomized
case, which we discuss later.

2.3.2 Randomized Configuration Graphs

Similar to the deterministic case, we can define the configuration graph of a randomized catalytic
machine and related notions, which we will use in Section 4. Some of the concepts and results
have been implicit in literature of catalytic computation; nevertheless, we provide a self-contained
description for completeness.

Definition 2.8 (Configuration graphs of randomized catalytic machines). Let M be a randomized
catalytic machine that uses s bits of workspace and 2s bits of catalytic space on inputs of length n,
and let x ∈ {0, 1}n be an input. The configuration graph Gx is a directed graph defined as follows:

• Each node is a configuration (w, v) ofM , wherew ∈ {0, 1}2s is the catalytic tape configuration
and v ∈ {0, 1}s is the bits of auxiliary state.8

• We say a vertex σ is a starting state if σ = (w, 0s) for some w (and WLOG assume that the
machine starts in such a configuration). We let this state be denoted start(w).

• We say a vertex σ is a halting state if σ = (w, b · 1s−1) for some w and b ∈ {0, 1} (and WLOG
assume that the machine always returns b upon reaching such a configuration). We let this
state be denoted halt(w, b), and let acc(w) = halt(w, 1).

• Each non-halting configuration (w, v) has two out-edges to (w0, v0) and (w1, v1), where
(wb, vb) is the configuration of M after one step execution from the configuration (w, v)
on input x if the random bit probed by the machine in this step is b ∈ {0, 1}. We define
Γb(w, v) := (wb, vb).

8As in the deterministic case, the state description v should be of length O(s) to keep track of the FSA configuration
and tape head locations of M , but we ignore this technicality for the sake of simplicity.
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We may drop the subscript x and denote Gx by G when the input x is clear in the context.

The key difference between Definition 2.6 and Definition 2.8 is the outdegree of non-halting
configurations, which increases due to conditioning on different random strings. This will greatly
affect how we reconfigure the machine to travel forwards and backwards à la Theorem 2.7; further-
more, while a walk may end with an output being produced, this output is no longer guaranteed
to be the correct value of L(x), as the specific randomness r may cause our machine to err.

Definition 2.9. For a configuration graph Gx of a randomized catalytic machine, a configuration
σ ∈ Gx, and a string r ∈ {0, 1}ℓ, we define Gx[σ, r] as the configuration σℓ reached by taking a walk
of length ℓ according to r, i.e.,

σ0 := σ, σ1 := Γr1(σ0), . . . , σℓ := Γrℓ(σℓ−1). (2)

If the initial configuration σ is clear in the context, we may slightly abuse the notation to identify
r and the walk specified by r in (2).

These walks will take the place of Π in the statement of Theorem 2.7, and will allow us to
quantify the behavior of our forward and backward machines. (In contrast to Theorem 2.7, these
walks exactly match computations of the original catalytic machine. For Theorem 2.7, it was
necessary to invent an invertible transition function Π in order to allow running backward in a
time-efficient way; here we avoid that complication but give no runtime guarantee.)

Theorem 2.10. For every randomized catalytic machine M computing a language L using workspace
s := s(n) ≥ log n with configuration graph G, there exist catalytic subroutines RandWalk,RandRev
that use O(s+ log |r|) additional workspace and work as follows.

• RandWalkw(x, v, r) sets the catalytic tape to w′ and returns v′, where Gx[(w, v), r] = (w′, v′).
In addition, RandWalkw(x, v, r) only requires one-way access to r.

• If there is a catalytic tape configuration w such that G[start(w), r] = (w′, v′), RandRevw
′
(x, v′, r)

accepts and leaves the catalytic tape in configuration w; otherwise, it rejects and leaves the
catalytic tape in configuration w′.

As Theorem 2.10 involves technical manipulations of configuration graphs, we defer the proof
to Appendix C, while the code for RandRev can be found in Algorithm 3.

Lastly, we will need one other tool for randomized configuration graphs, namely to compare
the results of two different walks, each starting from the same start(w) but generated by different
random strings r, r′ ∈ {0, 1}∗.

Lemma 2.11. There is a catalytic subroutine EQ(x, r, r′) using O(log(n) + log(|r|) + log(|r′|))
additional workspace such that EQw(x, r, r′) accepts if and only if Gx[start(w), r] = Gx[start(w), r′].

Proof. Let (wr, vr) := G[start(w), r] and (wr′ , vr′) := G[start(w), r′]; the goal of Tw(r, r′) is to
determine whether or not (wr, vr) = (wr′ , vr′). The algorithm compares (wr, vr) and (wr′ , vr′) bit
by bit. Let ℓ := max{|(wr, vr)|, |(wr′ , vr′)|}. For each i ∈ {1, 2, . . . , ℓ}, it works as follows:

1. Let vr := RandWalkw(x, 0s, r). The catalytic tape will be wr, where (wr, vr) := G[start(w), r].
Let b be the i-th bit of (wr, vr). We then call RandRevwr(x, vr, r) to reset the catalytic tape
to w.

2. Let vr′ := RandWalkw(x, 0s, r′). The catalytic tape will bewr′ , where (wr′ , vr′) := G[start(w), r′].
Let b′ be the i-th bit of (wr′ , vr′). We then call RandRevwr′ (x, vr′ , r) to reset the catalytic
tape to w.
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3. The algorithm rejects if b ̸= b′.

See Algorithm 4 for the pseudocode of EQ.
The correctness and the space complexity of the algorithm follow directly from the correctness

and the space complexity of RandWalk and RandRev (see Theorem 2.10).

3 Structural Results for CL

In this section, we introduce a reduction from CL to LossyCode, and derive new structural results:
CLP = CL ∩ P and CL ⊆ CZPLP. Finally, we show that the reduction implies a “certified
derandomization” for CL.

3.1 CL Reduces to Lossy Code

Our main compression algorithm for CSPACE [s] is as follows:

Theorem 3.1. Let s := s(n) ≥ log n be space constructible. For every L ∈ CSPACE [s], there are
catalytic subroutines DetComp and DetDecomp with worst-case poly(2s, B) running time using ad-
ditional workspace O(s+logB) that work as follows. Let w be a length-(2s+O(s)+B) configuration
of the catalytic tape and x ∈ {0, 1}n be an input. Then the subroutines work as follows:

• DetCompw(1B, x) either returns L(x) and resets the catalytic tape, or returns ⊥ and sets the
catalytic tape to be of form w′ ◦ 0B, where |w′| = 2s +O(s).

• DetDecompw
′◦0B (1B, x) sets the catalytic tape to w.

Proof. Let M be a catalytic machine using s workspace that decides L and let Gx be the configu-
ration graph of M on input x.

The compression algorithm DetComp. We implement DetComp as the following iterative al-
gorithm. It maintains a counter k ∈ {0, . . . , B} and maintains the invariant that at the end of the
k-th iteration, either C returns L(x) and resets the catalytic tape, or it sets the catalytic tape to

be of the form w′k ◦ 0k such that DetDecompw
′
k◦0

k
(1k, x) (which will be defined later) will set the

catalytic back to w.
Let k := 0 and w′0 := w at the beginning, and thus the invariant holds trivially. Assume that

we are at the beginning of the k + 1-st iteration for some k ∈ [B]. We know by the invariant that
the catalytic tape is of the form w′k ◦ 0k. We parse w′k as

w′k = m ◦ i ◦ z

where m is of length 2s, i is of length s+2 (which we interpret as a number in [2s+2]), and z is the
remaining string of length at least B − k. Next, we call the machine DetWalk of Theorem 2.7 with
input parameters DetWalkm(x, i). Then one of two events occurs:

1. First, suppose DetWalk returns L(x) and resets the catalytic tape to m. If k ≥ 1, we call the

machine Dw′
k◦0

k
(1k, x) so that by the invariant we will reset the catalytic tape to w.

2. Otherwise, the machine halts with the section of catalytic tape in configurationm′ and returns
(v′, a′) ∈ {0, 1}s+1. In this case, we set the full catalytic tape to

(w′k+1 := m′ ◦ (v′ ◦ a′) ◦ z) ◦ 0k+1

where m′ is of length 2s, (v′ ◦ a′) is of length s+ 1, and z is as before. We increment k and
go to the start of the loop.
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If the loop counter reaches B, we halt and return ⊥. See Algorithm 5 for the pseudocode of
DetComp.

It is clear that all our loop invariants hold in each iteration; note that in each new iteration of
the loop, i requires s + 2 bits, which will be taken from (v′ ◦ a′) from the previous iteration plus
one bit from z from the previous iteration. It is also clear that the runtime is bounded by poly(2s)
in both cases.

The decompression algorithm DetDecomp. As we mentioned above, the catalytic machine
DetDecomp will satisfy the following property. Assume that DetCompw(1B, x) does not halt in the
k-th iteration. For its catalytic tapew′k◦0k at the end of the k-th iteration, DetDecompw

′
k(1k, x) sets

the catalytic tape tow. For simplicity of presentation and analysis, we define DetDecompw
′
k◦0

k
(1k, x)

as a recursive algorithm, while it can be easily converted to an equivalent iterative algorithm.
Fix any k. The catalytic machine DetDecompw

′
k◦0

k
(1k, x) works as follows. We interpret w′k as

w′k = m′ ◦ (v′ ◦ a′) ◦ z

where m′ is of length 2s and (v′, a′) is of length s+ 1. We then run the machine DetRev of Theo-
rem 2.7 as DetRevm

′
(x, v′, a′). Let m and i be such that DetWalkm(x, i) sets the catalytic tape to

m′ and returns (v′, a′). By Theorem 2.7, DetRevm
′
(x, v′, a′) will thus set the catalytic tape to m

and return i. We then set the overall catalytic tape to

m ◦ i ◦ z ◦ 0k−1.

By the definition of DetComp and DetDecomp, we can see that the computation of DetDecompw
′
k◦0

k
(1k, x)

as we described above is exactly the reverse simulation of the i-th iteration of DetCompw(1B, x).
Therefore, m ◦ i ◦ z ◦ 0k−1 is the catalytic tape w′k−1 ◦ 0k−1 after the first k − 1 iterations of

DetCompw(1B, x). The algorithm DetDecomp then recursively calls DetDecompw
′
k−1◦0

k−1

(1k−1, x)
and by the invariant the catalytic tape is reset to w. See Algorithm 6 for the pseudocode of
DetDecomp.

Analysis. Note that the correctness of the algorithm follows directly from the invariant in the
iterative algorithm DetComp. Each of DetComp and DetDecomp has B iterations (which requires
an O(logB)-bits counter), in each of which it simulates or backward simulates M using 2O(s) time
and O(s) space. Therefore, both DetComp and DetDecomp run in poly(2s, B) time and require
O(s+ logB) workspace.

An immediate corollary of Theorem 3.1 is that CL is contained in LOSSY. Recall that LOSSY
is the class of languages reducible to the total search problem LossyCode [Kor22].

Definition 1.5. The complexity class LOSSY is defined as the languages that are polynomial-time
reducible to the following total search problem called LossyCode: Given a pair of Boolean circuits
C : {0, 1}n → {0, 1}n−1 and D : {0, 1}n−1 → {0, 1}n, find some x ∈ {0, 1}n such that D(C(x)) ̸= x.

Theorem 1.6.
CL ⊆ LOSSY(⊆ ZPP).

Proof. Let L ∈ CL and M be a catalytic machine using s := s(n) = O(log n) bits of workspace
that decides L. By Theorem 3.1 with B = 1, we can obtain the catalytic subroutines DetComp
and DetDecomp that runs in worst-case poly(2O(logn)) = poly(n) time. This implies that there are
polynomial-time algorithms DetComp′ and DetDecomp′ such that:
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• DetComp′(x,w) takes x ∈ {0, 1}n and a catalytic tape configuration of length 2s and simulates
DetCompw(1, x). It outputs 02

s−1 if DetCompw(1, x) does not output ⊥, and otherwise it
outputs the first s− 1 bits of the catalytic tape after the simulation.

• DetDecomp′(x,w′) takes x ∈ {0, 1}n and a stringw′ of length 2s−1. It simulates DetDecompw
′◦0(1, x)

and outputs the catalytic tape of D after the simulation.

Our reduction from L to LossyCode works as follows: Given any input x ∈ {0, 1}n, it constructs
(by standard transformation of algorithms to circuits) a pair of circuits computing DetComp′(x, ·) :
{0, 1}2s → {0, 1}2s−1 and DetDecomp′(x, ·) : {0, 1}2s−1 → {0, 1}2s .

Let w∗ be a solution to the LossyCode instance (DetComp′(x, ·),DetDecomp′(x, ·)), i.e.,

DetDecomp′(x,DetComp′(x,w∗)) ̸= w∗.

By the correctness of the catalytic subroutines DetComp and DetDecomp (see Theorem 3.1), we
know that DetCompw

∗
(1, x) outputs L(x). We can then simulate DetCompw

∗
(1, x) in polynomial-

time and outputs the answer.

3.2 Structural Results for CL and CLP

We now use our compression algorithm in Theorem 3.1 to prove Theorem 1.2, our main structural
result for time-bounded catalytic computing.

Theorem 3.2. For all space constructible function s := s(n) ≥ log n and logspace constructible
function t := t(n) ≥ n,

CTISP
[
2O(s) · tO(1), s+ log t

]
= CSPACE [s+ log t] ∩DTIME

[
2O(s) · tO(1)

]
.

In particular, CLP = CL ∩ P.

Proof. Fix any s := s(n) ≥ log n and t(n) ≥ n. The forward containment is immediate from the
definitions, so it suffices to prove the other direction.

Let L ∈ CSPACE [s+ log t] ∩ DTIME
[
2O(s) · tO(1)

]
, M be a CSPACE [s+ log t] machine that

decides L, and M ′ be a (possibly space inefficient) machine with running time O(tk · 2k·s) that
decides L for some constant k ≥ 1. We describe a catalytic machine for L as follows. We first
simulate the machine DetComp of Theorem 3.1 for M with input (x, 12

(k+1)s·tk+1
).

• If DetComp returns a value rather than ⊥, we return that value and halt, where by The-
orem 3.1 the catalytic tape has been successfully reset and the machine decides whether
x ∈ L.

• Otherwise, we run the machine M ′ on the last 2(k+1)s · tk+1 bits on the catalytic tape (which
are all zero after running C). It decides whether x ∈ L; we store the result on the work tape,
set the last 2(k+1)s · tk+1 bits on the catalytic tape back to all zero, and call the decompres-
sion algorithm DetDecomp with input (x, 12

(k+1)s·tk+1
). By the correctness of DetComp and

DetDecomp, the catalytic tape will be reset, and we can decide whether x ∈ L.

Recall that both DetComp and DetDecomp run in time

poly(2s, 2(k+1)s · tk+1) = 2O(s) · tO(1)
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time and use workspace

O
(
s+ log t+ log

(
2(k+1)s · tk+1

))
= O(s+ log t).

This shows that our catalytic machine runs in 2O(s) · tO(1) time and uses O(s + log t) workspace
simultaneous, which implies that L ∈ CTISP

[
2O(s) · tO(1), s+ log t

]
.

From Theorem 3.2 we immediately obtain multiple corollaries.

Corollary 1.3.
CL ⊆ P ⇐⇒ CL = CLP.

Proof. Suppose that CL ⊆ P, we know by Theorem 3.2 that CLP = CL ∩ P = CL. On the other
hand, CL = CLP immediately implies that CL ⊆ P as CLP ⊆ P.

Corollary 1.4.
ZPP = P =⇒ CL = CLP.

Proof. Suppose that ZPP = P, we know that CL ⊆ ZPP ⊆ P. This immediately implies that
CL = CL ∩ P = CLP.

Corollary 1.7.
LOSSY = P =⇒ CL = CLP.

Proof. Suppose that LOSSY = P, we know that CL ⊆ LOSSY ⊆ P (see Theorem 1.6). This
immediately implies that CL = CL ∩ P = CLP.

3.3 A New Uniform Upper Bound for CL

We now use the proof of Theorem 3.2 to obtain the first half of Theorem 1.8. Our only change will
be to no longer assume that we are dealing with a language in P, but rather in ZPP. Buhrman et
al. [BCK+14] showed that in fact such a containment holds without any further assumptions:

Theorem 3.3 ([BCK+14]). For all space constructible functions s := s(n) ≥ log n,

CSPACE [s] ⊆ ZPTIME
[
2O(s)

]
.

In particular, CL ⊆ ZPP.

This is sufficient to prove the forward direction of Theorem 1.8.

Theorem 3.4. For all space constructible functions s := s(n) ≥ log n,

CSPACE [s] ⊆ CZPTISP
[
2O(s), s

]
In particular, CL ⊆ CZPLP.

Proof. Let L ∈ CSPACE [s] and M be a catalytic O(s)-space machine that decides L. Thus by
Theorem 3.3 we know that L ∈ ZPTIME

[
2O(s)

]
. Let M ′ be the (possibly space inefficient) zero-

error probabilistic machine that decides L in time O(2k·s) for some constant k.
Consider the following probabilistic catalytic machine for L. Given any input x, we first simulate

the machine DetComp of Theorem 3.1 for M with input (x, 12
2k·s

).
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• If DetComp returns a value rather than ⊥, we return that value and halt. Note that by
Theorem 3.1 the catalytic tape has been successfully reset and DetComp decides whether
x ∈ L.

• Otherwise, we run the zero-error probabilistic machineM ′ on the last 22k·s bits on the catalytic
tape (which are all zero after running DetComp). This is possible as we can probe sufficiently
many random bits, store them on the catalytic tape, and simulateM ′ using the stored random
bits. It stores the output of M ′ (which is in {0, 1,⊥}), set the last 2(k+1)s bits on the catalytic

tape back to all zero, and call the decompression algorithm DetDecomp with input (x, 12
(k+1)s

)
to reset the catalytic tape. Then we output the stored output value of M ′.

Note that in the former case, our algorithm decides whether x ∈ L with certainty; in the latter
case, our algorithm simulates M ′ so that it never makes mistake and outputs ⊥ with a negligible
probability. This concludes the correctness of the algorithm.

It is clear that both DetComp and DetDecomp run in time poly(2s) and use O(s+log(2O(s))) =
O(s) workspace. Therefore, the algorithm runs in time 2O(s) and uses O(s) workspace simultaneous,
which implies that L ∈ CZPTISP

[
2O(s), s

]
.

4 Derandomizing CBPL

Our second set of results will be on derandomization for catalytic computation.

Theorem 4.1. For all space constructible functions s := s(n) ≥ log n,

CBPSPACE [s] ⊆ CSPACE [s]

In particular, CBPL ⊆ CL.

We require two sets of tools to prove Theorem 4.1: 1) subroutines to manipulate the configura-
tion graphs of randomized catalytic algorithms; and 2) tools from pseudorandomness to generate
random walks, and compress if these walks are non-random. The first was discussed in Section 2.3.2,
while we address the latter shortly.

Throughout this section, let s := s(n) ≥ log n be a space constructible function and M be
a CBPSPACE [s] machine deciding a language L. Without loss of generality, we assume that M
probes a random bit in each step of its execution. As with Theorem 3.4, we will need a uniform
upper bound on CBPL in order to complete the proof, which was provided by Datta et al. [DGJ+20]:

Theorem 4.2 ([DGJ+20]). For all space constructible functions s := s(n) ≥ log n,

CBPSPACE [s] ⊆ ZPTIME
[
2O(s)

]
.

In particular, CBPL ⊆ ZPP.

This will be necessary for handling the compression case; in fact we will only need the weaker
statement that CBPSPACE [s] can be computed in SPACE

[
2O(s)

]
.

Proof of Theorem 4.1. Let L ∈ CBPSPACE [s], let M be a randomized space s catalytic machine
deciding L, and let G be the configuration graph of M . Let S := 2s. Let sL ≤ 2O(s) be such that
L can be computed in SPACE [sL], where the bound follows from Theorem 4.2.

Our approach will be similar to that of Theorem 1.2, but rather than compress the timestamp
along one path, we will compress based on the number of configurations seen along many paths,
obtained from a set of random walks.
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Definition 4.3. For a randomized configuration graph Gx, initial configuration start(w), and col-
lection of walks Y ⊆ {0, 1}m, we define the subgraph of states in G reached by walks in Y as follows.
Let Y := Y(w, Y ) be the graph with vertex set (which we abuse notation and denote Y)9{

(w′, v) ∈ G : ∃y ∈ Y, i ∈ N s.t. G[start(w), y≤i] = (w′, v)
}
∪ {⊥}.

where ⊥ is an auxiliary state which we define subsequently. Next, we define the transition function
on Y as follows.

Y[(w, v), b] :=

{
G[(w, v), b] G[(w, v), b] ∈ Y
⊥ o.w.

In words, all edges internal to Y are retained, and all edges that leave Y are routed to a new dummy
state ⊥.

As an analogue of Theorem 3.1, we can efficiently compress the catalytic tape only using the
fact that the explored graph via a collection Y of walks is sufficiently large.

Theorem 4.4. There are catalytic subroutines Size,RandComp,RandDecomp that work as follows.
For every x ∈ {0, 1}n, collection of walks Y ⊆ {0, 1}m, and catalytic tape w of size 2s, let Y :=
Y(w, Y ). There is a bijection f : Y → [|Y|] such that:

• Sizew(x, Y ) outputs |Y| without changing the catalytic tape.

• RandCompw(x, i, Y ) sets the catalytic tape to w′ and returns v′, where f((w′, v′)) = i.

• RandDecompw
′
(x, v′, Y ) sets the catalytic tape to w and returns i := f((w′, v′)).

Moreover, all subroutines use O(s+ log |Y |) additional workspace.

Unlike in Theorem 3.1, we have no immediate guarantees if our compression fails, i.e. if the set
Y is small. We will require a second algorithm, which will follow the classic “compress-or-random”
argument of previous works. This no longer follows from a simple condition on the size of Y ; we
will require a well-structured set of walks generated from the output of a pseudorandom generator,
which we later recall.

Theorem 4.5 (Deciding Small Configuration Graphs). There is a catalytic subroutine Small such
that, under the promise that |Y(w, Y )| < 2S, we have

Smallw◦m1◦...◦m2S (x) = L(x)

(where Y is to be defined later in terms of m1 ◦ . . . ◦m2S, such that Y can be output in space O(s)
given read-only access to m1 ◦ . . . ◦m2S) and moreover Small uses additional workspace O(s).

We prove Theorem 4.4 and Theorem 4.5 in the subsequent subsections. First, however, we use
them to prove Theorem 4.1. At a high level, our goal is to create a CSPACE [s] machine M ′ that
decides L. At each step we attempt find a configuration graph of sufficiently large size, in which
case we use the algorithm RandComp of Theorem 4.4 to compress an additional bit. If this continues
for enough rounds, then we use the deterministic algorithm for L in the free space; if not, then we
must eventually have only configuration graphs of small size, in which case we use the algorithm
Small of Theorem 4.5. Whichever case occurs, at the end we reset all bits compressed using the
algorithm RandDecomp of Theorem 4.4 and return the answer L(x).

9Statements like (w′, v) ∈ Y (as used in the compression loop) exclusively refer to the vertex set of Y excluding
the dummy state ⊥.
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Initialization. Let k ← 0 be our counter for the number of bits compressed thus far. We start
in the compression loop.

The Compression Loop. We interpret the catalytic tape as

wk = (w ◦ i ◦ z ◦ 0k ◦m1 ◦ . . . ◦m2S)

where w has length 2s, i has length s+1, and z has length sL−k. Recall that Y(w, Y ) is the set of
configurations reached using every possible PRG output as a random string, and Y is computable
in logspace given read-only access to m1 ◦ . . . ◦m2S . We call the catalytic subroutine Sizew(x, Y )
in Theorem 4.4 to computes |Y| then break into two cases:

• The Small Graph Case. If |Y| < 2S, we call the subroutine Smallw◦m1◦...◦m2S (x) of Theo-
rem 4.5, which returns L(x). We then move to the decompression loop.

• The Large Graph Case. If |Y| ≥ 2S, we call the algorithm RandCompw(x, i, Y ) of The-
orem 4.4, which returns v and leaves the first section of wk in configuration w′. We then
overwrite wk with

wk+1 = (w′ ◦ v ◦ z ◦ 0k+1 ◦m1 ◦ . . . ◦m2S)

which can be done by replacing the first s bits of i with v and erasing the last bit, then left
shifting z (such that (v ◦ z1) will be parsed as the time index in the next stage of the loop).
We then increment k and return to the start of the compression loop.

If the counter k reaches sL, we use the SPACE [sL] algorithm for L on the work tape 0k = 0sL .
After this machine returns L(x), we store L(x), set this section of the tape to 0n, and move to the
decompression loop which will reset the catalytic tape.

The Decompression Loop. At the start of every iteration of the decompression loop, the current
configuration of the first section of the catalytic tape is

wk = (w′ ◦ v ◦ z ◦ 0k ◦m1 ◦ . . . ◦m2S)

for k ≤ sL. If k = 0 then we end the algorithm and return the stored value of L(x); otherwise we
call the algorithm RandDecomp of Theorem 4.4 with RandDecompw

′
(x, v, Y ), which returns i and

leaves the first section of wk in configuration w. We then overwrite wk with

wk−1 = (w′ ◦ i ◦ z ◦ 0k−1 ◦m1 ◦ . . . ◦m2S)

which can be done by right shifting z, then replacing v ◦ 0 with i. We then decrement k and return
to the start of the decompression loop.

Correctness. It is clear that we correctly decide the language, and every string wk in the com-
pression case is identical to the same string wk from the decompression case, and so we successfully
reset the catalytic tape.

We also analyze the space usage of our algorithm. All subroutines in both the compression and
decompression loop can be executed in space O(s), and at the end of each iteration we can erase
everything on the free work tape besides i and k, and thus our algorithm runs in free workspace
O(s). Lastly our catalytic tape needs to store w, i, 0k, and m1 ◦ . . . ◦m2S ; since all of these strings
have length at most 2O(s), our algorithm is a CSPACE [s] algorithm as required.
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4.1 The Large Graph Case

We first handle Theorem 4.4, showing that a similar timestamp compression to Theorem 3.1 can
be achieved.

Proof of Theorem 4.4. Let ℓ := |Y |. We order the sub-strings of Y as follows. First, order Y in
any efficiently comparable order (e.g., in lexicographic order) as (y1, . . . , yℓ) = Y . Let yji = (yi)≤j
be the j-bit prefix of yi. Let z1, z2, . . . , zmℓ be the strings in this order:

y11, . . . , y
m
1 , y12, . . . , y

m
2 , . . . , y1ℓ , . . . , y

m
ℓ .

Let (wk, vk) := G [start(w), zk] be the configuration reached by the walk zk. Clearly Y = {(wk, vk)}k∈[mℓ].
Note that there might be k1 ̸= k2 such that (wk1 , vk1) = (wk2 , vk2).

We define the mapping f : Y → [|Y|] as follows: For each (wk, vk) ∈ Y, let k′ be the smallest
number such that (wk′ , vk′) = (wk, vk), and define f((wk, vk)) := |{(wj , vj) | j ∈ [k′]}|. Note that
{(wj , vj) | j ∈ [k′]} is the set of preceding states (in particular, it is not a multi-set). That is, if we
remove all but the first appearance of σ in the list (w1, v1), . . . , (wmℓ, vmℓ), f(σ) is defined to be
its rank in the list.

Let
First(zk) :=

∧
k′<k

I [(wk′ , vk′) ̸= (wk, vk)]

be the predicate that zk is the first string in the ordering to reach the state (wk, vk). Note that we
can determine this using the catalytic algorithm EQ in Lemma 2.11 without changing the contents
of the catalytic tape.

Size counter and compression. Now we describe the subroutines Sizew(x, Y ) and RandCompw(x, i, Y ),
both follow from an iterative procedure.

Let start(w) be an initial configuration for M , we initialize a counter i′ ← 0, which counts
how many elements of Y it has seen so far, as well as another counter k ← 1. The iterative
procedure maintains the invariant that at the beginning of each iteration, the size of the set
{(w1, v1), . . . , (wk−1, vk−1)} is i′, until k > mℓ.

• If First(zk) does not hold, we increment k and continue.

• If First(zk) holds and i′ = i, by the definition of f we know that f(wk, vk) = i. The compres-
sion subroutine RandCompw(x, i, Y ) sets its catalytic tape to wk and computes vk by calling
the subroutine RandWalkw(x, 0, zk) in Theorem 2.10, halts, and returns vk.

• Otherwise, we increment i′ and continue.

At the end, we know that i′ = S. Therefore, the size counting subroutine Sizew(x, 0s, zk) sim-
ply outputs i′ and halts. The correctness follows directly from the invariant, and the additional
workspace used by both algorithms is bounded by O(s+log |Y |) to call RandWalkw in Theorem 2.10
and store the counters i′ and k. See Algorithms 7 and 8 for the pseudocode of Size and RandComp
respectively.

Decompression. We now describe the decompression subroutine RandDecompw
′
(x, v′, Y ). Note

that (w′, v′) ∈ Gx is a configuration of M . By the compression algorithm, there is a k ∈ [mℓ] such
that (w′, v′) = (wk, vk) and First(zk) is true. We know by the definition of f that the decompression
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subroutine should return the size of the set {(w1, v1), . . . , (wk, vk)} (again note that we consider
this as a set, not a multiset) and resets the catalytic tape to w.

We enumerate over k and run the subroutine RandRevw
′
(x, v′, r) in Theorem 2.10 with r := zk.

If the algorithm accepts, we know that (w′, v′) = (wk, vk) and First(zk) is true; we store this value
of k on the work tape. Otherwise, we increment k and continue, and in which case, the catalytic
tape will be reset to w′ by Theorem 2.10.

Once we have such a k, we know that the catalytic tape is set to w by Theorem 2.10. There-
fore, the subroutine RandDecomp simply performs the iterative procedure used by RandComp and
Size (which does not change the contents of the catalytic tape) to determine the size of the set
{(w1, v1), . . . , (wk, vk)}, returns the size, and halts. The correctness and space complexity analysis
is straightforward. See Algorithm 9 for the pseudocode of RandDecomp.

4.2 The Small Graph Case

We now handle the case of small graphs, i.e. Theorem 4.5, which will complete our proof. To do
so, we actually specify how we will produce Y : We recall a PRG of [DPT24] with deterministic
approximate reconstruction. We first formally define a previous bit predictor:

Definition 4.6. A function P : {0, 1}m → {0, 1} is an ε-previous bit predictor for a distribution D
over {0, 1}n (for n > m) if

Pr
x←D

[P (x>n−m) = xn−m] ≥ 1

2
+ ε.

We then recall the PRG:

Theorem 4.7. There are universal constants cNW > 1 and c > 0 such that the following holds.
There is an algorithm NW computing

NWf : {0, 1}O(logN) → {0, 1}N

such that for any f ∈ {0, 1}NcNW , we have the following:

1. Efficiency. When given τ ∈ {0, 1}O(logN) and oracle access to f , the generator runs in space
O(logN) and outputs an N -bit string NWf (τ).

2. Deterministic Reconstruction. There are deterministic space O(logN) algorithms Hint,Decode
that act as follows.

• Hint, given oracle access to f and oracle access to a (1/N2)-previous bit predictor P for
NWf , returns h ∈ {0, 1}O(logN) and (the endpoints of) an interval K ⊆ [N cNW ] of length
N c.

• Decode, given oracle access f̃ such that f̃K̄ = fK̄ and oracle access to P , satisfies for
every j ∈ K:

Decodef̃ ,P (h, j) = fj .

The result is not written in this fashion in [DPT24], but can be adapted to have this form. We
provide a formal proof from their result in Appendix A.

Proof of Theorem 4.5. We interpret our catalytic tape as

(w ◦m1 ◦ . . . ◦m2S).
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where w has length 2s and each mi has length 2O(s) (to be set shortly). Next, for every i ∈ [2S] let

Gi := NWmi : {0, 1}O(s) → {0, 1}2S

be the generator of Theorem 4.7 with N := max
{
2S, s

1/c
L

}
(recall that sL ≤ 2O(s) is the de-

terministic space complexity of L), and observe that we can set |mi| = N cNW = 2O(s). Finally
let

Yi := Gi(U), Y<i :=
⋃
j<i

Yj

Note that each Y<i can be produced in logspace given read-only access to m1 ◦ . . . ◦mi−1.
For a catalytic tape w of length 2s, recall that Y := Y(w, Y ) is configuration subgraph reachable

using strings in Y as randomness. Let Y<i := Y(w, Y<i) be the subgraph reached by the output of
the first i− 1 PRGs, and Yi := Y(w, Yi) be the subgraph reached by the output of Gi.

Our goal is to either compress some string mi using Theorem 4.7 or to use the walks Y to
estimate the acceptance probability of our CBPL machine for L.

As we need to retain access to each candidate predictor after compressing the PRG, we wish to
identify a PRG Gi whose output lies entirely inside the explored graph of the previous i− 1 PRGs.
Because there are 2S sets Yi and ∣∣∣∣∣∣

⋃
i∈[2S]

Yi

∣∣∣∣∣∣ = |Y(w, Y )| < 2S,

there must exist some i where Yi ⊆ Y<i, and moreover we can determine this index efficiently:

Claim 4.8. There is a catalytic machine Pigeon using s(n) workspace such that Pigeonw◦m1◦...◦m2S (x)
returns i such that Yi ⊆ Y<i.

Proof. We instantiate a counter i = 1. For each value of this counter, we test if for every y ∈ Yi
and prefix y< of y if there exists a z ∈ Y<i with some prefix z< such that

Gx[start(w), y<] = Gx[start(w), z<]

We can test this via the catalytic subroutine EQw of Lemma 2.11 for any fixed y<, z<, both of
which can be computed in logspace given access to (m1 ◦ . . . ◦mi) by Theorem 4.7.

Overall Pigeon will act as follows. We loop over all y and prefix y< of y, for which we will
attempt to test this condition. Given y<, Pigeon tests every z< until we find G[start(w), y<], in
which case we move to the next prefix y<; if we exhaust all prefixes z< without finding our current
state G[start(w), y<], we increment i, reset our catalytic tape, and start over. If we find a prefix z<
for each prefix y< such that this property holds, then we reset our catalytic tape and return the
current value of i. See Algorithm 10 for the pseudocode of Pigeon.

For the remainder of the proof, let i be the value returned by Claim 4.8, and define

U := Y<i.

Note that U ⊇ Yi by the guarantee of Claim 4.8. We now attempt to compress the i-th PRG, and
if we fail to do so we derandomize. We instantiate a family of candidate previous-bit predictors,
derived from two distinguishers. Let

L1(r) := I [U [start(w), r] =⊥]
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be the test function that determines if a walk leaves U . Recall that in U , all edges that would leave
to states outside U instead route to a dummy state ⊥. Moreover, let

L2(r) := I [U [start(w), r] = acc(w)]

be the test function that determines if a walk stays entirely inside U and reaches the accepting
configuration. Note that as U is acyclic (except possibly for the states halt(w, b)) and by assumption
has size at most 2S, we may assume that L1 and L2 take exactly 2S bits of input, and hence their
composition with Gi is well defined.

Both functions can be computed catalytically without access to mi, as we do not need to retain
access to the i-th PRG. This is the reason we identify a PRG with output that does not explore
new states.

Claim 4.9. There are catalytic machines A1, A2 such that

A
w◦m1◦...◦mi−1

1 (r) = L1(r), A
w◦m1◦...◦mi−1

2 (r) = L2(r)

that use O(s+ log |r|) workspace.

Proof. We first determine if the walk specified by r ever leaves the graph U (i.e. L1(r)). Note that
this is equivalent to the (negation of the) predicate that for every prefix r< of r, there exists a
prefix y< of y in ⋃

k∈[i−1]

Gk(U)

such that
G[start(w), r<] = G[start(w), y<],

hence as G[start(w), y<] ∈ U by definition, r< ends inside U . Thus, to determine L1 we enumerate
over prefixes r< in logspace, and then enumerate over y< using that the generators are computable
in logspace given (m1 ◦ . . . ◦mi−1). We then apply the algorithm of Lemma 2.11 with r = r<,
r′ = y<, which computes the desired information catalytically.

Finally, note that for every r where L1(r) = 0, we have that L2(r) = I [G[start(w), r] = acc(w)],
and so A2 runs A1 and accepts iff we never leave U and reach final state acc(w). See Algorithms 11
and 12 for the pseudocode of A1 and A2 respectively.

Using these tools, we now move on to our overall algorithm Small for Theorem 4.5. First, we
use Pigeon from Claim 4.8 to identify an i for which we will attempt to compress the i-th PRG.
This will be stored on our work tape for the remainder of the algorithm, using logB = O(s) bits.

In order to apply Theorem 4.7, we build a family of candidate previous-bit predictors for Gi.
Each will be defined by a prefix generated by a prior PRG Gk ∈ {G1, . . . , Gi−1} plus a seed τ for
Gk, which we then run up to a cutoff point l1; after this prefix, we use the suffix of r starting at l2.
Formally, let

P =
{
Pa,v=(b,k,j,l1,l2)(r) : a ∈ {1, 2}, b ∈ {0, 1}, k ∈ [i− 1], τ ∈ {0, 1}O(s), ℓ1 ∈ [2S], ℓ2 ∈ [2S]

}
be the family of potential predictors where

Pa,v=(b,k,τ,l1,l2)(r) = La((Gk(τ))≤l1 ◦ r>l2)⊕ b

and note that v can be described with O(s) bits, and moreover each candidate predictor can be
evaluated catalytically using Claim 4.9:
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Claim 4.10. There is a catalytic machine Pred satisfying

Predw◦m1◦...◦mi−1(a, v, r) = Pa,v(r)

that uses O(s+ log |r|) workspace.

Using Claim 4.10, Small enumerates over a ∈ {1, 2} and v ∈ {0, 1}O(s), and computes

αa,v = Pr
x←Gi(U)

[Pa,v(x>j) = xj ]− 1/2.

If αa,v < 1/N2 for every (a, v), we move to the compute case, and otherwise we move to the walk
compress case for any (a, v) satisfying αa,v ≥ 1/N2. We describe each subroutine in turn now.

The Compute Case. Given that αa,v < 1/N2 for every (a, v), we compute

ρ = E[U [start(w), Gi(U)]].

If ρ > 1/2 we determine L(x) = 1, and otherwise we determine L(x) = 0. Recall that G denotes
the configuration graph on input x, which satisfies

E[G[(w, 0s),U] = acc(w)] ∈

{
[0, 1/3), L(x) = 0

(2/3, 1], L(x) = 1

and thus the correctness of our algorithm is given by the following lemma:

Lemma 4.11. Suppose αa,v < 1/N2 for every a, v. Then

|E[U [start(w), Gi(U)] = acc(w)]− E[G[start(w),U] = acc(w)]| ≤ 2

N

and hence we correctly decide the language.

Proof. We have

|E[U [start(w), Gi(U)] = acc(w)]− E[G[start(w),U] = acc(w)]|
≤ |E[U [start(w), Gi(U)] = acc(w)]− E[U [start(w),U] = acc(w)]|+
|E[U [start(w),U] = acc(w)]− E[G[start(w),U] = acc(w)]|

≤ |E[U [start(w), Gi(U)] = acc(w)]− E[U [start(w),U] = acc(w)]|+ L1(U)

= |E[L2(Gi(U))]− E[L2(U)]|+ |E[L1(Gi(U))]− E[L1(U)]|.

where the second inequality follows as any walk on which U and G reach different locations must
leave U , and the equality follows as Gi does not hit L1 and hence E[L1(Gi(U))] = 0.

For a ∈ {1, 2}, define ρa := |E[La(Gi(U))]−E[La(U)]|; thus it is enough to show that ρa < 1/N
to complete our proof. We will require a statement of Yao’s Lemma [Yao82]:

Lemma 4.12. For every function f : {0, 1}N → {0, 1} and distribution D supported over {0, 1}N ,
define ρ := |E[f(UN )]− E[f(D)]|. Then there exists j ∈ [N ], z ∈ {0, 1}j, and b ∈ {0, 1} such that

Pr
x←D

[f(z ◦ x>j)⊕ b = xj ] ≥
1

2
+

ρ

N
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Applying Lemma 4.12, if ρa ≥ 1/N then there exists z ∈ {0, 1}j , j ∈ [2S], b ∈ {0, 1} such that

Pr
x←Gi(U)

[La(z ◦ x>j)⊕ b = xj ] ≥
1

2
+

1

N2

Recall that αa,v < 1/N2 for all a, v, which means that for a, j, and b as above and any k, τ , and
ℓ, we have

Pr
x←Gi(U)

[La((Gk(τ))≤ℓ ◦ x>j)⊕ b = xj ] <
1

2
+

1

N2
.

Thus it suffices to show that for every z ∈ {0, 1}j , we have that there are k, τ , and ℓ such that

La(z ◦ x>j) ≡ La((Gk(τ))≤ℓ ◦ x>j)

where ≡ denotes equality as functions of the input x>j .
Following [DPT24], observe that walking according to z reaches a state vz ∈ U (and vz ̸=⊥, as

otherwise the predictor would output the same value on every input). But then there is some k
and seed τ and timestep ℓ such that U [start(w), (Gk(τ))ℓ] = vz, so we are done.

The Walk Compress Case. We now assume that we have found some (a, v) such that Pa,v

predicts Gi with advantage at least 1/B. By Claim 4.10, we have access to an algorithm Pred
for computing Pa,v which never accesses mi. Recall that we also have access to a deterministic
SPACE [sL] algorithm for computing L.

We run the algorithm Hint of Theorem 4.7 with f = mi and P = Pa,v, and obtain h ∈ {0, 1}O(s)

and the indices of a subinterval K ⊆ [N cNW ] of size N c ≥ sL (using that N ≥ s
1/c
L ), both of which

we store on the work tape. We then set (mi)K = 0sL , and run the SPACE [sL] algorithm of M
using this workspace. Once this algorithm halts, we store the answer on the work tape and move
to restore mi. Letting m′i be the modified section of catalytic tape, and recalling that we have h
stored on our work tape, we run the algorithm of Decode of Theorem 4.7 with

h = h, f̃ = m′i, P = Pa,v

and for every index j ∈ K, we use Decode to compute (mi)j and write it to the catalytic tape.
Since no other sections of the catalytic tape were altered, this completes the restoration, and note
that our work tape stores at most

|h|+ logN + 1 = O(s)

bits of information on the free work tape. This completes the description of Small, the proof of
Theorem 4.5, and with it the proof of Theorem 1.1.

4.3 Implications

An easy corollary of Theorem 4.1 is the following converse to Theorem 3.4, which finishes the proof
of Theorem 1.8.

Theorem 4.13. For all space constructible functions s := s(n) ≥ log n,

CZPTISP
[
2O(s), s

]
⊆ CSPACE [s]

In particular, CZPLP ⊆ CL.
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Proof. By Theorem 4.1 and basic closure properties we have

CZPTISP
[
2O(s), s

]
⊆ CZPSPACE [s]

⊆ CBPSPACE [s]

⊆ CSPACE [s] .

The same equations, combined with Theorem 3.4, give us Corollary 1.9, which is our last result.

Theorem 4.14. For all space constructible functions s := s(n) ≥ log n,

CZPTISP
[
2O(s), s

]
= CZPSPACE [s]

In particular, CZPL = CZPLP.

Proof. The forward inclusion is immediate. For the reverse inclusion, by Theorem 4.1 and Theo-
rem 3.4 we have

CZPSPACE [s] ⊆ CBPSPACE [s]

⊆ CSPACE [s]

⊆ CZPTISP
[
2O(s), s

]
.
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A An Instantiation of the Doron–Pyne–Tell PRG

We recall the precise statement in that work.

Theorem A.1 (Theorem 8.1 [DPT24]). There is a universal constant cNW > 1 such that the
following holds. There is an algorithm NW computing

NWf : {0, 1}O(logN) → {0, 1}N

such that for any f ∈ {0, 1}NcNW , we have the following:

1. Efficiency. When given s ∈ {0, 1}O(logN) and oracle access to f , the generator runs in space
O(logN) and outputs an N -bit string NWf (s).

2. Deterministic Reconstruction. There are deterministic space O(logN) algorithms R, T, F
that act as follows.

• R, given oracle access to f and oracle access to a (1/N2) previous bit predictor P for
NWf , outputs h ∈ {0, 1}O(logn). Moreover, there is a subset K ⊆ {0, 1}NcNW of size
N cNW/100 that satisfies the following.
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• T , given h ∈ {0, 1}O(logn) and i ∈ [N cNW ], determines if i ∈ K.

• F , given h ∈ {0, 1}O(logn) and oracle access to f̃ such that f̃K = fK and oracle access
to P , satisfies

Pr
j∈[NcNW ]

[F h,f̃ ,P (j) = fj ] ≥ 1−N−c
′

for a constant c′ > 0. Moreover, F only queries f̃ at locations in K.

We then transform the algorithm as follows:

Theorem 4.7. There are universal constants cNW > 1 and c > 0 such that the following holds.
There is an algorithm NW computing

NWf : {0, 1}O(logN) → {0, 1}N

such that for any f ∈ {0, 1}NcNW , we have the following:

1. Efficiency. When given τ ∈ {0, 1}O(logN) and oracle access to f , the generator runs in space
O(logN) and outputs an N -bit string NWf (τ).

2. Deterministic Reconstruction. There are deterministic space O(logN) algorithms Hint,Decode
that act as follows.

• Hint, given oracle access to f and oracle access to a (1/N2)-previous bit predictor P for
NWf , returns h ∈ {0, 1}O(logN) and (the endpoints of) an interval K ⊆ [N cNW ] of length
N c.

• Decode, given oracle access f̃ such that f̃K̄ = fK̄ and oracle access to P , satisfies for
every j ∈ K:

Decodef̃ ,P (h, j) = fj .

Proof. We pass through all parameters to Theorem A.1. Then the new algorithms Hint,Decode
work as follows. For Hint, we run the algorithm R with f and oracle access to P and obtain
h ∈ {0, 1}O(logn), which we return. Next, we attempt to idenfity a subinterval K ′ of length N c for
c to be chosen later such that for every j ∈ K ′:

• j /∈ K (which we can test in logspace using the algorithm T of Theorem A.1).

• The algorithm F decodes correctly at that location. Note that F only queries f̃ at locations
in K, so to determine this we can run the algorithm with f̃ = f and determine if the returned
value matches the actual value.

Once we have found such an interval, we return the start and end indices. Then our algorithm

Decode on input j returns F h,f̃ (j), and by our construction of K it is clear that we have the desired
behavior.

We claim that such a subinterval exists with polynomial length. Note that K is of size N cNW/100

and the set of indices that are decoded incorrectly is of size N cNW−c′ for a constant c′. Thus the set
of excluded indices is at most N cNW−c′ +N cNW/100 ≤ N cNW−c′+1, so there is a subinterval of length
at least N c for a constant c > 0.
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B Manipulating Deterministic Configuration Graphs

We prove Theorem 2.7 in two stages. We first define the bijection and show how to take single
steps over it, then show how to use these subroutines to obtain the final result.

Lemma B.1. For every space s catalytic machine M computing a language L, there exist two
catalytic subroutines M→,M← that run in worst-case time poly(n) and work as follows. Let Gx be
the configuration graph of M on input x. Then there exists a bijection

Π : Gx × {0, 1} → Gx × {0, 1}

so that for every w, the sequence

(start(w), 0),Π[start(w), 0],Π2[start(w), 0], . . .

includes (halt(w, b), 0) = ((w, b1s−1), 0), where b = L(x), and does not include (start(w′), 0) for
any w′ ̸= w or (halt(w′, b′), 0) for any w′ ̸= w or b′ ̸= L(x). Moreover:

• Mw
→(x, v, a) sets the catalytic tape to w′ and returns v′, a′, where ((w′, v′), a′) = Π[(w, v), a].

• Mw
←(x, v, a) sets the catalytic tape to w′ and returns v′, a′, where ((w′, v′), a′) = Π−1[(w, v), a].

We can then use this lemma (with the same function Π) to prove the result:

Proof of Theorem 2.7. The bijection Π given by Lemma B.1 defines a path connecting (start(w), 0)
to (halt(w, L(x)), 0) in the graph Gx × {0, 1}. DetWalk explores the first k steps of that path by
invoking M→ for up to k steps.

If DetWalk encounters a node of the form (halt(w′, b), 0), it halts and returns b (which we can
be sure equals L(x)), leaving the catalytic tape set to w′ (which we can be sure equals w).

Otherwise, DetWalk returns the pair (v′, a′) returned by the k-th invocation of M→. At this
point, ((w′, v′), a′) = Πk[start(w), 0] (where w′ is the final state of the catalytic tape after the k-th
invocation of M→).

Finally, DetRev follows the same path backward by invoking M← instead of M→. It stops when
it encounters a node of the form (start(w′), 0) (we can be sure w′ = w) and returns the number of
steps taken. Since the path followed by Π contains no start nodes other than (start(w), 0), we can
be sure that DetRev stops at start(w) after exactly k steps.

To prove Lemma B.1, we recall a folklore result:

Proposition B.2 (Folklore ). There are deterministic catalytic subroutines InDegree, InEdge, Rank
using O(s) additional workspace that works as follows. Let x ∈ {0, 1}n be an input of M and
(w, v) ∈ Gx be a configuration.

• InDegreew(v) returns the number of configurations (w′, v′) such that Γ(w′, v′) = (w, v), with
read-only access to the catalytic tape w.

• InEdgew(v, i) updates the catalytic tape to w′ and returns v′, where (w′, v′) is the i-th node
such such that Γ(w′, v′) = (w, v) with respect to a consistent ordering.

• OutEdgewM (v) updates the catalytic tape to w′ and returns v′, where (w′, v) = Γ(w, v).

• Rankw
′
(v′) returns the rank of the node (w′, v′) in the list Γ−1(w, v), where (w, v) := Γ(w′, v′),

with read-only access to the catalytic tape w′.

Proof of Lemma B.1. The machines work as follows. We use the machines of Proposition B.2 to
traverse the configuration graph as an Eulerian tour. We maintain an auxiliary state e ∈ {0, 1}
that tracks the current direction we are traversing in the up or down direction.
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Functionality. The machine Mw
→ maintains state (v, e), where v is the workspace of a machine

M that decides L, and e ∈ {DOWN := 0,UP := 1} represents the next direction to traverse. Then
the decision rule works as follows:

1. If e = DOWN and v is a halting state, halt and return (v, e = UP).

2. If e = DOWN and v is not a halting state, let (w′, v′) = Γ(w, v). First, let we determine
the rank of (w, v) in the set Γ−1(w′, v′), via the machine Rankw(v). We store the rank k
on the work tape and execute OutEdgew(v), which updates the catalytic tape to w′ and
returns v′, which we store. Now we call InDegreew

′
(v′) to determine the in-degree d of the

current configuration. If d = k, we halt with the catalytic tape in configuration w′ and return
(v′, e = DOWN). Otherwise, we call InEdgew

′
(v′, k + 1) which sets the catalytic tape to w′′

and returns v′′. We halt in this configuration and return (v′′, e = UP).

3. If e = UP, we call InDegreew(v) to determine the in-degree d of (w, v). If d = 0, we halt and
return (v, e = DOWN). Otherwise, we call InEdgew(v, 1), which updates the tape to w′ and
returns v′, where (w′, v′) has rank 1 in the set of in-edges to (w, v). We then halt and return
(v′,UP).

The inverse Mw
←(v) can be described as follows:

1. If e = UP and v is a halting state, halt and return (v, e = DOWN). (This undoes case 1 of
M→.)

2. If e = UP and v is not a halting state, let (w′, v′) = Γ(w, v) and store the rank k of (w, v) in
Γ−1(w′, v′). Execute OutEdgew(v) to put w′ on the tape and store v′. If k = 1, then return
(v′,UP); this undoes the second part of case 3. Otherwise (k > 1), execute InEdgew(v′, k−1),
updating the catalytic tape to w′′, and return the resulting state v′′. This undoes the second
part of case 2.

3. If e = DOWN, then call InDegreew(v) to compute the in-degree d. If d = 0 then return (v,UP);
this undoes the first part of case 3. Otherwise, execute InEdgew(v, d), setting the catalytic
tape to w′ and returning v′ such that Γ(w′, v′) = (w, v), and return (v,DOWN). This undoes
the first part of case 2.

Correctness. It can be seen by inspection that M← and M→ are inverses of each other, so they
define a bijection Π.

We begin by considering the configuration graph G = Gx of the original catalytic machine M .
Let Gun be the undirectified version, i.e. forgetting the edge directions. Fix an initial catalytic tape
w, and let Gwun be the connected component containing start(w).

Claim B.3. Gwun is a tree, and it contains start(w) and halt(w, L(x)) and no other nodes start(w′)
or halt(w′, b′) for w′ ̸= w or b′ ̸= L(x).

Proof. Every node in G has out-degree one except the sink nodes halt(w′, b′). It follows that every
connected component of Gun is either a tree containing exactly one node of the form halt(w′, b′) or
contains no such nodes. G has a path from start(w) to halt(w, L(x)), so Gwun is a tree which includes
both those nodes and no other node of the form halt(w′, b′).

It remains to show that Gwun contains no nodes start(w′) for w′ ̸= w. This is true because every
start(w′) is connected to halt(w′, L(x)), which we have just seen is not in Gwun for w′ ̸= w.
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Now, consider the sequence of nodes in G × {DOWN,UP} given in the lemma statement:

((wt, vt), et) := Πt(start(w),DOWN)

To finish the proof, it suffices to observe that the sequence follows an Eulerian tour reaching every
node in Gwun. For completeness, we prove that the tour does indeed work as intended.

Say a node ((w′, v′), e′) is reached if ((w′, v′), e′) = ((wt, vt), et) for some t. Since Π follows
edges in G, it is clear that only nodes in Gwun are reached. It remains to prove the converse: that
every node in Gwun is reached. Or, more precisely, that (halt(w, L(x)),DOWN) is reached.

Suppose for a contradiction that (halt(w, L(x)),DOWN) is not reached. Since (start(w),DOWN)
is reached but (halt(w, L(x)),DOWN) is not, there must be a pair of nodes (w1, v1), (w2, v2) =
Γ(w1, v1) such that ((w1, v1),DOWN) is reached but ((w2, v2),DOWN) is not.

Let k be the rank of (w1, v1) in Γ−1(w2, v2), and d be the in-degree of (w2, v2). If k = d, then
Π((w1, v1),DOWN) = ((w2, v2),DOWN) (case 2, first part). By assumption this is not true, so
k < d and Π((w1, v1),DOWN) = ((w′, v′),UP) where (w′, v′) has rank k + 1 in Γ−1(w2, v2).

Since ((w′, v′),UP) is reached, eventually ((w′, v′),DOWN) must also be reached. Otherwise, the
walk would get stuck in the subtree of Gun rooted at (w′, v′) without returning to (w1, v1), which
is impossible because we know the permutation Π must eventually cycle back to nodes outside
that subtree. The node after ((w′, v′),DOWN) is ((w′′, v′′),UP) where (w′′, v′′) has rank k + 2 in
Γ−1(w2, v2).

We can only do this d−k times in total before running out of nodes of higher rank in Γ1(w2, v2).
So, eventually, ((wlast, vlast),DOWN) is reached, where (wlast, vlast) has rank d in Γ−1(w2, v2), and
the next step after that is ((w2, v2),DOWN): a contradiction.

C Manipulating Randomized Configuration Graphs

In this section we prove Theorem 2.10. Note that RandWalk is easy to implement; it is clear that
Gx[σ, r] can be computed by a catalytic subroutine given one-way access to r, by simulating the
original catalytic machine M .

For RandRev, we need to deal with the fact that We say that a configuration σ is reachable if
for some catalytic tape configuration w and r ∈ {0, 1}∗, σ = Gx[start(w), r]. (Note that start(w)
is the initial configuration with catalytic tape w.) Similar to deterministic catalytic computation,
there are no two different initial configurations that reach the same configuration.

Proposition C.1. For every randomized configuration graph Gx, for every reachable configuration
σ′, there is exactly one initial configuration σ such that there exists z ∈ {0, 1}∗ such that G[σ, z] = σ′.

Proof. Suppose for contradiction this was not the case. Then for z1, z2 we have

G[σ1, z1] = σ′ = G[σ2, z2]

for a pair of starting configurations σ1 ̸= σ2. Then it is easy to see that with non-zero probability,
the machine does not reset the tape correctly on at least one of these starting states.

Note that this means that a reachable configuration σ′ uniquely specifies its initial configuration
σ, even when we do not remember the specific path used to reach σ′ from σ. This property is
essential in our algorithm.

We state the following standard result that helps to efficiently traverse on Gx in reverse direction
(mirroring the result of Proposition B.2 used for traversing the configuration graph of deterministic
machines). The proof is omitted.
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Proposition C.2 (Folklore). There are deterministic catalytic subroutines InDegree, InEdge, Rank
using O(s) additional workspace that works as follows. Let x ∈ {0, 1}n be an input of M and
(w, v) ∈ Gx be a configuration.

• InDegreew(v, b) returns the number of configurations (w′, v′) such that Γb(w
′, v′) = (w, v),

with read-only access to the catalytic tape w.

• InEdgew(v, i, b) updates the catalytic tape to w′ and returns v′, where (w′, v′) is the i-th node
such such that Γb(w

′, v′) = (w, v) with respect to a consistent ordering.

• Rankw
′
(v′, b) returns the rank of the node in the list of Γ−1b (w, v) (according to the ordering

of InEdgew(v, ·, b)), where (w, v) := Γb(w
′, v′), with read-only access to the catalytic tape w′.

We are now ready to prove the RandRev case of Theorem 2.10, which we restate here:

Lemma C.3 (Reverse Traversal Given Walk). For a CL configuration graph G, there is a catalytic
subroutine RandRevw

′
(x, v′, r) using O(s+ log |r|) additional workspace that works as follows:

1. If there is a catalytic tape configuration w such that G[start(w), r] = (w′, v′), it accepts and
with the catalytic tape in configuration w.

2. Otherwise, it rejects and leaves the catalytic tape in configuration w′.

Proof. Let w′ be the catalytic tape and v′, r be the input. We define a directed graph G∗ whose
nodes are of the form (w1, v1, k) ∈ {0, 1}2

s × {0, 1}s × [|r|]. Let σ1 = (w1, v1), σ2 = (w2, v2), and
k ∈ [1, |r|+ 1], there is an edge (w1, v1, k) 7→ (w2, v2, k + 1) if σ2 = Γrk(σ1). Consider the induced
sub-graph G∗w′,v′ ⊆ G∗ containing all nodes that can reach (w′, v′, |r|+ 1) through edges in G∗.

Claim C.4. G∗w′,v′ is a directed tree rooted at (w′, v′, |r| + 1), where the direction of the edges is
from the child to its parent.

Proof. Clearly (w′, v′, |r| + 1) is in G∗w′,v′ . Since every node in G∗w′,v′ can reach (w′, v′, |r| + 1)
through edges in G∗, we know that G∗w′,v′ is connected (forgetting the direction of edges). Moreover,
(w′, v′, |r|+ 1) has out-degree 0, and all other nodes has out-degree exactly 1. This implies that it
is a directed tree going in the root (w′, v′, |r|+ 1).

It is clear that there is a catalytic tape configuration w such that G[start(w), r] = (w′, v′) if
and only if (w, v, 1) ∈ G∗w′,v′ , where (w, v) = start(w). By Proposition C.1, there is at most one
such w. Therefore, the task of finding such w reduces to finding a node of form (w, v, 1) satisfying
(w, v) = start(w) on the tree G∗w′,v′ .

The algorithm RandRev performs a DFS on the tree from the root (w′, v′, |r|+1). We maintain
a counter k and a tape configuration v on the work tape. Suppose that the catalytic tape is w, our
DFS algorithm reaches the node (w, v, k). It works as follows.

1. Let w be the current catalytic tape. Suppose that (w, v) = start(w) and k = 1, we conclude
by the discussion above that G[start(w), r] = (w′, v′). The algorithm then halts and accepts.

2. By calling the catalytic subroutine InDegreew(v, rk−1) in Proposition C.2, we can check
whether the current node (w, v, k) has any child. In case that there is at least one child,
i.e., k > 1 and InDegreew(v, rk−1) > 0, the first child of (w, v, k) will be the next node to
visit. Therefore, we move to that node by calling v̂ ← InEdgew(v, i, b) and setting v ← v̂,
k ← k − 1, and restart from Step 1.
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3. Otherwise, we need to find the next node to visit in the DFS order. It jumps towards the
root of the tree until there is an unvisited sibling of the current node (w, v, k). Concretely, it
first computes its rank among the siblings by calling j ← Rankw(v, rk). It then walks to its
parent by calling v ← RandWalkw(x, v, rk) and setting k ← k + 1.

(a) If the in-degree of the parent (which can be obtained by calling InDegreew(v, rk−1))
is not equal to the rank j, we move to the (j + 1)-th child of the parent (by calling
v̂ ← InEdgew(v, rk−1) and setting v ← v̂, k ← k − 1) and restart from Step 1.

(b) If we reach k = |r| + 1 without triggering Case 3a, it means that all nodes are visited.
The algorithm then halts and rejects.

(See Catalytic Subroutine 3 for the pseudocode of the algorithm.)
To see the correctness of the algorithm, one can prove the invariant that when the algorithm

reaches Step 1 for the i-th time, (w, v, k) is the i-th node on the tree G∗w′,v′ in its DFS order, where
the children of a node are visited according to the consistent ordering given by Rank and InEdge
in Proposition C.2. If there is a valid initial configuration from which (w′, v′, |r|+ 1) is reachable,
it will be visited in Line 5, which satisfies Item 1. Otherwise, it will eventually visit all the nodes
and reach Line 17. By that time, (w, v, k) will have been reset back to (w′, v′, |r|+ 1), and thus it
satisfies Item 2.

Remark C.5. We note that Lemma C.3 is different from its counterpart Lemma B.1 for determin-
istic computation in an important way. In Lemma B.1, the forward and backwards transitions are
the exact reverse of each other. In Lemma C.3, the reverse simulation algorithm on input r could
take much longer than the forwards simulation on r. This is because in Lemma B.1, we transform
the forward simulation algorithm to “match” the reverse simulation. Here this modification is not
possible, since we require a fixed (i.e. unmodified) forward algorithm that works for every walk r.

34



D List and Pseudocode of Catalytic Subroutines

D.1 Reference table

Subroutine Reference Usage Pseudocode

Det. config. graphs Section 2.3.1

DetWalkw(x, k) Theorem 2.7 either returns L(x) or sets the catalytic Algorithm 1
tape to w′ and returns v′, a′, where
((w′, v′), a′) = Πk[start(w), 0]

DetRevw
′
(x, v, a) Theorem 2.7 sets the catalytic tape to w and returns k, Algorithm 2

where ((w′, v′), a′) = Πk[start(w), 0]
Rand. config. graphs Section 2.3.2

RandWalkw(x, v, r) Theorem 2.10 sets the catalytic tape to w′ and returns N/A
v′, where Gx[(w, v), r] = (w′, v′)

RandRevw
′
(x, v′, r) Theorem 2.10 if there is a catalytic configuration w such Algorithm 3

that G[start(w), r] = (w′, v′), accepts
with the catalytic tape in configuration
w; otherwise rejects and leaves the
catalytic tape in configuration w′

EQw(x, r, r′) Lemma 2.11 accepts iff Gx[start(w), r] = Gx[start(w), r′] Algorithm 4
Det. results Section 3

DetCompw(1B , x) Theorem 3.1 either returns L(x) or sets the catalytic Algorithm 5
tape to w′ ◦ 0B , where |w′| = 2s +O(s)

DetDecompw
′◦0B (1B , x) Theorem 3.1 sets the catalytic tape to w, where Algorithm 6

DetDecompw(1B , x) sets the catalytic tape
to w′ ◦ 0B

Large graph case Section 4.1

Sizew(x, Y ) Theorem 4.4 returns |Y(w, Y )| Algorithm 7
RandCompw(x, i, Y ) Theorem 4.4 sets the catalytic tape to w′ and returns Algorithm 8

v′, where f((w′, v′)) = i

RandDecompw
′
(x, v′, Y ) Theorem 4.4 sets the catalytic tape to w and returns Algorithm 9

i = f((w′, v′))
PRG tools Section 4.2

NWf (s) Theorem 4.7 candidate pseudorandom generator N/A

Hintf,P Theorem 4.7 assuming P is a previous bit predictor for N/A

NWf , returns h ∈ {0, 1}O(logN) and an
interval K ⊆ [N cNW ] of length N c

Decodea,f̃ ,P (j) Theorem 4.7 assuming f̃K̄ = fK̄ and P is a previous bit N/A

predictor for NWf , returns fj for j ∈ K
Small graph case Section 4.2

Pigeonw◦m1◦...◦m2S (x) Claim 4.8 returns i such that Yi ⊆ Y<i Algorithm 10
A

w◦m1◦...◦mi−1

1 (r) Claim 4.9 returns L1(r) = I [U [start(w), r] =⊥] Algorithm 11
A

w◦m1◦...◦mi−1

2 (r) Claim 4.9 returns L2(r) = I [U [start(w), r] = acc(w)] Algorithm 12
Predw◦m1◦...◦mi−1(a, v, r) Claim 4.10 returns Pa,v(r) = La((Gk(τ))≤l1 ◦ r>l2)⊕ b N/A
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D.2 Codebase

Catalytic Subroutine 1: DetWalkw(x, k) (Theorem 2.7)

1 v ← 0s, a← 0;
2 for t = 1 . . . k do
3 Call M→(x, v, a) and store the result in v and a;

4 if a = 0 and v has the form b1s(n)−1 then
// M→(x, v, a) found answer b = L(x) and reset w

5 Return b;

6 end

7 end
// No answer found after k steps

8 Return (v, a);

Catalytic Subroutine 2: DetRevw(x, v, a) (Theorem 2.7)

1 v′ ← v, a′ ← a;
2 while (v, a) ̸= (0s, 0) do
3 Call M←(x, v′, a′) and store the result in v′ and a′.;
4 t← t+ 1;

5 end
6 return t;
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Catalytic Subroutine 3: RandRevw
′
(x, v′, r) (Theorem 2.10)

// Throughout the algorithm, we use wcur to represent the current

configuration of the catalytic tape.

1 Initialize v ← v′, k ← |r|+ 1;
2 while true do
3 if (wcur, v) = start(wcur) and k = 1 then

// Start node found

4 Return 1;

5 end
6 if k > 1 and InDegreewcur(v, rk−1) > 0 then

// iteratively search the first child of (wcur, v, k)
7 v ← InEdgewcur(v, 1, rk−1);
8 k ← k − 1;

9 else
// Reach a leaf that is not of form (·, 0, 1), find the next node

10 while k ≤ |r| do
11 j ← Rankwcur(v, rk);

// Remember the rank of the current node

12 v ← RandWalkwcur(x, v, rk), k ← k + 1;
// Walk to its parent

13 if InDegreewcur(x, v, rk) ̸= j then
// We have not visited all children of (wcur, v, k)

14 v ← InEdgewcur(x, v, j + 1) and restart from line 2;

15 end

16 end
// all nodes visited, returned to the root

17 Return 0;

18 end

19 end

Catalytic Subroutine 4: EQw(x, r, r′) (Lemma 2.11)

1 for i = 1 . . . s+ 2s do
2 Run RandWalkw(x, 0s, r), end with catalytic tape wr and return of vr, where

(wr, vr) := G[start(w), r];
3 Set b← the i-th bit of (wr, vr) and run RandRevwr(x, vr, r);
4 Run RandWalkw(x, 0s, r′), end with catalytic tape wr′ and return of vr′ , where

(w′r, v
′
r) := G[start(w), r];

5 Set b′ ← the i-th bit of (wr′ , vr′) and run RandRevwr′ (x, vr′ , r
′);

6 if b ̸= b′ then
// Mismatch between ith bits, so (wr, vr) ̸= (wr′ , vr′)

7 Return 0;

8 end

9 end
// Every bit matches, so (wr, vr) ̸= (wr′ , vr′)

10 Return 1;
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Catalytic Subroutine 5: DetCompw(1B, x) (Theorem 3.1)

1 k ← 0,w′0 ← w;
2 while k < B do

// Invariant: catalytic tape has the form w′k ◦ 0k
3 Parse w′k as m ◦ i ◦ zk for |m| = 2s, |i| = s+ 2;
4 Run DetWalkm(x, i);
5 if DetWalk returns L(x) then

6 Call DetDecompw
′
k◦0

k
(1k, x) and then return L(x);

7 end
8 else
9 (v′, a′)← DetWalkm(x, i);

// At this point, the catalytic tape has the form m′ ◦ i ◦ zk ◦ 0k.
10 Set the catalytic tape to (w′k+1 := m′ ◦ (v′ ◦ a′) ◦ zk) ◦ 0k+1;

11 end
12 k ← k + 1;

13 end
14 Return ⊥;

Catalytic Subroutine 6: DetDecompw
′
B◦0

B
(1B, x) (Theorem 3.1)

1 k ← B;
2 while k > 0 do

// Invariant: catalytic tape has the form w′k ◦ 0k.
3 Parse w′k as m ◦ (v ◦ a) ◦ zk where |m| = 2s, |v ◦ a| = s+ 1;
4 i← DetRevm(x, v, a);

// At this point, the catalytic tape has the form m′ ◦ (v ◦ a) ◦ zk ◦ 0k.
5 Set the catalytic tape to (w′k−1 := m′ ◦ i ◦ zk) ◦ 0k+1. k ← k − 1;

6 end

Catalytic Subroutine 7: Sizew(x, Y ) (Theorem 4.4)

1 Initialize i← 0;
2 for k = 1 . . .mℓ do
3 Set first← 1;
4 for k′ = 1 . . . k do
5 if EQw(x, zk, zk′) then

// First(zk) is not true

6 Set first← 0;

7 end

8 end
9 if first = 1 then

// First(zk) is true

10 Increment i;

11 end

12 end
13 Return i;
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Catalytic Subroutine 8: RandCompw(x, i, Y ) (Theorem 4.4)

1 Initialize i′ ← 0;
2 for k = 1 . . .mℓ do
3 Set first← 1;
4 for k′ = 1 . . . k do
5 if EQw(x, zk, zk′) then

// First(zk) is not true

6 Set first← 0;

7 end

8 end
9 if first = 1 then

// First(zk) is true

10 Increment i′;
11 if i′ = i then
12 Run RandWalkw(x, 0s, zk) to set the catalytic tape to wk and return vk;
13 end

14 end

15 end

Catalytic Subroutine 9: RandDecompw
′
(x, v′, Y ) (Theorem 4.4)

1 Initialize i′ ← 0;
2 for k = 1 . . .mℓ do

3 Run RandRevw
′
(x, v′, zk);

4 if RandRev accepts then
// zk is the first string such that RandWalkw(x, 0, zk) = (w′, v′)

5 Break from the loop;

6 end

7 end
// zk is the first string to reach (w′, v′), so Sizew(x, {z1 . . . zk}) = f((w′, v′))

8 Run Sizew(x, {z1 . . . zk}) and return output i;
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Catalytic Subroutine 10: Pigeonw◦m1◦...◦m2S (x) (Claim 4.8)

1 flagi ← 0, f lagy ← 0;
2 for i = 1 . . . B do
3 Set flagi ← 0;
4 for prefix y< of y in Yi do

// prefix generated via NWmi(U)
5 Set flagy ← 0;
6 for prefix z< of z in Y<i do

// prefix generated via NWmk(U) for k ∈ [i− 1]
7 if EQw(x, y<, z<) then

// Found G[start(w), y<]
8 Set flagy ← 1;

9 end

10 end
11 if flagy = 0 then

// No z< such that G[start(w), y<] = G[start(w), y<]
12 flagi ← 1;

13 end

14 end
15 if flagi = 0 then

// Every y< has a z< such that G[start(w), y<] = G[start(w), y<]
16 Return i;

17 end

18 end

Catalytic Subroutine 11: A
w◦m1◦...◦mi−1

1 (r) (Claim 4.9)

// U = Y<i.

1 for prefix r< of r do
2 Set flagr ← 0;
3 for prefix y< of y in Y<i do

// prefix generated via NWmk(U) for k ∈ [i− 1]
4 if EQw(x, r<, y<) then

// G[start(w), r<] is inside U
5 flagr ← 1;

6 end

7 end
8 if flagr = 0 then

// G[start(w), r<] does not match any state in U
9 Return 1;

10 end

11 end
// G[start(w), r] has not left U

12 Return 0;
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Catalytic Subroutine 12: A
w◦m1◦...◦mi−1

2 (r) (Claim 4.9)

// U = Y<i.

1 Run A
w◦m1◦...◦mi−1

1 (r);
2 if A1 accepts then

// U [start(w), r] =⊥
3 Return 0;

4 end
5 Run RandWalkw(x, 0, r) and end in state (w′, v′);
6 if (w′, v′) = acc(w) then

// U [start(w), r] = acc(w)
7 Return 1;

8 end
9 else

// U [start(w), r] ̸= acc(w)
10 Return 0;

11 end
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